WO2016208156A1 - Lens drive device, camera module, and camera mounting device - Google Patents
Lens drive device, camera module, and camera mounting device Download PDFInfo
- Publication number
- WO2016208156A1 WO2016208156A1 PCT/JP2016/002889 JP2016002889W WO2016208156A1 WO 2016208156 A1 WO2016208156 A1 WO 2016208156A1 JP 2016002889 W JP2016002889 W JP 2016002889W WO 2016208156 A1 WO2016208156 A1 WO 2016208156A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- module
- imaging module
- magnet
- base member
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 108
- 239000000758 substrate Substances 0.000 claims abstract description 66
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 238000001514 detection method Methods 0.000 claims description 93
- 238000012937 correction Methods 0.000 claims description 14
- 230000005489 elastic deformation Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 230000006641 stabilisation Effects 0.000 abstract description 2
- 238000011105 stabilization Methods 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 description 15
- 230000004907 flux Effects 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
Definitions
- the present invention relates to a lens driving device having a shake correction function, a camera module, and a camera mounting device.
- a small camera module is mounted on a mobile terminal such as a smartphone.
- Some cameras have an autofocus function that automatically adjusts the focus when shooting a subject and a shake correction function (OIS: Optical Image Stabilization) that corrects shake (vibration) that occurs during shooting to reduce image distortion.
- OIS Optical Image Stabilization
- the imaging module is a module having a lens unit and an imaging element (for example, a CCD (Charge-Coupled Device)), and includes an auto-focusing actuator.
- CCD Charge-Coupled Device
- an autofocus actuator is referred to as an “AF actuator” and a shake correction actuator is referred to as an “OIS actuator”.
- FIG. 1 is an external view showing an example of a conventional module tilt type camera module.
- FIG. 2 is an exploded perspective view showing an example of a conventional module tilt type camera module.
- a conventional module tilt type camera module 2 includes a fixed body 21, a movable body 22, an elastic support section 23, an imaging module 24, and a shake detection section 25.
- the fixed body 21, the movable body 22, and the elastic support portion 23 constitute an OIS actuator.
- the fixed body 21 includes a base member 211, a coil part 212, and a printed wiring board 213 for OIS.
- the coil unit 212 is disposed on the base member 211.
- the printed wiring board for OIS 213 supplies power to the coil unit 212 and outputs a detection signal from the shake detection unit 25 to the control unit.
- the movable body 22 includes a yoke 221, a magnet part 222, a top plate 223, and a module guide 224.
- the yoke 221 and the magnet part 222 are disposed in the respective accommodating parts formed on the top plate 223.
- the module guide 224 is fixed to the top plate 223.
- the imaging module 24 is arranged and fixed in a space sandwiched between a set of module guides 224.
- the elastic support portion 23 has a biaxial gimbal mechanism, and the movable body 22 (top plate 223) is fixed to the outer gimbal.
- the elastic support portion 23 is arranged in a state of floating in the approximate center of the base member 211 and is fixed by a stopper 231.
- the elastic support portion 23 supports the movable body 22 so as to be able to swing and rotate about the X axis and the Y axis orthogonal to the optical axis (Z axis), that is, to support the tiltable manner.
- the shake detection unit 25 is composed of, for example, a gyro sensor that detects the angular velocity of the imaging module 24.
- the shake detection unit 25 is fixed to the side surface of the module guide 224 of the movable body 22.
- the detection signal of the shake detection unit 25 is output to the control unit via the OIS printed wiring board 213 which is the fixed body 21.
- the coil unit 212 and the magnet unit 222 constitute an OIS voice coil motor (VCM). That is, when a current flows through the coil unit 212, Lorentz force is generated in the coil unit 212 due to the interaction between the magnetic field of the magnet unit 222 and the current flowing through the coil unit 212 (Fleming's left-hand rule). Since the coil portion 212 is fixed, a reaction force acts on the magnet portion 222. This reaction force becomes the driving force of the voice coil motor for OIS.
- the movable body 22 swings and rotates until the driving force of the voice coil motor for OIS and the restoring force (restoring force) of the elastic support portion 23 are balanced. Thereby, the deviation of the optical axis due to the shake is corrected, and the optical axis direction is kept constant.
- the OIS printed wiring board 213 may be a rigid flexible board (Rigid-flexible-printed-wiring-board or Rigid-flexible-printed-circuits, "rigid FPC").
- rigid FPC rigid flexible board
- an OIS driver or the like that drives the OIS voice coil motor by supplying power to the coil portion 212 can be mounted on the rigid portion.
- the OIS printed wiring board 213 that supplies power to the coil unit 212 includes the coil unit 212 as a part of the fixed body 21.
- the base member 211 is attached.
- the camera module 2 in order to confirm the operation by the voice coil motor for OIS such as the tilt operation angle of the actual imaging module by moving the movable body 22 by supplying power to the coil section 212, the camera module 2 must be assembled. I can't.
- a shake detection unit 25 such as a gyro sensor may be mounted on the OIS printed circuit board 213 before the base member 211 is attached.
- the shake detection unit 25 such as a gyro sensor which is an expensive part having no functional problem cannot be used together, and the production cost of the entire camera module increases. Therefore, there was a request to reduce production costs as much as possible.
- the rigid FPC itself cannot be used, and furthermore, the OIS IC mounted on the rigid FPC cannot be used, which further increases the production cost.
- the object of the present invention is to confirm the operation of the vibration correction actuator by the voice coil motor for OIS before assembling the device itself, and to reduce the production cost when there is a malfunction, and to produce it satisfactorily.
- a lens driving device, a camera module, and a camera mounting device are provided.
- One aspect of the lens driving device of the present invention is a lens driving device that performs shake correction by tilting an imaging module having a lens unit and an imaging element by a driving force of a voice coil motor having a coil unit and a magnet unit.
- a fixed body configured to be disposed; a support section which is disposed on the base member and supports the movable body to be tiltable with respect to the fixed body; and supplies power to the coil section to drive the voice coil motor.
- a main board to which the fixed body is fixed, and the fixed body has a coil base having a terminal portion to which the coil portion is connected. Has the coil portion is connected to a circuit of the main board through the terminal part of the coil substrate, a configuration.
- One aspect of the camera module of the present invention includes the above lens driving device, an imaging module having a lens unit and an imaging element, and bonded to the holding member, and a shake detection unit that detects shake of the imaging module. , Is adopted.
- One aspect of the camera-mounted device of the present invention is a camera-mounted device that is an information device or a transport device, and has a configuration including the above-described camera module.
- the operation by the voice coil motor for OIS in the shake correction actuator can be confirmed, and the production cost can be reduced when there is a malfunction and the production can be performed well. Can do.
- External view showing an example of a conventional module tilt type camera module An exploded perspective view showing an example of a conventional module tilt type camera module
- External perspective view of camera module Exploded perspective view of camera module Sectional view along the Y direction of the camera module Sectional view along the X direction of the camera module
- Partial perspective view for explaining the positional relationship between the misalignment detection unit and the yoke in the camera module Schematic diagram showing the flow of magnetic flux detected by the misalignment detector in the camera module
- Bottom view of yoke with elastic support The enlarged view which shows the attachment part of the gimbal attachment part and elastic support part in FIG.
- FIG. 3 is a diagram showing a smartphone M equipped with the camera module 100 according to an embodiment of the present invention.
- 3A is a front view of the smartphone M
- FIG. 3B is a rear view of the smartphone M.
- the smartphone M is equipped with a camera module 100 as a rear camera OC, for example.
- the camera module 100 includes an autofocus function and a shake correction function, and automatically performs focusing when shooting a subject, and corrects shake (vibration) generated during shooting to shoot an image without image blur. Can do.
- a module tilt method is adopted for the shake correction function of the camera module 100.
- the module tilt method has an advantage that no distortion occurs in the four corners of the screen.
- FIG. 4 is an external perspective view of the camera module 100.
- FIG. 5 is an exploded perspective view of the camera module 100.
- FIG. 6 is a cross-sectional view of the camera module 100 along the Y direction.
- the magnetic circuit portion of the voice coil motor portion is particularly shown.
- the X direction is the vertical direction (or the horizontal direction)
- the Y direction is the horizontal direction (or the vertical direction)
- the Z direction is the front and back. It is mounted so as to be in the direction.
- the camera module 100 includes a fixed body 11, a movable body 12, an elastic support section 13, an imaging module (driven section) 14, a shake detection section (gyro sensor) 15, a relay board 30, A misalignment detection unit (tilt detection unit) 40, a driver IC 60, a rigid flexible substrate (rigid flexible printed board, rigid FPC) 70, a coil substrate 80 for inspection, and the like are provided.
- the fixed body 11, the movable body 12, the elastic support portion 13, and the coil substrate 80 for inspection constitute an OIS actuator A.
- a lens driving device is configured by including the rigid FPC 70 in the configuration of the actuator A for OIS.
- the movable body 12 is moved using the driving force of the voice coil motor for OIS having the coil portion 112 and the magnet portion 122 to enable shake correction.
- the fixed body 11 is fixed to the rigid FPC 70 and fixed together with the rigid FPC 70 so as not to move when mounted on the smartphone M.
- the fixed body 11 movably supports the movable body 12 via the elastic support portion 13.
- the fixed body 11 includes a base member 111, a coil portion 112, a skirt member (cover member) 114, a main body cover member (hereinafter referred to as “cover member”) 115, and a coil substrate 80.
- the rigid FPC 70 includes a rigid portion 70a made of a hard material such as glass epoxy, and a bending material (polyimide) for a flexible printed circuit board (FPC) at a bending portion for incorporation or repeated bending. Is used (referred to as “flexible portion 70b”).
- the rigid FPC 70 is configured by sticking a glass epoxy substrate on the FPC, and has a flexibility similar to that of the FPC and is a substrate having rigidity higher than that of the FPC.
- a base member 111 is disposed on the rigid portion 70a.
- the driver IC 60, the shake detection part 15 mounted via the relay board 30, the AF driving connector 71, and the connection terminal parts 92 and 93 are located away from the base member 111. It is mounted on a circuit wired to the rigid portion 70a.
- the flexible part 70b has a connector connected to the main body side of the camera module 100, and has a power supply line (not shown) connected to the rigid part 70a.
- the flexible portion 70b is connected to the rigid portion 70a, and the power supply line is electrically connected to the power supply pad 81 via the rigid FPC 70.
- the driver IC (drive control unit) 60 feeds power to the coil unit 112 to move the movable body 12 under the control of a control unit (not shown), that is, moves the imaging module 14 attached to the movable body 12 together with the movable body 12. To correct the tilt.
- the shake detection unit 15 detects shake (movement) of an electronic device such as a smartphone on which the camera module 100 is mounted.
- the shake detection unit 15 includes, for example, a gyro sensor that detects an angular velocity of the camera module 100 (an electronic device such as a smartphone on which the camera module 100 is mounted).
- the shake detection unit 15 detects shake in at least two axes (X, Y) directions orthogonal to the optical axis O. Here, it is possible to detect a shake in the three-axis directions of XYZ.
- the detection signal of the shake detection unit 15 is output to the control unit (not shown) via the relay board 30 and the rigid unit 70a.
- the control unit (not shown) controls the energization current of the coil unit 112 via the driver IC 60 based on this detection signal and the detection signal of the position shift detection unit 40 (Hall elements 40a and 40b).
- the function of the control unit (not shown) may be executed by a driver IC or mounted on the rigid unit 70a. Moreover, you may make it utilize the control part mounted in the smart phone M via rigid FPC70.
- a shake angle is detected, and a detection signal (hole output value) corresponding to this angle is detected by the misalignment detection unit 40, based on this.
- the current flowing through the coil section 112 is controlled via the driver IC 60, and the movable body 12 is moved to perform shake correction.
- the base member 111 is a substantially rectangular member made of a metal material, and is disposed on the rigid portion 70a.
- the strength is higher than that of a resin, so that the base member 111 can be thinned, and the camera module 100 can be reduced in height.
- the base member 111 has a truncated pyramidal protrusion 111a for fixing the elastic support portion 13 at the center.
- the base member 111 has a protruding side portion 1111 that performs positioning when fixing the cover member 115 and the skirt member 114 at the central portion of the four sides constituting the peripheral portion.
- the protruding side portion 1111 engages with the notches 1141 and 1151, respectively.
- the skirt member 114 is fixedly positioned by being fitted around the outer peripheral edge of the base member 111 by engaging the notch portion 1141 with the protruding side portion 1111.
- the cover member 115 engages the notched portion 1151 with the protruding side portion 1111 of the base member 111 and is fitted on the outer peripheral surface of the skirt member 114. Accordingly, the cover member 115 is also positioned by the protruding side portion 1111 of the base member 111.
- pieces 111 b and 111 b having concave (U-shaped) notches 111 c and 111 c are erected at the center of two orthogonal sides of the four sides constituting the peripheral edge. .
- the misalignment detection unit 40 is disposed in the concave shape.
- the pieces 111b and 111b are provided upright from the one peripheral portion along the X direction and the one peripheral portion along the Y direction in the base member 111, respectively.
- the positional deviation detection unit 40 is abutted against the bottoms of the concave cutouts 111c and 111c (see FIGS. 6 and 7).
- the piece portion 111 b is formed by cutting and raising from the main body portion of the base member 111.
- FIG. 8 is a perspective view for explaining the attachment state of the misalignment detection unit 40.
- FIG. 8 for convenience, the mounting state of the Hall element 40 a that is the misalignment detection unit 40 in the fixed body 11 from which the movable body 12 and the imaging module 14 are omitted is shown.
- the misalignment detector 40 (Hall element 40a) in the notch 111c has the bottom surface 45 of the Hall element 40a abutted against the bottom 45 of the notch 111c. Thereby, the positioning in the Z direction is performed with respect to the misalignment detection unit 40 (Hall element 40a).
- another Hall element 40b as the position shift detection unit 40 is positioned by being abutted against the bottom of the notch 111c in the same manner as the Hall element 40a.
- a coil substrate 80 is disposed on the base member 111.
- the coil substrate 80 is a substrate having circuits connected to input / output terminals of electronic components used in the actuator A in order to realize OIS.
- the coil substrate 80 is a flexible printed circuit board having a rectangular shape having wiring connected to the coil unit 112 and the positional deviation detection unit 40.
- the wiring of the coil substrate 80 is a wiring pattern including a power line of the coil unit 112 and the positional deviation detection unit 40 and a signal line of the positional deviation detection unit 40.
- the coil substrate 80 includes a tilt terminal 112A to 112D as the coil part 112, two Hall elements 40a and 40b as the positional deviation detection part 40, and a connection terminal part composed of a total of 12 pins connected thereto. 82, 83.
- the wiring pattern of the coil substrate 80 includes wirings connecting the tilt coils 112A to 112D, the Hall elements 40a and 40b, and the connection terminal portions 82 and 83.
- the connection terminal portions 82 and 83 are formed at portions extending laterally from a part of the outer periphery of the rectangular portion (main body substrate portion 801).
- the 12-pin terminals are a total of 4 pins with 2 input / output terminals for each of the opposing tilt coils 112A to 112D and a total of 8 pins of the hall elements 40a and 40b.
- the coil substrate 80 includes a main body substrate portion 801 that is a rectangular frame-shaped portion, and Hall element attachment portions 802 and 803.
- An opening 80 a into which the protruding portion 111 a of the base member 111 is inserted is formed in the central portion of the main body substrate portion 801 that is a rectangular portion.
- the protruding portion 111a is disposed in a state of protruding upward from the coil substrate 80 through the opening 80a.
- the main body substrate portion 801 of the coil substrate 80 is provided with a power supply pad 81 connected to the coil portion 112 around the protruding portion 111a.
- the power supply pad 81 is for supplying power to the coil portion 112, and is connected to the connection terminal portions 82 and 83 as a circuit of the coil substrate 80. End portions of the coil portions 112 (tilt coils 112A to 112D) are soldered to the power supply pad 81.
- the connection terminal portions 82 and 83 extend outward (in this case, to the side of the base member 111) from a rectangular portion disposed on the base member 111 in the coil substrate 80. Thus, power can be supplied from the connection terminal portions 82 and 83 extended in the coil substrate 80 to the coil portion 112.
- misalignment detection unit 40 is mounted on the coil substrate 80.
- the positional deviation detection unit 40 detects the position of the movable body 12 attached to the fixed body 11 via the elastic support unit 13, that is, the position of the imaging module 14 in a non-contact manner.
- the misregistration detection unit 40 is mounted on the hall element mounting portions 802 and 803 of the coil substrate 80 (see FIGS. 5 to 8).
- Hall element attachment portions 802 and 803 are formed at positions corresponding to the pieces 111b and 111b of the base member 111. Specifically, the hall element mounting portions 802 and 803 extend upward from one outer edge portion along the Y direction and one outer edge portion along the X direction in the main body substrate portion 801 of the coil substrate 80, respectively. Is formed. The outer edge portion of the main body substrate portion 801 where the hall element attachment portions 802 and 803 are formed is different from a part of the outer periphery (outer edge portion) where the connection terminal portions 82 and 83 are formed (refer mainly to FIG. 5).
- slits 805 and 806 are provided along one outer edge portion along the Y direction and one outer edge portion along the X direction of the main body substrate portion 801, respectively. Is formed.
- FIG. 8 shows a state in which the piece 111b is inserted into the slit 805.
- the hall element attachment portions 802 and 803 are arranged on the outer surface sides of the pieces 111b and 111b inserted through the slits 805 and 806 of the coil substrate 80, respectively.
- the position shift detection unit 40 (Hall elements 40a and 40b described later) mounted on the Hall element mounting portions 802 and 803 is positioned.
- the displacement detection unit 40 is abutted against the bottom of the notch 111c of the piece 111b, whereby the displacement detection unit 40 is positioned in the Z direction with higher accuracy.
- the positional deviation detection unit 40 is fixed to the bottom of the abutted notch 111c by adhesion or the like.
- the position shift detection part 40 is good also as a structure fitted inside the notch part 111c. In that case, it is possible to perform positioning by restricting the movement of the misalignment detection unit 40 to one of X and Y which is a direction orthogonal to the Z direction as well as the Z direction.
- the Hall element mounting portions 802 and 803 are fixed to the corresponding pieces 111b and 111b by bonding or the like after the positional deviation detection unit 40 is positioned.
- the positional deviation detection unit 40 senses the movement (rotation swing) of the movable body 12, that is, the imaging module 14, and detects the position of the movable body 12, that is, the imaging module 14, in the plane direction (XY direction) orthogonal to the optical axis. In other words, the positional deviation detection unit 40 senses the rotation and swing of the movable body 12, that is, the attitude of the imaging module 14, and detects the inclination with respect to the X axis and the Y axis.
- the misalignment detection unit 40 is connected to the connection terminal portions 82 and 83 via the wiring pattern of the coil substrate 80, that is, the wiring patterns of the Hall element mounting portions 802 and 803 and the substrate main body 801.
- the coil substrate 80 can output and input signals from the misalignment detection unit 40 to the connection destination through the connection terminal units 82 and 83 as well as feeding power to the coil unit 112.
- the connection terminal portions 82 and 83 are connected to the connection terminal portions 92 and 93 of the rigid portion 70a, the detection signal of the positional deviation detection portion 40 is output to the circuit of the rigid portion 70a.
- the detection signal of the misalignment detection unit 40 is output to a control unit (not shown) via the circuit of the rigid unit 70a.
- the positional deviation detection unit 40 is configured by, for example, a Hall element.
- the misalignment detection unit 40 includes two Hall elements (first Hall element and second Hall element) 40a and 40b as magnetic position detection units.
- the Hall elements 40a and 40b serving as the positional deviation detection unit 40 are arranged so as to be opposed to and separated from two pieces (permanent magnets 122A and 122B) of the four permanent magnets 122A to 122D constituting the magnet unit 122, respectively. It is mounted on the coil substrate 80 (Hall element mounting portions 802, 803). Each Hall element 40a, 40b is arranged so that the leakage magnetic flux from the permanent magnets 122A, 122B crosses in the Z direction, for example. For example, each Hall element 40a, 40b is arranged so as to cross the direction of the flow of magnetic flux from the N pole to the S pole in the permanent magnets 122A, 122B.
- the Hall elements 40a and 40b are mounted on the coil substrate 80 along the Y-axis and X-axis directions alongside the tilt coils 112A and 112B outside the tilt coils 112A and 112B that are the coil portions 112.
- the Hall elements 40a and 40b are disposed in the notch 111c of the piece 111b so as to be opposed to the longitudinal center portions of the tilt coils 112A and 112B.
- the hall elements 40a and 40b are configured to face the permanent magnets 122A and 122B, respectively.
- the Hall elements 40a and 40b are mounted on the outside of the tilt coils 112A and 112B on the coil substrate 80 side by side with the permanent magnets 122A and 122B disposed in the tilt coils 112A and 112B. Opposite.
- the one hall element 40a is disposed so as to be separated from the hall element 40a in the first direction X side orthogonal to the optical axis O (see FIG. 5), and the permanent magnet 122A facing the hall element 40a.
- the first position associated with the movement (swing) in the first direction X is detected.
- the other Hall element 40b is spaced apart from the Hall element 40b on the second direction Y side orthogonal to the optical axis O, and detects the magnetic force of the permanent magnet 122B facing the first Hall element 40b.
- the second position accompanying the movement (swing) in the direction Y of 2 is detected.
- the Hall element 40a can detect the amount of movement of the permanent magnet 122A in the X-axis direction, and the Hall element 40b can detect the amount of movement of the permanent magnet 122B in the Y-axis direction.
- the Hall elements 40a and 40b detect movement amounts of the imaging module in the X-axis direction and the Y-axis direction, that is, movement on a plane orthogonal to the optical axis.
- control unit shakes the imaging module 14 based on the shake of the stationary body 11 (camera module 100 itself) detected by the shake detection unit (gyro sensor) 15 and the detection position by the Hall elements 40a and 40b.
- Power is supplied to the coil unit 112 via the driver IC 60 that corrects the above.
- the movable body 12 imaging module 14 moves and moves to a position corresponding to the movement amount of the imaging module 14 in the X-axis direction and the Y-axis direction, and the shake is corrected.
- the Hall elements 40a and 40b can detect the amount of movement of the imaging module 14 in the X-axis direction and the Y-axis direction, they are offset by the weight of the imaging module 14 (self-weight) or movable. An offset due to the reaction force of the FPC of the imaging module 14 when the body 12 is attached to the fixed body 11 can be detected.
- the camera module 100 can accurately position the imaging module 14 without tilting by detecting and correcting the offset position of the imaging module 14 using the misalignment detection unit 40.
- the control unit (not shown) is movable based on the detection signal of the misalignment detection unit 40 when correcting the shake (angular shake) of the camera module 100 itself corresponding to the detection signal of the shake detection unit 15.
- the energization current of the coil unit 112 is controlled (so-called feedback control) so that the body 12 and the imaging module 14 return to the reference position.
