WO2017099496A1 - 다파글리플로진의 신규 용매화물 및 이의 제조방법 - Google Patents
다파글리플로진의 신규 용매화물 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2017099496A1 WO2017099496A1 PCT/KR2016/014386 KR2016014386W WO2017099496A1 WO 2017099496 A1 WO2017099496 A1 WO 2017099496A1 KR 2016014386 W KR2016014386 W KR 2016014386W WO 2017099496 A1 WO2017099496 A1 WO 2017099496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dapagliflozin
- solvate
- powder
- values
- hexanediol
- Prior art date
Links
- ZWIDKOJCNACEBM-YKXMALFFSA-N CCOc1ccc(Cc(cc([C@@H]([C@@H]([C@H]2OCCCC(CO)O)O)OC(CO)[C@H]2O)cc2)c2Cl)cc1 Chemical compound CCOc1ccc(Cc(cc([C@@H]([C@@H]([C@H]2OCCCC(CO)O)O)OC(CO)[C@H]2O)cc2)c2Cl)cc1 ZWIDKOJCNACEBM-YKXMALFFSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H7/00—Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
- C07H7/04—Carbocyclic radicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
Definitions
- the present invention relates to a novel solvate of Dapagliflozin, a SGLT-2 inhibitor, and a method for preparing the same.
- Diabetes is a chronic metabolic disease that affects millions of patients around the world and is divided into type 1 and type 2.
- type 2 diabetes is caused by insulin resistance, which is caused by a decrease in the function of insulin, which lowers blood sugar.
- SGLT-2 sodium / glucose cotransporter 2
- SGLT-1 sodium / glucose cotransporter 1
- SGLT-2 plays a major role. have. Therefore, when the SGLT-2 inhibitor inhibits the SGLT-2 transporter, the blood sugar released into the urine increases, and thus the blood sugar is lowered, and further, the calories contained in the blood sugar are released, thereby causing the weight loss effect.
- One of the drugs developed as an SGLT-2 inhibitor that can be usefully used as a treatment for type 2 diabetes is Dapagliflozin, and currently called Forxiga or Farxiga. It is sold all over the world under the brand name.
- Dapagliflozin is a material having the following structure and has been disclosed for the first time in WO 2001/027128 (Patent Document 1).
- the dapagliflozin crystal disclosed in Patent Document 1 is in an amorphous form, has poor stability, and has a disadvantage in that it is difficult to maintain a constant quality as a raw material pharmaceutical due to low melting point and high hygroscopicity, and thus is not useful in pharmaceutical form.
- Patent Document 2 discloses (S) -propylene glycol solvate hydrate, (R) -propylene glycol solvate hydrate, ethanol solvate hydrate, ethylene glycol solvate hydrate, L Dapagle comprising a 1: 2 crystalline complex with proline, a 1: 1 crystalline complex with L-proline, a hemihydrate of a 1: 1 crystalline complex with L-proline, and a 1: 1 crystalline complex with L-phenylalanine
- Several crystalline forms of reflowazine have been disclosed, and dapagliflozin (S) -propylene glycol solvate hydrate (form SC-3), which is used as the actual active ingredient of pociga, is disclosed.
- (S) -propylene glycol used as a solvent in Patent Document 2 is an expensive solvent, low economical efficiency, it is difficult to produce a smooth crystal when solvate production, it requires an additional seeding process to promote crystal production, this There is a difficult disadvantage such as the need to manufacture / manage seed as raw material. In addition, there is a problem of drying for a long time under specific drying conditions until it corresponds to the content of the hydrate during drying.
- the present invention is a dapagliflozin 1,2-hexanediol solvate represented by the formula (1), dapagliflozin cis-1,2-cyclopentane represented by the formula (2) It provides a diol solvate hydrate, dapagliflozin 1,2-butanediol solvate hydrate represented by the following formula (3) and a method for preparing the same.
- Solvate in the present invention means a complex or aggregate formed by one or more solute molecules and one or more solvent molecules, and may include a hydrate.
- the dapagliflozin 1,2-hexanediol solvate A of the present invention is a powder X-ray diffraction pattern from the group consisting of 284 ( ⁇ 0.2 °) values of 3.841, 5.331, 7.668, 9.073, 14.715 and 17.902 It may comprise three or more diffraction peaks selected. More preferably, the powder X-ray diffraction pattern may further comprise one or more diffraction peaks selected from the group consisting of 2 ⁇ ( ⁇ 0.2 °) values of 7.967, 10.049, 15.653, 18.270, 18.906, 20.149 and 22.936. .
