WO2017078035A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2017078035A1
WO2017078035A1 PCT/JP2016/082504 JP2016082504W WO2017078035A1 WO 2017078035 A1 WO2017078035 A1 WO 2017078035A1 JP 2016082504 W JP2016082504 W JP 2016082504W WO 2017078035 A1 WO2017078035 A1 WO 2017078035A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
signal
different frequency
user terminal
transmission
Prior art date
Application number
PCT/JP2016/082504
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
聡 永田
ヂーユー ジャン
ジン ワン
リュー リュー
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US15/772,930 priority Critical patent/US20180324620A1/en
Priority to JP2017548787A priority patent/JPWO2017078035A1/ja
Priority to CN201680064571.9A priority patent/CN108353410A/zh
Publication of WO2017078035A1 publication Critical patent/WO2017078035A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE Long Term Evolution
  • Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), LTE Rel.13, etc.
  • FRA Full Radio Access
  • 5G 5th generation mobile communication system
  • LTE of 8-12 the specification has been performed on the assumption that exclusive operation is performed in a frequency band (also referred to as a licensed band) licensed by a telecommunications carrier (operator).
  • a frequency band also referred to as a licensed band
  • the license band for example, 800 MHz, 1.7 GHz, 2 GHz, and the like are used.
  • UE User Equipment
  • Rel. 13 In LTE it is considered to expand the frequency of the LTE system using an unlicensed spectrum band (also referred to as an unlicensed band) that can be used in addition to the license band.
  • an unlicensed spectrum band also referred to as an unlicensed band
  • Non-patent document 2 As the unlicensed band, for example, the use of a 2.4 GHz band or a 5 GHz band that can use Wi-Fi (registered trademark) or Bluetooth (registered trademark) is being studied.
  • LAA License-Assisted Access
  • DC Dual Connectivity
  • SA unlicensed band stand-alone
  • LBT Listen Before Talk
  • CCA Carrier Channel Assessment
  • 3GPP TS 36.300 “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2” AT & T, “Drivers, Benefits and Challenges for LTE in Unlicensed Spectrum,” 3GPP TSG RAN Meeting # 62 RP-131701
  • a user terminal uses RSRP (Reference Signal Received Power) and / or RSSI (RSSI) in another cell (non-serving cell, non-serving carrier) of a different frequency from the cell of unlicensed band (serving cell, serving carrier) being connected. It is desirable to support inter-frequency measurement that measures Received Signal Strength Indicator.
  • RSRP Reference Signal Received Power
  • RSSI RSSI
  • RSRP and / or RSSI in a non-serving cell of the unlicensed band may not be appropriately measured by simply applying the technique for measuring the different frequency for the license band to the unlicensed band as it is.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a user terminal, a radio base station, and a radio communication method capable of realizing appropriate different frequency measurement in a next-generation communication system. I will.
  • a user terminal includes: a measurement unit that performs different frequency measurement based on one measurement gap setting; and a control unit that controls whether or not to perform the different frequency measurement in a predetermined measurement gap. It is characterized by having.
  • FIG. 1A is a diagram showing an example of a gap pattern according to a certain MG setting
  • FIG. 1B is a diagram showing a conventional MG setting gap pattern
  • FIG. 2A is a diagram illustrating an example of a different frequency measurement scenario in LAA
  • FIG. 2B is a diagram illustrating another example of a different frequency measurement scenario in LAA.
  • FIG. 8A is a diagram showing an example of MG setting for different frequency measurement performed in FIG. 7, and FIG. 8B is a diagram of different frequency measurement performed (or not performed) in each MG (MG1-5) of FIG. 8A. It is a figure which shows an example of the content. It is a figure which shows an example of MG control in 2nd Embodiment. It is a figure which shows an example of the conventional different frequency measurement with respect to multiple carriers. It is a figure which shows an example of the different frequency measurement in 3rd Embodiment with respect to multiple carriers.
  • LTE / LTE-A in an unlicensed band
  • an interference control function is required for coexistence with LTE, Wi-Fi, or other systems of other operators.
  • a system that operates LTE / LTE-A in an unlicensed band is generally referred to as LAA, LAA-LTE, LTE-U, U-, regardless of whether the operation mode is CA, DC, or SA. It may be called LTE or the like.
  • a transmission point for example, a radio base station (eNB), a user terminal (UE), or the like
  • a carrier of an unlicensed band may be referred to as a carrier frequency or simply a frequency
  • other entities for example, other UEs
  • the transmission point performs listening (LBT) at a timing before a predetermined period before the transmission timing.
  • the transmission point that executes LBT searches the entire target carrier band (for example, one component carrier (CC)) at a timing before a predetermined period before the transmission timing, and other devices It is confirmed whether (for example, a radio base station, UE, Wi-Fi device, etc.) is communicating in the carrier band.
  • CC component carrier
  • listening means that a certain transmission point (for example, a radio base station, a user terminal, etc.) exceeds a predetermined level (for example, predetermined power) from another transmission point before transmitting a signal.
  • a predetermined level for example, predetermined power
  • the listening performed by the radio base station and / or the user terminal may be referred to as LBT, CCA, carrier sense, or the like.
  • the transmission point When the transmission point can confirm that no other device is communicating, the transmission point performs transmission using the carrier. For example, when the reception power measured by the LBT (reception signal power during the LBT period) is equal to or less than a predetermined threshold, the transmission point determines that the channel is in an idle state (LBT idle ) and performs transmission.
  • LBT idle the reception power measured by the LBT (reception signal power during the LBT period) is equal to or less than a predetermined threshold
  • the transmission point determines that the channel is in an idle state (LBT idle ) and performs transmission.
  • “the channel is idle” means that the channel is not occupied by a specific system, and the channel is idle, the channel is clear, the channel is free, and the like.
  • the transmission point when the transmission point detects that another device is in use even in a part of the target carrier band, the transmission point stops its transmission process. For example, if the transmission point detects that the received power of a signal from another device related to the band exceeds a predetermined threshold, the transmission point determines that the channel is busy (LBT busy ) and transmits Do not do. In the case of LBT busy , the channel can be used only after performing LBT again and confirming that it is in an idle state. Note that the channel idle / busy determination method using the LBT is not limited to this.
  • the transmission / reception configuration related to the LBT has a fixed timing.
  • the transmission / reception configuration related to the LBT is not fixed in the time axis direction, and the LBT is performed according to demand.
  • the FBE has a fixed frame period, and if a channel is usable as a result of performing carrier sense in a predetermined frame (may be called LBT time (LBT duration), etc.) This is a mechanism that performs transmission, but waits without performing transmission until the carrier sense timing in the next frame if the channel cannot be used.
  • LBT time LBT duration
  • LBE extends the carrier sense time if the channel is unusable as a result of carrier sense (initial CCA), and continuously performs carrier sense until the channel becomes usable. ) The mechanism to implement the procedure. In LBE, a random back-off is necessary for proper collision avoidance.
  • the carrier sense time (which may be referred to as a carrier sense period) is a time (for example, 1) for performing processing such as listening to determine whether or not a channel can be used in order to obtain one LBT result. Symbol length).
  • the transmission point can transmit a predetermined signal (for example, a channel reservation signal) according to the LBT result.
  • the LBT result refers to information (for example, LBT idle , LBT busy ) relating to the channel availability obtained by the LBT in the carrier in which the LBT is set.
  • interference between LAA and Wi-Fi, interference between LAA systems, etc. can be avoided. be able to. Further, even when transmission points are controlled independently for each operator who operates the LAA system, interference can be reduced without grasping each control content by the LBT.
  • the SCell Secondary Cell
  • the UE detects the SCell present in the vicinity by RRM (Radio Resource Management) measurement and measures the reception quality. After that, it is necessary to report to the network.
  • the signal for RRM measurement in LAA is Rel. 12 based on the discovery signal (DS: Discovery Signal).
  • detection measurement signal detection measurement signal
  • DRS Discovery Reference Signal
  • DS Discovery Signal
  • LAA DRS LAA DRS
  • LAA DS LAA DS
  • LAA SCell SCell of the unlicensed band
  • LAA DRS is Rel. 12 As with DS, synchronization signal (PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), cell-specific reference signal (CRS) and channel state measurement reference signal (CSI-RS: Channel) It may be configured to include at least one of (State Information Reference Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS cell-specific reference signal
  • CSI-RS Channel
  • It may be configured to include at least one of (State Information Reference Signal).
  • the network (for example, a radio base station) can set a LATC DRS DMTC (Discovery Measurement Timing Configuration) for each frequency for the user terminal.
  • the DMTC includes information related to a DRS transmission period (may be referred to as a DMTC periodicity), a DRS measurement timing offset, and the like.
  • DRS is transmitted in DMTC period (DMTC duration) every DMTC period.
  • DMTC period DMTC duration
  • the DMTC period is fixed to 6 ms length.
  • the length of DRS transmitted in the DMTC period (which may be referred to as a DRS period (DS), DS period, DRS burst, DS burst, etc.) is 1 ms to 5 ms.
  • DS DRS period
  • DS burst DS burst
  • DS burst DS burst
  • DS burst DS burst
  • etc. the length of DRS transmitted in the DMTC period
  • LAA DS Rel.
  • the same setting as 12 may be used, or a different setting may be used.
  • the DRS period may be 1 ms or less, or 1 ms or more.
  • the radio base station performs listening (LBT) before transmitting LAA DRS, and transmits LAA DRS in the case of LBT idle .
  • the user terminal grasps the timing and period of the DRS period by DMTC notified from the network, and performs detection and / or measurement of LAA DRS.
  • UE supports inter-frequency measurement in which measurement is performed using a non-serving carrier (unlicensed band) different from the serving carrier (unlicensed band) being connected. Yes.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • RSSRQ Reference Signal Received Quality
  • RSRP is the received power of a desired signal, and is measured using, for example, CRS, DRS, and the like.
  • RSSI is the total received power including the received power of the desired signal and interference and noise power.
  • RSRQ is the ratio of RSRP to RSSI.
  • the UE switches the reception frequency from the serving carrier to the non-serving carrier in a measurement gap (MG) and measures at least one of RSRP, RSSI, and RSRQ using, for example, DRS.
  • the measurement gap is a period for performing different frequency measurement, and the UE stops transmission / reception in the carrier in communication and performs measurement in a carrier of another frequency in the period.
  • FIG. 1 is a diagram showing an example of a conventional MG setting.
  • FIG. 1A is a diagram illustrating an example of a gap pattern according to a certain MG setting.
  • the UE uses, as the MG, a predetermined time length (also referred to as Measurement Gap Length (MGL)) repeated in a predetermined repetition period (also referred to as Measurement Gap Repetition Period (MGRP)).
  • MGL Measurement Gap Length
  • MGRP Measurement Gap Repetition Period
  • the gap pattern is defined by MGL and MGRP.
  • the UE receives a gap pattern identifier (gap pattern ID) by higher layer signaling (for example, RRC signaling), the UE can specify the gap pattern based on the identifier.
