WO2017101847A1 - 吡啶并[1,2-a]嘧啶酮类似物、其晶型、其中间体及其制备方法 - Google Patents

吡啶并[1,2-a]嘧啶酮类似物、其晶型、其中间体及其制备方法 Download PDF

Info

Publication number
WO2017101847A1
WO2017101847A1 PCT/CN2016/110284 CN2016110284W WO2017101847A1 WO 2017101847 A1 WO2017101847 A1 WO 2017101847A1 CN 2016110284 W CN2016110284 W CN 2016110284W WO 2017101847 A1 WO2017101847 A1 WO 2017101847A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
diffraction peaks
typically
diffraction
crystalline form
Prior art date
Application number
PCT/CN2016/110284
Other languages
English (en)
French (fr)
Inventor
于涛
李宁
孔凌微
姜佩佩
王勇
荣哲民
王昌俊
郭峰
李宗斌
王峥
吴家虎
吴成德
Original Assignee
正大天晴药业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL16874904T priority Critical patent/PL3395817T3/pl
Priority to DK16874904.2T priority patent/DK3395817T3/da
Priority to CA3008689A priority patent/CA3008689A1/en
Priority to CN201680072381.1A priority patent/CN108602815B/zh
Priority to ES16874904T priority patent/ES2908498T3/es
Priority to JP2018531358A priority patent/JP7037483B2/ja
Priority to KR1020187019466A priority patent/KR102731762B1/ko
Priority to EP16874904.2A priority patent/EP3395817B1/en
Application filed by 正大天晴药业集团股份有限公司 filed Critical 正大天晴药业集团股份有限公司
Priority to RU2018125475A priority patent/RU2753696C2/ru
Priority to AU2016369835A priority patent/AU2016369835B2/en
Priority to US16/061,279 priority patent/US10479789B2/en
Publication of WO2017101847A1 publication Critical patent/WO2017101847A1/zh
Priority to ZA2018/04007A priority patent/ZA201804007B/en
Priority to HK18115096.1A priority patent/HK1256044A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a crystalline form of a pyrido[1,2-a]pyrimidinone analog, a process for the preparation thereof and an intermediate.
  • the PI3K pathway is the most frequently mutated part of human cancer cells, which can lead to cell proliferation, activation, and amplification of signals.
  • PI3K kinase (phosphatidylinositol-3-kinase, PI3Ks) belongs to the lipid kinase family and is capable of phosphorylating the 3'-OH end of the inositol ring of phosphatidylinositol, which is a regulatory subunit.
  • Phosphokinase consisting of p85 or p101 and the catalytic subunit p110, phosphorylated to phosphatidylinositol 3,4,5-triphosphate by catalyzing the phosphoryl phosphatidylinositol 4,5-bisphosphate (PIP2) (phosphatidylinositol 3,4,5-trisphosphate, PIP3) activates downstream Akt and the like to play a key role in cell proliferation, survival and metabolism. Therefore, inhibition of phosphatidylinositol 3 kinase can affect the PI3K pathway, thereby inhibiting the proliferation and activation of cancer cells.
  • PIP2 phosphoryl phosphatidylinositol 3,4,5-triphosphate
  • PTEN phosphatase and stretching homolog deleted on chromosome ten dephosphorylates PIP3 to form PIP2, thereby achieving negative regulation of PI3K/Akt signaling pathway, inhibiting cell proliferation and promoting apoptosis.
  • the frequent occurrence of PI3K gene mutation and amplification in cancer and the loss of PTEN in cancer suggest a close relationship between PI3K and tumorigenesis.
  • the invention provides a preparation method of the compound 1,
  • X is selected from Cl or Br
  • the base C is selected from the group consisting of pyridine, 2,6-lutidine, Et 3 N, 4-DMAP, LiOH, Cs 2 CO 3 or K 2 CO 3 ;
  • Solvent c is selected from the group consisting of pyridine, dichloromethane, toluene, acetonitrile, acetone, DMF or THF;
  • the molar ratio of compound 7 to compound 8 is 1:1 to 3;
  • the molar ratio of the compound 7 to the base C is 1:1 to 3.
  • the molar ratio of the above compound 7 to the compound 8 is from 1:1.2 to 1.6.
  • the preparation of the above Compound 1 includes the following steps,
  • the base A is selected from the group consisting of potassium carbonate, sodium carbonate, cesium carbonate, potassium hydroxide or sodium hydroxide;
  • Solvent a is selected from DMF, DMSO or NMP.
  • 2-dimethylaminochloroethane or 2-dimethylaminobromoethane can be used in the form of a salt thereof, such as 2-dimethylaminochloroethane hydrochloride or 2-dimethylaminobromoethane hydrochloride.
  • the molar ratio of the above compound 5 to 2-dimethylaminochloroethane (or its hydrochloride) or 2-dimethylaminobromoethane (or its hydrochloride) is 1:1. 2.
  • the molar ratio of the above compound 5 to 2-dimethylaminochloroethane (or its hydrochloride) or 2-dimethylaminobromoethane (or its hydrochloride) is 1:1.1 1.3.
  • the preparation of the above Compound 1 includes the following steps,
  • the base B is selected from the group consisting of potassium carbonate, sodium carbonate, barium hydroxide, potassium phosphate, barium carbonate, potassium fluoride, barium fluoride, sodium hydroxide, potassium t-butoxide, sodium t-butoxide, potassium acetate or sodium acetate;
  • Solvent b is selected from 1,4-dioxane, DMSO, THF, 1,4-dioxane/water or THF/water;
  • the solvent b the volume ratio of 1,4-dioxane or THF to water is from 3 to 6:1, preferably 5:1;
  • the catalyst is selected from the group consisting of Pd(dppf)Cl 2 or Pd(PPh 3 ) 4 .
  • the volume ratio of 1,4-dioxane or THF to water is 5:1.
  • the preparation of the above Compound 1 includes the following steps,
  • the reaction of the compound 5 with 2-dimethylaminochloroethane hydrochloride to form the compound 6 is preferably carried out in the presence of a base A and a solvent a, wherein the base A is selected from the group consisting of potassium carbonate and carbonic acid. Sodium, cesium carbonate, potassium hydroxide or sodium hydroxide; solvent a is selected from DMF, DMSO or NMP.
  • the molar ratio of the above compound 5 to 2-dimethylaminochloroethane hydrochloride is 1:1 to 2.
  • the molar ratio of the above compound 5 to 2-dimethylaminochloroethane hydrochloride is from 1:1.1 to 1.3.
  • solvent b is selected from 1,4-dioxane, DMSO, THF, 1,4-dioxane/water Or THF/water, in the solvent b, the volume ratio of 1,4-dioxane or THF to water is from 3 to 6:1, preferably 5:1; the catalyst is selected from Pd(dppf)Cl 2 or Pd (PPh 3 ) 4 .
  • the reaction of the compound 7 with 2-chloro-4-fluorobenzenesulfonyl chloride to form the compound 1 is preferably carried out in the presence of a base C and a solvent c, wherein the base C is selected from the group consisting of pyridine, 2, 6 - lutidine, Et 3 N, 4-DMAP, LiOH, Cs 2 CO 3 and K 2 CO 3 ; solvent c is selected from the group consisting of pyridine, dichloromethane, toluene, acetonitrile, acetone, DMF and THF; compounds 7 and 2
  • the molar ratio of -chloro-4-fluorobenzenesulfonyl chloride is 1:1 to 3; the molar ratio of compound 7 to base C is 1:1 to 3.
  • the molar ratio of the above compound 7 to 2-chloro-4-fluorobenzenesulfonyl chloride is from 1:1.2 to 1.6.
  • the invention also provides a compound of the formula: as an intermediate for the preparation of compound 1:
  • XRD X-ray diffraction
  • the present invention provides Form IX of Compound 1, the XRPD pattern of which is shown in Figure 25.
  • the XRPD pattern analysis data of the crystalline form IX of the above compound 1 is shown in Table 1:
  • the DSC pattern of Form IX of Compound 1 above is shown in Figure 26.
  • the TGA profile of Form IX of Compound 1 above is shown in Figure 27.
  • the crystalline form IX of the above compound 1 may be in the form of a crystal of an unsolvate or may be in the form of a solvate crystal, where the solvate means an organic solvent and/or water and a corresponding compound. Solvate.
  • the present invention provides a crystalline composition of the crystalline form IX.
  • the crystalline form IX comprises 50% by weight or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more by weight of the crystalline composition.
  • the present invention provides a pharmaceutical composition of Form IX, which comprises a therapeutically effective amount of the crystalline form IX, or a crystalline form of the crystalline form IX, and furthermore, the pharmaceutical composition may further comprise Or no pharmaceutically acceptable carrier, excipient and/or medium.
  • the present invention provides a compound 2 of the following formula,
  • XRD X-ray diffraction
  • the present invention provides Form I of Compound 2, the XRPD pattern of which is shown in Figure 1.
  • the crystal form I of the above compound 2 and the XRPD pattern analysis data thereof are shown in Table 2.
  • the DSC pattern of Form I of Compound 2 above is shown in Figure 2.
  • TGA profile of Form I of Compound 2 above is shown in Figure 3.
  • the crystal form I of the above compound 2 may be in the form of a crystal of an unsolvate or may be in the form of a solvate crystal, where the solvate means an organic solvent and/or water and a corresponding compound. Solvate.
  • the present invention provides a crystalline form of the crystalline form I.
  • the crystalline form I comprises 50% by weight or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more by weight of the crystalline composition.
  • the present invention provides a pharmaceutical composition of Form I, which comprises a therapeutically effective amount of the crystalline form I, or a crystalline form of the crystalline form I, and furthermore, the pharmaceutical composition may further comprise Or no pharmaceutically acceptable carrier, excipient and/or medium.
  • XRD X-ray diffraction
  • the present invention provides Form II of Compound 2, the XRPD pattern of which is shown in Figure 4.
  • the XRPD pattern analysis data of the crystal form II of the above compound 2 is shown in Table 3.
  • the DSC pattern of Form II of Compound 2 above is shown in Figure 5.
  • TGA profile of Form II of Compound 2 above is shown in Figure 6.
  • the crystal form II of the above compound 2 may be in the form of a crystal of an unsolvate or may be in the form of a solvate crystal, where the solvate means an organic solvent and/or water and a corresponding compound. Solvate.
  • the present invention provides a crystalline form composition of Form II.
  • the crystalline form II comprises 50% by weight or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more by weight of the crystalline composition.
  • the present invention provides the pharmaceutical composition of Form II, which comprises a therapeutically effective amount of the crystalline form II, or a crystalline form of the crystalline form II, and furthermore, the pharmaceutical composition may further comprise Or no pharmaceutically acceptable carrier, excipient and/or medium.
  • XRD X-ray diffraction
  • the present invention provides Form III of Compound 2, the XRPD pattern of which is shown in Figure 7.
  • the XRPD pattern analysis data of the crystal form III of the above compound 2 is shown in Table 4.
  • TGA profile of Form III of Compound 2 above is shown in Figure 9.
  • the crystal form III of the above compound 2 may be in the form of an unsolvated crystal, or may be in the form of a solvate crystal, where the solvate means an organic solvent and/or water and a corresponding compound. Solvate.
  • the present invention provides a crystalline form composition of Form III.
  • the crystalline form III comprises 50% by weight or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more by weight of the crystalline composition.
  • the present invention provides the pharmaceutical composition of Form III, which comprises a therapeutically effective amount of the crystalline form III, or a crystalline form of the crystalline form III, and furthermore, the pharmaceutical composition may further comprise Or no pharmaceutically acceptable carrier, excipient and/or medium.
  • XRD X-ray diffraction
  • the present invention provides Form IV of Compound 2, the XRPD pattern of which is shown in FIG.
  • the crystal form IV of the above compound 2 and the XRPD pattern analysis data thereof are shown in Table 5.
  • TGA profile of Form IV of Compound 2 above is shown in FIG.
  • the crystal form IV of the above compound 2 may be in the form of a crystal of an unsolvate or may be in the form of a solvate crystal, where the solvate means an organic solvent and/or water and a corresponding compound. Solvate.
  • the present invention provides a crystalline form of the crystalline form IV.
  • the crystalline form IV comprises 50% by weight or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more by weight of the crystalline composition.
  • the present invention provides the pharmaceutical composition of Form IV, which comprises a therapeutically effective amount of the crystalline form IV, or a crystalline form of the crystalline form IV, and furthermore, the pharmaceutical composition may further comprise Or no pharmaceutically acceptable carrier, excipient and/or medium.
  • XRD X-ray diffraction
  • the present invention provides Form V of Compound 2, the XRPD pattern of which is shown in FIG.
  • the crystal form V of the above compound 2 and the XRPD pattern analysis data thereof are shown in Table 6.
  • TGA profile of Form V of Compound 2 above is shown in FIG.
  • the crystal form V of the above compound 2 may be in the form of a crystal of an unsolvate or may be in the form of a solvate crystal, where the solvate means an organic solvent and/or water and a corresponding compound. Solvate.
  • the present invention provides a crystalline form of the Form V.
  • the crystalline form V is more than 50% by weight of the crystalline composition, more preferably 80% or more, still more preferably 90% or more, most preferably 95% or more.
  • the present invention provides a pharmaceutical composition of Form V, which comprises a therapeutically effective amount of the crystalline form V, or a crystalline form of the crystalline form V, and furthermore, the pharmaceutical composition may further comprise Or no pharmaceutically acceptable carrier, excipient and/or medium.
  • XRD X-ray diffraction
  • the present invention provides Form VI of Compound 2, the XRPD pattern of which is shown in FIG.
  • the X-ray pattern analysis data of the crystalline form VI of the above compound 2 is shown in Table 7.
  • TGA profile of Form VI of Compound 2 above is shown in Figure 18.
  • the crystal form VI of the above compound 2 may be in the form of a crystal of an unsolvate or may be in the form of a solvate crystal, where the solvate means an organic solvent and/or water and a corresponding compound. Solvate.
  • the present invention provides a crystalline form of the crystalline form VI.
  • the crystalline form VI comprises 50% by weight or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more by weight of the crystalline composition.
  • the present invention provides a pharmaceutical composition of the crystalline form VI, which comprises a therapeutically effective amount of the crystalline form VI, or a crystalline form of the crystalline form VI, and furthermore, the pharmaceutical composition may further comprise Or no pharmaceutically acceptable carrier, excipient and/or medium.
  • the present invention provides a compound 3 represented by the following formula,
  • XRD X-ray diffraction
  • the present invention provides Form VII of Compound 3, the XRPD pattern of which is shown in FIG.
  • the XRPD pattern analysis data of Form VII of the above Compound 3 is shown in Table 8.
  • the DSC pattern of Form VII of Compound 3 above is shown in Figure 20.
  • the present invention provides a crystalline form of the Form VII.
  • the Form VII comprises 50% by weight or more, preferably 80% or more, more preferably 90% or more, most preferably 95% or more by weight of the crystalline composition.
  • the present invention provides a pharmaceutical composition of Form VII, which comprises a therapeutically effective amount of the crystalline form VII, or a crystalline form of the crystalline form VII, and furthermore, the pharmaceutical composition may further comprise Or no pharmaceutically acceptable carrier, excipient and/or medium.
  • the present invention provides a compound 4 of the following formula,
  • XRD X-ray diffraction
  • the XRPD pattern analysis data of the crystalline form VIII of the above compound 4 is shown in Table 9.
  • the DSC pattern of Form VIII of Compound 4 above is shown in Figure 23.
  • TGA profile of Form VIII of Compound 4 above is shown in Figure 24.
  • the form VIII of the compound 4 may be in the form of a crystal of an unsolvate or may be in the form of a solvate crystal, and the solvate herein means a solvent in which an organic solvent and/or water and a corresponding compound are formed.
  • solvate herein means a solvent in which an organic solvent and/or water and a corresponding compound are formed.
  • the present invention provides a crystalline form of the Form VIII.
  • the Form VIII comprises 50% by weight or more, preferably 80% or more, more preferably 90% or more, most preferably 95% or more by weight of the crystalline composition.
  • the present invention provides a pharmaceutical composition of Form VIII, which comprises a therapeutically effective amount of the crystalline form VIII, or a crystalline form of the Form VIII, and furthermore, the pharmaceutical composition may further comprise Or no pharmaceutically acceptable carrier, excipient and/or medium.
  • Another object of the present invention is to provide the crystalline forms I, II, III, IV, V, VI, VII, VIII and IX of the present invention, the above crystalline composition and the above pharmaceutical composition for the preparation of a disease associated with PI3K kinase. Application in medicine.
  • the PI3K kinase-related disease is selected from the group consisting of a cancer, such as colon cancer, gastric cancer, and the like.
  • a further object of the present invention is to provide a method of treating a disease associated with PI3K kinase, which comprises administering a therapeutically effective amount of Forms I, II, III, IV, V, VI, VII, VIII and IX of the present invention.
  • the above crystalline composition and the above pharmaceutical composition are administered to a patient in need thereof.