- the coil part 112 is composed of four tilt coils 112A to 112D, and is arranged on the coil substrate 80 so as to surround the protruding part 111a.
- the tilt coils 112A to 112D are arranged on the coil substrate 80 at positions sandwiched between the power supply pads 81, respectively.
- the coil portion 112 tilt coils 112A to 112D
- the tilt coils 112A to 112D are connected to the respective power supply pads 81 located on both sides of each of the tilt coils 112A to 112D by soldering. In this way, the tilt coils 112 to 112D are supplied with power via the power supply pad 81.
- the tilt coils 112A and 112C face each other in the X direction, and are used when the movable body 12 is rotated and oscillated ( ⁇ Y) about the Y axis.
- the tilt coils 112B and 112D are opposed to each other in the Y direction, and are used when the movable body 12 is rotated and swung ( ⁇ X) about the X axis.
- the skirt member 114 is a member in which four wall bodies 114b are connected in a rectangular frame shape, and has a receiving port 114a for the imaging module 14.
- the skirt member 114 has a notch 1141 at a position corresponding to the protruding side 1111 of the base member 111, that is, at the center of the lower end of each wall body 114 b of the skirt member 114.
- the upper portion of each wall body 114b of the skirt member 114 has a rectangular frame-shaped restricting portion 114d formed to slightly protrude inward from each upper portion, and the restricting portion 114d is inside the frame shape, that is, the skirt member 114.
- the movable body 12 disposed in the receiving port 114a is prevented from being excessively inclined.
- the skirt member 114 is fixed by being fitted around the outer periphery of the base member 111 after the movable body 12 is attached to the base member 111 via the elastic support portion 13.
- the movable body 12 is sandwiched between the base member 111 and the skirt member 114.
- the cover member 115 is a covered rectangular cylindrical member having an opening (opening) 115a in the lid portion on the upper surface.
- the cover member 115 makes the lens part 141 of the imaging module 14 face the outside through the opening 115a.
- the cover member 115 has a cutout portion 1151 formed at a position corresponding to the protruding side portion 1111 of the base member 111 at the lower end portion of the cylindrical peripheral wall portion.
- the cover member 115 is externally fitted to the skirt member 114, and the notch 1151 is engaged with the protruding side 1111 of the base member 111, thereby causing the base member 111. Fixed to. On one side surface of the cover member 115, an outlet 115b for drawing the printed wiring board 143 for the imaging module to the outside is formed.
- the movable body 12 swings and rotates about the X axis and the Y axis with respect to the fixed body 11.
- the movable body 12 includes a yoke (holding member) 120, a magnet portion 122, and a pair of module guides 126.
- the yoke 120 When mounting the imaging module 14 on the OIS actuator A, the yoke 120 directly holds the imaging module 14.
- the imaging module 14 is bonded to the upper surface of the yoke 120 by, for example, a double-sided tape or a resin adhesive. With this configuration, the imaging module 14 can be positioned and fixed to the yoke 120 with high accuracy by using a jig without using a positioning member such as the module guide described in Patent Document 1.
- the yoke 120 is a rectangular frame-shaped member formed of a magnetic material, and is provided with a rectangular frame-shaped yoke main body (holding unit main body) 121 and a frame-shaped inner side of the yoke main body 121 and mounted thereon. And a flat frame-shaped holding frame portion 1211 for fixing the module 14.
- the yoke body 121 holds the magnet part 122.
- the yoke body 121 has a flat frame-shaped upper plate portion 121a in which four flat plates to which the magnet portion 122 is fixed are connected to a lower surface in a rectangular shape.
- the yoke body 121 is an outer hanging portion formed so as to project downward and hang down along the outer peripheral edge portion of the upper plate portion 121a (specifically, the outer edge portion of each flat plate constituting the upper plate portion 121a).
- 121b Further, the yoke body 121 is formed so as to protrude downward and hang down along the inner peripheral edge of the upper plate 121a (specifically, the inner edge of each flat plate constituting the upper plate 121a). It has a hanging part 121c.
- the cross-sectional shape of one side portion of the frame-shaped yoke body 121 is a concave shape that opens to the base member 111 side, that is, a “U” shape that opens downward.
- the upper plate portion 121 a that is the bottom surface in the concave shape is located at a position farther from the base member 111 than the holding frame portion 1211. Further, the outer peripheral edge portion of the holding frame portion 1211 is joined to the lower end portion of the inner hanging portion 121 c of the yoke body 121.
- the bottom surface of the imaging module 14 is fixed to the upper surface of the holding frame portion 1211 (part of the upper surface of the yoke 120), more specifically, to the module mounting portion 1211a of the holding frame portion 1211 by a double-sided tape or a resin adhesive.
- the yoke body 121 has a notch 1213 in one outer droop 121b along the Y direction and a notch 1214 in one outer droop 121b along the X direction.
- Hall elements 40a and 40b (see FIGS. 6 to 8) of the misalignment detector 40 positioned by the piece 111b standing from the base member 111 are arranged.
- FIG. 9 is a partial perspective view for explaining the positional relationship between the misalignment detection unit and the yoke.
- the camera module 100 shown in FIG. 9 is shown with the imaging module 14 and the cover member 115 removed.
- the notches 1213 and 1214 open downward in the central portions of one outer hanging portion 121b along the Y direction and one outer hanging portion 121b along the X direction. It is cut out and formed.
- the displacement detectors 40 (Hall elements 40a and 40b) fixed to the pieces 111b are arranged at positions positioned respectively.
- 6 and 7 show a state in which the position shift detection unit 40 (Hall elements 40a and 40b) is located in the notches 1213 and 1214 together with the pieces 111b and 111b.
- FIG. 10 is a schematic diagram showing the flow of magnetic flux detected by the misalignment detector 40.
- FIG. 10 is an enlarged view schematically showing a peripheral portion to which the hall element 40a is attached in FIG.
- a notch 1213 is formed in the yoke main body 121, and a hall element 40 a that is the misregistration detection unit 40 is disposed in the notch 1213, so that the magnet unit 122 is provided in the misregistration detection unit 40.
- the leakage magnetic flux from the permanent magnet 122A is efficiently traversed. Since the positional relationship of the Hall element 40b with respect to the notch 1214 detects the flow of magnetic flux similarly to the Hall element 40a, the description thereof is omitted.
- the positional deviation detection unit 40 can detect the inclination of the movable body 12 with respect to the X axis or the Y axis, that is, a so-called positional deviation from the reference position, based on a change in leakage magnetic flux from the permanent magnets 122A and 122B.
- a step is formed between the holding frame portion 1211 and the upper plate portion 121a to bring the holding frame portion 1211 closer to the base member 111 than the upper plate portion 121a, and a concave portion is formed at the center of the entire yoke 120.
- the imaging module 14 is fixed in the recess.
- the yoke 120 prevents magnetic interference of the magnetic circuit having the magnet part 122 and the coil part 112 with respect to the imaging module 14.
- the holding frame portion 1211 includes a module attachment portion 1211a and a gimbal attachment portion 1211b inside the module attachment portion 1211a.
- the module mounting portion 1211a is provided continuously to the inner hanging portion 121c of the yoke body 121, and is here formed in a rectangular frame plate shape orthogonal to the Z-axis direction including the optical axis. Inside the module mounting portion 1211a, there is a step with respect to the module mounting portion 1211a, and a rectangular frame plate-like gimbal mounting portion 1211b is provided.
- the gimbal mounting portion 1211b is one step lower than the holding frame portion 1211a on the base member 111 side, and protrudes radially inward from the inner periphery of the holding frame portion 1211a toward the center of the holding frame portion 1211a. Is formed.
- the elastic support portion 13 is attached to the lower surface of the gimbal attachment portion 1211b (see FIGS. 5 to 7).
- the magnet unit 122 is composed of four rectangular parallelepiped permanent magnets 122A to 122D corresponding to the tilt coils 112A to 112D.
- An electromagnet may be used instead of the permanent magnet.
- the size of the permanent magnets 122A to 122D is set to be within the tilt coils 112A to 112D.
- the permanent magnets 122A to 122D are arranged on the lower surface of each flat plate of the yoke 120 so that the magnetization direction is the Z direction, and fixed by, for example, adhesion (see FIGS. 5 to 7 and 11).
- the permanent magnets 122A to 122D are located between the inner hanging part 121c and the outer hanging part 121b of the yoke 120. Here, the permanent magnets 122A to 122D are opposed to each other at a position where a gap is provided for each of the inner hanging part 121c and the outer hanging part 121b.
- the coil part 112 is located between the magnet part 122 and the yoke 120 (specifically, the yoke body 121) (see FIGS. 5 and 6).
- the magnet part 122 is located on the winding axis of the winding of the coil part 112.
- the magnet portion 122 and the coil portion 112 are formed by opening the central portion of the coil portion 112 along the bonding direction of the imaging module 14 in the yoke 120 and the base member 111, and the magnet portion 122 protrudes from the central portion of the coil portion 112.
- the magnet part 122 and the coil part 112 that is, the magnetic circuit part having these parts are located on the outer peripheral side (specifically, in the XY direction) of the lower end part of the imaging module 14 and the holding frame part 1211. That is, the magnetic circuit unit including the magnet unit 122 and the coil unit 112 is not disposed directly below the lower end portion of the imaging module 14 and the holding frame unit 1211. That is, the magnet portion 122 (permanent magnets 122A to 122D) and the coil portion 112 (tilt coils 112A to 112D) are arranged on the outer peripheral side in the XY direction between the lower end portion of the imaging module 14 and the holding frame portion 1211 of the yoke 120. 111.
- the elastic support portion 13 is composed of a rectangular member (so-called gimbal spring) having a biaxial gimbal mechanism.
- FIG. 11 is a diagram for explaining the elastic support portion 13 and is a bottom view of the yoke 120 to which the elastic support portion 13 is attached.
- the elastic support portion 13 includes a central portion 13 a and an outer gimbal 13 c that is connected to the central portion 13 a with an inner gimbal 13 b interposed therebetween and that rotates and swings around the X axis and the Y axis.
- the gimbal spring that is the elastic support portion 13 is indicated by hatching in order to differentiate it from other constituent members.
- the gimbal spring has a rectangular surface shape and is thin in the Z direction.
- the central portion 13a has a rectangular shape
- the inner gimbal 13b has an intricate curved shape.
- the inner gimbals 13b are respectively joined to the central portion 13a at both ends of the curved shape, and are joined to the outer gimbals 13c and the outer gimbals 13c extending from the central portion 13a by two on one side along the Y axis. 13c and a gimbal shaft 13x extending two on each side along the X axis.
- the outer gimbal 13c has two elongated plates, and is joined to the back surface of the gimbal mounting portion 1211b.
- the outer gimbal 13c is opposed to each other at the central portion 13a, and outside the pair of side portions (gimbal shaft 13x) extending along the X direction, in parallel with the respective side portions (gimbal shaft 13y). Has been placed.
- the central part of the outer gimbal 13c is joined to the gimbal shaft 13x which is one end of the inner gimbal 13b.
- the other end of the inner gimbal 13b (the end of the gimbal shaft 13y) is joined to the central portion 13a.
- the central portion 13a of the elastic support portion 13 is in contact with the protruding portion 111a of the base member 111 and is bonded or welded.
- the part of the outer peripheral side from the center part 13a will be in the state located apart from the upper surface of the base member 111 in the perpendicular direction at predetermined intervals.
- the predetermined interval is a movable range when the elastic support portion 13 is rotated around the central axis in the X direction and the Y direction.
- the outer gimbal 13 c of the elastic support portion 13 is bonded or welded to a pair of parallel side portions on the lower surface of the holding frame portion 1211 of the yoke 120.
- the movable body 12 is arranged in a state of floating in the approximate center of the base member 111, and can swing and rotate about the X axis and the Y axis.
- the movable body 12 is in a state of being supported so as to be tiltable in the X-axis and Y-axis directions around the central portion. Since the elastic support portion 13 is fixed to the base member 111 by adhesion, a locking member such as the stopper described in Patent Document 1 is not necessary.
- the elastic support portion 13 is attached to the lower surface of the gimbal attachment portion 1211b at a position lower than the module attachment portion 1211a in the holding frame portion 1211 where the imaging module 14 is bonded to the upper surface (module attachment portion 1211a) with the outer gimbal 13c. ing.
- the length of the elastic support portion 13 and the imaging module 14 that are separated in the Z direction is substantially equal to the thickness of the holding frame portion 1211.
- the length of the camera module 100 itself in the Z direction can be shortened, that is, the height of the camera module 100 can be reduced.
- the gimbal spring that is the elastic support portion 13 of this embodiment is attached to the gimbal attachment portion 1211 b that is one step lower than the module attachment portion 1211 a in the holding frame portion 1211 at a location along the X-axis direction. Yes.
- the gimbal spring which is the elastic support portion 13 is not attached to the yoke 120 having the holding frame portion 1211 at the portion along the Y direction, as shown in FIGS.
- FIG. 12 is an enlarged view showing the positional relationship between the gimbal mounting portion 1211b and the gimbal spring as the elastic support portion 13 in FIG.
- the bottom surface 14a of the imaging module 14 has a gimbal shaft 13y along the Y axis of the elastic support portion 13 (FIG. 11).
- FIG. 12 approach one (specifically, the end portion 13 y 1 of the gimbal shaft 13 y). That is, the swinging rotation range of the movable body 12 (indicated by a thick arrow in FIG. 12) is limited by the separation distance L between the imaging module 14 and the elastic support portion 13.
- the gimbal attachment portion 1211b of the yoke 120 is formed one step lower than the module attachment portion 1211a, and the separation distance between the imaging module 14 and the elastic support portion 13 is the amount of the step formed lower.
- the distance is increased by the distance L1 shown in FIG.
- the movable range of the movable body 12 becomes large compared with the case where the imaging module 14 is fixed to the gimbal attachment part 1211b.
- the pair of module guides 126 are provided upright from the yoke 120.
- the module guides 126 are disposed to face both side surfaces of the imaging module 14 attached to the holding frame portion 1211. Accordingly, the module guide 126 serves as a guide when the imaging module 14 is placed and fixed on the holding frame portion 1211 of the yoke 120.
- the pair of module guides 126 are also fixed to both side surfaces of the imaging module 14 facing each other via an adhesive or the like. Therefore, the imaging module 14 is accurately attached to the movable body 12, and the reliability can be improved.
- the module guide 126 protrudes upward from the receiving port 114 a of the skirt member 114 together with the imaging module 14.
- the imaging module 14 includes a lens unit 141, an imaging element (not shown), an AF actuator 142, and an imaging module printed wiring board 143.
- the imaging element is configured by, for example, a charge coupled device (CCD) image sensor, a complementary metal oxide semiconductor (CMOS) image sensor, or the like.
- the imaging element (not shown) is mounted on the imaging module printed wiring board 143.
- the image sensor (not shown) captures the subject image formed by the lens unit 141.
- the AF actuator 142 has, for example, an AF voice coil motor, and moves the lens unit 141 in the optical axis direction by using the driving force of the AF voice coil motor.
- a known technique can be applied to the AF actuator 142.
- the printed wiring board 143 for the imaging module is configured by a flexible printed circuit board having flexibility.
- the imaging module printed wiring board 143 has a power line (not shown) for supplying power to a coil portion (not shown) of the AF actuator 142 and a signal line (not shown) for a video signal output from the imaging device. .
- the printed wiring board 143 for the imaging module gets over the skirt member 114 from the inside of the skirt member 114 as shown in FIG. It is pulled out through 115b.
- the printed wiring board 143 for the imaging module extends upward from the lower surface of the imaging module 14 and is bent so as to extend toward the outside of the skirt portion above the skirt member 114 at a predetermined interval.
- the cover member 115 extends outward from the outlet 115b.
- the drawn-out printed circuit board for imaging module 143 is connected to the rigid portion 70 a of the fixed body 11.
- the printed wiring board 143 for the imaging module is configured to be provided on the movable body 12, but does not hinder the movement of the movable body 12 because it has flexibility.
- the imaging module printed wiring board 143 may be branched in the middle, and separate connectors may be attached to the power supply line and the video signal signal line.
- the magnetic circuit portion having the magnet portion 122 (permanent magnets 122A to 122D) and the coil portion 112 (tilt coils 112A to 112D) is provided on the lower end portion of the imaging module 14 and the holding frame portion 1211 of the yoke 120. On the other hand, it is arranged on the base member 111 on the outer peripheral side in the XY direction.
- the magnetic circuit unit is arranged at a position where a part of the magnetic circuit unit overlaps the lower end of the imaging module 14 and the holding frame unit 1211 of the yoke 120 in the XY direction. That is, one of the magnet part 122 and the coil part 112 (here, the magnet part 122) is arranged at a position where it overlaps in the X direction and the Y direction.
- the permanent magnets 122A to 122D constituting the magnet portion 122 are positioned above the tilt coils 112A to 112D constituting the coil portion 112 and partially inserted inside the tilt coils 112A to 112D. Arrange in a state.
- the permanent magnets 122A to 122D are arranged along the winding axis direction (Z direction) of the respective tilt coils 112A to 112D above the corresponding tilt coils 112A to 112D.
- the imaging module 14 In the voice coil motor for OIS having the magnet part 122 and the coil part 112 arranged in this way, in the initial state where no current flows through the coil part 112, the imaging module 14 (movable body 12) has an optical axis in the Z direction. Held in a neutral position.
- the offset position detected by the misalignment detection unit 40 is used.
- the position of the movable body 12 is corrected via the driver IC 60, and the optical axis is positioned at a neutral position that coincides with the Z direction.
- the movable body 12 including the imaging module 14 swings and rotates about the Y axis with the central portion 13a of the elastic support portion 13 as a fulcrum.
- the movable body 12 including the imaging module 14 is centered around the X-axis with the central portion 13a of the elastic support portion 13 as a fulcrum. Oscillate and rotate. The movable body 12 swings and rotates until the driving force of the OIS voice coil motor (the force acting on the magnet portion 122) and the restoring force of the elastic support portion 13 are balanced.
- the energization current of the coil unit 112 is controlled based on the detection result of the misalignment detection unit 40 so that the shake of the imaging module 14 is offset by the swinging rotation of the movable body 12. Thereby, the deviation of the optical axis due to the shake is corrected, and the optical axis direction is kept constant.
- the OIS actuator A including the fixed body 11, the movable body 12, and the elastic support portion 13 is mounted on the rigid FPC 70 via the coil substrate 80.
- the operation of the actuator A can be confirmed via the connection terminal portions 82 and 83 of the coil substrate 80. It is possible to perform evaluation (operation check) with the actuator A alone by connecting to a simple inspection / evaluation apparatus. Therefore, when there is a malfunction, this is not used, and only the good product that has passed the evaluation can be mounted on the rigid FPC 70 to manufacture the camera module 100.
- the rigid FPC 70 which is an expensive component such as a gyro sensor and the driver IC 60 as the shake detection unit 15 from being mounted alone, and cannot be used together with a defective OIS actuator.
- the actuator A and the rigid FPC 70 are connected to each other, so that a highly reliable camera module 100 can be produced. It can be manufactured while reducing.
- the fixed body 11 is provided upright from the coil substrate 80 side, and the first direction X and the second direction Y with respect to the first coil 112A and the second coil 112B, respectively.
- the pieces 111b and 111b have a recess (notch 111c) that engages and contacts the first Hall element 40a and the second Hall element 40b and positions at least in the optical axis direction.
- the misalignment detection unit 40 is erected from the base member 111 of the fixed body 11 outside the coil unit 112, and is disposed on the pieces 111 b and 111 b facing the coil unit 112.
- the misalignment detection unit 40 abuts against the notch 111c in the notch 111c of the piece 111b, thereby causing a magnetic flux formed between the coil 112 and the magnet 122 in the coil 112 to flow. It is positioned at a position where it can be detected efficiently.
- Hall elements 40a and 40b which are misalignment detection units 40, are abutted and fixed in concave notches 111c that are notched upward and have a base with a predetermined height from the base member 111.
- the misalignment detection unit 40 (Hall elements 40a and 40b) is arranged on the side of the camera module 100, that is, outside the coil unit 112
- the misalignment detection unit 40 needs to be attached to the wall body 114b of the skirt member 114. There is no.
- the displacement detector 40 (Hall elements 40a, 40b)
- the skirt member 114 it is conceivable to make a hole in the wall body 114b of the skirt member 114 and insert the displacement detector 40 from the outside.
- the wiring for the misregistration detection unit 40 for example, the FPC is inevitably exposed on the outer surface of the skirt member 114. For this reason, when assembling the camera modules 100 and 100A, especially when connecting the actuator A to the rigid FPC 70, there is a possibility that the FPC may be damaged by being touched and disconnected.
- the wiring for the misregistration detection unit 40 for example, the FPC is wired in the skirt member 114, it is possible to prevent disconnection without contact with foreign matter.
- the FPC it is not necessary to attach the FPC to the wall body 114b of the skirt member 114, specifically, the side surface of the skirt member 114, and the outer shape of the camera module does not increase by the FPC thickness.
- the elastic support portion (support portion) 13 supports the movable body 12 so as to be tiltable with respect to the fixed body 11 by elastic deformation.
- the frame-shaped holding member (yoke) 120 is disposed inside the frame-shaped module mounting portion 1211a on which the imaging module 14 is mounted, and the module mounting portion 1211a, and has a step surface lower than the module mounting portion 1211a.
- a support part attachment part (gimbal attachment part) 1211b to which the is attached.
- the gimbal mounting portion 1211b of the yoke 120 is formed one step lower than the holding frame portion 1211a, and the separation distance between the imaging module 14 and the elastic support portion 13 is increased by the level difference formed one step lower. (Refer to distance L in FIG. 12). That is, the bottom portion of the imaging module 14 is disposed at a position spaced in advance from the elastic support portion 13 that is a gimbal. Thereby, compared with the case where the imaging module 14 is fixed to the gimbal mounting portion 1211b, the imaging module 14 is elastically supported even when the movable body 12 is oscillated so as to be twisted about the X axis.
- the movable range of the movable body 12 can be increased as compared with a camera module having a configuration in which the imaging module 14 is fixed to the gimbal mounting portion 1211b.
- the movable body 12 attached to the outer edge side can be swung around the center portion of the square shape in plan view fixed to the fixed body 11. I support it.
- the size of the gimbal which is the elastic support portion 13 the size of the gimbal in the X direction and the Y direction
- the distance that the outer edge portion located on the swinging direction side approaches the imaging module 14 is shortened and the movable range is narrowed.
- the collision between the gimbal spring and the imaging module 14 also causes spring bending.
- the imaging module 14 and the gimbal itself are previously separated in the swing direction, that is, in the height direction. Can be placed. Thereby, the gimbal can be enlarged, the camera module itself can be enlarged, and the degree of freedom can be given to those designs.
- the number of terminals of the coil substrate 80 is twelve. However, the number is not limited to this, and any number corresponding to the input / output terminals of components used in the OIS actuator A can be used. Such a number may be used.