- Dapagliflozin 1,2-hexanediol solvate B of the present invention has a powder X-ray diffraction pattern from the group consisting of 2 ⁇ ( ⁇ 0.2 °) values of 3.960, 5.421, 7.816, 9.322, 14.947 and 17.993 It may comprise three or more diffraction peaks selected. More preferably, the powder X-ray diffraction pattern may further comprise one or more diffraction peaks selected from the group consisting of 2 ⁇ ( ⁇ 0.2 °) values of 10.061, 15.748, 18.893, 19.275, 20.165, 21.799 and 23.346. .
- Dapagliflozin 1,2-hexanediol solvate B as described above, the step of dissolving dapagliflozin in isopropyl acetate and adding 1,2-hexanediol, to which cyclohexane was added and stirred It may be prepared by a manufacturing method comprising the step of obtaining a solid by filtration.
- the dapagliflozin 1,2-hexanediol solvate C of the present invention has a powder X-ray diffraction pattern from the group consisting of 2 ⁇ ( ⁇ 0.2 °) values of 3.877, 5.304, 7.617, 7.838, 14.869 and 17.796. It may comprise three or more diffraction peaks selected. More preferably, the powder X-ray diffraction pattern may further comprise one or more diffraction peaks selected from the group consisting of 2 ⁇ ( ⁇ 0.2 °) values of 9.053, 10.012, 15.058, 15.792, 19.006, 20.206 and 21.480. .
- the dapagliflozin cis-1,2-cyclopentanediol solvate hydrate of the present invention has a powder X-ray diffraction pattern with 2 ⁇ ( ⁇ 0.2 °) values of 3.614, 14.316, 16.078, 16.407, 17.961 and 19.627.
- the above dapagliflozin cis-1,2-cyclopentanediol solvate hydrate is a step of dissolving dapagliflozin in isopropyl acetate and adding cis-1,2-cyclopentanediol, to which cyclo It can be prepared by a manufacturing method comprising the step of adding hexane, stirring and filtering to obtain a solid.
- the dapagliflozin 1,2-butanediol solvate hydrate of the present invention has a powder X-ray diffraction pattern from the group consisting of 2 ⁇ ( ⁇ 0.2 °) values of 3.788, 15.092, 15.604, 17.000, 18.891 and 19.760 It may comprise three or more diffraction peaks selected. More preferably, the powder X-ray diffraction pattern further comprises one or more diffraction peaks selected from the group consisting of 7.545, 8.003, 8.657, 20.084, 21.424, 22.727, 25.155, 25.883 and 2 ⁇ ( ⁇ 0.2 °) values of 30.451. It may include.
- dapagliflozin 1,2-butanediol solvate hydrate is dissolved dapagliflozin in isopropyl acetate and 1,2-butanediol is added to the cyclohexane and stirred It may be prepared by a manufacturing method comprising the step of obtaining a solid by filtration.
- the novel solvates provided by the present invention are well suited for formulation in crystalline forms that have a high melting point, low hygroscopicity and enable rapid dissolution. In addition, it showed excellent thermodynamic stability and preservation stability, excellent mechanical stability and fluidity, uniform particles, no tackiness, excellent purity, and confirmed that it was a suitable crystal as a raw material. Furthermore, the solvent used for the reaction is an inexpensive solvent that can establish an economical manufacturing process, does not require a seeding process during the reaction process, and can be industrialized by drying within a few hours at room temperature after the completion of the reaction. Solvates can be produced in high yield and are very suitable for industrial production.
- Figure 1 shows the X-ray powder diffraction (XPRD) results of dapagliflozin 1,2- hexanediol solvate A.
- Figure 2 shows the X-ray powder diffraction (XPRD) results of dapagliflozin 1,2-hexanediol solvate B.
- Figure 3 shows the X-ray powder diffraction (XPRD) results of dapagliflozin 1,2-hexanediol solvate C.
- Figure 4 shows the X-ray powder diffraction (XPRD) results of dapagliflozin cis-1,2-cyclopentanediol solvate hydrate.
- Figure 5 shows the X-ray powder diffraction (XPRD) results of dapagliflozin 1,2-butanediol solvate hydrate.
- Powder X-ray diffraction patterns were obtained using a BRUKER D8 ADVANCE model using CuK ⁇ irradiation at 1.54178 kPa (40 kV, 40 mA) with a solid-state detector. The analysis was measured with a 0.02 ° step size over a range of 3 ° to 45 ° at 2 ⁇ angle.
- DSC Differential Scanning Calorimetry
- K.F moisture measurement was performed using a Metrohm 831 KF coulometer. Each weighed sample was analyzed using 100 ml of Coulometeric KF reagent Coulomet AG.
- amorphous dapagliflozin 1 g was dissolved in butyl acetate (7 mL) and 1,2-hexanediol (0.35 g) was added. After 10 minutes n-heptane (20 mL) was added dropwise and stirred. After stirring at room temperature for 2 hours, the solid obtained by filtration was washed with cyclohexane (5 mL) and vacuum dried at room temperature for 6 hours to obtain the title solvate.