  • the PI3K kinase-related disease is selected from the group consisting of a cancer, such as colon cancer, gastric cancer, and the like.
  • intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, combinations thereof with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, embodiments of the invention.
  • the diffraction spectrum obtained from the crystalline compound is often characteristic for a specific crystal form, wherein the relative intensity of the band (especially at a low angle) may be due to crystallization conditions.
  • the dominant orientation effect due to the difference in particle size and other measurement conditions varies. Therefore, the relative intensities of the diffraction peaks are not characteristic for the crystal form to be targeted.
  • the position of the peak can be shifted due to changes in temperature during sample analysis, sample movement, or calibration of the instrument, etc., and the measurement error of the 2 ⁇ value is sometimes about ⁇ 0.5°, preferably about ⁇ 0.3°, more preferably about ⁇ 0.2. °. Therefore, this error should be taken into account when determining each crystal structure, and the 2 ⁇ value within the error is also within the scope of the invention.
  • the peak positions of the XRD spectrum have similarities as a whole, and the relative intensity error may be large. It should also be noted that in the identification of the mixture, some of the diffraction lines are missing due to factors such as a decrease in content. At this time, it is not necessary to rely on all the bands observed in the high-purity sample, and even one band may be given. The crystals are characteristic.
  • Solvates are formed, specifically including stoichiometric solvates and non-stoichiometric solvates. The solvates are all included within the scope of the invention.
  • the stoichiometry of chloride ions in the compound 2 (hydrochloride) prepared by the present invention can be determined by ion chromatography.
  • the instrument used was 883 Basic IC plus 1; the column was selected for Metrosep A Supp 5-150/4.0; the flow rate was 0.700 mL/min; and the running time was 10 min.
  • DCM dichloromethane
  • PE petroleum ether
  • EA ethyl acetate
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • THF tetrahydrofuran
  • NMP N-methylpyrrolidone
  • Et 3 N stands for triethylamine
  • 4-DMAP 4-dimethylaminopyridine
  • LiOH stands for lithium hydroxide
  • Cs 2 CO 3 stands for cesium carbonate
  • K 2 CO 3 stands for carbonic acid Potassium
  • PPh 3 represents triphenylphosphine
  • Pd(PPh 3 ) 4 represents tetrakistriphenylphosphine palladium
  • Pd(dppf)Cl 2 represents 1,1'-bis(diphenylphosphino)ferrocene palladium chloride.
  • XRPD X-ray powder diffractometer
  • Tube voltage 40kV
  • tube current 40mA
  • Anti-scattering slit 7.10mm
  • DSC Differential Scanning Calorimeter
  • Test conditions Samples (0.5 to 1 mg) were placed in a DSC aluminum pan for testing at room temperature to 300 ° C and a heating rate of 10 ° C/min.
  • TGA Thermal Gravimetric Analyzer
  • Test conditions Samples (2 to 5 mg) were placed in a TGA platinum pot for testing at room temperature to 300 ° C and a heating rate of 10 ° C/min.
  • the compound 2, the compound 3, the compound 4, the crystal form IX of the compound 1, the crystal form II of the compound 2, the crystal form III of the compound 2, the crystal form IV of the compound 2, and the compound 2 are provided by the present invention.
  • the crystalline form V, the crystalline form VI of the compound 2, the crystalline form VII of the compound 3, and the crystalline form VIII of the compound 4 are stable, have good solubility, and have good wettability, and have good pharmaceutical prospects.
  • the process for synthesizing compound 1 and its intermediates provided by the invention has the advantages that the raw materials are cheap and easy to obtain, and the disadvantages of the reagents used, the reaction conditions are harsh, the separation and purification are difficult, and the industrialization is difficult to be overcome.
  • Figure 5 is a DSC chart of Form II of Compound 2.
  • Figure 6 is a TGA spectrum of Form II of Compound 2.
  • Figure 7 is an XRPD spectrum of Cu-K ⁇ radiation of Form III of Compound 2.
  • Figure 8 is a DSC chart of Form III of Compound 2.
  • Figure 9 is a TGA spectrum of Form III of Compound 2.
  • Figure 10 is an XRPD spectrum of Cu-K ⁇ radiation of Form IV of Compound 2.
  • Figure 11 is a DSC chart of Form IV of Compound 2.
  • Figure 12 is a TGA spectrum of Form IV of Compound 2.
  • Figure 13 is an XRPD spectrum of Cu-K ⁇ radiation of Form V of Compound 2.
  • Figure 14 is a DSC chart of Form V of Compound 2.
  • Figure 15 is a TGA spectrum of Form V of Compound 2.
  • Figure 16 is an XRPD spectrum of Cu-K ⁇ radiation of Form VI of Compound 2.
  • Figure 17 is a DSC chart of Form VI of Compound 2.
  • Figure 18 is a TGA spectrum of Form VI of Compound 2.
  • Figure 19 is an XRPD spectrum of Cu-K ⁇ radiation of Form VII of Compound 3.
  • Figure 20 is a DSC chart of Form VII of Compound 3.
  • Figure 21 is a TGA spectrum of Form VII of Compound 3.
  • Figure 22 is an XRPD spectrum of Cu-K ⁇ radiation of Form VIII of Compound 4.
  • Figure 23 is a DSC chart of Form VIII of Compound 4.
  • Figure 24 is a TGA spectrum of Form VIII of Compound 4.
  • Figure 25 is an XRPD spectrum of Cu-K ⁇ radiation of Form IX of Compound 1.
  • Figure 26 is a DSC chart of Form IX of Compound 1.
  • Figure 27 is a TGA spectrum of Form IX of Compound 1.
  • Trifluoroacetic acid (1.2 L) was added to a 3 L round bottom flask and 3-(benzyloxy)-7-bromo-4H-pyrido[1,2-a]pyrimidin-4-one (313 g, 897.9 mmol), the temperature of the reaction solution was controlled at 80-90 ° C, and the reaction was stirred for 2 hours. Sampling test, LCMS showed complete reaction. The reaction solution was cooled to 60 ° C, concentrated, and the solvent was evaporated.
  • 2-Dimethylaminochloroethane hydrochloride (70.6 g, 0.49 mol) was added to the reaction flask, stirred for 30 minutes, and 2-dimethylaminochloroethane hydrochloride (70.6 g, 0.49 mol) was added to the reaction. The mixture was stirred for 30 minutes, and 2-dimethylaminochloroethane hydrochloride (70.6 g, 0.49 mol) was added to a reaction flask and stirred for 2-2.5 hours.
  • the temperature of the reaction vessel was adjusted to 15 ⁇ 5 °C.
  • the reaction solution was added to n-heptane (6.6 L), the temperature was adjusted to 15 ⁇ 5 ° C, and stirred at this temperature for 2-2.5 hours. After filtration, the filter cake was dried at 45 ⁇ 5 ° C under reduced pressure.
  • reaction mixture was concentrated under reduced pressure to 2.5 to 3 times weight of compound 7 at 45 ⁇ 5 °C.
  • Methylene chloride (3.7 L) was added to the concentrated product, and the mixture was stirred at 25 ⁇ 5 ° C for 30 minutes, and then concentrated under reduced pressure at 45 ⁇ 5 ° C to 2.5 to 3 times by weight of the compound 7.
  • Dichloromethane (3.7 L) was added to the concentrated product, and beaten at 25 ⁇ 5 ° C for 2-3 hours. After filtration, the filter cake was collected and the filter cake was rotary evaporated to a weight of 1.3 to 1.7 times of compound 7 at 45 ⁇ 5 °C.
  • the beating liquid was cooled to 25 ⁇ 5 ° C, filtered, and the filter cake was collected, and the filter cake was rotary-screwed at a temperature of 45 ⁇ 5 ° C to 1.1 to 1.2 times the weight of the compound 7.
  • acetonitrile 1.9 L was added, and the mixture was beaten at 55 ⁇ 5 ° C for 15-16 hours.
  • the beating liquid was cooled to 25 ⁇ 5 ° C, filtered, and the filter cake was rotary-screwed at a temperature of 45 ⁇ 5 ° C to 1.0-1.1 times the weight of the compound 7.
  • the beating liquid was cooled to 25 ⁇ 5 ° C, filtered, and the filter cake was collected, and the filter cake was spun at 45 ⁇ 5 ° C to 0.89 - 0.92 times the weight of the compound 7.
  • Ethanol (1.59 liters) was added to the steamed product, and beaten at 75 ⁇ 5 ° C for 15-16 hours.
  • the beating liquid was cooled to 25 ⁇ 5 ° C, filtered, and the filter cake was collected, and the filter cake was rotary-screwed at a temperature of 45 ⁇ 5 ° C to 0.87 - 0.9 times the weight of the compound 7.
  • Water (2.35 L) was added to the rotary product, and the mixture was stirred at 45 ⁇ 5 ° C for 61 ⁇ 1 hour.
  • the mixture was cooled to 25 ⁇ 5 ° C and filtered.
  • the filter cake was collected, and water (2.35 L) was added to the filter cake, stirred at 25 ⁇ 5 ° C for 2-3 hours, and filtered.
  • the filter cake was collected, and the filter cake was dried under vacuum at 60 ° C for 15-16 hours and then passed through a 60 mesh sieve to give a product as a pale yellow solid (190 g, purity: 98.33%, yield 47.36%).
  • the product was obtained as a yellow solid (2.4 g, purity 98.31%, yield: 63.79%).
  • the above yellow solid (1.3 g, 2.37 mmol) was isolated using preparative HPLC (neut).
  • the preparative HPLC (neutral) separated liquid was extracted with DCM (500 mL ⁇ 3).
  • the organic phase was dried over anhydrous sodium sulfate (100 g), filtered, and evaporated to give crystals of white crystals (yield: 970 mg, 1.75 mmol, purity 99%, yield 73.94%).
  • Acetonitrile (430 mL) was added to the solid, and the mixture was refluxed at 85 ° C for 16 hr. The mixture was cooled to 15 ° C and filtered, and the filter cake was dried to give a pale red solid (33.4 g, yield 77%, purity 99.4%).
  • 30 g of the above solid was placed in a 1 L round bottom flask R3, and methanol (600 mL) and activated carbon (6 g, 20%) were added to R3. The mixture was placed in a 70 ° C oil bath and stirred for 12 hours. The mixture was filtered while hot using celite (15 g). The filtrate was collected and dried to give a yellow solid product (22.6 g, purity 97.47%).
  • the above solid was added with acetonitrile (150 mL), and the mixture was stirred in an oil bath at 85 ° C for 12 hours, cooled to 20 ° C, filtered, and the filter cake was collected, and the filter cake was dried to give crystals of the title compound 2 as a white solid (21 g, The yield was 44.3%, and the purity was 100%).
  • the molar ratio of the chloride ion content to the compound 1 in the compound 2 was 1:1 as determined by ion chromatography.
  • Form II of Compound 2 Approximately 50 mg of Form I of Compound 2 was added to 0.4 mL of acetone to form a suspension. Suspension sample placed on a constant temperature uniform (40 ° C) Shake for 2 days (protected from light). The residual solid was centrifuged and dried overnight in a vacuum oven at 40 ° C to obtain Form II of Compound 2.
  • Form III is the same as Form II, and only the solvent acetone is changed to isopropanol to obtain Form III of Compound 2.
  • Form IV is the same as Form II, and only the solvent acetone is changed to ethyl acetate to obtain Form IV of Compound 2.
  • Form I of Compound 2 (2.0 g, 3.42 mmol) was placed in a 500 mL vial R1 and the solid was dissolved by DCM/MeOH (2/1, 200 mL). The solvent was removed under reduced pressure at 40 ° C to give a brown solid (yield: 2 g), and 1 g of solid was placed in a 50 mL single-necked bottle, and ethanol (6 mL) was added. The mixture was placed in an oil bath at 80 ° C for 12 hours, and heating was stopped. The stirring conditions were lowered to a temperature of 20 ° C, filtered, and the cake was dried to give a crystalline form V of Compound 2.
  • Test Example 2 Solids stability test of Form IX of Compound 1 under high temperature, high humidity and strong light conditions
  • test compound was diluted 3 times in a total of 10 concentration points (10000 nM to 0.5 nM).
  • the IC 50 (Model 205, XL-fit, iDBS) was calculated using a standard 4-parameter fit method.
  • test compound of the present invention was tested for mTOR kinase activity by the following test methods, respectively.
  • Reaction buffer 20 mM Hepes (pH 7.5), 10 mM MgCl 2 , 2 mM MnCl 2 , 1 mM EGTA, 0.02% Brij 35, 0.02 mg/ml BSA, 0.1 mM Na 3 VO 4 , 2 mM DTT, 2% DMSO.
  • Compound 1 has a significant inhibitory effect on PI3K (p110 ⁇ ), but has a weaker inhibitory effect on mTOR.
  • Compound BKM-120 was used as a positive control drug, and experiments and analysis were carried out using the same experimental procedure as above.
  • the IC 50 values of the positive control drug BKM120 (PI3K inhibitor Buparlisib) for PI3K ⁇ , PI3K ⁇ , PI3K ⁇ , and PI3K ⁇ activity were 24.7 ⁇ 4.7nM, 241.6 ⁇ 50.6nM, 68.8 ⁇ 25.0nM, and 111.9 ⁇ 15.2nM, respectively. .
  • MCF-7 cells were seeded into 96-well plates at a density of 2.5 ⁇ 10 4 per well (the culture medium used was a complete medium containing 10% FBS).
  • the culture solution in the well is removed the next day, and a certain concentration (primary screening) or a series of concentrations (IC 50 test) of the test compound of the present invention is dissolved in the serum-free culture solution, and 96 is added.
  • the cells were cultured in the wells for 2 hours.
  • Enhancer Solution needs to be removed from the refrigerator in advance.
  • the antibody mixture is prepared by mixing the medium antibody reagent and the enzyme-labeled antibody reagent in equal proportions. Note that when preparing the antibody mixture, do not vortex)
  • the substrate mixture should be used as needed. Add 100 ⁇ L of the substrate mixture to each well, then seal the microplate with tin foil at room temperature. Incubate for 10 minutes on a microplate shaker.
  • test drug was tested for its in vivo efficacy in the animal model of human colon cancer CO-04-0032 and the animal model of gastric cancer ST-02-0013.
  • the descriptions of animal feeding, feed ingredients, experimental observations, experimental indicators, experimental termination and data analysis are as follows:
  • Animal rearing After the animals arrive, they can be started in the experimental environment for 3-7 days. Animals were housed in an IVC (independent air supply system) cage at the SPF level animal house (5 per cage). All cages, litter and drinking water must be sterilized before use. The sterilization and disinfection records are shown in the annex. All laboratory personnel should wear protective clothing and latex gloves when operating in the animal room. The animal information card for each cage should indicate the number of animals in the cage, gender, strain, date of receipt, dosing schedule, experiment number, group, and start date of the experiment. Cage, feed and drinking water are changed twice a week. The feeding environment and lighting conditions are as follows:
  • Light cycle 12 hours of light, 12 hours of no light
  • Feed Ingredients The feed meets the animal food identification criteria.
  • the maximum content of pollutants is within the controllable range and is inspected by the manufacturer.
  • Drinking water is autoclaved drinking water.
  • Animal grouping Animals were weighed prior to dosing and tumor volume was measured. Randomly grouped according to tumor volume (random block design).
  • the antitumor effect (TGI) of the compounds was evaluated by TC (days) and T/C (%).
  • TC (days) reflects the tumor growth delay index
  • T represents the average number of days in which the tumor in the drug group reaches a predetermined volume (eg, 1,000 mm 3 )
  • C represents the average number of days in which the control tumor reaches the same volume.
  • the percentage value of T/C (%) reflects the tumor growth inhibition rate
  • T and C respectively indicate the tumor weight (tumor volume) of the administration group and the control group on a certain day.
  • TGI (%) [1-(T i - T 0 ) / (V i - V 0 )] ⁇ 100, where T i is the average tumor volume of a certain administration group on a certain day.
  • T 0 for this administration group mean tumor volume at the start of the administration;
  • V i is a one day (the same day T i) mean tumor volume of the vehicle control group,
  • V 0 is a vehicle control group at the beginning of the drug Average tumor volume.
  • Tumor weights were measured after the end of the experiment and the percentage of T/C was calculated.
  • T and C represent the tumor weights of the drug-administered group and the vehicle control group, respectively.
  • weight loss is greater than 20%
  • the tumor volume of the control group reached an average of 2,000 mm 3 and the experiment was terminated.
  • the human colon cancer CO-04-0032 model was originally derived from tumor specimens removed during clinical surgery. The collection of specimens is strictly in accordance with national, hospital, and company ethical laws and regulations, including patient informedness. agree. The model building process is strictly in accordance with the company's internal SOP. The passage naming rule is that the tumor sample is inoculated into nude mice and then P0 generation, and the passage is continued to P1 generation. By analogy, the recovered specimen is named FP. The tumor tissue used in this experiment was FP4 generation.
  • mice BALB/c nude mice, female, 6-8 weeks old, weighing 18-20 grams. Provided by Shanghai Xipuer-Beikai Experimental Animal Co., Ltd.
  • Tumor inoculation a volume of about 30mm 3 CO-04-0032 tumor blocks were subcutaneously inoculated on the right back of each mouse group average tumor volume reached approximately the start of administration 100-200mm 3.
  • the PDX model of ST-02-0013 was originally derived from a surgically removed clinical sample, which was defined as P0 generation in nude mice.
  • the next generation of implanted P0 tumors is defined as the P1 generation, and subsequent progeny transplantation in mice, and so on.
  • FP2 generation tumor resuscitation resulted in FP3 tumors.
  • FP3 generation tumors were passaged to obtain FP4 tumors.
  • FP4 tumor tissue will be used for this study.
  • mice BALB/c nude mice, female, 6-8 weeks old, weighing 18-22 grams. Provided by Shanghai Lingchang Biotechnology Co., Ltd.
  • Tumor inoculation a volume of about 30mm 3 ST-02-0013FP4 generation of tumor tissue were inoculated subcutaneously to the right back of each mouse, the average tumor volume reached approximately packet start of administration 150-200mm 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了一种吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体。

