WO2017078168A1 - 木型の作製方法 - Google Patents
木型の作製方法 Download PDFInfo
- Publication number
- WO2017078168A1 WO2017078168A1 PCT/JP2016/082883 JP2016082883W WO2017078168A1 WO 2017078168 A1 WO2017078168 A1 WO 2017078168A1 JP 2016082883 W JP2016082883 W JP 2016082883W WO 2017078168 A1 WO2017078168 A1 WO 2017078168A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wooden
- filler
- printer
- shoe
- modeling
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43D—MACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
- A43D3/00—Lasts
- A43D3/02—Lasts for making or repairing shoes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3835—Designing moulds, e.g. using CAD-CAM
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/40—Plastics, e.g. foam or rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/44—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
- B29C33/448—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles destructible
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/44—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
- B29C33/52—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles soluble or fusible
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/02—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/22—Component parts, details or accessories; Auxiliary operations
- B29C39/26—Moulds or cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/22—Component parts, details or accessories; Auxiliary operations
- B29C39/36—Removing moulded articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/48—Wearing apparel
- B29L2031/50—Footwear, e.g. shoes or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Definitions
- the present invention relates to a method for producing a wooden pattern, and more particularly to a method for producing a wooden pattern used when manufacturing shoes.
- a wooden mold is used when manufacturing shoes. For example, after putting a nail into a wooden mold with the insole temporarily secured and covering the upper with the parts sewn together, the end of the upper is caught in the wooden mold and the upper is fixed to the insole Paste the outsole to the insole. Since the shape of the shoe is determined by the wooden shape, the shape of the wooden shape greatly affects the comfort of the shoe.
- NC machine tools are expensive equipment, generate chips, and waste material.
- the present invention intends to provide a method for producing a wooden pattern, which can produce a wooden pattern that can be used when manufacturing shoes using a 3D printer in as short a time as possible. To do.
- the present invention provides a method for producing a wooden pattern configured as follows.
- the method for producing a wooden pattern includes (i) a modeling process for modeling an outer part having a hollow space using a 3D printer, and (ii) modeling in the modeling process is completed, or modeling is performed halfway in the modeling process. A filling step of filling an uncured filler inside the outer shell portion.
- a 3D printer can be used to produce a wooden mold that can be used when manufacturing shoes in as short a time as possible.
- the preferable method for producing a wooden pattern of the first aspect further includes a surface shape determining step of determining the surface shape of the wooden pattern based on the three-dimensional data obtained by measuring the three-dimensional shape of the foot.
- the outline portion is modeled using the 3D printer so that the shape of the outer surface of the outline portion matches the surface shape determined in the surface shape determination step.
- the wooden mold having the outer shell portion and the filler that is in contact with the inner surface of the outer shell portion and hardened is produced.
- the outer part is shaped so that the nail can be driven, and the strength is secured with the filler, so that the nail can be driven and does not break even if pressure or impact is applied.
- a wooden mold that can be used when manufacturing shoes without deformation is produced.
- the outer portion having a hollow space on the inside can be modeled using a 3D printer in a shorter time than when the entire wooden mold is modeled using a 3D printer. Therefore, a wooden mold that can be used when manufacturing shoes can be manufactured in as short a time as possible using a 3D printer.
- an inner part that extends with a space between the outer part and the outer part is formed inside the outer part together with the outer part using the 3D printer.
- the uncured filler is filled between the outer portion and the inner portion.
- the wooden mold in which the filler is disposed between the outer shell and the inner shell is produced.
- the structure in which the filler is disposed between the outer portion and the inner portion can reduce the amount of material used and reduce the weight of the wooden mold while ensuring strength.
- the method for producing a tree pattern of the second aspect further includes a surface shape determination step for determining the surface shape of the tree pattern based on the three-dimensional data obtained by measuring the three-dimensional shape of the foot.
- the outline portion is modeled using the 3D printer so that the shape of the inner surface of the outline portion matches the surface shape determined in the surface shape determination step.
- the method further includes a removing step of removing the outer portion from the filler after the filler filled in the filling step is cured while being in contact with the inner surface of the outer portion.
- the wooden mold made of the filler to which the shape of the inner surface of the outer shell is transferred is produced.
- a wooden mold that can be used when manufacturing shoes can be produced by appropriately selecting the material of the outer shell and the filler.
- the outer portion having a hollow space on the inside can be modeled using a 3D printer in a shorter time than when the entire wooden mold is modeled using a 3D printer. Therefore, a wooden mold that can be used when manufacturing shoes can be manufactured in as short a time as possible using a 3D printer.
- the wood pattern manufacturing method of the first and second aspects can be implemented in various specific aspects as follows.
- the outer portion is modeled using a material mainly composed of a thermoplastic resin or a photocurable resin.
- the cured filler is mainly composed of at least one of gypsum, cement, urethane foam, non-foamed urethane, elastomer, and photocurable resin.
- a wooden pattern can be easily produced using an inexpensive 3D printer.
- an uncured filler is filled into the inside of the outer portion that has been shaped halfway in the modeling step.
- the filler is filled simultaneously with the shaping of the outer portion.
- the modeling of the outer portion is interrupted and the filler is filled.
- the time required for the wooden mold production process can be shortened as compared with the case where the fillers are filled and hardened together after forming the outer shell.
- a filling material that generates heat or changes its volume when it is cured can be filled little by little, and a wooden mold can be produced while mitigating the effects of heat generation and volume change.
- the pair of wooden outlines corresponding to the left and right legs are simultaneously modeled using the two 3D printers.
- the pair of wooden outlines can be formed in a shorter time than the case of forming a pair of wooden outlines using a single 3D printer.
- two 3D printers are prepared, when one 3D printer cannot be used, a pair of wooden outlines are formed using the other 3D printer, and the production of the pair of wooden molds is continued. Can do.
- the method for producing a wooden pattern includes (iii) a shoe design selection step for selecting a shoe design before the modeling step, and (iv) the shoe for which the design has been selected before the modeling step.
- a temporary shoe for trial wear is formed based on the surface shape determined in the surface determination step.
- a provisional shoe modeling step of modeling using the same or different 3D printer as the 3D printer is provided.
- the present invention also provides a tree pattern configured as follows.
- the wooden mold has (a) an outer part having a hollow space inside, and (b) a filler disposed inside the outer part and in contact with the outer part.
- the outer portion is made of a material mainly composed of a thermoplastic resin or a photocurable resin.
- the filler is mainly composed of at least one of gypsum, cement, urethane foam, non-foamed urethane, elastomer, and photocurable resin.
- the nail can be driven and will not be damaged even if pressure or impact is applied.
- a wooden mold that can be used when manufacturing shoes without deformation is produced.
- the outer portion having a hollow space on the inside can be modeled using a 3D printer in a shorter time than when the entire wooden mold is modeled using a 3D printer. Therefore, a wooden mold that can be used when manufacturing shoes can be manufactured in as short a time as possible using a 3D printer.
- a wooden pattern that can be used when manufacturing shoes can be manufactured in as short a time as possible.
- FIG. 1 is an explanatory diagram showing the overall configuration of an order shoe store sales system.
- FIG. 2 is an image diagram of a 3D printer.
- FIG. 3 is a cross-sectional view showing a process for producing a wooden mold.
- FIG. 4 is a cross-sectional view showing a process for producing a wooden mold.
- FIG. 5 is a cross-sectional view showing a process for producing a wooden mold.
- FIG. 6 is a cross-sectional view showing a process for producing a wooden mold.
- FIG. 7 is a cross-sectional view showing a process for producing a wooden mold.
- FIG. 3 of Example 1 FIG.
- FIG. 8 is a cross-sectional view of a wooden pattern.
- FIG. 9 is a flowchart showing a procedure for designing and producing a tree pattern.
- FIG. 10 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 11 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 12 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 13 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 14 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 1 FIG.
- FIG. 15 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 16 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 17 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 18 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 19 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 20 is an image diagram showing a procedure for determining the surface shape of the wooden pattern.
- FIG. 21 is an image diagram showing a procedure for determining the surface shape of the wooden pattern. (Example 1) FIG.
- FIG. 22 is a cross-sectional view showing a process for producing a wooden mold.
- FIG. 23 is a schematic diagram of a 3D printer (Modification 7 of Embodiment 1).
- FIG. 24 is a schematic diagram of the head portion of the 3D printer (Modification 7 of Embodiment 1).
- FIG. 25 is an explanatory diagram of the operation of the head unit of the 3D printer (Modification 7 of Example 1).
- FIG. 26 is an explanatory diagram showing the overall configuration of the order shoe mail order system.
- Example 2 FIG. 27 is a cross-sectional view showing a process for producing a wooden mold.
- Example 3 is a schematic diagram of a 3D printer (Modification 7 of Embodiment 1).
- FIG. 24 is a schematic diagram of the head portion of the 3D printer (Modification 7 of Embodiment 1).
- FIG. 25 is an explanatory diagram of the operation of the head unit of the 3D printer (Modification 7 of Example 1).
- FIG. 26 is an ex
- Example 1 An order shoe store sales system of Example 1 for carrying out the method for producing a wooden pattern according to the present invention will be described with reference to FIGS.
- the order shoe store sales system enables a shoe store to manufacture shoes (order shoes) according to an orderer's foot.
- the wooden design server automatically designs the wooden model based on the three-dimensional shape of the orderer's foot, and the shoe store uses a 3D printer to create the wooden model. Manufacture shoes using the mold.
- FIG. 1 is an explanatory diagram showing the overall configuration of the order shoe store sales system.
- a shoe store 30 is provided with a terminal 32, a measuring device 34 and a 3D printer 36 connected to the terminal 32.
- the terminal 32 is communicably connected to the wooden design server 20 via a communication network 50 such as the Internet or a LAN.
- the terminal 32 is a computer such as a notebook computer or a tablet PC, and includes a display and an input device (a keyboard, a mouse pad, a touch panel, etc.).
- the terminal 32 may access the tree design server 20 using a general-purpose browser, even if a dedicated application program is installed to access the tree design server 20.
- the measuring device 34 measures the three-dimensional shape of the foot and transmits the foot data, which is the measured three-dimensional data, to the terminal 32.
- the terminal 32 transmits foot data and related data, which is data related to the foot, to the wooden design server 20 via the communication network 50.
- the operation of the 3D printer 36 is controlled by the terminal 32, and a structure including a wooden main body for manufacturing a wooden mold is formed.
- the terminal 32 receives the wooden body processing data from the wooden design server 20 and controls the operation of the 3D printer 36 based on the wooden body processing data.
- the wooden body is taken out from the structure formed by the 3D printer 36 to produce a wooden mold, and shoes are manufactured using the produced wooden mold.
- the wooden design server 20 includes a communication unit 21, a control unit 22, and a storage unit 27. Although not shown, a keyboard and a display may be included.
- the communication unit 21 is connected to the communication network 50 and relays data transmission / reception between the terminal 32 and the control unit 22.
- the storage unit 27 is configured in a storage device such as a semiconductor memory or a hard disk, and includes a foot database 28 and a shoe database 29.
- the foot database 28 is a database that stores identifiers (for example, registration numbers), foot data, and related data in association with each other.
- the related data includes, for example, the age, sex, exercise history, characteristics of foot movement, presence / absence of hallux valgus / flat feet, preference of shoe fitting, etc.
- the foot database 28 can be searched or registered by operating the terminal 32 of the shoe store 30.
- shoe database 29 data on shoes of various designs are registered.
- an identifier for example, a shoe product code
- shoe information such as shoe use and design type, size, color, material, three-dimensional shape, wooden shape, shoe image, etc.
- shoe information By operating the terminal 32 of the shoe store 30, it is possible to access the shoe database 29 to refer to or compare the shoe information.
- the control unit 22 is configured as a central processing unit including a CPU, and includes a database management unit 23, a wooden design unit 24, a wear simulation unit 25, and a temporary shoe design unit 26, and operates according to a predetermined program. Execute processing such as computation and control.
- the database management unit 23 registers, updates, and reads data for the foot database 28 and the shoe database 29. For example, foot data and related data received from the terminal 32 are registered in the foot database 28, and shoe information read from the shoe database 29 is transmitted to the terminal 32.
- the wooden pattern design unit 24 automatically designs the surface shape of the wooden pattern, and generates wooden body processing data for processing the wooden body using a 3D printer.
- the wearing simulation unit 25 generates a wearing image image of a shoe when wearing a shoe whose design is selected.
- the temporary shoe design unit 26 generates temporary shoe processing data for modeling a temporary shoe for trial wear using a 3D printer. Note that either one or both of the wearing simulation unit 25 and the temporary shoe design unit 26 may be omitted.
- the type of the 3D printer 36 of the shoe store 30 is not particularly limited.
- a melt deposition method 3D printer that melts a thermoplastic resin with a heater and discharges it from a nozzle is provided with an inexpensive device, and it is easy to obtain a filament-shaped material used for modeling. Is.