- amorphous dapagliflozin 1 g was dissolved in acetone (7 mL) and 1,2-hexanediol (0.35 g) was added. After 10 minutes n-heptane (50 mL) was added dropwise and stirred. The mixture was stirred at room temperature for 1 hour, cooled to 5 ° C., stirred for 6 hours, filtered, washed with cyclohexane (5 mL), and dried under vacuum at room temperature for 6 hours to obtain the title solvate.
- the solvate of the present invention exhibited non-hygroscopicity, and thus it is expected to have excellent storage stability.
- the solvate of the present invention is expected to be thermodynamically stable and therefore excellent physical properties are expected as a drug substance.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 SGLT-2 억제제인 다파글리플로진(Dapagliflozin)의 신규 용매화물 및 이의 제조방법에 관한 것이다.
Description
본 발명은 SGLT-2 억제제인 다파글리플로진(Dapagliflozin)의 신규 용매화물 및 이의 제조방법에 관한 것이다.
당뇨병은 전세계 수백만 명의 환자가 고통 받고 있는 만성 대사질환으로서, 제1형과 제2형으로 구분된다. 이 중 제2형 당뇨병은 혈당을 낮추는 역할을 하는 인슐린의 기능이 떨어져 발생하는 인슐린 저항성(insulin resistance)에 의해 발병한다.
한편, SGLT-2(sodium/glucose cotransporter 2)는 SGLT-1(sodium/glucose cotransporter 1)과 함께 신장에서의 과도한 혈당 재흡수를 담당하고 있는 수송체이며, SGLT-2가 대부분의 역할을 담당하고 있다. 따라서, SGLT-2 저해제가 SGLT-2 수송체를 억제시키면 소변으로 배출되는 혈당이 늘어나게 되며, 결국 혈당이 낮아지고 더 나아가 혈당이 갖고 있는 칼로리가 배출되어 체중감소의 효과가 발생하게 된다. 이와 같은 작용효과로 제2형 당뇨병 치료제로서 유용하게 사용될 수 있는 SGLT-2 억제제로 개발된 약물 중 하나가 다파글리플로진(Dapagliflozin)이며, 현재 포시가(Forxiga) 또는 파시가(Farxiga)라는 상품명으로 전세계에서 판매되고 있다.
다파글리플로진은 하기의 구조를 가지는 물질로서, 국제공개특허공보 WO 2001/027128호(특허문헌 1)에서 최초로 개시된 바 있다.
그러나, 특허문헌 1에 개시된 다파글리플로진 결정은 무정형의 형태로서, 안정성이 좋지 않으며, 낮은 융점과 높은 흡습성으로 원료의약품으로서의 일정한 품질을 유지하기가 어려워 제제학적으로 유용하지 못한 단점이 있다.
한편, 국제공개특허공보 WO 2008/002824호(특허문헌 2)에는, (S)-프로필렌 글리콜 용매화물 수화물, (R)-프로필렌 글리콜 용매화물 수화물, 에탄올 용매화물 수화물, 에틸렌 글리콜 용매화물 수화물, L-프롤린과의 1:2 결정질 복합체, L-프롤린과의 1:1 결정질 복합체, L-프롤린과의 1:1 결정질 복합체의 반수화물 및 L-페닐알라닌과의 1:1 결정질 복합체를 포함하는 다파글리플로진의 여러 결정성 형태가 개시되어 있으며, 포시가의 실제 활성성분으로서 사용되고 있는 다파글리플로진 (S)-프로필렌 글리콜 용매화물 수화물(형태 SC-3)이 개시되어 있다.
그러나, 특허문헌 2에서 용매로 사용된 (S)-프로필렌글리콜은 고가의 용매로서 경제성이 낮으며, 용매화물 제조시 원활한 결정생성이 어려워 결정생성을 촉진하기 위해 추가적인 seeding 공정을 요구하고 있으며, 이를 위해 seed를 원료로서 제조/관리해야 하는 등의 어려운 단점이 있다. 또한, 건조시 수화물의 함유량에 상응할 때까지 특정 건조조건에서 장시간 동안 건조시켜야 하는 문제가 있다.
위와 같은 문제점들을 개선하고, 더 나아가 제제학적으로 보다 유리한 흡습성, 용해도 및 안정성 특성을 나타내는 안정한 용매화물에 대한 연구가 이루어지고 있다.
본 발명의 목적은 SGLT2 억제제인 다파글리플로진의 신규 용매화물 및 이의 제조방법을 제공하는 것이다.
상기 과제의 해결을 위하여, 본 발명은 하기 화학식 1로 표시되는 다파글리플로진 1,2-헥산다이올 용매화물, 하기 화학식 2로 표시되는 다파글리플로진 cis-1,2-사이클로펜탄다이올 용매화물 수화물, 하기 화학식 3으로 표시되는 다파글리플로진 1,2-부탄다이올 용매화물 수화물 및 이의 제조방법을 제공한다.