  • the gap offset may be notified by higher layer signaling (for example, RRC signaling).
  • the gap offset is a start offset from the start of a predetermined radio frame to the start of MG, and indicates the MG timing.
  • the UE may specify a gap pattern based on the notified gap offset. In this case, the gap pattern is notified implicitly.
  • a gap pattern 0 in which MGL is 6 ms and MGRP is 40 ms a gap pattern 1 in which MGL is 6 ms and MGRP is 80 ms.
  • Such a conventional MG setting is considered to be used in the license band.
  • FIG. 2 is a diagram illustrating an example of a different frequency measurement scenario in LAA.
  • different frequency measurement here, RSSI measurement
  • two scenarios shown in FIG. 2 can be considered.
  • FIG. 2A shows a case where the serving eNB transmits a signal (for example, a data signal, DRS, etc.) on a non-serving carrier to be measured (hereinafter referred to as scenario 1).
  • a signal for example, a data signal, DRS, etc.
  • scenario 1 due to the signal transmitted from the serving eNB, interference from other than the serving eNB cannot be accurately measured in the non-serving carrier. Thereby, the obtained measurement result does not appropriately reflect the load status of the non-serving carrier.
  • FIG. 2B shows a case where the serving eNB does not transmit a signal on a non-serving carrier to be measured (hereinafter referred to as scenario 2).
  • scenario 2 since it is not influenced by the serving eNB, interference from other than the serving eNB can be accurately measured in the non-serving carrier. Thereby, the obtained measurement result appropriately reflects the load status of the non-serving carrier.
  • FIG. 3 is a diagram showing an example of conventional different frequency measurement using MG.
  • FIG. 3 shows data transmission on the serving carrier and gap patterns on the non-serving carrier.
  • FIG. 3 shows a state where UE scheduling on the serving carrier in a period overlapping with MG is suspended. Therefore, when the MG is set in the UE, the eNB may spend a long time until the scheduling is successful, and the frequency utilization efficiency may be reduced.
  • the present inventors have conceived that the MG setting set semi-statically is dynamically modified to perform different frequency measurement. According to one aspect of the present invention, communication interruption of a serving carrier and loss of scheduling opportunity can be reduced, and a decrease in frequency utilization efficiency can be suppressed.
  • the license band is assumed to be PCell (Primary Cell) and the unlicensed band is assumed to be SCell.
  • PCell Primary Cell
  • SCell Secondary Cell
  • the license band (and PCell) is a carrier in which listening (LBT) is not set (may be referred to as a carrier that does not implement LBT, a carrier that cannot be implemented, etc.), and an unlicensed band (and SCell).
  • LBT listening
  • SCell an unlicensed band
  • the combination of the carrier in which the LBT is not set and the carrier to be set and the PCell and SCell are not limited to the above-described configuration.
  • the present invention can also be applied to a case where the UE is connected to an unlicensed band (a carrier for which listening (LBT) is set) in a stand-alone manner.
  • the UE controls whether or not to perform different frequency measurement based on predetermined downlink control information (DCI). Specifically, the UE determines whether to perform MG measurement after reception of the DCI or not (skip) based on information indicating the validity / invalidity of the MG included in the DCI.
  • DCI downlink control information
  • MG to be restricted by the information may be one MG that occurs next on the basis of immediately after reception of DCI, or may be a part or all of MG included in a predetermined period. From the viewpoint of the UE, whether or not to measure a certain MG can be determined based on the received information indicating the validity / invalidity of the latest MG.
  • information indicating the validity / invalidity of the MG may be represented by 1 bit.
  • '0' may indicate that MG is disabled
  • '1' may indicate that MG is enabled, or vice versa.
  • the information may be used by replacing any bit in the existing DCI format, or may be represented by a bit defined in the new DCI format.
  • DCI including information indicating validity / invalidity of MG is set to be transmitted by at least one of a license carrier and an unlicensed carrier.
  • the UE can determine the validity / invalidity of the MG based on the information indicating the validity / invalidity of the latest MG.
  • Information indicating the validity / invalidity of the MG may be included in the DCI that schedules radio resources overlapping with the MG, or may be included in the DCI transmitted within a predetermined period before the start of the MG.
  • ENB includes information indicating validity / invalidity of MG in DCI and notifies UE.
  • the eNB transmits a signal (for example, a data signal and / or DRS) during MG on at least one of a serving carrier to which the UE is connected and a carrier (non-serving carrier) to be subjected to different frequency measurement. ) Is transmitted, DCI is notified including information indicating “invalid”.
  • the DCI is notified including information indicating “valid”.
  • scenario 2 when a signal is transmitted during MG on the serving carrier, the eNB notifies DCI including information indicating “invalid”. Further, when a signal is not transmitted during MG on the serving carrier, DCI is notified including information indicating “valid”.
  • FIG. 4 is a diagram illustrating an example of MG control in the case of scenario 1 in the first embodiment.
  • signal transmission is scheduled on the serving carrier so as to overlap with MGs (MG1-MG4) arranged every MGRP (for example, 40 ms).
  • MGs MG1-MG4
  • the serving eNB before starting each MG, notifies the UE including information indicating invalidity of the MG in the DCI.
  • the UE controls not to perform measurement of non-serving carriers in each MG.
  • FIG. 5 is a diagram illustrating another example of MG control in the case of scenario 1 in the first embodiment.
  • signal transmission is scheduled on the serving carrier so as not to overlap with MGs (MG1-MG4) arranged every MGRP (for example, 40 ms).
  • MGs MG1-MG4
  • MGRP for example, 40 ms
  • signal transmission is scheduled overlapping with MG3.
  • the serving eNB before starting the MG other than MG3, notifies the UE including information indicating the validity of the MG in the DCI, and includes information indicating the invalidity of the MG in the DCI before starting the MG3. To notify.
  • the UE controls to perform measurement of non-serving carriers in MGs other than MG3.
  • FIG. 6 is a diagram illustrating an example of MG control in the case of scenario 2 in the first embodiment.
  • signal transmission is scheduled on the serving carrier so that MG (MG1-MG4) arranged every MGRP (for example, 40 ms) overlaps only in MG3.
  • MG MG1-MG4
  • MGRP for example, 40 ms
  • signal transmission is not scheduled in a non-serving carrier.
  • the serving eNB before starting the MG other than MG3, notifies the UE including information indicating the validity of the MG in the DCI, and includes information indicating the invalidity of the MG in the DCI before starting the MG3. To notify.
  • the UE controls to perform measurement of non-serving carriers in MGs other than MG3.
  • the structure which performs RSSI measurement in the time shorter than 6 ms is examined. Specifically, it is considered that the RSSI measurement time is a minimum of 5 ms from one OFDM (Orthogonal Frequency Division Multiplexing) symbol. By shortening the RSSI measurement time, it is possible to prevent a communication opportunity in the serving carrier from being spoiled.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present inventors have conceived the following modification in view of dynamically responding to a short RSSI measurement time.
  • the eNB may further include information on the length of the measurement gap (MGL).
  • MGL measurement gap
  • information including one MGRP (for example, 40 ms) and an MGL candidate is notified to the UE as an MG setting for different frequency measurement.
  • the MGL candidate means an MGL specified by information on the MGL included in the DCI. For example, when there are two MGL candidates, 6 ms and xms (x ⁇ 6), a predetermined 1 bit of DCI is used as information on MGL, and when the information is “1”, the first candidate (6 ms) is set. In the case of '0', the second candidate (xms) may be represented. An MGL candidate shorter than 6 ms is suitable as the RSSI measurement time.
  • the eNB can dynamically adjust the actual MGL and MGRP values of different CCs using 2 bits of DCI.
  • the information indicating the validity / invalidity of the MG enables the MGRP adjustment of the CC in which the MG immediately after the DCI reception occurs, and the MGL adjustment of the CC in which the MG immediately after the DCI reception can be performed based on the information on the MGL.
  • FIG. 7 is a diagram illustrating an example of a configuration for performing different frequency measurement.
  • FIG. 8 is a diagram showing an example of MG control in the case of the configuration of FIG. 7 in the modification of the first embodiment.
  • the radio base station (serving eNB) is configured to be able to communicate using carriers F1-F4 having different frequencies in the unlicensed band.
  • Carriers F1-F3 are in an on state in which DRS / data is transmitted and received.
  • Carrier F4 is in an off state in which no DRS / data is transmitted / received.
  • the carrier F1 is set as a serving carrier of the user terminal (UE).
  • the carriers F2-F4 are not set as the serving carrier of the UE.
  • the eNB sets the UE to perform RSRP different frequency measurement using the carriers F2 and F3 and to perform RSSI different frequency measurement using the carriers F3 and F4.
  • FIG. 8B shows the contents of the different frequency measurement performed (or not performed) by each MG (MG1-5) of FIG. 8A.
  • the different frequency measurement in MG is performed in the order of F2, F3, F4, F2,..., But is not limited thereto.
  • the UE receives DCI including 2 bits representing information indicating validity / invalidity of the MG and information on the MGL on the serving carrier.
  • the UE sets RSRP measurement in F2 to be measured by MG4, but the above two bits of DCI received before MG4 are “01”, so MG4 does not perform different frequency measurement.
  • information regarding offset may be included in DCI instead of information indicating validity / invalidity of MG.
  • the information related to the offset represents the shift amount of the start time of the next (most recent) MG. For example, when the information indicates “1”, the UE may shift the next MG by 1 ms.
  • the information regarding the offset may be an arbitrary value (negative value, 0, positive value, etc.). By shifting the MG, it is possible to control the MG so as not to overlap with the signal transmission of the serving carrier and / or the non-serving carrier.
  • DCI may include information indicating validity / invalidity of MG and / or information regarding MGL together with information regarding offset.
  • the MG setting set semi-statically can be dynamically modified and used, communication interruption of the serving carrier and loss of scheduling opportunity can be reduced. It is possible to suppress a decrease in frequency utilization efficiency.
  • a new UE operation is defined when MG and serving carrier scheduling (data transmission and / or reception) overlap.
  • the UE performs measurement using MG in preference to scheduling for the own terminal.
  • the UE performs scheduling for its own terminal with priority over measurement using MG, with some exceptions described later.
  • the UE determines whether or not to perform different frequency measurement in a certain MG, and scheduling information (for example, DL assignment (DL grant), UL grant) that indicates at least one of transmission and reception of data in a period overlapping with the MG. ) May be determined based on whether or not it is notified within a predetermined period (for example, Nms) before the MG.
  • the predetermined period may be 2 ms, 4 ms, 6 ms, or the like, for example.
  • the UE When the scheduling information that satisfies this condition is notified, the UE skips the MG (different frequency measurement in the MG). On the other hand, when scheduling information that satisfies this condition is not notified, the UE performs different frequency measurement using the MG.
  • the UE may not be able to perform a different frequency measurement for a long time.
  • the MG may be controlled to perform different frequency measurement.
  • the UE can reset the skip count of the different frequency measurement (set it to 0) and return to the control that prioritizes the measurement using the MG over the scheduling.