- a single shoe 3D printer 36 may be used, but it is preferable to prepare two 3D printers.
- two 3D printers When two 3D printers are prepared, a pair of wooden main bodies corresponding to the left and right feet are formed in parallel using separate 3D printers, and a pair of wooden main bodies is formed using one 3D printer.
- a pair of wooden main bodies can be formed in a shorter time than when forming a wooden main body. Moreover, even if one 3D printer breaks down, it is possible to continue the modeling of the pair of wooden main bodies using the other 3D printer and to produce a pair of wooden molds.
- FIG. 2 is an image diagram of a 3D printer system 40 including two 3D printers 48. As shown in FIG. 2, the 3D printer system 40 includes two delta type 3D printers 48 housed in a casing 42.
- the housing 42 has a prismatic three-dimensional shape, and the upper surface 40a and the lower surface 40b have a substantially rhombus shape. Opening portions 42a and 42b are formed on the left and right sides of the front surface. , 44b are provided. As indicated by the arrows, the left door 44a opens to the left and the right door 44b opens to the right. With such a configuration, the space can be used effectively, the molded structure can be easily taken out, and can be installed even in a narrow place.
- the 3D printer 48 includes: (a) three movable blocks that move along the columns 48a, 48b, and 48c; (b) a head portion provided with a nozzle that discharges a modeling material; c) three connecting bars each having one end rotatably coupled to any one of the movable blocks and the other end pivotally coupled to the head portion; and (d) a driving mechanism for driving each of the movable blocks.
- the driving mechanism is operated by the control signal from the terminal 32, and the three movable blocks are positioned.
- the position can be controlled.
- the 3D printer 48 models the structure by moving the nozzle while discharging the modeling material from the nozzle.
- a plurality of nozzles may be provided in the head portion.
- the structure 18 in which the support structure 17 is coupled to the wooden main body 11 is formed using a 3D printer 36.
- the wooden main body 11 has an outer shell 12, and a hollow space 13 is formed inside the outer shell 12.
- the wooden main body 11 may include a structure other than the outer shell 12 (for example, a rib or a column coupled to the inner surface 12x of the outer shell 12).
- the surface shape of the wooden mold 10 is formed by the outer surface 12 y of the outer shell 12.
- the support structure 17 and the structure 18 can be appropriately configured. As shown in FIG. 3, when the structure body 18 is formed by connecting the support structure 17 to the wooden body 11 so that the toe side of the wooden body 11 is up and the heel side is down, the wooden body is shown in FIG. Compared with the structure 18a in which the support structure 17a is coupled to the wooden main body 11 so that the toe side and the heel side of 11 are substantially horizontal, the horizontal movement range of the nozzle for discharging the modeling material is narrowed. Therefore, a small 3D printer can be used and the installation area of the 3D printer can be reduced.
- the support structure 17 is separated from the structure 18, and the wooden main body 11 is taken out.
- the wooden main body 11 and the support structure 17 can be separated by an appropriate method such as cutting and melting.
- the support structure 17 is formed using polylactic acid resin (PLA resin)
- PLA resin polylactic acid resin
- the support structure 17 can be removed by hydrolysis with an alkaline aqueous solution after the structure 18 is formed.
- an uncured filler 15 is filled into the hollow space 13 of the wooden main body 11.
- the filler 15 is cured, the wooden mold 10 is completed.
- the outer shell portion 12 of the wooden main body 11 is formed so as to form a through hole that penetrates the outer shell portion 12 and communicates with the hollow space 13, and the filler 15 is filled from the through hole.
- a through hole that penetrates the outer shell portion 12 and communicates with the hollow space 13 is processed later in the shaped wooden body 11, and the filler 15 is filled from the through hole.
- the through hole may be formed at an appropriate position. For example, a portion that does not affect the manufacture of the shoe, such as the center of the foot sole portion 12a and the center of the foot insertion portion 12b, is preferable. After filling with the filler 15, the through hole may be closed with a seal or the like.
- the wooden main body 11 and the filler 15 An appropriate material may be used for the wooden main body 11 and the filler 15.
- the wooden main body 11 is molded and filled with a thermoplastic resin such as acrylonitrile / butadiene / styrene resin (ABS resin), polylactic acid resin (PLA resin), or a material mainly composed of a photocurable resin.
- the material 15 is made of a material mainly composed of at least one of gypsum, cement, urethane foam, non-foamed urethane, elastomer, and photocurable resin.
- the wooden mold body 11 is shaped so that nails can be driven, and the strength of the wooden mold 10 is secured by the filler 15, so that the wooden mold 10 that can be used when manufacturing shoes is inexpensive.
- the method of modeling using a 3D printer is a selective material supply method such as a material extrusion method in which a liquid or plasticized solid is extruded from a nozzle and deposited and solidified at the same time.
- a selective solidification method such as a liquid photopolymerization method in which light is selectively irradiated and solidified may be used.
- the wooden mold 10 that can be bent may be produced by using a flexible material for the wooden mold main body 11 and the filler 15. In this case, for example, after manufacturing the shoe using the wooden mold 10, the wooden mold 10 can be easily extracted from the shoe while bending the wooden mold 10.
- split-type wood pattern may be produced.
- split types There are two types of split types: a shell type, a middle-fold type, and a slide type, which are divided and extracted when extracted from manufactured shoes.
- 6 and 7 are cross-sectional views showing a process for producing a carved wooden mold.
- an integrated wooden mold 10r in which a hollow space 13 inside the outer shell 12 is filled with a filler 15 is produced. Then, by cutting the upper part of the wooden pattern 10r along a cutting line 10x indicated by a broken line, the wooden patterns 10m and 10n divided into two are produced as shown in FIG. 6B. In the wooden molds 10m and 10n, holes and grooves for inserting positioning pins are additionally processed as necessary.
- a wooden body 11u having only an instep portion and a wooden body 11v having no portion 11w corresponding to the wooden body 11u are formed and divided into two. May be produced.
- the inner parts of the outer parts 12u and 12v are inside. Fill the hollow spaces 13u and 13v with a filler.
- uneven portions and the like that mesh with each other can be formed so as to facilitate alignment and separation.
- the filler may be disposed inside the outer portion of the wooden main body, i.e., in the hollow space, and may be in contact with the outer portion of the wooden main body, and only inside the wooden main body, i.e., a portion of the hollow space. And a cavity may be formed inside the wooden mold.
- the wooden main body 11b may have a double structure, as in the wooden mold 10b shown in the sectional view of FIG.
- the wooden main body 11b of the wooden mold 10b is connected to the inner shell part 14 which is spread inside the outer shell 12 with a space between the outer shell 12 and the outer shell 12 and the inner shell 14 (not shown). And a connecting portion.
- the filler 15 b is filled in the space between the outer shell 12 and the inner shell 14.
- the distance between the outer shell portion 12 and the inner shell portion 14 is set to such a dimension that a nail can be struck on the foot sole 12a side, and the other parts are set to dimensions that can ensure strength.
- a cavity 16 is formed inside the inner shell 14. By forming the cavity 16, the amount of filler 15b used can be reduced and the weight can be reduced.
- FIG. 9 is a flowchart showing a procedure for designing and producing a wooden pattern.
- step S10 foot data which is three-dimensional data obtained by measuring the three-dimensional shape of the foot is prepared (step S10, data preparation step).
- the tree-shaped design server 20 prepares the foot data.
- the database management unit 23 reads the foot data from the foot database 28, and transmits the read data to the tree design unit 24.
- step S12 shoe design selection step.
- the database management unit 23 of the wooden design server 20 receives an input of an identifier (for example, a registration number) of a shoe whose design is selected from the terminal 32 of the shoe store 30, the database management unit 23 reads and reads the shoe information from the shoe database 29. The shoe information is transmitted to the wooden design unit 24.
- an identifier for example, a registration number
- step S14 For the shoe whose design is selected, if there is no wooden body processing data for modeling the wooden body using a 3D printer ("No" in step S14), (i) the three-dimensional shape of the foot is measured. Based on the foot data that is the three-dimensional data, the surface shape of the tree is determined (step S16, surface shape determination step), and (ii) the tree body processing data is created (step S18, the tree body processing data). The process proceeds to (creating step) and (iii) wearing simulation step (step S20). If there is wooden body processing data for modeling the wooden body using a 3D printer for the shoe whose design is selected (“Yes” in step S14), immediately (iii) a wearing simulation process (step S20) )
- step S16 surface shape determination step
- the wooden pattern design unit 24 of the wooden pattern design server 20 determines the surface shape of the wooden pattern based on the foot data and the shoe information transmitted from the database management unit 23.
- the wooden pattern design unit 24 of the wooden pattern design server 20 automatically designs the surface shape of the wooden pattern based on the foot data and the standard shape data of the wooden pattern included in the shoe information. For example, the surface shape of the wooden pattern is determined by the procedure shown in the image diagrams of FIGS.
- the foot data is read as shown in FIG. 10, the MP line is calculated as shown in FIG. 11, the bottom gauge is created as shown in FIG. 12, the back line is created as shown in FIG. A shape creation line is created as shown in FIG. Then, as shown in FIG. 15, the surface is pasted in accordance with the shape line to obtain a wooden initial shape.
- the wooden mold and the foot are compared in 3D, the wooden mold is adjusted as shown in FIG. 17, and the shape of the wooden toe is formed as shown in FIG.
- the shape of each part of the wooden pattern is adjusted, for example, by adjusting the sole of the wooden pattern and raising the heel as shown in FIG. 20, and then determining the surface shape of the wooden pattern as shown in FIG.
- step S18 wood body processing data creation step
- the wooden design unit 24 of the wooden design server 20 determines the shape of the outer surface of the outer portion of the wooden body in step S16 (surface shape determination step).
- the wooden body processing data for modeling the wooden body using a 3D printer is generated according to a predetermined procedure so as to match the surface shape of the wooden body.
- the processing data for the main body of the wooden body is the data of the three-dimensional shape of the main body of the wooden body, or the data of the three-dimensional shape of the structure in which the support structure is coupled to the main body of the wooden body. May be control data for controlling the 3D printer in order to form a structure in which is combined.
- step 20 wear simulation process
- the shoe shape when the shoe with the selected design is manufactured and worn is simulated to create a shoe wear image.
- the wooden design unit 24 of the wooden design server 20 transmits necessary data to the wearing simulation unit 25.
- the wearing simulation unit 25 calculates the difference between the wooden surface shape determined in step S16 (surface shape determination step) and the three-dimensional shape of the foot included in the foot data, and based on the calculated difference, the shoe The image of the shoe included in the information is modified to create a wearing image of the shoe when worn and transmitted to the wooden design unit 24.
- step S22 the wearing image is examined, and it is determined whether or not to adopt the selected shoe design. If the selected design shoes are not employed ("N" in step S22), the process returns to step S12 and the shoe design is selected again.
- the wooden design unit 24 of the wooden design server 20 transmits the data of the image of wearing the shoes to the terminal of the shoe store.
- a shoe wear image is displayed on the display of the terminal of the shoe store.
- step S24 wooden pattern production process
- a 3D printer is used to model the outer part having a hollow space (modeling process), and the modeling is completed, or the outer part is modeled halfway. Is filled with an uncured filler (filling step).
- the wooden design unit 24 of the wooden design server 20 receives an input to notify the adoption of the shoes of the selected design from the terminal of the shoe store
- the wooden body processing data is received from the terminal of the shoe store.
- the shoe store terminal 3D so that the 3D printer forms a structure including the wooden body based on the wooden body processing data. Control the printer.
- the shoe store terminal When the wooden body processing data is 3D shape data of the wooden body or 3D shape data of a structure in which the support structure is coupled to the wooden body, the shoe store terminal The processing data is converted into control data for controlling the 3D printer so as to form a structure in which the support structure is coupled to the wooden main body having an outer portion having a predetermined thickness, and the 3D printer is controlled.
- a wooden mold body is taken out from the shaped structure, and a wooden mold is prepared by filling the interior of the wooden mold body with a filler. Since the surface of the outer portion of the wooden mold body is formed so as to coincide with the surface shape determined in step S16 (surface shape determination step), the surface of the wooden pattern is determined in step S16 (surface shape determination). It can be produced so as to coincide with the surface shape determined in the step).
- shoes are manufactured using the manufactured wooden pattern in the same manner as a normal wooden pattern (step S26, shoe manufacturing process).
- a wooden pattern is actually produced, and the shoe can be manufactured using the wooden pattern.
- steps S14, S20, and S22 may be omitted, a wooden pattern may be produced without confirming the wearing simulation image, and shoes may be manufactured using the wooden pattern.
- step S10 data preparation step
- foot data and related data related to the foot are prepared.
- step S16 surface shape determination step
- information included in the related data for example, the fitting preference, the foot The wooden surface shape may be determined in consideration of the characteristics of movement.