Description

吡啶并[1,2-a]嘧啶酮类似物、其晶型、其中间体及其制备方法 技术领域
本发明涉及一种吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体。
背景技术
PI3K通路是人体癌细胞中最常发生变异的地方,可导致细胞的增殖、活化、放大信号。
PI3K激酶(磷脂酰肌醇3-激酶,phosphatidylinositol-3-kinase,PI3Ks)属于脂质激酶家族,能够磷酸化磷脂酰肌醇的肌醇环3’-OH端,其为一种由调节亚单位p85或p101和催化亚单位p110组成的脂激酶,通过催化磷脂酰肌醇4,5-二磷酸(phosphatidylinositol 4,5-bisphosphate,PIP2)磷酸化为磷脂酰肌醇3,4,5-三磷酸(phosphatidylinositol 3,4,5-trisphosphate,PIP3)而激活下游的Akt等从而对细胞的增殖、生存和代谢等起关键作用。因此,抑制磷酸酯酰肌醇3激酶,可以影响PI3K通路,从而抑制癌细胞的增殖与活化。
肿瘤抑制基因PTEN(phosphatase and tension homolog deleted on chromosome ten)使PIP3去磷酸化生成PIP2,从而实现PI3K/Akt信号通路的负性调节,抑制细胞增殖和促进细胞凋亡。PI3K基因突变和扩增在癌症中频繁发生以及PTEN在癌症中缺失等都提示PI3K与肿瘤发生的密切关系。
发明内容
本发明提供了化合物1的制备方法,
Figure PCTCN2016110284-appb-000001
其包含如下步骤:
Figure PCTCN2016110284-appb-000002
其中,
X选自Cl或Br;
碱C选自吡啶、2,6-二甲基吡啶、Et3N、4-DMAP、LiOH、Cs2CO3或K2CO3
溶剂c选自吡啶、二氯甲烷、甲苯、乙腈、丙酮、DMF或THF;
化合物7与化合物8的摩尔比为1:1~3;
化合物7与碱C的摩尔比为1:1~3。
本发明的一些方案中,上述化合物7与化合物8的摩尔比为1:1.2~1.6。
本发明的一些方案中,上述化合物1的制备包括如下步骤,
Figure PCTCN2016110284-appb-000003
其中,
碱A选自碳酸钾、碳酸钠、碳酸铯、氢氧化钾或氢氧化钠;
溶剂a选自DMF、DMSO或NMP。
其中,2-二甲氨基氯乙烷或2-二甲氨基溴乙烷可以其盐的形式应用,例如2-二甲氨基氯乙烷盐酸盐或2-二甲氨基溴乙烷盐酸盐。
本发明的一些方案中,上述化合物5与2-二甲氨基氯乙烷(或其盐酸盐)或者2-二甲氨基溴乙烷(或其盐酸盐)的摩尔比为1:1~2。
本发明的一些方案中,上述化合物5与2-二甲氨基氯乙烷(或其盐酸盐)或者2-二甲氨基溴乙烷(或其盐酸盐)的摩尔比为1:1.1~1.3。
本发明的一些方案中,上述化合物1的制备包括如下步骤,
Figure PCTCN2016110284-appb-000004
其中,
碱B选自碳酸钾、碳酸钠、氢氧化钡、磷酸钾、碳酸铯、氟化钾、氟化铯、氢氧化钠、叔丁醇钾、叔丁醇钠、醋酸钾或醋酸钠;
溶剂b选自1,4-二氧六环、DMSO、THF、1,4-二氧六环/水或THF/水;
所述溶剂b中,1,4-二氧六环或THF与水的体积比为3~6:1,优选为5:1;
催化剂选自Pd(dppf)Cl2或Pd(PPh3)4
本发明的一些方案中,上述溶剂b中,1,4-二氧六环或THF与水的体积比为5:1。
本发明的一些方案中,上述化合物1的制备包括如下步骤,
Figure PCTCN2016110284-appb-000005
上述反应式中,由化合物5与2-二甲氨基氯乙烷盐酸盐反应生成化合物6的反应中,优选在碱A和溶剂a的存在下进行,其中,碱A选自碳酸钾、碳酸钠、碳酸铯、氢氧化钾或氢氧化钠;溶剂a选自DMF、DMSO或NMP。本发明的一些方案中,上述化合物5与2-二甲氨基氯乙烷盐酸盐的摩尔比为1:1~2。本发明的一些方案中,上述化合物5与2-二甲氨基氯乙烷盐酸盐的摩尔比为1:1.1~1.3。
上述反应式中,由化合物6与2-甲氧基-5-(4,4,5,5-四甲基-1,3,2-二氧硼戊烷-2-基)吡啶-3-胺反应生成化合物7的反应中,优选在碱B、溶剂b和催化剂的存在下进行,其中,碱B选自碳酸钾、碳酸钠、氢氧化钡、磷酸钾、碳酸铯、氟化钾、氟化铯、氢氧化钠、叔丁醇钾、叔丁醇钠、醋酸钾或醋酸钠;溶剂b选自1,4-二氧六环、DMSO、THF、1,4-二氧六环/水或THF/水,所述溶剂b中,1,4-二氧六环或THF与水的体积比为3~6:1,优选为5:1;催化剂选自Pd(dppf)Cl2或Pd(PPh3)4
上述反应式中,由化合物7与2-氯-4-氟苯磺酰氯反应生成化合物1的反应中,优选在碱C和溶剂c的存在下进行,其中,碱C选自吡啶、2,6-二甲基吡啶、Et3N、4-DMAP、LiOH、Cs2CO3和K2CO3;溶剂c选自吡啶、二氯甲烷、甲苯、乙腈、丙酮、DMF和THF;化合物7与2-氯-4-氟苯磺酰氯的摩尔比为1:1~3;化合物7与碱C的摩尔比为1:1~3。本发明的一些方案中,上述化合物7与2-氯-4-氟苯磺酰氯的摩尔比为1:1.2~1.6。
本发明还提供了作为制备化合物1中间体的下式化合物:
Figure PCTCN2016110284-appb-000006
本发明提供了化合物1的晶型Ⅸ,其特征在于,在X-射线衍射(XRD)图谱中,具有2θ=7.947°、10.073°、14.531°、19.187°、21.237°、24.055°、25.497°的衍射峰;典型地具有2θ=7.947°、10.073°、11.970°、13.468°、14.531°、15.911°、19.187°、21.237°、24.055°、25.497°的衍射峰;更典型地具有2θ=7.947°、10.073°、11.970°、13.468°、14.531°、15.911°、19.187°、19.561°、21.237°、23.446°、24.055°、25.497°、27.074°的衍射峰。
本发明提供了化合物1的晶型Ⅸ,其XRPD图谱如图25所示。
本发明的一些方案中,上述化合物1的晶型Ⅸ,其XRPD图谱解析数据如表1所示:
表1 化合物1的晶型Ⅸ的XRPD图谱解析数据
Figure PCTCN2016110284-appb-000007
本发明的一些方案中,上述化合物1的晶型Ⅸ的DSC图谱如图26所示。
本发明的一些方案中,上述化合物1的晶型Ⅸ的TGA图谱如图27所示。
上述化合物1的晶型Ⅸ可以是以非溶剂合物结晶的形式存在,也可以是以溶剂合物结晶的形式存在,此处的溶剂合物是指有机溶剂和/或水与相应化合物形成的溶剂合物。
本发明提供所述晶型Ⅸ的晶型组合物。在本申请的部分实施方式中,所述晶型Ⅸ占晶型组合物重量50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
本发明提供所述晶型Ⅸ的药物组合物,该药物组合物中包括治疗有效量的所述晶型Ⅸ、或者所述晶型Ⅸ的晶型组合物,此外,该药物组合物还可以含有或不含有药学上可接受的载体、赋形剂和/或介质。
本发明提供了下式所示化合物2,
Figure PCTCN2016110284-appb-000008
本发明提供了化合物2的晶型Ⅰ,其特征在于,在X-射线衍射(XRD)图谱中,具有2θ=10.154°、12.285°、14.511°、16.328°、24.311°、26.188°的衍射峰;典型地具有2θ=7.270°、10.154°、12.285°、13.206°、14.511°、16.328°、24.311°、26.188°、27.724°的衍射峰;更典型地具有2θ=7.270°、10.154°、12.285°、13.206°、14.511°、16.328°、19.008°、20.702°、21.259°、24.311°、26.188°、27.724°的衍射峰。
本发明提供了化合物2的晶型Ⅰ,其XRPD图谱如图1所示。
本发明的一些方案中,上述化合物2的晶型Ⅰ,其XRPD图谱解析数据如表2所示。
表2 化合物2的晶型Ⅰ的XRPD图谱解析数据
编号 2θ角 相对强度% 编号 2θ角 相对强度%
1 7.270 18.4 19 23.567 12.7
2 10.154 80.7 20 24.311 32.1
3 11.745 1.5 21 24.903 14.3
4 12.285 39.9 22 25.318 6.8
5 13.206 31.7 23 26.188 55.8
6 14.511 100.0 24 27.724 31.3
7 15.119 8.1 25 28.809 12.4
8 15.771 4.6 26 29.225 3.7
9 16.328 40.2 27 30.288 14.2
10 16.861 2.7 28 30.584 7.4
11 17.568 10.7 29 31.196 5.5
12 18.653 9.9 30 31.531 20.5
13 19.008 18.0 31 31.767 20.5
14 19.919 7.5 32 32.735 23.6
15 20.702 14.1 33 33.860 1.8
16 21.259 14.0 34 35.356 9.4
17 21.712 5.4 35 36.585 1.4
18 23.169 86.9 36 38.236 6.7
本发明的一些方案中,上述化合物2的晶型Ⅰ的DSC图谱如图2所示。
本发明的一些方案中,上述化合物2的晶型Ⅰ的TGA图谱如图3所示。
上述化合物2的晶型Ⅰ可以是以非溶剂合物结晶的形式存在,也可以是以溶剂合物结晶的形式存在,此处的溶剂合物是指有机溶剂和/或水与相应化合物形成的溶剂合物。
本发明提供所述晶型Ⅰ的晶型组合物。在本申请的部分实施方式中,所述晶型Ⅰ占晶型组合物重量50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
本发明提供所述晶型Ⅰ的药物组合物,该药物组合物中包括治疗有效量的所述晶型Ⅰ、或者所述晶型Ⅰ的晶型组合物,此外,该药物组合物还可以含有或不含有药学上可接受的载体、赋形剂和/或介质。
本发明提供了化合物2的晶型Ⅱ,其特征在于,在X-射线衍射(XRD)图谱中,具有2θ=6.524°、7.782°、13.895°、15.495°、17.487°、19.322°的衍射峰;典型地具有2θ=6.524°、7.782°、11.628°、13.895°、15.495°、17.487°、19.322°、20.962°、23.269°的衍射峰;更典型地具有2θ=6.524°、7.782°、11.628°、13.895°、15.495°、17.487°、19.322°、20.962°、23.269°、24.257°、26.009°、31.533°的衍射峰。
本发明提供了化合物2的晶型Ⅱ,其XRPD图谱如图4所示。
本发明的一些方案中,上述化合物2的晶型Ⅱ,其XRPD图谱解析数据如表3所示。
表3 化合物2的晶型Ⅱ的XRPD图谱解析数据
编号 2θ角 相对强度% 编号 2θ角 相对强度%
1 6.524 11.3 22 20.962 11.4
2 7.782 22.3 23 21.474 3.5
3 8.879 1.0 24 23.269 10.9
4 9.977 4.7 25 23.481 9.6
5 10.494 4.4 26 24.257 13.8
6 11.628 6.7 27 24.515 4.9
7 11.804 7.5 28 25.515 8.0
8 12.122 4.5 29 26.009 13.9
9 12.973 4.7 30 26.818 8.4
10 13.406 1.1 31 27.095 5.1
11 13.895 6.7 32 27.350 3.3
12 15.495 100.0 33 27.648 5.5
13 16.423 3.0 34 27.922 9.0
14 16.860 1.9 35 28.477 2.5
15 17.131 2.0 36 28.810 2.9
16 17.487 41.7 37 29.343 3.4
17 17.807 4.7 38 31.533 16.1
18 18.181 1.8 39 32.733 6.0
19 18.749 3.3 40 33.263 2.9
20 19.322 22.3 41 35.260 4.9
21 19.740 1.9 42 37.173 5.8
本发明的一些方案中,上述化合物2的晶型Ⅱ的DSC图谱如图5所示。
本发明的一些方案中,上述化合物2的晶型Ⅱ的TGA图谱如图6所示。
上述化合物2的晶型Ⅱ可以是以非溶剂合物结晶的形式存在,也可以是以溶剂合物结晶的形式存在,此处的溶剂合物是指有机溶剂和/或水与相应化合物形成的溶剂合物。
本发明提供所述晶型Ⅱ的晶型组合物。在本申请的部分实施方式中,所述晶型Ⅱ占晶型组合物重量50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
本发明提供所述晶型Ⅱ的药物组合物,该药物组合物中包括治疗有效量的所述晶型Ⅱ、或者所述晶型Ⅱ的晶型组合物,此外,该药物组合物还可以含有或不含有药学上可接受的载体、赋形剂和/或介质。
本发明提供了化合物2的晶型Ⅲ,其特征在于,在X-射线衍射(XRD)图谱中,具有2θ=6.979°、9.939°、14.392°、16.107°、20.982°、25.990°的衍射峰;典型地具有2θ=6.187°、6.979°、9.939°、11.910°、14.392°、16.107°、20.982°、22.755°、25.990°的衍射峰;更典型地具有2θ=6.187°、6.979°、9.939°、11.910°、13.148°、14.392°、16.107°、20.982°、22.755°、23.975°、25.990°、29.006°的衍射峰。
本发明提供了化合物2的晶型Ⅲ,其XRPD图谱如图7所示。
本发明的一些方案中,上述化合物2的晶型Ⅲ,其XRPD图谱解析数据如表4所示。
表4 化合物2的晶型Ⅲ的XRPD图谱解析数据
编号 2θ角 相对强度% 编号 2θ角 相对强度%
1 6.187 29.0 15 22.755 25.0
2 6.979 46.3 16 23.436 6.8
3 9.939 80.4 17 23.975 10.9
4 10.425 19.8 18 24.811 8.7
5 11.910 38.0 19 25.990 86.1
6 12.206 29.4 20 27.224 2.9
7 13.148 12.2 21 29.006 25.6
8 14.392 100.0 22 29.522 15.5
9 16.107 66.4 23 30.979 5.3
10 17.531 9.5 24 31.373 8.5
11 18.648 16.3 25 31.966 9.7
12 20.665 3.7 26 32.556 29.3
13 20.982 37.9 27 35.061 11.2
14 21.772 4.4 28 35.527 5.6
本发明的一些方案中,上述化合物2的晶型Ⅲ的DSC图谱如图8所示。
本发明的一些方案中,上述化合物2的晶型Ⅲ的TGA图谱如图9所示。
上述化合物2的晶型Ⅲ可以是以非溶剂合物结晶的形式存在,也可以是以溶剂合物结晶的形式存在,此处的溶剂合物是指有机溶剂和/或水与相应化合物形成的溶剂合物。
本发明提供所述晶型Ⅲ的晶型组合物。在本申请的部分实施方式中,所述晶型Ⅲ占晶型组合物重量50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
本发明提供所述晶型Ⅲ的药物组合物,该药物组合物中包括治疗有效量的所述晶型Ⅲ、或者所述晶型Ⅲ的晶型组合物,此外,该药物组合物还可以含有或不含有药学上可接受的载体、赋形剂和/或介质。
本发明提供了化合物2的晶型Ⅳ,其特征在于,在X-射线衍射(XRD)图谱中,具有2θ=6.388°、7.278°、11.076°、15.454°、21.256°的衍射峰;典型地具有2θ=6.388°、7.278°、11.076°、12.102°、15.454°、16.091°、18.912°、21.256°的衍射峰;更典型地具有2θ=6.388°、7.278°、11.076°、12.102°、15.103°、15.454°、16.091°、18.912°、21.256°、21.846°的衍射峰。
本发明提供了化合物2的晶型Ⅳ,其XRPD图谱如图10所示。
