WO2017073745A1 - Electrode assembly - Google Patents
Electrode assembly Download PDFInfo
- Publication number
- WO2017073745A1 WO2017073745A1 PCT/JP2016/082105 JP2016082105W WO2017073745A1 WO 2017073745 A1 WO2017073745 A1 WO 2017073745A1 JP 2016082105 W JP2016082105 W JP 2016082105W WO 2017073745 A1 WO2017073745 A1 WO 2017073745A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tab
- tab laminate
- laminate
- electrode assembly
- stack
- Prior art date
Links
- 238000003475 lamination Methods 0.000 claims abstract description 19
- 238000003466 welding Methods 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 description 66
- 239000011888 foil Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 239000007773 negative electrode material Substances 0.000 description 8
- 239000007774 positive electrode material Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- -1 for example Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/74—Terminals, e.g. extensions of current collectors
- H01G11/76—Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/533—Electrode connections inside a battery casing characterised by the shape of the leads or tabs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- One aspect of the invention relates to an electrode assembly.
- a power storage device such as a lithium ion battery includes an electrode assembly in which a plurality of electrodes are stacked. Each electrode has a tab, and when manufacturing the electrode assembly, the tabs of the stacked electrodes are welded. Welding is performed, for example, by irradiating the end face of the stacked tabs with an energy beam. (See, for example, Patent Document 1).
- tab stack In the tip portion of the stacked tabs (hereinafter sometimes referred to as "tab stack"), there are many cases where the positions of the tips of the tabs are shifted.
- an energy beam is applied to the front end portion of the tab stack while the front end of each tab is misaligned, a weld of a depth sufficient to join the plurality of tabs is inward from the front end of each tab There is a possibility that the joint strength between the tabs is insufficient.
- An object of the present invention is to provide an electrode assembly in which bonding strength between a plurality of stacked tabs is secured even when the position of the tip of each tab is shifted.
- An electrode assembly is an electrode assembly having a plurality of electrodes each including a main body and a tab projecting from one end of the main body, the electrode main body having a plurality of stacked main bodies, A tab laminate having a plurality of tabs formed and projecting from the electrode body, in the tab laminate, the tips of the plurality of tabs are arranged to be offset in the protrusion direction at the tip portion of the tab laminate in the protrusion direction
- the tab stack has a weld located inwardly from the first end face of the tab stack extending along the stack direction of the tab stack and the protruding direction of the tab stack.
- the above electrode assembly comprises an electrode body having a plurality of stacked bodies, and a tab laminate having a plurality of stacked tabs and projecting from the electrode body.
- the positions of the tips of the plurality of tabs are offset in the projecting direction at the tip end portion of the tab stack in the projecting direction.
- the tab laminate has the weld located inside from the first end face of the tab laminate extending along the stacking direction of the tab laminate and the projecting direction of the tab laminate. Unlike the leading end portion of the tab laminate, the first end face of the tab laminate has a small amount of displacement. Therefore, a weld of sufficient depth can be formed inward from the first end face of the tab stack. Thus, the bonding strength between the plurality of stacked tabs can be secured.
- the tab stack may further include another weld extending along the stacking direction and the protruding direction and located inward from the second end surface different from the first end surface.
- the plurality of tabs may be connected to one another by welds without using a member positioned across the tab stack in the stacking direction.
- a method of improving the bonding strength between the plurality of tabs by using a member positioned across the tab stacks in the stacking direction may be considered, but according to the above-mentioned electrode assembly, a plurality of stacked layers by welding portions Such a member can be made unnecessary since the joint strength between the tabs is secured.
- the electrode assembly is a laminated type, and the electrode assembly includes two electrode bodies having opposite polarities to each other, and the above-mentioned tab laminates project a plurality of stacked tabs from the electrode body having one polarity.
- a first tab stack having a plurality of tabs
- the electrode assembly is a second tab stack having a plurality of tabs protrudingly stacked from the electrode body having the other polarity, the second tab stack being stacked
- a second tab stack having a weld located inwardly from an end face of the second tab stack extending along the direction and the protruding direction of the second tab stack;
- the positions of the tips of the plurality of tabs in the second tab stack are offset in the direction of protrusion of the second tab stack at the tip portion of the second tab stack in the protrusion direction, Tab stack and the second tab stack are the same It protrudes toward, may first tab laminate and the second tab laminate is folded.
- the electrode assembly further includes a current collector, and the tab stack is disposed on the current collector in the stacking direction, and the first end face of the tab stack in a cross section orthogonal to the protruding direction of the tab stack.
- the length of the weld in the inward direction may increase as it approaches the current collector.
- the tab laminate is disposed between the conductive member and the current collector in the lamination direction of the tab laminate, and the thickness of the conductive member in the lamination direction of the tab laminate is in the lamination direction of the tab laminate. It may be smaller than the thickness of the current collector.
- the thickness of the conductive member is relatively small, the difference between the heat capacity of the conductive member and the heat capacity of the tab can be reduced.
- the maximum length of the weld in a direction orthogonal to the lamination direction of the tab laminate is orthogonal to the lamination direction of the tab laminate and the lamination direction of the tab laminate When viewed from a direction orthogonal to both of the directions, it may be larger than the maximum length of the overlapping portion of the welded portion and the tab laminate in the laminating direction of the tab laminate.
- the weld extends in the direction intersecting the stacking direction of the tab laminate.
- the maximum welding depth of the weld in a direction orthogonal to the stacking direction of the tab laminate May be less than 2 mm.
- the weld portion When viewed in the normal direction of the first end face of the tab stack, the weld portion may have an outer shape including a curve.
- an electrode assembly in which bonding strength between a plurality of stacked tabs is secured even when the position of the tip of each tab is shifted.
- FIG. 1 is an exploded perspective view of a power storage device provided with an electrode assembly according to the embodiment.
- FIG. 2 is a cross-sectional view of the storage battery taken along line II-II of FIG.
- FIG. 3 is a perspective view of an electrode assembly according to the embodiment.
- FIG. 4 is a view showing a part of the electrode assembly of FIG. 3 viewed from the Y-axis direction.
- FIG. 5 is a view showing a part of the electrode assembly of FIG. 3 as viewed in the X-axis direction.
- FIG. 6 is a diagram showing one step of the method of manufacturing the electrode assembly according to the embodiment.
- FIG. 7 is a diagram showing a process of the method of manufacturing the electrode assembly according to the embodiment.
- FIG. 8 is a view showing a part of an electrode assembly having a weld according to a modification.
- FIG. 9 is a diagram showing the evaluation results of the example.
- FIG. 1 is an exploded perspective view of a power storage device provided with an electrode assembly according to the embodiment.
- FIG. 2 is a cross-sectional view of the power storage device taken along line II-II of FIG.
- the power storage device 1 shown in FIGS. 1 and 2 is, for example, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery or an electric double layer capacitor.
- the power storage device 1 includes, for example, a hollow case 2 having a substantially rectangular parallelepiped shape, and an electrode assembly 3 accommodated in the case 2.
- the case 2 is formed of, for example, a metal such as aluminum.
- the case 2 has a main body 2a opened on one side and a lid 2b closing the opening of the main body 2a.
- An insulating film (not shown) is provided on the inner wall surface of the case 2. For example, a non-aqueous (organic solvent based) electrolyte solution is injected into the inside of the case 2.
- the positive electrode active material layer 15 of the positive electrode 11, the negative electrode active material layer 18 of the negative electrode 12, and the separator 13 described later are porous, and the pores are impregnated with the electrolyte solution .
- the positive electrode terminal 5 and the negative electrode terminal 6 are disposed apart from each other in the lid 2 b of the case 2.
- the positive electrode terminal 5 is fixed to the case 2 via the insulating ring 7, and the negative electrode terminal 6 is fixed to the case 2 via the insulating ring 8.
- the electrode assembly 3 is a stacked electrode assembly.
- the electrode assembly 3 includes a plurality of positive electrodes 11 (electrodes), a plurality of negative electrodes 12 (electrodes), and a bag-like separator 13 disposed between the positive electrodes 11 and the negative electrodes 12.
- the positive electrode 11 and the negative electrode 12 have opposite polarities to each other.
- the positive electrode 11 is accommodated in the separator 13.
- a plurality of positive electrodes 11 and a plurality of negative electrodes 12 are alternately stacked via the separator 13 in a state where the positive electrode 11 is accommodated in the separator 13.
- the positive electrode 11 has a metal foil 14 made of, for example, aluminum foil, and a positive electrode active material layer 15 formed on both sides of the metal foil 14.
- the metal foil 14 of the positive electrode 11 includes a rectangular main body 14 a and a rectangular tab 14 b projecting from one end of the main body 14 a.
- the positive electrode active material layer 15 is a porous layer formed by containing a positive electrode active material and a binder.
- the positive electrode active material layer 15 is formed by supporting a positive electrode active material on at least a central portion of the main body 14 a on both sides of the main body 14 a.
- the positive electrode active material examples include composite oxides, metallic lithium, sulfur and the like.
- the composite oxide includes, for example, at least one of manganese, nickel, cobalt and aluminum, and lithium.
- the positive electrode active material is not supported on the tab 14 b. However, an active material may be supported on the base end portion of the tab 14 b on the main body 14 a side.
- the tab 14b extends upward from the upper edge of the main body 14a, and is connected to the positive electrode terminal 5 through the current collector 16 (current collector).
- the current collector 16 is disposed between the tab 14 b and the positive electrode terminal 5.
- the current collector plate 16 is formed of, for example, the same material as the metal foil 14 of the positive electrode 11 in a rectangular flat plate shape.
- the plurality of stacked tabs 14 b are disposed between the current collector 16 and the protective plate 23 (conductive member) thinner than the current collector 16 (see FIG. 3).
- the protective plate 23 is made of, for example, the same material as the metal foil 14 of the positive electrode 11 in the shape of a rectangular flat plate.
- the negative electrode 12 has, for example, a metal foil 17 made of copper foil and a negative electrode active material layer 18 formed on both sides of the metal foil 17. Similar to the metal foil 14 of the positive electrode 11, the metal foil 17 of the negative electrode 12 includes a rectangular main body 17a and a rectangular tab 17b protruding from one end of the main body 17a.
- the negative electrode active material layer 18 is formed by supporting the negative electrode active material on at least a central portion of the main body 17 a on both sides of the main body 17 a.
- the negative electrode active material layer 18 is a porous layer formed by containing a negative electrode active material and a binder.
- the negative electrode active material for example, graphite, highly oriented graphite, meso carbon micro beads, hard carbon, carbon such as soft carbon, alkali metals such as lithium and sodium, metal compounds, SiO x (0.5 ⁇ x ⁇ 1.5) Etc., boron-added carbon, and the like.
- the negative electrode active material is not supported on the tab 17 b. However, the active material may be supported on the proximal end portion of the tab 17b on the main body 17a side.
- the tab 17b extends upward from the upper edge of the main body 17a, and is connected to the negative electrode terminal 6 via the current collector 19 (current collector).
- the current collecting plate 19 is disposed between the tab 17 b and the negative electrode terminal 6.
- the current collector 19 is formed, for example, in the shape of a rectangular flat plate from the same material as the metal foil 17 of the negative electrode 12.
- the plurality of stacked tabs 17 b are disposed between the current collecting plate 19 and the protective plate 27 (conductive member) thinner than the current collecting plate 19 (see FIG. 3).
- the protective plate 27 is made of, for example, the same material as the metal foil 17 of the negative electrode 12 in a rectangular flat plate shape.
- the separator 13 accommodates the positive electrode 11.
- the separator 13 has a rectangular shape as viewed from the stacking direction of the positive electrode 11 and the negative electrode 12.
- the separator 13 is formed, for example, in a bag shape by welding a pair of long sheet-like separator members to each other.
- Examples of the material of the separator 13 include porous films made of polyolefin resins such as polyethylene (PE) and polypropylene (PP), and woven or non-woven fabrics made of polypropylene, polyethylene terephthalate (PET), methyl cellulose and the like.
- FIG. 3 is a perspective view of an electrode assembly according to the embodiment.
- the electrode assembly 3 includes a plurality of positive electrodes 11 and a plurality of negative electrodes 12 stacked one on another via a separator 13.
- Each of the plurality of positive electrodes 11 includes a main body 14a extending in the XY plane, and a tab 14b protruding from one end of the main body 14a in the X-axis direction (direction orthogonal to the side surface S described later).
- Each of the plurality of negative electrodes 12 includes a main body 17a extending in the XY plane, and a tab 17b protruding in the X-axis direction from one end of the main body 17a.
- the main bodies 14a and 17a are stacked on each other to constitute an electrode main body 20 as a whole.
- the electrode body 20 has a side surface S.
- the side surface S is constituted by one end of the stacked main bodies 14a, 17a.
- the tabs 14b and 17b are stacked on one another to form tab stacks 21 and 25, respectively.
- the electrode assembly 3 includes an electrode body 20 having a plurality of 14a and 17b stacked in the Z-axis direction, a tab stack 21 having a plurality of tabs 14b stacked in the Z-axis direction, and the Z-axis direction.
- a tab stack 25 having a plurality of stacked tabs 17b.
- the tab stacks 21 and 25 protrude from the side surface S of the electrode body 20 in the X-axis direction.
- the tab stacks 21 and 25 are arranged separately from each other in the Y-axis direction.
- the tab stack 21 includes end faces 21 a, 21 b, 21 c of the tab stack 21 extending along the stack direction (Z-axis direction) of the tab stack 21.
- the end surfaces 21a and 21b are surfaces sandwiching the tab stack 21, and the end surface 21c is a surface connecting the end surfaces 21a and 21b. That is, the end faces 21 a and 21 b are disposed on the opposite sides of the tab stack 21.
- the end surfaces 21a and 21b are surfaces along the XZ plane.
- the end surface 21 c is a surface inclined with respect to the XY plane so that the thickness of the tab laminate 21 decreases toward the tip of the tab laminate 21.
- the tab stack 21 is disposed between the current collector 16 and the protective plate 23 in the Z-axis direction. That is, the tab stack 21 is disposed on the current collector 16 in the Z-axis direction.
- the protective plate 23 is disposed on the tab laminate 21 on the opposite side of the current collector plate 16 with the tab laminate 21 interposed therebetween. The protective plate 23 is not in contact with the current collector 16, and the protective plate 23 and the current collector 16 are separated by sandwiching the tab laminate 21 in the stacking direction.
- the tab laminate 21 is thicker than the protective plate 23, and the current collector 16 is thicker than the protective plate 23.
- the thickness of the protective plate 23 is larger than the thickness of the tab 14 b.
- the length of the current collector plate 16 in the Y-axis direction is larger than the length of the tab laminate 21 in the Y-axis direction (the distance between the end faces 21a and 21b). In the Y-axis direction, the position of the outer end of the current collector plate 16 in the Y-axis direction coincides with the position of the end of the main body 14 a in the Y-axis direction.
- the length of the protective plate 23 in the Y-axis direction is substantially the same as the length of the tab laminate 21 in the Y-axis direction.
- the tab laminate 21 has welds W located on the inner side from the end faces 21 a and 21 b of the tab laminate 21.
- the maximum length W2 of the weld W in the direction (for example, the X-axis direction) orthogonal to the lamination direction of the tab laminate 21 at the end faces 21a and 21b of the tab laminate 21 is the lamination direction of the tab laminate 21 (for example, Z-axis direction When viewed from the direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab laminate 21 (for example, the Z-axis direction) And the maximum length W1 of the overlapping portion of the welded portion W and the tab laminate 21 (see FIGS. 3 and 4).
- the weld portion W will be described in detail later with reference to FIG.
- the tab stack 25 includes end surfaces 25a, 25b, 25c of the tab stack 25 extending along the stack direction (Z-axis direction) of the tab stack 25.
- the end surfaces 25a and 25b are surfaces sandwiching the tab stack 25, and the end surface 25c is a surface connecting the end surfaces 25a and 25b. That is, the end faces 25 a and 25 b are disposed on the opposite sides of the tab stack 25.
- the end surfaces 25a and 25b are surfaces along the XZ plane.
- the end face 25 c is a surface inclined with respect to the XY plane so that the thickness of the tab laminate 25 decreases toward the tip of the tab laminate 25.
- the tab stack 25 is disposed between the current collector 19 and the protective plate 27 in the Z-axis direction.
- the tab stack 25 is disposed on the current collector 19 in the Z-axis direction.
- the protective plate 27 is disposed on the tab laminate 25 on the opposite side to the current collector plate 19 with the tab laminate 25 interposed therebetween.
- the protective plate 27 is not in contact with the current collecting plate 19, and the protective plates 27 and 29 are separated by sandwiching the tab laminate 25 in the stacking direction.
- the tab laminate 25 is thicker than the protective plate 27, and the current collector 19 is thicker than the protective plate 27.
- the thickness of the protective plate 27 is larger than the thickness of the tab 17 b.
- the length of the current collector plate 19 in the Y-axis direction is larger than the length of the tab laminate 25 in the Y-axis direction (the distance between the end surfaces 25a and 25b).
- the position of the outer end of the current collector plate 19 in the Y-axis direction in the Y-axis direction coincides with the position of the end in the Y-axis direction of the main body 17a.
- the length of the protective plate 27 in the Y-axis direction is substantially the same as the length of the tab laminate 25 in the Y-axis direction.
- the tab laminate 25 has welds W located on the inner side from the end faces 25 a and 25 b of the tab laminate 25.
- the maximum length W2 of the weld W in the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stack 25 at the end faces 25a and 25b of the tab stack 25 is the stacking direction of the tab stack 25 (for example, the Z-axis direction When viewed from a direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab laminate 25 (for example, the Z-axis direction)
- the maximum length W1 is smaller than the maximum length of the weld W in the Z-axis direction.
- the weld portion W will be described in detail later with reference to FIG.
- One feature of this embodiment is the shape of the tab stacks 21, 25 and the position of the weld W in the tab stacks 21, 25.
- examples of the shape of the tab laminate 25 and the positions of the welds W in the tab laminate 25 will be mainly described in detail with reference to FIGS. 4 and 5.
- the shape of the tab laminate 21 and the position of the welded portion W in the tab laminate 21 can be described in the same manner as in the case of the tab laminate 25 and thus detailed description will be omitted.
- FIG. 4 is a view schematically showing the tab laminate 25 as viewed from the Y-axis direction.
- the tab stack 25 has a plurality of stacked tabs 17 b.
- the tab 17 b protrudes in the X-axis direction from one end of the main body 17 a.
- the end face 25 c of the tab laminate 25 is inclined with respect to the XY plane such that the thickness of the tab laminate 25 decreases toward the tip of the tab laminate 25.
- the reason why the end face 25c is inclined will be specifically described.
- the tab laminate 25 protruding from the main body 17 a is roughly divided into a proximal end portion 251, a central portion 252 and a distal end portion 253 in order from the main body 17 a side in the protrusion direction of the tab laminate 25.
- the proximal portion 251 is a portion connected to the main body 17a. In the proximal end portion 251, the spacing between the plurality of tabs 17b in the stacking direction of the tab stack 25 decreases in the direction in which the tab stack 25 protrudes.
- the central portion 252 is a portion having a proximal end portion 251 as a proximal end and extending in the projecting direction of the tab stack 25.
- the plurality of tabs 17b are arranged substantially without spacing.
- the leading end portion 253 is a portion connected to the central portion 252 in the protruding direction of the tab stack 25 and extending in the protruding direction of the tab stack 25.
- the tips of the plurality of tabs 17b are arranged to be offset in the projecting direction. Therefore, the end face 25c configured by the end face of the tip of the plurality of tabs 17b is inclined with respect to the XY plane.
- n (n is an arbitrary integer of 2 or more) main bodies 17a of the main bodies 17a1 to 17an are illustrated as a plurality of stacked main bodies 17a.
- the plurality of main bodies 17a (a part of the positive electrode 11) and the plurality of main bodies 14a (a part of the negative electrode 12) are laminated to each other via the separator 13 and accordingly, the plurality of main bodies 17a (main bodies 17a1 to 17a3) , 17 an etc.) are arranged at intervals in the stacking direction.