- the Hall elements 40a and 40b serving as the positional deviation detection unit 40 are provided on the OIS actuator A side, but may be provided on the rigid FPC 70 side.
- Modification 13 is an external perspective view showing a modification of the camera module according to the embodiment of the present invention
- FIG. 14 is an exploded perspective view showing a modification of the camera module
- FIG. It is a top view which shows an example of the wiring pattern of 80 A of coil boards in a module.
- the camera module 100A shown in FIGS. 13 and 14 is different from the camera module 100 in that the misalignment detection unit 40 is provided not on the OIS actuator A side but on the rigid FPC 70 side.
- the number of terminals (connection terminal portions 82A, 83A) of the coil substrate 80A is also changed corresponding to the number of terminals of the actuator A for OIS, and here, the coil substrate 80A having four-terminal wiring is obtained.
- the camera module 100 ⁇ / b> A has the same operational effects as the camera module 100. Thereby, about the camera module 100A of a modification, the same code
- the Hall elements 40a and 40b are provided on the rigid FPC 70A side to which the OIS actuator 1A is attached.
- the rigid FPC 70A includes a rigid portion 70Aa and a flexible portion 70Ab.
- the driver IC 60, the shake detection part 15 mounted via the relay substrate 30, the AF driving connector 71, and the connection terminal parts 92A and 93A are included in the rigid part. It is mounted on a circuit wired to 70Aa.
- the connection terminal portions 92A and 93A are arranged corresponding to the connection terminal portions 82A and 83A, and the corresponding terminals are connected to each other.
- the Hall elements 40a and 40b are arranged so as to be exposed in the region of the upper base member 111A.
- cutout portions 119a and 119b penetrating each other are formed at positions overlapping the positions of the hall elements 40a and 40b exposed on the rigid FPC 70A. .
- the Hall elements 40a and 40b are exposed on the coil substrate 80A placed on the base member 111 through these notches 119a and 119b, and two pieces of the four permanent magnets 122A to 122D in the magnet portion 122 are exposed. And spaced apart from each other.
- the Hall elements 40a and 40b mounted on the rigid FPC 70A are arranged so as to cross the directions from the N pole to the S pole in the permanent magnets 122B and 122C, respectively.
- the Hall elements 40a and 40b are arranged on the center (optical axis) side of the tilt coils 112C and 112D along the Y-axis and X-axis directions of the coil portion 112. Since the permanent magnets 122B and 122C are respectively disposed in the tilt coils 112B and 112C, the hall elements 40a and 40b are configured to face the permanent magnets 122C and 122D, respectively. As described above, in the camera module 100A, the Hall elements 40a and 40b are arranged below the imaging module 14, that is, at a position close to the imaging module 14, so that a more accurate displacement can be detected.
- the functions of the hall elements 40a and 40b are the same as those of the camera module 100. That is, one Hall element 40a is arranged on the front side in the first direction (front-rear direction) X with respect to the optical axis O, and faces the outside in the case where the left side in the X direction in FIG. By detecting the magnetic force of the permanent magnet 122C, the first position accompanying the movement (swing) in the first direction (front-rear direction) X is detected.
- the other Hall element 40b is arranged on the left side in the second direction (left-right direction) Y with respect to the optical axis O, and detects the magnetic force of the permanent magnet 122B facing it in the second direction (left-right direction). (Direction) The second position accompanying the movement (swing) of Y is detected.
- the coil substrate 80A is an FPC, and unlike the coil substrate 80, the Hall elements 40a and 40b are not mounted.
- the power supply pads 81 are wired in the air at both ends of each of the tilt coils 112A to 112D.
- the wirings printed on the coil substrate 80A are routed so as to overlap with the aerial wirings at the X portion, thereby realizing a single-sided FPC structure.
- the current flowing from one terminal of the connection terminal portions 82A and 83A passes through the tilt coils facing each other and flows from the other terminal of the connection terminal portions 82A and 83A.
- the direction of the magnets 122A to 122D, the direction of the tilt coils 112A to 112D, etc. are not changed compared to a 12-terminal module, and the cost is reduced without using a double-sided FPC. Down and space saving are achieved.
- the OIS actuator 1A when the OIS actuator 1A is evaluated as a single unit using an inspection evaluation apparatus, the OIS actuator 1A is not provided with the hall elements 40a and 40b. For this reason, when the output inspection of the Hall elements 40a and 40b is performed, the Hall element is provided on the inspection / evaluation apparatus side so that the output of the Hall element is obtained and the operation using the output of the Hall element is also inspected and evaluated. can do.
- the main body cover member 115 covers the skirt member 114 of the fixed body 11 that covers the movable body 12 together with the movable body 12. Not limited to.
- the laminated cover member 116 covers the movable body 12 and the imaging module 14 attached to the movable body 12 together with the skirt member 114 so as to be rotatable and swingable.
- the laminated cover member 116 has a function similar to that of the main body cover member 115, such as restricting upward movement of the imaging module 14A configured similarly to the imaging module 14 to movement within a predetermined range.
- the AF driving connector 71 (see FIG. 5) provided on the rigid FPC 70 of the fixed body 11 is omitted.
- the same components as those of the camera module 100 are denoted by the same reference numerals, and description thereof is omitted.
- the multilayer cover member 116 has an opening (not shown) through which the imaging module printed wiring board 143 is led out.
- the imaging module printed wiring board 143 led out from the opening is covered by the wiring board cover member 117. ing.
- the wiring board cover member 117 covers the bent portion of the imaging module printed wiring board 143 while covering the opening.
- the overall size of the camera module 100A can be made smaller than that of the camera module 100 of the first embodiment.
- the laminated cover member 116 is provided on the restricting portion 114d of the skirt member 114 and only covers the imaging module 14A protruding from the receiving port 114a. Therefore, the main body cover that covers the movable body 12 and the skirt member 114 is provided. It can be made smaller than the configuration using the member 115.
- a so-called moving magnet type actuator in which the fixed body 11 has the coil portion 112 and the movable body 12 has the magnet portion 122 has been described.
- the fixed body has the magnet portion.
- the present invention can also be applied to a so-called moving coil type actuator in which the movable body has a coil portion.
- the yoke is also disposed on the fixed body.
- two sets of the tilt coil 112A, the permanent magnet 122A, the tilt coil 112C, and the permanent magnet 122C are arranged as a voice coil motor that swings and rotates the movable body 12 about the X axis, and the Y axis is
- Two sets of a tilt coil 112B, a permanent magnet 122B, a tilt coil 112D, and a permanent magnet 122D are arranged as voice coil motors that swing and rotate the movable body 12 at the center. If at least one set is arranged, respectively. Good.
- the positional deviation detection unit 40 is disposed on the fixed body 11 so as to face the bottom surface of the movable body 12. As a result, the positional deviation detection unit 40 makes the occupation space as small as possible and enables shake correction.
- each component constituting the OIS actuator A is preferably made of a material having high heat resistance (particularly, the magnet portion 122). Thereby, it can respond to the soldering by a reflow system.
- a conductive shield case may be provided outside the camera module 100 as a noise countermeasure.
- a smartphone as a mobile terminal with a camera has been described as an example of a camera mounting device including the camera module 100, but the present invention can be applied as a camera mounting device as an information device or a transport device.
- the present invention can be applied to a camera-equipped mobile phone, a notebook computer, a tablet terminal, a portable game machine, a web camera, and the like as a camera-mounted device.
- the present invention can also be applied to a vehicle or a vehicle-mounted device with a camera (for example, a back monitor device or a drive recorder device) as a camera-mounted device.
- FIG. 17 is a diagram showing an automobile C equipped with a vehicle-mounted camera module VC (Vehicle Camera).
- FIG. 17A is a front view of the automobile C
- FIG. 17B is a rear perspective view of the automobile C.
- the automobile C is equipped with the camera module 100 described in the embodiment, for example, as an in-vehicle camera module VC.
- This in-vehicle camera module VC is used for a back monitor, a drive recorder, a collision avoidance control, an automatic driving control, and the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
Provided is a lens drive device for which, before the device itself is assembled, the operation by an optical image stabilization (OIS) voice coil motor in a shake correcting actuator is confirmed, so as to reduce the production costs in case of an operation defect and to achieve good production. The device comprises: a mobile body configured so that a magnet is disposed in a frame-shaped retaining member in which an imaging module is installed; a fixed body which has a base member and which is configured so that a coil is disposed in the base member; a support part that tiltably supports the mobile body relative to the fixed body; and a main substrate to which the fixed body is fixed. The fixed body includes a coil substrate having a terminal to which the coil is connected, and the coil is connected to a circuit of the main substrate via the terminal of the coil substrate.
Description
本発明は、振れ補正機能を有するレンズ駆動装置、カメラモジュール及びカメラ搭載装置に関する。
The present invention relates to a lens driving device having a shake correction function, a camera module, and a camera mounting device.
一般に、スマートフォン等の携帯端末には、小型のカメラモジュールが搭載されている。被写体を撮影するときのピント合わせを自動的に行うオートフォーカス機能及び撮影時に生じる振れ(振動)を補正して画像の乱れを軽減する振れ補正機能(OIS:Optical Image Stabilization)を備えているものも多い。
Generally, a small camera module is mounted on a mobile terminal such as a smartphone. Some cameras have an autofocus function that automatically adjusts the focus when shooting a subject and a shake correction function (OIS: Optical Image Stabilization) that corrects shake (vibration) that occurs during shooting to reduce image distortion. Many.
振れ補正の方式としては、撮像モジュールを一体的に傾けるモジュールチルト方式が知られている(例えば特許文献1)。撮像モジュールとは、レンズ部と撮像素子(例えばCCD(Charge Coupled Device))を有するモジュールであり、オートフォーカス用のアクチュエーターを有するものも含まれる。
As a shake correction method, a module tilt method in which an imaging module is integrally tilted is known (for example, Patent Document 1). The imaging module is a module having a lens unit and an imaging element (for example, a CCD (Charge-Coupled Device)), and includes an auto-focusing actuator.
以下において、オートフォーカス用のアクチュエーターを「AF用アクチュエーター」、振れ補正用のアクチュエーターを「OIS用アクチュエーター」と称する。
In the following, an autofocus actuator is referred to as an “AF actuator” and a shake correction actuator is referred to as an “OIS actuator”.
図1は、従来のモジュールチルト方式のカメラモジュールの一例を示す外観図である。図2は、従来のモジュールチルト方式のカメラモジュールの一例を示す分解斜視図である。
FIG. 1 is an external view showing an example of a conventional module tilt type camera module. FIG. 2 is an exploded perspective view showing an example of a conventional module tilt type camera module.
図1、2に示すように、従来のモジュールチルト方式のカメラモジュール2は、固定体21、可動体22、弾性支持部23、撮像モジュール24、及び振れ検出部25を備える。固定体21、可動体22、及び弾性支持部23によって、OIS用アクチュエーターが構成される。
As shown in FIGS. 1 and 2, a conventional module tilt type camera module 2 includes a fixed body 21, a movable body 22, an elastic support section 23, an imaging module 24, and a shake detection section 25. The fixed body 21, the movable body 22, and the elastic support portion 23 constitute an OIS actuator.
固定体21は、ベース部材211、コイル部212、及びOIS用プリント配線基板213を有する。コイル部212は、ベース部材211に配置される。OIS用プリント配線基板213は、コイル部212に給電するとともに、振れ検出部25の検出信号を制御部に出力する。
The fixed body 21 includes a base member 211, a coil part 212, and a printed wiring board 213 for OIS. The coil unit 212 is disposed on the base member 211. The printed wiring board for OIS 213 supplies power to the coil unit 212 and outputs a detection signal from the shake detection unit 25 to the control unit.
可動体22は、ヨーク221、マグネット部222、トッププレート223、及びモジュールガイド224を有する。ヨーク221及びマグネット部222は、トッププレート223に形成されたそれぞれの収容部に配置される。モジュールガイド224は、トッププレート223に固定される。一組のモジュールガイド224に挟持された空間に撮像モジュール24が配置され、固定される。
The movable body 22 includes a yoke 221, a magnet part 222, a top plate 223, and a module guide 224. The yoke 221 and the magnet part 222 are disposed in the respective accommodating parts formed on the top plate 223. The module guide 224 is fixed to the top plate 223. The imaging module 24 is arranged and fixed in a space sandwiched between a set of module guides 224.
弾性支持部23は2軸ジンバル機構を有し、外側ジンバルに可動体22(トッププレート223)が固定される。弾性支持部23は、ベース部材211の略中央に浮遊した状態で配置され、ストッパー231によって固定される。弾性支持部23は、光軸(Z軸)に直交するX軸及びY軸を中心として可動体22を揺動回転可能に支持する、すなわち傾斜可能に支持する。
The elastic support portion 23 has a biaxial gimbal mechanism, and the movable body 22 (top plate 223) is fixed to the outer gimbal. The elastic support portion 23 is arranged in a state of floating in the approximate center of the base member 211 and is fixed by a stopper 231. The elastic support portion 23 supports the movable body 22 so as to be able to swing and rotate about the X axis and the Y axis orthogonal to the optical axis (Z axis), that is, to support the tiltable manner.
振れ検出部25は、例えば撮像モジュール24の角速度を検出するジャイロセンサーで構成される。振れ検出部25は、可動体22のモジュールガイド224の側面に固定される。振れ検出部25の検出信号は、固定体21であるOIS用プリント配線基板213を介して制御部に出力される。
The shake detection unit 25 is composed of, for example, a gyro sensor that detects the angular velocity of the imaging module 24. The shake detection unit 25 is fixed to the side surface of the module guide 224 of the movable body 22. The detection signal of the shake detection unit 25 is output to the control unit via the OIS printed wiring board 213 which is the fixed body 21.
コイル部212及びマグネット部222によって、OIS用ボイスコイルモーター(VCM)が構成される。すなわち、コイル部212に電流が流れると、マグネット部222の磁界とコイル部212に流れる電流との相互作用により、コイル部212にローレンツ力が生じる(フレミング左手の法則)。コイル部212は固定されているので、マグネット部222に反力が働く。この反力がOIS用ボイスコイルモーターの駆動力となる。可動体22は、OIS用ボイスコイルモーターの駆動力と弾性支持部23の復元力(復帰力)とが釣り合う状態となるまで揺動回転する。これにより、振れによる光軸のズレが補正され、光軸方向が一定に保持される。
The coil unit 212 and the magnet unit 222 constitute an OIS voice coil motor (VCM). That is, when a current flows through the coil unit 212, Lorentz force is generated in the coil unit 212 due to the interaction between the magnetic field of the magnet unit 222 and the current flowing through the coil unit 212 (Fleming's left-hand rule). Since the coil portion 212 is fixed, a reaction force acts on the magnet portion 222. This reaction force becomes the driving force of the voice coil motor for OIS. The movable body 22 swings and rotates until the driving force of the voice coil motor for OIS and the restoring force (restoring force) of the elastic support portion 23 are balanced. Thereby, the deviation of the optical axis due to the shake is corrected, and the optical axis direction is kept constant.
ところで、上記構成においては、OIS用プリント配線基板213を、リジッドフレキシブル基板(Rigid flexible printed wiring boardまたはRigid-flexible printed circuits、「リジッドFPC」)とすることが考えられる。カメラモジュール2に、リジッドFPCを用いることにより、リジッド部分に、コイル部212に給電してOIS用ボイスコイルモーターを駆動するOIS用ドライバー等を実装できる。
By the way, in the above configuration, the OIS printed wiring board 213 may be a rigid flexible board (Rigid-flexible-printed-wiring-board or Rigid-flexible-printed-circuits, "rigid FPC"). By using a rigid FPC for the camera module 2, an OIS driver or the like that drives the OIS voice coil motor by supplying power to the coil portion 212 can be mounted on the rigid portion.
このように、特許文献1に示すように、従来のモジュールチルト方式のカメラモジュールでは、コイル部212に給電するOIS用プリント配線基板213は、固定体21の一部として、コイル部212が配置されたベース部材211に取り付けられている。
Thus, as shown in Patent Document 1, in the conventional module tilt type camera module, the OIS printed wiring board 213 that supplies power to the coil unit 212 includes the coil unit 212 as a part of the fixed body 21. The base member 211 is attached.
したがって、コイル部212に給電して可動体22を可動して、実際の撮像モジュールのチルト動作角度等のOIS用ボイスコイルモーターによる動作を確認するためにはカメラモジュール2を組み上げてからでないと行うことができない。
Therefore, in order to confirm the operation by the voice coil motor for OIS such as the tilt operation angle of the actual imaging module by moving the movable body 22 by supplying power to the coil section 212, the camera module 2 must be assembled. I can't.
このため、コイル部212に給電してもOIS用ボイスコイルモーターの動作不良により可動体22に所望のチルト角度が付けられない場合、組み上げたカメラモジュール自体が使用できなくなる。更に、組み立てにおける生産性を上げるため、OIS用プリント基板213に、ベース部材211を取り付ける前にジャイロセンサー等の振れ検出部25を実装している場合がある。この場合、OIS用ボイスコイルモーターの動作不良があると、機能的に問題の無い高価な部品であるジャイロセンサー等の振れ検出部25も一緒に使用できなくなり、カメラモジュール全体の生産コストが上がることになるため、極力、生産コストを削減したいという要望があった。
For this reason, if the desired tilt angle cannot be given to the movable body 22 due to the malfunction of the voice coil motor for OIS even if power is supplied to the coil section 212, the assembled camera module itself cannot be used. Further, in order to increase productivity in assembly, a shake detection unit 25 such as a gyro sensor may be mounted on the OIS printed circuit board 213 before the base member 211 is attached. In this case, if there is a malfunction of the voice coil motor for OIS, the shake detection unit 25 such as a gyro sensor which is an expensive part having no functional problem cannot be used together, and the production cost of the entire camera module increases. Therefore, there was a request to reduce production costs as much as possible.
特に、OIS用プリント配線基板213をリジッドFPCにした構成では、リジッドFPC自体も使用できなくなり、更には、リジッドFPCに実装したOIS用ICも使用できなくなり、一層、生産コストがかかることになる。
In particular, in the configuration in which the printed wiring board for OIS 213 is a rigid FPC, the rigid FPC itself cannot be used, and furthermore, the OIS IC mounted on the rigid FPC cannot be used, which further increases the production cost.
本発明の目的は、装置自体を組み上げる前に、振れ補正用のアクチュエーターにおけるOIS用ボイスコイルモーターによる動作を確認して、動作不良があった場合の生産コストを削減して、良好に生産することができるレンズ駆動装置、カメラモジュール及びカメラ搭載装置を提供することである。
The object of the present invention is to confirm the operation of the vibration correction actuator by the voice coil motor for OIS before assembling the device itself, and to reduce the production cost when there is a malfunction, and to produce it satisfactorily. A lens driving device, a camera module, and a camera mounting device.
本発明のレンズ駆動装置の一つの態様は、コイル部及びマグネット部を有するボイスコイルモーターの駆動力によって、レンズ部及び撮像素子を有する撮像モジュールを傾斜させて振れ補正を行うレンズ駆動装置であって、前記撮像モジュールが載置される枠状の保持部材を有し、前記保持部材に前記マグネット部を配置して構成される可動体と、ベース部材を有し、前記ベース部材に前記コイル部を配置して構成される固定体と、前記ベース部材に配置され、前記固定体に対して前記可動体を傾斜可能に支持する支持部と、前記コイル部に給電して前記ボイスコイルモーターを駆動して振れ補正を可能にする回路を有し、前記固定体が固定されるメイン基板と、を有し、前記固定体は、前記コイル部が接続された端子部を有するコイル基板を有し、前記コイル部は、前記コイル基板の前記端子部を介して前記メイン基板の回路に接続される、構成を採る。
One aspect of the lens driving device of the present invention is a lens driving device that performs shake correction by tilting an imaging module having a lens unit and an imaging element by a driving force of a voice coil motor having a coil unit and a magnet unit. A frame-shaped holding member on which the imaging module is placed; a movable body configured by disposing the magnet portion on the holding member; a base member; and the coil portion on the base member. A fixed body configured to be disposed; a support section which is disposed on the base member and supports the movable body to be tiltable with respect to the fixed body; and supplies power to the coil section to drive the voice coil motor. And a main board to which the fixed body is fixed, and the fixed body has a coil base having a terminal portion to which the coil portion is connected. Has the coil portion is connected to a circuit of the main board through the terminal part of the coil substrate, a configuration.
本発明のカメラモジュールの一つの態様は、上記のレンズ駆動装置と、レンズ部及び撮像素子を有し、前記保持部材に接着される撮像モジュールと、前記撮像モジュールの振れを検出する振れ検出部と、を備える構成を採る。
One aspect of the camera module of the present invention includes the above lens driving device, an imaging module having a lens unit and an imaging element, and bonded to the holding member, and a shake detection unit that detects shake of the imaging module. , Is adopted.
本発明のカメラ搭載装置の一つの態様は、情報機器または輸送機器であるカメラ搭載装置であって、上記のカメラモジュールを備える構成を採る。
One aspect of the camera-mounted device of the present invention is a camera-mounted device that is an information device or a transport device, and has a configuration including the above-described camera module.
本発明によれば、装置自体を組み上げる前に、振れ補正用のアクチュエーターにおけるOIS用ボイスコイルモーターによる動作を確認して、動作不良があった場合の生産コストを削減して、良好に生産することができる。
According to the present invention, before assembling the apparatus itself, the operation by the voice coil motor for OIS in the shake correction actuator can be confirmed, and the production cost can be reduced when there is a malfunction and the production can be performed well. Can do.
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図3は、本発明の一実施の形態に係るカメラモジュール100を搭載するスマートフォンMを示す図である。図3AはスマートフォンMの正面図であり、図3BはスマートフォンMの背面図である。
FIG. 3 is a diagram showing a smartphone M equipped with the camera module 100 according to an embodiment of the present invention. 3A is a front view of the smartphone M, and FIG. 3B is a rear view of the smartphone M.
スマートフォンMは、例えば背面カメラOCとして、カメラモジュール100を搭載する。カメラモジュール100は、オートフォーカス機能及び振れ補正機能を備え、被写体を撮影するときのピント合わせを自動的に行うとともに、撮影時に生じる振れ(振動)を補正して像ぶれのない画像を撮影することができる。カメラモジュール100の振れ補正機能には、モジュールチルト方式が採用される。モジュールチルト方式は、画面四隅に歪みが生じないという利点を有する。
The smartphone M is equipped with a camera module 100 as a rear camera OC, for example. The camera module 100 includes an autofocus function and a shake correction function, and automatically performs focusing when shooting a subject, and corrects shake (vibration) generated during shooting to shoot an image without image blur. Can do. A module tilt method is adopted for the shake correction function of the camera module 100. The module tilt method has an advantage that no distortion occurs in the four corners of the screen.