本发明的一些方案中,上述化合物2的晶型Ⅳ,其XRPD图谱解析数据如表5所示。
表5 化合物2的晶型Ⅳ的XRPD图谱解析数据
Figure PCTCN2016110284-appb-000009
本发明的一些方案中,上述化合物2的晶型Ⅳ的DSC图谱如图11所示。
本发明的一些方案中,上述化合物2的晶型Ⅳ的TGA图谱如图12所示。
上述化合物2的晶型Ⅳ可以是以非溶剂合物结晶的形式存在,也可以是以溶剂合物结晶的形式存在,此处的溶剂合物是指有机溶剂和/或水与相应化合物形成的溶剂合物。
本发明提供所述晶型Ⅳ的晶型组合物。在本申请的部分实施方式中,所述晶型Ⅳ占晶型组合物重量50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
本发明提供所述晶型Ⅳ的药物组合物,该药物组合物中包括治疗有效量的所述晶型Ⅳ、或者所述晶型Ⅳ的晶型组合物,此外,该药物组合物还可以含有或不含有药学上可接受的载体、赋形剂和/或介质。
本发明提供了化合物2的晶型Ⅴ,其特征在于,在X-射线衍射(XRD)图谱中,具有2θ=7.116°、14.137°、15.911°、22.223°、24.610°的衍射峰;典型地具有2θ=7.116°、14.137°、15.911°、21.691°、22.223°、24.213°、24.610°、28.987°的衍射峰。
本发明提供了化合物2的晶型Ⅴ,其XRPD图谱如图13所示。
本发明的一些方案中,上述化合物2的晶型Ⅴ,其XRPD图谱解析数据如表6所示。
表6 化合物2的晶型Ⅴ的XRPD图谱解析数据
Figure PCTCN2016110284-appb-000010
Figure PCTCN2016110284-appb-000011
本发明的一些方案中,上述化合物2的晶型Ⅴ的DSC图谱如图14所示。
本发明的一些方案中,上述化合物2的晶型Ⅴ的TGA图谱如图15所示。
上述化合物2的晶型Ⅴ可以是以非溶剂合物结晶的形式存在,也可以是以溶剂合物结晶的形式存在,此处的溶剂合物是指有机溶剂和/或水与相应化合物形成的溶剂合物。
本发明提供所述晶型Ⅴ的晶型组合物。在本申请的部分实施方式中,所述晶型Ⅴ占晶型组合物重量50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
本发明提供所述晶型Ⅴ的药物组合物,该药物组合物中包括治疗有效量的所述晶型Ⅴ、或者所述晶型Ⅴ的晶型组合物,此外,该药物组合物还可以含有或不含有药学上可接受的载体、赋形剂和/或介质。
本发明提供了化合物2的晶型Ⅵ,其特征在于,在X-射线衍射(XRD)图谱中,具有2θ=5.775°、11.770°、14.415°、15.753°、22.518°、26.623°的衍射峰;典型地具有2θ=5.775°、11.770°、14.415°、15.753°、17.132°、20.939°、22.518°、26.623°的衍射峰;更典型地具有2θ=5.775°、11.770°、14.415°、15.753°、17.132°、20.939°、22.518°、23.745°、26.623°、31.295°的衍射峰。
本发明提供了化合物2的晶型Ⅵ,其XRPD图谱如图16所示。
本发明的一些方案中,上述化合物2的晶型Ⅵ,其XRPD图谱解析数据如表7所示。
表7 化合物2的晶型Ⅵ的XRPD图谱解析数据
编号 2θ角 相对强度% 编号 2θ角 相对强度%
1 5.775 100.0 13 22.518 63.9
2 7.795 5.6 14 23.745 24.4
3 11.770 58.9 15 25.969 14.2
4 12.869 3.8 16 26.623 40.8
5 13.841 2.5 17 27.136 9.2
6 14.415 43.6 18 27.703 9.2
7 15.753 79.9 19 28.116 9.1
8 16.724 9.3 20 29.538 20.2
9 17.132 29.7 21 31.295 61.4
10 17.825 5.1 22 31.882 18.2
11 20.070 10.3 23 34.211 19.1
12 20.939 31.9 24 34.705 18.9
本发明的一些方案中,上述化合物2的晶型Ⅵ的DSC图谱如图17所示。
本发明的一些方案中,上述化合物2的晶型Ⅵ的TGA图谱如图18所示。
上述化合物2的晶型Ⅵ可以是以非溶剂合物结晶的形式存在,也可以是以溶剂合物结晶的形式存在,此处的溶剂合物是指有机溶剂和/或水与相应化合物形成的溶剂合物。
本发明提供所述晶型Ⅵ的晶型组合物。在本申请的部分实施方式中,所述晶型Ⅵ占晶型组合物重量50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
本发明提供所述晶型Ⅵ的药物组合物,该药物组合物中包括治疗有效量的所述晶型Ⅵ、或者所述晶型Ⅵ的晶型组合物,此外,该药物组合物还可以含有或不含有药学上可接受的载体、赋形剂和/或介质。
本发明提供了下式所示化合物3,
Figure PCTCN2016110284-appb-000012
本发明提供了化合物3的晶型Ⅶ,其特征在于,在X-射线衍射(XRD)图谱中,具有2θ=6.325°、12.677°、15.813°、21.395°、22.519°、27.133°的衍射峰;典型地具有2θ=6.325°、12.677°、13.251°、15.813°、18.954°、21.395°、22.519°、25.161°、27.133°的衍射峰;更典型地具有2θ=6.325°、12.677°、13.251°、15.813°、16.565°、18.954°、21.395°、22.519°、24.117°、25.161°、26.405°、27.133°的衍射峰。
本发明提供了化合物3的晶型Ⅶ,其XRPD图谱如图19所示。
本发明的一些方案中,上述化合物3的晶型Ⅶ,其XRPD图谱解析数据如表8所示。
表8 化合物3的晶型Ⅶ的XRPD图谱解析数据
Figure PCTCN2016110284-appb-000013
本发明的一些方案中,上述化合物3的晶型Ⅶ的DSC图谱如图20所示。
本发明的一些方案中,上述化合物3的晶型Ⅶ的TGA图谱如图21所示。
化合物3的晶型Ⅶ可以是以非溶剂合物结晶的形式存在,也可以是以溶剂合物结晶的形式存在,此处的溶剂合物是指有机溶剂和/或水与相应化合物形成的溶剂合物。
本发明提供所述晶型Ⅶ的晶型组合物。在本申请的部分实施方式中,所述晶型Ⅶ占晶型组合物重量50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
本发明提供所述晶型Ⅶ的药物组合物,该药物组合物中包括治疗有效量的所述晶型Ⅶ、或者所述晶型Ⅶ的晶型组合物,此外,该药物组合物还可以含有或不含有药学上可接受的载体、赋形剂和/或介质。
本发明提供了下式所示化合物4,
Figure PCTCN2016110284-appb-000014
本发明提供了化合物4的晶型Ⅷ,其特征在于,在X-射线衍射(XRD)图谱中,具有2θ=5.889°、11.002°、12.518°、14.906°、17.825°、22.814°、25.555°的衍射峰;典型地具有2θ=5.889°、7.173°、11.002°、11.396°、12.518°、12.895°、14.906°、17.825°、22.814°、25.555°的衍射峰;更典型地 具有2θ=5.889°、7.173°、11.002°、11.396°、12.518°、12.895°、14.906°、16.169°、17.825°、19.875°、21.574°、22.814°、25.555°、27.254°的衍射峰。
本发明的一些方案中,上述化合物4的晶型Ⅷ,其XRPD图谱如图22所示。
本发明的一些方案中,上述化合物4的晶型Ⅷ,其XRPD图谱解析数据如表9所示。
表9 化合物4的晶型Ⅷ的XRPD图谱解析数据
编号 2θ角 相对强度% 编号 2θ角 相对强度%
1 5.889 47.4 13 21.061 11.1
2 7.173 10.4 14 21.574 35.3
3 11.002 42.2 15 21.829 35.6
4 11.396 32.6 16 22.814 47.5
5 12.518 77.6 17 23.598 2.1
6 12.895 62.0 18 25.555 59.3
7 14.906 79.7 19 26.522 10.0
8 15.563 8.8 20 27.254 32.3
9 16.169 44.0 21 28.717 28.4
10 17.825 100.0 22 29.712 3.9
11 18.456 48.5 23 30.702 15.5
12 19.875 26.1 24 31.871 7.7
本发明的一些方案中,上述化合物4的晶型Ⅷ的DSC图谱如图23所示。
本发明的一些方案中,上述化合物4的晶型Ⅷ的TGA图谱如图24所示。
化合物4的晶型Ⅷ可以是以非溶剂合物结晶的形式存在,也可以是以溶剂合物结晶的形式存在,此处的溶剂合物是指有机溶剂和/或水与相应化合物形成的溶剂合物。
本发明提供所述晶型Ⅷ的晶型组合物。在本申请的部分实施方式中,所述晶型Ⅷ占晶型组合物重量50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
本发明提供所述晶型Ⅷ的药物组合物,该药物组合物中包括治疗有效量的所述晶型Ⅷ、或者所述晶型Ⅷ的晶型组合物,此外,该药物组合物还可以含有或不含有药学上可接受的载体、赋形剂和/或介质。
本发明的目的还在于提供化合物1、化合物2、化合物3、化合物4或其药物组合物在制备治疗与PI3K受体有关疾病的药物中的应用。
本发明的另一个目的在于提供本发明的晶型Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ和Ⅸ、上述晶型组合物和上述药物组合物在制备治疗与PI3K激酶有关疾病的药物中的应用。
在本发明的一些方案中,所述PI3K激酶有关疾病选自癌症,如结肠癌、胃癌等。
本发明的目的在于提供一种治疗与PI3K激酶有关疾病的方法,所述方法包括将治疗有效量化合物1、化合物2、化合物3、化合物4或其药物组合物给予有需要的患者。
本发明的再一目的在于提供一种治疗与PI3K激酶有关疾病的方法,所述方法包括将治疗有效量的本发明的晶型Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ和Ⅸ、上述晶型组合物和上述药物组合物给予有需要的患者。
在本发明的一些方案中,所述PI3K激酶有关疾病选自癌症,如结肠癌、胃癌等。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下,不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本领域任何合成路线规划中的一个重要考量因素是为反应性官能团(如本发明中的氨基)选择合适的保护基。对于经过训练的从业者来说,Greene and Wuts的(Protective Groups In Organic Synthesis,Wiley and Sons,1991)是这方面的权威。本发明引用的所有参考文献整体上并入本发明。
下面会通过实施例具体描述本发明,但这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。反应一般是在惰性氮气下、无水溶剂中进行的。质子核磁共振数据记录在Bruker Avance III 400(400MHz)分光仪上,化学位移以四甲基硅烷低场处的(ppm)表示。质谱是在安捷伦1200系列加6110(&1956A)上测定。LC/MS或Shimadzu MS包含一个DAD:SPD-M20A(LC)和Shimadzu Micromass 2020检测器。质谱仪配备有一个正或负模式下操作的电喷雾离子源(ESI)。
需要说明的是,在X-射线衍射光谱中,由结晶化合物得到的衍射谱图对于特定的晶型往往是特征性的,其中谱带(尤其是在低角度)的相对强度可能会因为结晶条件、粒径和其它测定条件的差异而产生的优势取向效果而变化。因此,衍射峰的相对强度对所针对的晶型并非是特征性的,判断是否与已知的晶型相同时,更应该注意的是峰的相对位置而不是它们的相对强度。此外,对任何给定的晶型而言,峰的位置可能存在轻微误差,这在晶体学领域中也是公知的。例如,由于分析样品时温度的变化、样品移动、或仪器的标定等,峰的位置可以移动,2θ值的测定误差有时约为±0.5°,优选约为±0.3°,更优选约为±0.2°。因此,在确定每种晶型结构时,应该将此误差考虑在内,在误差内的2θ值也属于本发明的范围。在XRD图谱中通常用2θ角或晶面距d表示峰位置,两者之间具有简单的换算关系:d=λ/2sinθ,其中d代表晶面距,λ代表入射X射线的波长,θ为衍射角。对于同种化合物的同种晶型,其XRD谱的峰位置在整体上具有相似性,相对强度误差可能较大。还应指出的是,在混合物的鉴定中,由于含量下降等因素会造成部分衍射线的缺失,此时,无需依赖高纯试样中观察到的全部谱带,甚至一条谱带也可能对给定的晶体是特征性的。
需要说明的是,在制备药物晶型时,药物分子与溶剂分子在接触的过程中,外部条件与内部因素造成溶剂分子与化合物分子形成共晶而残留在固体物质中的情况很难避免,从而形成溶剂合物,具体包括化学计量类溶剂合物和非化学计量类溶剂合物。所述的溶剂合物均包括在本发明的范围内。
本发明制备得到的化合物2(盐酸盐)中氯离子的化学计量可以通过离子色谱测定。所用仪器为883 Basic IC plus 1;色谱柱选用Metrosep A Supp 5-150/4.0;流速0.700mL/min;运行时间10min。
本发明采用下述缩略词:DCM代表二氯甲烷;PE代表石油醚;EA代表乙酸乙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;THF代表四氢呋喃;MeOH代表甲醇;NMP代表N-甲基吡咯烷酮;Et3N代表三乙胺;4-DMAP代表4-二甲氨基吡啶;LiOH代表氢氧化锂;Cs2CO3代表碳酸铯;K2CO3代表碳酸钾;PPh3代表三苯基膦;Pd(PPh3)4代表四三苯基膦钯;Pd(dppf)Cl2代表1,1'-双(二苯基磷)二茂铁氯化钯。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法:
仪器型号:布鲁克D8advance X-射线衍射仪
测试条件:详细的XRPD参数如下:
X-ray发生器:Cu,kα,
Figure PCTCN2016110284-appb-000015
管电压:40kV,管电流:40mA.
散射狭缝:0.60mm
探测器狭缝:10.50mm
反散射狭缝:7.10mm
扫描范围:4-40deg
步长:0.02deg
速率:0.1S
样品盘转速:15rpm
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Q 2000差示扫描量热仪
测试条件:取样品(0.5~1mg)置于DSC铝锅内进行测试,方法为:室温~300℃,升温速率为10℃/min。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Q5000IR热重分析仪
测试条件:取样品(2~5mg)置于TGA铂金锅内进行测试,方法为:室温~300℃,升温速率为10℃/min。
技术效果
本发明提供的化合物2、化合物3、化合物4、化合物1的晶型Ⅸ、化合物2的晶型Ⅰ、化合物2的晶型Ⅱ、化合物2的晶型Ⅲ、化合物2的晶型Ⅳ、化合物2的晶型Ⅴ、化合物2的晶型Ⅵ、化合物3的晶型Ⅶ、化合物4的晶型Ⅷ性质稳定、溶解度好、引湿性好,具有良好的成药前景。
本发明给出的合成化合物1及其中间体的工艺,原料价格便宜易得,同时还克服了所用试剂毒害大、反应条件苛刻、分离纯化困难以及不易工业化等缺点。
附图说明
图1为化合物2的晶型Ⅰ的Cu-Kα辐射的XRPD谱图。
图2为化合物2的晶型Ⅰ的DSC谱图。
图3为化合物2的晶型Ⅰ的TGA谱图。
图4为化合物2的晶型Ⅱ的Cu-Kα辐射的XRPD谱图。
图5为化合物2的晶型Ⅱ的DSC谱图。
图6为化合物2的晶型Ⅱ的TGA谱图。
图7为化合物2的晶型Ⅲ的Cu-Kα辐射的XRPD谱图。
图8为化合物2的晶型Ⅲ的DSC谱图。
图9为化合物2的晶型Ⅲ的TGA谱图。