- the plurality of tabs 17b are arranged at an interval in the stacking direction similarly to the plurality of main bodies 17a. There is.
- the plurality of tabs 17 b are bundled (consolidated) in the stacking direction of the tab stack 25 so that the distance between the plurality of tabs 17 b narrows toward the central portion 252. In the central portion 252, the spacing between the plurality of tabs 17b may be substantially zero.
- the length of the range in which the tab 17b exists in the protrusion direction of the tab stack 25 up to one end constituting the 25c is different from each other.
- the plurality of tabs 17 b are bundled so as to approach the current collecting plate 19 (located in the negative direction of the Z axis).
- the tab 17b (tab 17b1 to 17b3 and so on) located far from the tab 17bn closest to the current collector plate 19 in the stacking direction of the tab stack 25 (located on the Z-axis positive direction side) Length in the
- the length of the distal end portion 253 in the projecting direction of the tab laminate 25 runs short as the length of the proximal end portion 251 increases.
- the tip portion 253 the tips of the plurality of tabs 17b are arranged to be shifted in the projecting direction.
- each tab 17 b in a different shape in advance so that the tips of the plurality of tabs 17 b are aligned in the tip portion 253 when the plurality of tabs 17 b are bundled. Take the trouble.
- the plurality of tabs 17 b are welded, for example, by irradiating the energy beam B (described later).
- the end face 25c of the tab laminate 25 is irradiated with the energy beam B to weld the tab 17b, the following problem may occur. That is, when the energy beam B is applied to the front end portion 253 (that is, the end face 25c) of the tab laminate 25 in which the positions of the front ends of the plurality of tabs 17b are shifted, for example, the same length from the front end of each tab 17b
- the welds to be formed are respectively formed.
- the plurality of tabs 17 b are welded at an end face different from the end face 25 c of the tab laminate 25.
- the end face different from the end face 25c is, for example, at least one end face of the end faces 25a and 25b.
- the end surfaces 25a and 25b are surfaces along the XZ plane, and in the end surfaces 25a and 25b, the positions of the side ends of the plurality of tabs 17b are shifted about the positions of the tips of the plurality of tabs 17b on the end surface 25c. There is not.
- the welds W are located inward from the end faces 25a and 25b of such tab laminates 25 respectively.
- the shape of the tab laminate 21 and the position of the welded portion W in the tab laminate 21 are similarly described. That is, in the tip end portion in the protrusion direction of the tab stack 21, the tips of the plurality of tabs 14b are arranged to be shifted in the protrusion direction. The reason is described in the same manner as the reason why the tips of the plurality of tabs 17b are shifted, and thus the detailed description is omitted here.
- the positions of the side ends of the plurality of tabs 14b are not shifted as much as the positions of the tips of the plurality of tabs 14b in the end face 21c.
- the welds W are located inward from the end faces 21a and 21b of such tab laminates 21, respectively.
- the weld W will be described in more detail with reference to FIG.
- FIG. 5 is a view showing a part of the electrode assembly of FIG. 3 as viewed in the X-axis direction.
- the end face 25 b of the tab laminate 25 faces the end face 21 b of the tab laminate 21.
- the end faces 21a, 21b, 25a, 25b of the tab stacks 21, 25 are arranged along the Y-axis direction.
- the welded portion W extends to the inside of the current collector 19 and the protective plate 27 adjacent to the end faces 25 a and 25 b.
- the length of the weld W in the X-axis direction is substantially equal to the length of the protective plate 27 in the X-axis direction or shorter than the length of the protective plate 27 in the X-axis direction.
- the welded portion W can be stably formed even when the tab 17b of the tab laminate 25 is displaced in the X-axis direction (for example, when there is a displacement due to a tolerance).
- the length of the welded portion W in the X-axis direction is substantially equal to the length of the protective plate 27 in the X-axis direction, there is a possibility that the welded portion W may protrude outside the protective plate 27 in the X-axis direction.
- the length of the weld W in the X-axis direction is longer than the length of the protection plate 27 in the X-axis direction, the weld W protrudes outside the protection plate 27 in the X-axis direction. Even in those cases, it is possible to form the weld W.
- the welds W extend to the inside of the current collector 16 and the protective plate 23 adjacent to the end faces 21 a and 21 b.
- the length of the weld W in the X-axis direction is substantially equal to the length of the protective plate 23 in the X-axis direction or shorter than the length of the protective plate 23 in the X-axis direction.
- the welded portion W can be stably formed even when the tab 14b of the tab laminate 21 is displaced in the X-axis direction (for example, when there is a displacement due to a tolerance).
- the length of the welded portion W in the X-axis direction is substantially equal to the length of the protective plate 23 in the X-axis direction, there is a possibility that the welded portion W may protrude outside the protective plate 23 in the X-axis direction.
- the length of the weld W in the X-axis direction is longer than the length of the protective plate 23 in the X-axis direction, the weld W protrudes outside the protective plate 23 in the X-axis direction. Even in those cases, it is possible to form the weld W.
- FIG. 5 can also be viewed as a cross section orthogonal to the protruding direction of the tab stacks 21, 25.
- the length (welding depth) of the weld W in the direction from the end faces 21a, 21b, 25a, 25b of the tab laminates 21, 25 to the inside is the current collector plate 16, It becomes larger as it goes to 19.
- the welded portion W has a shape corresponding to the shape of the molten pool formed around the energy beam B by irradiation of the energy beam B (see FIG. 7) described later.
- the molten pool is, for example, formed to be tapered inward from the surface of the object to be irradiated with the energy beam B in the irradiation direction of the energy beam B.
- the shape of the welded portion W shown in FIG. 5 is a shape in the case where the energy beam B is irradiated from an obliquely upward direction of the tab laminate 25, assuming that the positive direction of the Z axis is the upward direction.
- the welded portion W is also formed on the current collector plate 19.
- the weld W is also formed on the protective plate 27.
- the plurality of tabs 14b, 17b are not deviated like the end face 21c and the end face 25c. Therefore, the welded portion W formed inward from the end faces 21a, 21b, 25a, 25b has a portion passing through the plurality of (all in this example) tabs 14b, 17b in the stacking direction of the tab laminates 21, 25. doing. That is, welds W having a depth sufficient to join the plurality of tabs 14b and 17b are formed inward from the end faces 21a, 21b, 25a and 25b. As a result, the bonding strength between the plurality of tabs 14 b and 17 b can be increased.
- the boundary line Wa of the weld W is in the Z axis direction. It extends in a direction inclined with respect to both the direction H (for example, the Y-axis direction) orthogonal to the direction Y and the stacking direction (the Z-axis direction) of the tab laminate 21.
- the weld W has two boundary lines Wa, and depending on the shape of the molten pool formed around the energy beam B, the two boundaries go from the outer surface of the weld W inward. The distance between Wa is narrow.
- the weld pool is formed to be tapered inward from the surface of the object to be irradiated with the energy beam B in the irradiation direction of the energy beam B.
- the welded portion W is also formed on the current collector plate 16, but since the density of the current collector plate 16 is different from the density of the tab laminate 21, the depth of the weld pool formed on the current collector plate 16 and the tab laminate 21 The depth of weld pool formed is different. As a result, as described above, the distance between the two boundary lines Wa narrows inward from the outer surface of the weld W.
- the smaller angle of the angles formed by one boundary line Wa of welding portion W and direction H is ⁇
- another boundary line Wa of welding portion W and direction H Let ⁇ be ⁇ , where ⁇ is the smaller of the angles formed by ⁇ , and the smaller of the angles formed by direction J and direction H when the irradiation direction of energy beam B is projected onto the YZ plane. It becomes a value between ⁇ and.
- the boundary line Wa in tab laminate 21 and direction H Assuming that the smaller one of the angles formed is ⁇ , and the smaller one of the angles formed by the direction J of the irradiation direction of the energy beam B projected onto the YZ plane and the direction H is ⁇ , then ⁇ ⁇ ⁇ Become.
- the boundary line Wa of the welding portion W may be parallel to the Z-axis direction in the YZ cross section.
- the boundary line Wa of the weld W is orthogonal to the Z axis direction (for example, it extends in a direction inclined with respect to both the Y axis direction) and the stacking direction (Z axis direction) of the tab stack 25.
- weld portion W has two boundary lines Wa, and from the outer surface of weld portion W inward according to the shape of the molten pool formed around energy beam B by irradiation of energy beam B described later. The distance between the two boundary lines Wa narrows toward the direction of travel.
- the weld pool is formed to be tapered inward from the surface of the object to be irradiated with the energy beam B in the irradiation direction of the energy beam B.
- the welded portion W is also formed on the current collector plate 19, but since the density of the current collector plate 19 is different from the density of the tab laminate 25, the depth of the weld pool formed on the current collector plate 19 and the tab laminate 25 are The depth of weld pool formed is different. As a result, as described above, the distance between the two boundary lines Wa narrows inward from the outer surface of the weld W.
- the boundary Wa in tab laminate 25 and direction H Assuming that the smaller one of the angles formed is ⁇ , and the smaller one of the angles formed by the direction J of the irradiation direction of the energy beam B projected onto the YZ plane and the direction H is ⁇ , then ⁇ ⁇ ⁇ Become.
- the boundary line Wa of the welding portion W may be parallel to the Z-axis direction in the YZ cross section.
- the boundary line Wa of the welding portion W extends in a direction inclined with respect to both the direction H and the Z-axis direction.
- the extending direction of the boundary line Wa is controlled by the irradiation direction of the energy beam B irradiated to the end faces 21a, 21b, 25a, 25b of the tab stacks 21, 25.
- the welded portion W in the direction orthogonal to the stacking direction of the tab laminate 21 Maximum welding depth Wd may be less than 2 mm, may be 1.5 mm or less, may be 1.2 mm or less, may be more than 0.1 mm, 0 It may be 3 mm or more.
- the maximum welding depth Wd of the part W may be less than 2 mm, may be 1.5 mm or less, may be 1.2 mm or less, and may be more than 0.1 mm. , 0.3 mm or more.
- the maximum welding depth Wd is less than 2 mm, for example, generation of sputtered particles due to irradiation of the energy beam B can be suppressed.
- the maximum welding depth Wd is 1.2 mm or less, generation of sputtered particles is significantly suppressed (see FIG. 9).
- the maximum area of the welded portion W is, for example, 4 to 40 mm 2 .
- the maximum area of the weld W is, for example, 4 to 40 mm 2 .
- the maximum length W2 of the weld W in the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stack 21 at the end faces 21 a and 21 b of the tab stack 21 is the tab
- a direction e.g., Y-axis direction
- both the stacking direction e.g., Z-axis direction
- the direction e.g., X-axis direction
- the maximum length W1 of the portion where the welded portion W and the tab laminate 21 overlap in the stacking direction of the laminate 21 is larger (see FIGS.
- the welded portion W spreads in the direction intersecting the stacking direction of the tab laminate 21.
- the electrical resistance value between the plurality of tabs 14 b can be reduced.
- the mechanical strength of the welded portion W is increased, the welded portion W is unlikely to be broken even if stress is generated in the electrode assembly 3 due to, for example, an assembly operation or an external force.
- the thermal diffusion of the welded portion W is improved, generation of sputtered particles resulting from the irradiation of the energy beam B can be suppressed when forming the welded portion W.
- the maximum length W2 of the weld W in the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stack 25 at the end faces 25a and 25b of the tab stack 25 is the stacking direction of the tab stack 25 (for example, When viewed from the direction (for example, the Y-axis direction) orthogonal to both the Z-axis direction) and the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab laminate 25 It is larger than the maximum length W1 of the overlapping portion of the welded portion W and the tab laminate 25 in the Z-axis direction).
- the welded portion W spreads in the direction intersecting the stacking direction of the tab laminate 25.
- the electrical resistance value between the plurality of tabs 17 b can be reduced.
- the mechanical strength of the welded portion W is increased, the welded portion W is unlikely to be broken even if stress is generated in the electrode assembly 3 due to, for example, an assembly operation or an external force.
- the thermal diffusion of the welded portion W is improved, generation of sputtered particles resulting from the irradiation of the energy beam B can be suppressed when forming the welded portion W.
- the tab laminate 21 is disposed between the protective plate 23 and the current collector plate 16 in the lamination direction of the tab laminate 21, and the thickness of the protective plate 23 in the lamination direction of the tab laminate 21 is the lamination of the tab laminate 21. It may be smaller than the thickness of the current collector 16 in the direction. In this case, since the thickness of the protective plate 23 is relatively small, the difference between the thermal capacity of the protective plate 23 and the thermal capacity of the tab 14 b can be reduced. Therefore, the quality of the welding part W in the contact location of the protective plate 23 and the tab 14b improves.
- the thickness of the protective plate 23 in the stacking direction of the tab stack 21 may be larger than the thickness of the tab 14 b in the stacking direction of the tab stack 21.
- the thickness of the protective plate 23 may be 0.1 to 0.5 mm or 0.1 to 0.2 mm. If the thickness of the protective plate 23 is less than 0.1 mm, the force with which the protective plate 23 presses the tab 14b will be small, so the tab 14b tends to move easily during welding. If the thickness of the protective plate 23 is more than 0.5 mm, the energy for melting the protective plate 23 at the time of welding tends to be large. When the output of the energy beam B is increased to increase the energy, sputtered particles resulting from the irradiation of the energy beam B tend to be generated.
- the thickness of the tab 14b is, for example, 5 to 30 ⁇ m.
- the thickness of the tab laminate 21 may be, for example, 0.3 to 2.4 mm, or 0.6 to 1.0 mm.
- the tab laminate 25 is disposed between the protective plate 27 and the current collector plate 19 in the lamination direction of the tab laminate 25, and the thickness of the protective plate 27 in the lamination direction of the tab laminate 25 is the tab laminate It may be smaller than the thickness of the current collector 19 in the stacking direction of 25.
- the thickness of the protective plate 27 since the thickness of the protective plate 27 is relatively small, the difference between the thermal capacity of the protective plate 27 and the thermal capacity of the tab 17b can be reduced. Therefore, the quality of the welding part W in the contact location of the protective plate 27 and the tab 17b improves.
- the thickness of the protective plate 27 in the stacking direction of the tab stack 25 may be larger than the thickness of the tab 17 b in the stacking direction of the tab stack 25.
- the thickness of the protective plate 27 may be, for example, 0.1 to 0.5 mm, or 0.1 to 0.2 mm. If the thickness of the protective plate 27 is less than 0.1 mm, the force with which the protective plate 27 presses the tab 17b will be small, so the tab 17b tends to move easily during welding. If the thickness of the protective plate 27 is more than 0.5 mm, the energy for melting the protective plate 27 at the time of welding tends to be large. When the output of the energy beam B is increased to increase the energy, sputtered particles resulting from the irradiation of the energy beam B tend to be generated. The thickness of the tab 17b is, for example, 5 to 30 ⁇ m. The thickness of the tab laminate 25 may be, for example, 0.3 to 2.4 mm or 0.6 to 1.0 mm.
- FIG.6 and FIG.7 is a figure which shows 1 process of the manufacturing method of the electrode assembly which concerns on embodiment.
- the electrode assembly 3 shown in FIG. 3 is manufactured, for example, by the following method.
- FIG. 6A is a view showing the tab stacks 21 and 25 as viewed from the X-axis direction
- FIG. 6B is a view showing the tab stack 25 as viewed from the Y-axis direction.
- the tab stacks 21 and 25 are formed by laminating the tabs 14 b and 17 b respectively on the current collectors 16 and 19.
- the protective plates 23 and 27 are placed on the tab stacks 21 and 25, respectively.
- the tab stacks 21 and 25 are pressed by the jig via the protective plates 23 and 27, for example, but may not be pressed.
- FIG. 7A is a view showing the tab stacks 21 and 25 as viewed from the X-axis direction
- FIG. 7B is a view showing the tab stack 25 as viewed from the Y-axis direction.
- the energy beam B is emitted from the irradiation device 30 toward the end face 25 a of the tab stack 25.
- the irradiation device 30 is, for example, a scanner head including a lens and a galvano mirror.
- a beam generator is connected to the scanner head via a fiber.
- the irradiation device 30 may be composed of, for example, an optical system of a dioptric system such as a prism or a diffractive system such as a diffractive optical element (DOE).
- DOE diffractive optical element
- the direction J in which the irradiation direction of the energy beam B is projected onto a plane (for example, YZ plane) orthogonal to the end face 25a of the tab laminate 25 and including the lamination direction of the tab laminate 25 is Z in the plane (for example, YZ plane). It may be inclined with respect to both the direction H orthogonal to the axial direction (e.g., the Y-axis direction) and the stacking direction of the tab stack 25. The direction J may also be inclined with respect to the end face 25 a of the tab stack 25. When the direction J is inclined as described above, the smaller one of the angles formed by the direction H and the direction J in the YZ plane may be 5 to 85 °, or 10 to 80.
- the energy beam B is a high energy beam that can perform welding.
- the energy beam B is, for example, a laser beam or an electron beam.
- the irradiation of the energy beam B is performed in the atmosphere of the inert gas G supplied from the nozzle 32.
- the energy beam B is applied to the end face 25 a of the tab laminate 25 in a state where the tab laminate 25 is pressed in the Z-axis direction via the current collecting plate 19 and the protective plate 27 by a jig, for example.
- the energy beam B is scanned at the end face 25 a of the tab stack 25 along a direction (X-axis direction) intersecting the Z-axis direction.
- the energy beam B is scanned along the X-axis direction while being displaced in the Z-axis direction.
- the energy beam B is scanned along the X axis direction while reciprocating (wobbling) in the Z axis direction.
- the displacement of the irradiation spot of the energy beam B in the Z-axis direction is larger than the thickness of the tab stack 25.
- the irradiation spot of the energy beam B moves from the position P1 on the axis along the X-axis direction to the position P2 on the end face 25a of the tab stack 25.
- the positions P1 and P2 are located at the center of the end face 25a of the tab stack 25 in the Z-axis direction.
- the energy beam B is moved while moving the central point along the X-axis direction at the end face 25a of the tab stack 25 and rotating the irradiation spot of the energy beam B in the XZ plane about the central point. If the diameter of rotation is larger than the thickness of the tab laminate 25, it is preferable because the end face 25a of the tab laminate 25, the current collector plate 19 and the protective plate 27 can be welded as a whole.
- the energy beam B may be irradiated to the part of the end face 25 a of the tab stack 25 on the protective plate 27 side, and the energy beam B may not be irradiated to the remaining part on the current collector plate 19 side.
- the welding portion W is not formed on the remaining portion of the end face 25 a of the tab stack 25 on the current collecting plate 19 side.
- the weld W extends in the thickness direction of the tab stack 25 inside the tab stack 25 by the weld W extending in the irradiation direction of the energy beam B inside the end face 25 a of the tab stack 25. It will be.
- the plurality of tabs 17 b and the current collector plate 19 can be welded by causing the welded portion W to reach the current collector plate 19.
- the welded portion W is formed inside from the end face 25a of the tab laminate 25.
- the energy beam B is also irradiated to the end face 21 b of the tab laminate 21 to form a welded portion W inside from the end face 21 b.
- the energy beam B is applied also to the end face 25b of the tab laminate 25 and 21a of the tab laminate 21 to form a welded portion W inside from the end faces 25b and 21a.
- the electrode assembly 3 is manufactured.
- the tab stacks 21 and 25 are folded as shown in FIG. 3, for example, and the folded electrode assembly 3 is accommodated in the case 2, whereby the power storage device 1 can be manufactured.
- the bending of the tab laminates 21 and 25 may be completed, for example, in a process of preparing the tab laminates prior to the process of forming the welds.
- the welded portion W is formed by the irradiation of the energy beam B to the end faces 21a, 21b, 25a, 25b in a state where the tab laminates 21, 25 are bent.