  • the predetermined number M may be 2, 4, 6, or the like, for example.
  • the serving eNB can recognize that the UE skips the different frequency measurement continuously a predetermined number of times because the own device schedules the UE. For this reason, it is preferable that the serving eNB performs control so that scheduling is not performed for the UE in the next MG in which the UE skips the different frequency measurement for a predetermined number of times.
  • FIG. 9 is a diagram illustrating an example of MG control according to the second embodiment.
  • the UE skips measurement of non-serving carriers and performs scheduled data transmission / reception in MG1 where scheduling of serving carriers overlaps.
  • UE performs measurement of non-serving carriers in MG2 where scheduling of serving carriers does not overlap.
  • the UE skips measurement of non-serving carriers and performs scheduled data transmission / reception in MG3 and MG4 where scheduling of serving carriers overlaps.
  • the UE performs measurement of the non-serving carrier in the MG 5 after having already skipped M times, although the scheduling of the serving carrier overlaps. In MG5, the UE may not be scheduled on the serving carrier.
  • the serving carrier communication can be prioritized as much as possible, and the decrease in frequency utilization efficiency can be suppressed.
  • the measurement period in each carrier is the same.
  • the measurement cycle of each carrier is calculated by (MGRP) ⁇ (number of carriers of different frequency measurement target).
  • FIG. 10 is a diagram illustrating an example of conventional different frequency measurement for a plurality of carriers.
  • the MGRP is 40 ms, so the measurement period of each carrier is 120 ms.
  • the MG is always used for the different frequency measurement of any carrier, and UE scheduling cannot be performed at the timing overlapping with the MG, and the frequency utilization efficiency is high. There was a risk of decline.
  • the present inventors have noted that the frequency with which measurement (for example, RSSI measurement) is required may be different for each carrier. Therefore, the present inventors have conceived a configuration in which the MG cycle can be changed for each carrier (CC), and arrived at the third embodiment. Specifically, the UE controls whether or not to perform different frequency measurement in each MG based on information on the measurement period of the carrier that is the target of different frequency measurement. Information regarding the measurement cycle may be referred to as measurement cycle scaling information, scaling information, or the like.
  • the scaling information may be notified to the UE by one of upper layer signaling (for example, RRC signaling) and downlink control information (for example, DCI) or a combination thereof.
  • RRC signaling for example, RRC signaling
  • DCI downlink control information
  • the scaling information since the scaling information is CC-specific information, it may be notified by being included in a measurement target setting information element (for example, MeasObjectEUTRA) of RRC configuration (RRC Configuration) signaling (for example, RRCConnectionReconfiguration).
  • RRC configuration RRC Configuration
  • the scaling information may be a scalar value, for example, and may be called gapScalar.
  • the UE uses, as the measurement period of each carrier, a period obtained by multiplying the measurement period calculated based on MGRP or the number of carriers to be measured at different frequencies as described above and a scalar value set for each carrier.
  • FIG. 11 is a diagram illustrating an example of different frequency measurement in the third embodiment for a plurality of carriers.
  • FIG. 11 as in FIG. 10, there are three non-serving carriers as a measurement target, and MGRP is 40 ms. Therefore, the conventionally calculated carrier measurement period is 120 ms. In addition, scaling information is set for each carrier.
  • '2' is set for the non-serving carrier 1
  • '1' is set for the non-serving carrier 2
  • '1' is set for the non-serving carrier 3.
  • the present invention can be applied even when a setting different from the existing MG setting is defined for the UE.
  • the MG setting other than the MG setting shown in FIG. 1 (for example, MGRP is shorter than 40 ms, MGL is shorter than 6 ms, etc.)
  • the MG setting is dynamically corrected using the above-described embodiment. It is good also as a structure which implements different frequency measurement.
  • Wireless communication system Wireless communication system
  • a wireless communication method according to any and / or combination of the above embodiments of the present invention is applied.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system 1 carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) having the system bandwidth of the LTE system as one unit can be applied.
  • the wireless communication system 1 also has a wireless base station (for example, LTE-U base station) that can use an unlicensed band.
  • a wireless base station for example, LTE-U base station
  • the wireless communication system 1 includes SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), etc. May be called.
  • the radio communication system 1 shown in FIG. 12 includes a radio base station 11 that forms a macro cell C1, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. I have. Moreover, the user terminal 20 is arrange
  • LTE-U unlicensed band
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. For example, assist information (for example, DL signal configuration) regarding the radio base station 12 (for example, LTE-U base station) that uses the unlicensed band is transmitted from the radio base station 11 that uses the license band to the user terminal 20. can do. Further, when CA is performed in the license band and the unlicensed band, it is possible to adopt a configuration in which one radio base station (for example, the radio base station 11) controls the schedules of the license band cell and the unlicensed band cell.
  • assist information for example, DL signal configuration
  • LTE-U base station LTE-U base station
  • the user terminal 20 may be connected to the radio base station 12 without being connected to the radio base station 11.
  • the wireless base station 12 using the unlicensed band may be connected to the user terminal 20 in a stand-alone manner.
  • the radio base station 12 controls the schedule of the unlicensed band cell.
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • the radio base stations 10 that share and use the same unlicensed band are configured to be synchronized in time.
  • Each user terminal 20 is a terminal that supports various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • Carrier Frequency Division Multiple Access is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access methods are not limited to these combinations.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • the EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink L1 / L2 control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used.
  • PUSCH may be referred to as an uplink data channel.
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information (ACK / NACK), and the like are transmitted by PUCCH.
  • CQI Channel Quality Indicator
  • ACK / NACK delivery confirmation information
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS Demodulation Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 13 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can transmit / receive UL / DL signals in an unlicensed band.
  • the transmission / reception unit 103 may be capable of transmitting / receiving UL / DL signals in a license band.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 receives a downlink signal to the user terminal 20 using at least the unlicensed band.
  • the transmission / reception unit 103 transmits DRS including CSI-RS frequency-multiplexed with PSS / SSS in the unlicensed band in the DMTC period set in the user terminal 20.
  • the transmission / reception unit 103 transmits scheduling information, information indicating validity / invalidity of MG, DCI including at least one of information regarding MGL and information regarding offset, RRC signaling including information regarding a measurement period for each CC, and the like.
  • the transmission / reception unit 103 may receive the RRM measurement result (for example, CSI feedback) of the non-serving carrier from the user terminal 20 in the license band and / or the unlicensed band.
  • the RRM measurement result for example, CSI feedback
  • FIG. 14 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention. Note that FIG. 14 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 14, the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. ing.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. ing.
  • the control unit (scheduler) 301 controls the entire radio base station 10. When scheduling is performed by one control unit (scheduler) 301 for the license band and the unlicensed band, the control unit 301 controls communication between the license band cell and the unlicensed band cell.
  • the control unit 301 may be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling (for example, resource allocation) of system information, a downlink data signal transmitted on the PDSCH, and a downlink control signal transmitted on the PDCCH and / or EPDCCH. It also controls scheduling of synchronization signals (PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and downlink reference signals such as CRS, CSI-RS, and DMRS.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the control unit 301 also transmits an uplink data signal transmitted on the PUSCH, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
  • an uplink data signal transmitted on the PUSCH for example, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
  • HARQ-ACK delivery confirmation signal
  • the control unit 301 controls the transmission of the downlink signal to the transmission signal generation unit 302 and the mapping unit 303 according to the LBT result obtained by the measurement unit 305. Specifically, the control unit 301 generates and maps various signals included in the DRS so that the DRS (LAA DRS) described in the first, second, or third embodiment is transmitted in an unlicensed band. Control transmission, etc.
  • LAA DRS DRS
  • control unit 301 generates and transmits an MG setting so as to perform different frequency measurement (such as RRM measurement, RSRP measurement, and RSSI measurement) with respect to a predetermined user terminal 20 in the unlicensed band. You may control.
  • different frequency measurement such as RRM measurement, RSRP measurement, and RSSI measurement
  • control unit 301 acquires the result of different frequency measurement (for example, received power, received signal strength, received quality, channel state, etc.) performed in the predetermined user terminal 20 and uses it for control (scheduling, etc.). May be.
  • different frequency measurement for example, received power, received signal strength, received quality, channel state, etc.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment that notifies downlink signal allocation information and a UL grant that notifies uplink signal allocation information based on an instruction from the control unit 301.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the transmission signal generation unit 302 generates a DRS including PSS, SSS, CRS, CSI-RS, and the like.
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 Based on an instruction from the control unit 301, the measurement unit 305 performs LBT on a carrier (for example, an unlicensed band) in which LBT is set, and the LBT result (for example, whether the channel state is idle or busy). Is output to the control unit 301.
  • a carrier for example, an unlicensed band
  • the LBT result for example, whether the channel state is idle or busy
  • the measurement unit 305 may, for example, receive power (for example, RSRP (Reference Signal Received Power)), received signal strength (for example, RSSI (Received Signal Strength Indicator)), and reception quality (for example, RSRQ (Reference). Signal Received Quality)) and channel status may be measured.
  • the measurement result may be output to the control unit 301.
  • FIG. 15 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can transmit / receive UL / DL signals in an unlicensed band.
  • the transmission / reception unit 203 may be capable of transmitting / receiving UL / DL signals in a license band.
  • the transmission / reception unit 203 can be composed of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which are described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 receives a downlink signal transmitted from the radio base station 10 using at least the unlicensed band.
  • the transmission / reception unit 203 receives a DRS including a CSI-RS that is frequency-multiplexed with the PSS / SSS in an unlicensed band during the DMTC period set from the radio base station 10.
  • the transmission / reception unit 203 receives scheduling information, information indicating validity / invalidity of MG, DCI including at least one of information regarding MGL and information regarding offset, RRC signaling including information regarding a measurement period for each CC, and the like. .
  • the transmission / reception unit 203 transmits an uplink signal to the radio base station 10 using at least one of the license band and the unlicensed band.
  • the transmission / reception unit 203 may transmit an RRM measurement result (for example, RSRP, RSSI, RSRQ, CSI feedback of a non-serving carrier) in a license band and / or an unlicensed band.
  • an RRM measurement result for example, RSRP, RSSI, RSRQ, CSI feedback of a non-serving carrier
  • FIG. 16 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 16 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like.
  • HARQ-ACK acknowledgment signal
  • the control unit 401 may control the reception signal processing unit 404 and / or the measurement unit 405 to perform RRM measurement and cell search using DRS (DRA for LAA) in the unlicensed band. Further, the control unit 401 may control transmission of the uplink signal to the transmission signal generation unit 402 and the mapping unit 403 according to the LBT result obtained by the measurement unit 405.
  • DRS DRS for LAA
  • control unit 401 performs reception frequency processing unit 404 and / or so as to perform different frequency measurement (RRM measurement, RSRP measurement, RSSI measurement, etc.) according to the MG setting notified from the radio base station 10 in the unlicensed band.
  • the measurement unit 405 may be controlled.