图10为化合物2的晶型Ⅳ的Cu-Kα辐射的XRPD谱图。
图11为化合物2的晶型Ⅳ的DSC谱图。
图12为化合物2的晶型Ⅳ的TGA谱图。
图13为化合物2的晶型Ⅴ的Cu-Kα辐射的XRPD谱图。
图14为化合物2的晶型Ⅴ的DSC谱图。
图15为化合物2的晶型Ⅴ的TGA谱图。
图16为化合物2的晶型Ⅵ的Cu-Kα辐射的XRPD谱图。
图17为化合物2的晶型Ⅵ的DSC谱图。
图18为化合物2的晶型Ⅵ的TGA谱图。
图19为化合物3的晶型Ⅶ的Cu-Kα辐射的XRPD谱图。
图20为化合物3的晶型Ⅶ的DSC谱图。
图21为化合物3的晶型Ⅶ的TGA谱图。
图22为化合物4的晶型Ⅷ的Cu-Kα辐射的XRPD谱图。
图23为化合物4的晶型Ⅷ的DSC谱图。
图24为化合物4的晶型Ⅷ的TGA谱图。
图25为化合物1的晶型Ⅸ的Cu-Kα辐射的XRPD谱图。
图26为化合物1的晶型Ⅸ的DSC谱图。
图27为化合物1的晶型Ⅸ的TGA谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施例并不构成对本发明的内容的限制。
参考例1化合物5的制备
Figure PCTCN2016110284-appb-000016
制备甲基2-(苄氧基)乙酸酯(2)
Figure PCTCN2016110284-appb-000017
将二氯甲烷(960毫升)加入到3.0升三口圆底烧瓶中,加入甲醇(197.6克,247毫升),加入吡啶(304.78毫升,311摩尔),将混合物用冰水浴降温至0℃,氮气保护下,将2-苄氧基酰氯(300克,1.54摩尔)滴加到圆底烧瓶中,控制温度在0-10℃,滴加。滴加完后撤掉冰水浴,反应液在20℃下搅拌1.5小时。取样检测,TLC(石油醚/乙酸乙酯=5/1)显示反应完全。将水(1.5升)加入到圆底烧瓶中,搅拌10分钟,分层,收集有机层;有机层用1.0摩尔/升的稀盐酸(900毫升×2)洗涤,分层,收集有机层;有机层用20%碳酸钠溶液(600毫升)洗涤,分层,收集有机层,有机层用无水硫酸钠(150克)干燥,过滤,滤液减压浓缩,得到无色油状产品(284克,1.53摩尔,收率:97%,纯度:99%)。1H NMR(400MHz,氯仿-d)ppm 7.37-7.32(m,5H),4.63(s,2H),4.11(s,2H),3.76(s,3H);LCMS(ESI)m/z:202.8(M+23)。
制备甲基2-(苄氧基)-3-(二甲氨基)丙烯酸酯(3)
Figure PCTCN2016110284-appb-000018
将甲基2-(苄氧基)乙酸酯(506克,2.72摩尔)加入到3升圆底烧瓶中,加入叔丁氧基二(二甲氨基)甲烷(569克,3.26摩尔),控制反应温度在90-100℃反应14小时。取样检测,TLC(PE/EA=5/1)显示反应完全。反应液冷却到60℃,反应液用油泵浓缩,得到黄色油状产品(699克,粗品),直接用于下一步反应。
1H NMR(400MHz,氯仿-d)ppm 7.44-7.2(m,2H),7.37-7.28(m,3H),6.87(s,1H),4.72(s,2H),3.73(s,3H),2.98(s,6H)。
制备3-(苄氧基)-7-溴-4H-吡啶并[1,2-a]嘧啶-4-酮(4)
Figure PCTCN2016110284-appb-000019
将甲基2-(苄氧基)-3-(二甲氨基)丙烯酸酯(318克,1.35摩尔)加入到5升圆底烧瓶中,加入醋酸(3升),加入2-氨基-5-溴吡啶(246克,1.35摩尔)。控制反应液温度在120-130℃,搅拌反应14小时。取样检测,LCMS显示基本反应完全。反应液冷却到60℃,反应液浓缩,蒸去溶剂,加入乙酸乙酯(750毫升),搅拌10min,过滤,向滤饼中加入乙酸乙酯(500毫升),搅拌10min后过滤,滤饼用乙酸乙酯(150毫升)淋洗,滤饼旋干得到黄色固体状化合物(319克,纯度:95%,收率:67.79%)。
1H NMR(400MHz,氯仿-d)d=9.13(d,J=2.0Hz,1H),8.05(s,1H),7.56(dd,J=2.0,9.6Hz,1H),7.46-7.42(m,3H),7.37-7.33(m,3H),5.30(s,2H);LCMS(ESI)m/z:332.6(同位素M+1)。
制备7-溴-3-羟基-4H-吡啶并[1,2-a]嘧啶-4-酮(5)
Figure PCTCN2016110284-appb-000020
将三氟醋酸(1.2升)加入到3升圆底烧瓶中,加入3-(苄氧基)-7-溴-4H-吡啶并[1,2-a]嘧啶-4-酮(313克,897.9毫摩尔),控制反应液温度在80-90℃,搅拌反应2小时。取样检测,LCMS显示基本反应完全。反应液冷却到60℃,浓缩,蒸去溶剂。加入乙酸乙酯(1.2升),搅拌60分钟后过滤,向滤饼中加入乙酸乙酯(400毫升)搅拌60分钟,过滤,滤饼40℃减压干燥70小时,得到黄色固体状化合物(191克,含量95.6%,纯度100%,收率84.59%)。
1H NMR(400MHz,DMSO-d6)d=9.92(br,1H),8.90(s,1H),8.07(s,1H),7.73(dd,J=2.0,9.6Hz,1H),7.53(d,J=9.6Hz,1H);MS m/z:240.9(M+1),242.8(同位素M+1)。
实施例1化合物1的制备
制备7-溴-3-(2-(二甲氨基)乙氧基)-4H-吡啶并[1,2-a]嘧啶-4-酮(6)
Figure PCTCN2016110284-appb-000021
将7-溴-3-羟基-4H-吡啶并[1,2-a]嘧啶-4-酮(300克,1.2摩尔)、N,N-二甲基甲酰胺(3升)加入圆底烧瓶中,调节反应釜温度至95-100℃,将碳酸钾(497.4克,3.6摩尔)加入反应瓶中,搅拌30分钟,然后,将2-二甲氨基氯乙烷盐酸盐分如下三批进行投料反应:将2-二甲氨基氯乙烷盐酸盐(70.6克,0.49摩尔)加入反应瓶中,搅拌30分钟,将2-二甲氨基氯乙烷盐酸盐(70.6克,0.49摩尔)加入反应瓶中,搅拌30分钟,将2-二甲氨基氯乙烷盐酸盐(70.6克,0.49摩尔)加入反应瓶中,搅拌2-2.5小时。
HPLC监测反应完成后,调节反应釜温度至15±5℃。将反应液加入到水(15升)中,用二氯甲烷(4.5升×4)萃取。合并有机相,有机相35±5℃下减压浓缩至恒重。向浓缩所得物中加入正庚烷(1.8升),在15±5℃下搅拌15-16小时。过滤,滤饼在35±5℃下减压旋蒸,得到绿色固体状产品(280克,收率:74.09%,纯度:98.22%)。
1H NMR(400MHz,CDCl3)d=2.35(s,6H),2.78(t,J=5.6Hz,2H),4.25(t,J=6.0Hz,2H),7.45(d,J=9.6Hz,1H),7.55(dd,J=9.6Hz,2Hz,1H),8.13(s,1H),9.09(d,J=2.0Hz,1H);LCMS(ESI)m/z:312(同位素M+1)。
制备7-(5-氨基-6-甲氧基嘧啶-3-基)-3-(2-(二甲氨基)乙氧基)-吡啶并[1,2-a]嘧啶-4-酮(7)
Figure PCTCN2016110284-appb-000022
将7-溴-3-(2-(二甲氨基)乙氧基)-4H-吡啶并[1,2-a]嘧啶-4-酮(275克,0.87摩尔)、2-甲氧基-5-(4,4,5,5-四甲基-1,3,2-二氧硼戊烷-2-基)吡啶-3-胺(249克,0.96摩尔)、1,4-二氧六环(2.75升)、水(550毫升)和碳酸钾(362克,2.62摩尔)依次加入反应瓶中,鼓泡30-60分钟,将Pd(dppf)Cl2(19.2克,26毫摩尔)加入反应瓶中,用氮气置换5次,调节反应瓶温度至95±5℃,并在此温度下搅拌2-2.5小时。HPLC监测反应结束后,调节反应釜温度至15±5℃。将反应液加到正庚烷(6.6升)中,温度调整至15±5℃,在此温度下搅拌2-2.5小时。过滤,滤饼在45±5℃下减压旋干。向所得物中加入二氯甲烷/甲醇(V/V=8/1,2.75升),15±5℃下搅拌30-60分钟,过滤,滤饼中加入二氯甲烷/甲醇(V/V=8/1,1.375升),15±5℃下搅拌30-60分钟,过滤,滤饼用二氯甲烷/甲醇(V/V=8/1,1.375升)淋洗。合并两次滤液,滤液45±5℃下减压浓缩。向浓缩残留物中加入二氯甲烷/甲醇(V/V=2/1,4.125升),搅拌溶解。加入硫氰尿酸(13.93克),活性炭(27.5克),15±5℃下搅拌15-16小时。用硅藻土(137.5克)过滤,滤饼用二氯甲烷/甲醇(V/V=2/1,1.375升×2)淋洗。滤液45±5℃下减压浓缩。向浓缩残留物中加入甲醇(1.1升),15±5℃下搅拌2-3小时,过滤,滤饼用甲醇(137.5毫升)淋洗,滤饼在45±5℃下减压旋蒸,得到黄色固体状产品(270克,纯度:97.98%,收率:84.24%)。
1H NMR(400MHz,DMSO-d6)d=8.92(d,J=1.6Hz,1H),8.24(s,1H),8.04(dd,J=9.6Hz,2Hz,1H),7.80(d,J=2Hz,1H),7.67(d,J=9.6Hz,1H),7.27(d,J=2.0Hz,1H),5.24(s,2H),4.19(t,J=6.0Hz,2H),3.93(s,3H),2.66(t,J=6.0Hz,2H),2.25(s,6H);LCMS(ESI)m/z:356(M+1)。
制备化合物1
Figure PCTCN2016110284-appb-000023
将7-(5-氨基-6-甲氧基嘧啶-3-基)-3-(2-(二甲氨基)乙氧基)-吡啶并[1,2-a]嘧啶-4-酮(265克,0.72摩尔)和吡啶(2.65升)加入反应瓶中,降温至5±5℃,向反应瓶中滴加2-氯-4-氟苯磺酰氯(252克,1.08摩尔)的吡啶(504毫升)溶液,滴加完毕,调节反应液温度至30-35℃,在此温度下搅拌2-3小时。HPLC监测反应结束后,反应液在45±5℃下,减压浓缩至化合物7的2.5-3倍重量。向浓缩所得物中加入二氯甲烷(3.7升),在25±5℃下搅拌30分钟后在45±5℃下减压浓缩至化合物7的2.5-3倍重量。向浓缩所得物中加入二氯甲烷(3.7升),在25±5℃下,打浆2-3小时。过滤,收集滤饼,滤饼在45±5℃下旋蒸至化合物7的1.3-1.7倍重量。向旋蒸所得物中加入二氯甲烷(1.85升),在25±5℃下,打浆2-3小时。过滤,收集滤饼,滤饼在45±5℃下旋蒸至化合物7的1.2-1.4倍重量,在45℃下真空干燥3-4小时至化合物7的1.2-1.3倍重量。向所得粗品加入乙腈(2.12升),在55±5℃下打浆15-16小时。将打浆液冷却至25±5℃,过滤,收集滤饼,滤饼在45±5℃下旋蒸至化合物7的1.1-1.2倍重量。向旋蒸所得物加入乙腈(1.9升),在55±5℃下打浆15-16小时。打浆液冷却至25±5℃,过滤,滤饼在45±5℃下旋蒸至化合物7的1.0-1.1倍重量。向旋蒸所得物中加入甲醇(5.3升),加入活性炭(53g),在75±5℃下,搅拌2-3小时。用硅藻土(132g)过滤,收集滤饼,滤饼中加入二氯甲烷和甲醇的混合溶剂(V/V=4/1,7.95升),在25±5℃下搅拌30-60分钟。过滤,合并两次滤液,在45±5℃下浓缩至化合物7的1.01-1.03倍重量。向浓缩所得物加入水(4.24升)和乙醇(1.06升),25±5℃下搅拌5-10分钟,滴加饱和碳酸氢钠水溶液(1.3升),并搅拌2-3小时。过滤,滤饼在45±5℃下旋蒸至化合物7的1.1-1.3倍重量。向旋蒸所得物中加入乙醇(1.59升),在75±5℃下打浆15-16小时。将打浆液冷却至25±5℃,过滤,收集滤饼,滤饼在45±5℃下旋干至化合物7的0.89-0.92倍重量。向旋蒸所得物中加入乙醇(1.59升),在75±5℃下,打浆15-16小时。将打浆液冷却至25±5℃,过滤,收集滤饼,滤饼在45±5℃下旋蒸至化合物7的0.87-0.9倍重量。向旋蒸所得物中加入水(2.35升),在45±5℃下搅拌61±1小时。将混合液冷却至25±5℃,过滤。收集滤饼,滤饼中加入水(2.35升),在25±5℃下,搅拌2-3小时,过滤。收集滤饼,滤饼在60℃下真空干燥15-16小时后过60目筛,得到淡黄色固体状产品(190g,纯度:98.33%,产率47.36%)。
1H NMR(400MHz,DMSO-d6-d)d=2.96(t,J=6.0Hz,2H),3.72(s,3H),4.27(t,J=5.2Hz,2H),7.32(td,J=8.8,2.8Hz,1H),7.60(dd,J=8.4,2.4Hz,1H),7.70(d,J=9.2Hz,1H),7.75(d,J=2.0Hz,1H),7.95-8.05(m,2H),8.15(d,J=1.6Hz,1H),8.27(s,1H),8.85(s,1H);LCMS(ESI)m/z:548(M+1)。
实施例2化合物1的晶型Ⅸ的制备
将7-(5-氨基-6-甲氧基嘧啶-3-基)-3-(2-(二甲氨基)乙氧基)-吡啶并[1,2-a]嘧啶-4-酮(2.5g,6.75mmol,1.0eq)溶于吡啶(25mL)中,0℃下滴加2-氯-4-氟苯磺酰氯(2.01g,8.78mmol,1.3eq),10-20℃下搅拌16小时。反应完毕,将溶剂旋干得到粗品。粗品过柱(DCM/MeOH:10/1-4/1)纯化。得到黄色固体状产品(2.4g,纯度98.31%,收率:63.79%)。将上述黄色固体(1.3g,2.37mmol)用制备HPLC(中性)分离。将制备HPLC(中性)分离回来的液体用DCM(500mL×3)萃取。有机相用无水硫酸钠(100g)干燥后过滤,滤液旋干,得到白色固体状产品,为化合物1晶型Ⅸ(970mg,1.75mmol,纯度99%,收率73.94%)。
实施例3化合物2的晶型Ⅰ的制备
向装有搅拌的1.0L三口圆底烧瓶R1中加入7-(5-氨基-6-甲氧基嘧啶-3-基)-3-(2-(二甲氨基)乙氧基)-吡啶并[1,2-a]嘧啶-4-酮(29.0g,81.60mmol,1.0eq)和吡啶(290mL)。将R1置于冰浴中冷却至0-5℃。向R1中滴加2-氯-4-氟苯磺酰氯(24.30g,106.08mmol,1.3eq)的吡啶(60mL)溶液,约30分钟滴加完毕,反应自然升温至20℃,并搅拌反应16小时。反应完毕,反应液减压浓缩除去吡啶,得红色固体状粗品80g。取上述粗品64g置于1.0L圆底烧瓶R2中,向R2中加入二氯甲烷(350mL),将R2在15℃搅拌2小时,过滤,收集滤饼,滤饼干燥得淡红色固体。固体中加入乙腈(430mL),将混合物于85℃回流16小时,混合物冷却至15℃,并过滤,滤饼干燥得淡红色固体(33.4g,产率77%,纯度99.4%)。取上述固体30g置于1L圆底烧瓶R3中,向R3中加入甲醇(600mL)、活性炭(6g,20%)。混合物置于70℃油浴,搅拌12小时。混合物趁热用硅藻土(15g)过滤。收集滤液并旋干,得到黄色固体产品(22.6g,纯度97.47%)。上述固体中加入乙腈(150mL),混合物置于85℃油浴搅拌12小时,冷却至20℃,过滤,收集滤饼,滤饼干燥,得到白色固体状目标产物化合物2的晶型Ⅰ(21g,收率44.3%,纯度100%)。经离子色谱测定,化合物2中氯离子含量与化合物1的摩尔比为1:1。
1H NMR(400MHz,DMSO-d6-d)d=2.91(s,6H),3.53(t,2H),3.71(s,3H),4.52(t,2H),7.38(m,1H),7.77(m,2H),7.97(m,2H),8.16(m,1H),8.45(m,2H),8.98(s,1H)。
实施例4化合物2的晶型Ⅱ的制备
取大约50mg的化合物2的晶型Ⅰ加入0.4mL丙酮形成悬浊液。悬浊液样品置于恒温均匀仪上(40℃) 振摇2天(避光)。残留的固体物离心分离,并在40℃真空干燥箱中干燥过夜,得到化合物2的晶型Ⅱ。
实施例5化合物2的晶型III的制备
晶型III的制备过程同晶型II,仅把溶剂丙酮改为异丙醇,得到化合物2的晶型III。
实施例6化合物2的晶型IV的制备
晶型IV的制备过程同晶型II,仅把溶剂丙酮改为乙酸乙酯,得到化合物2的晶型IV。
实施例7化合物2的晶型V的制备
化合物2的晶型Ⅰ(2.0g,3.42mmol)置于500mL单口瓶R1,搅拌条件下加入DCM/MeOH(2/1,200mL)将固体溶清。溶液40℃减压除去溶剂,得黄色固体2.0g,取1g固体置于50mL单口瓶,并加入乙醇(6mL),混合物置于80℃油浴搅拌12小时,停止加热。搅拌条件下降温至20℃,过滤,滤饼干燥,得到化合物2的晶型V。
实施例7化合物2的晶型VI的制备