- the protrusion direction of the tab laminated body in the state by which the tab laminated body was bent points out the direction along the shape of the tab laminated body which was bend
- the tab stacks 21 and 25 are bent at the bending portion F.
- the projecting direction of the tab laminates 21 and 25 is a direction away from the side surface S of the electrode body 20 at a portion closer to the electrode main body 20 than the bent portion F of the tab laminates 21 and 25.
- the tab laminates 21 and 25 protrude from the bent portion F toward the current collectors 16 and 19. It is considered to be the direction towards.
- the electrode assembly 3 includes the electrode body 20 having the plurality of stacked bodies 14 a and 17 a and the tab laminate 21 having the plurality of stacked tabs 14 b and 17 b and protruding from the electrode body 20. , 25.
- the positions of the tips of the plurality of tabs 14 b and 17 b are shifted in the protrusion direction at the tip portions (the tip portions 253 and the like) of the tab stacks 21 and 25 in the protrusion direction.
- the tab stacks 21 and 25 extend along the stack direction (Z-axis direction) of the tab stacks 21 and 25 and the protrusion direction of the tab stacks 21 and 25.
- the welding portion W is positioned inward from the end faces 21a, 21b (first end face, second end face), 25a, 25b (first end face, second end face).
- the end faces 21a, 21b, 25a, 25b of the tab laminates 21, 25 unlike the tip portions (the tip portions 253, etc.) of the tab laminates 21, 25, the above-mentioned deviation amount is small. Therefore, welds W of sufficient depth can be formed from the end faces 21a, 21b, 25a, 25b of the tab stacks 21, 25 inward. Thus, the bonding strength between the plurality of stacked tabs 14b and 17b can be secured.
- the welded portion W is located not only on one end face (for example, end face 21 a) but also on the inner side from the other end face (for example, end face 21 b).
- the bonding strength between the stacked tabs 14b can be further enhanced.
- the welded portion is provided not only on one end face (for example, end face 25 a) but also on the inner side from the other end face (for example, end face 25 b).
- the bonding strength between the stacked tabs 17b can be increased more than in the case where it is carried out.
- the welding portion W is formed on the inner side from the end faces 21 a and 21 b of the tab laminate 21 and is also formed on the current collector plate 16 and the protective plate 23. Ru.
- the tab laminate 21, the current collector plate 16, and the protective plate 23 can be firmly connected by the welded portion W.
- the protective plate is used without using a member (for example, a member connecting the protective plate 23 and the current collector plate 16) positioned across the tab laminate 21 in the stacking direction of the tab laminate 21. 23, the plurality of tabs 14b and the current collector plate 16 are connected to each other by the welding portion W. Therefore, the member positioned across the tab stacks 21 as described above can be eliminated.
- the protective plate 27 and the current collector plate 19 are connected to each other by the weld W. Therefore, a member positioned across the tab stack 25 as described above can be eliminated.
- the tab laminate 21 and the tab laminate 25 protrude in the same direction from the electrode body 20, and the tab laminates 21 and 25 may be bent.
- the tab laminates 21 and 25 have welds W positioned on the inner side from the end faces 21a, 21b, 25a and 25b, thereby joining the plurality of stacked tabs 14b and 17b. The strength can be secured.
- the tab laminates 21 and 25 are bent before the welded portion W is formed by the irradiation of the energy beam B, the following advantages are also obtained. That is, the tab laminates 21 and 25 may be bent, which may further increase the positional deviation of the tips of the plurality of tabs 14 b and 17 b at the tip portions (the tip portions 253 and the like) of the tab laminates 21 and 25. There is.
- the tab stacks 21 and 25 have the welds W positioned inside from the end faces 21a, 21b, 25a and 25b, so the plurality of tabs 14b and 17b Even when the position of the front end of the above is shifted, the bonding strength between the stacked plural tabs 14b and 17b can be secured.
- the length of the weld W in the direction from the end faces 21a, 21b, 25a, 25b of the tab laminates 21, 25 in the cross section orthogonal to the projecting direction of the tab laminates 21, 25 The (welding depth) increases as the current collectors 16 and 19 are approached. Thereby, the joint strength with respect to current collection plates 16 and 19 of a plurality of laminated tabs 14b and 17b can be raised.
- FIG. 8 is a view showing a part of an electrode assembly having a weld according to a modification.
- FIG. 8A is a view showing the tab laminate 25 seen from the Y-axis direction, having the weld portion W according to the first modification.
- FIG. 8 (B) is a view showing the tab laminate 25 seen from the Y-axis direction, having the weld portion W according to the second modification.
- the weld W has an outer shape including a curve. Therefore, the stress is not easily concentrated at the curved portion of the outer shape of the welded portion W, so the welded portion W is hardly peeled off.
- the weld W may have an outer shape surrounded by a curve, or may have an outer shape surrounded by a curve and a straight line.
- the external shape of the welded portion W does not include corner portions where the stress tends to concentrate (portions where straight lines intersect).
- the external shape of the welding portion W according to the first modification includes, for example, a part of an ellipse.
- the maximum length W2 of the weld W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 at the end face 25a of the tab stack 25 is the tab stack 25 When viewed from the direction (Y-axis direction) orthogonal to both the stacking direction (Z-axis direction) and the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap in the (Z-axis direction).
- the external shape of the welding portion W according to the second modification includes, for example, a part of a circle.
- the maximum length W2 of the weld W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 at the end face 25a of the tab stack 25 is the tab stack 25 When viewed from the direction (Y-axis direction) orthogonal to both the stacking direction (Z-axis direction) and the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 It is larger than the maximum length W1 of the overlapping portion of the welded portion W and the tab laminate 25 in (Z-axis direction).
- the maximum length W2 may be equal to or less than the maximum length W1.
- weld W has the same shape as weld W according to the first modification or the second modification. May be
- Example 1 The weld portion W was formed such that the maximum weld depth Wd of the weld portion W was 0.1 mm.
- Example 2 The welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was 0.3 mm.
- Example 3 A welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was 1.2 mm. The output of the laser used to form the weld W was 1500 W, and the scanning speed was 24.9 mm / sec.
- Example 4 The welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was set to 1.5 mm.
- the power of the laser used to form the weld W was 1500 W, and the scanning speed was 8.3 mm / sec.
- Example 5 The welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was 2 mm.
- Electrode assembly 14a, 17a ... Main body, 14b, 17b ... Tab, 16, 19 Current collection board (current collector), 20 ... Electrode main body 21, 21 ... Tab laminated body, 21a, 21b, 21c, 25a, 25b, 25c ... end face, 23, 27 ... protection plate (conductive member), W ... welded portion.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
This electrode assembly, which has multiple electrodes each having a main body and a tab projecting from one edge of a main body, is provided with electrode main body having the multiple laminated main bodies, and a tab laminate having the multiple laminated tabs and projecting from the electrode main body. In the tab laminate, in the leading end portion in the direction of projection of the tab laminate, the leading ends of the tabs are arranged staggered in the projection direction. The tab laminate has a welded portion located inside from a first end surface of the tab laminate, which extends in the direction of lamination of the tab laminate and in the direction of projection of the tab laminate.
Description
本発明の一側面は、電極組立体に関する。
One aspect of the invention relates to an electrode assembly.
リチウムイオン電池等の蓄電装置は、複数の電極が積層された電極組立体を備える。各電極はタブを有しており、電極組立体を製造する際には、積層された電極のタブが溶接される。溶接は、積層されたタブの端面に例えばエネルギービームを照射することによって行われる。(例えば特許文献1参照)。
A power storage device such as a lithium ion battery includes an electrode assembly in which a plurality of electrodes are stacked. Each electrode has a tab, and when manufacturing the electrode assembly, the tabs of the stacked electrodes are welded. Welding is performed, for example, by irradiating the end face of the stacked tabs with an energy beam. (See, for example, Patent Document 1).
積層されたタブ(以下、「タブ積層体」という場合もある)の先端部分では、各タブの先端の位置がずれている場合も少なくない。各タブの先端の位置がずれている状態でタブ積層体の先端部分にエネルギービームが照射されると、複数のタブ同士を接合するのに十分な深さの溶接部が各タブの先端から内側に形成されず、タブ同士の接合強度が不足する可能性がある。
In the tip portion of the stacked tabs (hereinafter sometimes referred to as "tab stack"), there are many cases where the positions of the tips of the tabs are shifted. When an energy beam is applied to the front end portion of the tab stack while the front end of each tab is misaligned, a weld of a depth sufficient to join the plurality of tabs is inward from the front end of each tab There is a possibility that the joint strength between the tabs is insufficient.
本発明の一側面は、各タブの先端の位置がずれていても、積層された複数のタブ同士の接合強度が確保された電極組立体を提供することを目的とする。
An object of the present invention is to provide an electrode assembly in which bonding strength between a plurality of stacked tabs is secured even when the position of the tip of each tab is shifted.
本発明の一側面に係る電極組立体は、本体と本体の一端から突出するタブとをそれぞれ含む複数の電極を有する電極組立体であって、積層された複数の本体を有する電極本体と、積層された複数のタブを有し電極本体から突出するタブ積層体と、を備え、タブ積層体では、タブ積層体の突出方向の先端部分において複数のタブの先端が突出方向にずれて配置されており、タブ積層体は、タブ積層体の積層方向及びタブ積層体の突出方向に沿って延在するタブ積層体の第1の端面から内側に位置する溶接部を有する。
An electrode assembly according to one aspect of the present invention is an electrode assembly having a plurality of electrodes each including a main body and a tab projecting from one end of the main body, the electrode main body having a plurality of stacked main bodies, A tab laminate having a plurality of tabs formed and projecting from the electrode body, in the tab laminate, the tips of the plurality of tabs are arranged to be offset in the protrusion direction at the tip portion of the tab laminate in the protrusion direction The tab stack has a weld located inwardly from the first end face of the tab stack extending along the stack direction of the tab stack and the protruding direction of the tab stack.
上記の電極組立体は、積層された複数の本体を有する電極本体と、積層された複数のタブを有し電極本体から突出するタブ積層体と、を備える。タブ積層体の突出方向の先端部分において複数のタブの先端の位置が突出方向にずれている。上記の電極組立体では、タブ積層体は、タブ積層体の積層方向及びタブ積層体の突出方向に沿って延在するタブ積層体の第1の端面から内側に位置する溶接部を有する。タブ積層体の第1の端面では、タブ積層体の先端部分と異なり上記のずれ量が小さい。そのため、タブ積層体の第1の端面から内側に向かって、十分な深さの溶接部が形成され得る。よって、積層された複数のタブ同士の接合強度を確保することができる。
The above electrode assembly comprises an electrode body having a plurality of stacked bodies, and a tab laminate having a plurality of stacked tabs and projecting from the electrode body. The positions of the tips of the plurality of tabs are offset in the projecting direction at the tip end portion of the tab stack in the projecting direction. In the above-described electrode assembly, the tab laminate has the weld located inside from the first end face of the tab laminate extending along the stacking direction of the tab laminate and the projecting direction of the tab laminate. Unlike the leading end portion of the tab laminate, the first end face of the tab laminate has a small amount of displacement. Therefore, a weld of sufficient depth can be formed inward from the first end face of the tab stack. Thus, the bonding strength between the plurality of stacked tabs can be secured.
タブ積層体は、積層方向及び突出方向に沿って延在し第1の端面とは異なる第2の端面から内側に位置する別の溶接部をさらに有してもよい。これにより、一方の端面のみに溶接部が位置する場合よりも、積層されたタブ同士の接合強度を高めることができる。
The tab stack may further include another weld extending along the stacking direction and the protruding direction and located inward from the second end surface different from the first end surface. Thereby, the joint strength between the stacked tabs can be enhanced as compared with the case where the welded portion is positioned on only one end face.
積層方向においてタブ積層体を跨いで位置する部材を用いることなく、複数のタブが溶接部によって互いに接続されてもよい。例えば積層方向においてタブ積層体を跨いで位置する部材を用いることによって複数のタブ同士の接合強度を向上させる手法も考えられるが、上述の電極組立体によれば、溶接部によって積層された複数のタブ同士の接合強度が確保されているので、そのような部材を不要とすることができる。
The plurality of tabs may be connected to one another by welds without using a member positioned across the tab stack in the stacking direction. For example, a method of improving the bonding strength between the plurality of tabs by using a member positioned across the tab stacks in the stacking direction may be considered, but according to the above-mentioned electrode assembly, a plurality of stacked layers by welding portions Such a member can be made unnecessary since the joint strength between the tabs is secured.
電極組立体は積層型であり、電極組立体は、互いに反対の極性を有する2つの電極本体を含み、上記のタブ積層体は、一方の極性を有する電極本体から突出し積層された複数のタブを有する第1のタブ積層体であり、電極組立体は、他方の極性を有する電極本体から突出し積層された複数のタブを有する第2のタブ積層体であって、第2のタブ積層体の積層方向及び第2のタブ積層体の突出方向に沿って延在する第2のタブ積層体の端面から内側に位置する溶接部を有する第2のタブ積層体、をさらに備え、第2のタブ積層体では、第2のタブ積層体の突出方向の先端部分において第2のタブ積層体における複数のタブの先端の位置が第2のタブ積層体の突出方向にずれて配置されており、第1のタブ積層体と第2のタブ積層体とは、同じ方向に突出しており、第1のタブ積層体及び第2のタブ積層体が折り曲げられていてもよい。
The electrode assembly is a laminated type, and the electrode assembly includes two electrode bodies having opposite polarities to each other, and the above-mentioned tab laminates project a plurality of stacked tabs from the electrode body having one polarity. A first tab stack having a plurality of tabs, and the electrode assembly is a second tab stack having a plurality of tabs protrudingly stacked from the electrode body having the other polarity, the second tab stack being stacked A second tab stack having a weld located inwardly from an end face of the second tab stack extending along the direction and the protruding direction of the second tab stack; In the body, the positions of the tips of the plurality of tabs in the second tab stack are offset in the direction of protrusion of the second tab stack at the tip portion of the second tab stack in the protrusion direction, Tab stack and the second tab stack are the same It protrudes toward, may first tab laminate and the second tab laminate is folded.
電極組立体は、集電体をさらに備え、タブ積層体は、積層方向において集電体上に配置され、タブ積層体の突出方向に対して直交する断面において、タブ積層体の第1の端面から内側に向かう方向における溶接部の長さは、集電体に近づくにつれて大きくなっていてもよい。これにより、集電体上にタブ積層体が配置される場合には、積層された複数のタブの集電体に対する接合強度を高めることができる。
The electrode assembly further includes a current collector, and the tab stack is disposed on the current collector in the stacking direction, and the first end face of the tab stack in a cross section orthogonal to the protruding direction of the tab stack. The length of the weld in the inward direction may increase as it approaches the current collector. Thus, when the tab laminate is disposed on the current collector, the bonding strength of the stacked plurality of tabs to the current collector can be enhanced.
前記タブ積層体が、前記タブ積層体の積層方向において導電部材と集電体との間に配置され、前記タブ積層体の積層方向における前記導電部材の厚みは、前記タブ積層体の積層方向における前記集電体の厚みよりも小さくてもよい。
The tab laminate is disposed between the conductive member and the current collector in the lamination direction of the tab laminate, and the thickness of the conductive member in the lamination direction of the tab laminate is in the lamination direction of the tab laminate. It may be smaller than the thickness of the current collector.
この場合、導電部材の厚みが比較的小さくなるので、導電部材の熱容量とタブの熱容量との差を小さくできる。
In this case, since the thickness of the conductive member is relatively small, the difference between the heat capacity of the conductive member and the heat capacity of the tab can be reduced.
前記タブ積層体の前記第1の端面において前記タブ積層体の積層方向に直交する方向における前記溶接部の最大長さが、前記タブ積層体の積層方向と前記タブ積層体の積層方向に直交する前記方向との両方に直交する方向から見たときに、前記タブ積層体の積層方向における前記溶接部と前記タブ積層体とが重なる部分の最大長さよりも大きくてもよい。
In the first end face of the tab laminate, the maximum length of the weld in a direction orthogonal to the lamination direction of the tab laminate is orthogonal to the lamination direction of the tab laminate and the lamination direction of the tab laminate When viewed from a direction orthogonal to both of the directions, it may be larger than the maximum length of the overlapping portion of the welded portion and the tab laminate in the laminating direction of the tab laminate.
この場合、タブ積層体の第1の端面において、タブ積層体の積層方向に交差する方向に溶接部が広がる。その結果、溶接部において電流が積層方向に流れる際に、複数のタブ間の電気抵抗値を低減できる。
In this case, at the first end face of the tab laminate, the weld extends in the direction intersecting the stacking direction of the tab laminate. As a result, when current flows in the stacking direction in the weld, the electrical resistance between the plurality of tabs can be reduced.
前記タブ積層体の積層方向を含み前記タブ積層体の前記第1の端面に直交する前記タブ積層体の断面において、前記タブ積層体の積層方向に直交する方向における前記溶接部の最大溶接深さが2mm未満であってもよい。
In a cross section of the tab laminate including the stacking direction of the tab laminate and orthogonal to the first end face of the tab laminate, the maximum welding depth of the weld in a direction orthogonal to the stacking direction of the tab laminate May be less than 2 mm.
前記タブ積層体の前記第1の端面の法線方向から見て、前記溶接部が、曲線を含む外形形状を有してもよい。
When viewed in the normal direction of the first end face of the tab stack, the weld portion may have an outer shape including a curve.
この場合、溶接部の外形形状の曲線部分において応力が集中し難いので、溶接部が剥離し難い。
In this case, since the stress is not easily concentrated at the curved portion of the outer shape of the welded portion, the welded portion is not easily peeled off.
本発明の一側面によれば、各タブの先端の位置がずれていても、積層された複数のタブ同士の接合強度が確保された電極組立体が提供される。
According to one aspect of the present invention, an electrode assembly is provided in which bonding strength between a plurality of stacked tabs is secured even when the position of the tip of each tab is shifted.
以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図面には、必要に応じてXYZ直交座標系が示されている。Z軸方向は例えば鉛直方向、X軸方向及びY軸方向は例えば水平方向である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and the overlapping description is omitted. In the drawings, an XYZ orthogonal coordinate system is shown as needed. The Z-axis direction is, for example, the vertical direction, and the X-axis direction and the Y-axis direction are, for example, the horizontal direction.
図1は、実施形態に係る電極組立体を備える蓄電装置の分解斜視図である。図2は、図1のII-II線に沿った蓄電装置の断面図である。図1及び図2に示される蓄電装置1は、例えばリチウムイオン二次電池といった非水電解質二次電池又は電気二重層キャパシタである。
FIG. 1 is an exploded perspective view of a power storage device provided with an electrode assembly according to the embodiment. FIG. 2 is a cross-sectional view of the power storage device taken along line II-II of FIG. The power storage device 1 shown in FIGS. 1 and 2 is, for example, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery or an electric double layer capacitor.
図1及び図2に示されるように、蓄電装置1は、例えば略直方体形状をなす中空のケース2と、ケース2内に収容された電極組立体3とを備えている。ケース2は、例えばアルミニウム等の金属によって形成されている。ケース2は、一方側において開口した本体部2aと、本体部2aの開口を塞ぐ蓋部2bとを有している。ケース2の内壁面上には、絶縁フィルム(図示せず)が設けられる。ケース2の内部には、例えば非水系(有機溶媒系)の電解液が注液されている。電極組立体3では、後述する正極11の正極活物質層15、負極12の負極活物質層18、及びセパレータ13が多孔質をなしており、その空孔内に、電解液が含浸されている。ケース2の蓋部2bには、正極端子5と負極端子6とが互いに離間して配置されている。正極端子5は、絶縁リング7を介してケース2に固定され、負極端子6は、絶縁リング8を介してケース2に固定されている。
As shown in FIGS. 1 and 2, the power storage device 1 includes, for example, a hollow case 2 having a substantially rectangular parallelepiped shape, and an electrode assembly 3 accommodated in the case 2. The case 2 is formed of, for example, a metal such as aluminum. The case 2 has a main body 2a opened on one side and a lid 2b closing the opening of the main body 2a. An insulating film (not shown) is provided on the inner wall surface of the case 2. For example, a non-aqueous (organic solvent based) electrolyte solution is injected into the inside of the case 2. In the electrode assembly 3, the positive electrode active material layer 15 of the positive electrode 11, the negative electrode active material layer 18 of the negative electrode 12, and the separator 13 described later are porous, and the pores are impregnated with the electrolyte solution . The positive electrode terminal 5 and the negative electrode terminal 6 are disposed apart from each other in the lid 2 b of the case 2. The positive electrode terminal 5 is fixed to the case 2 via the insulating ring 7, and the negative electrode terminal 6 is fixed to the case 2 via the insulating ring 8.
電極組立体3は、積層型の電極組立体である。電極組立体3は、複数の正極11(電極)と、複数の負極12(電極)と、正極11と負極12との間に配置された袋状のセパレータ13とによって構成されている。正極11と負極12とは互いに反対の極性を有する。セパレータ13内には、例えば正極11が収容されている。セパレータ13内に正極11が収容された状態で、複数の正極11と複数の負極12とがセパレータ13を介して交互に積層されている。
The electrode assembly 3 is a stacked electrode assembly. The electrode assembly 3 includes a plurality of positive electrodes 11 (electrodes), a plurality of negative electrodes 12 (electrodes), and a bag-like separator 13 disposed between the positive electrodes 11 and the negative electrodes 12. The positive electrode 11 and the negative electrode 12 have opposite polarities to each other. For example, the positive electrode 11 is accommodated in the separator 13. A plurality of positive electrodes 11 and a plurality of negative electrodes 12 are alternately stacked via the separator 13 in a state where the positive electrode 11 is accommodated in the separator 13.
正極11は、例えばアルミニウム箔からなる金属箔14と、金属箔14の両面に形成された正極活物質層15と、を有している。正極11の金属箔14は、矩形状の本体14aと、本体14aの一端から突出する矩形状のタブ14bと、を含む。正極活物質層15は、正極活物質とバインダとを含んで形成されている多孔質の層である。正極活物質層15は、本体14aの両面において、少なくとも本体14aの中央部分に正極活物質が担持されて形成されている。
The positive electrode 11 has a metal foil 14 made of, for example, aluminum foil, and a positive electrode active material layer 15 formed on both sides of the metal foil 14. The metal foil 14 of the positive electrode 11 includes a rectangular main body 14 a and a rectangular tab 14 b projecting from one end of the main body 14 a. The positive electrode active material layer 15 is a porous layer formed by containing a positive electrode active material and a binder. The positive electrode active material layer 15 is formed by supporting a positive electrode active material on at least a central portion of the main body 14 a on both sides of the main body 14 a.
正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物には、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つと、リチウムとが含まれる。ここでは、一例として、タブ14bには、正極活物質が担持されていない。ただし、タブ14bにおける本体14a側の基端部分には、活物質が担持されている場合もある。
Examples of the positive electrode active material include composite oxides, metallic lithium, sulfur and the like. The composite oxide includes, for example, at least one of manganese, nickel, cobalt and aluminum, and lithium. Here, as an example, the positive electrode active material is not supported on the tab 14 b. However, an active material may be supported on the base end portion of the tab 14 b on the main body 14 a side.
タブ14bは、本体14aの上縁部から上方に延び、集電板16(集電体)を介して正極端子5に接続されている。集電板16はタブ14bと正極端子5との間に配置されている。集電板16は、例えば、正極11の金属箔14と同一の材料から矩形平板状に構成される。積層された複数のタブ14bは、集電板16と、集電板16よりも薄い保護板23(導電部材)との間に配置される(図3参照)。保護板23は、例えば、正極11の金属箔14と同一の材料から矩形平板状に構成される。
The tab 14b extends upward from the upper edge of the main body 14a, and is connected to the positive electrode terminal 5 through the current collector 16 (current collector). The current collector 16 is disposed between the tab 14 b and the positive electrode terminal 5. The current collector plate 16 is formed of, for example, the same material as the metal foil 14 of the positive electrode 11 in a rectangular flat plate shape. The plurality of stacked tabs 14 b are disposed between the current collector 16 and the protective plate 23 (conductive member) thinner than the current collector 16 (see FIG. 3). The protective plate 23 is made of, for example, the same material as the metal foil 14 of the positive electrode 11 in the shape of a rectangular flat plate.
負極12は、例えば銅箔からなる金属箔17と、金属箔17の両面に形成された負極活物質層18と、を有している。負極12の金属箔17は、正極11の金属箔14と同様に、矩形状の本体17aと、本体17aの一端部から突出する矩形状のタブ17bと、を含む。負極活物質層18は、本体17aの両面において、少なくとも本体17aの中央部分に負極活物質が担持されて形成されている。負極活物質層18は、負極活物質とバインダとを含んで形成されている多孔質の層である。
The negative electrode 12 has, for example, a metal foil 17 made of copper foil and a negative electrode active material layer 18 formed on both sides of the metal foil 17. Similar to the metal foil 14 of the positive electrode 11, the metal foil 17 of the negative electrode 12 includes a rectangular main body 17a and a rectangular tab 17b protruding from one end of the main body 17a. The negative electrode active material layer 18 is formed by supporting the negative electrode active material on at least a central portion of the main body 17 a on both sides of the main body 17 a. The negative electrode active material layer 18 is a porous layer formed by containing a negative electrode active material and a binder.
負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等が挙げられる。ここでは、一例として、タブ17bには、負極活物質が担持されていない。ただし、タブ17bにおける本体17a側の基端部分には、活物質が担持されている場合もある。
As the negative electrode active material, for example, graphite, highly oriented graphite, meso carbon micro beads, hard carbon, carbon such as soft carbon, alkali metals such as lithium and sodium, metal compounds, SiO x (0.5 ≦ x ≦ 1.5) Etc., boron-added carbon, and the like. Here, as an example, the negative electrode active material is not supported on the tab 17 b. However, the active material may be supported on the proximal end portion of the tab 17b on the main body 17a side.
タブ17bは、本体17aの上縁部から上方に延び、集電板19(集電体)を介して負極端子6に接続されている。集電板19はタブ17bと負極端子6との間に配置されている。集電板19は、例えば、負極12の金属箔17と同一の材料から矩形平板状に構成される。積層された複数のタブ17bは、集電板19と、集電板19よりも薄い保護板27(導電部材)との間に配置される(図3参照)。保護板27は、例えば、負極12の金属箔17と同一の材料から矩形平板状に構成される。
The tab 17b extends upward from the upper edge of the main body 17a, and is connected to the negative electrode terminal 6 via the current collector 19 (current collector). The current collecting plate 19 is disposed between the tab 17 b and the negative electrode terminal 6. The current collector 19 is formed, for example, in the shape of a rectangular flat plate from the same material as the metal foil 17 of the negative electrode 12. The plurality of stacked tabs 17 b are disposed between the current collecting plate 19 and the protective plate 27 (conductive member) thinner than the current collecting plate 19 (see FIG. 3). The protective plate 27 is made of, for example, the same material as the metal foil 17 of the negative electrode 12 in a rectangular flat plate shape.
セパレータ13は、正極11を収容している。セパレータ13は、正極11及び負極12の積層方向からみて矩形状である。セパレータ13は、例えば、一対の長尺シート状のセパレータ部材を互いに溶着して袋状に形成される。セパレータ13の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。
The separator 13 accommodates the positive electrode 11. The separator 13 has a rectangular shape as viewed from the stacking direction of the positive electrode 11 and the negative electrode 12. The separator 13 is formed, for example, in a bag shape by welding a pair of long sheet-like separator members to each other. Examples of the material of the separator 13 include porous films made of polyolefin resins such as polyethylene (PE) and polypropylene (PP), and woven or non-woven fabrics made of polypropylene, polyethylene terephthalate (PET), methyl cellulose and the like.
図3は、実施形態に係る電極組立体の斜視図である。電極組立体3は、セパレータ13を介して互いに積層された複数の正極11及び複数の負極12を含む。複数の正極11のそれぞれは、XY平面に延在する本体14aと、本体14aの一端からX軸方向(後述の側面Sに対して直交する方向)に突出するタブ14bとを含む。複数の負極12のそれぞれは、XY平面に延在する本体17aと、本体17aの一端からX軸方向に突出するタブ17bとを含む。本体14a,17aは、互いに積層され、全体として電極本体20を構成する。電極本体20は側面Sを有する。側面Sは、積層された本体14a,17aの一端によって構成される。タブ14b,17bは、互いに積層されてタブ積層体21,25をそれぞれ構成する。すなわち、電極組立体3は、Z軸方向に積層された複数の14a,17bを有する電極本体20と、Z軸方向に積層された複数のタブ14bを有するタブ積層体21と、Z軸方向に積層された複数のタブ17bを有するタブ積層体25とを備える。タブ積層体21,25は、電極本体20の側面SからX軸方向に突出する。タブ積層体21,25は、Y軸方向において、互いに離間して配列される。
FIG. 3 is a perspective view of an electrode assembly according to the embodiment. The electrode assembly 3 includes a plurality of positive electrodes 11 and a plurality of negative electrodes 12 stacked one on another via a separator 13. Each of the plurality of positive electrodes 11 includes a main body 14a extending in the XY plane, and a tab 14b protruding from one end of the main body 14a in the X-axis direction (direction orthogonal to the side surface S described later). Each of the plurality of negative electrodes 12 includes a main body 17a extending in the XY plane, and a tab 17b protruding in the X-axis direction from one end of the main body 17a. The main bodies 14a and 17a are stacked on each other to constitute an electrode main body 20 as a whole. The electrode body 20 has a side surface S. The side surface S is constituted by one end of the stacked main bodies 14a, 17a. The tabs 14b and 17b are stacked on one another to form tab stacks 21 and 25, respectively. That is, the electrode assembly 3 includes an electrode body 20 having a plurality of 14a and 17b stacked in the Z-axis direction, a tab stack 21 having a plurality of tabs 14b stacked in the Z-axis direction, and the Z-axis direction. And a tab stack 25 having a plurality of stacked tabs 17b. The tab stacks 21 and 25 protrude from the side surface S of the electrode body 20 in the X-axis direction. The tab stacks 21 and 25 are arranged separately from each other in the Y-axis direction.
タブ積層体21は、タブ積層体21の積層方向(Z軸方向)に沿って延在するタブ積層体21の端面21a,21b,21cを備える。端面21a,21bは、タブ積層体21を挟む面であり、端面21cは端面21a,21bを繋ぐ面である。すなわち、端面21a,21bは、タブ積層体21を挟んで互いに反対側に配置されている。端面21a,21bは、XZ平面に沿う面である。端面21cは、タブ積層体21の先端に向かうにつれてタブ積層体21の厚さが小さくなるようにXY平面に対して傾斜した面である。
The tab stack 21 includes end faces 21 a, 21 b, 21 c of the tab stack 21 extending along the stack direction (Z-axis direction) of the tab stack 21. The end surfaces 21a and 21b are surfaces sandwiching the tab stack 21, and the end surface 21c is a surface connecting the end surfaces 21a and 21b. That is, the end faces 21 a and 21 b are disposed on the opposite sides of the tab stack 21. The end surfaces 21a and 21b are surfaces along the XZ plane. The end surface 21 c is a surface inclined with respect to the XY plane so that the thickness of the tab laminate 21 decreases toward the tip of the tab laminate 21.
タブ積層体21は、Z軸方向において、集電板16と保護板23との間に配置される。すなわち、タブ積層体21は、Z軸方向において集電板16上に配置される。保護板23は、集電板16とはタブ積層体21を挟んで反対側に、タブ積層体21上に配置される。保護板23は、集電板16と接触しておらず、保護板23と集電板16とは、タブ積層体21を積層方向に挟んで離間している。タブ積層体21は保護板23よりも厚く、集電板16は保護板23よりも厚い。保護板23の厚みは、タブ14bの厚みよりも大きい。
The tab stack 21 is disposed between the current collector 16 and the protective plate 23 in the Z-axis direction. That is, the tab stack 21 is disposed on the current collector 16 in the Z-axis direction. The protective plate 23 is disposed on the tab laminate 21 on the opposite side of the current collector plate 16 with the tab laminate 21 interposed therebetween. The protective plate 23 is not in contact with the current collector 16, and the protective plate 23 and the current collector 16 are separated by sandwiching the tab laminate 21 in the stacking direction. The tab laminate 21 is thicker than the protective plate 23, and the current collector 16 is thicker than the protective plate 23. The thickness of the protective plate 23 is larger than the thickness of the tab 14 b.
集電板16のY軸方向における長さは、タブ積層体21のY軸方向における長さ(端面21a,21b間の距離)よりも大きくなっている。Y軸方向において、集電板16のY軸方向における外側端部の位置は、本体14aのY軸方向における端部の位置と一致している。保護板23のY軸方向における長さは、タブ積層体21のY軸方向における長さと略同じである。
The length of the current collector plate 16 in the Y-axis direction is larger than the length of the tab laminate 21 in the Y-axis direction (the distance between the end faces 21a and 21b). In the Y-axis direction, the position of the outer end of the current collector plate 16 in the Y-axis direction coincides with the position of the end of the main body 14 a in the Y-axis direction. The length of the protective plate 23 in the Y-axis direction is substantially the same as the length of the tab laminate 21 in the Y-axis direction.
タブ積層体21は、タブ積層体21の端面21a,21bからそれぞれ内側に位置する溶接部Wを有する。タブ積層体21の端面21a,21bにおいてタブ積層体21の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体21の積層方向(例えばZ軸方向)とタブ積層体21の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体21の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体21とが重なる部分の最大長さW1よりも大きい(図3及び図4参照)。溶接部Wについては、後に図5を参照して詳述する。
The tab laminate 21 has welds W located on the inner side from the end faces 21 a and 21 b of the tab laminate 21. The maximum length W2 of the weld W in the direction (for example, the X-axis direction) orthogonal to the lamination direction of the tab laminate 21 at the end faces 21a and 21b of the tab laminate 21 is the lamination direction of the tab laminate 21 (for example, Z-axis direction When viewed from the direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab laminate 21 (for example, the Z-axis direction) And the maximum length W1 of the overlapping portion of the welded portion W and the tab laminate 21 (see FIGS. 3 and 4). The weld portion W will be described in detail later with reference to FIG.
同様に、タブ積層体25は、タブ積層体25の積層方向(Z軸方向)に沿って延在するタブ積層体25の端面25a,25b,25cを備える。端面25a,25bは、タブ積層体25を挟む面であり、端面25cは端面25a,25bを繋ぐ面である。すなわち、端面25a,25bは、タブ積層体25を挟んで互いに反対側に配置されている。また、端面25a,25bは、XZ平面に沿う面である。また、端面25cは、タブ積層体25の先端に向かうにつれてタブ積層体25の厚さが小さくなるように、XY平面に対して傾斜した面である。
Similarly, the tab stack 25 includes end surfaces 25a, 25b, 25c of the tab stack 25 extending along the stack direction (Z-axis direction) of the tab stack 25. The end surfaces 25a and 25b are surfaces sandwiching the tab stack 25, and the end surface 25c is a surface connecting the end surfaces 25a and 25b. That is, the end faces 25 a and 25 b are disposed on the opposite sides of the tab stack 25. The end surfaces 25a and 25b are surfaces along the XZ plane. Further, the end face 25 c is a surface inclined with respect to the XY plane so that the thickness of the tab laminate 25 decreases toward the tip of the tab laminate 25.
タブ積層体25は、Z軸方向において、集電板19と保護板27との間に配置される。Z軸方向において、タブ積層体25は、集電板19上に配置される。保護板27は、集電板19とはタブ積層体25を挟んで反対側に、タブ積層体25上に配置される。保護板27は、集電板19と接触しておらず、保護板27と29とは、タブ積層体25を積層方向に挟んで離間している。タブ積層体25は保護板27よりも厚く、集電板19は保護板27よりも厚い。保護板27の厚みは、タブ17bの厚みよりも大きい。
The tab stack 25 is disposed between the current collector 19 and the protective plate 27 in the Z-axis direction. The tab stack 25 is disposed on the current collector 19 in the Z-axis direction. The protective plate 27 is disposed on the tab laminate 25 on the opposite side to the current collector plate 19 with the tab laminate 25 interposed therebetween. The protective plate 27 is not in contact with the current collecting plate 19, and the protective plates 27 and 29 are separated by sandwiching the tab laminate 25 in the stacking direction. The tab laminate 25 is thicker than the protective plate 27, and the current collector 19 is thicker than the protective plate 27. The thickness of the protective plate 27 is larger than the thickness of the tab 17 b.
集電板19のY軸方向における長さは、タブ積層体25のY軸方向における長さ(端面25a、25b間の距離)よりも大きくなっている。Y軸方向において、集電板19のY軸方向における外側端部の位置は、本体17aのY軸方向における端部の位置と一致している。保護板27のY軸方向における長さは、タブ積層体25のY軸方向における長さと略同じである。
The length of the current collector plate 19 in the Y-axis direction is larger than the length of the tab laminate 25 in the Y-axis direction (the distance between the end surfaces 25a and 25b). The position of the outer end of the current collector plate 19 in the Y-axis direction in the Y-axis direction coincides with the position of the end in the Y-axis direction of the main body 17a. The length of the protective plate 27 in the Y-axis direction is substantially the same as the length of the tab laminate 25 in the Y-axis direction.
タブ積層体25は、タブ積層体25の端面25a,25bからそれぞれ内側に位置する溶接部Wを有する。タブ積層体25の端面25a,25bにおいてタブ積層体25の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(例えばZ軸方向)とタブ積層体25の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体25の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい(図3及び図4参照)。なお、最大長さW1はZ軸方向における溶接部Wの最大長さより小さい。溶接部Wについては、後に図5を参照して詳述する。
The tab laminate 25 has welds W located on the inner side from the end faces 25 a and 25 b of the tab laminate 25. The maximum length W2 of the weld W in the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stack 25 at the end faces 25a and 25b of the tab stack 25 is the stacking direction of the tab stack 25 (for example, the Z-axis direction When viewed from a direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab laminate 25 (for example, the Z-axis direction) And the maximum length W1 of the overlapping portion of the welded portion W and the tab laminate 25 (see FIGS. 3 and 4). The maximum length W1 is smaller than the maximum length of the weld W in the Z-axis direction. The weld portion W will be described in detail later with reference to FIG.
本実施形態の一つの特徴は、タブ積層体21,25の形状およびタブ積層体21,25における溶接部Wの位置にある。ここでは、主に、タブ積層体25の形状およびタブ積層体25における溶接部Wの位置の例について図4および図5を参照して詳述する。タブ積層体21の形状およびタブ積層体21における溶接部Wの位置については、タブ積層体25の場合と同様に説明できるので、詳細な説明は省略する。
One feature of this embodiment is the shape of the tab stacks 21, 25 and the position of the weld W in the tab stacks 21, 25. Here, examples of the shape of the tab laminate 25 and the positions of the welds W in the tab laminate 25 will be mainly described in detail with reference to FIGS. 4 and 5. The shape of the tab laminate 21 and the position of the welded portion W in the tab laminate 21 can be described in the same manner as in the case of the tab laminate 25 and thus detailed description will be omitted.
図4は、Y軸方向から見たタブ積層体25を模式的に示す図である。上述のとおり、タブ積層体25は、積層された複数のタブ17bを有する。タブ17bは、本体17aの一端からX軸方向に突出する。タブ積層体25の端面25cは、タブ積層体25の先端に向かうにつれてタブ積層体25の厚さが小さくなるように、XY平面に対して傾斜している。以下、端面25cが傾斜している理由を具体的に説明する。
FIG. 4 is a view schematically showing the tab laminate 25 as viewed from the Y-axis direction. As described above, the tab stack 25 has a plurality of stacked tabs 17 b. The tab 17 b protrudes in the X-axis direction from one end of the main body 17 a. The end face 25 c of the tab laminate 25 is inclined with respect to the XY plane such that the thickness of the tab laminate 25 decreases toward the tip of the tab laminate 25. Hereinafter, the reason why the end face 25c is inclined will be specifically described.
