WO2016208050A1 - Downhole compressor, resource recovery system and method for handling resource recovery system - Google Patents
Downhole compressor, resource recovery system and method for handling resource recovery system Download PDFInfo
- Publication number
- WO2016208050A1 WO2016208050A1 PCT/JP2015/068445 JP2015068445W WO2016208050A1 WO 2016208050 A1 WO2016208050 A1 WO 2016208050A1 JP 2015068445 W JP2015068445 W JP 2015068445W WO 2016208050 A1 WO2016208050 A1 WO 2016208050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- energy
- recovery system
- resource recovery
- transmission mechanism
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000011084 recovery Methods 0.000 title claims description 21
- 230000007246 mechanism Effects 0.000 claims abstract description 69
- 238000012546 transfer Methods 0.000 claims abstract description 41
- 230000005540 biological transmission Effects 0.000 claims abstract description 25
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 5
- 230000032258 transport Effects 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- 239000003345 natural gas Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002343 natural gas well Substances 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/12—Methods or apparatus for controlling the flow of the obtained fluid to or in wells
- E21B43/121—Lifting well fluids
- E21B43/128—Adaptation of pump systems with down-hole electric drives
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
Definitions
- the present invention relates to a downhole compressor installed underground, a resource recovery system that supplies power to the compressor from the ground, and a method of handling the resource recovery system.
- Oil and natural gas are buried in the formation where the impermeable bedrock layer is curved, and there are many wells (oil fields and gas fields) buried at a depth of 1000 m or more from the ground. To do. In oil and natural gas wells, the pressure of the buried formations (buried formations) is high, so oil and natural gas often blow out from the vertical holes communicating from the ground to the buried formations. However, as production progresses and the amount of reserves decreases, the pressure of the buried layer decreases and self-injection stops. For this reason, measures such as introducing a compressor deep underground in the vertical hole to increase the pressure of the surrounding fluid and ejecting oil and natural gas to the ground are being taken.
- a turbo pump in order to transfer a liquid or a gas medium to the ground, a turbo pump is arranged in a transfer pipe connected to, for example, a well at a depth of 2000 m or more in a vertical hole communicating from the ground to the buried layer.
- a system for transferring a liquid or gas medium to the ground by driving a pump is described.
- the turbo pump is powered by a cable connected from the ground.
- a wired power cable is physically connected to a compressor that is inserted deep underground in a vertical hole, and power is supplied from a ground power source.
- the vertical hole is a double pipe composed of an outer cylinder and an inner cylinder
- the feeding cable is band-fixed to the outer surface of the inner cylinder of the double pipe at a constant pitch, and at the compressor installation position, the inner pipe is compressed.
- the underground temperature increases as the depth from the ground increases.
- the buried layer in which oil or natural gas is buried has a depth of 1000 m or more from the ground, the buried layer becomes a high temperature environment exceeding 100 ° C. Furthermore, since oil fields and natural gas fields contain corrosive gases such as hydrogen sulfide, the buried layer is a severe corrosive environment. For this reason, compressors installed in inner cylinders that become oil and natural gas flow paths and are exposed to severe corrosive environments are considered to have a high risk of failure due to corrosion. Is assumed to be expensive.
- This invention is made in view of the said subject, The objective is to shorten the construction time required for replacement
- the present invention is configured by a double pipe configured from an outer cylinder and an inner cylinder and communicating from the ground to an underground well base, and is installed in the well base inside the inner pipe of the double pipe.
- the compressor replacement period can be greatly shortened, the operating rate of the well source can be improved.
- summary of the wireless electric power feeding system which supplies electric power to the compressor installed in a basement by a non-contact system.
- Example 1 a wireless power feeding system that supplies electric power from the ground to a compressor that pressurizes a fluid installed at a depth exceeding 1000 m from the ground will be described with reference to FIGS.
- the wireless power feeding system that supplies power to the compressor 4 includes at least a double pipe 3 that includes an outer cylinder 1 and an inner cylinder 2 and communicates to a depth exceeding 1000 m from the ground, and a duplex having a depth exceeding 1000 m from the ground.
- Compressor 4 installed in the inner tube 2 for boosting the fluid, AC power supply 5 for supplying electricity from the ground, and installed outside the inner tube 2 for the double tube having a depth exceeding 1000 m from the ground.
- the wireless power supply primary coil 6, the wireless power supply secondary coil 7 provided in the compressor, and the AC power supply 5 and the power supply cable 8 that electrically connects the wireless power supply primary coil 6 are configured.
- the power supply cable 8 between the AC power supply 5 and the primary coil 6 for wireless power supply is installed on the outer surface of the inner cylinder 2 by being bound with a metal strip 9 or the like.
- a wattmeter 29 is provided which measures the electromotive force generated in the secondary coil 7 for wireless power feeding provided inside the compressor.
- FIG. 5 shows a part of the detailed structure of the compressor fixing mechanism 10.
- the required number of compressor fixing mechanisms 10 are provided at the positions of the upper end portion and the lower end portion inside the compressor.
- FIG. 5 shows a part of them.
- a compressor fixing mechanism 10 for pushing out a fixing jig 21 to a compressor fixing structure 20 on the inner surface of the inner tube of the double pipe.
- the compressor fixing mechanism 10 includes a screw shaft 22, a nut 23, a screw shaft. It is comprised by the drive motor 24 which rotates these, and the flame
- the screw shaft 22 is provided with a screw thread symmetrically with respect to the paper surface with the central portion as a boundary, and the fixing jig 21 can be pushed out by rotating the screw shaft 22 by a drive motor 24.
- a structure in which a recess is provided on the inner surface of the inner tube 2 of the double tube 3 can be adopted.
- the fixing jig 21 may be a protrusion having a shape that can be inserted into a hollow shape provided on the inner surface of the inner tube 2 of the double tube 3.
- a wire rope 14 for pulling the compressor 4 a winch 18 that winds and sends the wire rope 14, extra cables and wires.
- a reel 19 for collecting the rope as needed, a power source and signal cable 15 for transmitting power and control signals to the compressor transfer device 11, and a power source and control device 16 for supplying power and control signals to the compressor transfer device.
- the compressor transfer device 11 includes a drive mechanism 12, and the drive mechanism is in contact with the inner cylinder 2 by a tire or the like so as to be able to travel on the inner surface of the inner cylinder 2 of the double pipe.
- the double pipe 3 provided up to a depth of more than 1000 m from the ground is not necessarily required to pass through the double pipe having an inclination depending on the place, not only in a place provided vertically. This is to guide the well 4 to the well so that the compressor 4 does not stop in the middle of 3.
- the compressor transfer device 11 is used because there is a possibility that the compressor 4 may be difficult to enter the well base due to the pressure difference.
- the compressor transfer device 11 and the compressor 4 are connected by a gripping mechanism 13 and a carry-in / out lifting jig 17.
- the wireless power feeding to the compressor 4 is caused by causing a magnetic field fluctuation generated by supplying an alternating current to the wireless power feeding primary coil 6 to the inside of the wireless power feeding secondary coil 7. This is realized by generating electromotive force by electromagnetic induction.
- the supply of alternating current to the wireless power feeding primary coil 6 is supplied from the alternating current power source 5 through the feeding cable 8.
- the wireless power supply may be performed in a non-contact manner, and is not limited to the coil of this embodiment. That is, the wireless power feeding primary coil 6 and the wireless power feeding secondary coil 7 may be configured so as to be separable, and there may be no space between the two coils so that they are substantially in contact with each other. Absent.