向装有机械搅拌的2.0L三口圆底烧瓶R1中加入7-(5-氨基-6-甲氧基嘧啶-3-基)-3-(2-(二甲氨基)乙氧基)-吡啶并[1,2-a]嘧啶-4-酮(70.0g,222.90mmol,1.0eq,纯度99.4%)和吡啶(700mL),将R1置于冰浴中冷却至0-5℃。向R1中滴加2-氯-4-氟苯磺酰氯(70.81g,293.67mmol,1.5eq,纯度95%)的吡啶(140mL)溶液,约30分钟滴加完毕。R1置于30℃油浴,搅拌反应2小时。反应完毕,反应液减压浓缩除去溶剂吡啶得红色固体粗品(200g)。残余物中加入二氯甲烷(1.0L),并在20℃搅拌3小时。过滤,收集滤饼。滤饼中加入乙腈(1.2L),反应液在85℃回流12小时,反应液冷却至20℃,过滤并收集滤饼,滤饼干燥得固体(92g)。滤饼加甲醇(2L)、活性炭(14g),回流搅拌3小时,用硅藻土(40g)趁热过滤,并用500mL淋洗,滤液40℃减压旋干(83g)。固体中加乙腈(800mL),混合物在85℃回流过夜,混合液冷却至20℃,过滤,滤饼干燥得77g白色固体。取72g白色固体,用甲醇溶清并旋干,得到化合物2的晶型VI。
实施例8化合物3的晶型Ⅶ的制备
将化合物1(997.34mg,1.82mmol,1.00eq)置于5mL玻璃瓶中,向瓶中加入乙醇/水(7.5mL/2.5mL),溶液在室温(15℃)下搅拌0.1小时,有大量固体未溶。向混合液中加入马来酸(211.25mg,1.82mmol,1.00eq),溶液在室温(15℃)下搅拌18小时,固体全部溶解,成黄色溶液。将此溶液在40℃下减压旋至2mL,加入EA(20mL),搅拌0.5小时,过滤,滤饼40℃减压旋干,得到化合物3晶型的Ⅶ。
1H NMR(400MHz,DMSO-d6)d ppm 2.94(s,6H)3.51-3.56(m,2H)3.71(s,3H)4.36-4.59(m,2H)6.03(s,2H)7.18-7.48(m,1H)7.65-7.90(m,2H)7.92-8.09(m,2H)8.17(dd,J=9.29,1.76Hz,1H)8.35-8.55(m,2H)8.99(s,1H)。
实施例9化合物4的晶型Ⅷ
将化合物1(997.34mg,1.82mmol,1.00eq)置于5mL玻璃瓶中,向瓶中加入乙醇/水(7.5mL/2.5mL),溶液在室温(15℃)下搅拌0.5小时,有大量固体未溶。向混合液中加入柠檬酸(382.45mg,1.82mmol,1.00eq),溶液在室温(15℃)下搅拌18小时,反应瓶中为乳白色泥浆。将此混合液在40℃下减压旋至2mL,加入EA(20mL),搅拌0.5小时,过滤,滤饼40℃减压旋干,得到化合物4的晶型Ⅷ。
1H NMR(400MHz,DMSO-d6)d ppm 2.56-2.68(m,4H)2.76(s,6H)3.31(m,2H)3.72(s,3H)4.37-4.40(m,2H)7.35-7.37(m,1H)7.71-7.78(m,2H)7.91-7.95(m,1H)7.95-8.09(m,1H)8.11-8.13(m,1H)8.36-8.37(m,2H)8.96(d,J=1.6,1H)
试验例1化合物1的晶型Ⅸ在不同溶剂中的稳定性试验
取适量的化合物1的晶型Ⅸ多份,分别加入0.3-0.4mL的下表中的单一或混合溶剂,40℃条件下搅拌。搅拌2天后,离心样品。收集所有样品中的固体,XRPD检测其晶型状态。结果见表10。
表10 游离碱晶型Ⅸ在不同溶剂中的稳定性实验
序号 溶剂 外观(2天) 结果
1 甲醇 混悬液 晶型Ⅸ
2 乙醇 混悬液 晶型Ⅸ
3 异丙醇 混悬液 晶型Ⅸ
4 丙酮 混悬液 晶型Ⅸ
5 乙腈 混悬液 晶型Ⅸ
6 四氢呋喃 混悬液 晶型Ⅸ
7 乙酸乙酯 混悬液 晶型Ⅸ
8 甲醇-水(3:1) 混悬液 晶型Ⅸ
9 乙醇-水(3:1) 混悬液 晶型Ⅸ
10 丙酮-水(1:2) 混悬液 晶型Ⅸ
11 异丙醇-水(1:1) 混悬液 晶型Ⅸ
试验例2化合物1的晶型Ⅸ在高温、高湿及强光照条件下的固体稳定性试验
称取化合物1的晶型Ⅸ样品约10mg,置于玻璃样品瓶的底部,摊成薄薄一层。60℃及室温/92.5%RH条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触;强光照(5Klx)条件下放置的样品用螺纹瓶盖密封。另取15mg晶型Ⅸ样品,按上述方法放样,用于检测样品晶型。不同条件下放置的样品于第5天、第10天取样检测,检测结果与第0天的初始检测结果进行比较,试验结果见下表11所示:
表11 化合物1晶型的Ⅸ的固体稳定性试验
Figure PCTCN2016110284-appb-000024
实验结论:本发明晶型稳定性好,易于成药。
试验例3体外酶活性测试
ADP-Glo实验方法一
化合物稀释:
3倍梯度稀释待测化合物,共10个浓度点(10000nM到0.5nM)。
实验方法:
转移50nL本发明的待测化合物至反应板(PerkinElmer#6007299)中,加入3μL酶/底物混合物(0.33nM PI3Kalpha,Millipore#14-602-K/166.5μM PIP2),孵育20min后加入2μL ATP溶液(100μM)起始反应,室温反应2小时后,加入5μL ADP-Glo试剂终止激酶反应,室温孵育60分钟完全消化剩余未反应ATP,加入10μL激酶检测试剂,室温孵育40分钟后,在Envision上读取荧光。PIP2、ATP、ADP-Glo试剂及激酶检测试剂均来自ADP-Glo激酶检测试剂盒(Promega#V1792)。
数据分析:
采用标准4参数拟合法计算IC50(Model 205,XL-fit,iDBS)。
本发明的待测化合物对mTOR激酶活性分别通过以下测试方法进行测试。
反应缓冲液:20mM Hepes(pH 7.5),10mM MgCl2,2mM MnCl2,1mM EGTA,0.02%Brij35,0.02mg/ml BSA,0.1mM Na3VO4,2mM DTT,2%DMSO。
反应用酶:在昆虫细胞中表达的N-末端带GST标记的人源重组mTOR片段(氨基酸1360-2549,分子量=163.9kDa)
反应用底物:在细菌中表达的N-末端带His标记的人源重组全长4EBP1(分子量=13.6kDa)
反应条件:3μM 4EBP1和10μM ATP
反应步骤:
1.在新鲜制备的反应缓冲液中加入反应底物和其它反应因子。
2.将激酶加入底物反应液中,轻柔地混合。
3.利用Acoustic技术(Echo550;nanoliter rang)将溶解在100%DMSO的化合物转移入激酶反应液中,在室温下孵育20分钟。
4.在反应体系中加入合适浓度的32P-ATP。
5.室温中孵育两个小时。
6.利用P81filter-binding方法检测激酶活性。
实验结果见表12。
表12 体外酶活性测试结果一
化合物 PI3K(p110α)酶活性IC50 mTOR酶活性IC50
化合物1 A D
注:A≤1nM;200nM<D。
结论:化合物1对PI3K(p110α)的抑制作用显著,但对mTOR的抑制作用较弱。
ADP-Glo实验方法二
实验步骤
1)使用Labcyte公司的Echo稀释并转移50nL化合物至检测板,以1000转/分钟的速度离心10秒。
2)配制激酶/脂质底物混合溶液和激酶反应缓冲溶液/脂质底物混合溶液,在检测板的3-24列加入激酶/脂质底物混合溶液,3μL每孔,在第1-2列加入激酶反应缓冲溶液/脂质底物混合溶液,3μL每孔,以1000转/分钟的速度离心10秒。
3)配制ATP溶液,在检测板加入ATP溶液,2μL每孔,以1000转/分钟的速度离心10秒,振板机2档位置振荡混匀1分钟,以1000转/分钟的速度离心10秒,将检测板在23℃孵育120分钟。
4)配制
Figure PCTCN2016110284-appb-000025
试剂,在检测板加入
Figure PCTCN2016110284-appb-000026
试剂,5μL每孔,以1000转/分钟的速度离心10秒,振板机2档位置振荡混匀1分钟,以1000转/分钟的速度离心10秒,将检测板在23℃孵育60分钟。
5)配制激酶检测试剂,在检测板加入激酶检测试剂,10μL每孔,以1000转/分钟的速度离心10秒,振板机2档位置振荡混匀1分钟,以1000转/分钟的速度离心10秒,将检测板在23℃孵育30分钟,在多标记检测仪Envision上读板。
数据分析
IC50结果由IDBS公司的XLfit5(205公式)进行分析。
采用化合物BKM-120作为阳性对照药物,采用上述相同的实验过程进行了实验和分析。
实验结果
化合物1对PI3Kα、PI3Kβ、PI3Kδ、PI3Kγ活性抑制的IC50值分别为0.6±0.2nM、9.9±2.7nM、0.5±0.1nM和7.0±0.9nM(n=2)。与之相比,阳性对照药物BKM120(PI3K抑制剂Buparlisib)对PI3Kα、PI3Kβ、PI3Kδ、PI3Kγ活性抑制的IC50值分别为24.7±4.7nM、241.6±50.6nM、68.8±25.0nM、111.9±15.2nM。
结论:化合物1对PI3K的四种亚型均展现了很高的抑制活性。
试验例4体外细胞活性测试
实验步骤和方法:
1.将MCF-7细胞以每孔2.5×104个的密度接种进96孔板中(使用的培养液需为含10%FBS的完整培养液)。
2.第二天将孔中的培养液抽走,将某一个浓度(初步筛选)或一系列浓度(IC50测试)的本发明的待测化合物溶解在不含血清的培养液中,加入96孔板培养细胞2小时。
3.把胰岛素溶解在不含血清的培养液中,加入细胞培养30分钟,胰岛素终浓度为10微克/毫升。
4.等待反应时,按如下方法准备裂解液:
a)增强液(Enhancer Solution)需要提前从冰箱里取出融化。
b)将增强液用5X的裂解缓冲液(Lysis Buffer)稀释10倍,制备成浓缩裂解液。
c)将浓缩裂解液用双蒸水稀释5倍,制成裂解液。
5.将孔内的培养液吸净,并用PBS迅速润洗一次。
6.每个孔加入150μL新鲜制备的裂解液,然后室温震荡10分钟。
7.确认所有细胞都已脱落后,将裂解液同细胞碎片一起转移到1.5毫升管内。
8.涡旋几次,使裂解液和细胞完全混合,然后将混合液在4℃用12000g离心10分钟。
9.计算出需要的ELISA-one微板条的数目。把多出的微板条从框架上取下,放回储存袋中密封好。使用微板条之前,先用200μL双蒸水润洗一下每个孔,以除去上面的防腐剂。
10.往每个孔中加入50μL的抗体混合液。(抗体混合液是通过将媒介抗体试剂和酶标抗体试剂等比例混合而成,注意制备抗体混合液时不要涡旋)
11.向ELISA-One微板的每个孔中加入25μL细胞裂解产物。用粘性封口膜盖住微板,室温下在微板震荡仪上孵育1小时。
12.每个孔用150μL 1X清洗缓冲液洗3次。最后一次洗完后,将孔内的清洗缓冲液抽净。如果需要,可让1X清洗缓冲液在微板中停留最长30分钟,以留出时间准备底物混合液。
13.底物混合液应随用随配。向每个孔内加入100μL底物混合液,然后用锡箔纸封住微板,室温下在 微板震荡仪上孵育10分钟。
14.向每个孔内加入10μL终止液,然后在微板震荡仪上稍微(5-10秒)混匀一下。
15.装配好相应的ELISA-One滤镜组,读出荧光信号强度。
实验结果见表13。
表13 体外细胞活性测试结果
化合物 细胞活性IC50
化合物1 A
注:A≤50nM。
试验例5体内药效实验部分
研究受试药物在人源结肠癌CO-04-0032动物模型以及胃癌ST-02-0013动物模型是否具有体内药效。有关实验中对动物饲养,饲料成分,实验观察,实验指标,实验终止以及数据分析的描述如下:
动物饲养:动物到达后在实验环境饲养3-7天后方能开始实验。动物在SPF级动物房以IVC(独立送风系统)笼具饲养(每笼5只)。所有笼具、垫料及饮水在使用前均需灭菌,灭菌消毒记录见附件。所有实验人员在动物房操作时应穿着防护服和乳胶手套。每笼动物信息卡应注明笼内动物数目,性别,品系,接收日期,给药方案,实验编号,组别以及实验开始日期。笼具、饲料及饮水每周更换两次。饲养环境及光照情况如下:
温度:20~26℃
湿度:40~70%
光照周期:12小时光照,12小时无光照
饲料成分:饲料符合实验动物食物鉴定标准。污染物最高含量在可控范围内并由生产厂家负责例检。
饮水采用高压灭菌的饮用水。
动物分组:给药前称重动物,测量瘤体积。根据瘤体积随机分组(随机区组设计)。
观察:本实验方案的拟定及任何修改将在上海药明康德实验动物伦理委员会(IACUC)进行评估核准后方可实行。实验动物的使用及福利将遵照国际实验动物评估和认可委员会(AAALAC)的规则执行。每天监测动物的健康状况及死亡情况,例行检查包括观察肿瘤生长和药物治疗对动物日常行为表现的影响如行为活动,摄食摄水量,体重变化(每周测量两次体重),外观体征或其它不正常情况。基于各组动物数量记录组内动物死亡数和副作用,相关记录见附件。
实验指标:实验指标是考察肿瘤生长是否被抑制、延缓或治愈。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效(TGI)用T-C(天)和T/C(%)评价。T-C(天)反映肿瘤生长延迟指标,T表示用药组肿瘤达到预先设定体积(如1,000mm3)所用的平均天数,C表示对照组肿瘤达到相同体积所用的平均天数。T/C(%)的百分比值反映肿瘤生长抑制率,T和C分别表示给药组和对照组在某一天的瘤重(瘤体积)。
肿瘤生长抑制率用下列公式计算:TGI(%)=[1-(Ti-T0)/(Vi-V0)]×100,其中Ti为某一天某给药组的平均肿瘤体积,T0为此给药组在开始给药时的平均肿瘤体积;Vi为某一天(与Ti同一天)溶媒对照组的平均肿瘤体积,V0为溶媒对照组在给开始药时的平均肿瘤体积。在实验结束后将检测肿瘤重量,并计算T/C百分比,T和C分别表示给药组和溶媒对照组的瘤重。
实验终止:若动物健康状况持续恶化或瘤体积超过2,000mm3,或有严重疾病,或疼痛,须处以安乐死。有以下情况者,通知兽医并处以安乐死:
明显消瘦,体重降低大于20%;
不能自由取食和饮水;
对照组瘤体积平均值达到2,000mm3,实验终止。
动物出现以下临床表现且持续恶化:
○立毛
○弓背
○耳、鼻、眼或足色发白
○呼吸仓促
○抽搐
○连续腹泻
○脱水
○行动迟缓
○发声
数据分析:三组或多组间比较用one-way ANOVA。如果F值有显著性差异,应在ANOVA分析之后再进行多重比较。用SPSS 17.0进行所有数据分析。p<0.05认为有显著性差异。
受试药对人源结肠癌CO-04-0032皮下异种移植肿瘤模型的体内药效学研究:
实验设计:
人源移植肿瘤模型建立:人源结肠癌CO-04-0032模型最初来源于临床外科手术中切除的肿瘤样本,标本的采集使用严格遵守国家、医院以及公司有关伦理的法律法规,包括病人的知情同意。模型建立流程严格按照公司内部SOP。传代命名规则为肿瘤样本接种于裸鼠后为P0代,继续传代为P1代,以此类推,复苏的标本命名为FP。本次实验中使用的肿瘤组织是FP4代。
动物:BALB/c裸小鼠,雌性,6-8周龄,体重18-20克。由上海西普尔-必凯实验动物有限公司提供。肿瘤接种:将体积约30mm3CO-04-0032肿瘤块皮下接种于每只小鼠的右后背,肿瘤平均体积达到约100-200mm3时开始分组给药。
实验结果:给予本发明的化合物1(包括其晶型Ⅸ),15-30天以来,肿瘤体积几乎未增大,同时相对于阳性对照药物BKM120,本发明的化合物1(包括其晶型Ⅸ)对于结肠癌具有更为优异的抗肿瘤活性。
受试药对人胃癌ST-02-0013皮下异种移植小鼠模型的体内药效学研究
实验设计:
人源移植肿瘤模型建立:ST-02-0013的PDX模型最初来源于外科手术割除的临床样本,植入裸鼠体内定义为P0代。下一代植入P0代肿瘤被定义为P1代,以及之后在小鼠体内的持续代代移植,可依此类推。FP2代肿瘤复苏得到FP3代肿瘤。FP3代肿瘤传代得到FP4代肿瘤。FP4代肿瘤组织将用于该研究。
动物:BALB/c裸小鼠,雌性,6-8周龄,体重18-22克。由上海灵畅生物科技有限公司提供。
肿瘤接种:将体积约30mm3ST-02-0013FP4代肿瘤组织皮下接种于每只小鼠的右后背,肿瘤平均体积达到约150-200mm3时开始分组给药。
实验结果:给予本发明的化合物1(包括其晶型Ⅸ),15-30天以来,肿瘤体积几乎未增大,同时相对于阳性对照药物BKM120,本发明的化合物1(包括其晶型Ⅸ)对于胃癌具有更为优异的抗肿瘤活性。