[화학식 1]
[화학식 2]
[화학식 3]
본 발명에서의 용매화물은 하나 이상의 용질 분자 및 하나 이상의 용매 분자에 의해 형성된 복합체 또는 응집물을 의미하며, 수화물을 포함할 수 있다.
이하에서는 다파글리플로진의 신규 용매화물 및 이의 제조방법에 대하여 구체적으로 살펴보기로 한다.
다파글리플로진
1,2-
헥산다이올
용매화물 이의 제조방법
다파글리플로진
1,2-
헥산다이올
용매화물 A
본 발명의 다파글리플로진 1,2-헥산다이올 용매화물 A는, 분말 X-선 회절 패턴이 3.841, 5.331, 7.668, 9.073, 14.715 및 17.902 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 3개 이상의 회절 피크를 포함할 수 있다. 보다 바람직하게는, 분말 X-선 회절 패턴이 7.967, 10.049, 15.653, 18.270, 18.906, 20.149 및 22.936 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 1개 이상의 회절 피크를 더 포함할 수 있다.
위와 같은 다파글리플로진 1,2-헥산다이올 용매화물 A는, 다파글리플로진을 부틸 아세테이트에 녹이고 1,2-헥산다이올을 가하는 단계, 여기에 n-헵탄을 가하고 교반한 후 여과하여 고체를 수득하는 단계를 포함하는 제조방법에 의하여 제조될 수 있다.
다파글리플로진
1,2-
헥산다이올
용매화물 B
본 발명의 다파글리플로진 1,2-헥산다이올 용매화물 B는, 분말 X-선 회절 패턴이 3.960, 5.421, 7.816, 9.322, 14.947 및 17.993 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 3개 이상의 회절 피크를 포함할 수 있다. 보다 바람직하게는, 분말 X-선 회절 패턴이 10.061, 15.748, 18.893, 19.275, 20.165, 21.799 및 23.346의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 1개 이상의 회절 피크를 더 포함할 수 있다.
위와 같은 다파글리플로진 1,2-헥산다이올 용매화물 B는, 다파글리플로진을 아이소프로필 아세테이트에 녹이고 1,2-헥산다이올을 가하는 단계, 여기에 사이클로헥산을 가하고 교반한 후 여과하여 고체를 수득하는 단계를 포함하는 제조방법에 의하여 제조될 수 있다.
다파글리플로진
1,2-
헥산다이올
용매화물 C
본 발명의 다파글리플로진 1,2-헥산다이올 용매화물 C는, 분말 X-선 회절 패턴이 3.877, 5.304, 7.617, 7.838, 14.869 및 17.796 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 3개 이상의 회절 피크를 포함할 수 있다. 보다 바람직하게는, 분말 X-선 회절 패턴이 9.053, 10.012, 15.058, 15.792, 19.006, 20.206 및 21.480 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 1개 이상의 회절 피크를 더 포함할 수 있다.
위와 같은 다파글리플로진 1,2-헥산다이올 용매화물 C는, 다파글리플로진을 아세톤에 녹이고 1,2-헥산다이올을 가하는 단계, 여기에 n-헵탄을 가하고 교반한 후 여과하여 고체를 수득하는 단계를 포함하는 제조방법에 의하여 제조될 수 있다.
다파글리플로진
cis-1,2-
사이클로펜탄다이올
용매화물 수화물 및 이의 제조방법
본 발명의 다파글리플로진 cis-1,2-사이클로펜탄다이올 용매화물 수화물은, 분말 X-선 회절 패턴이 3.614, 14.316, 16.078, 16.407, 17.961 및 19.627의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 3개 이상의 회절 피크를 포함할 수 있다. 보다 바람직하게는, 분말 X-선 회절 패턴이 8.760, 16.877, 19.919, 20.186, 21.123, 24.329 및 28.114의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 1개 이상의 회절 피크를 더 포함할 수 있다.
위와 같은 다파글리플로진 cis-1,2-사이클로펜탄다이올 용매화물 수화물은, 다파글리플로진을 아이소프로필 아세테이트에 녹이고 cis-1,2-사이클로펜탄다이올을 가하는 단계, 여기에 사이클로헥산을 가하고 교반한 후 여과하여 고체를 수득하는 단계를 포함하는 제조방법에 의하여 제조될 수 있다.
다파글리플로진
1,2-
부탄다이올
용매화물 수화물 및 이의 제조방법
본 발명의 다파글리플로진 1,2-부탄다이올 용매화물 수화물은, 분말 X-선 회절 패턴이 3.788, 15.092, 15.604, 17.000, 18.891 및 19.760의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 3개 이상의 회절 피크를 포함할 수 있다. 보다 바람직하게는, 분말 X-선 회절 패턴이 7.545, 8.003, 8.657, 20.084, 21.424, 22.727, 25.155, 25.883 및 30.451의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 1개 이상의 회절 피크를 더 포함할 수 있다.