- the control of the compressor 4 is performed by, for example, using a control signal of the control device 35 and an operation state signal of the compressor 4 using a compressor control signal cable 36 and an infrared transmission / reception window 38 laid in the same manner as the power supply cable 8. It implement
- FIG. In this case, the compressor 4 also needs to be provided with infrared communication means and an infrared transmission / reception window 37. It is necessary to match the positions of the primary coil 6 for wireless power feeding and the secondary coil 7 for wireless power feeding and the positions of the infrared receiving and transmitting windows 37 and 38 of the compressor 4 and the inner cylinder 2 with high accuracy. For this reason, high positioning accuracy is requested
- FIG. 2 A method for installing the compressor at a depth exceeding 1000 m from the ground with high positioning accuracy will be described with reference to FIGS. 2, 3, and 4 and FIG. 8 (step diagram) of the flow.
- the compressor 4 is attached to the compressor transfer device 11 and hung with a wire rope 14 to be inserted into the inner tube 2 of the double pipe 3, Lower to the deep underground (step 102).
- the compressor transfer device 11 is configured to be able to travel by a drive mechanism 12 that can move at least inside the inner tube of the double pipe, so that the compressor 4 can reach the predetermined position of the well without stopping midway. It is possible to guide.
- the compressor 4 is gripped by a gripping mechanism 13 that grips a carry-in / out suspension jig 17 of the compressor.
- the gripping mechanism 13 is provided with a plug 25 for supplying power to the compressor 4 and transmitting / receiving control signals.
- the compressor 4 is also provided with a socket 26 to which the plug 25 is connected, and the measurement result of the electromotive force of the secondary coil 7 for wireless power feeding is transmitted.
- the compressor transfer device 11 is connected to the ground power supply and control device 16 through a power supply and signal cable 15, and transmits the electromotive force measurement result of the secondary coil 7 for wireless power feeding to the control device, and the drive mechanism. 12 and the gripping mechanism 13 are operated. At this time, an alternating current is supplied from the ground AC power source 5 to the primary coil 6 for wireless power feeding, and a magnetic field fluctuation is generated in the vicinity of the primary coil 6 for wireless power feeding.
- Step 103 the fixing jig 21 is pushed out from the compressor fixing mechanism 10 to the compressor fixing structure 20 on the inner surface of the inner cylinder 2 of the double pipe 3 to fix the compressor 4 inside the inner cylinder 2 (Step 104).
- the measurement value within a range in which the electric power that can sufficiently operate the compressor 4 can be supplied may be detected and fixed as a predetermined value.
- the compressor 4 can be positioned with high positional accuracy.
- the gripping mechanism 13 of the compressor transfer device 11 is separated from the carry-in / out lifting jig 17 of the compressor, and the compressor transfer device 11 is recovered as shown in FIG. To do.
- Compressor is operated for a predetermined period to produce oil and natural gas (step 105). After a predetermined period, the compressor 4 is recovered for periodic inspection or when a failure occurs.
- the compressor 4 When recovering the compressor 4, the compressor 4 is recovered by reversing the above-described compressor installation procedure. Specifically, first, the drive mechanism 12 is driven to transfer the compressor transfer device 11 to the installation position of the compressor 4 inside the inner tube 2 of the double pipe 3, and the gripping mechanism 13 of the compressor transfer device 11. The gripping jig 17 for carrying in and out of the compressor is gripped. Thereafter, the fixing jig of the compressor fixing mechanism 10 is pulled back from the compressor fixing structure 20 on the inner surface of the inner cylinder 2 of the double pipe 3 to release the fixing, and through the inside of the inner cylinder 2 of the double pipe 3 together with the compressor transfer device 11. The compressor 4 is transferred to the ground (step 106).
- the compressor fixing mechanism is released by operating the drive motor 24 of the compressor fixing mechanism by connecting the plug 25 provided in the compressor transfer device 11 to the socket 26 provided in the compressor and supplying power. To release.
- electricity is supplied via the compressor transfer device 11 for releasing the compressor fixing mechanism. This is not only for the compressor 4 but also for wireless power feeding in a harsh environment of 1000 m or more underground. It is also assumed that the primary coil 6 and the secondary coil 7 for wireless power feeding will fail, and if the power is made to depend only on the wireless power feeding coil, the compressor 4 cannot be recovered and may be recovered together with the inner cylinder 2. In order to avoid this, power is supplied via another route to improve the reliability of the system. In addition, as shown in FIG.
- the compressor fixing mechanism is separately configured, and the screw shaft 22 of the compressor fixing mechanism is extended to directly operate the screw shaft by the screw shaft rotating operation mechanism 28 provided in the compressor transfer device 11. You may comprise. Thereby, since it can be provided only by a mechanical mechanism without using an electronic component, it is possible to make the device more resistant to failure without using an electrical component.
- a wired power cable is physically connected to the compressor and power is supplied from the ground. Therefore, to replace the compressor, replace the vertical hole (double pipe inner cylinder) (
- the wired cable is not physically connected to the compressor, the vertical hole (inner cylinder of the double pipe) is required.
- the compressor can be replaced without replacement).
- the exchange period of a compressor can be shortened significantly, the operating rate of a well source can be improved.
- the secondary coil for wireless power feeding is housed in the compressor, the terminal portion of the electric wire can be isolated from the corrosive environment, so that the corrosion resistance of the compressor is also improved.
- the compressor can be installed at a predetermined position with high positioning accuracy in a remote place that is more than 1000 m underground.
- Example 2 will be described with reference to FIG. The description of the parts having the same configuration as in Example 1 is omitted.
- a stator coil 30 and a rotor (permanent magnet) 31 are provided in place of the wireless power feeding primary coil 6 and the wireless power feeding secondary coil 7.
- the rotor 31 is directly fixed to the rotary shaft 32 of the compressor, and the rotary blades 33 of the compressor are fixed to the rotary shaft.
- the compressor including the stator coil provided in the double tube can be regarded as a compressor.
- the wattmeter 29 replaces the magnetic field measuring device 34 for measuring the strength of the magnetic field, whereby the positional relationship between the rotor 31 of the compressor and the stator coil 30 provided in the double tube. Can be accurately grasped.
- this embodiment can selectively replace only a portion that is exposed to a harsh environment and has a high failure probability, and can further improve the operating rate of the well source.
- the control mechanism can be out of the compressor, so that the system is more resistant to failure.
- the primary coil 6 for wireless power feeding and the secondary coil 7 for wireless power feeding, the stator coil 30 and the rotor 31 are used to transmit electric power and driving force.
- the present invention is not limited to this as long as it can transmit energy (electricity, magnetic field, etc.) in a substantially non-contact manner.
- the non-contact method is not limited, for example, as long as the primary coil 6 for wireless power feeding and the secondary coil 7 for wireless power feeding are configured to be separable, and there is no space between them.
- this invention is not limited to the above-mentioned Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- Plug 26 ... Socket 27 ... Drive motor 28 of compressor transfer device ... Screw shaft rotation operating mechanism 29 ... Wattmeter 30 ... Stator coil 31 . Rotor (permanent magnet) 32 ... Rotary shaft 33 of compressor ... Rotary blade 34 of compressor ... Magnetic field measuring device 35 ... Control device 36 ... Signal cables 37 and 38 for compressor control.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
The present invention addresses the problem of reducing the work time required to replace a compressor and improving the operation rate of a wellhead. In order to solve said problem, the present invention is characterized by comprising: a double-walled pipe that is constituted from an outer tube and an inner tube, and extends from above the ground to a wellhead that is below the ground; a compressor that is installed in the wellhead inside the inner tube of the double-walled pipe, and pressurizes a fluid; an energy supply source that supplies energy; a first energy transmission mechanism that is provided in the double-walled pipe, and transmits energy using a non-contact method; a second energy transmission mechanism that is provided in the compressor, and transfers, using a non-contact method, the energy transmitted from the first energy transmission mechanism; and a cable that electrically connects the energy supply source and the first energy transmission mechanism.