  • control unit 401 performs different frequency measurement for each MG specified by the quasi-static MG setting using the wireless communication method described in the first, second, or third embodiment. Determine whether or not.
  • control unit 401 controls whether or not to perform different frequency measurement in a predetermined MG based on at least one of information indicating validity / invalidity of the MG included in the DCI, information on the MGL, and information on the offset. May be.
  • control unit 401 may control whether or not to perform different frequency measurement in a predetermined MG based on scheduling information (for example, DL grant, UL grant, etc.).
  • control unit 401 may control whether or not to perform different frequency measurement in a predetermined MG based on information on the measurement cycle for each CC notified by RRC signaling.
  • control unit 401 obtains the results (eg, received power, received signal strength, received quality, channel state, etc.) measured by the measuring unit 405 using, for example, a reference signal (eg, CRS, CSI-RS, etc.). Control is performed so that feedback information (for example, CSI) is generated and transmitted to the radio base station 20.
  • the result may be a result of different frequency measurement in a non-serving carrier.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401, for example.
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401.
  • the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may perform LBT on a carrier (a carrier that performs listening before signal transmission, for example, an unlicensed band) in which LBT is set.
  • the measurement unit 405 may output an LBT result (for example, a determination result of whether the channel state is idle or busy) to the control unit 401.
  • the measurement unit 405 may measure, for example, received power (for example, RSRP), received signal strength (RSSI), received quality (for example, RSRQ), channel state, and the like of the received signal. For example, the measurement unit 405 performs RRM measurement of LAA DRS. The measurement result may be output to the control unit 401.
  • received power for example, RSRP
  • RSSI received signal strength
  • RSRQ received quality
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 17 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above physically include a central processing unit (processor) 1001, a main storage device (memory) 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, You may comprise as a computer apparatus containing the bus
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • Each function in the radio base station 10 and the user terminal 20 is performed by causing the central processing unit 1001 to perform computation by reading predetermined software (program) on hardware such as the central processing unit 1001 and the main storage device 1002. This is realized by controlling communication by the device 1004 and reading and / or writing of data in the main storage device 1002 and the auxiliary storage device 1003.
  • the central processing unit 1001 controls the entire computer by operating an operating system, for example.
  • the central processing unit 1001 may be configured by a processor (CPU: Central Processing Unit) including a control device, an arithmetic device, a register, an interface with peripheral devices, and the like.
  • CPU Central Processing Unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the central processing unit 1001.
  • the central processing unit 1001 reads programs, software modules, and data from the auxiliary storage device 1003 and / or the communication device 1004 to the main storage device 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the main storage device 1002 and operating on the central processing unit 1001, and may be realized similarly for other functional blocks.
  • the main storage device (memory) 1002 is a computer-readable recording medium, and may be configured by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), RAM (Random Access Memory), and the like.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and may be composed of at least one of a flexible disk, a magneto-optical disk, a CD-ROM (Compact Disc ROM), a hard disk drive, and the like.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, etc.) that accepts external input.
  • the output device 1006 is an output device (for example, a display, a speaker, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the central processing unit 1001 and the main storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices. .
  • the radio base station 10 and the user terminal 20 may be configured to include hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). Thus, a part or all of each functional block may be realized.
  • ASIC Application Specific Integrated Circuit
  • PLD Process-Demand Generation
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology (coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)). ), SIB (System Information Block)), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) ), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), systems using other appropriate systems and / or extended based on these It may be applied to the next generation system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • communication system 5G (5th generation mobile communication system

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

次世代の通信システムにおいて、適切な異周波測定を実現すること。本発明の一態様に係るユーザ端末は、1つのメジャメントギャップ設定に基づいて異周波測定を行う測定部と、所定のメジャメントギャップにおいて前記異周波測定を行うか否かを制御する制御部と、を有することを特徴とする。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、LTE Rel.13などともいう)も検討されている。
 Rel.8-12のLTEでは、通信事業者(オペレータ)に免許された周波数帯域(ライセンスバンド(licensed band)ともいう)において排他的な運用がなされることを想定して仕様化が行われてきた。ライセンスバンドとしては、例えば、800MHz、1.7GHz、2GHzなどが使用される。
 近年、スマートフォンやタブレットなどの高機能化されたユーザ端末(UE:User Equipment)の普及は、ユーザトラヒックを急激に増加させている。増加するユーザトラヒックを吸収するため、更なる周波数バンドを追加することが求められているが、ライセンスバンドのスペクトラム(licensed spectrum)には限りがある。
 このため、Rel.13 LTEでは、ライセンスバンド以外に利用可能なアンライセンススペクトラム(unlicensed spectrum)のバンド(アンライセンスバンド(unlicensed band)ともいう)を利用して、LTEシステムの周波数を拡張することが検討されている(非特許文献2)。アンライセンスバンドとしては、例えば、Wi-Fi(登録商標)やBluetooth(登録商標)を使用可能な2.4GHz帯や5GHz帯などの利用が検討されている。
 具体的には、Rel.13 LTEでは、ライセンスバンドとアンライセンスバンドの間でのキャリアアグリゲーション(CA:Carrier Aggregation)を行うことが検討されている。このように、ライセンスバンドとともにアンライセンスバンドを用いて行う通信をLAA(License-Assisted Access)と称する。なお、将来的には、ライセンスバンドとアンライセンスバンドのデュアルコネクティビティ(DC:Dual Connectivity)や、アンライセンスバンドのスタンドアローン(SA:Stand-Alone)もLAAの検討対象となる可能性がある。
 LAAが運用されるアンライセンスバンドでは、他事業者のLTE、Wi-Fi又はその他のシステムとの共存のため、干渉制御機能の導入が検討されている。Wi-Fiでは、同一周波数内での干渉制御機能として、CCA(Clear Channel Assessment)に基づくLBT(Listen Before Talk)が利用されている。LBTは、信号の送信前にリスニング(センシング)を行い、リスニング結果に基づいて送信を制御する技術である。例えば、日本や欧州などにおいては、5GHz帯アンライセンスバンドで運用されるWi-Fiなどのシステムにおいて、LBT機能が必須と規定されている。
 LAAでは、ユーザ端末が、接続中のアンライセンスバンドのセル(サービングセル、サービングキャリア)とは異なる周波数の他のセル(非サービングセル、非サービングキャリア)におけるRSRP(Reference Signal Received Power)及び/又はRSSI(Received Signal Strength Indicator)を測定する異周波測定(Inter-frequency measurement)をサポートすることが望まれる。