図4に示されるように、本体17aから突出するタブ積層体25は、タブ積層体25の突出方向において本体17a側から順に、基端部分251、中央部分252及び先端部分253に大別される。基端部分251は、本体17aに接続される部分である。基端部分251では、タブ積層体25の突出方向に向かうにつれて、タブ積層体25の積層方向における複数のタブ17b同士の間隔が小さくなっている。中央部分252は、基端部分251を基端とし、タブ積層体25の突出方向に延在する部分である。中央部分252では、複数のタブ17b同士が実質的に間隔を有さずに配置されている。先端部分253は、タブ積層体25の突出方向において、中央部分252に接続され、タブ積層体25の突出方向に延在する部分である。先端部分253では、複数のタブ17bの先端が突出方向にずれて配置されている。そのため、複数のタブ17bの先端の端面によって構成される端面25cは、XY平面に対して傾斜する。
As shown in FIG. 4, the tab laminate 25 protruding from the main body 17 a is roughly divided into a proximal end portion 251, a central portion 252 and a distal end portion 253 in order from the main body 17 a side in the protrusion direction of the tab laminate 25. . The proximal portion 251 is a portion connected to the main body 17a. In the proximal end portion 251, the spacing between the plurality of tabs 17b in the stacking direction of the tab stack 25 decreases in the direction in which the tab stack 25 protrudes. The central portion 252 is a portion having a proximal end portion 251 as a proximal end and extending in the projecting direction of the tab stack 25. In the central portion 252, the plurality of tabs 17b are arranged substantially without spacing. The leading end portion 253 is a portion connected to the central portion 252 in the protruding direction of the tab stack 25 and extending in the protruding direction of the tab stack 25. In the tip portion 253, the tips of the plurality of tabs 17b are arranged to be offset in the projecting direction. Therefore, the end face 25c configured by the end face of the tip of the plurality of tabs 17b is inclined with respect to the XY plane.
より具体的に、図4では、積層された複数の本体17aとして、本体17a1~17anのn個(nは2以上の任意の整数)の本体17aが図示される。複数の本体17a(正極11の一部)は、複数の本体14a(負極12の一部)と、セパレータ13を介して互いに積層されているので、その分、複数の本体17a(本体17a1~17a3,17an等)が、積層方向に間隔を空けて配置されている。タブ積層体25の基端部分251における本体17a側の部分では、複数のタブ17b(タブ17b1~17b3,17bn等)は、複数の本体17aと同様に、積層方向に間隔を空けて配置されている。複数のタブ17bは、中央部分252に向かうにつれて、複数のタブ17b同士の間隔が狭くなるように、タブ積層体25の積層方向に束ねられている(集約されている)。中央部分252において、複数のタブ17b同士の間隔の大きさは実質的にゼロであってよい。
More specifically, in FIG. 4, n (n is an arbitrary integer of 2 or more) main bodies 17a of the main bodies 17a1 to 17an are illustrated as a plurality of stacked main bodies 17a. The plurality of main bodies 17a (a part of the positive electrode 11) and the plurality of main bodies 14a (a part of the negative electrode 12) are laminated to each other via the separator 13 and accordingly, the plurality of main bodies 17a (main bodies 17a1 to 17a3) , 17 an etc.) are arranged at intervals in the stacking direction. At a portion on the main body 17a side in the base end portion 251 of the tab laminate 25, the plurality of tabs 17b (tabs 17b1 to 17b3, 17bn, etc.) are arranged at an interval in the stacking direction similarly to the plurality of main bodies 17a. There is. The plurality of tabs 17 b are bundled (consolidated) in the stacking direction of the tab stack 25 so that the distance between the plurality of tabs 17 b narrows toward the central portion 252. In the central portion 252, the spacing between the plurality of tabs 17b may be substantially zero.
このように、タブ積層体25の基端部分251において複数のタブ17bが束ねられると、各タブ17bにおける基端(本体17aに接続される一端)から、基端とは反対側の先端(端面25cを構成する一端)までの、タブ積層体25の突出方向におけるタブ17bが存在する範囲の長さが、それぞれ異なる。図4に示される例では、集電板19に近づく(Z軸負方向側に位置する)ように、複数のタブ17bが束ねられる。この場合、タブ積層体25の積層方向において集電板19に最も近いタブ17bnから遠くに位置する(Z軸正方向側に位置する)タブ17b(タブ17b1~17b3等)ほど、基端部分251における長さが大きくなる。例えば複数のタブ17bが同じ形状に設計されている場合には、基端部分251での長さが大きくなるタブ17bほど、先端部分253においてタブ積層体25の突出方向における長さが不足する。その結果、先端部分253では、複数のタブ17bの先端が突出方向にずれて配置されることとなる。
Thus, when the plurality of tabs 17b are bundled in the proximal end portion 251 of the tab stack 25, the proximal end (end face to the proximal end) (end face) from the proximal end (one end connected to the main body 17a) in each tab 17b. The length of the range in which the tab 17b exists in the protrusion direction of the tab stack 25 up to one end constituting the 25c is different from each other. In the example shown in FIG. 4, the plurality of tabs 17 b are bundled so as to approach the current collecting plate 19 (located in the negative direction of the Z axis). In this case, as the tab 17b (tab 17b1 to 17b3 and so on) located far from the tab 17bn closest to the current collector plate 19 in the stacking direction of the tab stack 25 (located on the Z-axis positive direction side) Length in the For example, in the case where the plurality of tabs 17b are designed to have the same shape, the length of the distal end portion 253 in the projecting direction of the tab laminate 25 runs short as the length of the proximal end portion 251 increases. As a result, in the tip portion 253, the tips of the plurality of tabs 17b are arranged to be shifted in the projecting direction.
なお、複数のタブ17bが束ねられたときに先端部分253において複数のタブ17bの先端が揃うように、予め各タブ17bを異なる形状に設計しそれぞれ製造することも考えられるが、その場合には手間が掛かる。あるいは、複数のタブ17bを束ねた後に、先端部分253において複数のタブ17bの先端が揃うように先端部分253をカットすることも考えられるが、その場合にもやはり手間が掛かる。
It is also conceivable to design and manufacture each tab 17 b in a different shape in advance so that the tips of the plurality of tabs 17 b are aligned in the tip portion 253 when the plurality of tabs 17 b are bundled. Take the trouble. Alternatively, it is conceivable to cut the end portion 253 so that the ends of the plurality of tabs 17b are aligned in the end portion 253 after bundling the plurality of tabs 17b, but also in that case, it takes time and effort.
上述したようなタブ積層体25においては、例えばエネルギービームB(後述)を照射することで、複数のタブ17bを溶接する。このとき、タブ積層体25の端面25cにエネルギービームBを照射してタブ17bを溶接すると、次のような問題が生じ得る。すなわち、複数のタブ17bの先端の位置がずれているタブ積層体25の先端部分253(つまり端面25c)にエネルギービームBが照射されると、例えば各タブ17bの先端から内側に同じ長さを有する溶接部がそれぞれ形成されることとなる。このとき、各タブ17bの先端がずれていると、各タブ17bの先端から内側に形成された溶接部の位置もずれている。その結果、タブ積層体25の積層方向において複数の(あるいは全ての)タブ17bを貫通する部分を有する溶接部が形成され難い。つまり、複数のタブ17b同士を接合するのに十分な深さの溶接部が各タブ17bの先端から内側に形成されない。その結果、タブ17b同士の接合強度が不足する可能性がある。
In the tab laminate 25 as described above, the plurality of tabs 17 b are welded, for example, by irradiating the energy beam B (described later). At this time, if the end face 25c of the tab laminate 25 is irradiated with the energy beam B to weld the tab 17b, the following problem may occur. That is, when the energy beam B is applied to the front end portion 253 (that is, the end face 25c) of the tab laminate 25 in which the positions of the front ends of the plurality of tabs 17b are shifted, for example, the same length from the front end of each tab 17b The welds to be formed are respectively formed. At this time, if the tip of each tab 17b is shifted, the position of the weld formed inside from the tip of each tab 17b is also shifted. As a result, it is difficult to form a welded portion having a portion penetrating a plurality of (or all) tabs 17 b in the stacking direction of the tab stack 25. That is, a welded portion having a depth sufficient to join the plurality of tabs 17b is not formed inward from the tip of each tab 17b. As a result, the bonding strength between the tabs 17b may be insufficient.
そこで、電極組立体3では、タブ積層体25の端面25cと異なる端面において、複数のタブ17bが溶接されている。端面25cと異なる端面は、例えば端面25a,25bの少なくとも一方の端面である。前述のとおり、端面25a,25bは、XZ平面に沿う面であり、端面25a,25bにおいては、複数のタブ17bの側端の位置は、端面25cにおける複数のタブ17bの先端の位置ほどずれてはいない。溶接部Wは、そのようなタブ積層体25の端面25a,25bからそれぞれ内側に位置している。
Therefore, in the electrode assembly 3, the plurality of tabs 17 b are welded at an end face different from the end face 25 c of the tab laminate 25. The end face different from the end face 25c is, for example, at least one end face of the end faces 25a and 25b. As described above, the end surfaces 25a and 25b are surfaces along the XZ plane, and in the end surfaces 25a and 25b, the positions of the side ends of the plurality of tabs 17b are shifted about the positions of the tips of the plurality of tabs 17b on the end surface 25c. There is not. The welds W are located inward from the end faces 25a and 25b of such tab laminates 25 respectively.
タブ積層体21の形状およびタブ積層体21における溶接部Wの位置についても同様に説明される。すなわち、タブ積層体21の突出方向における先端部分においては、複数のタブ14bの先端が突出方向にずれて配置されている。理由については、複数のタブ17bの先端がずれる理由と同様に説明されるので、ここでは詳細な説明は省略する。また、タブ積層体21の端面21a,21bにおいては、複数のタブ14bの側端の位置は、端面21cにおける複数のタブ14bの先端の位置ほどずれてはいない。溶接部Wは、そのようなタブ積層体21の端面21a,21bからそれぞれ内側に位置している。
The shape of the tab laminate 21 and the position of the welded portion W in the tab laminate 21 are similarly described. That is, in the tip end portion in the protrusion direction of the tab stack 21, the tips of the plurality of tabs 14b are arranged to be shifted in the protrusion direction. The reason is described in the same manner as the reason why the tips of the plurality of tabs 17b are shifted, and thus the detailed description is omitted here. In the end faces 21a and 21b of the tab laminate 21, the positions of the side ends of the plurality of tabs 14b are not shifted as much as the positions of the tips of the plurality of tabs 14b in the end face 21c. The welds W are located inward from the end faces 21a and 21b of such tab laminates 21, respectively.
溶接部Wについて、さらに図5を参照して詳述する。
The weld W will be described in more detail with reference to FIG.
図5は、X軸方向から見た図3の電極組立体の一部を示す図である。図3及び図5に示されるように、タブ積層体25の端面25bは、タブ積層体21の端面21bと対向している。よって、タブ積層体21,25の端面21a,21b,25a,25bは、Y軸方向に沿って配列される。
FIG. 5 is a view showing a part of the electrode assembly of FIG. 3 as viewed in the X-axis direction. As shown in FIGS. 3 and 5, the end face 25 b of the tab laminate 25 faces the end face 21 b of the tab laminate 21. Thus, the end faces 21a, 21b, 25a, 25b of the tab stacks 21, 25 are arranged along the Y-axis direction.
タブ積層体25において、溶接部Wは、端面25a,25bに隣接する集電板19及び保護板27の内部まで延びている。端面25a,25bにおいて、溶接部WのX軸方向における長さは、保護板27のX軸方向における長さと略等しいか、又は保護板27のX軸方向における長さよりも短いことが好ましい。これにより、タブ積層体25のタブ17bがX軸方向において位置ずれした場合(例えば公差による位置ずれがある場合)であっても安定して溶接部Wを形成することができる。なお、溶接部WのX軸方向における長さが保護板27のX軸方向における長さと略等しい場合、位置ずれにより溶接部WがX軸方向において保護板27の外側にはみ出す可能性がある。また、溶接部WのX軸方向における長さが保護板27のX軸方向における長さよりも長い場合、溶接部WがX軸方向において保護板27の外側にはみ出す。それらの場合であっても、溶接部Wを形成することは可能である。
In the tab laminate 25, the welded portion W extends to the inside of the current collector 19 and the protective plate 27 adjacent to the end faces 25 a and 25 b. Preferably, in the end faces 25a and 25b, the length of the weld W in the X-axis direction is substantially equal to the length of the protective plate 27 in the X-axis direction or shorter than the length of the protective plate 27 in the X-axis direction. Thus, the welded portion W can be stably formed even when the tab 17b of the tab laminate 25 is displaced in the X-axis direction (for example, when there is a displacement due to a tolerance). When the length of the welded portion W in the X-axis direction is substantially equal to the length of the protective plate 27 in the X-axis direction, there is a possibility that the welded portion W may protrude outside the protective plate 27 in the X-axis direction. When the length of the weld W in the X-axis direction is longer than the length of the protection plate 27 in the X-axis direction, the weld W protrudes outside the protection plate 27 in the X-axis direction. Even in those cases, it is possible to form the weld W.
同様に、タブ積層体21において、溶接部Wは、端面21a,21bに隣接する集電板16及び保護板23の内部まで延びている。端面21a,21bにおいて、溶接部WのX軸方向における長さは、保護板23のX軸方向における長さと略等しいか、又は保護板23のX軸方向における長さよりも短いことが好ましい。これにより、タブ積層体21のタブ14bがX軸方向において位置ずれした場合(例えば公差による位置ずれがある場合)であっても安定して溶接部Wを形成することができる。なお、溶接部WのX軸方向における長さが保護板23のX軸方向における長さと略等しい場合、位置ずれにより溶接部WがX軸方向において保護板23の外側にはみ出す可能性がある。また、溶接部WのX軸方向における長さが保護板23のX軸方向における長さよりも長い場合、溶接部WがX軸方向において保護板23の外側にはみ出す。それらの場合であっても、溶接部Wを形成することは可能である。
Similarly, in the tab laminate 21, the welds W extend to the inside of the current collector 16 and the protective plate 23 adjacent to the end faces 21 a and 21 b. Preferably, in the end faces 21a and 21b, the length of the weld W in the X-axis direction is substantially equal to the length of the protective plate 23 in the X-axis direction or shorter than the length of the protective plate 23 in the X-axis direction. Thus, the welded portion W can be stably formed even when the tab 14b of the tab laminate 21 is displaced in the X-axis direction (for example, when there is a displacement due to a tolerance). When the length of the welded portion W in the X-axis direction is substantially equal to the length of the protective plate 23 in the X-axis direction, there is a possibility that the welded portion W may protrude outside the protective plate 23 in the X-axis direction. When the length of the weld W in the X-axis direction is longer than the length of the protective plate 23 in the X-axis direction, the weld W protrudes outside the protective plate 23 in the X-axis direction. Even in those cases, it is possible to form the weld W.
図5は、タブ積層体21,25の突出方向に対して直交する断面として見ることもできる。この場合、タブ積層体21,25において、タブ積層体21,25の端面21a,21b,25a,25bから内側に向かう方向における溶接部Wの長さ(溶接深さ)は、集電板16,19に向かうにつれて大きくなっている。溶接部Wは、後述するエネルギービームB(図7参照)の照射により、エネルギービームBの周囲に形成される溶融池の形状に応じた形状とされる。溶融池は、例えば、エネルギービームBの照射方向において、エネルギービームBの照射対象物の表面から内側に向けて先細るように形成される。図5に示される溶接部Wの形状は、Z軸正方向を上方向とすると、タブ積層体25の斜め上方向からエネルギービームBが照射された場合の形状である。溶接部Wは集電板19にも形成される。また、溶接部Wは、保護板27にも形成される。
FIG. 5 can also be viewed as a cross section orthogonal to the protruding direction of the tab stacks 21, 25. In this case, in the tab laminates 21, 25, the length (welding depth) of the weld W in the direction from the end faces 21a, 21b, 25a, 25b of the tab laminates 21, 25 to the inside is the current collector plate 16, It becomes larger as it goes to 19. The welded portion W has a shape corresponding to the shape of the molten pool formed around the energy beam B by irradiation of the energy beam B (see FIG. 7) described later. The molten pool is, for example, formed to be tapered inward from the surface of the object to be irradiated with the energy beam B in the irradiation direction of the energy beam B. The shape of the welded portion W shown in FIG. 5 is a shape in the case where the energy beam B is irradiated from an obliquely upward direction of the tab laminate 25, assuming that the positive direction of the Z axis is the upward direction. The welded portion W is also formed on the current collector plate 19. The weld W is also formed on the protective plate 27.
図5に示されるように、タブ積層体21,25の端面21a,21b,25a,25bでは、端面21c,端面25cのように複数のタブ14b,17bがずれてはいない。そのため、端面21a,21b,25a,25bから内側に形成された溶接部Wは、タブ積層体21,25の積層方向において複数の(この例では全ての)タブ14b,17bを貫通する部分を有している。つまり、複数のタブ14b,17b同士を接合するのに十分な深さの溶接部Wが、端面21a,21b,25a,25bから内側に形成されている。その結果、複数のタブ14b、17b同士の接合強度を高めることができる。
As shown in FIG. 5, in the end faces 21a, 21b, 25a, 25b of the tab laminates 21, 25, the plurality of tabs 14b, 17b are not deviated like the end face 21c and the end face 25c. Therefore, the welded portion W formed inward from the end faces 21a, 21b, 25a, 25b has a portion passing through the plurality of (all in this example) tabs 14b, 17b in the stacking direction of the tab laminates 21, 25. doing. That is, welds W having a depth sufficient to join the plurality of tabs 14b and 17b are formed inward from the end faces 21a, 21b, 25a and 25b. As a result, the bonding strength between the plurality of tabs 14 b and 17 b can be increased.
図5に示されるように、Z軸方向を含みタブ積層体21の端面21a,21bに直交するタブ積層体21の断面(例えばYZ断面)において、溶接部Wの境界線Waは、Z軸方向に直交する方向H(例えばY軸方向)及びタブ積層体21の積層方向(Z軸方向)の両方に対して傾斜した方向に延びている。例えば、溶接部Wは2つの境界線Waを有しており、エネルギービームBの周囲に形成される溶融池の形状に応じて、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔が狭くなっている。溶接池は、エネルギービームBの照射方向において、エネルギービームBの照射対象物の表面から内側に向けて先細るように形成される。溶接部Wは集電板16にも形成されるが、集電板16の密度はタブ積層体21の密度と異なるため、集電板16に形成される溶接池の深さとタブ積層体21に形成される溶接池の深さは異なる。その結果、上述のように、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔は狭くなる。すなわち、タブ積層体21のYZ断面において、溶接部Wの1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をα、溶接部Wのもう1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合に、θはαとβとの間の値となる。例えば、タブ積層体21のYZ断面において、集電板16内の境界線Waと方向Hとのなす角度のうち小さい方の角度をα、タブ積層体21内の境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合、α<θ<βとなる。溶接部Wの境界線Waは、YZ断面においてZ軸方向に平行でもよい。
As illustrated in FIG. 5, in the cross section (for example, the YZ cross section) of the tab stack 21 including the Z axis direction and orthogonal to the end faces 21 a and 21 b of the tab stack 21, the boundary line Wa of the weld W is in the Z axis direction. It extends in a direction inclined with respect to both the direction H (for example, the Y-axis direction) orthogonal to the direction Y and the stacking direction (the Z-axis direction) of the tab laminate 21. For example, the weld W has two boundary lines Wa, and depending on the shape of the molten pool formed around the energy beam B, the two boundaries go from the outer surface of the weld W inward. The distance between Wa is narrow. The weld pool is formed to be tapered inward from the surface of the object to be irradiated with the energy beam B in the irradiation direction of the energy beam B. The welded portion W is also formed on the current collector plate 16, but since the density of the current collector plate 16 is different from the density of the tab laminate 21, the depth of the weld pool formed on the current collector plate 16 and the tab laminate 21 The depth of weld pool formed is different. As a result, as described above, the distance between the two boundary lines Wa narrows inward from the outer surface of the weld W. That is, in the YZ cross section of tab laminate 21, the smaller angle of the angles formed by one boundary line Wa of welding portion W and direction H is α, and another boundary line Wa of welding portion W and direction H Let θ be α, where θ is the smaller of the angles formed by の, and the smaller of the angles formed by direction J and direction H when the irradiation direction of energy beam B is projected onto the YZ plane. It becomes a value between β and. For example, in the YZ cross section of tab laminate 21, the smaller angle of the angles between boundary line Wa in current collecting plate 16 and direction H is α, and the boundary line Wa in tab laminate 21 and direction H Assuming that the smaller one of the angles formed is β, and the smaller one of the angles formed by the direction J of the irradiation direction of the energy beam B projected onto the YZ plane and the direction H is θ, then α <θ <β Become. The boundary line Wa of the welding portion W may be parallel to the Z-axis direction in the YZ cross section.
同様に、Z軸方向を含みタブ積層体25の端面25a,25bに直交するタブ積層体25の断面(例えばYZ断面)において、溶接部Wの境界線Waは、Z軸方向に直交する方向(例えばY軸方向)及びタブ積層体25の積層方向(Z軸方向)の両方に対して傾斜した方向に延びている。例えば、溶接部Wは2つの境界線Waを有しており、後述するエネルギービームBの照射によりエネルギービームBの周囲に形成される溶融池の形状に応じて、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔が狭くなっている。溶接池は、エネルギービームBの照射方向において、エネルギービームBの照射対象物の表面から内側に向けて先細るように形成される。溶接部Wは集電板19にも形成されるが、集電板19の密度はタブ積層体25の密度と異なるため、集電板19に形成される溶接池の深さとタブ積層体25に形成される溶接池の深さは異なる。その結果、上述のように、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔は狭くなる。すなわち、タブ積層体25のYZ断面において、溶接部Wの1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をα、溶接部Wのもう1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合に、θはαとβとの間の値となる。例えば、タブ積層体25のYZ断面において、集電板19内の境界線Waと方向Hとのなす角度のうち小さい方の角度をα、タブ積層体25内の境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合、α<θ<βとなる。溶接部Wの境界線Waは、YZ断面においてZ軸方向に平行でもよい。
Similarly, in the cross section (for example, the YZ cross section) of the tab stack 25 including the Z axis direction and orthogonal to the end faces 25a and 25b of the tab stack 25, the boundary line Wa of the weld W is orthogonal to the Z axis direction ( For example, it extends in a direction inclined with respect to both the Y axis direction) and the stacking direction (Z axis direction) of the tab stack 25. For example, weld portion W has two boundary lines Wa, and from the outer surface of weld portion W inward according to the shape of the molten pool formed around energy beam B by irradiation of energy beam B described later. The distance between the two boundary lines Wa narrows toward the direction of travel. The weld pool is formed to be tapered inward from the surface of the object to be irradiated with the energy beam B in the irradiation direction of the energy beam B. The welded portion W is also formed on the current collector plate 19, but since the density of the current collector plate 19 is different from the density of the tab laminate 25, the depth of the weld pool formed on the current collector plate 19 and the tab laminate 25 are The depth of weld pool formed is different. As a result, as described above, the distance between the two boundary lines Wa narrows inward from the outer surface of the weld W. That is, in the YZ cross section of tab laminate 25, the smaller angle of the angle between one boundary line Wa of weld W and direction H is α, the other boundary Wa of weld W and direction H Let θ be α, where θ is the smaller of the angles formed by の, and the smaller of the angles formed by direction J and direction H when the irradiation direction of energy beam B is projected onto the YZ plane. It becomes a value between β and. For example, in the YZ cross section of tab laminate 25, the smaller angle of the angles formed by boundary Wa in current collector plate 19 and direction H is α, and the boundary Wa in tab laminate 25 and direction H Assuming that the smaller one of the angles formed is β, and the smaller one of the angles formed by the direction J of the irradiation direction of the energy beam B projected onto the YZ plane and the direction H is θ, then α <θ <β Become. The boundary line Wa of the welding portion W may be parallel to the Z-axis direction in the YZ cross section.
電極組立体3では、タブ積層体21,25のYZ断面において、溶接部Wの境界線Waが、方向H及びZ軸方向の両方に対して傾斜した方向に延びている。境界線Waの延びる方向は、タブ積層体21,25の端面21a,21b,25a,25bに照射されるエネルギービームBの照射方向によって制御される。
In the electrode assembly 3, in the YZ cross section of the tab laminates 21 and 25, the boundary line Wa of the welding portion W extends in a direction inclined with respect to both the direction H and the Z-axis direction. The extending direction of the boundary line Wa is controlled by the irradiation direction of the energy beam B irradiated to the end faces 21a, 21b, 25a, 25b of the tab stacks 21, 25.
タブ積層体21の積層方向を含みタブ積層体21の端面21a,21bに直交するタブ積層体21の断面(例えばYZ断面)において、タブ積層体21の積層方向に直交する方向における溶接部Wの最大溶接深さWdは、2mm未満であってもよいし、1.5mm以下であってもよいし、1.2mm以下であってもよいし、0.1mm超であってもよいし、0.3mm以上であってもよい。同様に、タブ積層体25の積層方向を含みタブ積層体25の端面25a,25bに直交するタブ積層体25の断面(例えばYZ断面)において、タブ積層体25の積層方向に直交する方向における溶接部Wの最大溶接深さWdは2mm未満であってもよいし、1.5mm以下であってもよいし、1.2mm以下であってもよいし、0.1mm超であってもよいし、0.3mm以上であってもよい。最大溶接深さWdを2mm未満とすると、例えばエネルギービームBの照射に起因するスパッタ粒子の発生を抑制できる。特に、最大溶接深さWdを1.2mm以下とすると、スパッタ粒子の発生が顕著に抑制される(図9参照)。
In the cross section (for example, the YZ cross section) of the tab laminate 21 including the stacking direction of the tab laminate 21 and orthogonal to the end faces 21 a and 21 b of the tab laminate 21, the welded portion W in the direction orthogonal to the stacking direction of the tab laminate 21 Maximum welding depth Wd may be less than 2 mm, may be 1.5 mm or less, may be 1.2 mm or less, may be more than 0.1 mm, 0 It may be 3 mm or more. Similarly, in the cross section (for example, the YZ cross section) of the tab laminate 25 including the stacking direction of the tab laminate 25 and orthogonal to the end faces 25 a and 25 b of the tab laminate 25, welding in the direction orthogonal to the lamination direction of the tab laminate 25 The maximum welding depth Wd of the part W may be less than 2 mm, may be 1.5 mm or less, may be 1.2 mm or less, and may be more than 0.1 mm. , 0.3 mm or more. When the maximum welding depth Wd is less than 2 mm, for example, generation of sputtered particles due to irradiation of the energy beam B can be suppressed. In particular, when the maximum welding depth Wd is 1.2 mm or less, generation of sputtered particles is significantly suppressed (see FIG. 9).
タブ積層体21の積層方向に直交するタブ積層体21の断面(例えばXY断面)において、溶接部Wの最大面積は、例えば4~40mm2である。同様に、タブ積層体25の積層方向に直交するタブ積層体25の断面(例えばXY断面)において、溶接部Wの最大面積は、例えば4~40mm2である。溶接部Wの最大面積を4mm2以上とすると、溶接部Wの電気抵抗値を十分に低減できる。
In the cross section (for example, the XY cross section) of the tab stack 21 orthogonal to the stack direction of the tab stack 21, the maximum area of the welded portion W is, for example, 4 to 40 mm 2 . Similarly, in the cross section (for example, the XY cross section) of the tab stack 25 orthogonal to the stack direction of the tab stack 25, the maximum area of the weld W is, for example, 4 to 40 mm 2 . When the maximum area of the weld W is 4 mm 2 or more, the electrical resistance value of the weld W can be sufficiently reduced.
上述のように、電極組立体3において、タブ積層体21の端面21a,21bにおいてタブ積層体21の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体21の積層方向(例えばZ軸方向)とタブ積層体21の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体21の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体21とが重なる部分の最大長さW1よりも大きい(図3及び図4参照)。よって、タブ積層体21の端面21a,21bにおいて、タブ積層体21の積層方向に交差する方向に溶接部Wが広がる。その結果、溶接部Wにおいて電流が積層方向に流れる際に、複数のタブ14b間の電気抵抗値を低減できる。また、溶接部Wの機械的強度が高まるので、例えば組立作業又は外力により電極組立体3に応力が生じても溶接部Wが破壊され難い。さらに、溶接部Wの熱拡散性が向上するので、溶接部Wを形成する際に、エネルギービームBの照射に起因するスパッタ粒子の発生を抑制できる。同様に、タブ積層体25の端面25a,25bにおいてタブ積層体25の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(例えばZ軸方向)とタブ積層体25の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体25の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。よって、タブ積層体25の端面25a,25bにおいて、タブ積層体25の積層方向に交差する方向に溶接部Wが広がる。その結果、溶接部Wにおいて電流が積層方向に流れる際に、複数のタブ17b間の電気抵抗値を低減できる。また、溶接部Wの機械的強度が高まるので、例えば組立作業又は外力により電極組立体3に応力が生じても溶接部Wが破壊され難い。さらに、溶接部Wの熱拡散性が向上するので、溶接部Wを形成する際に、エネルギービームBの照射に起因するスパッタ粒子の発生を抑制できる。
As described above, in the electrode assembly 3, the maximum length W2 of the weld W in the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stack 21 at the end faces 21 a and 21 b of the tab stack 21 is the tab When viewed from a direction (e.g., Y-axis direction) orthogonal to both the stacking direction (e.g., Z-axis direction) of the stacked body 21 and the direction (e.g., X-axis direction) orthogonal to the stacking direction of the tab stacked body 21 The maximum length W1 of the portion where the welded portion W and the tab laminate 21 overlap in the stacking direction of the laminate 21 (for example, the Z-axis direction) is larger (see FIGS. 3 and 4). Therefore, at the end faces 21 a and 21 b of the tab laminate 21, the welded portion W spreads in the direction intersecting the stacking direction of the tab laminate 21. As a result, when the current flows in the stacking direction in the welding portion W, the electrical resistance value between the plurality of tabs 14 b can be reduced. Further, since the mechanical strength of the welded portion W is increased, the welded portion W is unlikely to be broken even if stress is generated in the electrode assembly 3 due to, for example, an assembly operation or an external force. Furthermore, since the thermal diffusion of the welded portion W is improved, generation of sputtered particles resulting from the irradiation of the energy beam B can be suppressed when forming the welded portion W. Similarly, the maximum length W2 of the weld W in the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stack 25 at the end faces 25a and 25b of the tab stack 25 is the stacking direction of the tab stack 25 (for example, When viewed from the direction (for example, the Y-axis direction) orthogonal to both the Z-axis direction) and the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab laminate 25 It is larger than the maximum length W1 of the overlapping portion of the welded portion W and the tab laminate 25 in the Z-axis direction). Therefore, at the end faces 25 a and 25 b of the tab laminate 25, the welded portion W spreads in the direction intersecting the stacking direction of the tab laminate 25. As a result, when a current flows in the stacking direction in the welding portion W, the electrical resistance value between the plurality of tabs 17 b can be reduced. Further, since the mechanical strength of the welded portion W is increased, the welded portion W is unlikely to be broken even if stress is generated in the electrode assembly 3 due to, for example, an assembly operation or an external force. Furthermore, since the thermal diffusion of the welded portion W is improved, generation of sputtered particles resulting from the irradiation of the energy beam B can be suppressed when forming the welded portion W.
タブ積層体21が、タブ積層体21の積層方向において保護板23と集電板16との間に配置され、タブ積層体21の積層方向における保護板23の厚みは、タブ積層体21の積層方向における集電板16の厚みよりも小さくてもよい。この場合、保護板23の厚みが比較的小さくなるので、保護板23の熱容量とタブ14bの熱容量との差を小さくできる。よって、保護板23とタブ14bとの接触箇所における溶接部Wの品質が向上する。タブ積層体21の積層方向における保護板23の厚みは、タブ積層体21の積層方向におけるタブ14bの厚みよりも大きくてもよい。
The tab laminate 21 is disposed between the protective plate 23 and the current collector plate 16 in the lamination direction of the tab laminate 21, and the thickness of the protective plate 23 in the lamination direction of the tab laminate 21 is the lamination of the tab laminate 21. It may be smaller than the thickness of the current collector 16 in the direction. In this case, since the thickness of the protective plate 23 is relatively small, the difference between the thermal capacity of the protective plate 23 and the thermal capacity of the tab 14 b can be reduced. Therefore, the quality of the welding part W in the contact location of the protective plate 23 and the tab 14b improves. The thickness of the protective plate 23 in the stacking direction of the tab stack 21 may be larger than the thickness of the tab 14 b in the stacking direction of the tab stack 21.
保護板23の厚みは、0.1~0.5mmであってもよいし、0.1~0.2mmであってもよい。保護板23の厚みが0.1mm未満であると、保護板23がタブ14bを押圧する力が小さくなるので、溶接時にタブ14bが動き易くなる傾向にある。保護板23の厚みが0.5mm超であると、溶接時に保護板23を溶融させるためのエネルギーが大きくなる傾向にある。エネルギーを大きくするためにエネルギービームBの出力を上げると、エネルギービームBの照射に起因するスパッタ粒子が発生し易くなる。タブ14bの厚みは、例えば5~30μmである。タブ積層体21の厚みは例えば0.3~2.4mmであってもよいし、0.6~1.0mmであってもよい。
The thickness of the protective plate 23 may be 0.1 to 0.5 mm or 0.1 to 0.2 mm. If the thickness of the protective plate 23 is less than 0.1 mm, the force with which the protective plate 23 presses the tab 14b will be small, so the tab 14b tends to move easily during welding. If the thickness of the protective plate 23 is more than 0.5 mm, the energy for melting the protective plate 23 at the time of welding tends to be large. When the output of the energy beam B is increased to increase the energy, sputtered particles resulting from the irradiation of the energy beam B tend to be generated. The thickness of the tab 14b is, for example, 5 to 30 μm. The thickness of the tab laminate 21 may be, for example, 0.3 to 2.4 mm, or 0.6 to 1.0 mm.
同様に、タブ積層体25が、タブ積層体25の積層方向において保護板27と集電板19との間に配置され、タブ積層体25の積層方向における保護板27の厚みは、タブ積層体25の積層方向における集電板19の厚みよりも小さくてもよい。この場合、保護板27の厚みが比較的小さくなるので、保護板27の熱容量とタブ17bの熱容量との差を小さくできる。よって、保護板27とタブ17bとの接触箇所における溶接部Wの品質が向上する。タブ積層体25の積層方向における保護板27の厚みは、タブ積層体25の積層方向におけるタブ17bの厚みよりも大きくてもよい。
Similarly, the tab laminate 25 is disposed between the protective plate 27 and the current collector plate 19 in the lamination direction of the tab laminate 25, and the thickness of the protective plate 27 in the lamination direction of the tab laminate 25 is the tab laminate It may be smaller than the thickness of the current collector 19 in the stacking direction of 25. In this case, since the thickness of the protective plate 27 is relatively small, the difference between the thermal capacity of the protective plate 27 and the thermal capacity of the tab 17b can be reduced. Therefore, the quality of the welding part W in the contact location of the protective plate 27 and the tab 17b improves. The thickness of the protective plate 27 in the stacking direction of the tab stack 25 may be larger than the thickness of the tab 17 b in the stacking direction of the tab stack 25.
保護板27の厚みは、例えば0.1~0.5mmであってもよいし、0.1~0.2mmであってもよい。保護板27の厚みが0.1mm未満であると、保護板27がタブ17bを押圧する力が小さくなるので、溶接時にタブ17bが動き易くなる傾向にある。保護板27の厚みが0.5mm超であると、溶接時に保護板27を溶融させるためのエネルギーが大きくなる傾向にある。エネルギーを大きくするためにエネルギービームBの出力を上げると、エネルギービームBの照射に起因するスパッタ粒子が発生し易くなる。タブ17bの厚みは、例えば5~30μmである。タブ積層体25の厚みは例えば0.3~2.4mmであってもよいし、0.6~1.0mmであってもよい。
The thickness of the protective plate 27 may be, for example, 0.1 to 0.5 mm, or 0.1 to 0.2 mm. If the thickness of the protective plate 27 is less than 0.1 mm, the force with which the protective plate 27 presses the tab 17b will be small, so the tab 17b tends to move easily during welding. If the thickness of the protective plate 27 is more than 0.5 mm, the energy for melting the protective plate 27 at the time of welding tends to be large. When the output of the energy beam B is increased to increase the energy, sputtered particles resulting from the irradiation of the energy beam B tend to be generated. The thickness of the tab 17b is, for example, 5 to 30 μm. The thickness of the tab laminate 25 may be, for example, 0.3 to 2.4 mm or 0.6 to 1.0 mm.
図6及び図7は、実施形態に係る電極組立体の製造方法の一工程を示す図である。図3に示される電極組立体3は、例えば以下の方法により製造される。
FIG.6 and FIG.7 is a figure which shows 1 process of the manufacturing method of the electrode assembly which concerns on embodiment. The electrode assembly 3 shown in FIG. 3 is manufactured, for example, by the following method.
(タブ積層体の準備工程)
まず、図6に示されるように、複数のタブ積層体21,25を準備する。図6(A)はX軸方向から見たタブ積層体21,25を示す図であり、図6(B)はY軸方向から見たタブ積層体25を示す図である。例えば、まず、集電板16,19上にそれぞれタブ14b,17bを積層することによりタブ積層体21,25を形成する。その後、タブ積層体21,25上にそれぞれ保護板23,27を載置する。タブ積層体21,25は、例えば治具により保護板23,27を介して押圧されるが、押圧されなくてもよい。 (Step of preparing tab laminate)
First, as shown in FIG. 6, a plurality of tab stacks 21 and 25 are prepared. FIG. 6A is a view showing the tab stacks 21 and 25 as viewed from the X-axis direction, and FIG. 6B is a view showing thetab stack 25 as viewed from the Y-axis direction. For example, first, the tab stacks 21 and 25 are formed by laminating the tabs 14 b and 17 b respectively on the current collectors 16 and 19. Thereafter, the protective plates 23 and 27 are placed on the tab stacks 21 and 25, respectively. The tab stacks 21 and 25 are pressed by the jig via the protective plates 23 and 27, for example, but may not be pressed.
まず、図6に示されるように、複数のタブ積層体21,25を準備する。図6(A)はX軸方向から見たタブ積層体21,25を示す図であり、図6(B)はY軸方向から見たタブ積層体25を示す図である。例えば、まず、集電板16,19上にそれぞれタブ14b,17bを積層することによりタブ積層体21,25を形成する。その後、タブ積層体21,25上にそれぞれ保護板23,27を載置する。タブ積層体21,25は、例えば治具により保護板23,27を介して押圧されるが、押圧されなくてもよい。 (Step of preparing tab laminate)
First, as shown in FIG. 6, a plurality of tab stacks 21 and 25 are prepared. FIG. 6A is a view showing the tab stacks 21 and 25 as viewed from the X-axis direction, and FIG. 6B is a view showing the
(溶接部の形成工程)
次に、図7に示されるように、タブ積層体25の端面25aにエネルギービームBを照射する。図7(A)はX軸方向から見たタブ積層体21,25を示す図であり、図7(B)はY軸方向から見たタブ積層体25を示す図である。エネルギービームBは、照射装置30からタブ積層体25の端面25aに向けて照射される。照射装置30は、例えばレンズ及びガルバノミラーを含むスキャナヘッドである。スキャナヘッドにはファイバを介してビーム発生装置が接続される。照射装置30は、例えばプリズム等の屈折式又は回折光学素子(DOE:diffractive optical element)等の回折系の光学系から構成されてもよい。 (Welding process)
Next, as shown in FIG. 7, the end face 25 a of thetab stack 25 is irradiated with the energy beam B. FIG. 7A is a view showing the tab stacks 21 and 25 as viewed from the X-axis direction, and FIG. 7B is a view showing the tab stack 25 as viewed from the Y-axis direction. The energy beam B is emitted from the irradiation device 30 toward the end face 25 a of the tab stack 25. The irradiation device 30 is, for example, a scanner head including a lens and a galvano mirror. A beam generator is connected to the scanner head via a fiber. The irradiation device 30 may be composed of, for example, an optical system of a dioptric system such as a prism or a diffractive system such as a diffractive optical element (DOE).
次に、図7に示されるように、タブ積層体25の端面25aにエネルギービームBを照射する。図7(A)はX軸方向から見たタブ積層体21,25を示す図であり、図7(B)はY軸方向から見たタブ積層体25を示す図である。エネルギービームBは、照射装置30からタブ積層体25の端面25aに向けて照射される。照射装置30は、例えばレンズ及びガルバノミラーを含むスキャナヘッドである。スキャナヘッドにはファイバを介してビーム発生装置が接続される。照射装置30は、例えばプリズム等の屈折式又は回折光学素子(DOE:diffractive optical element)等の回折系の光学系から構成されてもよい。 (Welding process)
Next, as shown in FIG. 7, the end face 25 a of the
タブ積層体25の端面25aに直交すると共にタブ積層体25の積層方向を含む平面(例えばYZ平面)にエネルギービームBの照射方向を投影した方向Jは、当該平面(例えばYZ平面)において、Z軸方向に直交する方向H(例えばY軸方向)及びタブ積層体25の積層方向の両方に対して傾斜していてよい。方向Jはタブ積層体25の端面25aに対しても傾斜していてよい。方向Jが上記のように傾斜している場合には、YZ平面において、方向Hと方向Jとのなす角度のうち小さい方の角度θは、5~85°であってもよく、10~80°であってもよく、45~75°であってもよい。エネルギービームBは、溶接を行うことができる高エネルギービームである。エネルギービームBは、例えばレーザービーム又は電子ビームである。エネルギービームBの照射は、ノズル32から供給される不活性ガスGの雰囲気中で行われる。
The direction J in which the irradiation direction of the energy beam B is projected onto a plane (for example, YZ plane) orthogonal to the end face 25a of the tab laminate 25 and including the lamination direction of the tab laminate 25 is Z in the plane (for example, YZ plane). It may be inclined with respect to both the direction H orthogonal to the axial direction (e.g., the Y-axis direction) and the stacking direction of the tab stack 25. The direction J may also be inclined with respect to the end face 25 a of the tab stack 25. When the direction J is inclined as described above, the smaller one of the angles formed by the direction H and the direction J in the YZ plane may be 5 to 85 °, or 10 to 80. It may be ° or 45 to 75 °. The energy beam B is a high energy beam that can perform welding. The energy beam B is, for example, a laser beam or an electron beam. The irradiation of the energy beam B is performed in the atmosphere of the inert gas G supplied from the nozzle 32.
エネルギービームBは、例えば治具により集電板19及び保護板27を介してタブ積層体25をZ軸方向に押圧した状態でタブ積層体25の端面25aに照射される。
The energy beam B is applied to the end face 25 a of the tab laminate 25 in a state where the tab laminate 25 is pressed in the Z-axis direction via the current collecting plate 19 and the protective plate 27 by a jig, for example.
エネルギービームBは、タブ積層体25の端面25aにおいて、Z軸方向に交差する方向(X軸方向)に沿って走査される。実施形態では、エネルギービームBをZ軸方向に変位させながらX軸方向に沿って走査する。例えば、エネルギービームBをZ軸方向に往復変位(ウォブリング)させながらX軸方向に沿って走査する。エネルギービームBの照射スポットのZ軸方向における変位量は、タブ積層体25の厚みよりも大きい。エネルギービームBの照射スポットは、タブ積層体25の端面25aにおいて、X軸方向に沿った軸線上の位置P1から位置P2まで移動する。例えば、位置P1,P2は、Z軸方向においてタブ積層体25の端面25aの中心に位置する。エネルギービームBは、例えば、タブ積層体25の端面25aにおいてX軸方向に沿って中心点を移動させ、当該中心点を中心にXZ平面においてエネルギービームBの照射スポットを回転させながら走査される。回転の直径がタブ積層体25の厚みよりも大きいと、タブ積層体25の端面25a、集電板19及び保護板27を全体的に溶接できるため好ましい。また、タブ積層体25の端面25aのうちの保護板27側の部分にエネルギービームBを照射し、集電板19側の残部にはエネルギービームBを照射しなくてもよい。この場合、タブ積層体25の端面25aのうちの集電板19側の残部には溶接部Wが形成されない。しかし、タブ積層体25の端面25aの内側において溶接部WがエネルギービームBの照射方向に延びることによって、タブ積層体25の内部において、溶接部Wがタブ積層体25の厚み方向に延在することになる。溶接部Wを集電板19まで到達させることによって、複数のタブ17b及び集電板19を溶接することができる。
The energy beam B is scanned at the end face 25 a of the tab stack 25 along a direction (X-axis direction) intersecting the Z-axis direction. In the embodiment, the energy beam B is scanned along the X-axis direction while being displaced in the Z-axis direction. For example, the energy beam B is scanned along the X axis direction while reciprocating (wobbling) in the Z axis direction. The displacement of the irradiation spot of the energy beam B in the Z-axis direction is larger than the thickness of the tab stack 25. The irradiation spot of the energy beam B moves from the position P1 on the axis along the X-axis direction to the position P2 on the end face 25a of the tab stack 25. For example, the positions P1 and P2 are located at the center of the end face 25a of the tab stack 25 in the Z-axis direction. For example, the energy beam B is moved while moving the central point along the X-axis direction at the end face 25a of the tab stack 25 and rotating the irradiation spot of the energy beam B in the XZ plane about the central point. If the diameter of rotation is larger than the thickness of the tab laminate 25, it is preferable because the end face 25a of the tab laminate 25, the current collector plate 19 and the protective plate 27 can be welded as a whole. Further, the energy beam B may be irradiated to the part of the end face 25 a of the tab stack 25 on the protective plate 27 side, and the energy beam B may not be irradiated to the remaining part on the current collector plate 19 side. In this case, the welding portion W is not formed on the remaining portion of the end face 25 a of the tab stack 25 on the current collecting plate 19 side. However, the weld W extends in the thickness direction of the tab stack 25 inside the tab stack 25 by the weld W extending in the irradiation direction of the energy beam B inside the end face 25 a of the tab stack 25. It will be. The plurality of tabs 17 b and the current collector plate 19 can be welded by causing the welded portion W to reach the current collector plate 19.
上述のようにエネルギービームBを照射することによって、先に図3及び図5を参照して説明したように、タブ積層体25の端面25aから内側に溶接部Wが形成される。
By irradiating the energy beam B as described above, as described above with reference to FIGS. 3 and 5, the welded portion W is formed inside from the end face 25a of the tab laminate 25.
続いて、タブ積層体21の端面21bにもエネルギービームBを照射し、端面21bから内側に溶接部Wを形成する。同様に、タブ積層体25の端面25b、タブ積層体21の21aにもエネルギービームBを照射し、端面25b,21aから内側に溶接部Wを形成する。
Subsequently, the energy beam B is also irradiated to the end face 21 b of the tab laminate 21 to form a welded portion W inside from the end face 21 b. Similarly, the energy beam B is applied also to the end face 25b of the tab laminate 25 and 21a of the tab laminate 21 to form a welded portion W inside from the end faces 25b and 21a.
上記工程を経ることによって、電極組立体3が製造される。
Through the above steps, the electrode assembly 3 is manufactured.
その後、タブ積層体21,25を例えば図3に示されるように折り曲げ、折り曲げられた電極組立体3をケース2に収容し、蓄電装置1を製造することができる。
Thereafter, the tab stacks 21 and 25 are folded as shown in FIG. 3, for example, and the folded electrode assembly 3 is accommodated in the case 2, whereby the power storage device 1 can be manufactured.
タブ積層体21,25の折り曲げは、溶接部の形成工程よりも前の、例えばタブ積層体の準備工程において完了していてもよい。その場合には、タブ積層体21,25が折り曲げられた状態で、端面21a,21b,25a,25bへのエネルギービームBの照射による溶接部Wの形成が行われる。なお、タブ積層体が折り曲げられた状態でのタブ積層体の突出方向は、折り曲げられたタブ積層体の形状に沿った方向を指す。図1に示される例では、例えばタブ積層体21,25が屈曲部Fにおいて折り曲げられている。この場合、タブ積層体21,25のうちの屈曲部Fよりも電極本体20側の部分では、タブ積層体21,25の突出方向は、電極本体20の側面Sから離れる方向とされる。また、タブ積層体21,25のうちの屈曲部Fよりも集電板16,19側の部分では、タブ積層体21,25の突出方向は、屈曲部Fから集電板16,19側に向かう方向とされる。
The bending of the tab laminates 21 and 25 may be completed, for example, in a process of preparing the tab laminates prior to the process of forming the welds. In that case, the welded portion W is formed by the irradiation of the energy beam B to the end faces 21a, 21b, 25a, 25b in a state where the tab laminates 21, 25 are bent. In addition, the protrusion direction of the tab laminated body in the state by which the tab laminated body was bent points out the direction along the shape of the tab laminated body which was bend | folded. In the example shown in FIG. 1, for example, the tab stacks 21 and 25 are bent at the bending portion F. In this case, the projecting direction of the tab laminates 21 and 25 is a direction away from the side surface S of the electrode body 20 at a portion closer to the electrode main body 20 than the bent portion F of the tab laminates 21 and 25. In the portion of the tab laminates 21 and 25 closer to the current collectors 16 and 19 than the bent portion F, the tab laminates 21 and 25 protrude from the bent portion F toward the current collectors 16 and 19. It is considered to be the direction towards.
以上説明したように、電極組立体3は、積層された複数の本体14a,17aを有する電極本体20と、積層された複数のタブ14b,17bを有し電極本体20から突出するタブ積層体21,25とを備える。タブ積層体21,25の突出方向の先端部分(先端部分253等)において複数のタブ14b,17bの先端の位置が突出方向にずれている。電極組立体3では、タブ積層体21,25は、タブ積層体21,25の積層方向(Z軸方向)及びタブ積層体21,25の突出方向に沿って延在するタブ積層体21,25の端面21a,21b(第1の端面、第2の端面),25a,25b(第1の端面、第2の端面)から内側に位置する溶接部Wを有する。タブ積層体21,25の端面21a,21b,25a,25bでは、タブ積層体21,25の先端部分(先端部分253等)と異なり上記のずれ量が小さい。そのため、タブ積層体21,25の端面21a,21b,25a,25bから内側に向かって、十分な深さの溶接部Wが形成され得る。よって、積層された複数のタブ14b,17b同士の接合強度を確保することができる。
As described above, the electrode assembly 3 includes the electrode body 20 having the plurality of stacked bodies 14 a and 17 a and the tab laminate 21 having the plurality of stacked tabs 14 b and 17 b and protruding from the electrode body 20. , 25. The positions of the tips of the plurality of tabs 14 b and 17 b are shifted in the protrusion direction at the tip portions (the tip portions 253 and the like) of the tab stacks 21 and 25 in the protrusion direction. In the electrode assembly 3, the tab stacks 21 and 25 extend along the stack direction (Z-axis direction) of the tab stacks 21 and 25 and the protrusion direction of the tab stacks 21 and 25. The welding portion W is positioned inward from the end faces 21a, 21b (first end face, second end face), 25a, 25b (first end face, second end face). In the end faces 21a, 21b, 25a, 25b of the tab laminates 21, 25, unlike the tip portions (the tip portions 253, etc.) of the tab laminates 21, 25, the above-mentioned deviation amount is small. Therefore, welds W of sufficient depth can be formed from the end faces 21a, 21b, 25a, 25b of the tab stacks 21, 25 inward. Thus, the bonding strength between the plurality of stacked tabs 14b and 17b can be secured.
タブ積層体21において、一方の端面(例えば端面21a)だけでなくもう一方の端面(例えば端面21b)から内側にも溶接部Wを有することにより、一方の端面のみに溶接部Wが位置する場合よりも、積層されたタブ14b同士の接合強度を高めることができる。タブ積層体25においても同様に、一方の端面(例えば端面25a)だけでなくもう一方の端面(例えば端面25b)から内側にも溶接部を有することにより、一方の端面のみに溶接部Wが位置する場合よりも、積層されたタブ17b同士の接合強度を高めることができる。
In the tab laminate 21, the welded portion W is located not only on one end face (for example, end face 21 a) but also on the inner side from the other end face (for example, end face 21 b). The bonding strength between the stacked tabs 14b can be further enhanced. Similarly, in the tab laminate 25, the welded portion is provided not only on one end face (for example, end face 25 a) but also on the inner side from the other end face (for example, end face 25 b). The bonding strength between the stacked tabs 17b can be increased more than in the case where it is carried out.
先に図3及び図5を参照して説明したように、溶接部Wは、タブ積層体21の端面21a,21bから内側に形成されるとともに、集電板16、保護板23にも形成される。この場合、溶接部Wによって、タブ積層体21と集電板16と、保護板23とを強固に接続することができる。このため、電極組立体3では、タブ積層体21の積層方向においてタブ積層体21を跨いで位置する部材(例えば保護板23と集電板16とを接続する部材)を用いることなく、保護板23、複数のタブ14b及び集電板16が溶接部Wによって互いに接続される。よって、上記のようなタブ積層体21を跨いで位置する部材を不要とすることができる。同様に、タブ積層体25の積層方向においてタブ積層体25を跨いで位置する部材(例えば保護板27と集電板19とを接続する部材)を用いることなく、保護板27、複数のタブ17b及び集電板19が溶接部Wによって互いに接続される。よって、上記のようなタブ積層体25を跨いで位置する部材を不要することができる。
As described above with reference to FIGS. 3 and 5, the welding portion W is formed on the inner side from the end faces 21 a and 21 b of the tab laminate 21 and is also formed on the current collector plate 16 and the protective plate 23. Ru. In this case, the tab laminate 21, the current collector plate 16, and the protective plate 23 can be firmly connected by the welded portion W. For this reason, in the electrode assembly 3, the protective plate is used without using a member (for example, a member connecting the protective plate 23 and the current collector plate 16) positioned across the tab laminate 21 in the stacking direction of the tab laminate 21. 23, the plurality of tabs 14b and the current collector plate 16 are connected to each other by the welding portion W. Therefore, the member positioned across the tab stacks 21 as described above can be eliminated. Similarly, without using a member (for example, a member connecting the protective plate 27 and the current collector plate 19) positioned across the tab laminated body 25 in the laminating direction of the tab laminated body 25, the protective plate 27 and the plurality of tabs 17b And the current collectors 19 are connected to each other by the weld W. Therefore, a member positioned across the tab stack 25 as described above can be eliminated.
積層型の電極組立体3において、タブ積層体21とタブ積層体25とは、電極本体20から同じ方向に突出しており、タブ積層体21,25が折り曲げられていてもよい。このように反対の極性(正極、負極)を有する2つのタブ積層体21,25(第1のタブ積層体、第2のタブ積層体)が同じ方向に突出し、折り曲げられている構成の電極組立体においても、各タブ積層体21,25がそれらの端面21a,21b,25a,25bから内側に位置する溶接部Wを有する構成とすることによって、積層された複数のタブ14b,17b同士の接合強度を確保することができる。
In the laminated electrode assembly 3, the tab laminate 21 and the tab laminate 25 protrude in the same direction from the electrode body 20, and the tab laminates 21 and 25 may be bent. An electrode assembly in which two tab laminates 21 and 25 (a first tab laminate and a second tab laminate) having opposite polarities (a positive electrode and a negative electrode) in this manner protrude in the same direction and are bent. Even in a three-dimensional structure, the tab laminates 21 and 25 have welds W positioned on the inner side from the end faces 21a, 21b, 25a and 25b, thereby joining the plurality of stacked tabs 14b and 17b. The strength can be secured.
また、エネルギービームBの照射によって溶接部Wが形成される前に、タブ積層体21,25が折り曲げられている場合には、次のような利点もある。すなわち、タブ積層体21,25が折り曲げられることによって、タブ積層体21,25の先端部分(先端部分253等)において、複数のタブ14b,17bの先端の位置のずれ量がさらに大きくなる可能性がある。その場合でも、実施形態の電極組立体3では、タブ積層体21,25は、端面21a,21b,25a,25bから内側に位置する溶接部Wを有しているので、複数のタブ14b,17bの先端の位置がずれていても、積層された複数のタブ14b,17b同士の接合強度を確保することができる。
In addition, in the case where the tab laminates 21 and 25 are bent before the welded portion W is formed by the irradiation of the energy beam B, the following advantages are also obtained. That is, the tab laminates 21 and 25 may be bent, which may further increase the positional deviation of the tips of the plurality of tabs 14 b and 17 b at the tip portions (the tip portions 253 and the like) of the tab laminates 21 and 25. There is. Even in that case, in the electrode assembly 3 according to the embodiment, the tab stacks 21 and 25 have the welds W positioned inside from the end faces 21a, 21b, 25a and 25b, so the plurality of tabs 14b and 17b Even when the position of the front end of the above is shifted, the bonding strength between the stacked plural tabs 14b and 17b can be secured.
電極組立体3では、タブ積層体21,25の突出方向に対して直交する断面において、タブ積層体21,25の端面21a,21b,25a,25bから内側に向かう方向における溶接部Wの長さ(溶接深さ)は、集電板16,19に近づくにつれて大きくなっている。これにより、積層された複数のタブ14b,17bの集電板16,19に対する接合強度を高めることができる。
In the electrode assembly 3, the length of the weld W in the direction from the end faces 21a, 21b, 25a, 25b of the tab laminates 21, 25 in the cross section orthogonal to the projecting direction of the tab laminates 21, 25 The (welding depth) increases as the current collectors 16 and 19 are approached. Thereby, the joint strength with respect to current collection plates 16 and 19 of a plurality of laminated tabs 14b and 17b can be raised.
図8は、変形例に係る溶接部を有する電極組立体の一部を示す図である。図8(A)は、第1変形例に係る溶接部Wを有する、Y軸方向から見たタブ積層体25を示す図である。図8(B)は、第2変形例に係る溶接部Wを有する、Y軸方向から見たタブ積層体25を示す図である。第1及び第2変形例では、タブ積層体25の端面25aの法線方向から見て、溶接部Wが、曲線を含む外形形状を有している。そのため、溶接部Wの外形形状の曲線部分において応力が集中し難いので、溶接部Wが剥離し難い。溶接部Wは、曲線によって囲まれる外形形状を有してもよいし、曲線及び直線によって囲まれる外形形状を有してもよい。溶接部Wの外形形状は、応力が集中し易い角部(直線同士が交差する部分)を含んでいない。
FIG. 8 is a view showing a part of an electrode assembly having a weld according to a modification. FIG. 8A is a view showing the tab laminate 25 seen from the Y-axis direction, having the weld portion W according to the first modification. FIG. 8 (B) is a view showing the tab laminate 25 seen from the Y-axis direction, having the weld portion W according to the second modification. In the first and second modifications, as viewed in the normal direction of the end face 25 a of the tab stack 25, the weld W has an outer shape including a curve. Therefore, the stress is not easily concentrated at the curved portion of the outer shape of the welded portion W, so the welded portion W is hardly peeled off. The weld W may have an outer shape surrounded by a curve, or may have an outer shape surrounded by a curve and a straight line. The external shape of the welded portion W does not include corner portions where the stress tends to concentrate (portions where straight lines intersect).
第1変形例に係る溶接部Wの外形形状は例えば楕円形の一部を含む。図8(A)に示されるように、タブ積層体25の端面25aにおいてタブ積層体25の積層方向に直交する方向(X軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(Z軸方向)とタブ積層体25の積層方向に直交する方向(X軸方向)との両方に直交する方向(Y軸方向)から見たときに、タブ積層体25の積層方向(Z軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。
The external shape of the welding portion W according to the first modification includes, for example, a part of an ellipse. As shown in FIG. 8A, the maximum length W2 of the weld W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 at the end face 25a of the tab stack 25 is the tab stack 25 When viewed from the direction (Y-axis direction) orthogonal to both the stacking direction (Z-axis direction) and the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap in the (Z-axis direction).
第2変形例に係る溶接部Wの外形形状は例えば円形の一部を含む。図8(B)に示されるように、タブ積層体25の端面25aにおいてタブ積層体25の積層方向に直交する方向(X軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(Z軸方向)とタブ積層体25の積層方向に直交する方向(X軸方向)との両方に直交する方向(Y軸方向)から見たときに、タブ積層体25の積層方向(Z軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。最大長さW2は、最大長さW1以下であってもよい。
The external shape of the welding portion W according to the second modification includes, for example, a part of a circle. As shown in FIG. 8B, the maximum length W2 of the weld W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 at the end face 25a of the tab stack 25 is the tab stack 25 When viewed from the direction (Y-axis direction) orthogonal to both the stacking direction (Z-axis direction) and the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 It is larger than the maximum length W1 of the overlapping portion of the welded portion W and the tab laminate 25 in (Z-axis direction). The maximum length W2 may be equal to or less than the maximum length W1.
タブ積層体25の端面25b及びタブ積層体21の端面21a,21bのうち少なくとも1つにおいても、溶接部Wが、第1変形例又は第2変形例に係る溶接部Wと同じ形状を有してもよい。
Also in at least one of end face 25b of tab laminate 25 and end faces 21a and 21b of tab laminate 21, weld W has the same shape as weld W according to the first modification or the second modification. May be
以下、実施例に基づいて本発明がより具体的に説明されるが、本発明は以下の実施例に限定されない。
Hereinafter, the present invention will be more specifically described based on examples, but the present invention is not limited to the following examples.
(実施例1)
溶接部Wの最大溶接深さWdが0.1mmとなるように溶接部Wを形成した。 Example 1
The weld portion W was formed such that the maximum weld depth Wd of the weld portion W was 0.1 mm.
溶接部Wの最大溶接深さWdが0.1mmとなるように溶接部Wを形成した。 Example 1
The weld portion W was formed such that the maximum weld depth Wd of the weld portion W was 0.1 mm.
(実施例2)
溶接部Wの最大溶接深さWdを0.3mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。 (Example 2)
The welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was 0.3 mm.
溶接部Wの最大溶接深さWdを0.3mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。 (Example 2)
The welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was 0.3 mm.
(実施例3)
溶接部Wの最大溶接深さWdを1.2mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。溶接部Wの形成に用いたレーザーの出力は1500W、走査速度は24.9mm/secであった。 (Example 3)
A welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was 1.2 mm. The output of the laser used to form the weld W was 1500 W, and the scanning speed was 24.9 mm / sec.
溶接部Wの最大溶接深さWdを1.2mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。溶接部Wの形成に用いたレーザーの出力は1500W、走査速度は24.9mm/secであった。 (Example 3)
A welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was 1.2 mm. The output of the laser used to form the weld W was 1500 W, and the scanning speed was 24.9 mm / sec.
(実施例4)
溶接部Wの最大溶接深さWdを1.5mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。溶接部Wの形成に用いたレーザーの出力は1500W、走査速度は8.3mm/secであった。 (Example 4)
The welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was set to 1.5 mm. The power of the laser used to form the weld W was 1500 W, and the scanning speed was 8.3 mm / sec.
溶接部Wの最大溶接深さWdを1.5mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。溶接部Wの形成に用いたレーザーの出力は1500W、走査速度は8.3mm/secであった。 (Example 4)
The welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was set to 1.5 mm. The power of the laser used to form the weld W was 1500 W, and the scanning speed was 8.3 mm / sec.
(実施例5)
溶接部Wの最大溶接深さWdを2mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。 (Example 5)
The welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was 2 mm.
溶接部Wの最大溶接深さWdを2mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。 (Example 5)
The welded portion W was formed in the same manner as in Example 1 except that the maximum welding depth Wd of the welded portion W was 2 mm.
(評価結果)
実施例1~5の評価結果を図9に示す。レーザービームをタブ積層体の端面に照射している様子を撮像し、得られた映像からレーザービームの照射に起因するスパッタ粒子の数をカウントした。実施例4~5では、スパッタ粒子の数が、実施例1~3に比べて顕著に増えた。また、溶接部Wの電気抵抗値を測定した。図9に示される表中のAは良好な結果が得られたことを示し、BはAよりは良好でない結果が得られたことを示す。実施例2~4では、実施例1及び5に比べて良好な結果が得られた。図9の評価結果によれば、溶接部Wの最大溶接深さWdが0.3~1.5mmであると、スパッタ粒子の数が少なくなった。さらに最大溶接深さWdが0.3~1.2mmであると、スパッタ粒子の数が顕著に少なくなり、かつ、溶接部Wの電気抵抗値が良好な値となった。 (Evaluation results)
The evaluation results of Examples 1 to 5 are shown in FIG. The situation where the laser beam was irradiated to the end face of the tab laminate was imaged, and the number of sputtered particles resulting from the irradiation of the laser beam was counted from the obtained image. In Examples 4 to 5, the number of sputtered particles was significantly increased as compared with Examples 1 to 3. Moreover, the electrical resistance value of the welding part W was measured. A in the table shown in FIG. 9 indicates that a good result was obtained, and B indicates that a result that was not better than A was obtained. Good results were obtained in Examples 2 to 4 as compared with Examples 1 and 5. According to the evaluation result of FIG. 9, when the maximum welding depth Wd of the welded portion W is 0.3 to 1.5 mm, the number of sputtered particles decreases. Furthermore, when the maximum welding depth Wd is 0.3 to 1.2 mm, the number of sputtered particles is significantly reduced, and the electrical resistance value of the welded portion W becomes a good value.
実施例1~5の評価結果を図9に示す。レーザービームをタブ積層体の端面に照射している様子を撮像し、得られた映像からレーザービームの照射に起因するスパッタ粒子の数をカウントした。実施例4~5では、スパッタ粒子の数が、実施例1~3に比べて顕著に増えた。また、溶接部Wの電気抵抗値を測定した。図9に示される表中のAは良好な結果が得られたことを示し、BはAよりは良好でない結果が得られたことを示す。実施例2~4では、実施例1及び5に比べて良好な結果が得られた。図9の評価結果によれば、溶接部Wの最大溶接深さWdが0.3~1.5mmであると、スパッタ粒子の数が少なくなった。さらに最大溶接深さWdが0.3~1.2mmであると、スパッタ粒子の数が顕著に少なくなり、かつ、溶接部Wの電気抵抗値が良好な値となった。 (Evaluation results)
The evaluation results of Examples 1 to 5 are shown in FIG. The situation where the laser beam was irradiated to the end face of the tab laminate was imaged, and the number of sputtered particles resulting from the irradiation of the laser beam was counted from the obtained image. In Examples 4 to 5, the number of sputtered particles was significantly increased as compared with Examples 1 to 3. Moreover, the electrical resistance value of the welding part W was measured. A in the table shown in FIG. 9 indicates that a good result was obtained, and B indicates that a result that was not better than A was obtained. Good results were obtained in Examples 2 to 4 as compared with Examples 1 and 5. According to the evaluation result of FIG. 9, when the maximum welding depth Wd of the welded portion W is 0.3 to 1.5 mm, the number of sputtered particles decreases. Furthermore, when the maximum welding depth Wd is 0.3 to 1.2 mm, the number of sputtered particles is significantly reduced, and the electrical resistance value of the welded portion W becomes a good value.
3…電極組立体、14a,17a…本体、14b,17b…タブ、16,19…集電板(集電体)、20…電極本体、21,25…タブ積層体、21a,21b,21c,25a,25b,25c…端面、23,27…保護板(導電部材)、W…溶接部。
DESCRIPTION OF SYMBOLS 3 ... Electrode assembly, 14a, 17a ... Main body, 14b, 17b ... Tab, 16, 19 Current collection board (current collector), 20 ... Electrode main body 21, 21 ... Tab laminated body, 21a, 21b, 21c, 25a, 25b, 25c ... end face, 23, 27 ... protection plate (conductive member), W ... welded portion.
Claims (9)
- 本体と前記本体の一端から突出するタブとをそれぞれ含む複数の電極を有する電極組立体であって、
積層された複数の本体を有する電極本体と、
積層された複数のタブを有し前記電極本体から突出するタブ積層体と、
を備え、
前記タブ積層体では、前記タブ積層体の突出方向の先端部分において前記複数のタブの先端が前記突出方向にずれて配置されており、
前記タブ積層体は、前記タブ積層体の積層方向及び前記タブ積層体の前記突出方向に沿って延在する前記タブ積層体の第1の端面から内側に位置する溶接部を有する、
電極組立体。 An electrode assembly comprising a plurality of electrodes each including a body and a tab projecting from one end of the body, the electrode assembly comprising:
An electrode body having a plurality of stacked bodies;
A tab stack having a plurality of stacked tabs and protruding from the electrode body;
Equipped with
In the tab laminate, the tips of the plurality of tabs are arranged to be offset in the projecting direction at the distal end portion of the tab laminate in the projecting direction,
The tab laminate has a welding portion located inward from a first end face of the tab laminate extending in the stacking direction of the tab laminate and the protruding direction of the tab laminate.
Electrode assembly. - 前記タブ積層体は、前記積層方向及び前記突出方向に沿って延在し前記第1の端面とは異なる第2の端面から内側に位置する別の溶接部をさらに有する、
請求項1に記載の電極組立体。 The tab laminate further includes another weld portion extending along the stacking direction and the protruding direction and positioned inward from a second end surface different from the first end surface.
An electrode assembly according to claim 1. - 前記積層方向において前記タブ積層体を跨いで位置する部材を用いることなく、前記複数のタブが前記溶接部によって互いに接続される、請求項1または2に記載の電極組立体。 The electrode assembly according to claim 1, wherein the plurality of tabs are connected to one another by the weld without using a member positioned across the tab stack in the stacking direction.
- 前記電極組立体は積層型であり、
前記電極組立体は、互いに反対の極性を有する2つの電極本体を含み、
前記タブ積層体は、一方の極性を有する電極本体から突出し積層された複数のタブを有する第1のタブ積層体であり、
前記電極組立体は、他方の極性を有する電極本体から突出し積層された複数のタブを有する第2のタブ積層体であって、前記第2のタブ積層体の積層方向及び前記第2のタブ積層体の突出方向に沿って延在する前記第2のタブ積層体の端面から内側に位置する溶接部を有する前記第2のタブ積層体、をさらに備え、
前記第2のタブ積層体では、前記第2のタブ積層体の突出方向の先端部分において前記第2のタブ積層体における前記複数のタブの先端の位置が前記第2のタブ積層体の突出方向にずれて配置されており、
前記第1のタブ積層体と前記第2のタブ積層体とは、同じ方向に突出しており、
前記第1のタブ積層体及び前記第2のタブ積層体が折り曲げられている、請求項1~3のいずれか1項に記載の電極組立体。 The electrode assembly is a laminated type,
The electrode assembly includes two electrode bodies having opposite polarities.
The tab stack is a first tab stack having a plurality of tabs protruding and stacked from an electrode body having one polarity,
The electrode assembly is a second tab laminate having a plurality of tabs projecting and stacked from an electrode body having the other polarity, and the stacking direction of the second tab laminate and the second tab laminate And a second tab laminate having a weld located inward from the end face of the second tab laminate extending along the direction in which the body protrudes.
In the second tab laminate, positions of tips of the plurality of tabs in the second tab laminate at a tip portion in the protrusion direction of the second tab laminate are a protrusion direction of the second tab laminate. It is placed off the
The first tab stack and the second tab stack project in the same direction,
The electrode assembly according to any one of the preceding claims, wherein the first tab stack and the second tab stack are folded. - 前記電極組立体は、集電体をさらに備え、
前記タブ積層体は、前記積層方向において前記集電体上に配置され、
前記タブ積層体の突出方向に対して直交する断面において、前記タブ積層体の前記第1の端面から内側に向かう方向における前記溶接部の長さは、前記集電体に近づくにつれて大きくなる、請求項1~4のいずれか1項に記載の電極組立体。 The electrode assembly further comprises a current collector,
The tab laminate is disposed on the current collector in the stacking direction,
In a cross section orthogonal to the projecting direction of the tab laminate, the length of the weld in a direction from the first end face of the tab laminate toward the inside becomes larger as it approaches the current collector. An electrode assembly according to any one of Items 1 to 4. - 前記タブ積層体が、前記タブ積層体の積層方向において導電部材と集電体との間に配置され、
前記タブ積層体の積層方向における前記導電部材の厚みは、前記タブ積層体の積層方向における前記集電体の厚みよりも小さい、請求項1~5のいずれか一項に記載の電極組立体。 The tab laminate is disposed between the conductive member and the current collector in the stacking direction of the tab laminate,
The electrode assembly according to any one of claims 1 to 5, wherein the thickness of the conductive member in the stacking direction of the tab stack is smaller than the thickness of the current collector in the stacking direction of the tab stack. - 前記タブ積層体の前記第1の端面において前記タブ積層体の積層方向に直交する方向における前記溶接部の最大長さが、前記タブ積層体の積層方向と前記タブ積層体の積層方向に直交する前記方向との両方に直交する方向から見たときに、前記タブ積層体の積層方向における前記溶接部と前記タブ積層体とが重なる部分の最大長さよりも大きい、請求項1~6のいずれか一項に記載の電極組立体。 In the first end face of the tab laminate, the maximum length of the weld in a direction orthogonal to the lamination direction of the tab laminate is orthogonal to the lamination direction of the tab laminate and the lamination direction of the tab laminate 7. The method according to any one of claims 1 to 6, wherein when viewed from a direction orthogonal to both the direction, the maximum length of the overlapping portion of the welded portion and the tab laminate in the laminating direction of the tab laminate is greater. An electrode assembly according to one of the preceding claims.
- 前記タブ積層体の積層方向を含み前記タブ積層体の前記第1の端面に直交する前記タブ積層体の断面において、前記タブ積層体の積層方向に直交する方向における前記溶接部の最大溶接深さが2mm未満である、請求項1~7のいずれか一項に記載の電極組立体。 In a cross section of the tab laminate including the stacking direction of the tab laminate and orthogonal to the first end face of the tab laminate, the maximum welding depth of the weld in a direction orthogonal to the stacking direction of the tab laminate The electrode assembly according to any one of the preceding claims, wherein is less than 2 mm.
- 前記タブ積層体の前記第1の端面の法線方向から見て、前記溶接部が、曲線を含む外形形状を有する、請求項1~8のいずれか一項に記載の電極組立体。 The electrode assembly according to any one of claims 1 to 8, wherein the weld has an outer shape including a curve when viewed in the normal direction of the first end face of the tab laminate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017547898A JP6834972B2 (en) | 2015-10-29 | 2016-10-28 | Electrode assembly |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-212996 | 2015-10-29 | ||
JP2015-212998 | 2015-10-29 | ||
JP2015212996 | 2015-10-29 | ||
JP2015212998 | 2015-10-29 | ||
JP2015-248737 | 2015-12-21 | ||
JP2015248737 | 2015-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017073745A1 true WO2017073745A1 (en) | 2017-05-04 |
Family
ID=58630553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/082105 WO2017073745A1 (en) | 2015-10-29 | 2016-10-28 | Electrode assembly |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6834972B2 (en) |
WO (1) | WO2017073745A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112743232A (en) * | 2020-12-31 | 2021-05-04 | 惠州市德赛电池有限公司 | Protection plate welding mechanism and control method |
EP4258453A4 (en) * | 2021-10-08 | 2024-10-23 | Lg Energy Solution Ltd | Secondary battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002313309A (en) * | 2001-04-11 | 2002-10-25 | Ngk Insulators Ltd | Electrochemical device and its manufacturing method |
JP2013161756A (en) * | 2012-02-08 | 2013-08-19 | Toyota Industries Corp | Electricity storage device and vehicle |
WO2014027606A1 (en) * | 2012-08-14 | 2014-02-20 | 株式会社 豊田自動織機 | Electrical storage device |
JP2016029627A (en) * | 2014-07-25 | 2016-03-03 | 株式会社豊田自動織機 | Power storage device and manufacturing method thereof |
-
2016
- 2016-10-28 WO PCT/JP2016/082105 patent/WO2017073745A1/en active Application Filing
- 2016-10-28 JP JP2017547898A patent/JP6834972B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002313309A (en) * | 2001-04-11 | 2002-10-25 | Ngk Insulators Ltd | Electrochemical device and its manufacturing method |
JP2013161756A (en) * | 2012-02-08 | 2013-08-19 | Toyota Industries Corp | Electricity storage device and vehicle |
WO2014027606A1 (en) * | 2012-08-14 | 2014-02-20 | 株式会社 豊田自動織機 | Electrical storage device |
JP2016029627A (en) * | 2014-07-25 | 2016-03-03 | 株式会社豊田自動織機 | Power storage device and manufacturing method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112743232A (en) * | 2020-12-31 | 2021-05-04 | 惠州市德赛电池有限公司 | Protection plate welding mechanism and control method |
EP4258453A4 (en) * | 2021-10-08 | 2024-10-23 | Lg Energy Solution Ltd | Secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017073745A1 (en) | 2018-08-16 |
JP6834972B2 (en) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6183555B2 (en) | Tab welding method for battery pack | |
JP6753416B2 (en) | Manufacturing method of electrode assembly and power storage device | |
JP5939133B2 (en) | Separator with electrodes stored, power storage device, and method for manufacturing separator with electrodes stored | |
JP6593304B2 (en) | Electric storage device and method for manufacturing electric storage device | |
JP6965587B2 (en) | Electrode assembly | |
JP6841227B2 (en) | Manufacturing method of electrode assembly and electrode assembly | |
WO2017073745A1 (en) | Electrode assembly | |
JP6613813B2 (en) | Method for manufacturing electrode assembly and electrode assembly | |
JP6834982B2 (en) | Manufacturing method of electrode assembly | |
JP6582877B2 (en) | Method for manufacturing electrode assembly and electrode assembly | |
JP6641978B2 (en) | Method of manufacturing electrode assembly and electrode assembly | |
JP2018032594A (en) | Electrode welding apparatus | |
JP5765259B2 (en) | Electrode storage separator, electrode body, power storage device, and vehicle | |
JP6874763B2 (en) | Manufacturing method of electrode assembly | |
JP2017191705A (en) | Method of manufacturing secondary battery | |
JP6834973B2 (en) | Manufacturing method of electrode assembly | |
JP2023523913A (en) | Electrode assembly and manufacturing method thereof, cylindrical battery cell including electrode assembly, and battery pack and automobile including cylindrical battery cell | |
JP6922328B2 (en) | Manufacturing method of electrode assembly | |
JP6586868B2 (en) | Method for manufacturing electrode assembly | |
JP5842742B2 (en) | Electrode storage separator and power storage device | |
JP6763134B2 (en) | Manufacturing method of electrode assembly and electrode assembly | |
JP6601157B2 (en) | Electrode assembly | |
JP6683066B2 (en) | Electrode welding method | |
JP6631214B2 (en) | Electrode assembly | |
JP6648630B2 (en) | Electrode assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16859973 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017547898 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16859973 Country of ref document: EP Kind code of ref document: A1 |