Description
本発明は、地下に設置されるダウンホール圧縮機、圧縮機に地上から動力を供給する資源回収システム及び資源回収システムの取扱い方法に関する。
The present invention relates to a downhole compressor installed underground, a resource recovery system that supplies power to the compressor from the ground, and a method of handling the resource recovery system.
石油や天然ガスは、不透性の岩盤層等が湾曲した形状となる地層中に埋蔵しており、地上から1000m以上の深さに埋蔵している井戸元(油田やガス田)が多数存在する。石油や天然ガスの井戸元では、埋蔵している地層(埋蔵層)の圧力が高圧であるため、地上から埋蔵層までを連通した縦穴から石油や天然ガスが自噴することが多い。ただし、生産が進み、埋蔵量が少なくなると埋蔵層の圧力が低下して自噴しなくなる。このため、縦穴の地下深くに圧縮機を投入して、周囲の流体の昇圧を行い、石油や天然ガスを地上まで噴出させるなどの施策が行われている。
Oil and natural gas are buried in the formation where the impermeable bedrock layer is curved, and there are many wells (oil fields and gas fields) buried at a depth of 1000 m or more from the ground. To do. In oil and natural gas wells, the pressure of the buried formations (buried formations) is high, so oil and natural gas often blow out from the vertical holes communicating from the ground to the buried formations. However, as production progresses and the amount of reserves decreases, the pressure of the buried layer decreases and self-injection stops. For this reason, measures such as introducing a compressor deep underground in the vertical hole to increase the pressure of the surrounding fluid and ejecting oil and natural gas to the ground are being taken.
特許文献1には、液体やガス媒体を地上に移送するため、地上から埋蔵層までを連通した縦穴において、例えば地下2000m以上の井戸元まで接続された移送管内にターボポンプを配置して、ターボポンプの駆動により液体やガス媒体を地上まで移送するためのシステムが記載されている。ターボポンプは地上から接続されたケーブルにより電力が供給されている。
In Patent Document 1, in order to transfer a liquid or a gas medium to the ground, a turbo pump is arranged in a transfer pipe connected to, for example, a well at a depth of 2000 m or more in a vertical hole communicating from the ground to the buried layer. A system for transferring a liquid or gas medium to the ground by driving a pump is described. The turbo pump is powered by a cable connected from the ground.
特許文献1では、縦穴の地下深くに投入される圧縮機には、有線の電源ケーブルが物理的に接続されて、地上の電源からの給電が行われている。縦穴が外筒と内筒から構成された二重管である場合、給電ケーブルは二重管の内筒外面に定ピッチでバンド固定されるとともに、圧縮機の設置位置で、内筒内部の圧縮機と物理的に接続する必要がある。このため、例えば圧縮機が故障した場合、圧縮機の交換には二重管内筒の交換と共に行わなければならない。なお、地中の温度は、地上からの深さが深くなるに従い温度が上昇する。このため、石油や天然ガスが埋蔵している埋蔵層が地上から1000m以上の深さとなる場合には、埋蔵層は100℃を超える高温環境となる。さらに、油田や天然ガス田には、硫化水素などの腐食性ガスも含まれるため、埋蔵層は過酷な腐食環境である。このため、石油や天然ガスの流路となり、過酷な腐食環境に曝される内筒内部に設置される圧縮機は、腐食に起因した故障の発生リスクが高いと考えられ、圧縮機の交換頻度は高いと想定される。
In Patent Document 1, a wired power cable is physically connected to a compressor that is inserted deep underground in a vertical hole, and power is supplied from a ground power source. When the vertical hole is a double pipe composed of an outer cylinder and an inner cylinder, the feeding cable is band-fixed to the outer surface of the inner cylinder of the double pipe at a constant pitch, and at the compressor installation position, the inner pipe is compressed. Must be physically connected to the machine. For this reason, for example, when the compressor breaks down, the replacement of the compressor must be performed together with the replacement of the double pipe inner cylinder. The underground temperature increases as the depth from the ground increases. For this reason, when the buried layer in which oil or natural gas is buried has a depth of 1000 m or more from the ground, the buried layer becomes a high temperature environment exceeding 100 ° C. Furthermore, since oil fields and natural gas fields contain corrosive gases such as hydrogen sulfide, the buried layer is a severe corrosive environment. For this reason, compressors installed in inner cylinders that become oil and natural gas flow paths and are exposed to severe corrosive environments are considered to have a high risk of failure due to corrosion. Is assumed to be expensive.
更に、井戸元の稼働率向上には、故障の発生リスクが高い機器である圧縮機の交換に要する施工時間を短縮することが最も効果的であることから、施工時間の短い圧縮機の交換方法が強く望まれている。
Furthermore, it is most effective to improve the operating rate at the well site by shortening the construction time required to replace the compressor, which is a high risk of failure. Is strongly desired.
本発明は上記課題を鑑みなされたものであり、その目的は、圧縮機の交換に要する施工時間を短縮し、井戸元の稼働率を向上させることにある。
This invention is made in view of the said subject, The objective is to shorten the construction time required for replacement | exchange of a compressor, and to improve the operation rate of a well source.
本発明はかかる課題を解決するために、外筒と内筒から構成されて地上から地下の井戸元まで連通する二重管と、前記二重管の内筒内部であって井戸元に設置する流体の昇圧を行う圧縮機と、エネルギーを供給するエネルギー供給源と、前記二重管に設けられ非接触方式でエネルギーを伝達する第一エネルギー伝達機構と、前記圧縮機に設けられ前記第一エネルギー伝達機構から伝達されたエネルギーを非接触で授受する第二エネルギー伝達機構と、前記エネルギー供給源と前記第一エネルギー伝達機構とを電気的に接続するケーブルにより構成することを特徴とする。
In order to solve this problem, the present invention is configured by a double pipe configured from an outer cylinder and an inner cylinder and communicating from the ground to an underground well base, and is installed in the well base inside the inner pipe of the double pipe. A compressor for boosting fluid; an energy supply source for supplying energy; a first energy transmission mechanism provided in the double pipe for transmitting energy in a non-contact manner; and the first energy provided in the compressor. It is characterized by comprising a second energy transmission mechanism for exchanging energy transmitted from the transmission mechanism in a non-contact manner, and a cable for electrically connecting the energy supply source and the first energy transmission mechanism.
本発明によれば、圧縮機の交換期間が大幅に短縮できるため、井戸元の稼働率を向上させることができる。
According to the present invention, since the compressor replacement period can be greatly shortened, the operating rate of the well source can be improved.
以下、実施例を、図面を用いて説明する。尚、下記はあくまでも実施例に過ぎず、発明の内容は下記態様に限定されるものでないことは言うまでもない。
Hereinafter, examples will be described with reference to the drawings. In addition, the following is only an Example, and it cannot be overemphasized that the content of invention is not limited to the following aspect.
実施例1では、地上から1000mを超える深さに設置して流体の昇圧を行う圧縮機に地上から電力を供給する無線給電システムについて、図1から図8を用いて説明する。
In Example 1, a wireless power feeding system that supplies electric power from the ground to a compressor that pressurizes a fluid installed at a depth exceeding 1000 m from the ground will be described with reference to FIGS.