Claims (21)

  1. 如下式所示的化合物1的晶型Ⅸ,
    Figure PCTCN2016110284-appb-100001
    其特征在于,在X-射线衍射图谱中,具有2θ=7.947°、10.073°、14.531°、19.187°、21.237°、24.055°、25.497°的衍射峰;典型地具有2θ=7.947°、10.073°、11.970°、13.468°、14.531°、15.911°、19.187°、21.237°、24.055°、25.497°的衍射峰;更典型地具有2θ=7.947°、10.073°、11.970°、13.468°、14.531°、15.911°、19.187°、19.561°、21.237°、23.446°、24.055°、25.497°、27.074°的衍射峰。
  2. 如权利要求1所述的晶型Ⅸ,其特征在于,其XRPD图谱解析数据如下:
    Figure PCTCN2016110284-appb-100002
  3. 如权利要求1或2所述的晶型Ⅸ,其特征在于,其XRPD图谱如图25所示。
  4. 下式所示的化合物2
    Figure PCTCN2016110284-appb-100003
  5. 如权利要求4所述的化合物2的晶型Ⅰ,其特征在于,在X-射线衍射图谱中,具有2θ=10.154°、12.285°、14.511°、16.328°、24.311°、26.188°的衍射峰;典型地具有2θ=7.270°、10.154°、12.285°、13.206°、14.511°、16.328°、24.311°、26.188°、27.724°的衍射峰;更典型地具有2θ=7.270°、10.154°、12.285°、13.206°、14.511°、16.328°、19.008°、20.702°、21.259°、24.311°、26.188°、27.724°的衍射峰;最典型的具有如下的XRPD图谱解析数据:
    Figure PCTCN2016110284-appb-100004
  6. 如权利要求4所述的化合物2的晶型Ⅱ,其特征在于,在X-射线衍射图谱中,具有2θ=6.524°、7.782°、13.895°、15.495°、17.487°、19.322°的衍射峰;典型地具有2θ=6.524°、7.782°、11.628°、13.895°、15.495°、17.487°、19.322°、20.962°、23.269°的衍射峰;更典型地具有2θ=6.524°、7.782°、11.628°、13.895°、15.495°、17.487°、19.322°、20.962°、23.269°、24.257°、26.009°、31.533°的衍射峰;最典型的具有如下的XRPD图谱解析数据:
    Figure PCTCN2016110284-appb-100005
  7. 如权利要求4所述的化合物2的晶型Ⅲ,其特征在于,在X-射线衍射图谱中,具有2θ=6.979°、9.939°、14.392°、16.107°、20.982°、25.990°的衍射峰;典型地具有2θ=6.187°、6.979°、9.939°、11.910°、 14.392°、16.107°、20.982°、22.755°、25.990°的衍射峰;更典型地具有2θ=6.187°、6.979°、9.939°、11.910°、13.148°、14.392°、16.107°、20.982°、22.755°、23.975°、25.990°、29.006°的衍射峰;最典型的具有如下的XRPD图谱解析数据:
    Figure PCTCN2016110284-appb-100006
  8. 如权利要求4所述的化合物2的晶型Ⅳ,其特征在于,在X-射线衍射图谱中,具有2θ=6.388°、7.278°、11.076°、15.454°、21.256°的衍射峰;典型地具有2θ=6.388°、7.278°、11.076°、12.102°、15.454°、16.091°、18.912°、21.256°的衍射峰;更典型地具有2θ=6.388°、7.278°、11.076°、12.102°、15.103°、15.454°、16.091°、18.912°、21.256°、21.846°的衍射峰;最典型的具有如下的XRPD图谱解析数据:
    Figure PCTCN2016110284-appb-100007
  9. 如权利要求4所述的化合物2的晶型Ⅴ,其特征在于,在X-射线衍射图谱中,具有2θ=7.116°、14.137°、15.911°、22.223°、24.610°的衍射峰;典型地具有2θ=7.116°、14.137°、15.911°、21.691°、22.223°、24.213°、24.610°、28.987°的衍射峰;最典型的具有如下的XRPD图谱解析数据:
    Figure PCTCN2016110284-appb-100008
    Figure PCTCN2016110284-appb-100009
  10. 如权利要求4所述的化合物2的晶型Ⅵ,其特征在于,在X-射线衍射图谱中,具有2θ=5.775°、11.770°、14.415°、15.753°、22.518°、26.623°的衍射峰;典型地具有2θ=5.775°、11.770°、14.415°、15.753°、17.132°、20.939°、22.518°、26.623°的衍射峰;更典型地具有2θ=5.775°、11.770°、14.415°、15.753°、17.132°、20.939°、22.518°、23.745°、26.623°、31.295°的衍射峰;最典型的具有如下的XRPD图谱解析数据:
    Figure PCTCN2016110284-appb-100010
  11. 下式所示化合物3,
    Figure PCTCN2016110284-appb-100011
  12. 如权利要求11所述的化合物3的晶型Ⅶ,其特征在于,在X-射线衍射图谱中,具有2θ=6.325°、12.677°、15.813°、21.395°、22.519°、27.133°的衍射峰;典型地具有2θ=6.325°、12.677°、13.251°、15.813°、18.954°、21.395°、22.519°、25.161°、27.133°的衍射峰;更典型地具有2θ=6.325°、12.677°、13.251°、15.813°、16.565°、18.954°、21.395°、22.519°、24.117°、25.161°、26.405°、27.133°的衍射峰;最典型的具有如下的XRPD图谱解析数据:
    Figure PCTCN2016110284-appb-100012
    Figure PCTCN2016110284-appb-100013
  13. 下式所示化合物4,
    Figure PCTCN2016110284-appb-100014
  14. 如权利要求13所述的化合物4的晶型Ⅷ,其特征在于,在X-射线衍射图谱中,具有2θ=5.889°、11.002°、12.518°、14.906°、17.825°、22.814°、25.555°的衍射峰;典型地具有2θ=5.889°、7.173°、11.002°、11.396°、12.518°、12.895°、14.906°、17.825°、22.814°、25.555°的衍射峰;更典型地具有2θ=5.889°、7.173°、11.002°、11.396°、12.518°、12.895°、14.906°、16.169°、17.825°、19.875°、21.574°、22.814°、25.555°、27.254°的衍射峰;最典型的具有如下的XRPD图谱解析数据:
    Figure PCTCN2016110284-appb-100015
  15. 含有如权利要求1-3、5-10、12、14任一项所述晶型的晶型组合物,其中,所述晶型占所述晶型组合物重量的50%以上,较好的是80%以上,更好的是90%以上,最好的是95%以上。
  16. 药物组合物,含有如权利要求4、11、13任一项所述的化合物或权利要求1-3、5-10、12、14任一项所述的晶型或权利要求15所述的晶型组合物,其中,所述药物组合物中包括治疗有效量的所述化合物或所述晶型或所述晶型组合物以及任选地药学上可接受的载体、赋形剂和/或介质。
  17. 权利要求1-3、5-10、12、14任一项所述的晶型或者如下式所示的化合物1、权利要求4、11、13任一项所述的化合物或它们的晶型组合物或它们的药物组合物在制备治疗与PI3K激酶有关疾病的药物中的应用,优选地,所述PI3K激酶有关疾病选自癌症,更优选为结肠癌、胃癌,
    Figure PCTCN2016110284-appb-100016
  18. 一种治疗与PI3K激酶有关疾病的方法,所述方法包括将治疗有效量的权利要求1-3、5-10、12、14任一项所述的晶型或权利要求4、11、13任一项所述的化合物或它们的晶型组合物或它们的药物组合物给予有需要的患者,优选地,所述PI3K激酶有关疾病选自癌症,更优选为结肠癌、胃癌。
  19. 如下式所示的化合物1的制备方法,
    Figure PCTCN2016110284-appb-100017
    其包含如下步骤:
    Figure PCTCN2016110284-appb-100018
    其中,
    X选自Cl或Br;
    碱C选自吡啶、2,6-二甲基吡啶、Et3N、4-DMAP、LiOH、Cs2CO3或K2CO3
    溶剂c选自吡啶、二氯甲烷、甲苯、乙腈、丙酮、DMF或THF;
    化合物7与化合物8的摩尔比为1:1~3,优选1:1.2~1.6;
    化合物7与碱C的摩尔比为1:1~3。
  20. 根据权利要求18所述的制备方法,其包括如下步骤,
    Figure PCTCN2016110284-appb-100019
    其中,
    碱A选自碳酸钾、碳酸钠、碳酸铯、氢氧化钾或氢氧化钠;
    溶剂a选自DMF、DMSO或NMP;
    碱B选自碳酸钾、碳酸钠、氢氧化钡、磷酸钾、碳酸铯、氟化钾、氟化铯、氢氧化钠、叔丁醇钾、叔丁醇钠、醋酸钾或醋酸钠;
    溶剂b选自1,4-二氧六环、DMSO、THF、1,4-二氧六环/水或THF/水;
    所述溶剂b中,1,4-二氧六环或THF与水的体积比为3~6:1,优选为5:1;
    催化剂选自Pd(dppf)Cl2或Pd(PPh3)4
    2-二甲氨基氯乙烷或2-二甲氨基溴乙烷可以是其盐的形式。
  21. 作为制备化合物1中间体的下式化合物:
    Figure PCTCN2016110284-appb-100020
PCT/CN2016/110284 2015-12-16 2016-12-16 吡啶并[1,2-a]嘧啶酮类似物、其晶型、其中间体及其制备方法 WO2017101847A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
KR1020187019466A KR102731762B1 (ko) 2015-12-16 2016-12-16 피리도[1,2-a]피리미돈 유사체, 이의 결정형, 이의 중간체 및 이의 제조방법
CA3008689A CA3008689A1 (en) 2015-12-16 2016-12-16 Pyrido[1,2-a]pyrimidone analog, crystal form thereof, intermediate thereof and preparation method therefor
CN201680072381.1A CN108602815B (zh) 2015-12-16 2016-12-16 吡啶并[1,2-a]嘧啶酮类似物、其晶型、其中间体及其制备方法
ES16874904T ES2908498T3 (es) 2015-12-16 2016-12-16 Análogo de pirido[1,2-a]pirimidona, forma cristalina del mismo, intermedio del mismo y método de preparación del mismo
JP2018531358A JP7037483B2 (ja) 2015-12-16 2016-12-16 ピリド[1,2-a]ピリミドン類似体、それらの結晶形、それらの中間体、及びそれらの製造方法
PL16874904T PL3395817T3 (pl) 2015-12-16 2016-12-16 Analog pirydo[1,2-a]pirymidonu, jego krystaliczna postać, jego związek pośredni i sposób jego wytwarzania
EP16874904.2A EP3395817B1 (en) 2015-12-16 2016-12-16 Pyrido[1,2-a]pyrimidone analog, crystal form thereof, intermediate thereof and preparation method therefor
DK16874904.2T DK3395817T3 (da) 2015-12-16 2016-12-16 Pyrido[1,2-a]pyrimidonanalog, krystalform deraf, mellemprodukt deraf og fremgangsmåde til fremstilling deraf
RU2018125475A RU2753696C2 (ru) 2015-12-16 2016-12-16 Аналог пиридо[1,2-a]пиримидона, его кристаллическая форма, его промежуточное соединение и способ их получения
AU2016369835A AU2016369835B2 (en) 2015-12-16 2016-12-16 Pyrido[1,2-a]pyrimidone analog, crystal form thereof, intermediate thereof and preparation method therefor
US16/061,279 US10479789B2 (en) 2015-12-16 2016-12-16 Pyrido[1,2-A]pyrimidone analog, crystal form thereof, intermediate thereof and preparation method therefor
ZA2018/04007A ZA201804007B (en) 2015-12-16 2018-06-15 Pyrido[1,2¿a]pyrimidone analog, crystal form thereof, intermediate thereof and preparation method therefor
HK18115096.1A HK1256044A1 (zh) 2015-12-16 2018-11-26 吡啶並[1,2-a]嘧啶酮類似物、其晶型、其中間體及其製備方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510951482.3 2015-12-16
CN201510951482 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017101847A1 true WO2017101847A1 (zh) 2017-06-22

Family

ID=59055711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110284 WO2017101847A1 (zh) 2015-12-16 2016-12-16 吡啶并[1,2-a]嘧啶酮类似物、其晶型、其中间体及其制备方法

Country Status (13)

Country Link
US (1) US10479789B2 (zh)
EP (1) EP3395817B1 (zh)
JP (1) JP7037483B2 (zh)
CN (1) CN108602815B (zh)
AU (1) AU2016369835B2 (zh)
CA (1) CA3008689A1 (zh)
DK (1) DK3395817T3 (zh)
ES (1) ES2908498T3 (zh)
HK (1) HK1256044A1 (zh)
PL (1) PL3395817T3 (zh)
RU (1) RU2753696C2 (zh)
WO (1) WO2017101847A1 (zh)
ZA (1) ZA201804007B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021180111A1 (zh) * 2020-03-10 2021-09-16 正大天晴药业集团股份有限公司 包括吡啶并[1,2-a]嘧啶酮化合物的药物组合
WO2022057812A1 (zh) * 2020-09-15 2022-03-24 正大天晴药业集团股份有限公司 吡啶并[1,2-a]嘧啶酮化合物的治疗外周T细胞淋巴瘤的用途
WO2022121929A1 (zh) * 2020-12-08 2022-06-16 正大天晴药业集团股份有限公司 吡啶并[1,2-a]嘧啶酮化合物的治疗妇科肿瘤的用途
CN115671289A (zh) * 2021-07-27 2023-02-03 广州嘉越医药科技有限公司 药物组合及其应用
WO2023169488A1 (zh) * 2022-03-09 2023-09-14 正大天晴药业集团股份有限公司 包括吡啶并[1,2-a]嘧啶酮化合物和EGFR抑制剂的药物组合

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220008313A (ko) * 2019-05-13 2022-01-20 뤄신 헬스케어 사이언스 앤드 테크놀로지 디벨롭먼트 (베이징) 리미티드 퀴나졸리논계 화합물의 결정형 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539777A (zh) * 2012-07-13 2014-01-29 广东东阳光药业有限公司 Pi3激酶调节剂及其使用方法和用途
WO2014022128A1 (en) * 2012-07-29 2014-02-06 Calitor Sciences, Llc Pi3 kinase modulators and methods of use
WO2015192760A1 (zh) * 2014-06-17 2015-12-23 南京明德新药研发股份有限公司 作为pi3k抑制剂的吡啶并[1,2-a]嘧啶酮类似物
CN105461711A (zh) * 2014-06-17 2016-04-06 南京明德新药研发股份有限公司 作为PI3K抑制剂的吡啶并[1,2-a]嘧啶酮类似物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076953A1 (en) * 2001-03-21 2002-10-03 Warner-Lambert Company Llc New spirotricyclic derivatives and their use as phosphodiesterase-7 inhibitors
US20100311736A1 (en) * 2007-10-22 2010-12-09 Glaxosmithkline Llc Pyridosulfonamide derivatives as p13 kinase inhibitors
CN102206222B (zh) * 2011-04-14 2013-04-10 中山大学 一种双脂肪氨基取代吲哚喹啉衍生物及其制备方法和制备抗肿瘤药物中的应用
CN103788071A (zh) * 2012-11-01 2014-05-14 中国人民解放军第二军医大学 N-(5-(喹啉-6-基)吡啶-3-基)苯磺酰胺衍生物、制备方法及治疗用途
CA2952992C (en) * 2014-06-17 2019-05-07 Cisen Pharmaceutical Co., Ltd. Pyridino[1,2-a]pyrimidone analogue used as mtor/pi3k inhibitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539777A (zh) * 2012-07-13 2014-01-29 广东东阳光药业有限公司 Pi3激酶调节剂及其使用方法和用途
WO2014022128A1 (en) * 2012-07-29 2014-02-06 Calitor Sciences, Llc Pi3 kinase modulators and methods of use
WO2015192760A1 (zh) * 2014-06-17 2015-12-23 南京明德新药研发股份有限公司 作为pi3k抑制剂的吡啶并[1,2-a]嘧啶酮类似物
CN105461711A (zh) * 2014-06-17 2016-04-06 南京明德新药研发股份有限公司 作为PI3K抑制剂的吡啶并[1,2-a]嘧啶酮类似物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395817A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021180111A1 (zh) * 2020-03-10 2021-09-16 正大天晴药业集团股份有限公司 包括吡啶并[1,2-a]嘧啶酮化合物的药物组合
WO2022057812A1 (zh) * 2020-09-15 2022-03-24 正大天晴药业集团股份有限公司 吡啶并[1,2-a]嘧啶酮化合物的治疗外周T细胞淋巴瘤的用途
WO2022121929A1 (zh) * 2020-12-08 2022-06-16 正大天晴药业集团股份有限公司 吡啶并[1,2-a]嘧啶酮化合物的治疗妇科肿瘤的用途
CN115671289A (zh) * 2021-07-27 2023-02-03 广州嘉越医药科技有限公司 药物组合及其应用
CN115671289B (zh) * 2021-07-27 2024-04-26 广州嘉越医药科技有限公司 药物组合及其应用
WO2023169488A1 (zh) * 2022-03-09 2023-09-14 正大天晴药业集团股份有限公司 包括吡啶并[1,2-a]嘧啶酮化合物和EGFR抑制剂的药物组合

Also Published As

Publication number Publication date
RU2753696C2 (ru) 2021-08-19
ZA201804007B (en) 2019-05-29
PL3395817T3 (pl) 2022-05-02
CA3008689A1 (en) 2017-06-22
CN108602815A (zh) 2018-09-28
EP3395817A4 (en) 2019-08-07
US10479789B2 (en) 2019-11-19
RU2018125475A (ru) 2020-01-16
KR20180095565A (ko) 2018-08-27
US20180319799A1 (en) 2018-11-08
EP3395817A1 (en) 2018-10-31
AU2016369835B2 (en) 2020-10-15
CN108602815B (zh) 2020-07-28
JP7037483B2 (ja) 2022-03-16
AU2016369835A1 (en) 2018-07-19
EP3395817B1 (en) 2022-02-23
HK1256044A1 (zh) 2019-09-13
DK3395817T3 (da) 2022-03-21
RU2018125475A3 (zh) 2020-02-28
JP2018537497A (ja) 2018-12-20
ES2908498T3 (es) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2017101847A1 (zh) 吡啶并[1,2-a]嘧啶酮类似物、其晶型、其中间体及其制备方法
TWI518086B (zh) PI3-激酶/mTOR雙重抑制劑
AU2016272057B2 (en) Use of pteridinone derivative serving as EGFR inhibitor
CN105461714B (zh) 并环类pi3k抑制剂
US9284315B2 (en) Three-ring PI3K and/or mTOR inhibitor
TWI628180B (zh) 作為PI3K抑制劑的吡啶并[1,2-a]嘧啶酮類似物
CN108368111B (zh) 吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体
CN109689641B (zh) 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法
CN107955019B (zh) 一种egfr抑制剂的盐型、晶型及其制备方法
WO2005087227A1 (en) Arylalkylamino-substituted quinazoline analogues
KR102731762B1 (ko) 피리도[1,2-a]피리미돈 유사체, 이의 결정형, 이의 중간체 및 이의 제조방법
CN116178433A (zh) Axl激酶抑制剂的盐及其制备方法和用途
KR20110096169A (ko) 항암 화합물
WO2023083356A1 (zh) 固体形式的氮杂稠环酰胺类化合物及其用途
WO2022135580A1 (zh) 吡啶并吡咯类化合物的晶型、制备方法及其应用
WO2023083357A1 (zh) 氮杂稠环酰胺类化合物的盐、其结晶形式及其用途
CN108658874B (zh) 硫代嘧啶杂环类抗肿瘤化合物及其制备方法与用途
EP4450503A1 (en) Aromatic heterocyclic compounds, preparation method therefor and uses thereof
JP6342001B2 (ja) キナゾリン誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 16061279

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3008689

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2018531358

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187019466

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019466

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2018125475

Country of ref document: RU

Ref document number: 2016874904

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016369835

Country of ref document: AU

Date of ref document: 20161216

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016874904

Country of ref document: EP

Effective date: 20180716