- step S24 (specifically, the modeling process among the wooden pattern manufacturing processes), the outer portions of the pair of wooden wooden bodies corresponding to the left and right feet can be simultaneously manufactured using the two 3D printers.
- two 3D printers are used as in the above-described 3D printer system 40 (see FIG. 2).
- the pair of wooden outlines can be formed in a shorter time than the case of forming a pair of wooden outlines using a single 3D printer.
- two 3D printers are prepared, when one 3D printer cannot be used, a pair of wooden outlines are formed using the other 3D printer, and the production of the pair of wooden molds is continued. Can do.
- step S24 instead of filling the filler together after shaping the wooden mold body, filling the inside of the outer part of the wooden mold body in the middle of modeling At least a part of the material may be filled.
- the filler may be filled simultaneously with the shaping of the outer portion, or the shaping of the outer portion may be interrupted and the filler may be filled. In this case, it is possible to shorten the time required for the wooden mold production process, compared to the case where the filler is filled and cured after the outer shell is formed.
- a filling material that generates heat or changes its volume when it is cured can be filled little by little, and a wooden mold can be produced while mitigating the effects of heat generation and volume change.
- the unfilled filler 15 p is filled in the hollow space 13 inside the outer shell portion 12 in a plurality of times, and the filler 15 p is filled.
- the layers 15a to 15k are sequentially formed. Even if the uncured filler 15p is filled without interrupting the shaping of the wooden main body 11, the shaping of the wooden main body 11 may be interrupted and filled with the uncured filler 15p.
- a hollow 16p that is not filled with the filler 15p may be formed inside the outer shell 12 of the wooden main body 11.
- FIG. 23 is a schematic diagram of the 3D printer 48x.
- FIG. 24 is a schematic diagram of the head unit 51 of the 3D printer 48x.
- FIG. 25 is an explanatory diagram of the operation of the head unit 51 of the 3D printer 48x.
- the head portion 51 includes a heater 53 that heats a material (filament) 56 of a modeling material, a modeling nozzle 52 that discharges a melted modeling material, and first and second pipes 54a, A mixer 54 that mixes the A liquid and the B liquid supplied from 54b, and a filler supply port 55 from which an uncured filler mixed with the A liquid and the B liquid flows out are provided.
- an additional material such as sand may be supplied to the mixer 54, and the filler in which the additional material is dispersed may be discharged from the filler supply port 55.
- the outer shell portion 12 of the wooden mold body is formed by the modeling material pushed out from the modeling nozzle 52.
- the uncured filler 15x is supplied from the filler supply port 55 to the hollow space 13 inside the outer shell 12 of the wooden main body.
- the liquid A containing a urethane foam base and the liquid B containing a curing agent can be mixed and discharged in a short time to uniformly fill the urethane foam.
- a material reel 57 for supplying a material (filament) 56, a tank 55a for supplying A liquid, and a tank 55b for supplying B liquid are disposed on an upper frame 48s of a delta type 3D printer 48x. When placed, it is space efficient.
- illustration of movable blocks that move along the columns 48a, 48b, and 48c is omitted. Further, the illustration of the connecting bars 49a, 49b, 49c is simplified.
- gypsum is used for the filler 15. That is, a mixer for mixing gypsum powder and water is provided, and a mixture of gypsum powder and water is supplied from a filler supply port provided in the head portion together with the modeling nozzle.
- the mixer may be provided in the head portion or other than the head portion.
- a predetermined amount of gypsum powder and water is supplied to the mixer at an appropriate timing.
- the mixture of gypsum powder and water is supplied from the mixer to the filler.
- the pipe is moved to the supply port, flows out from the filler supply port, and is supplied into the hollow space 13 inside the outer shell portion 12 of the wooden body.
- the pipe or the like can be flushed.
- a photo-curing resin may be used for the filler.
- a heater that heats the material of the modeling material
- a nozzle for modeling that discharges the melted modeling material
- a filler supply port that supplies a photocurable resin
- a photocurable resin to the head portion of the 3D printer
- a light for irradiating with ultraviolet rays for curing the resin is provided.
- the light may be provided in addition to the head portion.
- uncured photocurable resin is poured from the filler supply port into the hollow space of the wooden body that is being shaped, and the photocurability in the hollow space of the wooden body The resin is cured by irradiating ultraviolet rays from light.
- the photocurable resin in the hollow space of the wooden main body can be uniformly cured both on the surface side and inside by irradiation with ultraviolet rays from light. If a lamp is provided in addition to the head part, curing can be accelerated or the entire part can be cured without the part where ultraviolet rays do not reach. You may use a photocurable resin for modeling material.
- a sensor for example, an ultrasonic sensor for detecting the liquid level of the filler supplied from the filling nozzle is provided in the head portion, and the filler 15x is inserted from the hollow space 13 inside the outer portion 12 of the molded wooden body 11.
- the supply of the filler may be controlled while monitoring the distance from the sensor to the liquid level of the filler with the sensor.
- a plurality of materials for forming the filler are filled by, for example, supplying A liquid and B liquid or gypsum powder and water to the hollow space of the wooden body, and then mixing in the hollow space.
- a material may be formed.
- the head part of the 3D printer is provided with a plurality of material supply ports for supplying a plurality of materials for forming the filler together with the modeling nozzle for discharging the modeling material.
- a plurality of materials for forming fillers are supplied from the respective material supply ports into the hollow space of the wooden body that has been formed using the modeling nozzle, and the supplied plurality of materials are supplied to the hollow of the wooden body.
- the filler is formed by mixing in the space and cured.
- a plurality of material supply ports may be provided in addition to the head portion.
- a stirrer having a stirrer such as a propeller is provided in the head unit or separately from the head unit, the stirrer is inserted into the hollow space of the wooden main body, and a plurality of parts supplied into the hollow space of the wooden main body You may comprise so that a material may be mixed, stirring.
- the 3D printer described above can be used not only for manufacturing wooden molds but also for manufacturing various products. That is, if the 3D printer is configured as described below, it can be used not only for manufacturing a wooden pattern but also for manufacturing various products.
- the 3D printer is provided with a head unit whose three-dimensional position is controlled, and a modeling material discharge unit (moving with the head unit and capable of discharging a modeling material for modeling a structure.
- a modeling material discharge unit moving with the head unit and capable of discharging a modeling material for modeling a structure.
- it is provided with a modeling nozzle 52) and a filler supply means capable of supplying a filler, and is configured so that a structure having a cavity can be modeled and the filler can be supplied to the cavity of the structure.
- the filler supply means includes a filler supply port that is provided in the head portion and through which the filler flows out.
- the configuration is simplified as compared with the case where the filler supply port is provided other than the printer head.
- the filler supply unit includes a mixer that generates a filler by mixing a plurality of materials.
- the filler that hardens in a short time when mixed can be efficiently filled.
- the filler supply means includes a plurality of material supply ports that respectively supply a plurality of materials that become the filler when mixed, and supplies the plurality of materials to the cavity of the structure. In this case, flushing of the filler is not necessary.
- the material supply port may be provided in the head portion or other than the head portion.
- the filler supply means includes a stirring device capable of stirring a plurality of materials supplied to the cavity of the structure. In this case, a plurality of material materials can be mixed more uniformly.
- a function for designing a temporary shoe for trial wear may be added by operating the temporary shoe design unit 26 (see FIG. 1) included in the wooden design server 20.
- the test wear is performed based on the surface shape determined in the surface determination process in step S16.
- a modeling process for modeling a temporary shoe for use with a 3D printer is added.
- a temporary shoe for trial wear is formed on the wooden body based on the surface shape determined in step S16 (surface determination step).
- Temporary shoe processing data for modeling using a 3D printer for temporary shoes that is the same as or different from the 3D printer used in the above is created.
- the temporary shoe is shaped using a 3D printer for temporary shoe.
- the nail can be driven by shaping the outer part so that the nail can be driven and ensuring the strength with the filler, and pressure and impact are applied. Even if it does not break or deform
- the outer portion having a hollow space on the inside can be modeled using a 3D printer in a shorter time than when the entire wooden mold is modeled using a 3D printer. Therefore, a wooden mold that can be used when manufacturing shoes can be manufactured in as short a time as possible using a 3D printer.
- 3D printers can be installed at shoe stores because inexpensive devices are available, the installation area is small, dust and dust are not generated, and noise during operation is low.
- a shoe store prepares parts for manufacturing shoes, creates a wooden mold, and manufactures shoes using the wooden mold, and delivers the shoes in a short time after receiving the order. I can.
- a plurality of terminals may be installed in the shoe store, and the measuring device and / or the 3D printer may be connected to a terminal different from the terminal requesting the wooden design from the wooden design server. Further, the measurement device and / or the 3D printer may be installed in a place other than the shoe store as in Example 2 described later, and may not be installed in the shoe store.
- the manufactured wooden mold can be used for the manufacture of the existing shoes. .
- Example 2 An order shoe mail order system of Example 2 for carrying out the method for producing a wooden pattern according to the present invention will be described with reference to FIG.
- the order shoe mail order system of Example 2 is a system for mail order selling shoes (order shoes) that match the foot of the orderer.
- the wooden pattern is automatically designed based on the three-dimensional data of the orderer's foot, but unlike the first embodiment, in the shoe factory, It is possible to produce a wooden pattern using a 3D printer and manufacture shoes using the wooden pattern.
- symbol is used for the structure similar to Example 1, and it demonstrates centering around difference with Example 1.
- FIG. 26 is an explanatory diagram showing the overall configuration of the order shoe mail order system.
- the terminal 80 of the orderer the virtual store server 90, the terminal 62 installed at the foot measurement base 60, the terminal 72 installed at the shoe factory 70, and the same configuration as in the first embodiment.
- the wooden design server 20 is connected via a communication network 50 such as the Internet or a LAN.
- the orderer's terminal 80 is a mobile phone, a smart phone, a notebook computer having a communication function, a tablet PC, or the like, and has a display.
- the virtual store server 90 operates in cooperation with the wooden design server 20 and the terminal 72 of the shoe factory 70.
- a measuring device 64 is connected to the terminal 62 of the foot measurement base 60.
- the measuring device 64 measures the three-dimensional shape of the foot and transmits foot data that is the measured three-dimensional data to the terminal 62.
- the terminal 62 transmits foot data and related data that is data related to the foot to the wooden design server 20 via the communication network 50.
- a 3D printer 74 is connected to the terminal 72 of the shoe factory 70.
- a wooden body is taken out from the structure formed by the 3D printer 74 to manufacture a wooden mold, and shoes are manufactured using the wooden mold. The manufactured shoes are sent directly to the orderer.
- the order shoes mail order system can manufacture shoes tailored to the orderer's feet at low cost. In addition, since shoes are tailored to the orderer's feet, returns are less likely to occur than existing shoes.
- the temporary shoe design unit 26 included in the wooden design server 20 is operated to design a temporary shoe for trial wear, and the temporary shoe modeled using a 3D printer is sent to the orderer. After confirming the above, if a wooden mold is actually produced and shoes are manufactured using the wooden mold, returned goods can be further reduced.
- Example 3 A method for producing the wood mold 10q of Example 3 will be described with reference to FIG.
- the method for producing the tree pattern 10q of the third embodiment is substantially the same as the method for manufacturing the tree pattern described in the first embodiment, and the difference from the method for manufacturing the tree pattern described in the first embodiment is as follows. The explanation will focus on the points.
- FIG. 27 is a cross-sectional view showing a process for producing the wooden pattern 10q of the third embodiment.
- the outer portion 12q is removed, and the remaining filler 15q is used as the wooden mold 10q.
- the outer portion 12q is dissolved by hydrolysis with an alkaline aqueous solution, and then the dissolved solution is removed.
- the outer portion 12q may be modeled using a modeling material that can be dissolved by a solvent.
- the wooden shape 10q When the outer portion 12q is removed by melting, the wooden shape 10q can be easily taken out without damaging the surface of the wooden shape 10q to which the inner surface of the outer portion 12q is transferred.
- the outer portion 12q may be removed by cutting the outer portion 12q and peeling it from the filler 15q.
- the wooden mold 10q can be designed in the same manner as in the first embodiment.
- the data preparation process and the surface shape determination process need not be changed.
- the outer portion 12q is formed using a 3D printer so that the shape of the inner surface 12x of the outer portion 12q having a hollow space on the inner side matches the surface shape determined in the surface shape determination step.
- Create wooden body processing data for modeling In the wooden mold manufacturing process, the outer portion 12q is formed using a 3D printer based on the wooden body processing data (modeling process), and the uncured filler 15q is filled inside the outer section 12q (filling process). ).
- the outer portion 12q is removed from the filler 15q (removal step). As a result, a wooden mold 10q made of the filler 15q in which the shape of the inner surface 12x of the outer portion 12q is transferred to the surface 15s is produced.
- the wooden mold 10q that can be used when manufacturing shoes By appropriately selecting the material of the outer portion 12q and the filler 15q, it is possible to produce the wooden mold 10q that can be used when manufacturing shoes.