圧縮機4に電力を供給する無線給電システムは、少なくとも、外筒1と内筒2から構成されて地上から1000mを超える深さまで連通する二重管3、地上から1000mを超える深さの二重管の内筒2内部に設置されて流体の昇圧を行う圧縮機4、地上から電気を供給する交流電源5、地上から1000mを超える深さの二重管の内筒2の外部に設置される無線給電用一次コイル6、圧縮機の内部に備えられた無線給電用二次コイル7および交流電源5と無線給電用一次コイル6とを電気的に接続する給電ケーブル8により構成される。なお、交流電源5と無線給電用一次コイル6の間の給電ケーブル8は、内筒2の外面に、金属帯9などで捕縛して設置する。また、圧縮機の内部に備えられて無線給電用二次コイル7に生じた起電力を計測する電力計29を備える。
The wireless power feeding system that supplies power to the compressor 4 includes at least a double pipe 3 that includes an outer cylinder 1 and an inner cylinder 2 and communicates to a depth exceeding 1000 m from the ground, and a duplex having a depth exceeding 1000 m from the ground. Compressor 4 installed in the inner tube 2 for boosting the fluid, AC power supply 5 for supplying electricity from the ground, and installed outside the inner tube 2 for the double tube having a depth exceeding 1000 m from the ground The wireless power supply primary coil 6, the wireless power supply secondary coil 7 provided in the compressor, and the AC power supply 5 and the power supply cable 8 that electrically connects the wireless power supply primary coil 6 are configured. The power supply cable 8 between the AC power supply 5 and the primary coil 6 for wireless power supply is installed on the outer surface of the inner cylinder 2 by being bound with a metal strip 9 or the like. In addition, a wattmeter 29 is provided which measures the electromotive force generated in the secondary coil 7 for wireless power feeding provided inside the compressor.
図5には圧縮機固定機構10の詳細構造の一部を示す。本実施例においては、圧縮機固定機構10は圧縮機内部の上端部及び下端部の位置に必要な台数設けられているが、図5ではその中の一部を示す。圧縮機の内部には二重管の内筒内面の圧縮機固定構造20に固定冶具21を押し出す圧縮機固定機構10が設けられ、圧縮機固定機構10は、ねじ軸22、ナット23、ねじ軸を回転させる駆動モータ24及びこれらを接続するフレームにより構成される。ねじ軸22は中央部を境に紙面の上下対称にねじ山が設けられており、ねじ軸22を駆動モータ24により回転することで固定冶具21を押し出すことが可能である。二重管の内筒内面の圧縮機固定構造20には、二重管3の内筒2の内面に窪みを設けた構造などが採用できる。また、固定冶具21には、二重管3の内筒2の内面に設けた窪み形状に挿入可能な形状の突起物などを採用できる。
FIG. 5 shows a part of the detailed structure of the compressor fixing mechanism 10. In the present embodiment, the required number of compressor fixing mechanisms 10 are provided at the positions of the upper end portion and the lower end portion inside the compressor. FIG. 5 shows a part of them. Inside the compressor, there is provided a compressor fixing mechanism 10 for pushing out a fixing jig 21 to a compressor fixing structure 20 on the inner surface of the inner tube of the double pipe. The compressor fixing mechanism 10 includes a screw shaft 22, a nut 23, a screw shaft. It is comprised by the drive motor 24 which rotates these, and the flame | frame which connects these. The screw shaft 22 is provided with a screw thread symmetrically with respect to the paper surface with the central portion as a boundary, and the fixing jig 21 can be pushed out by rotating the screw shaft 22 by a drive motor 24. As the compressor fixing structure 20 on the inner surface of the inner tube of the double tube, a structure in which a recess is provided on the inner surface of the inner tube 2 of the double tube 3 can be adopted. Further, the fixing jig 21 may be a protrusion having a shape that can be inserted into a hollow shape provided on the inner surface of the inner tube 2 of the double tube 3.
さらに、本実施例での無線給電システムでは、図2に示すように、圧縮機4を牽引するためのワイヤーロープ14、ワイヤーロープ14の巻取り・送出しを行うウインチ18、余分なケーブルやワイヤーロープを必要に応じて回収するリール19、圧縮機移送装置11に電源および制御信号を伝達するための電源及び信号ケーブル15、圧縮機移送装置に電源および制御信号を供給する電源および制御装置16を備える。圧縮機移送装置11は駆動機構12を備えており、駆動機構は二重管の内筒2の内面を走行可能なようにタイヤ等により内筒2と接触している。これは、地上から1000mを超える深さまで設けられた二重管3は、必ずしも垂直に設けられた箇所だけではなく、場所によっては傾斜を有する二重管内を通過させる必要があるため、二重管3の途中で圧縮機4が止まらないよう井戸元まで案内するためである。また圧力差により圧縮機4が井戸元内部まで入れにくい可能性もあるため圧縮機移送装置11を用いている。圧縮機移送装置11と圧縮機4は掴み機構13及び搬出入用吊冶具17により接続されている。
Furthermore, in the wireless power feeding system according to the present embodiment, as shown in FIG. 2, a wire rope 14 for pulling the compressor 4, a winch 18 that winds and sends the wire rope 14, extra cables and wires. A reel 19 for collecting the rope as needed, a power source and signal cable 15 for transmitting power and control signals to the compressor transfer device 11, and a power source and control device 16 for supplying power and control signals to the compressor transfer device. Prepare. The compressor transfer device 11 includes a drive mechanism 12, and the drive mechanism is in contact with the inner cylinder 2 by a tire or the like so as to be able to travel on the inner surface of the inner cylinder 2 of the double pipe. This is because the double pipe 3 provided up to a depth of more than 1000 m from the ground is not necessarily required to pass through the double pipe having an inclination depending on the place, not only in a place provided vertically. This is to guide the well 4 to the well so that the compressor 4 does not stop in the middle of 3. In addition, the compressor transfer device 11 is used because there is a possibility that the compressor 4 may be difficult to enter the well base due to the pressure difference. The compressor transfer device 11 and the compressor 4 are connected by a gripping mechanism 13 and a carry-in / out lifting jig 17.
圧縮機4への無線給電は、無線給電用一次コイル6に交流電流を供給することで生じる磁場変動を無線給電用二次コイル7の内側に生じさせることで、無線給電用二次コイル7に電磁誘導による起電力を生じさせて実現する。なお、無線給電用一次コイル6への交流電流の供給は、給電ケーブル8を通じて、交流電源5から供給する。ここで、無線給電は非接触方式において給電されれば良く、本実施例のコイルに限定されるわけではない。すなわち、無線給電用一次コイル6と無線給電用二次コイル7は、分離可能なように構成されていればよく、両コイル間に空間が無く、実質的に接触しているようにしても構わない。なお、圧縮機4の制御は、例えば、制御装置35の制御信号と圧縮機4の運転状態信号とを、給電ケーブル8と同様に敷設した圧縮機制御用の信号ケーブル36および赤外線受発信窓38を二重管3の内筒2に設置した赤外線通信手段を用いて実現する。この場合、圧縮機4にも赤外線通信手段および赤外線受発信窓37を備えることが必要となる。無線給電用一次コイル6と無線給電用二次コイル7の位置および圧縮機4と内筒2の赤外線受発信窓37、38の位置を高い精度で合わせる必要が生じる。このため、圧縮機4を内筒2内部に設置する施工方法には、高い位置決め精度が要求される。
The wireless power feeding to the compressor 4 is caused by causing a magnetic field fluctuation generated by supplying an alternating current to the wireless power feeding primary coil 6 to the inside of the wireless power feeding secondary coil 7. This is realized by generating electromotive force by electromagnetic induction. The supply of alternating current to the wireless power feeding primary coil 6 is supplied from the alternating current power source 5 through the feeding cable 8. Here, the wireless power supply may be performed in a non-contact manner, and is not limited to the coil of this embodiment. That is, the wireless power feeding primary coil 6 and the wireless power feeding secondary coil 7 may be configured so as to be separable, and there may be no space between the two coils so that they are substantially in contact with each other. Absent. The control of the compressor 4 is performed by, for example, using a control signal of the control device 35 and an operation state signal of the compressor 4 using a compressor control signal cable 36 and an infrared transmission / reception window 38 laid in the same manner as the power supply cable 8. It implement | achieves using the infrared communication means installed in the inner cylinder 2 of the double tube 3. FIG. In this case, the compressor 4 also needs to be provided with infrared communication means and an infrared transmission / reception window 37. It is necessary to match the positions of the primary coil 6 for wireless power feeding and the secondary coil 7 for wireless power feeding and the positions of the infrared receiving and transmitting windows 37 and 38 of the compressor 4 and the inner cylinder 2 with high accuracy. For this reason, high positioning accuracy is requested | required of the construction method which installs the compressor 4 in the inner cylinder 2 inside.