図4は、カメラモジュール100の外観斜視図である。図5は、カメラモジュール100の分解斜視図である。図6は、カメラモジュール100のY方向に沿う断面図である。図7は、カメラモジュール100のX方向に沿う断面図である。なお、図6及び図7は、カメラモジュール100のOIS用アクチュエーターAの断面図であり、それぞれの図では、特にボイスコイルモーター部分の磁気回路部を示す。
FIG. 4 is an external perspective view of the camera module 100. FIG. 5 is an exploded perspective view of the camera module 100. FIG. 6 is a cross-sectional view of the camera module 100 along the Y direction. FIG. 7 is a cross-sectional view of the camera module 100 along the X direction. 6 and 7 are cross-sectional views of the OIS actuator A of the camera module 100. In each of the drawings, the magnetic circuit portion of the voice coil motor portion is particularly shown.
ここでは、図4~7に示されるように、直交座標系(X,Y,Z)を使用して説明する。カメラモジュール100は、スマートフォンMで実際に撮影が行われる場合に、X方向が上下方向(又は左右方向)、Y方向が左右方向(又は上下方向)、Z方向(光軸方向を含む)が前後方向となるように搭載される。
Here, description will be made using an orthogonal coordinate system (X, Y, Z) as shown in FIGS. In the camera module 100, when shooting is actually performed with the smartphone M, the X direction is the vertical direction (or the horizontal direction), the Y direction is the horizontal direction (or the vertical direction), and the Z direction (including the optical axis direction) is the front and back. It is mounted so as to be in the direction.
図4~図7に示すように、カメラモジュール100は、固定体11、可動体12、弾性支持部13、撮像モジュール(被駆動部)14、振れ検出部(ジャイロセンサー)15、中継基板30、位置ずれ検出部(傾き検出部)40、ドライバーIC60、リジッドフレキシブル基板(Rigid flexible printed wiring board、リジッドFPC)70、検査用のコイル基板80等を備える。固定体11、可動体12、弾性支持部13及び検査用のコイル基板80によって、OIS用アクチュエーターAが構成される。OIS用アクチュエーターAの構成にリジッドFPC70を含めてレンズ駆動装置が構成される。OIS用アクチュエーターAにおいては、コイル部112及びマグネット部122を有するOIS用ボイスコイルモーターの駆動力を用いて可動体12を可動して、振れ補正を可能とする。
4 to 7, the camera module 100 includes a fixed body 11, a movable body 12, an elastic support section 13, an imaging module (driven section) 14, a shake detection section (gyro sensor) 15, a relay board 30, A misalignment detection unit (tilt detection unit) 40, a driver IC 60, a rigid flexible substrate (rigid flexible printed board, rigid FPC) 70, a coil substrate 80 for inspection, and the like are provided. The fixed body 11, the movable body 12, the elastic support portion 13, and the coil substrate 80 for inspection constitute an OIS actuator A. A lens driving device is configured by including the rigid FPC 70 in the configuration of the actuator A for OIS. In the OIS actuator A, the movable body 12 is moved using the driving force of the voice coil motor for OIS having the coil portion 112 and the magnet portion 122 to enable shake correction.
固定体11は、リジッドFPC70に固定され、スマートフォンMに実装したときにリジッドFPC70とともに移動不能に固定される。固定体11は、弾性支持部13を介して可動体12を可動可能に支持する。固定体11は、ベース部材111、コイル部112、スカート部材(カバー部材)114、本体カバー部材(以下、「カバー部材」という)115、及びコイル基板80を有する。
The fixed body 11 is fixed to the rigid FPC 70 and fixed together with the rigid FPC 70 so as not to move when mounted on the smartphone M. The fixed body 11 movably supports the movable body 12 via the elastic support portion 13. The fixed body 11 includes a base member 111, a coil portion 112, a skirt member (cover member) 114, a main body cover member (hereinafter referred to as “cover member”) 115, and a coil substrate 80.
リジッドFPC70は、上述したように、ガラスエポキシなどの硬い材質からなるリジッド部70aと、組み込みや繰り返し屈曲のための曲げる部位にはフレキシブルプリント基板(FPC:Flexible printed circuits)用の曲がる材料(ポリイミド)を使用(「フレキ部70b」という)している。ここでは、リジッドFPC70は、FPC上にガラスエポキシ基板を貼設して構成され、FPCと同様の屈曲性を有すると共に、FPCよりも剛性の強い基板となっている。
As described above, the rigid FPC 70 includes a rigid portion 70a made of a hard material such as glass epoxy, and a bending material (polyimide) for a flexible printed circuit board (FPC) at a bending portion for incorporation or repeated bending. Is used (referred to as “flexible portion 70b”). Here, the rigid FPC 70 is configured by sticking a glass epoxy substrate on the FPC, and has a flexibility similar to that of the FPC and is a substrate having rigidity higher than that of the FPC.
リジッド部70a上には、ベース部材111が配置されている。リジッド部70aでは、ベース部材111から離れた位置に、ドライバーIC60と、中継基板30を介して実装された振れ検出部15と、AF駆動用のコネクタ71と、接続端子部92、93とが、リジッド部70aに配線される回路に実装されている。フレキ部70bは、カメラモジュール100の本体側に接続されるコネクタを有しており、リジッド部70aに接続される電源ライン(図示略)を有する。フレキ部70bは、リジッド部70aに、接続されており電源ラインは、リジッドFPC70を介して給電パッド81に電気的に接続される。
A base member 111 is disposed on the rigid portion 70a. In the rigid part 70a, the driver IC 60, the shake detection part 15 mounted via the relay board 30, the AF driving connector 71, and the connection terminal parts 92 and 93 are located away from the base member 111. It is mounted on a circuit wired to the rigid portion 70a. The flexible part 70b has a connector connected to the main body side of the camera module 100, and has a power supply line (not shown) connected to the rigid part 70a. The flexible portion 70b is connected to the rigid portion 70a, and the power supply line is electrically connected to the power supply pad 81 via the rigid FPC 70.
ドライバーIC(駆動制御部)60は、制御部(図示略)の制御によりコイル部112に給電して可動体12を可動、つまり、可動体12とともに、可動体12に取り付けられる撮像モジュール14を移動して、傾きを補正させる。
The driver IC (drive control unit) 60 feeds power to the coil unit 112 to move the movable body 12 under the control of a control unit (not shown), that is, moves the imaging module 14 attached to the movable body 12 together with the movable body 12. To correct the tilt.
振れ検出部15は、カメラモジュール100が搭載されたスマートフォン等の電子機器の振れ(動き)を検出する。振れ検出部15は、例えばカメラモジュール100(カメラモジュール100が搭載されたスマートフォン等の電子機器)の角速度を検出するジャイロセンサーで構成される。振れ検出部15は、少なくとも光軸Oに対して直交する2軸(X、Y)方向の振れを検出する。ここでは、XYZの3軸方向の振れを検出できる。
The shake detection unit 15 detects shake (movement) of an electronic device such as a smartphone on which the camera module 100 is mounted. The shake detection unit 15 includes, for example, a gyro sensor that detects an angular velocity of the camera module 100 (an electronic device such as a smartphone on which the camera module 100 is mounted). The shake detection unit 15 detects shake in at least two axes (X, Y) directions orthogonal to the optical axis O. Here, it is possible to detect a shake in the three-axis directions of XYZ.
振れ検出部15の検出信号は、中継基板30及びリジッド部70aを介して制御部(図示略)に出力される。制御部(図示略)は、この検出信号と、位置ずれ検出部40(ホール素子40a、40b)の検出信号とに基づいてドライバーIC60を介してコイル部112の通電電流を制御する。なお、制御部(図示略)の機能は、ドライバーICで実行したり、リジッド部70aに実装してもよい。また、リジッドFPC70を介してスマートフォンMに実装されている制御部を利用するようにしてもよい。振れ検出部15で検出したカメラモジュール100自体の傾きを検出することで、振れ角度を検出し、この角度相当の検出信号(ホール出力値)を、位置ずれ検出部40で検出し、これに基づいて、ドライバーIC60を介してコイル部112の通電電流を制御して、可動体12を可動して振れ補正を行う。
The detection signal of the shake detection unit 15 is output to the control unit (not shown) via the relay board 30 and the rigid unit 70a. The control unit (not shown) controls the energization current of the coil unit 112 via the driver IC 60 based on this detection signal and the detection signal of the position shift detection unit 40 ( Hall elements 40a and 40b). The function of the control unit (not shown) may be executed by a driver IC or mounted on the rigid unit 70a. Moreover, you may make it utilize the control part mounted in the smart phone M via rigid FPC70. By detecting the tilt of the camera module 100 itself detected by the shake detection unit 15, a shake angle is detected, and a detection signal (hole output value) corresponding to this angle is detected by the misalignment detection unit 40, based on this. Thus, the current flowing through the coil section 112 is controlled via the driver IC 60, and the movable body 12 is moved to perform shake correction.
ベース部材111は、金属材料からなる略矩形状の部材であり、リジッド部70a上に配置されている。ベース部材111を金属製とすることにより、樹脂製の場合に比較して強度が高くなるので、ベース部材111を薄くすることができ、ひいてはカメラモジュール100の低背化を図ることができる。
The base member 111 is a substantially rectangular member made of a metal material, and is disposed on the rigid portion 70a. When the base member 111 is made of metal, the strength is higher than that of a resin, so that the base member 111 can be thinned, and the camera module 100 can be reduced in height.
ベース部材111は、中央に、弾性支持部13を固定するための角錐台状の突出部111aを有する。また、ベース部材111は、周縁部を構成する4辺の中央部分に、カバー部材115及びスカート部材114を固定する際の位置決めを行う突出辺部1111を有する。この突出辺部1111は、スカート部材114及びカバー部材115が取り付けられた際に、それぞれの切り欠き部1141、1151に係合する。具体的には、スカート部材114は、切り欠き部1141を、突出辺部1111に係合することにより、ベース部材111の外周縁に外嵌して位置決め固定される。カバー部材115は、切り欠き部1151をベース部材111の突出辺部1111に係合させるとともに、スカート部材114の外周面に外嵌させる。これにより、カバー部材115もベース部材111の突出辺部1111により位置決めされる。
The base member 111 has a truncated pyramidal protrusion 111a for fixing the elastic support portion 13 at the center. In addition, the base member 111 has a protruding side portion 1111 that performs positioning when fixing the cover member 115 and the skirt member 114 at the central portion of the four sides constituting the peripheral portion. When the skirt member 114 and the cover member 115 are attached, the protruding side portion 1111 engages with the notches 1141 and 1151, respectively. Specifically, the skirt member 114 is fixedly positioned by being fitted around the outer peripheral edge of the base member 111 by engaging the notch portion 1141 with the protruding side portion 1111. The cover member 115 engages the notched portion 1151 with the protruding side portion 1111 of the base member 111 and is fitted on the outer peripheral surface of the skirt member 114. Accordingly, the cover member 115 is also positioned by the protruding side portion 1111 of the base member 111.
ベース部材111において、周縁部を構成する4辺のうちの直交する2辺の中央部分には、凹状(U字状)の切欠部111c、111cを有する片部111b、111bが立設されている。この凹状内に位置ずれ検出部40が配置される。
In the base member 111, pieces 111 b and 111 b having concave (U-shaped) notches 111 c and 111 c are erected at the center of two orthogonal sides of the four sides constituting the peripheral edge. . The misalignment detection unit 40 is disposed in the concave shape.
詳細には、片部111b、111bは、ベース部材111においてX方向に沿う一方の周縁部及びY方向に沿う一方の周縁部のそれぞれから起立して設けられる。片部111b、111bでは、凹状の切欠部111c、111cの底辺に、位置ずれ検出部40が突き当てられる(図6及び図7参照)。例えば、片部111bは、ベース部材111の本体部分から切り起こして形成される。
Specifically, the pieces 111b and 111b are provided upright from the one peripheral portion along the X direction and the one peripheral portion along the Y direction in the base member 111, respectively. In the pieces 111b and 111b, the positional deviation detection unit 40 is abutted against the bottoms of the concave cutouts 111c and 111c (see FIGS. 6 and 7). For example, the piece portion 111 b is formed by cutting and raising from the main body portion of the base member 111.
図8は、位置ずれ検出部40の取り付け状態の説明に供する斜視図である。なお、図8では、便宜上、可動体12、撮像モジュール14を省略した固定体11において、位置ずれ検出部40であるホール素子40aの取り付け状態を示している。
FIG. 8 is a perspective view for explaining the attachment state of the misalignment detection unit 40. In FIG. 8, for convenience, the mounting state of the Hall element 40 a that is the misalignment detection unit 40 in the fixed body 11 from which the movable body 12 and the imaging module 14 are omitted is shown.
図8に示すように、切欠部111c内の位置ずれ検出部40(ホール素子40a)は、ホール素子40aの底面45を、切欠部111cの底辺45に突き当てられている。これにより、位置ずれ検出部40(ホール素子40a)に対して、Z方向の位置決めが行われる。なお、位置ずれ検出部40としてのもう一つのホール素子40bは、ホール素子40aと同様に切欠部111cの底辺に突き当てられて位置決めされる。
As shown in FIG. 8, the misalignment detector 40 (Hall element 40a) in the notch 111c has the bottom surface 45 of the Hall element 40a abutted against the bottom 45 of the notch 111c. Thereby, the positioning in the Z direction is performed with respect to the misalignment detection unit 40 (Hall element 40a). Note that another Hall element 40b as the position shift detection unit 40 is positioned by being abutted against the bottom of the notch 111c in the same manner as the Hall element 40a.
図4~図8に示すように、ベース部材111上には、コイル基板80が配置されている。コイル基板80は、OISを実現するためにアクチュエーターAに用いられる電子部品の入出力端子にそれぞれ接続された回路を有する基板である。
As shown in FIG. 4 to FIG. 8, a coil substrate 80 is disposed on the base member 111. The coil substrate 80 is a substrate having circuits connected to input / output terminals of electronic components used in the actuator A in order to realize OIS.
コイル基板80は、コイル部112及び位置ずれ検出部40に接続された配線を有する矩形状をなしたフレキシブルプリント基板である。なお、コイル基板80の配線は、コイル部112及び位置ずれ検出部40の電源ライン、並びに位置ずれ検出部40の信号ラインを含む配線パターンである。ここでは、コイル基板80は、コイル部112としてチルトコイル112A~112Dと、位置ずれ検出部40としての2つのホール素子40a、40bと、これらに接続された計12ピンから構成される接続端子部82、83とを有している。すなわち、コイル基板80の配線パターンは、チルトコイル112A~112Dと、ホール素子40a、40bと、接続端子部82、83とを接続する配線を含む。接続端子部82、83は、矩形状部分(本体基板部801)の外周の一部から側方に延出された部位に形成されている。12ピンの端子は、対向するチルトコイル112A~112D毎に入出力端子が2ピンずつで計4ピンと、ホール素子40a、40bの計8ピンとを合わせた数の端子である。
The coil substrate 80 is a flexible printed circuit board having a rectangular shape having wiring connected to the coil unit 112 and the positional deviation detection unit 40. Note that the wiring of the coil substrate 80 is a wiring pattern including a power line of the coil unit 112 and the positional deviation detection unit 40 and a signal line of the positional deviation detection unit 40. Here, the coil substrate 80 includes a tilt terminal 112A to 112D as the coil part 112, two Hall elements 40a and 40b as the positional deviation detection part 40, and a connection terminal part composed of a total of 12 pins connected thereto. 82, 83. That is, the wiring pattern of the coil substrate 80 includes wirings connecting the tilt coils 112A to 112D, the Hall elements 40a and 40b, and the connection terminal portions 82 and 83. The connection terminal portions 82 and 83 are formed at portions extending laterally from a part of the outer periphery of the rectangular portion (main body substrate portion 801). The 12-pin terminals are a total of 4 pins with 2 input / output terminals for each of the opposing tilt coils 112A to 112D and a total of 8 pins of the hall elements 40a and 40b.
コイル基板80は、矩形枠状部分である本体基板部801と、ホール素子取付部802、803と、を有する。矩形状部分である本体基板部801の中央部に、ベース部材111の突出部111aが挿入される開口80aが形成されている。この開口80aを介して突出部111aが、コイル基板80から上方に突出した状態で配置される。コイル基板80の本体基板部801には、突出部111aの周囲に、コイル部112に接続される給電パッド81が設けられている。給電パッド81は、コイル部112へ給電するためのものであり、コイル基板80の回路として接続端子部82、83に接続されている。この給電パッド81にコイル部112(チルトコイル112A~112D)の端部がはんだ接続される。接続端子部82、83は、コイル基板80において、ベース部材111上に配置される矩形状部分から外方(ここではベース部材111の側方)に延出されている。これにより、コイル基板80において延出された接続端子部82、83からコイル部112への給電が可能となる。
The coil substrate 80 includes a main body substrate portion 801 that is a rectangular frame-shaped portion, and Hall element attachment portions 802 and 803. An opening 80 a into which the protruding portion 111 a of the base member 111 is inserted is formed in the central portion of the main body substrate portion 801 that is a rectangular portion. The protruding portion 111a is disposed in a state of protruding upward from the coil substrate 80 through the opening 80a. The main body substrate portion 801 of the coil substrate 80 is provided with a power supply pad 81 connected to the coil portion 112 around the protruding portion 111a. The power supply pad 81 is for supplying power to the coil portion 112, and is connected to the connection terminal portions 82 and 83 as a circuit of the coil substrate 80. End portions of the coil portions 112 (tilt coils 112A to 112D) are soldered to the power supply pad 81. The connection terminal portions 82 and 83 extend outward (in this case, to the side of the base member 111) from a rectangular portion disposed on the base member 111 in the coil substrate 80. Thus, power can be supplied from the connection terminal portions 82 and 83 extended in the coil substrate 80 to the coil portion 112.
また、コイル基板80には、位置ずれ検出部40が実装されている。位置ずれ検出部40は、弾性支持部13を介して固定体11に取り付けられる可動体12の位置、つまり、撮像モジュール14の位置を、非接触で検出する。
In addition, the misalignment detection unit 40 is mounted on the coil substrate 80. The positional deviation detection unit 40 detects the position of the movable body 12 attached to the fixed body 11 via the elastic support unit 13, that is, the position of the imaging module 14 in a non-contact manner.
位置ずれ検出部40は、コイル基板80のホール素子取付部802、803に実装されている(図5~図8参照)。
The misregistration detection unit 40 is mounted on the hall element mounting portions 802 and 803 of the coil substrate 80 (see FIGS. 5 to 8).
ホール素子取付部802、803は、ベース部材111の片部111b、111bに対応する位置に形成されている。具体的には、ホール素子取付部802、803は、コイル基板80の本体基板部801において、Y方向に沿う一方の外縁部と、X方向に沿う一方の外縁部とからそれぞれ上方に延出して形成されている。ホール素子取付部802、803が形成される本体基板部801の外縁部は、接続端子部82、83が形成される外周の一部(外縁部)とは異なる(主に図5参照)。
Hall element attachment portions 802 and 803 are formed at positions corresponding to the pieces 111b and 111b of the base member 111. Specifically, the hall element mounting portions 802 and 803 extend upward from one outer edge portion along the Y direction and one outer edge portion along the X direction in the main body substrate portion 801 of the coil substrate 80, respectively. Is formed. The outer edge portion of the main body substrate portion 801 where the hall element attachment portions 802 and 803 are formed is different from a part of the outer periphery (outer edge portion) where the connection terminal portions 82 and 83 are formed (refer mainly to FIG. 5).
ホール素子取付部802、803と本体基板部801との間には、本体基板部801のY方向に沿う一方の外縁部及びX方向に沿う一方の外縁部のそれぞれに沿ってスリット805、806が形成されている。
Between the Hall element mounting portions 802 and 803 and the main body substrate portion 801, slits 805 and 806 are provided along one outer edge portion along the Y direction and one outer edge portion along the X direction of the main body substrate portion 801, respectively. Is formed.
このスリット805、806にベース部材111の片部111b、111bが挿入されている。図8では、スリット805に片部111bが挿入された状態を示している。ホール素子取付部802、803は、コイル基板80のスリット805、806を挿通した片部111b、111bのそれぞれの外面側に配置される。
The pieces 111b and 111b of the base member 111 are inserted into the slits 805 and 806, respectively. FIG. 8 shows a state in which the piece 111b is inserted into the slit 805. The hall element attachment portions 802 and 803 are arranged on the outer surface sides of the pieces 111b and 111b inserted through the slits 805 and 806 of the coil substrate 80, respectively.
スリット805、806に片部111b、111bを挿入することによって、ホール素子取付部802、803に実装された位置ずれ検出部40(後述するホール素子40a、40b)の位置決めが行われる。加えて、その後、位置ずれ検出部40を片部111bの切欠部111cの底辺に突き当てることで、更に精度高く位置ずれ検出部40のZ方向での位置決めが行われる。
By inserting the pieces 111b and 111b into the slits 805 and 806, the position shift detection unit 40 ( Hall elements 40a and 40b described later) mounted on the Hall element mounting portions 802 and 803 is positioned. In addition, after that, the displacement detection unit 40 is abutted against the bottom of the notch 111c of the piece 111b, whereby the displacement detection unit 40 is positioned in the Z direction with higher accuracy.
位置ずれ検出部40は、突き当てられた切欠部111cの底辺に接着等により固定される。なお、位置ずれ検出部40は、切欠部111cに内嵌する構成としても良い。その場合、Z方向は勿論のこと、Z方向と直交する方向であるX、Yの一方への位置ずれ検出部40の移動を規制して位置決めできる。また、ホール素子取付部802、803は、位置ずれ検出部40の位置決め後に、それぞれ対応する片部111b、111bに接着等により固定されることが好ましい。
The positional deviation detection unit 40 is fixed to the bottom of the abutted notch 111c by adhesion or the like. In addition, the position shift detection part 40 is good also as a structure fitted inside the notch part 111c. In that case, it is possible to perform positioning by restricting the movement of the misalignment detection unit 40 to one of X and Y which is a direction orthogonal to the Z direction as well as the Z direction. In addition, it is preferable that the Hall element mounting portions 802 and 803 are fixed to the corresponding pieces 111b and 111b by bonding or the like after the positional deviation detection unit 40 is positioned.
位置ずれ検出部40は、可動体12つまり撮像モジュール14の移動(回転揺動)をセンシングし、光軸と直交する平面方向(XY方向)の可動体12つまり撮像モジュール14の位置を検出する。言い換えれば、位置ずれ検出部40は、可動体12の回転揺動、つまり、撮像モジュール14の姿勢をセンシングして、X軸及びY軸に対する傾きを検出する。なお、位置ずれ検出部40は、コイル基板80の配線パターン、つまり、ホール素子取付部802、803及び基板本体部801の配線パターンを介して接続端子部82、83に接続されている。
The positional deviation detection unit 40 senses the movement (rotation swing) of the movable body 12, that is, the imaging module 14, and detects the position of the movable body 12, that is, the imaging module 14, in the plane direction (XY direction) orthogonal to the optical axis. In other words, the positional deviation detection unit 40 senses the rotation and swing of the movable body 12, that is, the attitude of the imaging module 14, and detects the inclination with respect to the X axis and the Y axis. The misalignment detection unit 40 is connected to the connection terminal portions 82 and 83 via the wiring pattern of the coil substrate 80, that is, the wiring patterns of the Hall element mounting portions 802 and 803 and the substrate main body 801.