- the outer portion 12q having the hollow space 13q on the inner side can be modeled using a 3D printer in a shorter time than when the entire wooden mold 10q is modeled using a 3D printer. Therefore, using the 3D printer, the wooden mold 10q that can be used when manufacturing shoes can be manufactured in as short a time as possible.
- the wooden mold manufacturing method of Example 3 is not limited to wooden mold manufacturing, and can be applied to various products.
- a structure having a hollow portion is formed using a modeling material using a 3D printer, an uncured filler is filled in the hollow portion of the structure, and the inside of the outer portion is filled.
- an intermediate body is prepared in which a filler that is in contact with the inner surface of the outer shell portion and hardened is disposed.
- the structure is removed from the intermediate by an appropriate means such as dissolution. That is, a structure mold is made using a 3D printer, the shape of the mold is transferred to the filler, and then the filler is taken out as a product.
- the filler is not limited to a curing method such as heat, light, and solvent, and an elastomer or rubber that exhibits rubber elasticity near room temperature can also be used.
- a 3D printer can be used to produce a wooden mold that can be used when manufacturing shoes in as short a time as possible.
- the wooden design servers of the first and second embodiments may be divided into a plurality of servers.
- a server that manages a database and a server that designs a tree pattern may be divided and configured to cooperate with each other.
- some or all of the functions of the wooden design server may be incorporated in the terminal.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
Abstract
3Dプリンタを利用して、靴を製造する際に用いることができる木型を、できるだけ短い時間で作製する。 (i)足の三次元形状を計測した三次元データに基づいて、木型の表面形状を決定し、(ii)決定された表面形状が、内側に中空空間(13)を有する外郭部(12)の外面(12y)の形状と一致するように、3Dプリンタを用いて外郭部(12)を造形し、(iii)造形が完了した、又は途中まで造形された外郭部(12)の内側に、未硬化の充填材(15)を充填する。外郭部(12)と、外郭部(12)の内面に接し硬化している充填材(15)とを有する木型(10)を作製する。
Description
本発明は、木型の作製方法に関し、詳しくは、靴を製造する際に用いる木型の作製方法に関する。
靴を製造する際に、木型が用いられている。例えば、釘を打ち込んで中底を仮止めした木型に、パーツを縫い合わせたアッパー(製甲)をかぶせ、アッパーの端を木型に巻き込むように釣り込んで、アッパーを中底に止めた後、中底に本底を貼り付ける。木型によって靴の形状が決まるので、木型の形状は、靴の履き心地に大きく影響する。
そこで、足にフィットする靴を製造するため、足の三次元形状を計測したデータを利用して、足の形状に応じて木型を作製することが提案されている(例えば、特許文献1、2参照)。
足の三次元形状を計測したデータを利用して木型を作製する場合、NC工作機を用いて木型を削り出す。NC工作機は高価な設備であり、切り屑が発生し、材料の無駄が多い。
このような問題を解決するため、3Dプリンタを利用して木型を作製することが考えられる。3Dプリンタは、装置の価格が低下しており、材料の無駄もない。
しかしながら、3Dプリンタで使用可能な材料は、種類が限られているため、靴を製造する際に用いることができる木型(例えば、釘を打ち込むことができ、圧力や衝撃が作用しても破損せず変形しない木型)を作製することは、極めて困難である。また、材料を付着することによって三次元形状を形成する3Dプリンタは、削り出しに比べると、加工時間が長くなる。
本発明は、かかる実情に鑑みて、3Dプリンタを利用して、靴を製造する際に用いることができる木型を、できるだけ短い時間で作製することができる、木型の作製方法を提供しようとするものである。
本発明は、上記課題を解決するために、以下のように構成した木型の作製方法を提供する。
木型の作製方法は、(i)3Dプリンタを用いて、中空空間を有する外郭部を造形する造形工程と、(ii)前記造形工程での造形が完了した、又は前記造形工程において途中まで造形された前記外郭部の内側に、未硬化の充填材を充填する充填工程と、を備える。
上記方法によれば、3Dプリンタを利用して、靴を製造する際に用いることができる木型を、できるだけ短い時間で作製することができる。
好ましい第1の態様の木型の作製方法は、足の三次元形状を計測した三次元データに基づいて、木型の表面形状を決定する表面形状決定工程を、さらに備える。前記造形工程において、前記外郭部の外面の形状が、前記表面形状決定工程で決定された前記表面形状と一致するように、前記3Dプリンタを用いて前記外郭部を造形する。前記外郭部と、前記外郭部の内面に接し硬化している前記充填材とを有する前記木型を作製する。
上記方法によれば、例えば、釘を打ち込むことができるように外郭部を造形し、充填材で強度を確保することによって、釘を打ち込むことができ、圧力や衝撃が作用しても破損せず変形せず、靴を製造する際に用いることができる木型を作製することができる。内側に中空空間を有する外郭部は、木型全体を3Dプリンタを用いて造形する場合よりも短い時間で、3Dプリンタを用いて造形することできる。したがって、3Dプリンタを利用して、靴を製造する際に用いることができる木型を、できるだけ短い時間で作製することができる。
好ましくは、前記造形工程において、前記外郭部の内側に、前記外郭部との間に間隔を設けて広がる内郭部を、前記外郭部とともに、前記3Dプリンタを用いて造形する。前記充填工程において、前記外郭部と前記内郭部との間に未硬化の前記充填材を充填する。前記外郭部と前記内郭部との間に前記充填材が配置された前記木型を作製する。
この場合、外郭部と内郭部との間に充填材が配置された構造によって、強度を確保しつつ、材料の使用量を減らし、木型を軽量化することができる。
好ましい第2の態様の木型の作製方法は、足の三次元形状を計測した三次元データに基づいて、木型の表面形状を決定する表面形状決定工程を、さらに備える。前記造形工程において、前記外郭部の内面の形状が、前記表面形状決定工程で決定された前記表面形状と一致するように、前記3Dプリンタを用いて前記外郭部を造形する。前記充填工程で充填された前記充填材が、前記外郭部の前記内面に接している状態で硬化した後に、前記充填材から前記外郭部を除去する除去工程を、さらに備える。前記外郭部の前記内面の前記形状が転写された前記充填材からなる前記木型を作製する。
上記方法によれば、外郭部と充填材の材料を適宜に選択することによって、靴を製造する際に用いることができる木型を作製することができる。内側に中空空間を有する外郭部は、木型全体を3Dプリンタを用いて造形する場合よりも短い時間で、3Dプリンタを用いて造形することできる。したがって、3Dプリンタを利用して、靴を製造する際に用いることができる木型を、できるだけ短い時間で作製することができる。
上記第1及び第2の態様の木型の製造方法は、以下のように種々の具体的態様で実施することができる。
好ましくは、前記造形工程において、前記外郭部は、熱可塑性樹脂又は光硬化性樹脂を主成分とする材料を用いて造形する。硬化した前記充填材は、石こう、セメント、発泡ウレタン、無発泡ウレタン、エラストマー、光硬化性樹脂のうち少なくとも一つを主成分とする。
この場合、廉価な3Dプリンタを用いて、簡単に、木型を作製することができる。
好ましくは、前記充填工程において、前記造形工程において途中まで造形された前記外郭部の内側に、未硬化の充填材を充填する。例えば、外郭部の造形と同時に、充填材を充填する。あるいは、外郭部の造形を中断して、充填材を充填する。
この場合、外郭部の造形後に、充填材をまとめて充填し硬化させる場合よりも、木型作製工程に要する時間を短くすることができる。また、硬化するときに発熱したり、体積が変化したりする充填材でも、少しずつ充填し、発熱や体積変化等の影響を緩和しながら、木型を作製することができる。
好ましくは、前記造形工程において、左右の前記足に対応する一対の前記木型の前記外郭部を、2台の前記3Dプリンタを用いて同時に造形する。
この場合、1台の3Dプリンタを用いて一対の木型の外郭部を造形する場合よりも短い時間で、一対の木型の外郭部を造形することができる。また、2台の3Dプリンタが準備されるため、一方の3Dプリンタが使用できない場合、他方の3Dプリンタを用いて一対の木型の外郭部を造形し、一対の木型の作製を継続することができる。
好ましくは、木型の作製方法は、(iii)前記造形工程より前に、靴のデザインを選択する靴デザイン選択工程と、(iv)前記造形工程より前に、前記デザインが選択された前記靴を製造して着用したときの前記靴の形状をシミュレーションして、前記靴の着用イメージ画像を作成する着用シミュレーション工程と、をさらに備える。
この場合、選択したデザインの靴について、着用したときの着用イメージ画像を確認した後に、木型を実際に作製し、その木型を用いて靴を製造することができる。
好ましくは、木型の作製方法は、(v)前記表面決定工程の後、かつ前記造形工程より前に、前記表面決定工程で決定された前記表面形状に基づいて、試し履き用の仮靴を、前記3Dプリンタと同じ又は異なる3Dプリンタを用いて造形する仮靴造形工程を、さらに備える。
この場合、3Dプリンタを用いて造形した試し履き用の仮靴を着用して、足の当たり具合や着用感などを確認してから、木型を実際に作製し、その木型を用いて靴を製造することができる。
また、本発明は、以下のように構成した木型を提供する。
木型は、(a)内側に中空空間を有する外郭部と、(b)前記外郭部の内側に配置され、前記外郭部に接している充填材と、を有する。前記外郭部は、熱可塑性樹脂又は光硬化性樹脂を主成分とする材料からなる。前記充填材は、石こう、セメント、発泡ウレタン、無発泡ウレタン、エラストマー、光硬化性樹脂のうち少なくとも一つを主成分とする。
上記構成によれば、例えば、釘を打ち込むことができるように外郭部を造形し、充填材で強度を確保することによって、釘を打ち込むことができ、圧力や衝撃が作用しても破損せず変形せず、靴を製造する際に用いることができる木型を作製することができる。内側に中空空間を有する外郭部は、木型全体を3Dプリンタを用いて造形する場合よりも短い時間で、3Dプリンタを用いて造形することできる。したがって、3Dプリンタを利用して、靴を製造する際に用いることができる木型を、できるだけ短い時間で作製することができる。
本発明によれば、3Dプリンタを利用して、靴を製造する際に用いることができる木型を、できるだけ短い時間で作製することができる。
以下、本発明を実施するための形態について、図面を参照しながら説明する。
<実施例1> 本発明に係る木型の作製方法を実施するための実施例1のオーダーシューズ店舗販売システムについて、図1~図25を参照しながら説明する。
実施例1のオーダーシューズ店舗販売システムは、靴販売店において、注文主の足に合わせた靴(オーダーシューズ)を製造できるようにする。オーダーシューズ店舗販売システムでは、木型設計サーバが、注文主の足の三次元形状に基づいて木型を自動設計し、靴販売店では、3Dプリンタを利用して木型を作製し、その木型を用いて靴を製造する。
図1は、オーダーシューズ店舗販売システムの全体構成を示す説明図である。図1に示すように、靴販売店30に、端末32と、端末32に接続された計測装置34及び3Dプリンタ36とが設置されている。端末32は、インターネット、LAN等の通信網50を介して、木型設計サーバ20と通信可能に接続されている。
端末32は、ノートパソコン、タブレットPC等のコンピュータであり、ディスプレイや入力装置(キーボード、マウスパッド、タッチパネルなど)を備える。端末32は、木型設計サーバ20にアクセスするために専用のアプリケーション・プログラムがインストールされても、汎用ブラウザを用いて木型設計サーバ20にアクセスしてもよい。
計測装置34は、足の三次元形状を計測し、計測した三次元データである足データを端末32に送信する。端末32は、通信網50を介して木型設計サーバ20に、足データや、足に関連するデータである関連データを送信する。
3Dプリンタ36は、端末32によって動作が制御され、木型を作製するための木型本体を含む構造体を造形する。端末32は、木型本体を含む構造体を造形するため、木型設計サーバ20から木型本体加工データを受信し、木型本体加工データに基づいて、3Dプリンタ36の動作を制御する。靴販売店30では、3Dプリンタ36で造形した構造体から木型本体を取り出して木型を作製し、作製した木型を用いて靴を製造する。
木型設計サーバ20は、通信部21と、制御部22と、記憶部27とを含む。図示していないが、キーボードやディスプレイを含んでも構わない。
通信部21は、通信網50に接続され、端末32と制御部22との間のデータ送受信を中継する。
記憶部27は、半導体メモリやハードディスクなどの記憶装置に構成され、足データベース28及び靴データベース29を含む。
足データベース28は、識別子(例えば、登録番号)と、足データと、関連データとを関連付けて記憶するデータベースである。関連データは、例えば、足データを計測した人の年齢、性別、運動歴、足の動きの特徴、外反母趾・偏平足等の有無、靴のフィッティングの好み等である。足データベース28は、靴販売店30の端末32を操作することにより、検索したり、登録したりすることができる。
靴データベース29には、種々のデザインの靴についてのデータが登録されている。例えば、識別子(例えば、靴の商品コード)と、靴についての靴情報(靴の用途やデザインの種類、サイズ、色、素材、三次元形状、木型の標準形状、靴のイメージ画像等のデータ)とを関連付けて記憶するデータベースである。靴販売店30の端末32を操作することによって、靴データベース29にアクセスして靴情報を参照したり、比較したりすることができる。
制御部22は、CPUを含む中央演算装置に構成され、データベース管理部23と、木型設計部24と、着用シミュレーション部25と、仮靴設計部26とを含み、所定のプログラムにしたがって動作し、演算、制御等の処理を実行する。
データベース管理部23は、足データベース28及び靴データベース29について、データの登録、更新、読出などを行う。例えば、端末32から受信した足データや関連データを、足データベース28に登録し、靴データベース29から読み出した靴の情報を、端末32に送信する。木型設計部24は、木型の表面形状を自動設計し、3Dプリンタを用いて木型本体を加工するための木型本体加工データを生成する。着用シミュレーション部25は、デザインが選択された靴を着用したときの靴の着用イメージ画像を生成する。仮靴設計部26は、3Dプリンタを用いて試し履き用の仮靴を造形するための仮靴加工データを生成する。なお、着用シミュレーション部25と、仮靴設計部26のいずれか一方又は両方は、省略してもよい。
靴販売店30の3Dプリンタ36の種類は、特に限定されない。例えば、熱可塑性樹脂をヒータで溶融してノズルから吐出する溶融物堆積法の3Dプリンタは、廉価な装置が提供されており、造形に使用するフィラメント形態の材料の入手も容易であるため、実用的である。
靴販売店の3Dプリンタ36は1台でも構わないが、2台の3Dプリンタを準備することが好ましい。2台の3Dプリンタを準備しておくと、左右の足に対応する一対の木型本体を別々の3Dプリンタを用いて同時に並行しながら造形することにより、1台の3Dプリンタを用いて一対の木型本体を造形する場合よりも短い時間で、一対の木型本体を造形することができる。また、一方の3Dプリンタが故障しても、他方の3Dプリンタを用いて一対の木型本体の造形を継続し、一対の木型を作製することができる。
図2は、2台の3Dプリンタ48を備えた3Dプリンタシステム40のイメージ図である。図2に示すように、3Dプリンタシステム40は、筐体42に、2台のデルタ型3Dプリンタ48が収納されている。
筐体42は、角柱状の立体形状を有し、上面40a及び下面40bが略菱形の形状であり、前面左右には開口部42a,42bが形成され、開口部42a,42bに透明の扉44a,44bが設けられている。矢印で示すように、左側の扉44aは左側に開き、右側の扉44bは右側に開く。このような構成により空間を有効に活用でき、造形された構造体の取り出しが容易であり、狭い場所でも設置できる。
3Dプリンタ48は、略正三角形の上下のフレーム48s,48tの間に、3本の支柱48a,48b,48cが結合されている。図示していないが、3Dプリンタ48は、(a)各支柱48a,48b,48cに沿って移動する3つの可動ブロックと、(b)造形材料を吐出するノズルが設けられたヘッド部と、(c)一端がいずれか一つの可動ブロックに回動自在に結合され、他端がヘッド部に回動自在に結合された3本の連結バーと、(d)可動ブロックをそれぞれ駆動する駆動機構と、を備える。ヘッド部の位置は、3つの可動ブロックの位置に対応して一義的に決まるので、端末32からの制御信号によって駆動機構を動作させ、3つの可動ブロックを位置決めすることによって、ヘッド部の3次元位置を制御することができる。3Dプリンタ48は、ノズルから造形材料を吐出しながらノズルが移動することよって、構造体を造形する。ヘッド部には、複数個のノズルを設けてもよい。
次に、靴販売店30で木型10を作製する工程について、図3~図5の断面図を参照しながら説明する。
まず、図3に示すように、木型本体11にサポート構造17が結合された構造体18を、3Dプリンタ36を用いて造形する。木型本体11は、外郭部12を有し、外郭部12の内側に中空空間13が形成されている。木型本体11は、外郭部12以外の構造(例えば、外郭部12の内面12xに結合されたリブや柱など)を含んでも構わない。木型10の表面形状は、外郭部12の外面12yによって形成される。
サポート構造17や構造体18は、適宜に構成することができる。図3のように、木型本体11のつま先側が上、踵側が下になるように、木型本体11にサポート構造17が結合された構造体18にすると、図4のように、木型本体11のつま先側と踵側とが略水平になるように、木型本体11にサポート構造17aが結合された構造体18aに比べ、造形材料を吐出するノズルの水平方向の移動範囲が狭くなる。そのため、小型の3Dプリンタを用い、3Dプリンタの設置面積を小さくすることができる。
次いで、図5(a)に示すように、構造体18からサポート構造17を分離して、木型本体11を取り出す。木型本体11とサポート構造17は、切断、溶解等の適宜な方法で分離することができる。例えばポリ乳酸樹脂(PLA樹脂)を用いてサポート構造17を造形すると、構造体18が造形された後に、サポート構造17をアルカリ性水溶液による加水分解によって除去することができる。
次いで、図5(b)に示すように、木型本体11の中空空間13に、未硬化の充填材15を充填する。充填材15が硬化すると、木型10が完成する。
例えば、外郭部12を貫通し、中空空間13に連通する貫通穴が形成されるように、木型本体11の外郭部12を造形し、貫通穴から充填材15を充填する。あるいは、造形された木型本体11に、外郭部12を貫通し、中空空間13に連通する貫通穴を後から加工し、貫通穴から充填材15を充填する。貫通穴は、適宜な位置に形成すればよいが、例えば、足裏部12aの中央や、足入れ部12bの中央など、靴の製造に影響しない部分が好ましい。充填材15の充填後に、貫通穴をシール等で塞いでもよい。
木型本体11と充填材15には、適宜な材料を用いればよい。例えば、木型本体11は、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)、ポリ乳酸樹脂(PLA樹脂)等の熱可塑性樹脂、又は光硬化性樹脂を主成分とする材料を用いて造形し、充填材15には、石こう、セメント、発泡ウレタン、無発泡ウレタン、エラストマー、光硬化性樹脂のうち少なくとも一つを主成分とする材料を用いる。この場合、釘を打ち込むことができるように木型本体11を造形し、充填材15によって木型10の強度を確保することによって、靴の製造する際に用いることができる木型10を、廉価な3Dプリンタを用いて、簡単に作製することができる。3Dプリンタを用いて造形する工法は、液体又は可塑化された固体をノズルから押し出し、堆積すると同時に固体化する材料押出法などの選択的材料供給方式でも、光硬化性樹脂の液体にレーザ等の光を選択的に照射して固体化する液槽光重合法などの選択的固化方式でも構わない。
木型本体11と充填材15に柔軟性のある材料を用いて、曲げることができる木型10を作製してもよい。この場合、例えば、木型10を用いて靴を製造した後に、木型10を曲げながら、靴から容易に抜き出すことができる。
また、分割タイプの木型を作製してもよい。分割タイプには、甲切り型、中折れ型、スライド型などがあり、製造した靴からの抜き出すときに分割して抜き出す。図6及び図7は、甲切り型の木型を作製する工程を示す断面図である。
まず、図6(a)に示すように、外郭部12の内側の中空空間13に充填材15が充填された一体型の木型10rを作製する。そして、木型10rの甲の部分を、破線で示す切断線10xに沿って切断することによって、図6(b)に示すように、2つに分割された木型10m,10nを作製する。木型10m,10nには、必要に応じて、位置決めピンを挿入するための穴や溝などを追加加工する。
図7に示すように、初めから、甲の部分だけの木型本体11uと、この木型本体11uに対応する部分11wがない木型本体11vとを造形し、2つに分割された木型を作製してもよい。この場合、例えば、木型本体11u,11vの外郭部12u,12vを、3Dプリンタを用いて、図7に示すように並べた状態で同時に造形した後、それぞれの外郭部12u,12vの内側の中空空間13u,13vに充填材を充填する。木型本体11u,11vが重なり合う面11m,11nには、位置合わせや分離が容易になるように、互いにかみ合う凹凸部などを形成することができる。
充填材は、木型本体の外郭部の内側、すなわち中空空間内に配置され、木型本体の外郭部に接していればよく、木型本体の内側、すなわち中空空間内の一部分にのみ充填材が充填され、木型の内部に空洞が形成されても構わない。
また、図8の断面図に示す木型10bのように、木型本体11bを二重構造にしてもよい。この木型10bの木型本体11bは、外郭部12の内側に、外郭部12との間に間隔を設けて広がる内郭部14と、外郭部12と内郭部14とを結合する不図示の結合部とを有する。充填材15bは、外郭部12と内郭部14との間の空間に充填される。外郭部12と内郭部14との間隔は、足裏部12a側では釘を打つことができる寸法とし、他の部分は強度を確保できる寸法にする。内郭部14の内側には、空洞16が形成されている。空洞16を形成することによって、充填材15bの使用量を減らし、軽量化することができる。
次に、木型設計サーバ20を用いて木型を自動設計し、靴販売店30で木型を作製するまでの手順の一例について、図9を参照しながら説明する。図9は、木型を設計し作製するまでの手順を示すフローチャートである。
図9に示すように、まず、足の三次元形状を計測した三次元データである足データを準備する(ステップS10、データ準備工程)。木型設計サーバ20は、足データを準備する。例えば、靴販売店30の端末32からのリクエストに応じて、データベース管理部23が足データベース28から足データを読み出し、読み出したデータを木型設計部24に伝達する。
次いで、靴のデザインを選択する(ステップS12、靴デザイン選択工程)。木型設計サーバ20のデータベース管理部23は、靴販売店30の端末32からデザインを選択した靴の識別子(例えば、登録番号)の入力を受け付けると、靴データベース29から靴情報を読み出し、読み出した靴情報を木型設計部24に伝達する。
次いで、デザインが選択された靴について、木型本体を3Dプリンタを用いて造形するための木型本体加工データが無ければ(ステップS14で「無」)、(i)足の三次元形状を計測した三次元データである足データに基づいて、木型の表面形状を決定し(ステップS16、表面形状決定工程)、(ii)木型本体加工データを作成し(ステップS18、木型本体加工データ作成工程)、(iii)着用シミュレーション工程(ステップS20)に進む。デザインが選択された靴について、木型本体を3Dプリンタを用いて造形するための木型本体加工データが有れば(ステップS14で「有」)、直ちに、(iii)着用シミュレーション工程(ステップS20)に進む。
ステップS16(表面形状決定工程)において、木型設計サーバ20の木型設計部24は、データベース管理部23から伝達された足データと靴情報とに基づいて、木型の表面形状を決定する。
木型設計サーバ20の木型設計部24は、足データと、靴情報に含まれる木型の標準形状のデータとに基づいて木型の表面形状を自動設計する。例えば、図10~図21のイメージ図に示す手順で、木型の表面形状を決定する。
まず、図10に示すように足データを読み込み、図11に示すようにMPラインを計算し、図12に示すように底面ゲージを作成し、図13に示すように背線を作成し、図14に示すように形状作成ラインを作成する。そして、図15に示すように、形状ラインに即して面を貼り付け、木型の初期形状とする。
次いで、図16に示すように木型と足とを3D比較し、図17に示すように木型を調整し、図18に示すように木型のつま先の形状を形成し、図19に示すように木型の足裏を調整し、図20に示すように踵を高くするなど、木型の各部の形状を調整した上、図21に示すように木型の表面形状を決定する。
ステップS18(木型本体加工データ作成工程)において、木型設計サーバ20の木型設計部24は、木型本体の外郭部の外面の形状が、ステップS16(表面形状決定工程)で決定された木型の表面形状と一致するように、木型本体を3Dプリンタを用いて造形するための木型本体加工データを、予め定められ手順にしたがって生成する。
木型本体加工データは、木型本体の3次元形状のデータであっても、木型本体にサポート構造が結合された構造体の3次元形状のデータであっても、木型本体にサポート構造が結合された構造体を造形するために3Dプリンタを制御するための制御データでもよい。
ステップ20(着用シミュレーション工程)では、デザインが選択された靴を製造して着用したときの靴の形状をシミュレーションして、靴の着用イメージ画像を作成する。例えば、木型設計サーバ20の木型設計部24は、着用シミュレーション部25に必要なデータを伝達する。着用シミュレーション部25は、ステップS16(表面形状決定工程)で決定された木型の表面形状と、足データに含まれる足の三次元形状との差分を算出し、算出した差分に基づいて、靴情報に含まれる靴のイメージ画像を修正することによって、着用したときの靴の着用イメージ画像を作成し、木型設計部24に伝達する。
次いで、着用イメージ画像を検討し、選択された靴のデザインを採用するか否かを判定する(ステップS22)。選択されたデザインの靴を採用しない場合には(ステップS22で、「N」)、ステップS12に戻り、靴のデザインの選択をやり直す。
例えば、木型設計サーバ20の木型設計部24は、靴販売店の端末に、靴の着用イメージ画像のデータを送信する。靴販売店の端末のディスプレに、靴の着用イメージ画像が表示される。木型設計サーバ20の木型設計部24は、靴販売店の端末から再試行を通知する入力を受け付けると、ステップS12に戻る。
選択されたデザインの靴を採用する場合には(ステップS22で、「Y」)、木型を作製する(ステップS24、木型作製工程)。ステップS24(造形工程と充填工程を含む木型作製工程)では、3Dプリンタを用いて、中空空間を有する外郭部を造形し(造形工程)、造形が完了した、又は途中まで造形された外郭部の内側に、未硬化の充填材を充填する(充填工程)。
例えば、木型設計サーバ20の木型設計部24は、靴販売店の端末から、選択されたデザインの靴を採用を通知する入力を受け付けると、木型本体加工データを、靴販売店の端末に送信する。靴販売店の端末は、3Dプリンタの動作を開始させるための所定の操作がされると、木型本体加工データに基づいて、3Dプリンタが木型本体を含む構造体を造形するように、3Dプリンタを制御する。木型本体加工データが、木型本体の3次元形状のデータや、木型本体にサポート構造が結合された構造体の3次元形状のデータである場合、靴販売店の端末は、木型本体加工データを、所定の厚みの外郭部を有する木型本体にサポート構造が結合された構造体を造形するように3Dプリンタを制御するための制御データに変換して、3Dプリンタを制御する。造形された構造体から木型本体を取り出し、木型本体の内部に充填材を充填することによって、木型を作製する。木型本体の外郭部の表面が、ステップS16(表面形状決定工程)で決定された表面形状と一致するように形成されるので、木型は、木型の表面が、ステップS16(表面形状決定工程)で決定された表面形状と一致するように、作製できる。
次いで、作製した木型を、通常の木型と同様に用いて、靴を製造する(ステップS26、靴製造工程)。
以上の手順によって、選択したデザインの靴について、着用したときの着用イメージ画像を確認した後に、木型を実際に作製し、その木型を用いて靴を製造することができる。もっとも、ステップS14,S20,S22を省略し、着用シミュレーション画像を確認することなく木型を作製し、その木型を用いて靴を製造しても構わない。
なお、ステップS10(データ準備工程)で、足データと、その足に関連する関連データを準備し、ステップS16(表面形状決定工程)において、関連データに含まれる情報、例えばフィッティングの好み、足の動きの特徴などを加味して、木型の表面形状を決定するようにしてもよい。
ステップS24(詳しくは、木型作製工程のうち造形工程)において、左右の足に対応する一対の木型の木型本体の外郭部を、2台の前記3Dプリンタを用いて同時に作製することが好ましい。例えば、前述した3Dプリンタシステム40(図2参照)のように、2台の3Dプリンタを用いる。この場合、1台の3Dプリンタを用いて一対の木型の外郭部を造形する場合よりも短い時間で、一対の木型の外郭部を造形することができる。また、2台の3Dプリンタが準備されるため、一方の3Dプリンタが使用できない場合、他方の3Dプリンタを用いて一対の木型の外郭部を造形し、一対の木型の作製を継続することができる。
また、ステップS24(詳しくは、木型作製工程のうち充填工程)において、木型本体を造形した後に充填材をまとめて充填する代わりに、造形途中の木型本体の外郭部の内側に、充填材の少なくとも一部を充填してもよい。例えば、外郭部の造形と同時に、充填材を充填してもよいし、外郭部の造形を中断して、充填材を充填してもよい。この場合、外郭部の造形後に、充填材を充填し硬化させる場合よりも、木型作製工程に要する時間を短くすることができる。また、硬化するときに発熱したり、体積が変化したりする充填材でも、少しずつ充填し、発熱や体積変化等の影響を緩和しながら、木型を作製することができる。
例えば図22の断面図に示すように、木型本体11を造形する間に、外郭部12の内側の中空空間13に、未硬化の充填材15pを複数回に分けて充填し、充填材15pの層15a~15kを順次形成する。木型本体11の造形を中断することなく、未硬化の充填材15pを充填しても、木型本体11の造形を中断し、その間に、未硬化の充填材15pを充填してもよい。木型本体11の外郭部12の内側には、充填材15pが充填されていない空洞16pが形成されても構わない。
次に、構造体の造形とともに、充填材を充填できるようにした3Dプリンタについて、図23~図25を参照しながら説明する。図23は、3Dプリンタ48xの概略図である。図24は、3Dプリンタ48xのヘッド部51の概略図である。図25は、3Dプリンタ48xのヘッド部51の動作の説明図である。
図24に示すように、ヘッド部51には、造形材料の素材(フィラメント)56を加熱するヒータ53と、溶融した造形材料を吐出する造形用ノズル52と、第1及び第2の配管54a,54bから供給されたA液とB液とを混合する混合器54と、A液とB液とが混合された未硬化の充填材が流出する充填材供給口55とが設けられている。なお、混合器54は、ヘッド部51以外、例えば3Dプリンタの上部フレーム上に設けてもよい。また、混合器54に、A液とB液に加え、砂などの追加材を供給し、追加材が分散した充填材を、充填材供給口55から流出させるように構成してもよい。
図25(a)に示すように、造形用ノズル52から押し出された造形材料によって、木型本体の外郭部12を造形する。図25(b)に示すように、充填材供給口55から、木型本体の外郭部12の内側の中空空間13に、未硬化の充填材15xを供給する。例えば、発泡ウレタン基材を含むA液と、硬化剤を含むB液とを、短時間で混合し吐出させて、発泡ウレタンを均一に充填することができる。
図23に示すように、デルタ型3Dプリンタ48xの上部フレーム48s上に、素材(フィラメント)56を供給する素材リール57と、A液を供給するタンク55aと、B液を供給するタンク55bとを配置すると、スペース効率がよい。なお、図23では、支柱48a,48b,48cに沿って移動する可動ブロックの図示を省略している。また、連結バー49a,49b,49cの図示を簡略化している。
充填材15に石こうを用いる場合も、同様に構成する。すなわち、石こう粉と水とを混合する混合器を設け、造形用ノズルとともにヘッド部に設けた充填材供給口から、石こう粉と水との混合物が供給されるように構成する。混合器は、ヘッド部に設けても、ヘッド部以外に設けてもよい。混合器には、適宜なタイミングで所定量の石こう粉と水とが供給され、石こう粉と水が混合器内で撹拌され混合された後、石こう粉と水の混合物が、混合器から充填材供給口まで配管内を移動し、充填材供給口から流出し、木型本体の外郭部12の内側の中空空間13内に供給されるようにする。石こう粉と水の混合物が残り、そのまま固まるのを防ぐため、石こう粉と水の混合物が充填材供給口から流出したら、配管などをエアーフラッシングできるように構成する。
また、充填材に、光硬化性樹脂を用いてもよい。この場合、例えば、3Dプリンタのヘッド部に、造形材料の素材を加熱するヒータと、溶融した造形材料を吐出する造形用ノズルと、光硬化性樹脂を供給する充填材供給口と、光硬化性樹脂を硬化させるための紫外線を照射するライトとを設ける。ライトは、ヘッド部以外に設けてもよい。造形用ノズルを用いて木型本体を造形するともに、造形中の木型本体の中空空間に充填材供給口から未硬化の光硬化性樹脂を流し込み、木型本体の中空空間内の光硬化性樹脂に、ライトから紫外線を照射して硬化させる。木型本体の中空空間内の光硬化性樹脂は、ライトから紫外線照射によって、表面側も内部も均一に硬化させることができる。ヘッド部以外にもランプを設けると、硬化を早めたり、紫外線が届かない部分をなくして全体を硬化させることができる。造形材料に、光硬化性樹脂を用いてもよい。
ヘッド部に、充填用ノズルから供給した充填材の液面を検出するセンサ(例えば、超音波センサ)を設け、造形された木型本体11の外郭部12の内側の中空空間13から充填材15xが溢れないように、センサから充填材の液面までの距離をセンサで監視しながら、充填材の供給を制御してもよい。
また、充填材を形成するための複数の材料は、例えばA液とB液、あるいは石こう粉と水を、それぞれ、木型本体の中空空間に供給した後、中空空間内で混合することによって充填材を形成してもよい。この場合、3Dプリンタのヘッド部に、造形材料を吐出する造形用ノズルともに、充填材を形成するための複数の材料をそれぞれ供給する複数の材料供給口を設ける。造形用ノズルを用いて造形された木型本体の中空空間に、充填材を形成するための複数の材料をそれぞれの材料供給口から供給し、供給された複数の材料を、木型本体の中空空間内で混合することによって充填材を形成し、硬化させる。複数の材料供給口は、ヘッド部以外に設けてもよい。ヘッド部に、又はヘッド部とは別に、プロペラなどの撹拌部を有する撹拌装置を設け、木型本体の中空空間内に撹拌部を挿入し、木型本体の中空空間内に供給された複数の材料を撹拌しながら混合するように構成してもよい。
上述した3Dプリンタは、木型の製造に限らず、種々の製品の製造に用いることができる。すなわち、3Dプリンタを、以下のように構成すると、木型の製造に限らず、種々の製品の製造に用いることができる。
すなわち、3Dプリンタは、三次元の位置が制御されるヘッド部と、ヘッド部に設けられ、ヘッド部とともに移動し、構造体を造形するための造形材料を吐出することができる造形材吐出部(例えば、造形用ノズル52)と、充填材を供給することができる充填材供給手段とを備え、空洞を有する構造体を造形し、構造体の空洞に充填材を供給することができるように構成する。
好ましくは、充填材供給手段は、ヘッド部に設けられ、充填材が流出する充填材供給口を含む。この場合、充填材供給口をプリンタヘッド以外に設ける場合に比べ、構成が簡単になる。
好ましくは、充填材供給手段は、複数の材料を混合して充填材を生成する混合器を含む。この場合、混合すると短時間で硬化する充填材を、効率よく充填することができる。
好ましくは、充填材供給手段は、混合されると充填材になる複数の材料をそれぞれ供給する複数の材料供給口を含み、構造体の空洞に複数の材料を供給する。この場合、充填材のフラッシングが不要である。材料供給口は、ヘッド部に設けても、ヘッド部以外に設けてもよい。より好ましくは、充填材供給手段は、構造体の空洞に供給された複数の材料を撹拌することができる撹拌装置を含む。この場合、複数の材料材をより均一に混合することができる。
また、木型設計サーバ20に含まれる仮靴設計部26(図1参照)を動作させ、試し履き用の仮靴を設計する機能を追加してもよい。この場合、ステップS16の表面決定工程の後、かつステップS24(詳しくは、木型作製工程のうち造形工程)より前に、ステップS16の表面決定工程で決定された表面形状に基づいて、試し履き用の仮靴を、3Dプリンタを用いて造形する造形工程を追加する。
例えば、図9のフローチャートにおいて、ステップS20の後、かつステップS22の前に、ステップS16(表面決定工程)で決定された表面形状に基づいて、試し履き用の仮靴を、木型本体の造形に用いる3Dプリンタと同じ又は異なる仮靴用3Dプリンタを用いて造形するための仮靴加工データを作成する。次いで、ステップS22の前に、仮靴加工データに基づいて、仮靴を、仮靴用3Dプリンタを用いて造形する。
この場合、3Dプリンタを用いて造形した試し履き用の仮靴を着用して、足の当たり具合、着用感などを確認してから、木型を実際に作製し、その木型を用いて靴を製造することができる。
以上に説明した方法で木型を作製すると、例えば、釘を打ち込むことができるように外郭部を造形し、充填材で強度を確保することによって、釘を打ち込むことができ、圧力や衝撃が作用しても破損せず変形せず、靴を製造する際に用いることができる木型を作製することができる。内側に中空空間を有する外郭部は、木型全体を3Dプリンタを用いて造形する場合よりも短い時間で、3Dプリンタを用いて造形することできる。したがって、3Dプリンタを利用して、靴を製造する際に用いることができる木型を、できるだけ短い時間で作製することができる。
3Dプリンタは、廉価な装置を入手可能であり、設置面積も小さく、ごみやほこりなどの発生が少なく、動作時の騒音も小さいため、靴販売店に設置可能である。靴販売店は、靴を製造するためのパーツを準備しておき、木型を作製し、その木型を用いて靴を製造することによって、注文を受けてから短時間で、靴を納品することできる。
なお、靴販売店に複数の端末を設置し、木型設計サーバに木型設計をリクエストする端末とは異なる端末に、計測装置及び/又は3Dプリンタを接続してもよい。また、計測装置及び/又は3Dプリンタは、後述する実施例2のように靴販売店以外に設置し、靴販売店には設置しないようにしても構わない。
なお、標準的な足の三次元形状に基づいて、同様に、木型の表面形状を決定し、木型を設計して作製すれば、作製した木型を既成靴の製造に用いることができる。
<実施例2> 本発明に係る木型の作製方法を実施するための実施例2のオーダーシューズ通信販売システムについて、図26を参照しながら説明する。
実施例2のオーダーシューズ通信販売システムは、注文主の足に合わせた靴(オーダーシューズ)を、通信販売するシステムである。オーダーシューズ通信販売システムでは、実施例1のオーダーシューズ店舗販売システムと同様に、注文主の足の三次元データに基づいて木型を自動設計するが、実施例1とは異なり、靴工場において、3Dプリンタを利用して木型を作製し、その木型を用いて靴を製造することを可能にする。以下では、実施例1と同様の構成には同じ符号を用い、実施例1との相違点を中心に説明する。
図26は、オーダーシューズ通信販売システムの全体構成を示す説明図である。図26に示すように、注文主の端末80と、仮想店舗サーバ90と、足計測拠点60に設置された端末62と、靴工場70に設置された端末72と、実施例1と同様に構成された木型設計サーバ20とが、インターネット、LAN等の通信網50を介して接続されている。
注文主の端末80は、携帯電話やスマートフォン、通信機能を持ったノートパソコン、タブレットPC等であり、ディスプレイを備えている。仮想店舗サーバ90は、木型設計サーバ20や靴工場70の端末72と連携しながら動作する。
足計測拠点60の端末62には、計測装置64が接続されている。計測装置64は、足の三次元形状を計測し、計測した三次元データである足データを端末62に送信する。端末62は、通信網50を介して木型設計サーバ20に、足データや、足に関連するデータである関連データを送信する。
靴工場70の端末72には、3Dプリンタ74が接続されている。靴工場70では、3Dプリンタ74で造形した構造体から木型本体を取り出して木型を製造し、その木型を用いて靴を製造する。製造した靴は、注文主に直送する。
オーダーシューズ通信販売システムは、注文主の足に合わせた靴を、低コストで製造することができる。また、注文主の足に合わせた靴を製造しているため、既成靴に比べ、返品が発生しにくい。
木型設計サーバ20に含まれる仮靴設計部26を動作させ、試し履き用の仮靴を設計し、3Dプリンタを用いて造形した仮靴を注文主に送り、足の当たり具合、着用感などを確認してから、木型を実際に作製し、その木型を用いて靴を製造すると、さらに返品を減らすことができる。
<実施例3> 実施例3の木型10qを作製する方法について、図27を参照しながら説明する。実施例3の木型10qを作製する方法は、実施例1で説明した木型を作製する方法と、略同じであり、以下では、実施例1で説明した木型を作製する方法との相違点を中心に説明する。
図27は、実施例3の木型10qを作製する工程を示す断面図である。図27に示すように、外郭部12qの内側の中空空間13qに未硬化の充填材15qを充填した後、外郭部12qを除去し、残った充填材15qを木型10qとして用いる。例えば、外郭部12qを、ポリ乳酸(PLA)を用いて造形し、充填材15qを充填した後に、外郭部12qをアルカリ性水溶液による加水分解によって溶解させた後、溶解した溶液を除去する。外郭部12qは、溶剤によって溶解可能な造形材料を用いて造形してもよい。外郭部12qを溶解することによって除去すると、外郭部12qの内面が転写された木型10qの表面を傷つけることなく、容易に木型10qを取り出すことができる。もっとも、外郭部12qを切断し、充填材15qから剥がすことによって、外郭部12qを除去してもよい。
木型10qは、実施例1と同様に設計することができる。データ準備工程と表面形状決定工程は、変更する必要はない。木型本体加工データ作成工程では、内側に中空空間を有する外郭部12qの内面12xの形状が、表面形状決定工程で決定された表面形状と一致するように、3Dプリンタを用いて外郭部12qを造形するための木型本体加工データを作成する。木型作製工程では、木型本体加工データに基づいて、3Dプリンタを用いて外郭部12qを造形するとともに(造形工程)、外郭部12qの内側に未硬化の充填材15qを充填する(充填工程)。充填された充填材15qが、外郭部12qの内面12xに接している状態で硬化した後に、充填材15qから外郭部12qを除去する(除去工程)。これによって、外郭部12qの内面12xの形状が表面15sに転写された充填材15qからなる木型10qを作製する。
外郭部12qと充填材15qの材料を適宜に選択することによって、靴を製造する際に用いることができる木型10qを作製することができる。内側に中空空間13qを有する外郭部12qは、木型10qの全体を3Dプリンタを用いて造形する場合よりも短い時間で、3Dプリンタを用いて造形することできる。したがって、3Dプリンタを利用して、靴を製造する際に用いることができる木型10qを、できるだけ短い時間で作製することができる。
実施例3の木型の製造方法は、木型の製造に限らず、種々の製品の製造に適用することができる。この場合、木型と同様に、造形材料を用いて、空洞部を有する構造体を3Dプリンタを用いて造形し、構造体の空洞部に未硬化の充填材を充填し、外郭部の内側に、外郭部の内面に接し硬化している充填材が配置された中間体を作製する。次いで、中間体から、溶解など適宜な手段で構造体を除去する。すなわち、3Dプリンタを用いて構造体の型を作り、型の形状を充填材に転写した後、充填材を製品として取り出す。充填材は、熱、光、溶剤など、硬化方法が限定されないし、常温付近でゴム弾性を示すエラストマーやゴムなどを用いることもできる。
<まとめ> 以上に説明したように、3Dプリンタを利用して、靴を製造する際に用いることができる木型を、できるだけ短い時間で作製することができる。
なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。
実施例1、2の木型設計サーバは、複数のサーバに分けても構わない。例えば、データベースを管理するサーバと、木型を設計するサーバとに分け、互いに連携するように構成しても構わない。また、木型設計サーバの機能の一部又は全部を、端末に組み込んでも構わない。
10,10b,10m,10n,10q,10r 木型
11,11b,11u,11v 木型本体
12,12q,12u,12v 外郭部
12x 内面
12y 外面
13,13q,13u,13v 中空空間
14 内郭部
15,15b,15p,15q,15x 充填材
16,16p 空洞
20 木型設計サーバ
34 計測装置
36 3Dプリンタ
40 3Dプリンタシステム
48,48x 3Dプリンタ
64 計測装置
74 3Dプリンタ
11,11b,11u,11v 木型本体
12,12q,12u,12v 外郭部
12x 内面
12y 外面
13,13q,13u,13v 中空空間
14 内郭部
15,15b,15p,15q,15x 充填材
16,16p 空洞
20 木型設計サーバ
34 計測装置
36 3Dプリンタ
40 3Dプリンタシステム
48,48x 3Dプリンタ
64 計測装置
74 3Dプリンタ
Claims (10)
- 3Dプリンタを用いて、中空空間を有する外郭部を造形する造形工程と、
前記造形工程での造形が完了した、又は前記造形工程において途中まで造形された前記外郭部の内側に、未硬化の充填材を充填する充填工程と、
を備えたことを特徴とする、木型の製造方法。 - 足の三次元形状を計測した三次元データに基づいて、木型の表面形状を決定する表面形状決定工程を、さらに備え、
前記造形工程において、前記外郭部の外面の形状が、前記表面形状決定工程で決定された前記表面形状と一致するように、前記3Dプリンタを用いて前記外郭部を造形し、
前記外郭部と、前記外郭部の内面に接し硬化している前記充填材とを有する前記木型を作製することを特徴とする、請求項1に記載の木型の作製方法。 - 前記造形工程において、前記外郭部の内側に、前記外郭部との間に間隔を設けて広がる内郭部を、前記外郭部とともに、前記3Dプリンタを用いて造形し、
前記充填工程において、前記外郭部と前記内郭部との間に未硬化の前記充填材を充填し、
前記外郭部と前記内郭部との間に前記充填材が配置された前記木型を作製することを特徴とする、請求項2に記載の木型の作製方法。 - 足の三次元形状を計測した三次元データに基づいて、木型の表面形状を決定する表面形状決定工程を、さらに備え、
前記造形工程において、前記外郭部の内面の形状が、前記表面形状決定工程で決定された前記表面形状と一致するように、前記3Dプリンタを用いて前記外郭部を造形し、
前記充填工程で充填された前記充填材が、前記外郭部の前記内面に接している状態で硬化した後に、前記充填材から前記外郭部を除去する除去工程を、さらに備え、
前記外郭部の前記内面の前記形状が転写された前記充填材からなる前記木型を作製することを特徴とする、請求項1に記載の木型の作製方法。 - 前記造形工程において、前記外郭部は、熱可塑性樹脂又は光硬化性樹脂を主成分とする材料を用いて造形し、
硬化した前記充填材は、石こう、セメント、発泡ウレタン、無発泡ウレタン、エラストマー、光硬化性樹脂のうち少なくとも一つを主成分とすることを特徴とする、請求項1乃至4のいずれか一つに記載の木型の作製方法。 - 前記充填工程において、前記造形工程において途中まで造形された前記外郭部の内側に、未硬化の充填材を充填することを特徴とする、請求項1乃至5のいずれか一つに記載の木型の作製方法。
- 前記造形工程において、左右の前記足に対応する一対の前記木型の前記外郭部を、2台の前記3Dプリンタを用いて同時に造形することを特徴とする、請求項1乃至6のいずれか一つに記載の木型の作製方法。
- 前記造形工程より前に、靴のデザインを選択する靴デザイン選択工程と、
前記造形工程より前に、前記デザインが選択された前記靴を製造して着用したときの前記靴の形状をシミュレーションして、前記靴の着用イメージ画像を作成する着用シミュレーション工程と、
をさらに備えたことを特徴とする、請求項1乃至7のいずれか一つに記載の木型の作製方法。 - 前記表面決定工程の後、かつ前記造形工程より前に、前記表面決定工程で決定された前記表面形状に基づいて、試し履き用の仮靴を、前記3Dプリンタと同じ又は異なる3Dプリンタを用いて造形する仮靴造形工程を、
さらに備えたことを特徴とする、請求項1乃至8のいずれか一つに記載の木型の製造方法。 - 内側に中空空間を有する外郭部と、
前記外郭部の内側に配置され、前記外郭部に接している充填材と、
を有し、
前記外郭部は、熱可塑性樹脂又は光硬化性樹脂を主成分とする材料からなり、
前記充填材は、石こう、セメント、発泡ウレタン、無発泡ウレタン、エラストマー、光硬化性樹脂のうち少なくとも一つを主成分とすることを特徴とする、木型。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/772,684 US20190152149A1 (en) | 2015-11-06 | 2016-11-04 | Method of fabricating last |
CN201680078045.8A CN108471841A (zh) | 2015-11-06 | 2016-11-04 | 木模的制作方法 |
JP2017549142A JP6784408B2 (ja) | 2015-11-06 | 2016-11-04 | 木型の作製方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-218913 | 2015-11-06 | ||
JP2015218913 | 2015-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017078168A1 true WO2017078168A1 (ja) | 2017-05-11 |
Family
ID=58662701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/082883 WO2017078168A1 (ja) | 2015-11-06 | 2016-11-04 | 木型の作製方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190152149A1 (ja) |
JP (1) | JP6784408B2 (ja) |
CN (1) | CN108471841A (ja) |
WO (1) | WO2017078168A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017110984A1 (de) * | 2017-05-19 | 2018-11-22 | Isotech Holding Corporation Llc | Schuhschaft mit dreidimensionalen Ziermustern aus Polyurethan und Verfahren zur Herstellung desselben sowie Schuh mit dem derartigen Schuhschaft |
CN110384308A (zh) * | 2019-08-16 | 2019-10-29 | 安踏(中国)有限公司 | 用于鞋内腔压力测试的鞋楦装置及控制系统 |
IT201800011142A1 (it) * | 2018-12-17 | 2020-06-17 | Robot System Automation S R L | Forma per la produzione di calzature |
JP2020195737A (ja) * | 2019-06-05 | 2020-12-10 | 住友ゴム工業株式会社 | 歩行用部材作製用データ作成システム |
JP2021065684A (ja) * | 2019-10-18 | 2021-04-30 | 株式会社アシックス | ラスト、ラストの製造方法、シューズアッパーの製造方法 |
JP2021097992A (ja) * | 2019-12-19 | 2021-07-01 | 株式会社アシックス | ラスト、ラストの製造方法、シューズアッパーの製造方法 |
JP6963670B1 (ja) * | 2020-12-24 | 2021-11-10 | ホッティーポリマー株式会社 | 3dプリンタ用データシェアシステム |
JP2021187152A (ja) * | 2020-06-03 | 2021-12-13 | エアバイブル カンパニー リミテッドAirbible Co., Ltd. | 立体造形物及びその製造方法 |
JP2022501209A (ja) * | 2018-04-23 | 2022-01-06 | ローカル モーターズ アイピー, エルエルシーLocal Motors Ip, Llc | 付加製造のための方法及び装置 |
US11623401B2 (en) | 2017-11-10 | 2023-04-11 | Rapidflight Holdings, Llc | Additive manufactured structure having a plurality of layers in a stacking direction that define a plurality of interfaces and method for making the same |
US11622604B2 (en) | 2019-12-19 | 2023-04-11 | Asics Corporation | Last, method for producing last, and method for producing shoe upper |
JP2023068480A (ja) * | 2021-11-02 | 2023-05-17 | 株式会社Virtusize | 靴データ生成装置、靴データ生成方法、靴データ生成プログラム |
US11731342B2 (en) | 2018-04-23 | 2023-08-22 | Rapidflight Holdings, Llc | Additively manufactured structure and method for making the same |
US11813790B2 (en) | 2019-08-12 | 2023-11-14 | Rapidflight Holdings, Llc | Additively manufactured structure and method for making the same |
JP7531900B2 (ja) | 2021-01-13 | 2024-08-13 | 株式会社大島商事 | 補正製靴型、補正製靴型の製造方法、靴の製造方法、靴の選択方法、既製靴販売システム、オーダー靴販売システム |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110636770B (zh) * | 2017-02-28 | 2022-09-06 | 安德玛股份有限公司 | 鞋面和包括鞋面的鞋类制品 |
US11198247B2 (en) * | 2019-07-09 | 2021-12-14 | National Taipei University Of Technology | System and method for three-dimensional fabrication |
CN112674432A (zh) * | 2019-10-18 | 2021-04-20 | 株式会社爱世克私 | 鞋楦、鞋楦的制造方法、鞋面的制造方法 |
JP6744677B1 (ja) * | 2019-11-25 | 2020-08-19 | 株式会社キタイ | カスタムオーダーシューズの製造方法 |
CN115867429A (zh) * | 2020-07-02 | 2023-03-28 | Ppg工业俄亥俄公司 | 用于使用增材填充设计快速产生对象的系统 |
US11701823B1 (en) | 2021-05-19 | 2023-07-18 | Under Armour, Inc. | Method of making footwear components |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09276005A (ja) * | 1996-04-18 | 1997-10-28 | Shozo Hirayama | フル・オ−ダ−メイド靴の靴型の製造方法並びにそれに用いる足型採取器 |
JP2001204512A (ja) * | 2000-01-26 | 2001-07-31 | Ja Netto:Kk | 靴型の造形方法 |
JP2003052416A (ja) * | 2001-04-16 | 2003-02-25 | Sanyo Electric Co Ltd | 靴製造用の足型製造方法および靴の製造方法 |
JP2006072837A (ja) * | 2004-09-03 | 2006-03-16 | Ykk Corp | 製品設計方法、製品設計装置、製品設計システム及び製品設計プログラム |
JP2009045244A (ja) * | 2007-08-21 | 2009-03-05 | Dream Gp:Kk | 足計測装置 |
WO2014100462A1 (en) * | 2012-12-19 | 2014-06-26 | New Balance Athletic Shoe, Inc. | Customized footwear, and systems for designing and manufacturing same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1034123A (zh) * | 1987-11-30 | 1989-07-26 | 上海大孚橡胶总厂 | 单体浇铸尼龙鞋楦及其制造方法 |
CN2246933Y (zh) * | 1996-07-09 | 1997-02-12 | 成都市鑫冠鞋类实业有限公司 | 填心楦头 |
CN2324829Y (zh) * | 1998-01-24 | 1999-06-23 | 巨祐股份有限公司 | 气体辅助射出成型的鞋楦头 |
JP2005171299A (ja) * | 2003-12-09 | 2005-06-30 | Toyota Motor Corp | 三次元造形物の製造方法 |
CN103231513B (zh) * | 2013-04-01 | 2015-03-18 | 杭州笔水画王电子科技有限公司 | 3d打印方法及3d打印机 |
CN103212695A (zh) * | 2013-04-16 | 2013-07-24 | 华南理工大学 | 基于金属3d打印的新型异种材料复合铸造方法 |
CN103341629B (zh) * | 2013-06-24 | 2016-09-14 | 李虬 | 用于加工具有内空结构工件的3d打印方法 |
JP6277033B2 (ja) * | 2014-03-26 | 2018-02-07 | 株式会社竹中工務店 | 造形物の構築方法 |
KR20140142201A (ko) * | 2014-11-03 | 2014-12-11 | 권순일 | 3d 프린터 및 3d 스캐너를 이용한 맞춤 신발 제조 시스템 |
CN204536892U (zh) * | 2015-05-08 | 2015-08-05 | 广东工业大学 | 一种基于互联网的制鞋定制系统 |
CN104834296A (zh) * | 2015-05-08 | 2015-08-12 | 广东工业大学 | 一种基于互联网的制鞋定制系统及方法 |
-
2016
- 2016-11-04 WO PCT/JP2016/082883 patent/WO2017078168A1/ja active Application Filing
- 2016-11-04 JP JP2017549142A patent/JP6784408B2/ja active Active
- 2016-11-04 US US15/772,684 patent/US20190152149A1/en not_active Abandoned
- 2016-11-04 CN CN201680078045.8A patent/CN108471841A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09276005A (ja) * | 1996-04-18 | 1997-10-28 | Shozo Hirayama | フル・オ−ダ−メイド靴の靴型の製造方法並びにそれに用いる足型採取器 |
JP2001204512A (ja) * | 2000-01-26 | 2001-07-31 | Ja Netto:Kk | 靴型の造形方法 |
JP2003052416A (ja) * | 2001-04-16 | 2003-02-25 | Sanyo Electric Co Ltd | 靴製造用の足型製造方法および靴の製造方法 |
JP2006072837A (ja) * | 2004-09-03 | 2006-03-16 | Ykk Corp | 製品設計方法、製品設計装置、製品設計システム及び製品設計プログラム |
JP2009045244A (ja) * | 2007-08-21 | 2009-03-05 | Dream Gp:Kk | 足計測装置 |
WO2014100462A1 (en) * | 2012-12-19 | 2014-06-26 | New Balance Athletic Shoe, Inc. | Customized footwear, and systems for designing and manufacturing same |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017110984A1 (de) * | 2017-05-19 | 2018-11-22 | Isotech Holding Corporation Llc | Schuhschaft mit dreidimensionalen Ziermustern aus Polyurethan und Verfahren zur Herstellung desselben sowie Schuh mit dem derartigen Schuhschaft |
US11623401B2 (en) | 2017-11-10 | 2023-04-11 | Rapidflight Holdings, Llc | Additive manufactured structure having a plurality of layers in a stacking direction that define a plurality of interfaces and method for making the same |
JP2022501209A (ja) * | 2018-04-23 | 2022-01-06 | ローカル モーターズ アイピー, エルエルシーLocal Motors Ip, Llc | 付加製造のための方法及び装置 |
US11745423B2 (en) | 2018-04-23 | 2023-09-05 | Rapidflight Holdings, Llc | Method and apparatus for additive manufacturing |
US11731342B2 (en) | 2018-04-23 | 2023-08-22 | Rapidflight Holdings, Llc | Additively manufactured structure and method for making the same |
WO2020129099A1 (en) * | 2018-12-17 | 2020-06-25 | Robot System Automation S.R.L. | Shoe last for manufacturing shoes |
IT201800011142A1 (it) * | 2018-12-17 | 2020-06-17 | Robot System Automation S R L | Forma per la produzione di calzature |
JP2020195737A (ja) * | 2019-06-05 | 2020-12-10 | 住友ゴム工業株式会社 | 歩行用部材作製用データ作成システム |
US11813790B2 (en) | 2019-08-12 | 2023-11-14 | Rapidflight Holdings, Llc | Additively manufactured structure and method for making the same |
CN110384308B (zh) * | 2019-08-16 | 2024-03-26 | 安踏(中国)有限公司 | 用于鞋内腔压力测试的鞋楦装置及控制系统 |
CN110384308A (zh) * | 2019-08-16 | 2019-10-29 | 安踏(中国)有限公司 | 用于鞋内腔压力测试的鞋楦装置及控制系统 |
JP2021065684A (ja) * | 2019-10-18 | 2021-04-30 | 株式会社アシックス | ラスト、ラストの製造方法、シューズアッパーの製造方法 |
JP7353234B2 (ja) | 2019-10-18 | 2023-09-29 | 株式会社アシックス | ラストの製造方法、シューズアッパーの製造方法 |
JP2021097992A (ja) * | 2019-12-19 | 2021-07-01 | 株式会社アシックス | ラスト、ラストの製造方法、シューズアッパーの製造方法 |
JP7125961B2 (ja) | 2019-12-19 | 2022-08-25 | 株式会社アシックス | ラスト、ラストの製造方法、シューズアッパーの製造方法 |
US11622604B2 (en) | 2019-12-19 | 2023-04-11 | Asics Corporation | Last, method for producing last, and method for producing shoe upper |
US11383455B2 (en) | 2020-06-03 | 2022-07-12 | Airbible Co., Ltd. | Three-dimensional structure and manufacturing method of the same |
JP7085659B2 (ja) | 2020-06-03 | 2022-06-16 | エアバイブル カンパニー リミテッド | 立体造形物及びその製造方法 |
JP2021187152A (ja) * | 2020-06-03 | 2021-12-13 | エアバイブル カンパニー リミテッドAirbible Co., Ltd. | 立体造形物及びその製造方法 |
JP2022101045A (ja) * | 2020-12-24 | 2022-07-06 | ホッティーポリマー株式会社 | 3dプリンタ用データシェアシステム |
JP6963670B1 (ja) * | 2020-12-24 | 2021-11-10 | ホッティーポリマー株式会社 | 3dプリンタ用データシェアシステム |
JP7531900B2 (ja) | 2021-01-13 | 2024-08-13 | 株式会社大島商事 | 補正製靴型、補正製靴型の製造方法、靴の製造方法、靴の選択方法、既製靴販売システム、オーダー靴販売システム |
JP2023068480A (ja) * | 2021-11-02 | 2023-05-17 | 株式会社Virtusize | 靴データ生成装置、靴データ生成方法、靴データ生成プログラム |
JP7356665B2 (ja) | 2021-11-02 | 2023-10-05 | 株式会社Virtusize | 靴データ生成装置、靴データ生成方法、靴データ生成プログラム |
Also Published As
Publication number | Publication date |
---|---|
JP6784408B2 (ja) | 2020-11-11 |
JPWO2017078168A1 (ja) | 2018-08-23 |
CN108471841A (zh) | 2018-08-31 |
US20190152149A1 (en) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017078168A1 (ja) | 木型の作製方法 | |
Davia-Aracil et al. | 3D printing of functional anatomical insoles | |
EP3922122B1 (en) | Articles of footwear with recycled plastics | |
US10668682B2 (en) | Support and method for additive fabrication of foot orthotics | |
Vancauwenberghe et al. | Model-based design and validation of food texture of 3D printed pectin-based food simulants | |
US20140109440A1 (en) | Shoe With Interchangeable Sole Portion | |
EP3206636A1 (en) | Support and method for additive fabrication of foot orthotics | |
US8918938B2 (en) | Personalized footwear | |
JP5433008B2 (ja) | ファイロン・ビスケットを用いて局所的な硬さを有するミッドソールを製造するシステムおよび方法 | |
CN105643864B (zh) | 制鞋方法 | |
CN103959359A (zh) | 合成骨模型及提供其的方法 | |
US20180207858A1 (en) | Systems and methods for forming three dimensional objects | |
US20160374431A1 (en) | Systems and Methods for Manufacturing of Multi-Property Anatomically Customized Devices | |
EP4209144A1 (en) | Leisten, verfahren zur herstellung eines leisten und verfahren zur herstellung eines schuhoberteils | |
JP2015229248A (ja) | 立体造形物の製造方法 | |
CN107949868A (zh) | 建模方法和系统 | |
EP3541607A1 (en) | Method and printer for large scale production of customized footwear | |
Mallakpour et al. | Advanced application of additive manufacturing in the footwear industry: from customized insoles to fully 3D-printed shoes | |
JP5721982B2 (ja) | タイヤ性能シミュレーション方法、タイヤ性能シミュレーション装置、及びタイヤ性能シミュレーションプログラム | |
JP2003052416A (ja) | 靴製造用の足型製造方法および靴の製造方法 | |
KR100834131B1 (ko) | 신발 깔창 및 그 제조방법 | |
KR102105407B1 (ko) | 신발부품의 몰딩을 위한 몰드 운용방법 | |
WO2006063496A1 (fr) | Procede de fabrication de chaussures integralement sur mesure | |
KR20160110679A (ko) | 크래시패드의 제조 장치 | |
Costea et al. | 3D Modelling of Shoe Lasts’ Fitting Components to Reduce Waste in Footwear Manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16862227 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017549142 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16862227 Country of ref document: EP Kind code of ref document: A1 |