圧縮機を地上から1000mを超える深さに高い位置決め精度で設置する方法について、図2、図3、図4およびフローの図8(ステップ図)を用いて説明する。圧縮機の具体的な設置方法は、まず、図2に示すように、圧縮機4を圧縮機移送装置11に取付け、ワイヤーロープ14で吊るして、二重管3の内筒2内部に挿入、地下深くにまで降下させる(ステップ102)。なお、圧縮機移送装置11には、少なくとも二重管の内筒内部を移動できる駆動機構12により走行可能なように構成されているため途中で止まることなく井戸元の所定の位置まで圧縮機4を案内することが可能である。圧縮機4は圧縮機の搬出入用吊冶具17を把持する掴み機構13により把持している。この掴み機構13には図7に示すように圧縮機4への電力供給及び制御信号を送受信するためのプラグ25が設けられている。また、圧縮機4にも前記プラグ25が接続されるソケット26が設けられており無線給電用二次コイル7の起電力の計測結果等が伝送される。さらに、圧縮機移送装置11には地上の電源および制御装置16と電源および信号ケーブル15で接続されており、無線給電用二次コイル7の起電力計測結果を制御装置に伝送するとともに、駆動機構12および掴み機構13が操作される。この時、地上の交流電源5から無線給電用一次コイル6に交流電流が供給されており、無線給電用一次コイル6の近傍には磁場変動が生じている。
A method for installing the compressor at a depth exceeding 1000 m from the ground with high positioning accuracy will be described with reference to FIGS. 2, 3, and 4 and FIG. 8 (step diagram) of the flow. As shown in FIG. 2, first, the compressor 4 is attached to the compressor transfer device 11 and hung with a wire rope 14 to be inserted into the inner tube 2 of the double pipe 3, Lower to the deep underground (step 102). The compressor transfer device 11 is configured to be able to travel by a drive mechanism 12 that can move at least inside the inner tube of the double pipe, so that the compressor 4 can reach the predetermined position of the well without stopping midway. It is possible to guide. The compressor 4 is gripped by a gripping mechanism 13 that grips a carry-in / out suspension jig 17 of the compressor. As shown in FIG. 7, the gripping mechanism 13 is provided with a plug 25 for supplying power to the compressor 4 and transmitting / receiving control signals. The compressor 4 is also provided with a socket 26 to which the plug 25 is connected, and the measurement result of the electromotive force of the secondary coil 7 for wireless power feeding is transmitted. Further, the compressor transfer device 11 is connected to the ground power supply and control device 16 through a power supply and signal cable 15, and transmits the electromotive force measurement result of the secondary coil 7 for wireless power feeding to the control device, and the drive mechanism. 12 and the gripping mechanism 13 are operated. At this time, an alternating current is supplied from the ground AC power source 5 to the primary coil 6 for wireless power feeding, and a magnetic field fluctuation is generated in the vicinity of the primary coil 6 for wireless power feeding.
その後、図3に示すように、圧縮機4が無線給電用一次コイル6の設置位置に到達したことを、無線給電用二次コイル7の起電力計測結果が最大値に到達することで検知し(ステップ103)、圧縮機固定機構10から固定冶具21を二重管3の内筒2内面の圧縮機固定構造20に押し出して、圧縮機4を内筒2の内部に固定する(ステップ104)。なお、起電力計測結果が最大値に達する場合以外でも圧縮機4を十分に稼働できる電力が供給できる範囲内での計測値を所定値として検知することで固定するようにしても構わない。このように起電力計測結果を用いることで、高い位置精度で圧縮機4を位置決めすることが可能となる。
Thereafter, as shown in FIG. 3, the fact that the compressor 4 has reached the installation position of the primary coil 6 for wireless power feeding is detected by the result of the electromotive force measurement of the secondary coil 7 for wireless power feeding reaching the maximum value. (Step 103), the fixing jig 21 is pushed out from the compressor fixing mechanism 10 to the compressor fixing structure 20 on the inner surface of the inner cylinder 2 of the double pipe 3 to fix the compressor 4 inside the inner cylinder 2 (Step 104). . In addition, even when the electromotive force measurement result reaches the maximum value, the measurement value within a range in which the electric power that can sufficiently operate the compressor 4 can be supplied may be detected and fixed as a predetermined value. Thus, by using the electromotive force measurement result, the compressor 4 can be positioned with high positional accuracy.
圧縮機4を内筒2の内部に固定した後、圧縮機移送装置11の掴み機構13を圧縮機の搬出入用吊冶具17から離し、図4に示すように、圧縮機移送装置11を回収する。
After the compressor 4 is fixed inside the inner cylinder 2, the gripping mechanism 13 of the compressor transfer device 11 is separated from the carry-in / out lifting jig 17 of the compressor, and the compressor transfer device 11 is recovered as shown in FIG. To do.
圧縮機を所定の期間稼働させて石油や天然ガスを産出する(ステップ105)。所定の期間の経過後、定期点検のためや故障が発生した場合には圧縮機4を回収する。
Compressor is operated for a predetermined period to produce oil and natural gas (step 105). After a predetermined period, the compressor 4 is recovered for periodic inspection or when a failure occurs.
圧縮機4を回収する際には、上述した圧縮機の設置手順の逆手順により回収する。具体的には、まず、駆動機構12を駆動して圧縮機移送装置11を二重管3の内筒2内部の圧縮機4の設置位置まで移送して、圧縮機移送装置11の掴み機構13で圧縮機の搬出入用吊冶具17を把持する。その後、圧縮機固定機構10の固定冶具を二重管3の内筒2内面の圧縮機固定構造20から引戻して固定を解除し、圧縮機移送装置11とともに二重管3の内筒2内部を通じて、地上まで圧縮機4を移送する(ステップ106)。圧縮機固定機構の解除は、圧縮機移送装置11に設けられたプラグ25を圧縮機に設けられたソケット26に接続して電源を供給することで圧縮機固定機構の駆動モータ24を稼働して解除する。本実施例では、圧縮機固定機構の解除に、圧縮機移送装置11を経由して電気を供給しているが、これは、地下1000m以上の過酷環境では圧縮機4だけでなく、無線給電用一次コイル6や無線給電用二次コイル7が故障することも想定され、無線給電コイルのみに電力を依存させると圧縮機4の回収が不可能となり、内筒2とともに回収が必要になることが考えられるため、これを回避するために別のルートを経由して電源を供給させており、システムの信頼性を向上している。なお、圧縮機固定機構は別構成として図6に示すように圧縮機固定機構のねじ軸22を延長して圧縮機移送装置11に設けられたねじ軸回転操作機構28により直接、ねじ軸を操作可能に構成しても構わない。これにより電子部品を用いず、機械的機構のみで設けることができるため電気部品を使わずより故障に強い装置とすることができる。
When recovering the compressor 4, the compressor 4 is recovered by reversing the above-described compressor installation procedure. Specifically, first, the drive mechanism 12 is driven to transfer the compressor transfer device 11 to the installation position of the compressor 4 inside the inner tube 2 of the double pipe 3, and the gripping mechanism 13 of the compressor transfer device 11. The gripping jig 17 for carrying in and out of the compressor is gripped. Thereafter, the fixing jig of the compressor fixing mechanism 10 is pulled back from the compressor fixing structure 20 on the inner surface of the inner cylinder 2 of the double pipe 3 to release the fixing, and through the inside of the inner cylinder 2 of the double pipe 3 together with the compressor transfer device 11. The compressor 4 is transferred to the ground (step 106). The compressor fixing mechanism is released by operating the drive motor 24 of the compressor fixing mechanism by connecting the plug 25 provided in the compressor transfer device 11 to the socket 26 provided in the compressor and supplying power. To release. In the present embodiment, electricity is supplied via the compressor transfer device 11 for releasing the compressor fixing mechanism. This is not only for the compressor 4 but also for wireless power feeding in a harsh environment of 1000 m or more underground. It is also assumed that the primary coil 6 and the secondary coil 7 for wireless power feeding will fail, and if the power is made to depend only on the wireless power feeding coil, the compressor 4 cannot be recovered and may be recovered together with the inner cylinder 2. In order to avoid this, power is supplied via another route to improve the reliability of the system. In addition, as shown in FIG. 6, the compressor fixing mechanism is separately configured, and the screw shaft 22 of the compressor fixing mechanism is extended to directly operate the screw shaft by the screw shaft rotating operation mechanism 28 provided in the compressor transfer device 11. You may comprise. Thereby, since it can be provided only by a mechanical mechanism without using an electronic component, it is possible to make the device more resistant to failure without using an electrical component.