 しかしながら、ライセンスバンド用の異周波測定の手法をそのままアンライセンスバンドに適用するだけでは、アンライセンスバンドの非サービングセルにおけるRSRP及び/又はRSSIを適切に測定することができない恐れがある。
 本発明はかかる点に鑑みてなされたものであり、次世代の通信システムにおいて、適切な異周波測定を実現することができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、1つのメジャメントギャップ設定に基づいて異周波測定を行う測定部と、所定のメジャメントギャップにおいて前記異周波測定を行うか否かを制御する制御部と、を有することを特徴とする。
 本発明によれば、次世代の通信システムにおいて、適切な異周波測定を実現することができる。
図1Aは、あるMG設定に従うギャップパターンの一例を示す図であり、図1Bは、従来のMG設定のギャップパターンを示す図である。 図2Aは、LAAにおける異周波測定シナリオの一例を示す図であり、図2Bは、LAAにおける異周波測定シナリオの別の一例を示す図である。 MGを用いた従来の異周波測定の一例を示す図である。 第1の実施形態において、シナリオ1の場合のMG制御の一例を示す図である。 第1の実施形態において、シナリオ1の場合のMG制御の別の一例を示す図である。 第1の実施形態において、シナリオ2の場合のMG制御の一例を示す図である。 異周波測定を行う構成の一例を示す図である。 図8Aは、図7において行われる異周波測定のMG設定の一例を示す図であり、図8Bは、図8Aの各MG(MG1-5)で行われる(又は行われない)異周波測定の内容の一例を示す図である。 第2の実施形態におけるMG制御の一例を示す図である。 複数キャリアに対する従来の異周波測定の一例を示す図である。 複数キャリアに対する第3の実施形態における異周波測定の一例を示す図である。 本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 アンライセンスバンドでLTE/LTE-Aを運用するシステム(例えば、LAAシステム)においては、他事業者のLTE、Wi-Fi又はその他のシステムとの共存のため、干渉制御機能が必要になると考えられる。なお、アンライセンスバンドでLTE/LTE-Aを運用するシステムは、運用形態がCA、DC又はSAのいずれであるかに関わらず、総称して、LAA、LAA-LTE、LTE-U、U-LTEなどと呼ばれてもよい。
 一般に、アンライセンスバンドのキャリア(キャリア周波数又は単に周波数と呼ばれてもよい)を用いて通信を行う送信ポイント(例えば、無線基地局(eNB)、ユーザ端末(UE)など)は、当該アンライセンスバンドのキャリアで通信を行っている他のエンティティ(例えば、他のUE)を検出した場合、当該キャリアで送信を行うことが禁止されている。
 このため、送信ポイントは、送信タイミングよりも所定期間前のタイミングで、リスニング(LBT)を実行する。具体的には、LBTを実行する送信ポイントは、送信タイミングよりも所定期間前のタイミングで、対象となるキャリア帯域全体(例えば、1コンポーネントキャリア(CC:Component Carrier))をサーチし、他の装置(例えば、無線基地局、UE、Wi-Fi装置など)が当該キャリア帯域で通信しているか否かを確認する。
 なお、本明細書において、リスニングとは、ある送信ポイント(例えば、無線基地局、ユーザ端末など)が信号の送信を行う前に、他の送信ポイントなどから所定レベル(例えば、所定電力)を超える信号が送信されているか否かを検出/測定する動作を指す。また、無線基地局及び/又はユーザ端末が行うリスニングは、LBT、CCA、キャリアセンスなどと呼ばれてもよい。
 送信ポイントは、他の装置が通信していないことを確認できた場合、当該キャリアを用いて送信を行う。例えば、送信ポイントは、LBTで測定した受信電力(LBT期間中の受信信号電力)が所定の閾値以下である場合、チャネルがアイドル状態(LBTidle)であると判断し送信を行う。「チャネルがアイドル状態である」とは、言い換えると、特定のシステムによってチャネルが占有されていないことをいい、チャネルがアイドルである、チャネルがクリアである、チャネルがフリーである、などともいう。
 一方、送信ポイントは、対象となるキャリア帯域のうち、一部の帯域でも他の装置が使用中であることを検出した場合、自らの送信処理を中止する。例えば、送信ポイントは、当該帯域に係る他の装置からの信号の受信電力が、所定の閾値を超過していることを検出した場合、チャネルはビジー状態(LBTbusy)であると判断し、送信を行わない。LBTbusyの場合、当該チャネルは、改めてLBTを行いアイドル状態であることが確認できた後に初めて利用可能となる。なお、LBTによるチャネルのアイドル状態/ビジー状態の判定方法は、これに限られない。
 LBTのメカニズム(スキーム)としては、FBE(Frame Based Equipment)及びLBE(Load Based Equipment)が検討されている。両者の違いは、送受信に用いるフレーム構成、チャネル占有時間などである。FBEは、LBTに係る送受信の構成が固定タイミングを有するものである。また、LBEは、LBTに係る送受信の構成が時間軸方向で固定でなく、需要に応じてLBTが行われるものである。
 具体的には、FBEは、固定のフレーム周期をもち、所定のフレームで一定時間(LBT時間(LBT duration)などと呼ばれてもよい)キャリアセンスを行った結果、チャネルが使用可能であれば送信を行うが、チャネルが使用不可であれば次のフレームにおけるキャリアセンスタイミングまで送信を行わずに待機するというメカニズムである。
 一方、LBEは、キャリアセンス(初期CCA)を行った結果チャネルが使用不可であった場合はキャリアセンス時間を延長し、チャネルが使用可能となるまで継続的にキャリアセンスを行うというECCA(Extended CCA)手順を実施するメカニズムである。LBEでは、適切な衝突回避のためランダムバックオフが必要である。
 なお、キャリアセンス時間(キャリアセンス期間と呼ばれてもよい)とは、1つのLBT結果を得るために、リスニングなどの処理を実施してチャネルの使用可否を判断するための時間(例えば、1シンボル長)である。
 送信ポイントは、LBT結果に応じて所定の信号(例えば、チャネル予約(channel reservation)信号)を送信することができる。ここで、LBT結果とは、LBTが設定されるキャリアにおいてLBTにより得られたチャネルの空き状態に関する情報(例えば、LBTidle、LBTbusy)のことをいう。
 以上述べたように、LAAシステムにおいて、送信ポイントに、LBTメカニズムに基づく同一周波数内における干渉制御を導入することにより、LAAとWi-Fiとの間の干渉、LAAシステム間の干渉などを回避することができる。また、LAAシステムを運用するオペレータ毎に、送信ポイントの制御を独立して行う場合であっても、LBTによりそれぞれの制御内容を把握することなく干渉を低減することができる。
 また、LAAシステムでは、UEに対するアンライセンスバンドのSCell(Secondary Cell)の設定または再設定などを行うため、UEがRRM(Radio Resource Management)測定により周辺に存在するSCellを検出し、受信品質を測定した後、ネットワークへ報告を行うことが必要となる。LAAにおけるRRM測定のための信号は、Rel.12で規定されたディスカバリ信号(DS:Discovery Signal)をベースに検討されている。
 なお、LAAにおけるRRM測定のための信号は、検出測定信号(検出測定用信号)、ディスカバリ参照信号(DRS:Discovery Reference Signal)、ディスカバリ信号(DS:Discovery Signal)、LAA DRS、LAA DSなどと呼ばれてもよい。また、アンライセンスバンドのSCellは、例えばLAA SCellと呼ばれてもよい。
 LAA DRSは、Rel.12 DSと同様に、同期信号(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))とセル固有参照信号(CRS:Cell-specific Reference Signal)とチャネル状態測定用参照信号(CSI-RS:Channel State Information Reference Signal)の少なくとも一つを含んで構成されてもよい。
 また、ネットワーク(例えば、無線基地局)は、ユーザ端末に対して、周波数ごとにLAA DRSのDMTC(Discovery Measurement Timing Configuration)を設定することができる。DMTCは、DRSの送信周期(DMTC周期(DMTC periodicity)などと呼ばれてもよい)や、DRS測定タイミングのオフセットなどに関する情報を含む。
 DRSは、DMTC周期ごとに、DMTC期間(DMTC duration)の中で送信される。ここで、Rel.12では、DMTC期間は6ms長固定である。また、DMTC期間の中で送信されるDRSの長さ(DRS期間(DRS occasion)、DS期間、DRSバースト、DSバーストなどと呼ばれてもよい)は1ms以上5ms以下である。LAA DSでは、Rel.12と同様の設定が用いられてもよいし、異なる設定が用いられてもよい。例えば、DRS期間は、LBT時間を考慮して、1ms以下としてもよいし、1ms以上としてもよい。
 アンライセンスバンドのセルにおいて、無線基地局は、LAA DRS送信前にリスニング(LBT)を実施し、LBTidleの場合にLAA DRSを送信する。ユーザ端末は、ネットワークから通知されるDMTCによって、DRS期間のタイミングや周期を把握し、LAA DRSの検出及び/又は測定を実施する。
 ところで、LAAにおいては、UEは接続中のサービングキャリア(アンライセンスバンド)とは異なる非サービングキャリア(アンライセンスバンド)で測定を行う異周波測定(Inter-frequency measurement)をサポートすることが検討されている。異周波測定では、非サービングキャリアの参照信号受信電力(RSRP:Reference Signal Received Power)、受信信号強度(RSSI:Received Signal Strength Indicator)及び参照信号受信品質(RSRQ:Reference Signal Received Quality)の少なくとも一つが測定される。
 ここで、RSRPは、所望信号の受信電力であり、例えば、CRS、DRSなどを用いて測定される。また、RSSIは、所望信号の受信電力と干渉及び雑音電力とを含む合計の受信電力である。RSRQは、RSSIに対するRSRPの比である。
 UEは、メジャメントギャップ(MG:Measurement Gap)において、受信周波数をサービングキャリアから非サービングキャリアに切り替え、例えばDRSを用いて、RSRP、RSSI及びRSRQの少なくとも一つを測定する。ここで、メジャメントギャップとは、異周波測定を行うための期間であり、UEは、当該期間において、通信中のキャリアでの送受信を停止して別の周波数のキャリアでの測定を行う。
 図1は、従来のMG設定の一例を示す図である。図1Aは、あるMG設定に従うギャップパターンの一例を示す図である。図1Aに示すように、UEは、所定の時間長(Measurement Gap Length(MGL)ともいう)を、所定の繰り返し期間(Measurement Gap Repetition Period(MGRP)ともいう)で繰り返したものをMGとして用いる。ギャップパターンは、MGL及びMGRPにより規定される。UEは、ギャップパターン識別子(ギャップパターンID)を上位レイヤシグナリング(例えば、RRCシグナリング)により受信すると、当該識別子に基づいてギャップパターンを特定することができる。
 また、異周波測定では、ギャップオフセット(gap offset)が、上位レイヤシグナリング(例えば、RRCシグナリング)により通知されてもよい。ここで、ギャップオフセットは、図1Aに示すように、所定の無線フレームの先頭からMGが開始されるまでの開始オフセットであり、MGのタイミングを示す。なお、UEは、通知されたギャップオフセットによりギャップパターンを特定してもよい。この場合、ギャップパターンが黙示的(implicitly)に通知されることとなる。
 従来のLTEでは、図1Bのように、MGLが6msでありMGRPが40msであるギャップパターン0と、MGLが6msでありMGRPが80msであるギャップパターン1と、の2つのパターンが規定される。ライセンスバンドでは、このような従来のMG設定が利用されると考えられる。
 UEは、サービングeNB以外からの干渉を把握するために、非サービングキャリアのRSSI測定を行う。図2は、LAAにおける異周波測定シナリオの一例を示す図である。非サービングキャリアの異周波測定(ここでは、RSSI測定)を行う場合、図2に示す2つのシナリオが考えられる。
 図2Aは、サービングeNBが測定対象の非サービングキャリアで信号(例えば、データ信号、DRSなど)を送信する場合(以下、シナリオ1と呼ぶ)を示している。シナリオ1では、サービングeNBから送信される信号により、非サービングキャリアにおいてサービングeNB以外からの干渉が正確に測定できなくなる。これにより、得られた測定結果は、非サービングキャリアの負荷状況を適切に反映したものではなくなってしまう。
 図2Bは、サービングeNBが測定対象の非サービングキャリアで信号を送信しない場合(以下、シナリオ2と呼ぶ)を示している。シナリオ2では、サービングeNBの影響を受けないため、非サービングキャリアにおいてサービングeNB以外からの干渉が正確に測定できる。これにより、得られた測定結果は、非サービングキャリアの負荷状況を適切に反映したものとなる。
 以上から、LAAの非サービングセルの異周波RSSI測定に関しては、シナリオ1ではなくシナリオ2の環境下となるように、測定のタイミングや長さを決定しなければならないという課題がある。
 また、いずれのシナリオであっても、サービングキャリアにおけるUEのスケジューリングが長期間サスペンド(一時停止)してしまうという課題もある。これについて図3を用いて説明する。図3は、MGを用いた従来の異周波測定の一例を示す図である。図3には、サービングキャリアにおけるデータ送信と、非サービングキャリアにおけるギャップパターンと、が示されている。
 既存のLTEシステムでは、MGによる測定の方が、UEに対するスケジューリングより優先して実施されるように制御される。図3では、MGと重複する期間におけるサービングキャリアでのUEのスケジューリングがサスペンドしてしまう様子が示されている。したがって、eNBは、UEにMGが設定される場合には、スケジューリングが成功するまでに長時間を費やし、周波数利用効率が低下するおそれがある。
 そこで、本発明者らは、準静的に設定されたMG設定を、動的に修正して異周波測定を実施することを着想した。本発明の一態様によれば、サービングキャリアの通信中断やスケジューリング機会の喪失を低減することができ、周波数利用効率の低下を抑制することができる。
 以下、本発明の実施形態について添付図面を参照して詳細に説明する。各実施形態では、ライセンスバンドをPCell(Primary Cell)とし、アンライセンスバンドをSCellとしてCAが適用されるものとして説明するが、これに限られない。
 すなわち、各実施の形態において、ライセンスバンド(及びPCell)をリスニング(LBT)が設定されないキャリア(LBTを実施しないキャリア、実施できないキャリアなどと呼ばれてもよい)とし、アンライセンスバンド(及びSCell)をリスニング(LBT)が設定されるキャリア(又はLBTを実施するキャリア、実施すべきキャリアなどと呼ばれてもよい)とした構成も、本発明の実施形態を構成する。
 また、LBTが設定されないキャリア及び設定されるキャリアと、PCell及びSCellとの組み合わせについても、上述の構成に限られない。例えばアンライセンスバンド(リスニング(LBT)が設定されるキャリア)にスタンドアローンでUEが接続する場合などにも、本発明を適用することができる。