コイル基板80では、コイル部112への給電とともに、接続端子部82、83を介して接続先への位置ずれ検出部40の信号の出力、入力が可能である。ここでは、位置ずれ検出部40の検出信号は、接続端子部82、83がリジッド部70aの接続端子部92、93に接続されているので、リジッド部70aの回路に出力される。なお、位置ずれ検出部40の検出信号は、リジッド部70aの回路を介して、制御部(図示略)に出力される。
The coil substrate 80 can output and input signals from the misalignment detection unit 40 to the connection destination through the connection terminal units 82 and 83 as well as feeding power to the coil unit 112. Here, since the connection terminal portions 82 and 83 are connected to the connection terminal portions 92 and 93 of the rigid portion 70a, the detection signal of the positional deviation detection portion 40 is output to the circuit of the rigid portion 70a. The detection signal of the misalignment detection unit 40 is output to a control unit (not shown) via the circuit of the rigid unit 70a.
位置ずれ検出部40は、例えば、ホール素子等により構成される。ここでは、位置ずれ検出部40は、磁気式位置検出部としての2つのホール素子(第1のホール素子、第2のホール素子)40a、40bにより構成されている。
The positional deviation detection unit 40 is configured by, for example, a Hall element. Here, the misalignment detection unit 40 includes two Hall elements (first Hall element and second Hall element) 40a and 40b as magnetic position detection units.
位置ずれ検出部40としてのホール素子40a、40bは、マグネット部122を構成する4つの永久磁石122A~122Dのうちの2片(永久磁石122A、122B)とそれぞれ離間して対向配置されるようにコイル基板80(ホール素子取付部802、803)に実装されている。各ホール素子40a、40bは、例えば永久磁石122A、122Bからの漏れ磁束がZ方向に横切るように配置される。例えば、各ホール素子40a、40bは、永久磁石122A、122BにおけるN極からS極への磁束の流れの方向を横切るように配置される。具体的には、ホール素子40a、40bは、コイル基板80において、コイル部112であるチルトコイル112A、112Bの外側で、Y軸、X軸方向に沿って、チルトコイル112A、112Bに並んで実装されている。ここでは、ホール素子40a、40bは、片部111bの切欠部111c内に配置されることにより、チルトコイル112A、112Bの長手方向の中心部分と対向して配置されている。
The Hall elements 40a and 40b serving as the positional deviation detection unit 40 are arranged so as to be opposed to and separated from two pieces ( permanent magnets 122A and 122B) of the four permanent magnets 122A to 122D constituting the magnet unit 122, respectively. It is mounted on the coil substrate 80 (Hall element mounting portions 802, 803). Each Hall element 40a, 40b is arranged so that the leakage magnetic flux from the permanent magnets 122A, 122B crosses in the Z direction, for example. For example, each Hall element 40a, 40b is arranged so as to cross the direction of the flow of magnetic flux from the N pole to the S pole in the permanent magnets 122A, 122B. Specifically, the Hall elements 40a and 40b are mounted on the coil substrate 80 along the Y-axis and X-axis directions alongside the tilt coils 112A and 112B outside the tilt coils 112A and 112B that are the coil portions 112. Has been. Here, the Hall elements 40a and 40b are disposed in the notch 111c of the piece 111b so as to be opposed to the longitudinal center portions of the tilt coils 112A and 112B.
チルトコイル112A、112B内には、永久磁石122A、122Bがそれぞれ配置されるので、ホール素子40a、40bは、それぞれ永久磁石122A、122Bと対向して位置する構成となっている。このように、ホール素子40a、40bは、コイル基板80上のチルトコイル112A、112Bの外側に、これらと並んで実装され、且つ、チルトコイル112A、112B内に配置される永久磁石122A、122Bと対向している。
Since the permanent magnets 122A and 122B are respectively disposed in the tilt coils 112A and 112B, the hall elements 40a and 40b are configured to face the permanent magnets 122A and 122B, respectively. As described above, the Hall elements 40a and 40b are mounted on the outside of the tilt coils 112A and 112B on the coil substrate 80 side by side with the permanent magnets 122A and 122B disposed in the tilt coils 112A and 112B. Opposite.
更に詳細には、一方のホール素子40aは、そのホール素子40aが光軸O(図5参照)に対して直交する第1の方向X側に離間して配置され、それと対向する永久磁石122Aの磁力を検出することにより、第1の方向Xの移動(揺動)に伴う第1の位置を検出する。
More specifically, the one hall element 40a is disposed so as to be separated from the hall element 40a in the first direction X side orthogonal to the optical axis O (see FIG. 5), and the permanent magnet 122A facing the hall element 40a. By detecting the magnetic force, the first position associated with the movement (swing) in the first direction X is detected.
他方のホール素子40bは、そのホール素子40bが光軸Oに対して直交する第2の方向Y側に離間して配置されており、それと対向する永久磁石122Bの磁力を検出することにより、第2の方向Yの移動(揺動)に伴う第2の位置を検出する。
The other Hall element 40b is spaced apart from the Hall element 40b on the second direction Y side orthogonal to the optical axis O, and detects the magnetic force of the permanent magnet 122B facing the first Hall element 40b. The second position accompanying the movement (swing) in the direction Y of 2 is detected.
ホール素子40aは、永久磁石122AのX軸方向の移動量を検出でき、ホール素子40bは、永久磁石122BのY軸方向の移動量を検出できる。言い換えれば、ホール素子40a、40bは、撮像モジュールのX軸方向、Y軸方向の移動量、すなわち、光軸に対する直交する平面上での移動を検出する。
The Hall element 40a can detect the amount of movement of the permanent magnet 122A in the X-axis direction, and the Hall element 40b can detect the amount of movement of the permanent magnet 122B in the Y-axis direction. In other words, the Hall elements 40a and 40b detect movement amounts of the imaging module in the X-axis direction and the Y-axis direction, that is, movement on a plane orthogonal to the optical axis.
これにより、制御部は、振れ検出部(ジャイロセンサー)15により検出される固定体11(カメラモジュール100自体)の振れと、ホール素子40a、40bによる検出位置とに基づいて、撮像モジュール14の振れを補正するドライバーIC60を介して、コイル部112に給電する。これにより、可動体12(撮像モジュール14)は可動して、撮像モジュール14のX軸方向、Y軸方向の移動量に相当する位置まで移動して、振れが補正される。
Thereby, the control unit shakes the imaging module 14 based on the shake of the stationary body 11 (camera module 100 itself) detected by the shake detection unit (gyro sensor) 15 and the detection position by the Hall elements 40a and 40b. Power is supplied to the coil unit 112 via the driver IC 60 that corrects the above. Thereby, the movable body 12 (imaging module 14) moves and moves to a position corresponding to the movement amount of the imaging module 14 in the X-axis direction and the Y-axis direction, and the shake is corrected.
また、ホール素子40a、40b(位置ずれ検出部40)は、撮像モジュール14のX軸方向、Y軸方向の移動量を検出できるので、撮像モジュール14の自重によるオフセット(自重だれ)、或いは、可動体12を固定体11に取り付けられた際の撮像モジュール14のFPCの反力によるオフセットを検出できる。
In addition, since the Hall elements 40a and 40b (the positional deviation detection unit 40) can detect the amount of movement of the imaging module 14 in the X-axis direction and the Y-axis direction, they are offset by the weight of the imaging module 14 (self-weight) or movable. An offset due to the reaction force of the FPC of the imaging module 14 when the body 12 is attached to the fixed body 11 can be detected.
これにより、カメラモジュール100は、位置ずれ検出部40を用いて、撮像モジュール14のオフセット位置を検出して補正することにより、撮像モジュール14を傾くこと無く正確に位置させることができる。換言すれば、制御部(図示略)は、振れ検出部15の検出信号に相当するカメラモジュール100自体の振れ(角度振れ)を補正する際、位置ずれ検出部40の検出信号に基づいて、可動体12及び撮像モジュール14が基準位置に戻るように、コイル部112の通電電流を制御(いわゆるフィードバック制御)する。
Thereby, the camera module 100 can accurately position the imaging module 14 without tilting by detecting and correcting the offset position of the imaging module 14 using the misalignment detection unit 40. In other words, the control unit (not shown) is movable based on the detection signal of the misalignment detection unit 40 when correcting the shake (angular shake) of the camera module 100 itself corresponding to the detection signal of the shake detection unit 15. The energization current of the coil unit 112 is controlled (so-called feedback control) so that the body 12 and the imaging module 14 return to the reference position.
コイル部112は、4つのチルトコイル112A~112Dで構成され、突出部111aを囲繞するようにコイル基板80に配置される。ここでは、チルトコイル112A~112Dは、コイル基板80上において給電パッド81に挟まれる位置にそれぞれ配置されている。コイル部112(チルトコイル112A~112D)は、コイルの巻回軸を、ベース部材111とヨーク(保持部材)120との対向方向(ここでは、Z方向)に向けて配設されている。チルトコイル112A~112Dは、各チルトコイル112A~112Dにおいて、両側に位置する給電パッド81のそれぞれにはんだ付けにより各々接続されている。このように各チルトコイル112~112Dは、給電パッド81を介して給電が行われる。
The coil part 112 is composed of four tilt coils 112A to 112D, and is arranged on the coil substrate 80 so as to surround the protruding part 111a. Here, the tilt coils 112A to 112D are arranged on the coil substrate 80 at positions sandwiched between the power supply pads 81, respectively. The coil portion 112 (tilt coils 112A to 112D) is disposed with the coil winding axis facing the base member 111 and the yoke (holding member) 120 in the opposing direction (here, the Z direction). The tilt coils 112A to 112D are connected to the respective power supply pads 81 located on both sides of each of the tilt coils 112A to 112D by soldering. In this way, the tilt coils 112 to 112D are supplied with power via the power supply pad 81.
チルトコイル112A、112CはX方向に対向し、可動体12を、Y軸を中心に回転揺動(θY)させる場合に使用される。チルトコイル112B、112DはY方向に対向し、可動体12を、X軸を中心に回転揺動(θX)させる場合に使用される。
The tilt coils 112A and 112C face each other in the X direction, and are used when the movable body 12 is rotated and oscillated (θY) about the Y axis. The tilt coils 112B and 112D are opposed to each other in the Y direction, and are used when the movable body 12 is rotated and swung (θX) about the X axis.
スカート部材114は、4つの壁体114bを矩形枠状に連結した部材であり、撮像モジュール14の受容口114aを有する。スカート部材114は、ベース部材111の突出辺部1111に対応する位置、つまり、スカート部材114の各壁体114bの下端部の中央部分に、切り欠き部1141を有する。スカート部材114の各壁体114bの上部には、各上部から内側に僅かに張り出して形成された矩形枠状の規制部114dを有し、規制部114dは、枠状内、つまり、スカート部材114の受容口114a内に配置される可動体12が過剰に傾斜するのを防止する。
The skirt member 114 is a member in which four wall bodies 114b are connected in a rectangular frame shape, and has a receiving port 114a for the imaging module 14. The skirt member 114 has a notch 1141 at a position corresponding to the protruding side 1111 of the base member 111, that is, at the center of the lower end of each wall body 114 b of the skirt member 114. The upper portion of each wall body 114b of the skirt member 114 has a rectangular frame-shaped restricting portion 114d formed to slightly protrude inward from each upper portion, and the restricting portion 114d is inside the frame shape, that is, the skirt member 114. The movable body 12 disposed in the receiving port 114a is prevented from being excessively inclined.
スカート部材114は、ベース部材111に弾性支持部13を介して可動体12が取り付けられた後、ベース部材111の外周縁に外嵌することにより固定される。ベース部材111とスカート部材114との間に可動体12が挟装されることになる。
The skirt member 114 is fixed by being fitted around the outer periphery of the base member 111 after the movable body 12 is attached to the base member 111 via the elastic support portion 13. The movable body 12 is sandwiched between the base member 111 and the skirt member 114.
カバー部材115は、上面の蓋部分に開口(開口部)115aを有する有蓋矩形筒状の部材である。カバー部材115は、開口部115aを介して撮像モジュール14のレンズ部141を外部に臨ませる。カバー部材115は、筒状の周壁部分の下端部に、ベース部材111の突出辺部1111に対応する位置に形成された切り欠き部1151を有する。
The cover member 115 is a covered rectangular cylindrical member having an opening (opening) 115a in the lid portion on the upper surface. The cover member 115 makes the lens part 141 of the imaging module 14 face the outside through the opening 115a. The cover member 115 has a cutout portion 1151 formed at a position corresponding to the protruding side portion 1111 of the base member 111 at the lower end portion of the cylindrical peripheral wall portion.
カバー部材115は、OIS用アクチュエーターAに撮像モジュール14が搭載された後、スカート部材114に外嵌して、切り欠き部1151をベース部材111の突出辺部1111に係合させることによりベース部材111に固定される。カバー部材115の一側面には、撮像モジュール用プリント配線基板143を外部に引き出すための引出口115bが形成されている。
After the imaging module 14 is mounted on the OIS actuator A, the cover member 115 is externally fitted to the skirt member 114, and the notch 1151 is engaged with the protruding side 1111 of the base member 111, thereby causing the base member 111. Fixed to. On one side surface of the cover member 115, an outlet 115b for drawing the printed wiring board 143 for the imaging module to the outside is formed.
可動体12は、固定体11に対してX軸及びY軸を中心に揺動回転する。可動体12は、ヨーク(保持部材)120、マグネット部122及び一対のモジュールガイド126を有する。OIS用アクチュエーターAに撮像モジュール14を実装する際、ヨーク120は、撮像モジュール14を直接保持する。撮像モジュール14は、例えば両面テープ或いは樹脂製の接着剤等によって、ヨーク120の上面に接着される。この構成により、特許文献1に記載のモジュールガイドのような位置決め部材を用いることなく、治具を使用することにより、ヨーク120に撮像モジュール14を高精度で位置決めして固定することができる。
The movable body 12 swings and rotates about the X axis and the Y axis with respect to the fixed body 11. The movable body 12 includes a yoke (holding member) 120, a magnet portion 122, and a pair of module guides 126. When mounting the imaging module 14 on the OIS actuator A, the yoke 120 directly holds the imaging module 14. The imaging module 14 is bonded to the upper surface of the yoke 120 by, for example, a double-sided tape or a resin adhesive. With this configuration, the imaging module 14 can be positioned and fixed to the yoke 120 with high accuracy by using a jig without using a positioning member such as the module guide described in Patent Document 1.
ヨーク120は、磁性材料により形成された矩形枠状の部材であり、矩形枠状のヨーク本体(保持部本体)121と、ヨーク本体121の枠状内側に設けられ、且つ、載置される撮像モジュール14を固定する平枠状の保持枠部1211とを有する。
The yoke 120 is a rectangular frame-shaped member formed of a magnetic material, and is provided with a rectangular frame-shaped yoke main body (holding unit main body) 121 and a frame-shaped inner side of the yoke main body 121 and mounted thereon. And a flat frame-shaped holding frame portion 1211 for fixing the module 14.
ヨーク本体121は、マグネット部122を保持する。ヨーク本体121は、下面にマグネット部122が固定される4つの平板を矩形状に連結した平枠状の上板部121aを有する。ヨーク本体121は、上板部121aの外周縁部(具体的には、上板部121aを構成する各平板の外縁部)に沿って、下方に向けて突出し垂れ下がるように形成された外側垂下部121bを有する。また、ヨーク本体121は、上板部121aの内周縁部(具体的には、上板部121aを構成する各平板の内縁部)に沿って、下方に向けて突出し垂れ下がるように形成された内側垂下部121cを有する。すなわち、枠状のヨーク本体121の1辺部の断面形状は、ベース部材111側に開口する凹状であり、つまり、下方に開口する「U」字状となっている。この凹状内の底面である上板部121aが、保持枠部1211よりもベース部材111から離間する位置に位置する。また、ヨーク本体121の内側垂下部121cの下端部に保持枠部1211の外周縁部が接合されている。保持枠部1211の上面(ヨーク120の上面の一部)、詳細には、保持枠部1211のモジュール取付部1211aに、撮像モジュール14の底面が両面テープ或いは樹脂製の接着剤により固定される。
The yoke body 121 holds the magnet part 122. The yoke body 121 has a flat frame-shaped upper plate portion 121a in which four flat plates to which the magnet portion 122 is fixed are connected to a lower surface in a rectangular shape. The yoke body 121 is an outer hanging portion formed so as to project downward and hang down along the outer peripheral edge portion of the upper plate portion 121a (specifically, the outer edge portion of each flat plate constituting the upper plate portion 121a). 121b. Further, the yoke body 121 is formed so as to protrude downward and hang down along the inner peripheral edge of the upper plate 121a (specifically, the inner edge of each flat plate constituting the upper plate 121a). It has a hanging part 121c. That is, the cross-sectional shape of one side portion of the frame-shaped yoke body 121 is a concave shape that opens to the base member 111 side, that is, a “U” shape that opens downward. The upper plate portion 121 a that is the bottom surface in the concave shape is located at a position farther from the base member 111 than the holding frame portion 1211. Further, the outer peripheral edge portion of the holding frame portion 1211 is joined to the lower end portion of the inner hanging portion 121 c of the yoke body 121. The bottom surface of the imaging module 14 is fixed to the upper surface of the holding frame portion 1211 (part of the upper surface of the yoke 120), more specifically, to the module mounting portion 1211a of the holding frame portion 1211 by a double-sided tape or a resin adhesive.
ヨーク本体121は、Y方向に沿う一方の外側垂下部121bに切欠部1213を有し、X方向に沿う一方の外側垂下部121bに切欠部1214を有する。切欠部1213、1214内には、ベース部材111から立設する片部111bにより位置決めされた位置ずれ検出部40のホール素子40a、40b(図6~図8参照)が配置される。
The yoke body 121 has a notch 1213 in one outer droop 121b along the Y direction and a notch 1214 in one outer droop 121b along the X direction. In the notches 1213 and 1214, Hall elements 40a and 40b (see FIGS. 6 to 8) of the misalignment detector 40 positioned by the piece 111b standing from the base member 111 are arranged.
図9は、位置ずれ検出部とヨークとの位置関係の説明に供する部分斜視図である。なお、図9に示すカメラモジュール100は、便宜上、撮像モジュール14及びカバー部材115を外した状態で示されている。
FIG. 9 is a partial perspective view for explaining the positional relationship between the misalignment detection unit and the yoke. For convenience, the camera module 100 shown in FIG. 9 is shown with the imaging module 14 and the cover member 115 removed.
図5~図9に示すように、切欠部1213、1214は、Y方向に沿う一方の外側垂下部121bと、X方向に沿う一方の外側垂下部121bとのそれぞれの中央部分に下方に開口して切り欠いて形成されている。
As shown in FIGS. 5 to 9, the notches 1213 and 1214 open downward in the central portions of one outer hanging portion 121b along the Y direction and one outer hanging portion 121b along the X direction. It is cut out and formed.
切欠部1213、1214内に、片部111b、111bが配置されることにより、片部111bに固定される位置ずれ検出部40(ホール素子40a、40b)がそれぞれ位置決めされた位置で配置される。なお、図6及び図7では、位置ずれ検出部40(ホール素子40a、40b)が、片部111b、111bとともに切欠部1213、1214内に位置した状態が示される。
By disposing the pieces 111b and 111b in the notches 1213 and 1214, the displacement detectors 40 ( Hall elements 40a and 40b) fixed to the pieces 111b are arranged at positions positioned respectively. 6 and 7 show a state in which the position shift detection unit 40 ( Hall elements 40a and 40b) is located in the notches 1213 and 1214 together with the pieces 111b and 111b.
図10は、位置ずれ検出部40が検出する磁束の流れを示す模式図である。なお、図10は、図7においてホール素子40aが取り付けられた周辺部分を模式的に示す拡大図である。
FIG. 10 is a schematic diagram showing the flow of magnetic flux detected by the misalignment detector 40. FIG. 10 is an enlarged view schematically showing a peripheral portion to which the hall element 40a is attached in FIG.
図10に示すように、ヨーク本体121に切欠部1213を形成し、この切欠部1213内に位置ずれ検出部40であるホール素子40aを配置することにより、位置ずれ検出部40に、マグネット部122の永久磁石122Aからの漏れ磁束を効率よく横切らせている。切欠部1214に対するホール素子40bの位置関係もホール素子40aと同様に磁束の流れを検出するので、説明は省略する。これにより、位置ずれ検出部40は、永久磁石122A、122Bからの漏れ磁束の変化に基づいて、可動体12のX軸又はY軸に対する傾き、所謂、基準位置からの位置ずれを検出できる。
As shown in FIG. 10, a notch 1213 is formed in the yoke main body 121, and a hall element 40 a that is the misregistration detection unit 40 is disposed in the notch 1213, so that the magnet unit 122 is provided in the misregistration detection unit 40. The leakage magnetic flux from the permanent magnet 122A is efficiently traversed. Since the positional relationship of the Hall element 40b with respect to the notch 1214 detects the flow of magnetic flux similarly to the Hall element 40a, the description thereof is omitted. Thereby, the positional deviation detection unit 40 can detect the inclination of the movable body 12 with respect to the X axis or the Y axis, that is, a so-called positional deviation from the reference position, based on a change in leakage magnetic flux from the permanent magnets 122A and 122B.
保持枠部1211と上板部121aとの間には、保持枠部1211を上板部121aよりもベース部材111に近接させる段差が形成され、ヨーク120全体では、中央に凹状部が形成され、この凹部内に撮像モジュール14が固定される。このヨーク120によって、マグネット部122及びコイル部112を有する磁気回路の撮像モジュール14に対する磁気干渉を防止している。
A step is formed between the holding frame portion 1211 and the upper plate portion 121a to bring the holding frame portion 1211 closer to the base member 111 than the upper plate portion 121a, and a concave portion is formed at the center of the entire yoke 120. The imaging module 14 is fixed in the recess. The yoke 120 prevents magnetic interference of the magnetic circuit having the magnet part 122 and the coil part 112 with respect to the imaging module 14.
保持枠部1211は、モジュール取付部1211aと、モジュール取付部1211aの内側のジンバル取付部1211bと、を有する。
The holding frame portion 1211 includes a module attachment portion 1211a and a gimbal attachment portion 1211b inside the module attachment portion 1211a.
モジュール取付部1211aは、ヨーク本体121の内側垂下部121cに連続して設けられ、ここでは、光軸を含むZ軸方向と直交する矩形枠板状に形成される。モジュール取付部1211aの内側には、モジュール取付部1211aに対して段差があり、且つ、矩形枠板状のジンバル取付部1211bが設けられている。
The module mounting portion 1211a is provided continuously to the inner hanging portion 121c of the yoke body 121, and is here formed in a rectangular frame plate shape orthogonal to the Z-axis direction including the optical axis. Inside the module mounting portion 1211a, there is a step with respect to the module mounting portion 1211a, and a rectangular frame plate-like gimbal mounting portion 1211b is provided.
具体的には、ジンバル取付部1211bは、保持枠部1211aよりもベース部材111側に一段低く、保持枠部1211aの内周縁から保持枠部1211aの中心に向かって径方向内側に張り出すように形成されている。ジンバル取付部1211bには、その下面に、弾性支持部13が取り付けられる(図5~図7参照)。
Specifically, the gimbal mounting portion 1211b is one step lower than the holding frame portion 1211a on the base member 111 side, and protrudes radially inward from the inner periphery of the holding frame portion 1211a toward the center of the holding frame portion 1211a. Is formed. The elastic support portion 13 is attached to the lower surface of the gimbal attachment portion 1211b (see FIGS. 5 to 7).
マグネット部122は、図5に示すように、チルトコイル112A~112Dに対応する、直方体状の4つの永久磁石122A~122Dで構成される。永久磁石の代わりに電磁石を用いてもよい。永久磁石122A~122Dの大きさは、チルトコイル112A~112Dの内側に収まる程度とされる。
As shown in FIG. 5, the magnet unit 122 is composed of four rectangular parallelepiped permanent magnets 122A to 122D corresponding to the tilt coils 112A to 112D. An electromagnet may be used instead of the permanent magnet. The size of the permanent magnets 122A to 122D is set to be within the tilt coils 112A to 112D.
永久磁石122A~122Dは、ヨーク120のそれぞれの平板の下面に、着磁方向がZ方向となるように配置され、例えば接着により固定される(図5~図7及び図11参照)。
The permanent magnets 122A to 122D are arranged on the lower surface of each flat plate of the yoke 120 so that the magnetization direction is the Z direction, and fixed by, for example, adhesion (see FIGS. 5 to 7 and 11).
また、永久磁石122A~122Dは、ヨーク120の内側垂下部121cと外側垂下部121bの間に位置する。ここでは、永久磁石122A~122Dは、内側垂下部121cと外側垂下部121bのそれぞれに対してギャップを設けた位置で、それぞれに対向する。
The permanent magnets 122A to 122D are located between the inner hanging part 121c and the outer hanging part 121b of the yoke 120. Here, the permanent magnets 122A to 122D are opposed to each other at a position where a gap is provided for each of the inner hanging part 121c and the outer hanging part 121b.
マグネット部122とヨーク120(詳細にはヨーク本体121)との間にコイル部112が位置する(図5、6参照)。マグネット部122は、コイル部112の巻線の巻回軸上に位置する。マグネット部122及びコイル部112は、ヨーク120及びベース部材111において、コイル部112の中央部を撮像モジュール14の接着方向に沿って開口させ、このコイル部112の中央部にマグネット部122が突出するように配置されている。
The coil part 112 is located between the magnet part 122 and the yoke 120 (specifically, the yoke body 121) (see FIGS. 5 and 6). The magnet part 122 is located on the winding axis of the winding of the coil part 112. The magnet portion 122 and the coil portion 112 are formed by opening the central portion of the coil portion 112 along the bonding direction of the imaging module 14 in the yoke 120 and the base member 111, and the magnet portion 122 protrudes from the central portion of the coil portion 112. Are arranged as follows.
また、マグネット部122及びコイル部112、つまりこれらを有する磁気回路部が、撮像モジュール14の下端部と保持枠部1211の外周側(具体的には、XY方向外側)に位置する。つまり、マグネット部122及びコイル部112を有する磁気回路部は、撮像モジュール14の下端部と保持枠部1211の真下には配置されていない。すなわち、マグネット部122(永久磁石122A~122D)及びコイル部112(チルトコイル112A~112D)は、撮像モジュール14の下端部とヨーク120の保持枠部1211とのXY方向の外周側で、ベース部材111上に配置されている。
Further, the magnet part 122 and the coil part 112, that is, the magnetic circuit part having these parts are located on the outer peripheral side (specifically, in the XY direction) of the lower end part of the imaging module 14 and the holding frame part 1211. That is, the magnetic circuit unit including the magnet unit 122 and the coil unit 112 is not disposed directly below the lower end portion of the imaging module 14 and the holding frame unit 1211. That is, the magnet portion 122 (permanent magnets 122A to 122D) and the coil portion 112 (tilt coils 112A to 112D) are arranged on the outer peripheral side in the XY direction between the lower end portion of the imaging module 14 and the holding frame portion 1211 of the yoke 120. 111.
弾性支持部13は、2軸ジンバル機構を有する矩形状の部材(いわゆるジンバルばね)で構成される。図11は、弾性支持部13の説明に供する図であり、弾性支持部13が取り付けられたヨーク120の底面図である。
The elastic support portion 13 is composed of a rectangular member (so-called gimbal spring) having a biaxial gimbal mechanism. FIG. 11 is a diagram for explaining the elastic support portion 13 and is a bottom view of the yoke 120 to which the elastic support portion 13 is attached.
弾性支持部13は、図11に示すように、中央部13aと、中央部13aに内側ジンバル13bを介在して連接されX軸及びY軸を中心に回転揺動する外側ジンバル13cを有する。なお、図11では、弾性支持部13であるジンバルばねを、他の構成部材と差別化するためにハッチングで示している。なお、ジンバルばねは、矩形面状をなしており、Z方向の厚さは薄い。
As shown in FIG. 11, the elastic support portion 13 includes a central portion 13 a and an outer gimbal 13 c that is connected to the central portion 13 a with an inner gimbal 13 b interposed therebetween and that rotates and swings around the X axis and the Y axis. In FIG. 11, the gimbal spring that is the elastic support portion 13 is indicated by hatching in order to differentiate it from other constituent members. The gimbal spring has a rectangular surface shape and is thin in the Z direction.
図11に示すように、中央部13aは矩形状を有し、内側ジンバル13bは入り組んだ湾曲形状を有する。内側ジンバル13bは、湾曲形状の両端部にそれぞれ、中央部13aに接合され、この中央部13aからY軸に沿って片側2本ずつ延びるジンバル軸13yと、外側ジンバル13cに接合され、この外側ジンバル13cからX軸に沿って片側2本ずつ延びるジンバル軸13xと、を有する。外側ジンバル13cは、ここでは2本の細長板状を有し、ジンバル取付部1211bの裏面に接合される。なお、外側ジンバル13cは、中央部13aで互いに対向し、且つ、X方向に沿って延在する一対の辺部(ジンバル軸13x)の外側に、それぞれの辺部(ジンバル軸13y)と平行に配置されている。外側ジンバル13cの中央部で内側ジンバル13bの一端であるジンバル軸13xと接合されている。なお、内側ジンバル13bの他端(ジンバル軸13yの端部)は中央部13aに接合されている。
As shown in FIG. 11, the central portion 13a has a rectangular shape, and the inner gimbal 13b has an intricate curved shape. The inner gimbals 13b are respectively joined to the central portion 13a at both ends of the curved shape, and are joined to the outer gimbals 13c and the outer gimbals 13c extending from the central portion 13a by two on one side along the Y axis. 13c and a gimbal shaft 13x extending two on each side along the X axis. Here, the outer gimbal 13c has two elongated plates, and is joined to the back surface of the gimbal mounting portion 1211b. The outer gimbal 13c is opposed to each other at the central portion 13a, and outside the pair of side portions (gimbal shaft 13x) extending along the X direction, in parallel with the respective side portions (gimbal shaft 13y). Has been placed. The central part of the outer gimbal 13c is joined to the gimbal shaft 13x which is one end of the inner gimbal 13b. The other end of the inner gimbal 13b (the end of the gimbal shaft 13y) is joined to the central portion 13a.
弾性支持部13の中央部13aが、ベース部材111の突出部111aに当接して接着または溶接される。これにより、弾性支持部13では、図7に示すように、中央部13aより外周側の部分は、ベース部材111の上面から所定間隔あけて垂直方向に離間して位置した状態となる。なお、この所定間隔は、弾性支持部13が可動するX方向、Y方向の中心軸回りに回動する際の可動範囲となる。また、図11に示すように、弾性支持部13の外側ジンバル13cは、ヨーク120の保持枠部1211の下面の平行な一対の辺部に接着または溶接される。これにより、可動体12は、ベース部材111の略中央に浮遊した状態で配置され、X軸及びY軸を中心として揺動回転可能となる。可動体12は、中央部分を中心にX軸及びY軸方向に傾き可動自在に支持された状態となる。弾性支持部13は、ベース部材111に接着により固定されるので、特許文献1に記載のストッパーのような係止部材は必要ない。また、撮像モジュール14が上面(モジュール取付部1211a)に接着された保持枠部1211においてモジュール取付部1211aより低い位置のジンバル取付部1211bの下面に、弾性支持部13が、外側ジンバル13cで取り付けられている。弾性支持部13と撮像モジュール14とのZ方向に離れた長さは、ほぼ保持枠部1211の厚み分となる。ここでは、保持枠部1211を形成するモジュール取付部1211aとジンバル取付部1211bのそれぞれの厚さに加え、双方間の段差部分の長さだけとなる。これにより、カメラモジュール100自体のZ方向の長さの短縮化、つまり、カメラモジュール100の低背化を図ることができる。
The central portion 13a of the elastic support portion 13 is in contact with the protruding portion 111a of the base member 111 and is bonded or welded. Thereby, in the elastic support part 13, as shown in FIG. 7, the part of the outer peripheral side from the center part 13a will be in the state located apart from the upper surface of the base member 111 in the perpendicular direction at predetermined intervals. The predetermined interval is a movable range when the elastic support portion 13 is rotated around the central axis in the X direction and the Y direction. As shown in FIG. 11, the outer gimbal 13 c of the elastic support portion 13 is bonded or welded to a pair of parallel side portions on the lower surface of the holding frame portion 1211 of the yoke 120. As a result, the movable body 12 is arranged in a state of floating in the approximate center of the base member 111, and can swing and rotate about the X axis and the Y axis. The movable body 12 is in a state of being supported so as to be tiltable in the X-axis and Y-axis directions around the central portion. Since the elastic support portion 13 is fixed to the base member 111 by adhesion, a locking member such as the stopper described in Patent Document 1 is not necessary. The elastic support portion 13 is attached to the lower surface of the gimbal attachment portion 1211b at a position lower than the module attachment portion 1211a in the holding frame portion 1211 where the imaging module 14 is bonded to the upper surface (module attachment portion 1211a) with the outer gimbal 13c. ing. The length of the elastic support portion 13 and the imaging module 14 that are separated in the Z direction is substantially equal to the thickness of the holding frame portion 1211. Here, in addition to the thicknesses of the module attachment portion 1211a and the gimbal attachment portion 1211b that form the holding frame portion 1211, only the length of the step portion between the two is provided. Thereby, the length of the camera module 100 itself in the Z direction can be shortened, that is, the height of the camera module 100 can be reduced.
本実施の弾性支持部13であるジンバルばねは、図5及び図7に示すように、保持枠部1211においてモジュール取付部1211aより一段低いジンバル取付部1211bにX軸方向に沿う箇所で取り付けられている。一方、弾性支持部13であるジンバルばねは、Y方向で沿う部位では、図5及び図6に示すように、保持枠部1211を有するヨーク120に取り付けられていない。
As shown in FIGS. 5 and 7, the gimbal spring that is the elastic support portion 13 of this embodiment is attached to the gimbal attachment portion 1211 b that is one step lower than the module attachment portion 1211 a in the holding frame portion 1211 at a location along the X-axis direction. Yes. On the other hand, the gimbal spring which is the elastic support portion 13 is not attached to the yoke 120 having the holding frame portion 1211 at the portion along the Y direction, as shown in FIGS.
図12は、図7におけるジンバル取付部1211bと弾性支持部13であるジンバルばねとの位置関係を示す拡大図である。
FIG. 12 is an enlarged view showing the positional relationship between the gimbal mounting portion 1211b and the gimbal spring as the elastic support portion 13 in FIG.
本実施の形態に示す弾性支持部13の場合、可動体12がX軸を中心に回転揺動する際、撮像モジュール14の底面14aは弾性支持部13のY軸に沿うジンバル軸13y(図11及び図12参照)の一方(具体的には、ジンバル軸13yの端部13y1)に近づく。すなわち、可動体12の揺動回動範囲(図12中の太矢印で示す)は、撮像モジュール14と弾性支持部13との離間距離Lによって制限される。
In the case of the elastic support portion 13 shown in the present embodiment, when the movable body 12 rotates and swings around the X axis, the bottom surface 14a of the imaging module 14 has a gimbal shaft 13y along the Y axis of the elastic support portion 13 (FIG. 11). And (refer to FIG. 12) approach one (specifically, the end portion 13 y 1 of the gimbal shaft 13 y). That is, the swinging rotation range of the movable body 12 (indicated by a thick arrow in FIG. 12) is limited by the separation distance L between the imaging module 14 and the elastic support portion 13.
本実施の形態では、ヨーク120のジンバル取付部1211bが、モジュール取付部1211aよりも一段低く形成され、低くして形成される段差の分だけ撮像モジュール14と弾性支持部13との離間距離が、図12で示す距離L1分、大きくなっている。これにより、撮像モジュール14がジンバル取付部1211bに固定される場合に比較して可動体12の可動範囲が大きくなる。
In the present embodiment, the gimbal attachment portion 1211b of the yoke 120 is formed one step lower than the module attachment portion 1211a, and the separation distance between the imaging module 14 and the elastic support portion 13 is the amount of the step formed lower. The distance is increased by the distance L1 shown in FIG. Thereby, the movable range of the movable body 12 becomes large compared with the case where the imaging module 14 is fixed to the gimbal attachment part 1211b.
一対のモジュールガイド126は、ヨーク120から上方に立設して設けられる。モジュールガイド126は、保持枠部1211に取り付けられる撮像モジュール14の両側面にそれぞれ対向配置される。これにより、モジュールガイド126は、ヨーク120の保持枠部1211に撮像モジュール14を載置して固定する際のガイドになる。そして、一対のモジュールガイド126も、対向する撮像モジュール14の両側面のそれぞれに、接着材等を介して固定される。よって、撮像モジュール14が可動体12に正確に取り付けられることになり、信頼性の向上を実現できる。なお、モジュールガイド126は、撮像モジュール14とともにスカート部材114の受容口114aから上方に突設される。
The pair of module guides 126 are provided upright from the yoke 120. The module guides 126 are disposed to face both side surfaces of the imaging module 14 attached to the holding frame portion 1211. Accordingly, the module guide 126 serves as a guide when the imaging module 14 is placed and fixed on the holding frame portion 1211 of the yoke 120. The pair of module guides 126 are also fixed to both side surfaces of the imaging module 14 facing each other via an adhesive or the like. Therefore, the imaging module 14 is accurately attached to the movable body 12, and the reliability can be improved. The module guide 126 protrudes upward from the receiving port 114 a of the skirt member 114 together with the imaging module 14.
図5及び図7に示すように、撮像モジュール14は、レンズ部141、撮像素子(図示略)、AF用アクチュエーター142、及び撮像モジュール用プリント配線基板143を有する。
5 and 7, the imaging module 14 includes a lens unit 141, an imaging element (not shown), an AF actuator 142, and an imaging module printed wiring board 143.
撮像素子(図示略)は、例えばCCD(charge coupled device)型イメージセンサー、CMOS(complementary metal oxide semiconductor)型イメージセンサー等により構成される。撮像素子(図示略)は、撮像モジュール用プリント配線基板143に実装される。撮像素子(図示略)は、レンズ部141により結像された被写体像を撮像する。
The imaging element (not shown) is configured by, for example, a charge coupled device (CCD) image sensor, a complementary metal oxide semiconductor (CMOS) image sensor, or the like. The imaging element (not shown) is mounted on the imaging module printed wiring board 143. The image sensor (not shown) captures the subject image formed by the lens unit 141.
AF用アクチュエーター142は、例えばAF用ボイスコイルモーターを有し、AF用ボイスコイルモーターの駆動力を利用して、レンズ部141を光軸方向に移動させる。AF用アクチュエーター142には、公知の技術を適用できる。
The AF actuator 142 has, for example, an AF voice coil motor, and moves the lens unit 141 in the optical axis direction by using the driving force of the AF voice coil motor. A known technique can be applied to the AF actuator 142.
撮像モジュール用プリント配線基板143は、ここでは、可撓性を有するフレキシブルプリント基板(Flexible printed circuits)により構成される。撮像モジュール用プリント配線基板143は、AF用アクチュエーター142のコイル部(図示略)に給電するための電源ライン(図示略)及び撮像素子から出力される映像信号用の信号ライン(図示略)を有する。撮像モジュール用プリント配線基板143は、OIS用アクチュエーターAに撮像モジュール14を搭載したときに、図7に示すように、スカート部材114の内側からスカート部材114を乗り超えて、カバー部材115の引出口115bを介して外部に引き出される。詳細には、撮像モジュール用プリント配線基板143は、撮像モジュール14の下面から上方に延出し、スカート部材114から所定間隔を空けた上方で、スカート部の外側に向かって延びるように折曲され、カバー部材115の引出口115bから外部に延出している。引き出された撮像モジュール用プリント配線基板143は、固定体11のリジッド部70aに接続される。このように、撮像モジュール用プリント配線基板143は、可動体12に設けられた構成であるが、可撓性を有するため、可動体12の可動を妨げることはない。なお、撮像モジュール用プリント配線基板143を途中で枝分かれさせて、電源ラインと、映像信号用の信号ラインとに別々のコネクタを装着するようにしてもよい。
Here, the printed wiring board 143 for the imaging module is configured by a flexible printed circuit board having flexibility. The imaging module printed wiring board 143 has a power line (not shown) for supplying power to a coil portion (not shown) of the AF actuator 142 and a signal line (not shown) for a video signal output from the imaging device. . When the imaging module 14 is mounted on the OIS actuator A, the printed wiring board 143 for the imaging module gets over the skirt member 114 from the inside of the skirt member 114 as shown in FIG. It is pulled out through 115b. In detail, the printed wiring board 143 for the imaging module extends upward from the lower surface of the imaging module 14 and is bent so as to extend toward the outside of the skirt portion above the skirt member 114 at a predetermined interval. The cover member 115 extends outward from the outlet 115b. The drawn-out printed circuit board for imaging module 143 is connected to the rigid portion 70 a of the fixed body 11. As described above, the printed wiring board 143 for the imaging module is configured to be provided on the movable body 12, but does not hinder the movement of the movable body 12 because it has flexibility. The imaging module printed wiring board 143 may be branched in the middle, and separate connectors may be attached to the power supply line and the video signal signal line.
OIS用アクチュエーターAにおいては、マグネット部122(永久磁石122A~122D)及びコイル部112(チルトコイル112A~112D)を有する磁気回路部は、撮像モジュール14の下端部及びヨーク120の保持枠部1211に対して、XY方向の外周側で、ベース部材111上に配置される。
In the OIS actuator A, the magnetic circuit portion having the magnet portion 122 (permanent magnets 122A to 122D) and the coil portion 112 (tilt coils 112A to 112D) is provided on the lower end portion of the imaging module 14 and the holding frame portion 1211 of the yoke 120. On the other hand, it is arranged on the base member 111 on the outer peripheral side in the XY direction.
磁気回路部は、撮像モジュール14の下端部及びヨーク120の保持枠部1211にXY方向で、磁気回路部の一部が重なる位置に配置される。つまり、マグネット部122及びコイル部112の一方(ここでは、マグネット部122)がX方向及びY方向で重なる位置に配置されている。ここでは、マグネット部122を構成する永久磁石122A~122Dは、コイル部112を構成するチルトコイル112A~112Dの上方で、且つ、チルトコイル112A~112Dの内側に一部を挿入して位置された状態で配置する。これにより、永久磁石122A~122Dは、それぞれ対応するチルトコイル112A~112Dの上方で、各チルトコイル112A~112Dの巻回軸方向(Z方向)に沿って配置されている。
The magnetic circuit unit is arranged at a position where a part of the magnetic circuit unit overlaps the lower end of the imaging module 14 and the holding frame unit 1211 of the yoke 120 in the XY direction. That is, one of the magnet part 122 and the coil part 112 (here, the magnet part 122) is arranged at a position where it overlaps in the X direction and the Y direction. Here, the permanent magnets 122A to 122D constituting the magnet portion 122 are positioned above the tilt coils 112A to 112D constituting the coil portion 112 and partially inserted inside the tilt coils 112A to 112D. Arrange in a state. As a result, the permanent magnets 122A to 122D are arranged along the winding axis direction (Z direction) of the respective tilt coils 112A to 112D above the corresponding tilt coils 112A to 112D.
このように配置されるマグネット部122及びコイル部112を有するOIS用ボイスコイルモーターにおいて、コイル部112に電流が流れていない初期状態では、撮像モジュール14(可動体12)は、光軸がZ方向と一致する中立位置に保持される。ここで、可動体12を固定体11に取り付けた際に、撮像モジュール14(可動体12)が自重だれ等により中立位置からオフセットしている場合、位置ずれ検出部40で検出したオフセット位置を用いて、ドライバーIC60を介して可動体12の位置を補正して、光軸をZ方向と一致する中立位置に位置させる。
In the voice coil motor for OIS having the magnet part 122 and the coil part 112 arranged in this way, in the initial state where no current flows through the coil part 112, the imaging module 14 (movable body 12) has an optical axis in the Z direction. Held in a neutral position. Here, when the movable body 12 is attached to the fixed body 11, when the imaging module 14 (movable body 12) is offset from the neutral position due to its own weight, the offset position detected by the misalignment detection unit 40 is used. Thus, the position of the movable body 12 is corrected via the driver IC 60, and the optical axis is positioned at a neutral position that coincides with the Z direction.
コイル部112に電流が流れると、マグネット部122の磁界とコイル部112に流れる電流との相互作用により、コイル部112にZ方向のローレンツ力が生じる(フレミング左手の法則)。コイル部112は固定されているので、可動体12であるマグネット部122に反力が働く。この反力がOIS用ボイスコイルモーターの駆動力となる。
When a current flows in the coil part 112, a Lorentz force in the Z direction is generated in the coil part 112 due to the interaction between the magnetic field of the magnet part 122 and the current flowing in the coil part 112 (Fleming's left-hand rule). Since the coil portion 112 is fixed, a reaction force acts on the magnet portion 122 which is the movable body 12. This reaction force becomes the driving force of the voice coil motor for OIS.