従来の給電方法の場合、有線の電源ケーブルが圧縮機に物理的に接続されて地上からの給電が行われるため、圧縮機を交換するには、縦穴(二重管の内筒)の交換(若しくは出し入れ)も同時に行う必要があり、施工時間に長期間を要していたが、本実施例によれば、圧縮機に有線ケーブルが物理的に接続されないため、縦穴(二重管の内筒)の交換無しに、圧縮機を交換できる。これにより、圧縮機の交換期間が大幅に短縮できるため、井戸元の稼働率を向上させることができる。さらに、無線給電用二次コイルを圧縮機内部に格納することで電線の端子部分を腐食環境から隔離することができるため、圧縮機の耐腐食環境性も向上する。さらに、無線給電コイルにおける電力供給量を計測することで地下1000m以上も離れた遠隔地において、高い位置決め精度で圧縮機を所定の位置に設置することができる。
In the case of the conventional power supply method, a wired power cable is physically connected to the compressor and power is supplied from the ground. Therefore, to replace the compressor, replace the vertical hole (double pipe inner cylinder) ( However, according to the present embodiment, since the wired cable is not physically connected to the compressor, the vertical hole (inner cylinder of the double pipe) is required. The compressor can be replaced without replacement). Thereby, since the exchange period of a compressor can be shortened significantly, the operating rate of a well source can be improved. Furthermore, since the secondary coil for wireless power feeding is housed in the compressor, the terminal portion of the electric wire can be isolated from the corrosive environment, so that the corrosion resistance of the compressor is also improved. Furthermore, by measuring the power supply amount in the wireless power feeding coil, the compressor can be installed at a predetermined position with high positioning accuracy in a remote place that is more than 1000 m underground.
実施例2について図9を用いて説明する。実施例1と同一構成の部位に関しては、説明を省略する。実施例2では、無線給電用一次コイル6と無線給電用二次コイル7に代えて固定子コイル30と回転子(永久磁石)31を備えている。回転子31は圧縮機の回転軸32に直接固定されており、回転軸には圧縮機の回転翼33が固定されている。言うなれば、本実施例では二重管に設けられた固定子コイルを含めて圧縮機と見ることができる。なお、本実施例では電力計29が磁場の強度を計測する磁場計測器34に代わっており、これにより圧縮機の回転子31と、二重管に設けられた固定子コイル30との位置関係を精度よく把握することが可能となっている。
Example 2 will be described with reference to FIG. The description of the parts having the same configuration as in Example 1 is omitted. In the second embodiment, a stator coil 30 and a rotor (permanent magnet) 31 are provided in place of the wireless power feeding primary coil 6 and the wireless power feeding secondary coil 7. The rotor 31 is directly fixed to the rotary shaft 32 of the compressor, and the rotary blades 33 of the compressor are fixed to the rotary shaft. In other words, in this embodiment, the compressor including the stator coil provided in the double tube can be regarded as a compressor. In this embodiment, the wattmeter 29 replaces the magnetic field measuring device 34 for measuring the strength of the magnetic field, whereby the positional relationship between the rotor 31 of the compressor and the stator coil 30 provided in the double tube. Can be accurately grasped.
本実施例では実施例1での効果に加えて、苛酷環境に曝されて故障確率の高い部分のみ選択的に交換可能となり更なる井戸元の稼働率向上が図れる。少なくとも、制御機構を圧縮機の外部に外出しにすることができるためより故障に強いシステムとできる。
In addition to the effects of the first embodiment, this embodiment can selectively replace only a portion that is exposed to a harsh environment and has a high failure probability, and can further improve the operating rate of the well source. At least, the control mechanism can be out of the compressor, so that the system is more resistant to failure.
上記の実施例1及び実施例2ではエネルギー伝達機構として、無線給電用一次コイル6と無線給電用二次コイル7、固定子コイル30と回転子31を用いて、電力や駆動力を伝達しているが、実質的に非接触方式でエネルギー(電気や磁場等)を伝達できる手段であればこれに限定されるものではない。また、非接触方式とは、例えば、無線給電用一次コイル6と無線給電用二次コイル7が分離可能に構成されていればよく、両者の間に空間を有するか否かに関係ない。
In the first embodiment and the second embodiment, as the energy transmission mechanism, the primary coil 6 for wireless power feeding and the secondary coil 7 for wireless power feeding, the stator coil 30 and the rotor 31 are used to transmit electric power and driving force. However, the present invention is not limited to this as long as it can transmit energy (electricity, magnetic field, etc.) in a substantially non-contact manner. In addition, the non-contact method is not limited, for example, as long as the primary coil 6 for wireless power feeding and the secondary coil 7 for wireless power feeding are configured to be separable, and there is no space between them.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1…外筒
2…内筒
3…二重管
4…圧縮機
5…交流電源
6…無線給電用一次コイル
7…無線給電用二次コイル
8…給電ケーブル
9…金属帯
10…圧縮機固定機構
11…圧縮機移送装置
12…駆動機構
13…掴み機構、
14…ワイヤーロープ
15…電源および信号ケーブル
16…電源および制御装置
17…搬出入用吊冶具
18…ウインチ
19…リール
20…圧縮機固定構造
21…固定冶具
22…ねじ軸
23…ナット
24…駆動モータ
25…プラグ
26…ソケット
27…圧縮機移送装置の駆動モータ
28…ねじ軸回転操作機構
29…電力計
30…固定子コイル
31…回転子(永久磁石)
32…圧縮機の回転軸
33…圧縮機の回転翼
34…磁場計測器
35…制御装置
36…圧縮機制御用の信号ケーブル
37、38…赤外線受発信窓 DESCRIPTION OFSYMBOLS 1 ... Outer cylinder 2 ... Inner cylinder 3 ... Double pipe 4 ... Compressor 5 ... AC power supply 6 ... Primary coil 7 for wireless power feeding ... Secondary coil 8 for wireless power feeding ... Feed cable 9 ... Metal strip 10 ... Compressor fixing mechanism 11 ... Compressor transfer device 12 ... Drive mechanism 13 ... Grab mechanism,
DESCRIPTION OFSYMBOLS 14 ... Wire rope 15 ... Power supply and signal cable 16 ... Power supply and control apparatus 17 ... Lifting jig 18 for loading / unloading ... Winch 19 ... Reel 20 ... Compressor fixing structure 21 ... Fixing jig 22 ... Screw shaft 23 ... Nut 24 ... Drive motor 25 ... Plug 26 ... Socket 27 ... Drive motor 28 of compressor transfer device ... Screw shaft rotation operating mechanism 29 ... Wattmeter 30 ... Stator coil 31 ... Rotor (permanent magnet)
32 ...Rotary shaft 33 of compressor ... Rotary blade 34 of compressor ... Magnetic field measuring device 35 ... Control device 36 ... Signal cables 37 and 38 for compressor control.