(無線通信方法)
<第1の実施形態>
 本発明の第1の実施形態では、UEは、所定の下り制御情報(DCI)に基づいて、異周波測定を行うか否かを制御する。具体的には、UEは、DCIに含まれるMGの有効/無効を示す情報に基づいて、当該DCIの受信後のMGの測定を実施するか、実施しない(スキップする)か、を決定する。
 当該情報で制限対象となるMGは、DCIの受信直後を基準として、次に起こる1つのMGであってもよいし、所定の期間内に含まれる一部又は全部のMGであってもよい。UE側視点から見ると、あるMGの測定を実施するか否かは、受信した最新のMGの有効/無効を示す情報に基づいて決定することができる。
 例えば、MGの有効/無効を示す情報は、1ビットで表されてもよい。この場合、‘0’がMGを無効にすることを表し、‘1’がMGを有効にすることを表してもよく、逆であってもよい。なお、当該情報は、既存のDCIフォーマットのいずれかのビットを読み替えて用いてもよいし、新しいDCIフォーマットで規定されるビットで表されてもよい。
 MGの有効/無効を示す情報を含むDCIは、ライセンスキャリア及びアンライセンスキャリアのうち、少なくとも1つのキャリアで送信されるように設定される。UEは、直近のMGの有効/無効を示す情報に基づいて、MGの有効/無効を判断することができる。MGの有効/無効を示す情報は、MGと重複する無線リソースをスケジューリングするDCIに含まれても良いし、MGの開始前の所定の期間内に送信されるDCIに含まれてもよい。
 eNBは、MGの有効/無効を示す情報をDCIに含めてUEに通知する。ここで、シナリオ1においては、eNBは、UEが接続中のサービングキャリア及び異周波測定の対象となるキャリア(非サービングキャリア)の少なくとも1つでMG中に信号(例えば、データ信号及び/又はDRS)が送信される場合、DCIに「無効」を示す情報を含めて通知する。また、サービングキャリア及び非サービングキャリアのいずれでもMG中に信号が送信されない場合、DCIに「有効」を示す情報を含めて通知する。
 一方、シナリオ2においては、eNBは、サービングキャリアでMG中に信号が送信される場合、DCIに「無効」を示す情報を含めて通知する。また、サービングキャリアでMG中に信号が送信されない場合、DCIに「有効」を示す情報を含めて通知する。
 図4は、第1の実施形態において、シナリオ1の場合のMG制御の一例を示す図である。図4では、MGRP(例えば、40ms)ごとに配置されるMG(MG1-MG4)と重複するように、サービングキャリアで信号送信がスケジューリングされている。この場合、各MGの開始前に、サービングeNBはUEに対してDCIにMGの無効を示す情報を含めて通知する。UEは、各MGにおける非サービングキャリアの測定を実施しないように制御する。
 図5は、第1の実施形態において、シナリオ1の場合のMG制御の別の一例を示す図である。図5では、MGRP(例えば、40ms)ごとに配置されるMG(MG1-MG4)と重複しないように、サービングキャリアで信号送信がスケジューリングされている。一方で、非サービングキャリアにおいて、MG3と重複して信号送信がスケジューリングされている。
 この場合、MG3以外のMGの開始前に、サービングeNBはUEに対してDCIにMGの有効を示す情報を含めて通知し、MG3の開始前には、DCIにMGの無効を示す情報を含めて通知する。UEは、MG3以外のMGにおける非サービングキャリアの測定を実施するように制御する。
 図6は、第1の実施形態において、シナリオ2の場合のMG制御の一例を示す図である。図6では、MGRP(例えば、40ms)ごとに配置されるMG(MG1-MG4)について、MG3でのみ重複するように、サービングキャリアで信号送信がスケジューリングされている。一方で、非サービングキャリアにおいては、信号送信はスケジューリングされない。
 この場合、MG3以外のMGの開始前に、サービングeNBはUEに対してDCIにMGの有効を示す情報を含めて通知し、MG3の開始前には、DCIにMGの無効を示す情報を含めて通知する。UEは、MG3以外のMGにおける非サービングキャリアの測定を実施するように制御する。
<第1の実施形態の変形例>
 Rel.13 LTEでは、RSSI測定を6msより短い時間で行う構成が検討されている。具体的には、RSSI測定を行う時間を、最小で1OFDM(Orthogonal Frequency Division Multiplexing)シンボルから最大で5msとすることが検討されている。RSSI測定の時間を短くすることで、サービングキャリアにおける通信機会が無駄に損なわれることを抑制することができる。
 本発明者らは、短いRSSI測定時間に動的に対応することを鑑みて、以下の変形例を着想した。eNBは、DCIにMGの有効/無効を示す情報を含める場合、さらにメジャメントギャップの長さ(MGL)に関する情報を含めるようにしてもよい。この場合、例えば異周波測定のMG設定として、1つのMGRP(例えば、40ms)と、MGL候補と、を含む情報がUEに通知される。
 ここで、MGL候補とは、DCIに含まれるMGLに関する情報により特定されるMGLのことをいう。例えば、MGL候補が6ms及びxms(x<6)の2つである場合、DCIの所定の1ビットをMGLに関する情報とし、当該情報が‘1’である場合に1番目の候補(6ms)を表し、‘0’である場合に2番目の候補(xms)を表すように構成してもよい。6msより短いMGL候補は、RSSI測定の時間として好適である。
 つまり、eNBはDCIの2ビットを用いて、異なるCCの実際のMGL及びMGRPの値を動的に調整することができる。MGの有効/無効を示す情報により、DCI受信直後のMGが生じるCCのMGRP調整が可能であり、MGLに関する情報により、DCI受信直後のMGが生じるCCのMGL調整が可能である。
 図7及び8を参照し、DCIにMGの有効/無効を示す情報と、MGLに関する情報と、を含む場合の異周波測定の具体的な動作例について説明する。図7は、異周波測定を行う構成の一例を示す図である。図8は、第1の実施形態の変形例において、図7の構成の場合のMG制御の一例を示す図である。
 例えば、図7では、無線基地局(サービングeNB)が、アンライセンスバンドにおけるそれぞれ異なる周波数のキャリアF1-F4を用いて通信可能に構成されている。キャリアF1-F3は、DRS/データが送受信されるオン状態である。キャリアF4は、DRS/データが送受信されないオフ状態である。
 図7において、キャリアF1は、ユーザ端末(UE)のサービングキャリアとして設定されている。一方、キャリアF2-F4は、UEのサービングキャリアとして設定されていない。また、eNBは、UEに対して、キャリアF2及びF3でRSRPの異周波測定を行い、キャリアF3及びF4でRSSIの異周波測定を行うように設定する。
 図7において、UEは、図8Aに示すMG設定で異周波測定を行うように制御される。つまり、UEは、MG設定として、MGRP=40msと、2つのMGL候補(6ms、2ms)を設定されている。
 図8Bは、図8Aの各MG(MG1-5)で行われる(又は行われない)異周波測定の内容を示している。なお、図8Bでは、MGにおける異周波測定がF2、F3、F4、F2、…の順番で行われるものとするが、これに限られない。UEは、各MGの前に、MGの有効/無効を示す情報と、MGLに関する情報と、を表す2ビットを含むDCIをサービングキャリアで受信する。
 UEは、MG1で測定すべきF2ではRSRP測定が設定されており、MG1の前で受信したDCIの上記2ビットが“11”であることから、MG1では、MGL=6msを用いてRSRP測定を実施する。
 UEは、MG2で測定すべきF3ではRSRP測定及びRSSI測定が設定されており、MG2の前で受信したDCIの上記2ビットが“11”であることから、MG2では、MGL=6msを用いてRSRP測定及びRSSI測定の両方を実施する。この場合、UEは、両方の測定の代わりに、RSRP測定のみを実施してもよい。
 UEは、MG3で測定すべきF4ではRSSI測定が設定されており、MG3の前で受信したDCIの上記2ビットが“10”であることから、MG3では、MGL=2msを用いてRSSI測定を実施する。
 UEは、MG4で測定すべきF2ではRSRP測定が設定されているが、MG4の前で受信したDCIの上記2ビットが“01”であることから、MG4では、異周波測定を実施しない。
 UEは、MG5で測定すべきF3ではRSRP測定及びRSSI測定が設定されており、MG5の前で受信したDCIの上記2ビットが“10”であることから、MG5では、MGL=2msを用いてRSSI測定を実施する。このように、MGLとして6ms未満が指定されるMGでは、UEは、RSRP測定及びRSSI測定が設定されるキャリアであっても、RSSI測定を実施することを判断できる。
 なお、図7及び8の例では、MGL候補は2つ設定される場合を示したが、これに限られない。例えば、MGL候補は3つ以上設定されてもよく、この場合、DCIに含まれるMGLに関する情報は、2ビット以上で構成されてもよい。
 また、第1の実施形態の別の変形例として、MGの有効/無効を示す情報の代わりにオフセットに関する情報をDCIに含めてもよい。当該オフセットに関する情報は、次の(直近の)MGの開始時間のシフト量を表す。例えば、当該情報が‘1’を示す場合、UEは次のMGを1msシフトさせるものとしてもよい。また、オフセットに関する情報は任意の値(負の値、0、正の値など)であってもよい。MGのシフトにより、MGをサービングキャリア及び/又は非サービングキャリアの信号送信と重複しないように制御することができる。なお、オフセットに関する情報とともに、MGの有効/無効を示す情報及び/又はMGLに関する情報がDCIに含まれてもよい。
 以上述べた第1の実施形態によれば、準静的に設定されたMG設定を、動的に修正して用いることができるため、サービングキャリアの通信中断やスケジューリング機会の喪失を低減することができ、周波数利用効率の低下を抑制することができる。
<第2の実施形態>
 本発明の第2の実施形態では、MGと、サービングキャリアのスケジューリング(データ送信及び/又は受信)と、が重複する場合における新たなUE動作を規定する。図3で説明したように、既存のLTEシステムでは、UEは、MGを用いた測定を、自端末に対するスケジューリングより優先して実施する。一方、第2の実施形態では、UEは、後述する一部の例外を除いて、自端末に対するスケジューリングを、MGを用いた測定より優先して実施する。
 例えば、UEは、あるMGにおいて異周波測定するか否かを、当該MGと重複する期間のデータの送信又は受信の少なくとも一方を指示するスケジューリング情報(例えば、DLアサインメント(DLグラント)、ULグラント)が、当該MG以前の所定の期間(例えば、Nms)内で、通知されたか否かで判断してもよい。上記の所定の期間は、例えば、2ms、4ms、6msなどであってもよい。
 この条件を満たすスケジューリング情報が通知された場合、UEは、当該MG(当該MGにおける異周波測定)をスキップする。一方、この条件を満たすスケジューリング情報が通知されていない場合、UEは、当該MGで異周波測定を実施する。
 なお、上記の制御ではUEが長期間異周波測定を実施できないことがある。これを抑制するため、UEは、所定の回数(例えば、M回)連続して異周波測定をスキップした場合、次のMGに関して上記条件を満たすスケジューリングが通知された場合であっても、当該次のMGでは異周波測定を実施するように制御してもよい。UEは、一旦異周波測定を実施すると、異周波測定のスキップ回数をリセットして(0にして)、再びMGを用いた測定をスケジューリングより優先する制御に復帰することができる。なお、上記の所定の回数Mは、例えば、2、4、6などであってもよい。
 サービングeNBは、自装置がUEをスケジューリングしていることから、UEが所定の回数連続して異周波測定をスキップすることを認識できる。このため、サービングeNBは、UEが所定の回数連続して異周波測定をスキップした次のMGでは、当該UEにはスケジューリングしないように制御することが好ましい。
 図9は、第2の実施形態におけるMG制御の一例を示す図である。図9では、MG1、MG3、MG4及びMG5において、MGと重複するスケジューリングが予定される例が示されている。なお、簡単のため、MG1の前では異周波測定のスキップ回数は0であるものとして説明する。また、上述のMは、M=2として説明する。
 UEは、サービングキャリアのスケジューリングが重複するMG1においては、非サービングキャリアの測定をスキップし、スケジューリングされたデータ送信/受信を実施する。
 UEは、サービングキャリアのスケジューリングが重複しないMG2においては、非サービングキャリアの測定を実施する。
 UEは、サービングキャリアのスケジューリングが重複するMG3及びMG4においては、非サービングキャリアの測定をスキップし、スケジューリングされたデータ送信/受信を実施する。
 UEは、サービングキャリアのスケジューリングが重複するものの、既にM回スキップされた後のMG5においては、非サービングキャリアの測定を実施する。MG5においては、サービングキャリアでは、当該UEはスケジューリングされなくてもよい。
 以上述べた第2の実施形態によれば、サービングキャリアの通信をできるだけ優先することができ、周波数利用効率の低下を抑制することができる。
<第3の実施形態>
 本発明の第3の実施形態では、第2の実施形態でも述べたような、MGとスケジューリングが重複する問題に対処する別の方法を示す。
 従来のMG設定では、UEが複数のキャリアで異周波測定を行うように設定された場合、各キャリアにおける測定周期は同じであった。例えば、各キャリアの測定周期は、(MGRP)×(異周波測定対象のキャリア数)で算出される。
 図10は、複数キャリアに対する従来の異周波測定の一例を示す図である。図10では、測定対象として3つの非サービングキャリアがあり、MGRPは40msであるため、各キャリアの測定周期はそれぞれ120msとなっている。このように、従来のMG設定では、MGはいずれかのキャリアの異周波測定に必ず用いられる構成となっており、MGと重複するタイミングではUEのスケジューリングを行うことができず、周波数利用効率が低下するおそれがあった。
 また、本発明者らは、測定(例えば、RSSI測定)が求められる頻度は、各キャリアで異なる可能性があることに着目した。そこで本発明者らは、キャリア(CC)ごとにMGの周期を変更できる構成を着想し、第3の実施形態に至った。具体的には、UEは、異周波測定の対象となるキャリアの測定周期に関する情報に基づいて、各MGにおいて異周波測定を行うか否かを制御する。当該測定周期に関する情報は、測定周期スケーリング情報、スケーリング情報などと呼ばれてもよい。
 ここで、当該スケーリング情報は、上位レイヤシグナリング(例えば、RRCシグナリング)及び下り制御情報(例えば、DCI)のいずれか又はこれらの組み合わせにより、UEに通知されてもよい。例えば、スケーリング情報は、CC固有の情報であることから、RRC設定(RRC Configuration)シグナリング(例えば、RRCConnectionReconfiguration)の測定対象設定用情報要素(例えば、MeasObjectEUTRA)に含まれて通知されてもよい。なお、複数のキャリアのスケーリング情報がまとめてRRCシグナリングで通知されてもよい。
 スケーリング情報は、例えばスカラー値であってもよく、gapScalarなどと呼ばれてもよい。UEは、上述したような、MGRPや異周波測定対象のキャリア数に基づいて算出される測定周期を、キャリアごとに設定されたスカラー値を乗算した周期を、各キャリアそれぞれの測定周期として用いる。
 図11は、複数キャリアに対する第3の実施形態における異周波測定の一例を示す図である。図11では、図10と同様に測定対象として3つの非サービングキャリアがあり、MGRPは40msであるため、従来算出されるキャリアの測定周期は120msである。また、各キャリアにはそれぞれスケーリング情報が設定される。