具体的には、X軸方向に対向するチルトコイル112A、112Cに互いに逆向きの電流を流すと、永久磁石122A、122CにはZ方向において互いに逆向きの力が働く。したがって、撮像モジュール14を含む可動体12は、弾性支持部13の中央部13aを支点として、Y軸を中心に揺動回転する。同様に、Y軸方向に対向するチルトコイル112B、112Dに互いに逆向きの電流を流すと、撮像モジュール14を含む可動体12は、弾性支持部13の中央部13aを支点として、X軸を中心に揺動回転する。OIS用ボイスコイルモーターの駆動力(マグネット部122に働く力)と、弾性支持部13の復元力が釣り合うまで、可動体12は揺動回転する。
Specifically, when currents in opposite directions are passed through the tilt coils 112A and 112C facing each other in the X-axis direction, forces opposite to each other act in the Z direction on the permanent magnets 122A and 122C. Therefore, the movable body 12 including the imaging module 14 swings and rotates about the Y axis with the central portion 13a of the elastic support portion 13 as a fulcrum. Similarly, when currents in opposite directions are passed through the tilt coils 112B and 112D facing each other in the Y-axis direction, the movable body 12 including the imaging module 14 is centered around the X-axis with the central portion 13a of the elastic support portion 13 as a fulcrum. Oscillate and rotate. The movable body 12 swings and rotates until the driving force of the OIS voice coil motor (the force acting on the magnet portion 122) and the restoring force of the elastic support portion 13 are balanced.
このとき、可動体12の揺動回転によって、撮像モジュール14の振れが相殺されるように、位置ずれ検出部40の検出結果に基づいてコイル部112の通電電流が制御される。これにより、振れによる光軸のズレが補正され、光軸方向が一定に保持される。
At this time, the energization current of the coil unit 112 is controlled based on the detection result of the misalignment detection unit 40 so that the shake of the imaging module 14 is offset by the swinging rotation of the movable body 12. Thereby, the deviation of the optical axis due to the shake is corrected, and the optical axis direction is kept constant.
このように固定体11、可動体12、及び弾性支持部13を含むOIS用アクチュエーターAは、コイル基板80を介して、リジッドFPC70に実装される。これにより、OIS用アクチュエーターAを組み立てた後、リジッドFPC70に実装して接続する前に、OIS用アクチュエーターAを、コイル基板80の接続端子部82、83を介して、アクチュエーターAの動作確認が可能な検査評価装置に接続して、アクチュエーターA単体での評価(動作確認)を行うことができる。よって、動作不良がある場合はこれを使用せず、評価に合格した良品のみをリジッドFPC70に実装して、カメラモジュール100を製造できる。これにより、振れ検出部15としてのジャイロセンサー、ドライバーIC60等の高価な部品が実装され、且つ、単体でも高価な部品であるリジッドFPC70が、不良なOIS用アクチュエーターとともに使用不可となることを防止できる。その後、コイル基板80の接続端子部82、83をリジッドFPC70の接続端子部92、93に接続することにより、アクチュエーターAとリジッドFPC70とを接続して信頼性の高いカメラモジュール100を、生産コストを低減しつつ製造することができる。
Thus, the OIS actuator A including the fixed body 11, the movable body 12, and the elastic support portion 13 is mounted on the rigid FPC 70 via the coil substrate 80. Thereby, after assembling the OIS actuator A, before mounting and connecting to the rigid FPC 70, the operation of the actuator A can be confirmed via the connection terminal portions 82 and 83 of the coil substrate 80. It is possible to perform evaluation (operation check) with the actuator A alone by connecting to a simple inspection / evaluation apparatus. Therefore, when there is a malfunction, this is not used, and only the good product that has passed the evaluation can be mounted on the rigid FPC 70 to manufacture the camera module 100. Accordingly, it is possible to prevent the rigid FPC 70, which is an expensive component such as a gyro sensor and the driver IC 60 as the shake detection unit 15 from being mounted alone, and cannot be used together with a defective OIS actuator. . After that, by connecting the connection terminal portions 82 and 83 of the coil substrate 80 to the connection terminal portions 92 and 93 of the rigid FPC 70, the actuator A and the rigid FPC 70 are connected to each other, so that a highly reliable camera module 100 can be produced. It can be manufactured while reducing.
本実施の形態では、固定体11は、コイル基板80側から起立して設けられ、第1のコイル112A、及び第2のコイル112Bに対して、それぞれ第1の方向X及び第2の方向Yに側方に対向する片部111b、111bを有する。片部111b、111bは、第1のホール素子40a、及び第2のホール素子40bを係合して当接し、少なくとも光軸方向で位置決めする凹部(切欠部111c)を有する。言い換えれば、位置ずれ検出部40は、固定体11のベース部材111から、コイル部112の外方で立設し、当該コイル部112と対向する片部111b、111bに配置される。
In the present embodiment, the fixed body 11 is provided upright from the coil substrate 80 side, and the first direction X and the second direction Y with respect to the first coil 112A and the second coil 112B, respectively. Have side portions 111b and 111b facing sideways. The pieces 111b and 111b have a recess (notch 111c) that engages and contacts the first Hall element 40a and the second Hall element 40b and positions at least in the optical axis direction. In other words, the misalignment detection unit 40 is erected from the base member 111 of the fixed body 11 outside the coil unit 112, and is disposed on the pieces 111 b and 111 b facing the coil unit 112.
位置ずれ検出部40は、片部111bの切欠部111c内で切欠部111cに突き当てられることにより、コイル部112と、コイル部112内のマグネット部122との間で形成される磁束の流れを効率良く検出可能な位置に位置決めされる。特に、上方に切り欠かれ、ベース部材111からの所定の高さの底辺を有する凹状の切欠部111c内に、位置ずれ検出部40であるホール素子40a、40bを突き当てて固定している。
The misalignment detection unit 40 abuts against the notch 111c in the notch 111c of the piece 111b, thereby causing a magnetic flux formed between the coil 112 and the magnet 122 in the coil 112 to flow. It is positioned at a position where it can be detected efficiently. In particular, Hall elements 40a and 40b, which are misalignment detection units 40, are abutted and fixed in concave notches 111c that are notched upward and have a base with a predetermined height from the base member 111.
これにより、部品公差、組み立て公差が生じても、特に、コイル部112に対するマグネット部122の回転揺動方向であり、移動により磁束の向きが変わる位置検出に重要なZ方向の位置決めを、位置ずれ検出部40に対して行うことができ、高出力の位置検出を行うことができる。すなわち、ホール素子40a、40bの取り付け位置が、部品精度によって、ばらつくことがなく、これにより、ホール出力特性のばらつきを減少させることができる。
As a result, even if there is a component tolerance or assembly tolerance, positioning in the Z direction, which is important for detecting the position in which the direction of the magnetic flux changes due to movement, in particular, the rotational direction of the magnet part 122 with respect to the coil part 112, can be This can be performed on the detection unit 40, and high-output position detection can be performed. That is, the mounting positions of the Hall elements 40a and 40b do not vary depending on the component accuracy, thereby reducing variations in Hall output characteristics.
また、位置ずれ検出部40(ホール素子40a、40b)を、カメラモジュール100側面、つまり、コイル部112の外側に配置する構造において、位置ずれ検出部40をスカート部材114の壁体114bに取り付ける必要が無い。スカート部材114に位置ずれ検出部40(ホール素子40a、40b)を取り付ける際には、スカート部材114の壁体114bに穴を開けて、外部から位置ずれ検出部40を挿入することが考えられる。この構成の場合、スカート部材114の外面に、位置ずれ検出部40のための配線、例えば、FPCが必然的に露出する。このため、カメラモジュール100、100Aを組み立てる際に、特に、アクチュエーターAをリジッドFPC70に接続する際に、FPCは触られることでダメージを受け断線する可能性が生じる虞がある。
Further, in the structure in which the misalignment detection unit 40 ( Hall elements 40a and 40b) is arranged on the side of the camera module 100, that is, outside the coil unit 112, the misalignment detection unit 40 needs to be attached to the wall body 114b of the skirt member 114. There is no. When attaching the displacement detector 40 ( Hall elements 40a, 40b) to the skirt member 114, it is conceivable to make a hole in the wall body 114b of the skirt member 114 and insert the displacement detector 40 from the outside. In the case of this configuration, the wiring for the misregistration detection unit 40, for example, the FPC is inevitably exposed on the outer surface of the skirt member 114. For this reason, when assembling the camera modules 100 and 100A, especially when connecting the actuator A to the rigid FPC 70, there is a possibility that the FPC may be damaged by being touched and disconnected.
本実施の形態では、スカート部材114内に位置ずれ検出部40のための配線、例えば、FPCが配線されるので、異物が接触することがなく断線を防ぐことができる。
In this embodiment, since the wiring for the misregistration detection unit 40, for example, the FPC is wired in the skirt member 114, it is possible to prevent disconnection without contact with foreign matter.
また、スカート部材114の壁体114b、具体的にはスカート部材114の側面にFPCを張り付ける必要が無く、カメラモジュールの外形がFPC厚の分大きくなることがない。
Further, it is not necessary to attach the FPC to the wall body 114b of the skirt member 114, specifically, the side surface of the skirt member 114, and the outer shape of the camera module does not increase by the FPC thickness.
また、本実施の形態では、弾性支持部(支持部)13は、弾性変形により固定体11に対して可動体12を傾斜可能に支持する。枠状の保持部材(ヨーク)120は、撮像モジュール14が搭載される枠状のモジュール取付部1211aと、モジュール取付部1211aの内側に配置され、モジュール取付部1211aより低い段差面で弾性支持部13が取り付けられる支持部取付部(ジンバル取付部)1211bと、を有する。
In this embodiment, the elastic support portion (support portion) 13 supports the movable body 12 so as to be tiltable with respect to the fixed body 11 by elastic deformation. The frame-shaped holding member (yoke) 120 is disposed inside the frame-shaped module mounting portion 1211a on which the imaging module 14 is mounted, and the module mounting portion 1211a, and has a step surface lower than the module mounting portion 1211a. And a support part attachment part (gimbal attachment part) 1211b to which the is attached.
具体的には、ヨーク120のジンバル取付部1211bが、保持枠部1211aよりも一段低く形成され、一段低くして形成される段差の分だけ撮像モジュール14と弾性支持部13との離間距離が大きくなっている(図12の距離L参照)。すなわち、撮像モジュール14の底部は、ジンバルである弾性支持部13から予め離間した位置に配置される。これにより、撮像モジュール14がジンバル取付部1211bに固定される場合に比較して、可動体12がX軸を中心に捻れるように可動して揺動する場合でも、撮像モジュール14が弾性支持部13としてのジンバルばね(詳細にはY方向に延在するジンバル軸13yの端部13y1)に接触することがない。よって、撮像モジュール14がジンバル取付部1211bに固定される構成のカメラモジュールと比較して、可動体12の可動範囲を大きくできる。
Specifically, the gimbal mounting portion 1211b of the yoke 120 is formed one step lower than the holding frame portion 1211a, and the separation distance between the imaging module 14 and the elastic support portion 13 is increased by the level difference formed one step lower. (Refer to distance L in FIG. 12). That is, the bottom portion of the imaging module 14 is disposed at a position spaced in advance from the elastic support portion 13 that is a gimbal. Thereby, compared with the case where the imaging module 14 is fixed to the gimbal mounting portion 1211b, the imaging module 14 is elastically supported even when the movable body 12 is oscillated so as to be twisted about the X axis. No contact is made with the gimbal spring 13 (specifically, the end portion 13y1 of the gimbal shaft 13y extending in the Y direction). Therefore, the movable range of the movable body 12 can be increased as compared with a camera module having a configuration in which the imaging module 14 is fixed to the gimbal mounting portion 1211b.
本実施の形態のように、弾性支持部13としてジンバルを用いた構造では、固定体11に固定される平面視正方形状の中心部分を中心に、外縁側に取り付けられる可動体12を揺動可能に支持している。これにより、例えば、弾性支持部13であるジンバルのサイズ(ジンバルのX方向及びY方向のサイズ)を大きくしたい場合、可動体12の揺動時において、サイズが大きければ大きいほど、ジンバル自体(詳細には揺動方向側に位置する外縁部分)が撮像モジュール14に近づく距離が短くなり、可動範囲が狭くなるので、大きくできなかった。ジンバルばねと撮像モジュール14との衝突は、バネ曲がりの原因にもなっている。
As in the present embodiment, in the structure using the gimbal as the elastic support portion 13, the movable body 12 attached to the outer edge side can be swung around the center portion of the square shape in plan view fixed to the fixed body 11. I support it. Thereby, for example, when it is desired to increase the size of the gimbal which is the elastic support portion 13 (the size of the gimbal in the X direction and the Y direction), the larger the size when the movable body 12 is swung, the more the gimbal itself (details) In this case, the distance that the outer edge portion located on the swinging direction side approaches the imaging module 14 is shortened and the movable range is narrowed. The collision between the gimbal spring and the imaging module 14 also causes spring bending.
これに対し、本実施の形態のカメラモジュール100或いはカメラモジュール100の有するレンズ駆動装置によれば、撮像モジュール14とジンバル自体とを予め、揺動方向、つまり、高さ方向に離間させた位置に配置させることができる。これにより、ジンバルを大きくしたり、カメラモジュール自体を大きくしたりすることができる等、それらの設計に自由度を持たせることが出来る。
On the other hand, according to the camera module 100 of the present embodiment or the lens driving device included in the camera module 100, the imaging module 14 and the gimbal itself are previously separated in the swing direction, that is, in the height direction. Can be placed. Thereby, the gimbal can be enlarged, the camera module itself can be enlarged, and the degree of freedom can be given to those designs.
なお、本実施の形態のカメラモジュール100では、コイル基板80の端子数を12端子としたが、これに限らず、OIS用アクチュエーターAで用いられる部品の入出力端子に対応した数であればどのような数であってもよい。
In the camera module 100 of the present embodiment, the number of terminals of the coil substrate 80 is twelve. However, the number is not limited to this, and any number corresponding to the input / output terminals of components used in the OIS actuator A can be used. Such a number may be used.
また、カメラモジュール100では、位置ずれ検出部40としてのホール素子40a、40bをOIS用アクチュエーターA側に設けた構成としたが、リジッドFPC70側に設けてもよい。
In the camera module 100, the Hall elements 40a and 40b serving as the positional deviation detection unit 40 are provided on the OIS actuator A side, but may be provided on the rigid FPC 70 side.
(変形例)
図13は、本発明の一実施の形態に係るカメラモジュールの変形例を示す外観斜視図であり、図14は、同カメラモジュールの変形例を示す分解斜視図であり、図15は、同カメラモジュールにおけるコイル基板80Aの配線パターンの一例を示す平面図である。 (Modification)
13 is an external perspective view showing a modification of the camera module according to the embodiment of the present invention, FIG. 14 is an exploded perspective view showing a modification of the camera module, and FIG. It is a top view which shows an example of the wiring pattern of 80 A of coil boards in a module.
図13は、本発明の一実施の形態に係るカメラモジュールの変形例を示す外観斜視図であり、図14は、同カメラモジュールの変形例を示す分解斜視図であり、図15は、同カメラモジュールにおけるコイル基板80Aの配線パターンの一例を示す平面図である。 (Modification)
13 is an external perspective view showing a modification of the camera module according to the embodiment of the present invention, FIG. 14 is an exploded perspective view showing a modification of the camera module, and FIG. It is a top view which shows an example of the wiring pattern of 80 A of coil boards in a module.
図13及び図14で示すカメラモジュール100Aは、カメラモジュール100の構成において、位置ずれ検出部40を、OIS用アクチュエーターA側ではなく、リジッドFPC70側に設けた点が異なる。これに伴い、コイル基板80Aの端子数(接続端子部82A、83A)も、OIS用アクチュエーターAの端子数に対応して変更され、ここでは4端子の配線を有するコイル基板80Aとなる。その他、カメラモジュール100Aは、カメラモジュール100と比較して、同様の作用効果を有する。これにより、変形例のカメラモジュール100Aについて、モジュール100と同様の構成要素については同符号同名称を付して、同様の作用効果を有するものとして説明は省略する。
The camera module 100A shown in FIGS. 13 and 14 is different from the camera module 100 in that the misalignment detection unit 40 is provided not on the OIS actuator A side but on the rigid FPC 70 side. Along with this, the number of terminals ( connection terminal portions 82A, 83A) of the coil substrate 80A is also changed corresponding to the number of terminals of the actuator A for OIS, and here, the coil substrate 80A having four-terminal wiring is obtained. In addition, the camera module 100 </ b> A has the same operational effects as the camera module 100. Thereby, about the camera module 100A of a modification, the same code | symbol same name is attached | subjected about the component similar to the module 100, and description is abbreviate | omitted as having the same effect.
図14に示すように、ホール素子40a、40bは、OIS用アクチュエーター1Aが取り付けられるリジッドFPC70A側に備えている。なお、リジッドFPC70Aは、リジッド部70Aaと、フレキ部70Abとを有する。リジッド部70Aaでは、リジッド部70Aと同様に、ドライバーIC60と、中継基板30を介して実装された振れ検出部15と、AF駆動用のコネクタ71と、接続端子部92A、93Aとが、リジッド部70Aaに配線される回路に実装されている。接続端子部92A、93Aは、接続端子部82A、83Aに対応して配置され、対応する端子同士で接続される。
As shown in FIG. 14, the Hall elements 40a and 40b are provided on the rigid FPC 70A side to which the OIS actuator 1A is attached. The rigid FPC 70A includes a rigid portion 70Aa and a flexible portion 70Ab. In the rigid part 70Aa, like the rigid part 70A, the driver IC 60, the shake detection part 15 mounted via the relay substrate 30, the AF driving connector 71, and the connection terminal parts 92A and 93A are included in the rigid part. It is mounted on a circuit wired to 70Aa. The connection terminal portions 92A and 93A are arranged corresponding to the connection terminal portions 82A and 83A, and the corresponding terminals are connected to each other.
詳細には、リジッドFPC70Aのリジッド部70Aaにおいて、ホール素子40a、40bは上部のベース部材111Aの領域内で露出するように配置されている。
Specifically, in the rigid portion 70Aa of the rigid FPC 70A, the Hall elements 40a and 40b are arranged so as to be exposed in the region of the upper base member 111A.
リジッドFPC70A上に載置されるベース部材111A及びコイル基板80Aにおいて、リジッドFPC70A上で露出するホール素子40a、40bの位置と重なる箇所には、それぞれを貫通する切欠部119a、119bが形成されている。
In the base member 111A and the coil substrate 80A placed on the rigid FPC 70A, cutout portions 119a and 119b penetrating each other are formed at positions overlapping the positions of the hall elements 40a and 40b exposed on the rigid FPC 70A. .
これらの切欠部119a、119bを介してホール素子40a、40bは、ベース部材111上に載置されるコイル基板80A上で露出し、マグネット部122における4つの永久磁石122A~122Dのうちの2片とそれぞれ離間して対向配置される。カメラモジュール100Aにおいて、リジッドFPC70Aに実装されるホール素子40a、40bは、それぞれ永久磁石122B、122CにおけるN極からS極への方向を横切るように配置される。
The Hall elements 40a and 40b are exposed on the coil substrate 80A placed on the base member 111 through these notches 119a and 119b, and two pieces of the four permanent magnets 122A to 122D in the magnet portion 122 are exposed. And spaced apart from each other. In the camera module 100A, the Hall elements 40a and 40b mounted on the rigid FPC 70A are arranged so as to cross the directions from the N pole to the S pole in the permanent magnets 122B and 122C, respectively.
具体的には、ホール素子40a、40bは、コイル部112のY軸、X軸方向に沿って、チルトコイル112C、112Dよりも中心(光軸)側に配置されている。チルトコイル112B、112C内には、永久磁石122B、122Cがそれぞれ配置されるので、ホール素子40a、40bは、それぞれ永久磁石122C、122Dと対向して位置する構成となっている。このようにカメラモジュール100Aでは、ホール素子40a、40bは、撮像モジュール14の下方で、つまり、撮像モジュール14に近接した位置に配置されるので、より正確な位置ずれを検出できる。
Specifically, the Hall elements 40a and 40b are arranged on the center (optical axis) side of the tilt coils 112C and 112D along the Y-axis and X-axis directions of the coil portion 112. Since the permanent magnets 122B and 122C are respectively disposed in the tilt coils 112B and 112C, the hall elements 40a and 40b are configured to face the permanent magnets 122C and 122D, respectively. As described above, in the camera module 100A, the Hall elements 40a and 40b are arranged below the imaging module 14, that is, at a position close to the imaging module 14, so that a more accurate displacement can be detected.
ホール素子40a、40bの機能は、カメラモジュール100のものと同様である。すなわち、一方のホール素子40aは、図14のX方向左側を前、右側を後とした場合、光軸Oに対して第1の方向(前後方向)Xの前側に配置され、それと外側で対向する永久磁石122Cの磁力を検出することにより、第1の方向(前後方向)Xの移動(揺動)に伴う第1の位置を検出する。他方のホール素子40bは、光軸Oに対して第2の方向(左右方向)Yの左側に配置されており、それと対向する永久磁石122Bの磁力を検出することにより、第2の方向(左右方向)Yの移動(揺動)に伴う第2の位置を検出する。
The functions of the hall elements 40a and 40b are the same as those of the camera module 100. That is, one Hall element 40a is arranged on the front side in the first direction (front-rear direction) X with respect to the optical axis O, and faces the outside in the case where the left side in the X direction in FIG. By detecting the magnetic force of the permanent magnet 122C, the first position accompanying the movement (swing) in the first direction (front-rear direction) X is detected. The other Hall element 40b is arranged on the left side in the second direction (left-right direction) Y with respect to the optical axis O, and detects the magnetic force of the permanent magnet 122B facing it in the second direction (left-right direction). (Direction) The second position accompanying the movement (swing) of Y is detected.
一方、コイル基板80AはFPCであり、コイル基板80と異なり、ホール素子40a、40bが実装されていない。コイル基板80Aでは、図15に示すように、各チルトコイル112A~112Dの両端のそれぞれを給電パッド81は空中配線されている。また、コイル基板80Aにプリントされる配線(配線85のうち配線85a、85b)は、空中配線とX部分で重なるようにして引き回されており、これにより、片面FPC構造を実現している。なお、コイル基板80AのFPC配線85では、接続端子部82A、83Aの一端子から流れる電流が、互い対向するチルトコイルを通り、接続端子部82A、83Aの他端子から流れるように配線されている。このようなFPC70上の配線の引き回すことによって、マグネット122A~122Dの方向、チルトコイル112A~112Dの方向等、12端子のモジュールと比較しても変更することなく、両面FPCを用いることなく、コストダウンと省スペース化が図られる。
On the other hand, the coil substrate 80A is an FPC, and unlike the coil substrate 80, the Hall elements 40a and 40b are not mounted. In the coil substrate 80A, as shown in FIG. 15, the power supply pads 81 are wired in the air at both ends of each of the tilt coils 112A to 112D. Further, the wirings printed on the coil substrate 80A (the wirings 85a and 85b among the wirings 85) are routed so as to overlap with the aerial wirings at the X portion, thereby realizing a single-sided FPC structure. In the FPC wiring 85 of the coil substrate 80A, the current flowing from one terminal of the connection terminal portions 82A and 83A passes through the tilt coils facing each other and flows from the other terminal of the connection terminal portions 82A and 83A. . By routing the wiring on the FPC 70 as described above, the direction of the magnets 122A to 122D, the direction of the tilt coils 112A to 112D, etc. are not changed compared to a 12-terminal module, and the cost is reduced without using a double-sided FPC. Down and space saving are achieved.
なお、変形例のカメラモジュール100Aでは、OIS用アクチュエーター1Aを単体で、検査評価装置を用いて評価する場合、OIS用アクチュエーター1Aにはホール素子40a、40bが設けられていない。このため、ホール素子40a、40bの出力検査を行う場合は、検査評価装置側に、ホール素子を設けることによって、ホール素子の出力を得てホール素子の出力を用いた動作に関しても検査を行い評価することができる。
In addition, in the camera module 100A of the modified example, when the OIS actuator 1A is evaluated as a single unit using an inspection evaluation apparatus, the OIS actuator 1A is not provided with the hall elements 40a and 40b. For this reason, when the output inspection of the Hall elements 40a and 40b is performed, the Hall element is provided on the inspection / evaluation apparatus side so that the output of the Hall element is obtained and the operation using the output of the Hall element is also inspected and evaluated. can do.
また、本実施の形態のカメラモジュール100及び変形例としてのカメラモジュール100Aでは、本体カバー部材115は、可動体12とともに、可動体12を覆う固定体11のスカート部材114を覆う構成としたがこれに限らない。
Further, in the camera module 100 of the present embodiment and the camera module 100A as a modification, the main body cover member 115 covers the skirt member 114 of the fixed body 11 that covers the movable body 12 together with the movable body 12. Not limited to.
例えば、図16に示すカメラモジュール100Bのように、実施の形態1のカメラモジュール100における本体カバー部材115に替えて、スカート部材114の上方に乗せる積層カバー部材116及び配線基板カバー部材117を有する本体カバー部材115Bを有するようにしてもよい。積層カバー部材116は、スカート部材114とともに可動体12及び可動体12に取り付けられる撮像モジュール14を回転揺動自在に覆う。また、積層カバー部材116は、撮像モジュール14と同様に構成される撮像モジュール14Aの上方への移動を所定範囲内での移動に規制する等、本体カバー部材115と同様の機能を有する。なお、図16では、固定体11のリジッドFPC70に設けられるAF駆動用のコネクタ71(図5参照)は省略する。また、図16に示すカメラモジュール100Bについては、カメラモジュール100と同様の構成要素には同符号を付して説明を省略している。
For example, like a camera module 100B shown in FIG. 16, a main body having a laminated cover member 116 and a wiring board cover member 117 placed on the skirt member 114 instead of the main body cover member 115 in the camera module 100 of the first embodiment. You may make it have the cover member 115B. The laminated cover member 116 covers the movable body 12 and the imaging module 14 attached to the movable body 12 together with the skirt member 114 so as to be rotatable and swingable. The laminated cover member 116 has a function similar to that of the main body cover member 115, such as restricting upward movement of the imaging module 14A configured similarly to the imaging module 14 to movement within a predetermined range. In FIG. 16, the AF driving connector 71 (see FIG. 5) provided on the rigid FPC 70 of the fixed body 11 is omitted. In addition, regarding the camera module 100B illustrated in FIG. 16, the same components as those of the camera module 100 are denoted by the same reference numerals, and description thereof is omitted.
また、積層カバー部材116は、撮像モジュール用プリント配線基板143を導出する図示しない開口部を有し、この開口部から導出される撮像モジュール用プリント配線基板143は、配線基板カバー部材117により覆われている。
The multilayer cover member 116 has an opening (not shown) through which the imaging module printed wiring board 143 is led out. The imaging module printed wiring board 143 led out from the opening is covered by the wiring board cover member 117. ing.
配線基板カバー部材117は、開口部を覆うとともに、撮像モジュール用プリント配線基板143の撓み部分を覆う。この構成により、カメラモジュール100A全体の大きさを実施の形態1のカメラモジュール100よりも小さくできる。具体的には、積層カバー部材116は、スカート部材114の規制部114d上に設けて、受容口114aから突出する撮像モジュール14Aを覆うだけでよいので、可動体12及びスカート部材114を覆う本体カバー部材115を用いる構成よりも小さくできる。
The wiring board cover member 117 covers the bent portion of the imaging module printed wiring board 143 while covering the opening. With this configuration, the overall size of the camera module 100A can be made smaller than that of the camera module 100 of the first embodiment. Specifically, the laminated cover member 116 is provided on the restricting portion 114d of the skirt member 114 and only covers the imaging module 14A protruding from the receiving port 114a. Therefore, the main body cover that covers the movable body 12 and the skirt member 114 is provided. It can be made smaller than the configuration using the member 115.
以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above-described embodiment, and can be changed without departing from the gist thereof.
例えば、実施の形態では、固定体11がコイル部112を有し、可動体12がマグネット部122を有する、いわゆるムービングマグネット方式のアクチュエーターについて説明したが、本発明は、固定体がマグネット部を有し、可動体がコイル部を有する、いわゆるムービングコイル方式のアクチュエーターにも適用できる。この場合、ヨークも固定体に配置されることとなる。
For example, in the embodiment, a so-called moving magnet type actuator in which the fixed body 11 has the coil portion 112 and the movable body 12 has the magnet portion 122 has been described. However, in the present invention, the fixed body has the magnet portion. However, the present invention can also be applied to a so-called moving coil type actuator in which the movable body has a coil portion. In this case, the yoke is also disposed on the fixed body.
また、実施の形態では、X軸を中心に可動体12を揺動回転させるボイスコイルモーターとして、チルトコイル112A、永久磁石122A及びチルトコイル112C、永久磁石122Cの2組を配置し、Y軸を中心に可動体12を揺動回転させるボイスコイルモーターとして、チルトコイル112B、永久磁石122B及びチルトコイル112D、永久磁石122Dの2組を配置しているが、それぞれ少なくとも1組が配置されていればよい。
In the embodiment, two sets of the tilt coil 112A, the permanent magnet 122A, the tilt coil 112C, and the permanent magnet 122C are arranged as a voice coil motor that swings and rotates the movable body 12 about the X axis, and the Y axis is Two sets of a tilt coil 112B, a permanent magnet 122B, a tilt coil 112D, and a permanent magnet 122D are arranged as voice coil motors that swing and rotate the movable body 12 at the center. If at least one set is arranged, respectively. Good.
位置ずれ検出部40は、固定体11上で、可動体12の底面に対向して配置されている。これにより、位置ずれ検出部40は、占有スペースを極力小さくして、振れ補正を可能にする。
The positional deviation detection unit 40 is disposed on the fixed body 11 so as to face the bottom surface of the movable body 12. As a result, the positional deviation detection unit 40 makes the occupation space as small as possible and enables shake correction.
また、OIS用アクチュエーターAを構成する各部品は、耐熱性の高い材料で構成されるのが好ましい(特にマグネット部122)。これにより、リフロー方式によるはんだ付けに対応できる。また、ノイズ対策として、カメラモジュール100の外側に導電性のシールドケースを設けるようにしてもよい。
Further, each component constituting the OIS actuator A is preferably made of a material having high heat resistance (particularly, the magnet portion 122). Thereby, it can respond to the soldering by a reflow system. Further, a conductive shield case may be provided outside the camera module 100 as a noise countermeasure.
実施の形態では、カメラモジュール100を備えるカメラ搭載装置の一例として、カメラ付き携帯端末であるスマートフォンを挙げて説明したが、本発明は、情報機器または輸送機器であるカメラ搭載装置として適用できる。例えば、本発明は、カメラ搭載装置として、カメラ付き携帯電話機、ノート型パソコン、タブレット端末、携帯型ゲーム機、webカメラ等にも適用できる。また、本発明は、カメラ搭載装置として、自動車又はカメラ付き車載装置(例えば、バックモニター装置、ドライブレコーダー装置)等にも適用できる。図17は、車載用のカメラモジュールVC(Vehicle Camera)を搭載する自動車Cを示す図である。図17Aは自動車Cの正面図であり、図17Bは自動車Cの後方斜視図である。自動車Cは、例えば車載用カメラモジュールVCとして、実施の形態で説明したカメラモジュール100を搭載する。この車載用カメラモジュールVCは、バックモニター用、ドライブレコーダー用、衝突回避制御用、自動運転制御用等として使用される。
In the embodiment, a smartphone as a mobile terminal with a camera has been described as an example of a camera mounting device including the camera module 100, but the present invention can be applied as a camera mounting device as an information device or a transport device. For example, the present invention can be applied to a camera-equipped mobile phone, a notebook computer, a tablet terminal, a portable game machine, a web camera, and the like as a camera-mounted device. The present invention can also be applied to a vehicle or a vehicle-mounted device with a camera (for example, a back monitor device or a drive recorder device) as a camera-mounted device. FIG. 17 is a diagram showing an automobile C equipped with a vehicle-mounted camera module VC (Vehicle Camera). 17A is a front view of the automobile C, and FIG. 17B is a rear perspective view of the automobile C. The automobile C is equipped with the camera module 100 described in the embodiment, for example, as an in-vehicle camera module VC. This in-vehicle camera module VC is used for a back monitor, a drive recorder, a collision avoidance control, an automatic driving control, and the like.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
2015年6月25日出願の特願2015-127686の日本出願および2016年3月24日出願の特願2016-060058の日本出願にそれぞれ含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2015-127686 filed on June 25, 2015 and the Japanese application of Japanese Patent Application No. 2016-060058 filed on March 24, 2016 are all Incorporated herein by reference.
11 固定体
12 可動体
13 弾性支持部(支持部)
13a 中央部
13b 内側ジンバル
13c 外側ジンバル
14 撮像モジュール
15 振れ検出部
30 中継基板
40 位置ずれ検出部
40a、40b ホール素子
60 ドライバーIC
70、70A リジッドFPC(メイン基板)
70a、70Aa リジッド部
70b、70Ab フレキ部
80、80A コイル基板(フレキシブルプリント基板)
81 給電パッド
82、82A、83、83A 接続端子部(端子部)
92、93 接続端子部
100、100A、100B カメラモジュール
111、111A ベース部材
111a 突出部
112 コイル部
112A、112B、112C、112D チルトコイル
114 スカート部材
114a 受容口
114d 規制部
115、115B カバー部材
115a 開口
120 ヨーク(保持部材)
121 ヨーク本体
121b 外側垂下部
121c 内側垂下部
1211a モジュール取付部
1211b ジンバル取付部
122 マグネット部
122A、122B、122C、122D 永久磁石
126 モジュールガイド
141 レンズ部
142 AF用アクチュエーター
VC 車載用カメラモジュール DESCRIPTION OFSYMBOLS 11 Fixed body 12 Movable body 13 Elastic support part (support part)
13aCentral part 13b Inner gimbal 13c Outer gimbal 14 Imaging module 15 Shake detection part 30 Relay board 40 Misalignment detection part 40a, 40b Hall element 60 Driver IC
70, 70A Rigid FPC (Main PCB)
70a, 70AaRigid part 70b, 70Ab Flexible part 80, 80A Coil substrate (flexible printed circuit board)
81 Power supply pad 82, 82A, 83, 83A Connection terminal part (terminal part)
92, 93 Connection terminal part 100, 100A, 100B Camera module 111, 111A Base member 111a Protruding part 112 Coil part 112A, 112B, 112C, 112D Tilt coil 114 Skirt member 114a Receiving port 114d Restricting part 115, 115B Cover member 115a Opening 120 Yoke (holding member)
121Yoke body 121b Outer hanging part 121c Inner hanging part 1211a Module mounting part 1211b Gimbal mounting part 122 Magnet part 122A, 122B, 122C, 122D Permanent magnet 126 Module guide 141 Lens part 142 AF actuator VC In-vehicle camera module
12 可動体
13 弾性支持部(支持部)
13a 中央部
13b 内側ジンバル
13c 外側ジンバル
14 撮像モジュール
15 振れ検出部
30 中継基板
40 位置ずれ検出部
40a、40b ホール素子
60 ドライバーIC
70、70A リジッドFPC(メイン基板)
70a、70Aa リジッド部
70b、70Ab フレキ部
80、80A コイル基板(フレキシブルプリント基板)
81 給電パッド
82、82A、83、83A 接続端子部(端子部)
92、93 接続端子部
100、100A、100B カメラモジュール
111、111A ベース部材
111a 突出部
112 コイル部
112A、112B、112C、112D チルトコイル
114 スカート部材
114a 受容口
114d 規制部
115、115B カバー部材
115a 開口
120 ヨーク(保持部材)
121 ヨーク本体
121b 外側垂下部
121c 内側垂下部
1211a モジュール取付部
1211b ジンバル取付部
122 マグネット部
122A、122B、122C、122D 永久磁石
126 モジュールガイド
141 レンズ部
142 AF用アクチュエーター
VC 車載用カメラモジュール DESCRIPTION OF
13a
70, 70A Rigid FPC (Main PCB)
70a, 70Aa
81
92, 93
121
Claims (9)
- コイル部及びマグネット部を有するボイスコイルモーターの駆動力によって、レンズ部及び撮像素子を有する撮像モジュールを傾斜させて振れ補正を行うレンズ駆動装置であって、
前記撮像モジュールが載置される枠状の保持部材を有し、前記保持部材に前記マグネット部を配置して構成される可動体と、
ベース部材を有し、前記ベース部材に前記コイル部を配置して構成される固定体と、
前記ベース部材に配置され、前記固定体に対して前記可動体を傾斜可能に支持する支持部と、
前記コイル部に給電して前記ボイスコイルモーターを駆動して振れ補正を可能にする回路を有し、前記固定体が固定されるメイン基板と、
を有し、
前記固定体は、前記コイル部が接続された端子部を有するコイル基板を有し、
前記コイル部は、前記コイル基板の前記端子部を介して前記メイン基板の回路に接続される、
レンズ駆動装置。 A lens driving device that performs shake correction by inclining an imaging module having a lens unit and an imaging element by a driving force of a voice coil motor having a coil unit and a magnet unit,
A movable body having a frame-like holding member on which the imaging module is placed, and the magnet member being arranged on the holding member;
A fixed body having a base member and configured by arranging the coil portion on the base member;
A support portion that is disposed on the base member and supports the movable body in an inclinable manner with respect to the fixed body;
A circuit that feeds power to the coil unit and drives the voice coil motor to enable shake correction, and a main board to which the fixed body is fixed;
Have
The fixed body has a coil substrate having a terminal portion to which the coil portion is connected,
The coil part is connected to the circuit of the main board via the terminal part of the coil board.
Lens drive device. - 前記コイル基板は、フレキシブルプリント基板である、
請求項1記載のレンズ駆動装置。 The coil substrate is a flexible printed circuit board.
The lens driving device according to claim 1. - 前記メイン基板はリジッドフレキシブル基板である、
請求項1記載のレンズ駆動装置。 The main board is a rigid flexible board,
The lens driving device according to claim 1. - 前記コイル部及び前記マグネット部は、前記可動体を、前記レンズ部の光軸方向と直交する第1の方向に移動する第1のコイル及び第1のマグネットと、
前記光軸方向及び第1の方向と直交する第2の方向とに移動する第2のコイル及び第2のマグネットとを有し、
前記固定体は、前記第1のマグネット及び前記第2のマグネットの磁力をそれぞれ検出する第1及び第2のホール素子を有し、
前記コイル基板の端子部は、前記第1のコイル、前記第2のコイル、第1のホール素子、及び前記第2のホール素子に接続され、
前記第1のコイル、前記第2のコイル、前記第1のホール素子、及び前記第2のホール素子は、前記コイル基板の前記端子部を介して前記メイン基板の回路に接続される、
請求項1記載のレンズ駆動装置。 The coil unit and the magnet unit include a first coil and a first magnet that move the movable body in a first direction orthogonal to the optical axis direction of the lens unit,
A second coil and a second magnet that move in the optical axis direction and a second direction orthogonal to the first direction;
The fixed body includes first and second Hall elements that detect magnetic forces of the first magnet and the second magnet, respectively.
The terminal portion of the coil substrate is connected to the first coil, the second coil, the first Hall element, and the second Hall element,
The first coil, the second coil, the first Hall element, and the second Hall element are connected to a circuit of the main board through the terminal portion of the coil board.
The lens driving device according to claim 1. - 前記支持部は、弾性変形により前記固定体に対して前記可動体を傾斜可能に支持する弾性支持部であり、
前記枠状の保持部材は、前記撮像モジュールが搭載される枠状のモジュール取付部と、
前記モジュール取付部の内側に配置され、当該モジュール取付部より低い段差面で前記支持部が取り付けられる支持部取付部と、
を有する、
請求項1記載のレンズ駆動装置。 The support part is an elastic support part that supports the movable body in an inclined manner with respect to the fixed body by elastic deformation,
The frame-shaped holding member includes a frame-shaped module mounting portion on which the imaging module is mounted;
A support portion mounting portion that is disposed inside the module mounting portion and to which the support portion is mounted at a step surface lower than the module mounting portion;
Having
The lens driving device according to claim 1. - 前記コイル基板は、前記ベース部材上に配置され、前記コイル基板の前記端子部は、前記ベース部材の側方に延出されている、
請求項1記載のレンズ駆動装置。 The coil substrate is disposed on the base member, and the terminal portion of the coil substrate extends to the side of the base member.
The lens driving device according to claim 1. - 請求項1記載のレンズ駆動装置と、
レンズ部及び撮像素子を有し、前記保持部材に接着される撮像モジュールと、
前記撮像モジュールの振れを検出する振れ検出部と、
を備える、
カメラモジュール。 A lens driving device according to claim 1;
An imaging module having a lens part and an imaging element and bonded to the holding member;
A shake detection unit for detecting shake of the imaging module;
Comprising
The camera module. - 前記撮像モジュールは、オートフォーカス機能を有する、
請求項7記載のカメラモジュール。 The imaging module has an autofocus function,
The camera module according to claim 7. - 情報機器または輸送機器であるカメラ搭載装置であって、
請求項7記載のカメラモジュールを備える、
カメラ搭載装置。 A camera-equipped device that is an information device or a transport device,
The camera module according to claim 7 is provided.
Camera mounted device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/738,243 US10371921B2 (en) | 2015-06-25 | 2016-06-15 | Lens drive device, camera module, and camera mounting device |
CN201680036239.1A CN107710066B (en) | 2015-06-25 | 2016-06-15 | Lens driving device, camera module, and camera mounting device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-127686 | 2015-06-25 | ||
JP2015127686 | 2015-06-25 | ||
JP2016060058A JP6617633B2 (en) | 2015-06-25 | 2016-03-24 | Lens driving device, camera module, and camera mounting device |
JP2016-060058 | 2016-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016208156A1 true WO2016208156A1 (en) | 2016-12-29 |
Family
ID=57584816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/002889 WO2016208156A1 (en) | 2015-06-25 | 2016-06-15 | Lens drive device, camera module, and camera mounting device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016208156A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111625025A (en) * | 2020-04-24 | 2020-09-04 | Oppo(重庆)智能科技有限公司 | Parameter calibration method and device, storage medium and electronic equipment |
CN114167567A (en) * | 2017-04-06 | 2022-03-11 | Lg伊诺特有限公司 | Lens driving unit, and image pickup device module and optical device including the same |
CN114740677A (en) * | 2017-03-30 | 2022-07-12 | Lg伊诺特有限公司 | Double-lens driving device and camera module |
EP4171007A4 (en) * | 2020-06-24 | 2024-01-10 | Huawei Technologies Co., Ltd. | Camera module and electronic device |
TWI832457B (en) * | 2022-09-23 | 2024-02-11 | 新煒科技有限公司 | Periscope camera module and electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013024938A (en) * | 2011-07-15 | 2013-02-04 | Mitsumi Electric Co Ltd | Lens drive device |
JP2014010287A (en) * | 2012-06-29 | 2014-01-20 | Mitsumi Electric Co Ltd | Camera module drive device and portable terminal with camera |
JP2015069004A (en) * | 2013-09-30 | 2015-04-13 | 日本電産サンキョー株式会社 | Photographing optical device |
WO2016103687A1 (en) * | 2014-12-24 | 2016-06-30 | ミツミ電機株式会社 | Actuator, camera module, and camera mounting device |
-
2016
- 2016-06-15 WO PCT/JP2016/002889 patent/WO2016208156A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013024938A (en) * | 2011-07-15 | 2013-02-04 | Mitsumi Electric Co Ltd | Lens drive device |
JP2014010287A (en) * | 2012-06-29 | 2014-01-20 | Mitsumi Electric Co Ltd | Camera module drive device and portable terminal with camera |
JP2015069004A (en) * | 2013-09-30 | 2015-04-13 | 日本電産サンキョー株式会社 | Photographing optical device |
WO2016103687A1 (en) * | 2014-12-24 | 2016-06-30 | ミツミ電機株式会社 | Actuator, camera module, and camera mounting device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114740677A (en) * | 2017-03-30 | 2022-07-12 | Lg伊诺特有限公司 | Double-lens driving device and camera module |
US11747715B2 (en) | 2017-03-30 | 2023-09-05 | Lg Innotek Co., Ltd. | Dual lens driving apparatus and camera module |
CN114167567A (en) * | 2017-04-06 | 2022-03-11 | Lg伊诺特有限公司 | Lens driving unit, and image pickup device module and optical device including the same |
CN114167567B (en) * | 2017-04-06 | 2024-05-03 | Lg伊诺特有限公司 | Lens driving unit, and image pickup device module and optical device including the same |
CN111625025A (en) * | 2020-04-24 | 2020-09-04 | Oppo(重庆)智能科技有限公司 | Parameter calibration method and device, storage medium and electronic equipment |
CN111625025B (en) * | 2020-04-24 | 2023-04-28 | Oppo(重庆)智能科技有限公司 | Parameter calibration method and device, storage medium and electronic equipment |
EP4171007A4 (en) * | 2020-06-24 | 2024-01-10 | Huawei Technologies Co., Ltd. | Camera module and electronic device |
TWI832457B (en) * | 2022-09-23 | 2024-02-11 | 新煒科技有限公司 | Periscope camera module and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6617633B2 (en) | Lens driving device, camera module, and camera mounting device | |
WO2016194345A1 (en) | Actuator, camera module, and camera mounted device | |
EP3239772B1 (en) | Actuator, camera module, and device including the camera module | |
US10944909B2 (en) | Actuator, camera module, and camera-mounted device | |
CN108351573B (en) | Lens driving device, camera module, and camera mounting device | |
JP6492976B2 (en) | Actuator, camera module and camera mounting device | |
KR102292067B1 (en) | Actuator, Camera Module, and Mobile Terminal with Camera | |
JP6449201B2 (en) | Lens drive device | |
WO2016208156A1 (en) | Lens drive device, camera module, and camera mounting device | |
CN112055833B (en) | Camera actuator, camera module, and camera mounting device | |
CN112334826B (en) | Camera actuator, camera module, and camera-mounted device | |
US12055839B2 (en) | Camera actuator, camera module, and camera mount device | |
JP2017015772A (en) | Actuator, camera module and camera mounting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16813930 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16813930 Country of ref document: EP Kind code of ref document: A1 |