위와 같은, 다파글리플로진 1,2-부탄다이올 용매화물 수화물은 다파글리플로진을 아이소프로필 아세테이트에 녹이고 1,2-부탄다이올을 가하는 단계, 여기에 사이클로헥산을 가하고 교반한 후 여과하여 고체를 수득하는 단계를 포함하는 제조방법에 의하여 제조될 수 있다.
본 발명에서 제공하는 신규 용매화물들은 융점이 높고 흡습성이 낮으며 조속한 용출을 가능하게 하는 결정형으로 제제화에 매우 적합하다. 또한, 우수한 열역학적 안정성 및 보존 안정성을 보이고, 기계적 안정성 및 유동성이 우수하며 입자가 균일하고 점착성을 나타내지 않으며 순도가 우수하여 원약으로서 적합한 결정인 것을 확인하였다. 더 나아가, 반응에 사용되는 용매는 저렴하여 경제적인 제조공정 확립이 가능한 용매이며, 반응공정 중 seeding 공정이 필요 없으며, 반응종료 후 실온에서 수시간 내의 건조로 산업화 가능하며, 이러한 간편한 제조공정으로 고순도의 용매화물을 높은 수율로 제조할 수 있어 공업적 생산에 매우 적합하다.
도 1은 다파글리플로진 1,2-헥산다이올 용매화물 A의 X선 분말회절(XPRD) 결과를 나타낸 것이다.
도 2는 다파글리플로진 1,2-헥산다이올 용매화물 B의 X선 분말회절(XPRD) 결과를 나타낸 것이다.
도 3은 다파글리플로진 1,2-헥산다이올 용매화물 C의 X선 분말회절(XPRD) 결과를 나타낸 것이다.
도 4는 다파글리플로진 cis-1,2-사이클로펜탄다이올 용매화물 수화물의 X선 분말회절(XPRD) 결과를 나타낸 것이다.
도 5는 다파글리플로진 1,2-부탄다이올 용매화물 수화물의 X선 분말회절(XPRD) 결과를 나타낸 것이다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<측정방법>
하기의 측정방법은 본 발명에 따른 각각의 실시예에 공통적으로 적용된다.
1. 핵자기공명(NMR) 측정
화합물의 구조분석은 Agilent Technologies 600MHz 핵자기공명기기(NMR)로 측정하였으며 용매는 DMSO-d6를 사용하였다.
2. 분말 X-선 회절
분말 X-선 회절 패턴을 고체상 검출기로 1.54178Å (40kV, 40mA)에서 CuKα 조사를 이용하여, BRUKER D8 ADVANCE 모델을 이용하여 얻었다. 분석은 2θ 각도에서 3° 내지 45° 범위에 걸쳐 0.02° 스텝사이즈를 가지고 측정하였다.
3. 열분석
시차주사열량법(DSC)을 METTLER TOLEDO DSC1을 이용하여 수행하였다. 약 1-10 mg의 샘플을 칭량하여 뚜껑 달린 알루미늄 팬에 두었다. 상기 샘플을 25 ℃ 내지 250 ℃ 범위에서 10 ℃/min의 선형가열램프를 이용하여 평가하였다.
4. 칼-피셔(
K.F
) 수분측정
K.F 수분측정은 Metrohm 831 KF coulometer를 이용하여 수행하였다. Coulometeric KF시약 Coulomet AG 100ml를 사용하여 칭량된 각 샘플을 분석하였다.
5. 고성능 액상 크로마토그래피(
HPLC
) 측정
화합물의 순도는 Agilent Technologies 1260 Infinity를 이용한 고성능 액상 크로마토그래피(HPLC)로 측정하였다. 정지상(YMC ODS-A C-18 S3, 4.6 X 50mm)과 이동상 A(0.2% 수성 H3PO4)와 이동상 B(90% CH3CN/10% H2O)를 사용하였다.
<
실시예
1>
다파글리플로진
1,2-
헥산다이올
용매화물 A의 제조 및 분석
무정형의 다파글리플로진 1g을 부틸 아세테이트(7mL)에 녹이고 1,2-헥산다이올(0.35g)을 첨가하였다. 10분 후 n-헵탄(20mL)을 적가하고 교반하였다. 상온에서 2시간 동안 교반한 후, 여과하여 얻어진 고체를 사이클로헥산(5mL)으로 세척하고, 상온에서 6시간 동안 진공건조하여 표제의 용매화물을 얻었다.