 具体的には、非サービングキャリア1は‘2’、非サービングキャリア2は‘1’、非サービングキャリア3は‘1’がそれぞれ設定されている。この場合、図11に示すように、非サービングキャリア1の測定周期は120×2=240msとなり、他の非サービングキャリアの測定周期である120msと異なる。したがって、本例では、UEは、MG4ではいずれの非サービングキャリアでも異周波測定を行わない。
 以上述べた第3の実施形態によれば、異周波測定を行わない時間を確保することができ、サービングキャリアの通信の中断を抑制できるため、周波数利用効率の低下を抑制することができる。
<変形例>
 なお、上述した各実施形態は、UEが1つのMG設定に基づいて異周波測定を行う場合を例に説明したが、本発明の適用はこれに限られない。例えば、RSSP用、RSSI用など、複数(例えば、2つ)のMG設定がUEに設定されることが考えられるが、この場合において、少なくとも1つのMG設定を、上述の実施形態を用いて、動的に修正して異周波測定を実施する構成としてもよい。
 また、UEに既存のMG設定と異なる設定が規定される場合であっても、本発明を適用することができる。例えば、図1に示したようなMG設定以外(例えば、MGRPが40msより短い、MGLが6msより短いなど)であっても、MG設定を上述の実施形態を用いて、動的に修正して異周波測定を実施する構成としてもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記実施形態のいずれか及び/又は組み合わせに係る無線通信方法が適用される。
 図12は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。また、無線通信システム1は、アンライセンスバンドを利用可能な無線基地局(例えば、LTE-U基地局)を有している。
 なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)などと呼ばれてもよい。
 図12に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)とを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。例えば、マクロセルC1をライセンスバンドで利用し、スモールセルC2をアンライセンスバンド(LTE-U)で利用する形態が考えられる。また、スモールセルの一部をライセンスバンドで利用し、他のスモールセルをアンライセンスバンドで利用する形態が考えられる。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。例えば、ライセンスバンドを利用する無線基地局11からユーザ端末20に対して、アンライセンスバンドを利用する無線基地局12(例えば、LTE-U基地局)に関するアシスト情報(例えば、DL信号構成)を送信することができる。また、ライセンスバンドとアンライセンスバンドでCAを行う場合、1つの無線基地局(例えば、無線基地局11)がライセンスバンドセル及びアンライセンスバンドセルのスケジュールを制御する構成とすることも可能である。
 なお、ユーザ端末20は、無線基地局11に接続せず、無線基地局12に接続する構成としてもよい。例えば、アンライセンスバンドを用いる無線基地局12がユーザ端末20とスタンドアローンで接続する構成としてもよい。この場合、無線基地局12がアンライセンスバンドセルのスケジュールを制御する。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。また、同一のアンライセンスバンドを共有して利用する各無線基地局10は、時間的に同期するように構成されていることが好ましい。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single-Carrier Frequency Division Multiple Access)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上りL1/L2制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHは、上りデータチャネルと呼ばれてもよい。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報(ACK/NACK)などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図13は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 送受信部103は、アンライセンスバンドでUL/DL信号の送受信が可能である。なお、送受信部103は、ライセンスバンドでUL/DL信号の送受信が可能であってもよい。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、少なくともアンライセンスバンドを用いて、ユーザ端末20に下り信号を受信する。例えば、送受信部103は、PSS/SSSと周波数多重されるCSI-RSを含むDRSを、ユーザ端末20に設定したDMTC期間において、アンライセンスバンドで送信する。また、送受信部103は、スケジューリング情報、MGの有効/無効を示す情報、MGLに関する情報及びオフセットに関する情報の少なくとも1つを含むDCIや、CCごとの測定周期に関する情報を含むRRCシグナリングなどを送信する。
 送受信部103は、ユーザ端末20から、非サービングキャリアのRRM測定結果(例えば、CSIフィードバックなど)をライセンスバンド及び/又はアンライセンスバンドで受信してもよい。
 図14は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図14では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図14に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。なお、ライセンスバンドとアンライセンスバンドに対して1つの制御部(スケジューラ)301でスケジューリングを行う場合、制御部301は、ライセンスバンドセル及びアンライセンスバンドセルの通信を制御する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
 制御部301は、システム情報、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、同期信号(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))や、CRS、CSI-RS、DMRSなどの下り参照信号のスケジューリングの制御を行う。
 また、制御部301は、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号(例えば、送達確認信号(HARQ-ACK))、PRACHで送信されるランダムアクセスプリアンブルや、上り参照信号などのスケジューリングを制御する。
 制御部301は、測定部305により得られたLBT結果に従って、送信信号生成部302及びマッピング部303に対して、下り信号の送信を制御する。具体的には、制御部301は、第1、第2又は第3の実施形態で述べたDRS(LAA DRS)を、アンライセンスバンドで送信するように、DRSに含まれる各種信号の生成、マッピング、送信などを制御する。
 また、制御部301は、アンライセンスバンドにおいて、所定のユーザ端末20に対して、異周波測定(RRM測定、RSRP測定、RSSI測定など)を行うように、MG設定を生成して送信するように制御してもよい。
 また、制御部301は、当該所定のユーザ端末20において実施された異周波測定の結果(例えば、受信電力、受信信号強度、受信品質、チャネル状態など)を取得し、制御(スケジューリングなど)に用いてもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。また、送信信号生成部302は、PSS、SSS、CRS、CSI-RSなどを含むDRSを生成する。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、制御部301からの指示に基づいて、LBTが設定されるキャリア(例えば、アンライセンスバンド)でLBTを実施し、LBT結果(例えば、チャネル状態がアイドルであるかビジーであるかの判定結果)を、制御部301に出力する。
 また、測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信信号強度(例えば、RSSI(Received Signal Strength Indicator))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図15は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、アンライセンスバンドでUL/DL信号の送受信が可能である。なお、送受信部203は、ライセンスバンドでUL/DL信号の送受信が可能であってもよい。
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、少なくともアンライセンスバンドを用いて、無線基地局10から送信された下り信号を受信する。例えば、送受信部203は、PSS/SSSと周波数多重されるCSI-RSを含むDRSを、無線基地局10から設定されたDMTC期間において、アンライセンスバンドで受信する。また、送受信部203は、スケジューリング情報、MGの有効/無効を示す情報、MGLに関する情報及びオフセットに関する情報の少なくとも1つを含むDCIや、CCごとの測定周期に関する情報を含むRRCシグナリングなどを受信する。
 また、送受信部203は、少なくともライセンスバンド及びアンライセンスバンドの一方を用いて、無線基地局10に上り信号を送信する。例えば、送受信部203は、RRM測定結果(例えば、非サービングキャリアのRSRP、RSSI、RSRQ、CSIフィードバックなど)をライセンスバンド及び/又はアンライセンスバンドで送信してもよい。
 図16は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図16においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図16に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号(HARQ-ACK)など)や上りデータ信号の生成を制御する。
 制御部401は、アンライセンスバンドにおいて、DRS(LAA用のDRS)を用いてRRM測定やセルサーチを行うように、受信信号処理部404及び/又は測定部405を制御してもよい。また、制御部401は、測定部405により得られたLBT結果に従って、送信信号生成部402及びマッピング部403に対して、上り信号の送信を制御してもよい。
 また、制御部401は、アンライセンスバンドにおいて、無線基地局10から通知されたMG設定に従って、異周波測定(RRM測定、RSRP測定、RSSI測定など)を行うように、受信信号処理部404及び/又は測定部405を制御してもよい。
 具体的には、制御部401は、第1、第2又は第3の実施形態で述べた無線通信方法を用いて、準静的なMG設定により特定される各MGについて、異周波測定の実施の可否を判断する。例えば、制御部401は、DCIに含まれるMGの有効/無効を示す情報、MGLに関する情報及びオフセットに関する情報の少なくとも1つに基づいて、所定のMGにおいて異周波測定を行うか否かを制御してもよい。
 また、制御部401は、スケジューリング情報(例えば、DLグラント、ULグラントなど)に基づいて、所定のMGにおいて異周波測定を行うか否かを制御してもよい。
 また、制御部401は、RRCシグナリングで通知されるCCごとの測定周期に関する情報に基づいて、所定のMGにおいて異周波測定を行うか否かを制御してもよい。
 また、制御部401は、例えば参照信号(例えば、CRS、CSI-RSなど)を用いて測定部405が測定した結果(例えば、受信電力、受信信号強度、受信品質、チャネル状態など)を取得し、フィードバック情報(例えば、CSI)を生成して無線基地局20に送信するように制御する。当該結果は、非サービングキャリアにおける異周波測定の結果であってもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)に関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、制御部401からの指示に基づいて、LBTが設定されるキャリア(信号の送信前にリスニングを実施するキャリア。例えば、アンライセンスバンド)でLBTを実施してもよい。測定部405は、LBT結果(例えば、チャネル状態がアイドルであるかビジーであるかの判定結果)を、制御部401に出力してもよい。
 また、測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信信号強度(RSSI)、受信品質(例えば、RSRQ)やチャネル状態などについて測定してもよい。例えば、測定部405は、LAA DRSをRRM測定する。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、中央処理装置(プロセッサ)1001、主記憶装置(メモリ)1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。
 無線基地局10及びユーザ端末20における各機能は、中央処理装置1001、主記憶装置1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、中央処理装置1001が演算を行い、通信装置1004による通信や、主記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 中央処理装置1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。中央処理装置1001は、制御装置、演算装置、レジスタ、周辺装置とのインターフェースなどを含むプロセッサ(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、中央処理装置1001で実現されてもよい。
 また、中央処理装置1001は、プログラム、ソフトウェアモジュールやデータを、補助記憶装置1003及び/又は通信装置1004から主記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、主記憶装置1002に格納され、中央処理装置1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 主記憶装置(メモリ)1002は、コンピュータ読み取り可能な記録媒体であり、例えばROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、光磁気ディスク、CD-ROM(Compact Disc ROM)、ハードディスクドライブなどの少なくとも1つで構成されてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウスなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカーなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、中央処理装置1001や主記憶装置1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。なお、無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 また、無線基地局10及びユーザ端末20は、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2015年11月5日出願の特願2015-218002に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  1つのメジャメントギャップ設定に基づいて異周波測定を行う測定部と、
     所定のメジャメントギャップにおいて前記異周波測定を行うか否かを制御する制御部と、を有することを特徴とするユーザ端末。
  2.  前記制御部は、所定の下り制御情報に基づいて、前記異周波測定を行うか否かを制御することを特徴とする請求項1に記載のユーザ端末。
  3.  前記所定の下り制御情報は、メジャメントギャップの有効/無効を示す情報を含むことを特徴とする請求項2に記載のユーザ端末。
  4.  前記所定のメジャメントギャップにおいて前記ユーザ端末が接続中のサービングキャリア及び前記異周波測定の対象となるキャリアの少なくとも1つで信号が送信される場合、前記メジャメントギャップの有効/無効を示す情報は、無効を示す情報であることを特徴とする請求項3に記載のユーザ端末。
  5.  前記所定の下り制御情報は、メジャメントギャップの長さに関する情報及び/又はオフセットに関する情報を含むことを特徴とする請求項2から請求項4のいずれかに記載のユーザ端末。
  6.  前記制御部は、前記所定のメジャメントギャップにおいてデータの送信又は受信の少なくとも一方がスケジューリングされている場合、当該所定のメジャメントギャップでは前記異周波測定をスキップするように制御することを特徴とする請求項2に記載のユーザ端末。
  7.  前記制御部は、前記異周波測定が所定の回数連続してスキップされた後のメジャメントギャップにおいては、前記異周波測定を行うように制御することを特徴とする請求項6に記載のユーザ端末。
  8.  前記制御部は、前記異周波測定の対象となる所定のキャリアの測定周期に関する情報に基づいて、前記所定のメジャメントギャップにおいて当該所定のキャリアに関する前記異周波測定を行うか否かを制御することを特徴とする請求項1に記載のユーザ端末。
  9.  1つのメジャメントギャップ設定を含む制御情報をユーザ端末に送信する送信部と、
     前記メジャメントギャップ設定に基づく異周波測定の結果を受信する受信部と、を有し、
     前記異周波測定は、前記ユーザ端末において、所定のメジャメントギャップにおける実行可否が制御されることを特徴とする無線基地局。
  10.  1つのメジャメントギャップ設定に基づいて異周波測定を行う工程と、
     所定のメジャメントギャップにおいて前記異周波測定を行うか否かを制御する工程と、を有することを特徴とする無線通信方法。
PCT/JP2016/082504 2015-11-05 2016-11-02 ユーザ端末、無線基地局及び無線通信方法 WO2017078035A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/772,930 US20180324620A1 (en) 2015-11-05 2016-11-02 User terminal, radio base station and radio communication method
JP2017548787A JPWO2017078035A1 (ja) 2015-11-05 2016-11-02 ユーザ端末、無線基地局及び無線通信方法
CN201680064571.9A CN108353410A (zh) 2015-11-05 2016-11-02 用户终端、无线基站以及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218002 2015-11-05
JP2015-218002 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017078035A1 true WO2017078035A1 (ja) 2017-05-11

Family

ID=58661931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082504 WO2017078035A1 (ja) 2015-11-05 2016-11-02 ユーザ端末、無線基地局及び無線通信方法

Country Status (4)

Country Link
US (1) US20180324620A1 (ja)
JP (1) JPWO2017078035A1 (ja)
CN (1) CN108353410A (ja)
WO (1) WO2017078035A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019175947A1 (ja) * 2018-03-13 2019-09-19 富士通株式会社 無線通信システム、異周波ハンドオーバ方法、基地局及び端末装置
WO2019209590A1 (en) * 2018-04-27 2019-10-31 Qualcomm Incorporated Opportunistic frequency switching for frame based equipment
CN110545547A (zh) * 2018-05-29 2019-12-06 中国移动通信有限公司研究院 一种测量方法、装置、终端、网络侧设备及存储介质
WO2020144785A1 (ja) * 2019-01-09 2020-07-16 株式会社Nttドコモ 端末及び通信方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107736063B (zh) * 2015-08-13 2022-03-01 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
US11470522B2 (en) * 2017-06-16 2022-10-11 Mediatek Inc. Radio resource management (RRM) measurement for new radio (NR) network
US11457472B2 (en) * 2017-12-18 2022-09-27 Samsung Electronics Co., Ltd. Method and apparatus for initial access block on stand-alone NR unlicensed spectrum
CN110099392B (zh) * 2018-01-30 2021-05-04 华为技术有限公司 一种测量方法及测量装置
US11153840B2 (en) 2019-03-28 2021-10-19 Mediatek Inc. UE feedback of timing adjustment after a measurement gap
CN112105046B (zh) * 2019-06-18 2023-03-31 中国移动通信有限公司研究院 模型训练方法及系统、异频测量估计方法及系统
WO2020257994A1 (zh) * 2019-06-24 2020-12-30 Oppo广东移动通信有限公司 用于传输数据的方法及设备
EP4017113B1 (en) * 2019-08-29 2023-11-22 Huawei Technologies Co., Ltd. Communication method and device
WO2024016105A1 (en) * 2022-07-18 2024-01-25 Qualcomm Incorporated Time offset measurement gap configuration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514342A (ja) * 2006-12-19 2010-04-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信システムにおけるアイドルギャップコマンドの処理

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188708B (zh) * 2011-12-27 2019-02-19 中兴通讯股份有限公司 异频测量方法及系统、移动终端以及基站
KR20140081118A (ko) * 2012-12-21 2014-07-01 삼성전자주식회사 이동통신 시스템에서 서빙 셀들의 측정 구간을 제어하기 위한 방법 및 장치
JP6359815B2 (ja) * 2013-09-26 2018-07-18 株式会社Nttドコモ ユーザ端末、無線基地局及び異周波測定方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514342A (ja) * 2006-12-19 2010-04-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信システムにおけるアイドルギャップコマンドの処理

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Gap patterns for increasing UE scheduling opportunities", R4-155756, 3GPP, 5 October 2015 (2015-10-05), XP051008900 *
HUAWEI ET AL.: "Discuss on measurement enhancemed gap configurations", R4-154754, 3GPP, 17 August 2015 (2015-08-17), XP050995255 *
NOKIA SIEMENS NETWORKS ET AL.: "Background inter-frequency measurement for small cell discovery", R2-131249, 3GPP, 5 April 2013 (2013-04-05), XP050699304 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019175947A1 (ja) * 2018-03-13 2019-09-19 富士通株式会社 無線通信システム、異周波ハンドオーバ方法、基地局及び端末装置
WO2019209590A1 (en) * 2018-04-27 2019-10-31 Qualcomm Incorporated Opportunistic frequency switching for frame based equipment
US11190234B2 (en) 2018-04-27 2021-11-30 Qualcomm Incorporated Opportunistic frequency switching for frame based equipment
US11799703B2 (en) 2018-04-27 2023-10-24 Qualcomm Incorporated Opportunistic frequency switching for frame based equipment
US12113653B2 (en) 2018-04-27 2024-10-08 Qualcomm Incorporated Opportunistic frequency switching for frame based equipment
CN110545547A (zh) * 2018-05-29 2019-12-06 中国移动通信有限公司研究院 一种测量方法、装置、终端、网络侧设备及存储介质
WO2020144785A1 (ja) * 2019-01-09 2020-07-16 株式会社Nttドコモ 端末及び通信方法

Also Published As

Publication number Publication date
JPWO2017078035A1 (ja) 2018-08-30
US20180324620A1 (en) 2018-11-08
CN108353410A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017078034A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017078035A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6317773B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6457102B2 (ja) ユーザ端末及び無線通信方法
JP6165201B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2017073651A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017030053A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2017126579A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017026434A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017110961A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017135346A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JPWO2017135347A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017051726A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017026488A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN107736063B (zh) 用户终端、无线基站以及无线通信方法
WO2017126658A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017051837A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP6687567B2 (ja) 無線基地局及び無線通信方法
JP6301302B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016195084A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016133181A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017026489A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2017135340A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6204954B2 (ja) 無線基地局、ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548787

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15772930

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862095

Country of ref document: EP

Kind code of ref document: A1