2…内筒
3…二重管
4…圧縮機
5…交流電源
6…無線給電用一次コイル
7…無線給電用二次コイル
8…給電ケーブル
9…金属帯
10…圧縮機固定機構
11…圧縮機移送装置
12…駆動機構
13…掴み機構、
14…ワイヤーロープ
15…電源および信号ケーブル
16…電源および制御装置
17…搬出入用吊冶具
18…ウインチ
19…リール
20…圧縮機固定構造
21…固定冶具
22…ねじ軸
23…ナット
24…駆動モータ
25…プラグ
26…ソケット
27…圧縮機移送装置の駆動モータ
28…ねじ軸回転操作機構
29…電力計
30…固定子コイル
31…回転子(永久磁石)
32…圧縮機の回転軸
33…圧縮機の回転翼
34…磁場計測器
35…制御装置
36…圧縮機制御用の信号ケーブル
37、38…赤外線受発信窓 DESCRIPTION OF
DESCRIPTION OF
32 ...
Claims (14)
- 外筒と内筒から構成されて地上から地下の井戸元まで連通する二重管と、
前記二重管の内筒内部であって井戸元に設置する流体の昇圧を行う圧縮機と、
エネルギーを供給するエネルギー供給源と、
前記二重管に設けられ非接触方式でエネルギーを伝達する第一エネルギー伝達機構と、
前記圧縮機に設けられ前記第一エネルギー伝達機構から伝達されたエネルギーを非接触方式で授受する第二エネルギー伝達機構と、
前記エネルギー供給源と前記第一エネルギー伝達機構とを電気的に接続するケーブルにより構成する資源回収システム。 A double pipe composed of an outer cylinder and an inner cylinder and communicating from the ground to the base of the well,
A compressor that pressurizes the fluid installed inside the inner cylinder of the double pipe and at the well base;
An energy supply source for supplying energy;
A first energy transmission mechanism that is provided in the double pipe and transmits energy in a non-contact manner;
A second energy transmission mechanism that is provided in the compressor and transfers energy transmitted from the first energy transmission mechanism in a non-contact manner;
A resource recovery system comprising a cable for electrically connecting the energy supply source and the first energy transmission mechanism. - 請求項1に記載の資源回収システムにおいて、
前記第一エネルギー伝達機構は無線給電用一次コイルであり、前記第二エネルギー伝達機構は無線給電用二次コイルであり、前記無線給電用一次コイルと前記無線給電用二次コイルは非接触方式により電力を伝達する資源回収システム。 The resource recovery system according to claim 1,
The first energy transfer mechanism is a primary coil for wireless power supply, the second energy transfer mechanism is a secondary coil for wireless power supply, and the primary coil for wireless power supply and the secondary coil for wireless power supply are in a non-contact manner. A resource recovery system that transmits power. - 請求項1に記載の資源回収システムにおいて、
前記第一エネルギー伝達機構は固定子コイルであり、前記第二エネルギー伝達機構は回転子であり、前記固定子コイルで生じた磁場変動により非接触方式で前記回転子を駆動するエネルギーを伝達する資源回収システム。 The resource recovery system according to claim 1,
The first energy transmission mechanism is a stator coil, the second energy transmission mechanism is a rotor, and a resource that transmits energy for driving the rotor in a non-contact manner due to a magnetic field variation generated in the stator coil. Collection system. - 請求項1乃至3のいずれか1項に記載の資源回収システムにおいて、
前記圧縮機に設けられる圧縮機固定機構と、
前記圧縮機に設けられ、前記第一エネルギー伝達機構と前記第二エネルギー伝達機構のエネルギー伝達強度を計測する計測器と、
前記計測器の測定結果により前記圧縮機固定機構の固定冶具の駆動を制御する制御装置を有する資源回収システム。 The resource recovery system according to any one of claims 1 to 3,
A compressor fixing mechanism provided in the compressor;
A measuring instrument provided in the compressor, for measuring the energy transfer intensity of the first energy transfer mechanism and the second energy transfer mechanism;
The resource recovery system which has a control apparatus which controls the drive of the fixing jig of the said compressor fixing mechanism by the measurement result of the said measuring device. - 請求項1乃至4のいずれか1項に記載の資源回収システムにおいて、
前記二重管の内部で前記圧縮機を移送する圧縮機移送装置と
前記圧縮機移送装置に設けられる掴み機構と、
前記圧縮機に設けられ、前記掴み機構により把持される搬出入用吊冶具と、
前記掴み機構に設けられるプラグと
前記プラグが接続され前記搬出入用吊冶具に設けられるソケットを有する資源回収システム。 The resource recovery system according to any one of claims 1 to 4,
A compressor transfer device for transferring the compressor inside the double pipe; and a gripping mechanism provided in the compressor transfer device;
A lifting jig for loading and unloading provided in the compressor and gripped by the gripping mechanism;
A resource recovery system comprising: a plug provided in the gripping mechanism; and a socket connected to the plug and provided in the carry-in / out lifting jig. - 請求項5に記載の資源回収システムにおいて、
前記圧縮機移送装置と接続されるワイヤーロープと、
前記ワイヤーロープを牽引するウインチと、
前記ケーブルを回収するリールを有する資源回収システム。 The resource recovery system according to claim 5,
A wire rope connected to the compressor transfer device;
A winch that pulls the wire rope;
A resource recovery system having a reel for recovering the cable. - 外筒と内筒から構成されて地上から地下の井戸元まで連通する二重管の内部に設けられて流体の昇圧を行う圧縮機と、
前記二重管に設けられ非接触方式でエネルギーを伝達する第一エネルギー伝達機構と、
前記圧縮機に設けられ前記第一エネルギー伝達機構から伝達されたエネルギーを非接触方式で授受する第二エネルギー伝達機構により構成する資源回収システムの取扱い方法において、
前記第一エネルギー伝達機構にエネルギーを供給させた状態で前記圧縮機を設置予定位置まで降下させるとともに、前記圧縮機に設けられた計測器により第二エネルギー伝達機構のエネルギー伝達強度を計測し、
前記第二エネルギー伝達機構のエネルギー伝達強度が所定の値となる位置で前記圧縮機に設けられた圧縮機固定機構から固定冶具を前記二重管内筒内面に設けられた圧縮機固定構造に押し出して前記圧縮機を前記二重管内筒内部に固定する資源回収システムの取扱い方法。 A compressor configured to increase the pressure of a fluid provided in a double pipe configured from an outer cylinder and an inner cylinder and communicating from the ground to the base of a well,
A first energy transmission mechanism that is provided in the double pipe and transmits energy in a non-contact manner;
In the handling method of the resource recovery system configured by the second energy transmission mechanism that is provided in the compressor and transfers energy transmitted from the first energy transmission mechanism in a non-contact manner,
While the energy is supplied to the first energy transfer mechanism, the compressor is lowered to a planned installation position, and the energy transfer intensity of the second energy transfer mechanism is measured by a measuring instrument provided in the compressor,
At the position where the energy transmission intensity of the second energy transmission mechanism becomes a predetermined value, the fixing jig is pushed out from the compressor fixing mechanism provided in the compressor to the compressor fixing structure provided on the inner surface of the double pipe inner cylinder. A method of handling a resource recovery system for fixing the compressor inside the double pipe inner cylinder. - 請求項7に記載の資源回収システムの取扱い方法において、
前記圧縮機の降下は、前記圧縮機を移送する圧縮機移送装置を前記圧縮機に取付けた状態において、前記圧縮機移送装置に設けられた駆動機構を用いて所定の位置まで降下させる資源回収システムの取扱い方法。 In the handling method of the resource recovery system according to claim 7,
The lowering of the compressor is a resource recovery system for lowering to a predetermined position using a drive mechanism provided in the compressor transfer device in a state where a compressor transfer device for transferring the compressor is attached to the compressor. How to handle. - 請求項7又は8のいずれかに記載の資源回収システムの取扱い方法において、
前記圧縮機が所定の稼働時間が経過した後に、前記圧縮機固定機構の固定冶具を前記圧縮機内へと引戻して前記二重管内筒内面と切離し、前記圧縮機移送装置を用いて前記二重管内筒内部を通じて、地上まで圧縮機を移送する資源回収システムの取扱い方法。 In the handling method of the resource recovery system according to claim 7 or 8,