1H NMR (600 MHz, DMSO-d6) δ 7.36 (d, 1H), 7.31 (d, 1H), 7.21 (dd, 1H), 7.08 (d, 2H), 6.81 (d, 2H), 4.98 (dd, 2H), 4.85 (d, 1H), 4.46 (t, 1H), 4.42 (t, 1H), 4.34 (d, 1H), 3.92-4.00 (m, 5H), 3.68 (ddd, 1H), 3.42 (dt, 1H), 3.35-3.37 (m, 1H), 3.19-3.25 (m, 4H), 3.13-3.16 (m, 1H), 3.09 (dt, 1H), 1.31-1.42 (m, 2H), 1.28 (t, 3H), 1.17-1.26 (m, 4H), 0.85 (t, 3H)
이의 XPRD 패턴을 표 1 및 도 1에 나타내었다.
[표 1]
<
실시예
2>
다파글리플로진
1,2-
헥산다이올
용매화물 B의 제조 및 분석
무정형의 다파글리플로진 1g을 아이소프로필 아세테이트(7mL)에 녹이고 1,2-헥산다이올(0.35g)을 첨가하였다. 10분 후 c-헥산(49mL)을 적가하고 교반하였다. 상온에서 2시간 동안 교반한 후, 여과하여 얻어진 고체를 사이클로헥산(5mL)으로 세척하고, 상온에서 6시간 동안 진공건조하여 표제의 용매화물을 얻었다.
1H NMR은 실시예 1과 동일하다.
이의 XPRD 패턴을 표 2 및 도 2에 나타내었다.
[표 2]
<
실시예
3>
다파글리플로진
1,2-
헥산다이올
용매화물 C의 제조 및 분석
무정형의 다파글리플로진 1g을 아세톤(7mL)에 녹이고 1,2-헥산다이올(0.35g)을 첨가하였다. 10분 후 n-헵탄(50mL)을 적가하고 교반하였다. 상온에서 1시간 동안 교반하고, 5℃로 냉각하여 6시간 교반한 후 여과하여 얻어진 고체를 사이클로헥산(5mL)으로 세척하고, 상온에서 6시간 동안 진공건조하여 표제의 용매화물을 얻었다..
1H NMR은 실시예 1과 동일하다.
이의 XPRD 패턴을 표 3 및 도 3에 나타내었다.
[표 3]
<
실시예
4>
다파글리플로진
cis-1,2-
사이클로펜탄다이올
용매화물 수화물의 제조 및 분석
무정형의 다파글리플로진 1g을 아이소프로필 아세테이트(7mL)에 녹이고 cis-1,2-사이클로펜탄다이올(0.5g)을 첨가하였다. 10분 후 사이클로헥산(16mL)을 적가하고 교반하였다. 상온에서 2시간 동안 교반한 후, 여과하여 얻어진 고체를 사이클로헥산(5mL)으로 세척하고, 상온에서 6시간 동안 진공건조하여 표제의 용매화물을 얻었다.
1H NMR (600 MHz, DMSO-d6) δ 7.36 (d, 1H), 7.31 (d, 1H), 7.21 (dd, 1H), 7.08 (d, 2H), 6.81 (d, 2H), 4.98 (dd, 2H), 4.85 (d, 1H), 4.46 (t, 1H), 4.24 (d, 2H), 3.93-4.00 (m, 5H), 3.72-3.76 (m, 2H), 3.68 (ddd, 1H), 3.42 (dt, 1H), 3.19-3.26 (m, 2H), 3.13-3.16 (m, 1H), 3.10 (dt, 1H), 1.60-1.66 (m, 3H), 1.43-1.49 (m, 2H), 1.34-1.39 (m, 1H), 1.28 (t, 3H)
이의 XPRD 패턴을 표 4 및 도 4에 나타내었다.
[표 4]
Peak List
<
실시예
5>
다파글리플로진
1,2-
부탄다이올
용매화물 수화물의 제조 및 분석
무정형의 다파글리플로진 1g을 아이소프로필 아세테이트(7mL)에 녹이고 1,2-부탄다이올(0.44g)을 첨가하였다. 10분 후 사이클로헥산(21mL)을 적가하고 교반하였다. 상온에서 2시간 동안 교반한 후, 여과하여 얻어진 고체를 사이클로헥산(5mL)으로 세척하고, 상온에서 6시간 동안 진공건조하여 표제의 용매화물을 얻었다.
1H NMR (600 MHz, DMSO-d6) δ 7.36 (d, 1H), 7.31 (d, 1H), 7.21 (dd, 1H), 7.08 (d, 2H), 6.81 (d, 2H), 4.98 (dd, 2H), 4.85 (d, 1H), 4.46 (t, 1H), 4.42 (t, 1H), 4.35 (d, 1H), 3.93-4.00 (m, 5H), 3.68 (ddd, 1H), 3.42 (dt, 1H), 3.26-3.30 (m, 1H), 3.19-3.25 (m, 4H), 3.12-3.16 (m, 1H), 3.08 (dt, 1H), 1.42-1.46 (m, 1H), 1.28 (t, 3H), 1.18-1.24 (m, 1H), 0.84 (t, 3H)
이의 XPRD 패턴을 표 5 및 도 5에 나타내었다.
[표 5]
Peak List
<실험예>
1. 흡습성 시험
유럽약전 시험법에 따라 25℃(상대습도 80%)에서 24시간 보관 후 흡습성을 측정한 결과, 본 발명의 용매화물은 비흡습성을 나타내었으며, 이에 따라 보존 안정성이 우수한 것으로 예상된다.
2. 융점 시험
시차주사열량법(DSC)을 사용하여 융점을 측정한 결과를 볼 때, 본 발명의 용매화물은 열역학적으로 안정할 것으로 예상되고 따라서 원료의약품으로써 우수한 물성이 예상된다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
Claims (13)
- 제1항에 있어서,분말 X-선 회절 패턴이 3.841, 5.331, 7.668, 9.073, 14.715 및 17.902 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 3개 이상의 회절 피크를 포함하는 다파글리플로진 1,2-헥산다이올 용매화물.
- 제2항에 있어서,분말 X-선 회절 패턴이 7.967, 10.049, 15.653, 18.270, 18.906, 20.149 및 22.936 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 1개 이상의 회절 피크를 더 포함하는 다파글리플로진 1,2-헥산다이올 용매화물.
- 제1항에 있어서,분말 X-선 회절 패턴이 3.960, 5.421, 7.816, 9.322, 14.947 및 17.993 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 3개 이상의 회절 피크를 포함하는 다파글리플로진 1,2-헥산다이올 용매화물.
- 제4항에 있어서,분말 X-선 회절 패턴이 10.061, 15.748, 18.893, 19.275, 20.165, 21.799 및 23.346 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 1개 이상의 회절 피크를 더 포함하는 다파글리플로진 1,2-헥산다이올 용매화물.
- 제1항에 있어서,분말 X-선 회절 패턴이 3.877, 5.304, 7.617, 7.838, 14.869 및 17.796 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 3개 이상의 회절 피크를 포함하는 다파글리플로진 1,2-헥산다이올 용매화물.
- 제6항에 있어서,분말 X-선 회절 패턴이 9.053, 10.012, 15.058, 15.792, 19.006, 20.206 및 21.480 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 1개 이상의 회절 피크를 더 포함하는 다파글리플로진 1,2-헥산다이올 용매화물.
- 제8항에 있어서,분말 X-선 회절 패턴이 3.614, 14.316, 16.078, 16.407, 17.961 및 19.627 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택되는 3개 이상의 회절 피크를 포함하는 다파글리플로진 cis-1,2-사이클로펜탄다이올 용매화물 수화물.
- 제9항에 있어서,분말 X-선 회절 패턴이 8.760, 16.877, 19.919, 20.186, 21.123, 24.329 및 28.114 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택된 1개 이상의 회절 피크를 더 포함하는 다파글리플로진 cis-1,2-사이클로펜탄다이올 용매화물 수화물.
- 제11항에 있어서,분말 X-선 회절 패턴이 3.788, 15.092, 15.604, 17.000, 18.891 및 19.760 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택된 3개 이상의 회절 피크를 포함하는 다파글리플로진 1,2-부탄다이올 용매화물 수화물.
- 제12항에 있어서,분말 X-선 회절 패턴이 7.545, 8.003, 8.657, 20.084, 21.424, 22.727, 25.155, 25.883 및 30.451 의 2θ(±0.2°) 값으로 이루어진 군으로부터 선택된 1개 이상의 회절 피크를 더 포함하는 다파글리플로진 1,2-부탄다이올 용매화물 수화물.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0176501 | 2015-12-11 | ||
KR20150176501 | 2015-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017099496A1 true WO2017099496A1 (ko) | 2017-06-15 |
Family
ID=59012745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/014386 WO2017099496A1 (ko) | 2015-12-11 | 2016-12-08 | 다파글리플로진의 신규 용매화물 및 이의 제조방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102004488B1 (ko) |
WO (1) | WO2017099496A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050090437A (ko) * | 2003-01-03 | 2005-09-13 | 브리스톨-마이어스 스큅 컴퍼니 | C-아릴 글루코시드 sglt2 억제제의 제조 방법 |
KR20090023643A (ko) * | 2006-06-28 | 2009-03-05 | 브리스톨-마이어스 스큅 컴퍼니 | 당뇨병 치료를 위한 sglt2 억제제로서의, (1s)-1,5-안히드로-1-c-(3-((페닐)메틸)페닐)-d-글루시톨 유도체와 아미노산의 결정질 용매화물 및 복합체 |
US20140249098A1 (en) * | 2011-06-03 | 2014-09-04 | Ratiopharm Gmbh | Pharmaceutical Composition Comprising Dapagliflozin and Cyclodextrin |
WO2015104658A2 (en) * | 2014-01-08 | 2015-07-16 | Dr. Reddy’S Laboratories Limited | Amorphous solid dispersion of dapagliflozin and process for the preparation of amorphous dapagliflozin |
WO2015128853A1 (en) * | 2014-02-28 | 2015-09-03 | Sun Pharmaceutical Industries Limited | Dapagliflozin compositions |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PH12000002657B1 (en) | 1999-10-12 | 2006-02-21 | Bristol Myers Squibb Co | C-aryl glucoside SGLT2 inhibitors |
-
2016
- 2016-12-08 WO PCT/KR2016/014386 patent/WO2017099496A1/ko active Application Filing
- 2016-12-08 KR KR1020160166661A patent/KR102004488B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050090437A (ko) * | 2003-01-03 | 2005-09-13 | 브리스톨-마이어스 스큅 컴퍼니 | C-아릴 글루코시드 sglt2 억제제의 제조 방법 |
KR20090023643A (ko) * | 2006-06-28 | 2009-03-05 | 브리스톨-마이어스 스큅 컴퍼니 | 당뇨병 치료를 위한 sglt2 억제제로서의, (1s)-1,5-안히드로-1-c-(3-((페닐)메틸)페닐)-d-글루시톨 유도체와 아미노산의 결정질 용매화물 및 복합체 |
US20140249098A1 (en) * | 2011-06-03 | 2014-09-04 | Ratiopharm Gmbh | Pharmaceutical Composition Comprising Dapagliflozin and Cyclodextrin |
WO2015104658A2 (en) * | 2014-01-08 | 2015-07-16 | Dr. Reddy’S Laboratories Limited | Amorphous solid dispersion of dapagliflozin and process for the preparation of amorphous dapagliflozin |
WO2015128853A1 (en) * | 2014-02-28 | 2015-09-03 | Sun Pharmaceutical Industries Limited | Dapagliflozin compositions |
Also Published As
Publication number | Publication date |
---|---|
KR102004488B1 (ko) | 2019-07-26 |
KR20170069943A (ko) | 2017-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2521728B1 (en) | Crystalline darunavir hydrate and process for preparation thereof | |
KR20100058660A (ko) | 다사티닙 다형체 및 이의 제조 방법 | |
EP1817316A1 (en) | Ascomycin crystalline forms and preparation thereof | |
EP3765464A1 (en) | Solid state forms of relugolix | |
WO2020028448A1 (en) | Solid state forms of sugammadex sodium | |
CN103360391A (zh) | 阿哌沙班新晶型及其制备方法 | |
AU1641592A (en) | Crystalline tiagabine hydrochloride monohydrate, its preparation and use | |
WO2019094409A1 (en) | Salts and solid state forms of ozanimod | |
WO2017047970A1 (ko) | 리나글립틴 결정형 및 이의 제조방법 | |
WO2010110622A2 (en) | Novel crystal forms of adefovir dipivoxil and processes for preparing the same | |
WO2017099496A1 (ko) | 다파글리플로진의 신규 용매화물 및 이의 제조방법 | |
WO2021125474A1 (ko) | 신규한 결정형 형태의 에독사반 및 이의 제조방법 | |
WO2012115402A2 (en) | Crystalline form of docetaxel and process for preparation thereof | |
EP3867264A1 (en) | Solid state forms of voclosporin | |
WO2022197104A1 (ko) | 단백질 키나제 억제제로서의 헤테로고리 화합물의 결정형 | |
EP3847164A1 (en) | New crystalline polymorphs of rivoceranib and rivoceranib mesylate | |
WO2011152657A2 (en) | Acetyl-l-carnitine malate, process for preparing the same, and pharmaceutical composition comprising the same | |
WO2024072108A1 (ko) | 이나보글리플로진의 신규한 결정형 및 이의 제조방법 | |
WO2012134206A2 (en) | Process for the preparation of anhydrous aripiprazole crystal form ii | |
US12091388B2 (en) | Solid state forms of Reproxalap | |
WO2021107476A1 (en) | Polymorphs of 1-(4-benzyloxy-benzyl)-3-methyl-thiourea | |
US7521472B2 (en) | Crystal of two-ring heterocyclic sulfonamide compound | |
CN108586341B (zh) | 酰胺类化合物和其药用盐及其制备方法和药物用途 | |
WO2018021818A1 (ko) | 고순도 결정형 페북소스타트의 개선된 제조 방법 | |
KR880001235B1 (ko) | 결정성 무수 소듐 19-데옥시아글리콘 디아네마이신의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16873361 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16873361 Country of ref document: EP Kind code of ref document: A1 |