After a predetermined operating time of the compressor has elapsed, the fixing jig of the compressor fixing mechanism is pulled back into the compressor and separated from the inner surface of the inner tube of the double tube, and the inside of the double tube using the compressor transfer device How to handle a resource recovery system that transports the compressor to the ground through the inside of the cylinder. - 地下に設置されるダウンホール圧縮機であって、
前記圧縮機は非接触方式においてエネルギーを授受するエネルギー伝達機構を備えたダウンホール圧縮機。 A downhole compressor installed underground,
The compressor is a downhole compressor provided with an energy transmission mechanism for transferring energy in a non-contact manner. - 請求項10に記載のダウンホール圧縮機において、
前記エネルギー伝達機構はコイルであるダウンホール圧縮機。 The downhole compressor according to claim 10, wherein
A downhole compressor in which the energy transmission mechanism is a coil. - 請求項10に記載のダウンホール圧縮機において、
前記エネルギー伝達機構は固定子であるダウンホール圧縮機。 The downhole compressor according to claim 10, wherein
The energy transmission mechanism is a downhole compressor which is a stator. - 請求項10乃至12のいずれか1項に記載のダウンホール圧縮機において、
前記ダウンホール圧縮機に設けられる圧縮機固定機構と、
前記ダウンホール圧縮機に設けられ、前記エネルギー伝達機構のエネルギー伝達強度を計測する計測器を備えたダウンホール圧縮機。 The downhole compressor according to any one of claims 10 to 12,
A compressor fixing mechanism provided in the downhole compressor;
The downhole compressor provided with the measuring device which is provided in the downhole compressor and measures the energy transfer intensity of the energy transfer mechanism. - 請求項10乃至13のいずれか1項に記載のダウンホール圧縮機において、
前記ダウンホール圧縮機に設けられ、把持される搬出入用吊冶具と、
前記搬出入用吊冶具に設けられるソケットを備えたダウンホール圧縮機。 The downhole compressor according to any one of claims 10 to 13,
A hanging jig for loading and unloading provided and gripped in the downhole compressor;
The downhole compressor provided with the socket provided in the said lifting jig for carrying in / out.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/068445 WO2016208050A1 (en) | 2015-06-26 | 2015-06-26 | Downhole compressor, resource recovery system and method for handling resource recovery system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/068445 WO2016208050A1 (en) | 2015-06-26 | 2015-06-26 | Downhole compressor, resource recovery system and method for handling resource recovery system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016208050A1 true WO2016208050A1 (en) | 2016-12-29 |
Family
ID=57585209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068445 WO2016208050A1 (en) | 2015-06-26 | 2015-06-26 | Downhole compressor, resource recovery system and method for handling resource recovery system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016208050A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4901069A (en) * | 1987-07-16 | 1990-02-13 | Schlumberger Technology Corporation | Apparatus for electromagnetically coupling power and data signals between a first unit and a second unit and in particular between well bore apparatus and the surface |
US5008664A (en) * | 1990-01-23 | 1991-04-16 | Quantum Solutions, Inc. | Apparatus for inductively coupling signals between a downhole sensor and the surface |
US5394823A (en) * | 1992-12-28 | 1995-03-07 | Mannesmann Aktiengesellschaft | Pipeline with threaded pipes and a sleeve connecting the same |
JPH08505277A (en) * | 1992-10-20 | 1996-06-04 | エレクトリック パワー リサーチ インスチテュート インコーポレイテッド | Contactless power supply system |
JP2012504387A (en) * | 2008-09-27 | 2012-02-16 | ウィトリシティ コーポレーション | Wireless energy transfer system |
US20130098632A1 (en) * | 2011-10-24 | 2013-04-25 | Zeitecs B.V. | Gradational insertion of an artificial lift system into a live wellbore |
US20140224538A1 (en) * | 2011-09-20 | 2014-08-14 | Imdex Global B.V. | Borehole surveying tool deployment |
-
2015
- 2015-06-26 WO PCT/JP2015/068445 patent/WO2016208050A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4901069A (en) * | 1987-07-16 | 1990-02-13 | Schlumberger Technology Corporation | Apparatus for electromagnetically coupling power and data signals between a first unit and a second unit and in particular between well bore apparatus and the surface |
US5008664A (en) * | 1990-01-23 | 1991-04-16 | Quantum Solutions, Inc. | Apparatus for inductively coupling signals between a downhole sensor and the surface |
JPH08505277A (en) * | 1992-10-20 | 1996-06-04 | エレクトリック パワー リサーチ インスチテュート インコーポレイテッド | Contactless power supply system |
US5394823A (en) * | 1992-12-28 | 1995-03-07 | Mannesmann Aktiengesellschaft | Pipeline with threaded pipes and a sleeve connecting the same |
JP2012504387A (en) * | 2008-09-27 | 2012-02-16 | ウィトリシティ コーポレーション | Wireless energy transfer system |
US20140224538A1 (en) * | 2011-09-20 | 2014-08-14 | Imdex Global B.V. | Borehole surveying tool deployment |
US20130098632A1 (en) * | 2011-10-24 | 2013-04-25 | Zeitecs B.V. | Gradational insertion of an artificial lift system into a live wellbore |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130075106A1 (en) | Electrical generator for a cementing manifold | |
EP1899574B1 (en) | Well having inductively coupled power and signal transmission | |
US8120508B2 (en) | Cable link for a wellbore telemetry system | |
US6061000A (en) | Downhole data transmission | |
CN101278102A (en) | Surface communication apparatus and method for use with string telemetry | |
US20160168957A1 (en) | Magnetic Field Disruption For In-Well Power Conversion | |
NO342758B1 (en) | Well logging system and method with wired drill pipes | |
US10781668B2 (en) | Downhole power generation | |
US9388812B2 (en) | Wireless sensor system for electric submersible pump | |
EP3563032B1 (en) | Downhole energy harvesting | |
EP3563033B1 (en) | Downhole communication | |
RU2460880C2 (en) | Method and device for signal transfer to measuring instrument in well shaft | |
EP3563029B1 (en) | Downhole energy harvesting | |
CA3047617A1 (en) | Downhole energy harvesting | |
CA2901788C (en) | Downhole drilling device | |
EP4086428B1 (en) | Downhole energy harvesting | |
US9316063B2 (en) | Transmitting power within a wellbore | |
WO2016208050A1 (en) | Downhole compressor, resource recovery system and method for handling resource recovery system | |
US11686161B2 (en) | System and method of transferring power within a wellbore | |
US11560782B2 (en) | Techniques to improve wireless communications for in-situ wellbore devices | |
US11328584B2 (en) | Inductively coupled sensor and system for use thereof | |
CN202493260U (en) | Integral electromagnetic valve wireless measurement while drilling device for coal mine | |
US10883362B2 (en) | Downhole transfer system | |
RU2379504C1 (en) | Data transfer along borehole device | |
CN202978611U (en) | Wiring structure in underground testing instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15896372 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15896372 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |