WO2016129552A1 - Camera parameter adjustment device - Google Patents
Camera parameter adjustment device Download PDFInfo
- Publication number
- WO2016129552A1 WO2016129552A1 PCT/JP2016/053653 JP2016053653W WO2016129552A1 WO 2016129552 A1 WO2016129552 A1 WO 2016129552A1 JP 2016053653 W JP2016053653 W JP 2016053653W WO 2016129552 A1 WO2016129552 A1 WO 2016129552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- camera
- image
- parameter
- vehicle
- unit
- Prior art date
Links
- 238000004364 calculation method Methods 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 28
- 238000012545 processing Methods 0.000 claims description 49
- 238000013500 data storage Methods 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 abstract description 5
- 240000004050 Pentaglottis sempervirens Species 0.000 description 67
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 67
- 238000000034 method Methods 0.000 description 44
- 238000001514 detection method Methods 0.000 description 39
- 238000012937 correction Methods 0.000 description 15
- 238000010191 image analysis Methods 0.000 description 15
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 238000009434 installation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000000605 extraction Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
- B60R1/20—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
- B60R1/22—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
- B60R1/23—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
- B60R1/27—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/04—Context-preserving transformations, e.g. by using an importance map
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/002—Diagnosis, testing or measuring for television systems or their details for television cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/698—Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/90—Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/40—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the details of the power supply or the coupling to vehicle components
- B60R2300/402—Image calibration
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B15/00—Special procedures for taking photographs; Apparatus therefor
- G03B15/006—Apparatus mounted on flying objects
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B37/00—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
- G03B37/04—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with cameras or projectors providing touching or overlapping fields of view
Definitions
- the present disclosure relates to a camera parameter adjustment device that adjusts camera parameters for generating a bird's-eye view image from an image captured by an in-vehicle camera that captures a vehicle periphery.
- the vehicle and its surroundings are seen from above the own vehicle by combining the images taken by a plurality of in-vehicle cameras that photograph each area around the own vehicle.
- a device that generates an image (that is, an overhead image) and displays the image on a display.
- each captured image of each in-vehicle camera is converted into an overhead image. Convert.
- an overhead image generated from an image captured by a certain in-vehicle camera is referred to as a partial overhead image.
- a plurality of partial overhead images generated from the captured images for each on-vehicle camera are connected by a synthesis process, thereby generating an overhead image (omitted as an integrated overhead image) in all directions around the host vehicle.
- the relative position between the subject and the subject vehicle shown in the bird's-eye view image when the camera parameter does not correspond to the actual mounting posture or mounting position of the in-vehicle camera, the relative position between the subject and the subject vehicle shown in the bird's-eye view image However, it will deviate from the actual relative position.
- Patent Document 1 discloses a method for specifying a pitch angle and a mounting height of a camera provided in a vehicle and correcting the pitch angle and the mounting height as camera parameters.
- Patent Document 2 also discloses a method for evaluating the mounting error of the in-vehicle camera.
- the camera parameters of each in-vehicle camera can be adjusted.
- the outline of one subject is discontinuously displayed near the joint of the partial overhead image of the integrated overhead image. May end up. If the contours of the subject are displayed discontinuously at the joints of the partial overhead images, the user feels uncomfortable.
- the present disclosure has been made based on this situation, and the object of the present disclosure is to display the subject even when one subject is displayed across a plurality of partial overhead images in the integrated overhead image. Is to provide a camera parameter adjusting device capable of suppressing the display of the outline of the image being shifted at the joint between the partial overhead images.
- the present disclosure for achieving the object includes at least two cameras that are mounted on a vehicle and shoot different ranges in the periphery of the vehicle, and mounting positions and attachments to the vehicle that are set for each of the plurality of cameras.
- An overhead view that generates a partial overhead view image that is an overhead view image corresponding to the shooting range of the camera, based on a parameter storage unit that stores camera parameters representing the posture, an image captured by the camera, and a camera parameter corresponding to the camera
- a conversion processing unit a reference camera selection unit that determines a reference camera that is a reference camera for adjusting camera parameters of a predetermined camera among a plurality of cameras, an image captured by the reference camera, and a reference camera A first position for identifying a relative position of an object photographed by the reference camera with respect to the vehicle based on the corresponding camera parameter.
- Relative position specified with respect to the common photographed object that is an object photographed by both the adjustment target camera and the reference camera, and the first relative position identifying unit with respect to the common photographed object A deviation degree calculation unit that calculates the degree of deviation from the specified relative position, and a parameter calculation that calculates a matching parameter that is a camera parameter for which the deviation degree calculated by the deviation degree calculation unit is 0 as a camera parameter for the adjustment target camera.
- the overhead view conversion processing unit uses the matching parameter calculated by the parameter calculation unit as a camera parameter when generating a partial overhead view image from an image captured by the adjustment target camera.
- the deviation degree calculation unit is determined from the relative position of the object determined from the reference camera image and the adjustment target camera image.
- the degree of deviation from the relative position is calculated.
- the parameter calculation unit calculates a camera parameter (that is, a matching parameter) in which the deviation degree calculated by the deviation degree calculation unit is 0 as the camera parameter of the adjustment target camera.
- the overhead view conversion processing unit generates a partial overhead view image using the calculated matching parameter for the image captured by the adjustment target camera.
- the alignment parameter calculated here is, for example, the relative position of the common photographed object specified by the second relative position specifying unit using the alignment parameter instead of the preset camera parameter, 1 is a camera parameter in which the relative position of the common object specified by the relative position specifying unit becomes equal.
- the positional relationship between the object and the vehicle in the partial overhead view image represented by the partial overhead view image generated from the captured image of the adjustment target camera using the alignment parameter is the image of the reference camera. It matches with the positional relationship between the object and the vehicle in the partial bird's-eye view image represented by the partial bird's-eye view image.
- the plurality of partial overhead images generated based on the images taken by the plurality of cameras described above are one overhead image (that is, an integrated overhead image) that represents the surroundings of the vehicle as described above in the background art section. Is used to generate
- the contour of the subject is between the partial overhead images. It is possible to suppress the display from being shifted at the joint.
- FIG. 3 is a block diagram illustrating an example of a schematic configuration of a control unit 1.
- FIG. It is a figure for demonstrating the change of the positional relationship of the corresponding
- FIG. It is a conceptual diagram showing the environment where the own vehicle is traveling, the front bird's-eye view area Af, and the rear bird's-eye view area Ar. It is an example of an integrated overhead view image.
- FIG. 10 is a conceptual diagram for explaining an effect of a configuration of modification example 5.
- FIG. 1 is a diagram showing an example of a schematic configuration of a driving support system 100 to which a camera parameter adjustment device according to the present invention is applied.
- the driving support system 100 assists the driver in recognizing the situation around the vehicle by converting a captured image of a camera that captures a predetermined area outside the passenger compartment into a bird's-eye view image and displaying it on a display.
- the vehicle on which the driving support system 100 is mounted is referred to as a host vehicle, and the configuration and operation of the system will be described.
- the driving support system 100 includes a control unit 1, a front camera 2, a rear camera 3, a wheel speed sensor 4, a steering angle sensor 5, a shift position sensor 6, and a display 7. ing.
- the control unit 1, the front camera 2, the rear camera 3, the wheel speed sensor 4, the steering angle sensor 5, the shift position sensor 6, and the display 7 are configured to be able to communicate with each other via a known in-vehicle network. ing.
- the control unit 1 controls the operation of the driving support system 100. Details of the control unit 1 will be described later.
- the front camera 2 is a camera provided to photograph a predetermined range in front of the host vehicle (referred to as a front photographing range).
- a front photographing range for example, a well-known CMOS camera, CCD camera, or the like whose shooting range is set to a wide angle (for example, an angle of view of 175 °) by a wide angle lens can be used.
- the front camera 2 may be installed, for example, near the center of the front bumper in the vehicle width direction so that a desired range in front of the host vehicle is the shooting range.
- the installation position of the front camera 2 is not limited to the vicinity of the center part in the vehicle width direction of the front bumper, but is a position that does not obstruct the driver's view of the front of the vehicle, for example, in the vicinity of the rearview mirror in the vehicle interior or the upper end of the windshield. It only has to be attached. Video signals captured by the front camera 2 are sequentially output to the control unit 1.
- the rear camera 3 is a camera provided so as to photograph a predetermined range (referred to as a rear photographing range) behind the host vehicle.
- the rear camera 3 may be a known CMOS camera or CCD camera whose shooting range is set to a wide angle by a wide angle lens.
- the rear camera 3 may be installed, for example, near the center of the rear bumper in the vehicle width direction so that a desired range behind the host vehicle is the shooting range.
- the installation position of the rear camera 3 is not limited to the vicinity of the center part in the vehicle width direction of the rear bumper, and may be attached to a position that does not block the view for the driver's rear confirmation, for example, near the upper end of the rear window.
- Video signals taken by the rear camera 3 are sequentially output to the control unit 1.
- the wheel speed sensor 4 sequentially outputs a pulse signal corresponding to the rotational speed of the wheel (for example, every several tens of milliseconds).
- the control unit 1 converts the pulse signal input from the wheel speed sensor 4 into a vehicle speed using a known method.
- the steering angle sensor 5 sequentially detects the steering angle and sequentially outputs a signal corresponding to the steering angle.
- a rotational torque sensor that detects rotational torque generated when the user operates the steering can be used.
- the shift position sensor 6 detects the shift position of the vehicle and outputs a signal corresponding to the detected shift position to the control unit 1.
- the shift position includes a reverse position for transmitting driving force in a direction in which the host vehicle moves backward, a drive position for transmitting driving force in a direction in which the host vehicle moves forward, and the like.
- Display 7 displays text and images based on signals input from control unit 1.
- the display 7 is capable of full color display, for example, and can be configured using a liquid crystal display, an organic EL display, or the like.
- the display 7 is a display disposed near the center of the instrument panel in the vehicle width direction.
- the display 7 may be a display provided in the meter unit or a known head-up display.
- the control unit 1 is configured as a normal computer, and includes a well-known CPU 11, a memory 12, a storage 13, an input / output interface (hereinafter referred to as I / O), a bus line connecting these configurations, and the like.
- the CPU 11 is a well-known central processing unit, and executes various arithmetic processes by using the memory 12 as an arithmetic area.
- the memory 12 may be realized by a temporary storage medium such as a RAM, for example, and functions as a main storage device for the CPU 11.
- the storage 13 may be realized by a non-volatile storage medium such as a ROM or a flash memory, and functions as an auxiliary storage device for the CPU 11. Although only one CPU 11 is shown here, a plurality of CPUs 11 may be provided.
- the I / O controls data transmission / reception between the control unit 1 and an external device connected to the control unit 1 such as the front camera 2 and the rear camera 3.
- the I / O converts the video signals input from the front camera 2 and the rear camera 3 into image data in a format that allows image processing such as a bird's-eye view described later, and stores the image data in the memory 12.
- the storage 13 stores programs for executing various processes.
- the storage 13 stores camera parameters set in advance for each in-vehicle camera.
- Camera parameters indicate parameters indicating the installation position and mounting orientation of each in-vehicle camera with respect to the center of the vehicle (external parameters), lens distortion coefficient, focal length, optical axis center, pixel size, pixel ratio, etc. Includes parameters (internal parameters).
- the installation position of each in-vehicle camera can be represented by, for example, three-dimensional coordinates with the center of the host vehicle as the origin, the vehicle longitudinal direction as the X axis, the vehicle width direction as the Y axis, and the vehicle height direction as the Z axis. good.
- the mounting posture represents the optical axis direction of the in-vehicle camera.
- the mounting posture may be represented by the angles (the so-called pitch angle, roll angle, and yaw angle) formed by the optical axis of the in-vehicle camera with respect to each of the aforementioned X axis, Y axis, and Z axis.
- the center of the host vehicle as a reference point for defining the installation position is, for example, a point where the distance from the front end of the vehicle to the rear end is equal on the center line of the vehicle equidistant from both sides of the host vehicle. .
- the center position in the vehicle width direction of the rear wheel shaft may be the center.
- the internal parameters described above are used for performing distortion correction on image data taken by each in-vehicle camera.
- the external parameter is used for viewpoint conversion (or coordinate conversion) from the image subjected to distortion correction processing, or for specifying the relative position of the subject with respect to the subject vehicle from the position of the subject in the captured image. Used for etc.
- the area 13a storing the camera parameters described above corresponds to the parameter storage unit described in the claims.
- the storage 13 stores data of an image obtained by looking down at the host vehicle.
- the control unit 1 includes a parameter acquisition unit F1, an overhead view conversion processing unit F2, a movement amount specifying unit F3, and a history image as functional blocks realized by executing a program stored in the storage 13.
- a management unit F4 an interpolation overhead image generation unit F5, an image composition unit F6, and a display processing unit F7 are provided.
- a reference camera setting unit F8, a common object determination unit F9, a front relative position specifying unit G1, a rear relative position specifying unit G2, a deviation degree calculating unit G3, and a parameter calculating unit G4 are provided. .
- some or all of the functions of the control unit 1 may be configured by hardware using one or a plurality of ICs.
- the control unit 1 corresponds to the camera parameter adjusting device described in the claims.
- the parameter acquisition unit F1 first refers to the storage 13 and acquires camera parameters for each in-vehicle camera. Further, the parameter acquisition unit F1 in the present embodiment includes an error correction unit F11 corresponding to the camera mounting error correction function disclosed in Patent Document 1.
- the error correction unit F11 calculates an error between a design value for the pitch angle and the mounting height among various parameters corresponding to the vehicle-mounted camera, and calculates the pitch angle and the mounting height by correcting the calculated error. calculate. That is, the error correction unit F11 plays a role of correcting the pitch angle and the mounting height among various camera parameters. Data (error data) indicating the difference between the pitch angle and the design value of the mounting height calculated by the error correction unit F11 is provided to the reference camera setting unit F8.
- the error correction unit F11 corresponds to the error calculation unit described in the claims.
- the overhead view conversion processing unit F2 generates an overhead view image (that is, a partial overhead view image) corresponding to the shooting range of the in-vehicle camera from the image data captured by each in-vehicle camera stored in the memory 12. For example, the overhead conversion processing unit F2 performs a known distortion correction process on the image data captured by the front camera 2 using a distortion correction parameter corresponding to the front camera 2. Then, viewpoint conversion processing is performed on the image subjected to the distortion correction processing using camera parameters corresponding to the front camera 2, and a partial overhead view image (front overhead image) corresponding to the imaging region of the front camera 2 is obtained. create.
- a series of processes for generating a partial overhead view image from a captured image is also referred to as an overhead view conversion process.
- the process in which the overhead conversion processing unit F2 generates a partial overhead image (rear overhead image) corresponding to the imaging area of the rear camera 3 from the image data captured by the rear camera 3 is also forward from the image data captured by the front camera 2. This is the same as the process for generating the overhead image.
- the overhead view conversion processing unit F ⁇ b> 2 generates a backward overhead image based on image data captured by the rear camera 3 and camera parameters corresponding to the rear camera 3.
- the front bird's-eye view image is an image representing a predetermined range in the front photographing range
- the rear bird's-eye view image is an image representing the predetermined range in the rear photographing range.
- the area represented by the front bird's-eye image is referred to as a front bird's-eye view area
- the area represented by the rear bird's-eye view image is referred to as a rear bird's-eye view area.
- the front overhead image and the rear overhead image generated by the overhead conversion processing unit F2 are temporarily stored in the memory 12 and used by other functional blocks.
- the latest partial bird's-eye view image sequentially generated by the bird's-eye conversion processing unit F2 is a bird's-eye view image that represents the current state of the shooting region of the in-vehicle camera in real time.
- the front overhead image and the rear overhead image are distinguished from each other and stored. Moreover, the front bird's-eye view image and the rear bird's-eye view image generated at a plurality of time points may be sorted and stored in time series order.
- the area 12a that stores partial overhead images corresponding to the respective in-vehicle cameras corresponds to the image data storage unit described in the claims.
- the image data storage unit is provided in the memory 12 is illustrated as an example, but the image data storage unit may be provided in the storage 13.
- the movement amount specifying unit F3 calculates the movement amount of the host vehicle from a certain time point to the present time based on signals input from the wheel speed sensor 4, the steering angle sensor 5, and the shift position sensor 6.
- the movement amount of the host vehicle here includes a movement distance and a movement direction.
- a known method may be used as a method for specifying the amount of change in the vehicle position from the vehicle information.
- the movement amount specifying unit F3 sequentially specifies the current vehicle speed based on the signal input from the wheel speed sensor 4, and calculates the movement distance per unit time by integrating the vehicle speed. Further, the movement amount specifying unit F3 specifies the moving direction of the host vehicle based on the signal input from the shift position sensor 6 and the signal input from the steering angle sensor 5. The change amount of the vehicle position sequentially calculated by the movement amount specifying unit F3 is used by the history image management unit F4 and the like.
- the movement amount specifying unit F3 determines whether the host vehicle is moving forward or backward. For example, the movement amount specifying unit F3 determines whether the host vehicle is moving forward or backward based on a signal input from the shift position sensor 6. Note that the method of determining whether the host vehicle is moving forward or backward (that is, the traveling direction) is not limited to this. For example, when a sensor for detecting the rotation direction of the tire is provided, whether the host vehicle is moving forward or backward may be determined from the rotation direction. Further, when a GPS receiver or the like is provided, it may be determined whether the vehicle is moving forward or backward based on a time change in the position of the host vehicle determined according to the reception result of the GPS receiver.
- the history image management unit F4 manages a plurality of front overhead images and rear overhead images stored in the memory 12. Specifically, based on the movement amount specified by the movement amount specifying unit F3, for each partial overhead image, the relative position (corresponding region) of the area represented by the partial overhead image of the surrounding area of the host vehicle is set. to manage. That is, the corresponding area of the partial overhead image is sequentially calculated and updated based on the movement amount of the vehicle from the time when the partial overhead image is generated to the present.
- FIG. 3 is a diagram for explaining a change in a positional relationship between the corresponding region of the partial overhead view image and the own vehicle accompanying the movement of the own vehicle.
- the corresponding area of the front overhead image If (T1) newly generated at time T1 is a front overhead area.
- the diagram shown on the right side of FIG. 3 shows the positional relationship between the corresponding area of the front bird's-eye view image If (T1) and the host vehicle when the host vehicle has advanced 0.3 m from time T1 (referred to as time T2). Yes.
- the relative position of the front-viewing area itself with respect to the host vehicle is constant. That is, the corresponding area of the front bird's-eye view image If (T2) generated at time T2 is a front bird's-eye view area.
- the corresponding region of the front bird's-eye view image If (T1) becomes a region on the rear side of the host vehicle relatively by 0.3 m from the front bird's-eye view region as the host vehicle advances. .
- the history image management unit F4 sequentially updates the corresponding area of the partial overhead image for each partial overhead image based on the movement amount specified by the movement amount specifying unit F3.
- the corresponding area of each partial bird's-eye view image may be represented by coordinates on the XY plane composed of the X axis and the Y axis included in the XYZ coordinate system described above.
- the data indicating the corresponding area stored in association with the partial overhead image corresponds to an example of the position specifying data described in the claims.
- the partial overhead view image is stored as it is (that is, in full size).
- the difference portion is, for example, a region that does not overlap with the front overhead image If (T2) in the front overhead image If (T1) in FIG.
- information for example, time information and location information
- a mode may be employed in which the corresponding region is calculated later as necessary. This is because if there is time and position information at the time of generating the partial overhead image, the corresponding area of the partial overhead image with respect to the current position of the host vehicle can be calculated backward. For example, if there is time information at the time when the partial overhead image is generated, the corresponding area of the partial overhead image with respect to the current position of the host vehicle can be calculated from the total movement amount from that time to the present. That is, the time and position information at the time when the partial overhead image is generated also correspond to an example of the position specifying data described in the claims.
- the partial overhead images other than the latest partial overhead image are referred to as history images.
- a front bird's-eye view image that is not the latest is referred to as a front history image
- a rear bird's-eye view image that is not the latest is referred to as a rear history image.
- the interpolated overhead image generation unit F5 generates a partial overhead image (referred to as an interpolated overhead image) representing an area between the front overhead area and the backward overhead area based on the history image stored in the memory 12. .
- an interpolated overhead image is generated based on the forward history image.
- an interpolated overhead image is generated based on the rear history image. That is, the interpolated overhead image is generated based on the partial overhead image generated from the captured image of the in-vehicle camera (referred to as the traveling direction camera) on the traveling direction side of the host vehicle.
- the image composition unit F6 synthesizes the latest front bird's-eye image, the latest rear bird's-eye view image, and the interpolated bird's-eye view image, so that the vehicle and the predetermined area around the own vehicle are seen from above the own vehicle. An image (assumed as an integrated overhead image) is generated.
- the image composition unit F6 corresponds to the overhead image integration processing unit described in the claims.
- the one read from the storage 13 is used as the bird's-eye view image of the host vehicle itself.
- FIG. 5 shows an integrated bird's-eye view image generated when the host vehicle is traveling forward on a lane defined by white lines L1 and L2 as shown in FIG.
- symbol Af in FIG. 4 represents an example of the front bird's-eye view area
- symbol Ar represents an example of the rear bird's-eye view area
- the integrated overhead image is an image in which the latest front overhead image If, the latest rear overhead image Ir, and the interpolated overhead image Im are arranged at predetermined positions determined with reference to the own vehicle. is there.
- boundary lines B1 and B2 representing joints are displayed at the joint portion of each image in the integrated overhead image, but the boundary lines B1 and B2 may not be displayed as another aspect. Good.
- the white line L1f and the white line L1m, the white line L2f and the white line which are images corresponding to the white lines L1 and L2, at the joint portion between the interpolated overhead image Im and the forward history image. L2m is continuous.
- the in-vehicle camera that has captured the image data that is the source of the overhead image is different at the joint between the rear overhead image Ir and the interpolated overhead image Im, there is a shift due to the difference in the characteristics of each in-vehicle camera. May occur. That is, the white line L1m and the white line L1r, and the white line L2m and the white line L2r may be discontinuous, respectively.
- the interpolation overhead image generation unit F5 is provided and the integrated overhead image includes the interpolation overhead image.
- the present invention is not limited to this.
- the interpolation overhead image generation unit F5 may not be provided.
- the display processing unit F7 displays the integrated overhead image generated by the image composition unit F6 on the display 7.
- the reference camera setting unit F8 sets one of the front camera 2 and the rear camera 3 as an in-vehicle camera (hereinafter referred to as a reference camera) that is used as a reference when determining a matching parameter to be described later.
- the reference camera setting unit F8 determines a reference camera based on error data for each in-vehicle camera provided from the parameter acquisition unit F1.
- the reliability calculation unit F81 included in the reference camera setting unit F8 is a functional unit that calculates the reliability for each in-vehicle camera.
- the reliability calculation unit F81 corresponds to the reliability evaluation unit described in the claims.
- the reference camera setting unit F8 employs, as the reference camera, the onboard camera having the higher reliability calculated by the reliability calculation unit F81 among the front camera 2 and the rear camera 3.
- the reliability may be calculated using a predetermined function, a table, or the like having variables of the pitch angle error and the mounting height error. It is assumed that the reliability is smaller as the pitch angle error is larger and the mounting height error is larger.
- a method of evaluating the mounting error of the in-vehicle camera by the method disclosed in Patent Document 1 and calculating the reliability of each in-vehicle camera is adopted, but is not limited thereto.
- the mounting error may be evaluated by the method disclosed in Patent Document 2, and the reliability of each in-vehicle camera may be calculated.
- This reference camera setting unit F8 corresponds to the reference camera selection unit described in the claims.
- the vehicle-mounted camera determined as the reference camera is also simply referred to as a reference camera, and the vehicle-mounted camera on the side not employed as the reference camera is also referred to as a matching target camera.
- the matching target camera corresponds to the adjustment target camera described in the claims.
- the common photographed object determination unit F9 determines whether or not the front camera 2 and the rear camera 3 have photographed the same object (referred to as a common photographed object). Details of the operation of the common photographed object determination unit F9 will be described later.
- the common photographed object determination unit F9 corresponds to the determination unit described in the claims.
- the front side relative position specifying unit G1 specifies the relative position of the common photographed object from the front bird's-eye image stored in the memory 12 including the latest front bird's-eye view image.
- the rear-side relative position specifying unit G2 specifies the relative position of the common photographed object from the rear bird's-eye view image stored in the memory 12 including the latest rear bird's-eye view image.
- the front side relative position specifying unit G1 corresponds to the first relative position specifying unit described in the claims, and the rear side relative position specifying unit.
- G2 is equivalent to the 2nd relative position specific part as described in a claim.
- the front relative position specifying unit G1 corresponds to the second relative position specifying unit described in the claims, and the rear side relative position is set.
- the specifying unit G2 corresponds to the first relative position specifying unit described in the claims.
- the deviation degree calculation unit G3 calculates the degree of deviation between the relative position of the common photographed object specified by the front relative position specifying part G1 and the relative position of the common object specified by the rear relative position specifying part G2. This divergence degree corresponds to the degree of deviation described in the claims, and the divergence degree calculation unit corresponds to the deviation degree calculation unit described in the claims.
- the parameter calculation unit G4 is a camera parameter in which the divergence degree calculated by the divergence degree calculation unit G3 is 0 as the camera parameter of the matching target camera based on the relative position specified based on the partial overhead view image derived from the in-vehicle camera. (Consistency parameter) is calculated.
- the matching parameters calculated by the parameter calculation unit G4 correspond to the external parameters of the camera parameters.
- the matching parameter may correspond to an internal parameter.
- FIG. 6 is a flowchart corresponding to a parameter calculation process performed by the control unit 1 in a situation where the host vehicle is moving forward as an example. For example, it is assumed that the host vehicle travels forward on a lane defined by white lines L1 and L2 as shown in FIG.
- the flowchart shown in FIG. 6 may be started when a predetermined start condition is satisfied.
- a predetermined start condition for example, it is assumed that the operation is started when the steering angle is 0 degree, the vehicle speed is greater than 0 km / h, and a predetermined speed, for example, 30 km / h or less.
- the range set for the vehicle speed may be appropriately designed.
- the processing in the middle of processing, when the vehicle speed becomes a value outside the above-mentioned range or the steering angle becomes a value other than 0 degrees, the processing is interrupted.
- the process may be continued. .
- step S1 the parameter acquisition unit F1 reads camera parameters for each in-vehicle camera from the storage 13. Further, the error correction unit F11 calculates an attachment error for each on-vehicle camera, and corrects the camera parameter read from the storage 13.
- step S2 the process proceeds to step S2. At this time, error data representing the attachment error calculated by the error correction unit F11 is provided to the reference camera setting unit F8.
- step S2 the reference camera setting unit F8 calculates the reliability for each in-vehicle camera based on the error data calculated in step S1. Then, the in-vehicle camera having the higher reliability is adopted as the reference camera, and the process proceeds to step S3.
- the front camera 2 is adopted as the reference camera.
- step S3 the overhead view conversion processing unit F2 generates a forward overhead image and a backward overhead image using the image data input from each of the front camera 2 and the rear camera 3 and the camera parameters acquired in step S1. Move on to S4.
- step S4 the movement amount specifying unit F3 determines whether or not the movement of the host vehicle (forward movement here) is continued. If the vehicle speed is greater than 0, it is determined that the movement is continuing (step S4 YES), and the process proceeds to step S5. On the other hand, when the vehicle speed is 0, it is determined that the movement is interrupted (NO in step S4), and this flow is finished.
- step S5 the overhead conversion processing unit F2 generates a new front overhead image and a rear overhead image based on the image data newly input from each of the front camera 2 and the rear camera 3, and proceeds to step S6. Note that the front bird's-eye view image that is no longer the latest front bird's-eye view image is held in the memory 12 as a front history image.
- step S6 the movement amount specifying unit F3 specifies the movement amount since the previous step S4 was performed, and proceeds to step S7.
- step S7 the history image management unit F4 updates the corresponding area of the forward history image based on the movement amount specified by the movement amount specifying unit F3 in step S6, and proceeds to step S8.
- step S8 the common photographed object determination unit F9 determines whether an object photographed by the front camera 2 is photographed by the rear camera 3 or not. If the common object determination unit F9 determines that the object photographed by the front camera 2 is also photographed by the rear camera 3, step S8 is YES and the process proceeds to step S9. On the other hand, if the common photographed object determination unit F9 determines that the object photographed by the front camera 2 is not photographed by the rear camera 3, step S8 is NO and the process returns to step S4.
- step S4 to step S8 are performed until it is determined that the object photographed by the front camera 2 is also photographed by the rear camera 3 by the common object determination unit F9. The process is repeated.
- the common captured object determination unit F9 determines whether or not the forward overhead image is an image of an object having a predetermined feature amount.
- the object having a predetermined feature amount here is, for example, a known edge extraction or contour extraction such as a white line defining a lane, a road marking, a block provided along a road, or the like. It is an object that can be distinguished from the object.
- An object having a feature amount included in the front bird's-eye view image functions as a common photographed object.
- the road marking is a line, symbol, or character drawn on the road in order to display regulations or instructions regarding road traffic.
- the common photographed object determination unit F9 displays the front bird's-eye view image as a front camera. 2 is employed as an image (referred to as a comparative image) for determining whether or not the object photographed in 2 is also photographed by the rear camera 3.
- FIG. 7 is a diagram showing the positional relationship between the corresponding area of the latest forward-looking image If (T) at a certain time T and the host vehicle.
- the front bird's-eye view image If (T) is an image obtained by photographing white lines L1 and L2 as objects having a predetermined feature amount. That is, the common photographed object determination unit F9 employs the front overhead image If (T) as a comparison image.
- symbol L1f in FIG. 7 has shown the image corresponding to the actual white line L1
- symbol L2f has shown the image corresponding to the actual white line L2.
- the rear bird's-eye view image Ir (T) represents the rear bird's-eye view image generated at time T.
- the relative position of the corresponding region of the front overhead image If (T) approaches the rear overhead region. Further, as the host vehicle moves forward, the white lines L1 and L2 are included in the rear photographing range.
- FIG. 8 shows the positional relationship between the corresponding area of the front bird's-eye view image If (T) and the rear bird's-eye view area at the time when the white lines L1 and L2 are included in the rear photographing range (time T + n). . Since the white lines L1 and L2 exist in the rear photographing range, as shown in FIG. 8, the latest rear overhead image Ir (T + n) at time T + n includes images corresponding to the white lines L1 and L2. A symbol L1r in FIG. 8 indicates an image corresponding to the actual white line L1, and a symbol L2r indicates an image corresponding to the actual white line L2.
- the common object determination unit F9 generates the rear bird's-eye image and the front bird's-eye image If (T) that are sequentially generated. In comparison, it is determined whether or not the same photographed object (here, white lines L1 and L2) is included.
- the common captured object determination unit F9 captures the object captured by the front camera 2 However, it is determined that the rear camera 3 has also photographed.
- whether or not the same object is captured by comparing the two images may be determined with the aid of a known method such as edge detection processing, contour extraction processing, or pixel analysis processing.
- the front relative position specifying unit G1 determines the white line L1 for the host vehicle from the corresponding area of the front overhead image If (T) at the time T and the positions of the white lines L1f and L2f in the front overhead image If (T).
- the relative position of L2 (referred to as the front side relative position) is specified.
- the rear relative position specifying unit G2 specifies the relative positions of the white lines L1 and L2 (rear side relative positions) with respect to the host vehicle from the positions of the white lines L1r and L2r in the rear overhead image Ir (T + n).
- the process in step S9 proceeds to step S10.
- step S10 the divergence degree calculation unit G3 calculates the degree of divergence between the front relative position and the rear relative position, and proceeds to step S11.
- step S11 the parameter calculation unit G4 calculates a matching parameter for the rear camera 3 in which the deviation degree calculated by the deviation degree calculation unit G3 is zero.
- This matching parameter is a parameter of the rear camera 3 calculated so that the rear relative position coincides with the front relative position.
- the display position of the subject (white lines L1, L2) between the partial bird's-eye images is displayed.
- An integrated overhead view image in which the shift is suppressed can be displayed.
- the front camera 2 was used as the reference camera as an example in the above, an example in which the alignment parameter for the rear camera 3 is calculated is illustrated.
- the reference camera is the rear camera 3
- the parameter calculation unit G4 A matching parameter for the front camera 2 is calculated.
- control unit 1 when the host vehicle is moving forward is exemplified, but the same processing may be performed when the host vehicle is moving backward.
- the divergence degree calculation unit G3 determines the common photographing determined from the captured images of the in-vehicle cameras. The degree of deviation of the relative position of the object is calculated. Further, the parameter calculation unit G4 calculates a camera parameter (that is, a matching parameter) in which the deviation degree is 0 (or the deviation degree is reduced) as the camera parameter of the matching target camera. Then, the overhead conversion processing unit F2 generates a partial overhead image from the image captured by the matching target camera using the calculated matching parameter, and further, the image composition unit F6 generates using the matching parameter. An integrated overhead view image is generated using the partial overhead view image.
- the parameter calculation unit G4 calculates a matching parameter for the rear camera 3.
- the positional relationship between the object and the vehicle in the rear overhead image represented by the rear overhead image generated using the alignment parameter matches the positional relationship between the object and the vehicle in the front overhead image represented by the front overhead image.
- the in-vehicle camera with higher reliability is the in-vehicle camera with the smaller mounting error.
- an in-vehicle camera with a relatively small mounting error is used as a reference to generate an alignment parameter for the other in-vehicle camera
- an integrated overhead image including a partial overhead image generated using the alignment parameter is used. It can suppress that the relative position with respect to the own vehicle of the object around a vehicle shift
- the configuration of the present embodiment it is possible to display a partial overhead image and an integrated overhead image that more appropriately represent the positional relationship between the host vehicle and an object existing around the host vehicle.
- the reliability is calculated to be higher as the mounting error is smaller.
- the performance of the in-vehicle camera itself for example, the resolution and the number of pixels
- the reliability may be calculated. For example, the reliability may be increased as the number of years since installation is shorter, or the reliability may be calculated higher as the performance is improved.
- the camera parameter cannot be adjusted by a combination of the front camera 2 and the rear camera 3 in which a common shooting area does not occur.
- the camera parameters of the front camera 2 or the rear camera 3 can be adjusted using the history image stored in the memory 12.
- ⁇ Modification 1> In the above-described embodiment, the aspect in which the relative position is specified from the position of the object in the captured partial overhead view image is illustrated, but the present invention is not limited thereto.
- the relative position of the object may be specified based on the position of the object in the image before being converted into the partial overhead image or in the image before the distortion correction processing (that is, the captured image).
- the image managed by the history image management unit F4 may be an image input from the in-vehicle camera instead of the partial overhead view image.
- the reference camera setting unit F8 may use the traveling direction side camera as a reference camera. That is, the front camera 2 may be the reference camera when the host vehicle is moving forward, and the rear camera 3 may be the reference camera when the host vehicle is moving backward.
- the surrounding situation on the traveling direction side is more important than the surrounding situation on the leaving side. Therefore, the user is more likely to gaze at the partial overhead view image corresponding to the shooting range of the traveling direction side camera in the integrated overhead view image.
- the vehicle since the vehicle will move away from the obstacle that is not in the direction of travel, that is, the side that is leaving, information about the surrounding situation on the side that is leaving is relatively useful. Is low.
- the positional relationship between the obstacle on the leaving side and the own vehicle is not as strictly required as the positional relationship between the obstacle and the own vehicle existing on the traveling direction side. .
- an object that serves as a mark of the positional relationship between the vehicle and the external environment such as an index object
- a white line is displayed across a plurality of partial bird's-eye view images.
- Some driving support systems include an object detection device that detects a relative position of an object existing in a detection range by transmitting a search wave to a predetermined detection range.
- the driving support system 100 includes such an object detection device, the relative position detected by the object detection device and the relative position specified from the captured image of the in-vehicle camera are detected for the same object. By comparing, the reliability of the in-vehicle camera may be evaluated, and the reference camera may be determined based on the evaluation result.
- the driving support system 100 includes a front object detection device that includes at least a part of the front shooting range in the detection range, and a rear object detection device that includes at least a part of the rear shooting range in the detection range.
- a front object detection device and the rear object detection device for example, a laser radar, a sonar, a millimeter wave radar, or the like can be adopted.
- the control unit 1 in this modified example in addition to the various functional blocks provided in the control unit 1 in the above-described embodiment, an image analysis unit G5 that analyzes an image captured by each in-vehicle camera.
- the image analysis unit G5 includes a front image analysis unit G51 that analyzes an image captured by the front camera 2 as a finer functional unit, and a rear image analysis unit G52 that analyzes an image captured by the rear camera 3.
- the front image analysis unit G51 performs edge extraction, contour extraction, Gaussian processing, noise removal processing, pattern matching processing, and the like on the image captured by the front camera 2 to detect a predetermined detection target.
- a detection target is detected, the position of the detection target with respect to the host vehicle is specified from the position and size of the detection target in the image.
- the detection target is preferably an object that can also be detected by transmission and reception of exploration waves, such as blocks, curbs, road signs, and the like provided on the road surface. Moreover, it is preferable that it is a stationary object.
- the rear image analysis unit G52 also performs the same processing as the front image analysis unit G51 on the image captured by the rear camera 3, detects a predetermined detection target, and detects a detection target from the image. Then, the relative position of the detection object with respect to the host vehicle is specified.
- the reference camera setting unit F8 calculates an error between the relative position specified by the front image analysis unit G51 and the relative position detected by the front object detection device with respect to a predetermined object existing in front of the host vehicle. Further, an error between the relative position specified by the rear image analysis unit G52 and the relative position detected by the rear object detection device is calculated for a predetermined object existing behind the host vehicle.
- the relative position detected by the object detection device is higher in accuracy than the relative position specified by image analysis from an image taken by one (that is, monocular) vehicle-mounted camera. Therefore, it can be considered that the in-vehicle camera having the larger deviation from the relative position detected by the object detection device has lower reliability. In other words, the in-vehicle camera with the smaller deviation from the relative position detected by the object detection device can be evaluated with higher reliability. That is, an in-vehicle camera having a smaller deviation from the relative position detected by the object detection device may be adopted as the reference camera.
- ⁇ Modification 4> Data that is used as a material for determining whether or not the front camera 2 and the rear camera 3 have photographed a common object is included in the image, not a unit such as a photographed image or an overhead image generated from the image.
- a unit of a detection target having a predetermined feature amount may be used.
- control unit 1 in the modified example 4 will be described taking as an example the case where the host vehicle is moving forward.
- control unit 1 in the fourth modification includes the image analysis unit G5 described in the third modification.
- the front image analysis unit G51 extracts a predetermined detection object from the image captured by the front camera 2, specifies its relative position, and detects the detection object including the relative position. Information is stored in the memory 12.
- the relative position of the detection target may be expressed by the coordinates on the XY plane described above.
- the information about the detection target other than the relative position corresponds to the outline or color of the detection target. Note that the relative position of the detection target may be sequentially updated by the front side relative position specifying unit G1 based on the movement amount specified by the movement amount specifying unit F3.
- detection objects detected in common between a plurality of frames may be handled as the same object.
- a method for determining whether or not the object included in the image at the previous time and the object included in the image at the next time are the same may be performed with the aid of a known method.
- the rear image analysis unit G52 performs edge extraction, contour extraction, Gaussian processing, noise removal processing, and the like on the image captured by the rear camera 3. An image that has been subjected to such various processes is defined as a processed image. Then, the common photographed object determination unit F9 determines whether or not the processed image generated by the rear image analysis unit G52 includes the object detected by the front image analysis unit G51 using pattern matching processing or the like. That's fine.
- the data indicating the relative position of the detection target object may be expressed in more detail as a relative position for each of a plurality of feature points constituting the detection target object.
- the front camera 2 and the rear camera 3 are provided, one of which is the reference camera and the other is the matching target camera.
- the driving support system 100 may include a right side camera 8 and a left side camera 9, as shown in FIG.
- the matching parameter may be calculated using either the front camera 2 or the rear camera 3 as a reference camera and the other in-vehicle cameras in order as matching target cameras.
- the common captured object determination unit F9 compares the captured image of the front camera 2 with the captured image of the right side camera 8. Thus, the presence or absence of the common photographed object may be determined.
- the common captured object determination unit F9 includes the overlapping area.
- the matching with respect to the right-side camera 8 is performed so that the relative position of the common photographed object specified from the photographed image of the front camera 2 matches the relative position of the common photographed object specified from the photographed image of the right-side camera 8.
- the calculation parameter may be calculated.
- the front camera 2 is used as a reference camera, the alignment parameters are calculated for the rear camera 3, the right side camera 8, and the left side camera 9, respectively, and these alignment parameters are converted into an overhead view by the overhead view conversion processing unit F2. You may apply to processing.
- the integrated bird's-eye view image in which the shift at the joint between the partial images is suppressed can be displayed.
- the left side of FIG. 12 represents an integrated overhead image generated without applying the matching parameter
- the right side is a conceptual diagram showing the integrated overhead image generated by applying the matching parameter.
- 1 control unit (camera parameter adjustment device), 2 front camera, 3 rear camera, 4 wheel speed sensor, 5 steering angle sensor, 6 shift position sensor, 7 display, F1 parameter acquisition unit, F11 error correction unit (Error calculation unit), F2 overhead conversion processing unit, F3 movement amount specifying unit, F4 history image management unit, F5 interpolated overhead image generation unit, F6 image composition unit (overhead image integration processing unit), F7 display processing unit, F8 standard Camera setting unit (reference camera selection unit), F81, reliability calculation unit (reliability evaluation unit), F9, common object determination unit (determination unit), G1, front side relative position specification unit, G2, rear side relative position specification unit, G3 Deviation degree calculation part (deviation degree calculation part), G4 parameter calculation part
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Biomedical Technology (AREA)
- Closed-Circuit Television Systems (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Studio Devices (AREA)
Abstract
Provided is a camera parameter adjustment device that, even in a case of an integrated overhead-view image in which one subject is displayed across a plurality of partial overhead-view images, can prevent the outline of the subject from being displayed misaligned at the junctions between the partial overhead-view images. In a case where the same object is imaged by a front camera 2 which serves as a reference camera and a rear camera 3 which serves as an adjustment target camera, a degree-of-misalignment calculation unit calculates the degree of misalignment between the relative position of the object (a shared imaging object) as determined from the image captured by the front camera 2, and the relative position of such shared imaging object as determined from the image captured by the rear camera 3. A parameter calculation unit calculates, as a camera parameter for the rear camera 3, a camera parameter (i.e., a matched parameter) in which the degree of misalignment is zero. An overhead view conversion unit uses the calculated matched parameter to generate a rear overhead-view image from the image captured by the rear camera 3.
Description
本出願は2015年2月10日に出願された日本出願番号2015-24544号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Patent Application No. 2015-24544 filed on February 10, 2015, the contents of which are incorporated herein by reference.
本開示は、車両周辺を撮影する車載カメラが撮影した画像から俯瞰画像を生成するためのカメラパラメータを調整するカメラパラメータ調整装置に関する。
The present disclosure relates to a camera parameter adjustment device that adjusts camera parameters for generating a bird's-eye view image from an image captured by an in-vehicle camera that captures a vehicle periphery.
従来、ドライバの運転を支援する装置として、自車両周辺の各領域を撮影する複数の車載カメラが撮影した画像を合成処理することによって、自車両及びその周辺を自車両上方から俯瞰的に見た画像(つまり俯瞰画像)を生成し、ディスプレイに表示する装置がある。
Conventionally, as a device that supports driving of the driver, the vehicle and its surroundings are seen from above the own vehicle by combining the images taken by a plurality of in-vehicle cameras that photograph each area around the own vehicle. There is a device that generates an image (that is, an overhead image) and displays the image on a display.
このような装置においては、車載カメラ毎に予め設定されている、車載カメラの設置位置や取付姿勢に対応するパラメータ(カメラパラメータとする)を用いて、各車載カメラの撮影画像をそれぞれ俯瞰画像に変換する。以降では、便宜上、或る車載カメラの撮影画像から生成される俯瞰画像を部分俯瞰画像と称する。そして、車載カメラ毎の撮影画像から生成される複数の部分俯瞰画像を合成処理によってつなぎ合わせることで、自車両周辺全方位の俯瞰画像(統合俯瞰画像とする)を生成する。
In such an apparatus, using the parameters (camera parameters) corresponding to the installation position and mounting orientation of the in-vehicle camera, which are set in advance for each in-vehicle camera, each captured image of each in-vehicle camera is converted into an overhead image. Convert. Hereinafter, for convenience, an overhead image generated from an image captured by a certain in-vehicle camera is referred to as a partial overhead image. Then, a plurality of partial overhead images generated from the captured images for each on-vehicle camera are connected by a synthesis process, thereby generating an overhead image (omitted as an integrated overhead image) in all directions around the host vehicle.
このように統合俯瞰画像をディスプレイに表示する運転支援装置において、カメラパラメータが、車載カメラの実際の取付姿勢や取付位置に対応できていない場合、俯瞰画像に示される被写体と自車両との相対位置が、実際の相対位置とずれてしまう。
In this way, in the driving support device that displays the integrated bird's-eye view image on the display, when the camera parameter does not correspond to the actual mounting posture or mounting position of the in-vehicle camera, the relative position between the subject and the subject vehicle shown in the bird's-eye view image However, it will deviate from the actual relative position.
そこで、車載カメラの現在の設置位置及び取付姿勢と、設計上の設置位置及び取付姿勢との誤差を検出し、上述のカメラパラメータを、現在の設置位置や取付姿勢に対応するパラメータに補正する方法が種々検討されている。例えば特許文献1には、車両に備えられているカメラのピッチ角及び取付高さを特定し、カメラパラメータとしてのピッチ角と取付高さを補正する方法が開示されている。また、特許文献2にも、車載カメラの取付誤差を評価する方法が開示されている。
Therefore, a method of detecting an error between the current installation position and mounting posture of the in-vehicle camera and the designed installation position and mounting posture, and correcting the above camera parameters to parameters corresponding to the current installation position and mounting posture. Various studies have been made. For example, Patent Document 1 discloses a method for specifying a pitch angle and a mounting height of a camera provided in a vehicle and correcting the pitch angle and the mounting height as camera parameters. Patent Document 2 also discloses a method for evaluating the mounting error of the in-vehicle camera.
特許文献1や特許文献2に開示されている方法によれば、個々の車載カメラのカメラパラメータを調整できる。しかしながら、そのように個々の車載カメラのカメラパラメータの調整が実現できている場合であっても、統合俯瞰画像の部分俯瞰画像の繋ぎ目付近において、1つの被写体の輪郭等が不連続に表示されてしまう場合がある。部分俯瞰画像の繋ぎ目において、被写体の輪郭等が不連続に表示されているとユーザに違和感を与えてしまう。
According to the methods disclosed in Patent Document 1 and Patent Document 2, the camera parameters of each in-vehicle camera can be adjusted. However, even when the adjustment of the camera parameters of each in-vehicle camera can be realized as described above, the outline of one subject is discontinuously displayed near the joint of the partial overhead image of the integrated overhead image. May end up. If the contours of the subject are displayed discontinuously at the joints of the partial overhead images, the user feels uncomfortable.
本開示は、この事情に基づいて成されたものであり、その目的とするところは、統合俯瞰画像において1つの被写体が複数の部分俯瞰画像にまたがって表示される場合であっても、その被写体の輪郭が部分俯瞰画像同士の繋ぎ目においてずれて表示されることを抑制可能なカメラパラメータ調整装置を提供することにある。
The present disclosure has been made based on this situation, and the object of the present disclosure is to display the subject even when one subject is displayed across a plurality of partial overhead images in the integrated overhead image. Is to provide a camera parameter adjusting device capable of suppressing the display of the outline of the image being shifted at the joint between the partial overhead images.
その目的を達成するための本開示は、車両に搭載され、車両の周辺のうち、それぞれ異なる範囲を撮影する少なくとも2つのカメラと、複数のカメラ毎に設定されている、車両に対する搭載位置及び取付姿勢を表すカメラパラメータを記憶するパラメータ記憶部と、カメラが撮影した画像と、そのカメラに対応するカメラパラメータに基づいて、そのカメラの撮影範囲に対応する俯瞰画像である部分俯瞰画像を生成する俯瞰変換処理部と、複数のカメラのうち、所定のカメラのカメラパラメータを調整する際の基準とするカメラである基準カメラを決定する基準カメラ選択部と、基準カメラが撮影した画像と、基準カメラに対応するカメラパラメータに基づいて、基準カメラによって撮影された物体の車両に対する相対位置を特定する第1相対位置特定部と、複数のカメラのうち、基準カメラ以外のカメラであって、カメラパラメータの調整対象とするカメラである調整対象カメラが撮影した画像と、調整対象カメラに対応するカメラパラメータに基づいて、調整対象カメラによって撮影された物体の車両に対する相対位置を特定する第2相対位置特定部と、基準カメラが撮影した画像と、調整対象カメラが撮影した画像とに基づいて、基準カメラと調整対象カメラとが、同一の物体を撮影したか否かを判定する判定部と、判定部が調整対象カメラと基準カメラとが同一の物体を撮影したと判定した場合に、第2相対位置特定部が調整対象カメラと基準カメラの両方によって撮影された物体である共通撮影物に対して特定した相対位置と、第1相対位置特定部が共通撮影物に対して特定した相対位置とのずれ度合いを算出するずれ度合い算出部と、調整対象カメラに対するカメラパラメータとして、ずれ度合い算出部が算出したずれ度合いが0となるカメラパラメータである整合化パラメータを算出するパラメータ算出部と、を備え、俯瞰変換処理部は、パラメータ算出部が算出した整合化パラメータを、調整対象カメラが撮像した画像から部分俯瞰画像を生成する際のカメラパラメータとして用いる。
The present disclosure for achieving the object includes at least two cameras that are mounted on a vehicle and shoot different ranges in the periphery of the vehicle, and mounting positions and attachments to the vehicle that are set for each of the plurality of cameras. An overhead view that generates a partial overhead view image that is an overhead view image corresponding to the shooting range of the camera, based on a parameter storage unit that stores camera parameters representing the posture, an image captured by the camera, and a camera parameter corresponding to the camera A conversion processing unit, a reference camera selection unit that determines a reference camera that is a reference camera for adjusting camera parameters of a predetermined camera among a plurality of cameras, an image captured by the reference camera, and a reference camera A first position for identifying a relative position of an object photographed by the reference camera with respect to the vehicle based on the corresponding camera parameter. Based on an image captured by an adjustment target camera that is a camera other than the reference camera among a plurality of cameras and that is a camera parameter adjustment target, and a camera parameter corresponding to the adjustment target camera Based on the second relative position specifying unit that specifies the relative position of the object captured by the adjustment target camera with respect to the vehicle, the image captured by the reference camera, and the image captured by the adjustment target camera, A determination unit that determines whether or not the target camera has captured the same object, and a second relative position specifying unit that determines that the adjustment target camera and the reference camera have captured the same object. Relative position specified with respect to the common photographed object that is an object photographed by both the adjustment target camera and the reference camera, and the first relative position identifying unit with respect to the common photographed object A deviation degree calculation unit that calculates the degree of deviation from the specified relative position, and a parameter calculation that calculates a matching parameter that is a camera parameter for which the deviation degree calculated by the deviation degree calculation unit is 0 as a camera parameter for the adjustment target camera. The overhead view conversion processing unit uses the matching parameter calculated by the parameter calculation unit as a camera parameter when generating a partial overhead view image from an image captured by the adjustment target camera.
以上の構成では、基準カメラと、調整対象カメラとが同一の物体を撮影した場合、ずれ度合い算出部が、基準カメラの撮影画像から定まるその物体の相対位置と、調整対象カメラの撮影画像から定まる相対位置とのずれ度合いを算出する。また、パラメータ算出部は、調整対象カメラのカメラパラメータとして、ずれ度合い算出部が算出したずれ度合いが0となるカメラパラメータ(つまり整合化パラメータ)を算出する。そして、俯瞰変換処理部は、調整対象カメラが撮影した画像に対しては、算出された整合化パラメータを用いて、部分俯瞰画像を生成する。
In the above configuration, when the reference camera and the adjustment target camera photograph the same object, the deviation degree calculation unit is determined from the relative position of the object determined from the reference camera image and the adjustment target camera image. The degree of deviation from the relative position is calculated. The parameter calculation unit calculates a camera parameter (that is, a matching parameter) in which the deviation degree calculated by the deviation degree calculation unit is 0 as the camera parameter of the adjustment target camera. Then, the overhead view conversion processing unit generates a partial overhead view image using the calculated matching parameter for the image captured by the adjustment target camera.
ここで算出される整合化パラメータとは、仮に第2相対位置特定部が、予め設定されているカメラパラメータの代わりにその整合化パラメータを用いることによって特定される共通撮影物の相対位置と、第1相対位置特定部が特定する共通撮影物の相対位置とが等しくなるカメラパラメータである。
The alignment parameter calculated here is, for example, the relative position of the common photographed object specified by the second relative position specifying unit using the alignment parameter instead of the preset camera parameter, 1 is a camera parameter in which the relative position of the common object specified by the relative position specifying unit becomes equal.
つまり、以上の構成によれば、調整対象カメラの撮影画像から整合化パラメータを用いて生成される部分俯瞰画像が表す、その部分俯瞰画像内における物体と車両との位置関係は、基準カメラの画像から生成される部分俯瞰画像が表す、その部分俯瞰画像内における物体と車両との位置関係と整合するようになる。
That is, according to the above configuration, the positional relationship between the object and the vehicle in the partial overhead view image represented by the partial overhead view image generated from the captured image of the adjustment target camera using the alignment parameter is the image of the reference camera. It matches with the positional relationship between the object and the vehicle in the partial bird's-eye view image represented by the partial bird's-eye view image.
なお、上述した複数のカメラが撮影した画像に基づいて生成される複数の部分俯瞰画像は、背景技術欄でも述べたように、車両周辺を俯瞰的に表す1つの俯瞰画像(つまり統合俯瞰画像)を生成するために用いられる。
Note that the plurality of partial overhead images generated based on the images taken by the plurality of cameras described above are one overhead image (that is, an integrated overhead image) that represents the surroundings of the vehicle as described above in the background art section. Is used to generate
以上で述べた構成によれば、統合俯瞰画像をディスプレイに表示する態様において、1つの被写体が複数の部分俯瞰画像にまたがって表示される場合であっても、その被写体の輪郭が部分俯瞰画像同士の繋ぎ目においてずれて表示されることを抑制することができる。
According to the configuration described above, in the aspect in which the integrated overhead image is displayed on the display, even if one subject is displayed across a plurality of partial overhead images, the contour of the subject is between the partial overhead images. It is possible to suppress the display from being shifted at the joint.
なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
In addition, the code | symbol in the parenthesis described in the claim shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: The technical scope of this invention is limited is not.
以下、本発明の実施形態について図を用いて説明する。図1は、本発明に係るカメラパラメータ調整装置が適用された運転支援システム100の概略的な構成の一例を示す図である。この運転支援システム100は、車室外の所定領域を撮影するカメラの撮影画像を、俯瞰画像に変換してディスプレイに表示することで、ドライバが車両周辺の状況を認識することを支援するものである。以降では、当該運転支援システム100が搭載された車両を自車両と称し、当該システムの構成及び作動について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an example of a schematic configuration of a driving support system 100 to which a camera parameter adjustment device according to the present invention is applied. The driving support system 100 assists the driver in recognizing the situation around the vehicle by converting a captured image of a camera that captures a predetermined area outside the passenger compartment into a bird's-eye view image and displaying it on a display. . Hereinafter, the vehicle on which the driving support system 100 is mounted is referred to as a host vehicle, and the configuration and operation of the system will be described.
本実施形態にかかる運転支援システム100は、図1に示すように、制御部1、前方カメラ2、後方カメラ3、車輪速センサ4、操舵角センサ5、シフトポジションセンサ6、及びディスプレイ7を備えている。制御部1と、前方カメラ2、後方カメラ3、車輪速センサ4、操舵角センサ5、シフトポジションセンサ6、及びディスプレイ7のそれぞれとは、周知の車両内ネットワークを介して相互通信可能に構成されている。制御部1が、運転支援システム100の動作を制御する。この制御部1についての詳細は後述する。
As shown in FIG. 1, the driving support system 100 according to the present embodiment includes a control unit 1, a front camera 2, a rear camera 3, a wheel speed sensor 4, a steering angle sensor 5, a shift position sensor 6, and a display 7. ing. The control unit 1, the front camera 2, the rear camera 3, the wheel speed sensor 4, the steering angle sensor 5, the shift position sensor 6, and the display 7 are configured to be able to communicate with each other via a known in-vehicle network. ing. The control unit 1 controls the operation of the driving support system 100. Details of the control unit 1 will be described later.
前方カメラ2は、自車両の前方の所定範囲(前方撮影範囲とする)を撮影するように設けられたカメラである。前方カメラ2は、例えば、広角レンズによって撮影範囲が広角(例えば画角175°)に設定された周知のCMOSカメラやCCDカメラ等を用いることができる。前方カメラ2は、自車両前方の所望の範囲を撮影範囲とするように、例えばフロントバンパの車幅方向中央部付近に設置されればよい。
The front camera 2 is a camera provided to photograph a predetermined range in front of the host vehicle (referred to as a front photographing range). As the front camera 2, for example, a well-known CMOS camera, CCD camera, or the like whose shooting range is set to a wide angle (for example, an angle of view of 175 °) by a wide angle lens can be used. The front camera 2 may be installed, for example, near the center of the front bumper in the vehicle width direction so that a desired range in front of the host vehicle is the shooting range.
もちろん、前方カメラ2の設置位置は、フロントバンパの車幅方向中央部付近に限らず、例えば車室内のルームミラー付近やフロントガラスの上端などの、自車両前方に対するドライバの視界を遮らない位置に取り付けられればよい。前方カメラ2が撮影した映像信号は、制御部1に逐次出力される。
Of course, the installation position of the front camera 2 is not limited to the vicinity of the center part in the vehicle width direction of the front bumper, but is a position that does not obstruct the driver's view of the front of the vehicle, for example, in the vicinity of the rearview mirror in the vehicle interior or the upper end of the windshield. It only has to be attached. Video signals captured by the front camera 2 are sequentially output to the control unit 1.
後方カメラ3は、自車両の後方の所定範囲(後方撮影範囲とする)を撮影するように設けられたカメラである。例えば、後方カメラ3は前方カメラ2と同様に、広角レンズによって撮影範囲が広角に設定された周知のCMOSカメラやCCDカメラ等を用いることができる。後方カメラ3は、自車両後方の所望の範囲を撮影範囲とするように、例えばリアバンパの車幅方向中央部付近に設置されればよい。
The rear camera 3 is a camera provided so as to photograph a predetermined range (referred to as a rear photographing range) behind the host vehicle. For example, similar to the front camera 2, the rear camera 3 may be a known CMOS camera or CCD camera whose shooting range is set to a wide angle by a wide angle lens. The rear camera 3 may be installed, for example, near the center of the rear bumper in the vehicle width direction so that a desired range behind the host vehicle is the shooting range.
もちろん、後方カメラ3の設置位置は、リアバンパの車幅方向中央部付近に限らず、例えばリアウィンドウの上端付近など、ドライバの後方確認のための視界を遮らない位置に取り付けられればよい。後方カメラ3が撮影した映像信号は、制御部1に逐次出力される。
Of course, the installation position of the rear camera 3 is not limited to the vicinity of the center part in the vehicle width direction of the rear bumper, and may be attached to a position that does not block the view for the driver's rear confirmation, for example, near the upper end of the rear window. Video signals taken by the rear camera 3 are sequentially output to the control unit 1.
以降において、前方カメラ2と後方カメラ3とを区別しない場合には単に車載カメラと記載する。
Hereinafter, when the front camera 2 and the rear camera 3 are not distinguished from each other, they are simply referred to as an in-vehicle camera.
車輪速センサ4は、車輪の回転速度に応じたパルス信号を逐次(例えば数十ミリ秒毎)出力する。制御部1は、車輪速センサ4から入力されるパルス信号を、周知の方法によって車速に変換して用いる。操舵角センサ5は、操舵角を逐次検出し、操舵角に応じた信号を逐次出力する。操舵角センサ5は、例えばユーザがステアリングを操作する際に生じる回転トルクを検出する回転トルクセンサ等を用いることができる。シフトポジションセンサ6は、車両のシフトポジションを検出し、その検出したシフトポジションに対応する信号を制御部1へ出力する。シフトポジションとしては、自車両が後退する方向に駆動力を伝達するためのリバース位置や、自車両が前進する方向に駆動力を伝達するためのドライブ位置等がある。
The wheel speed sensor 4 sequentially outputs a pulse signal corresponding to the rotational speed of the wheel (for example, every several tens of milliseconds). The control unit 1 converts the pulse signal input from the wheel speed sensor 4 into a vehicle speed using a known method. The steering angle sensor 5 sequentially detects the steering angle and sequentially outputs a signal corresponding to the steering angle. As the steering angle sensor 5, for example, a rotational torque sensor that detects rotational torque generated when the user operates the steering can be used. The shift position sensor 6 detects the shift position of the vehicle and outputs a signal corresponding to the detected shift position to the control unit 1. The shift position includes a reverse position for transmitting driving force in a direction in which the host vehicle moves backward, a drive position for transmitting driving force in a direction in which the host vehicle moves forward, and the like.
ディスプレイ7は、制御部1から入力される信号に基づいてテキストや画像を表示する。ディスプレイ7は、例えばフルカラー表示が可能なものであり、液晶ディスプレイ、有機ELディスプレイ等を用いて構成することができる。ディスプレイ7は、ここでは一例としてインストゥルメントパネルの車幅方向中央付近に配置されたディスプレイとする。なお、他の態様として、ディスプレイ7は、メータユニットに設けられたディスプレイであってもよいし、周知のヘッドアップディスプレイであってもよい。
Display 7 displays text and images based on signals input from control unit 1. The display 7 is capable of full color display, for example, and can be configured using a liquid crystal display, an organic EL display, or the like. Here, as an example, the display 7 is a display disposed near the center of the instrument panel in the vehicle width direction. As another aspect, the display 7 may be a display provided in the meter unit or a known head-up display.
制御部1は、通常のコンピュータとして構成されており、周知のCPU11、メモリ12、ストレージ13、入出力インターフェース(以降、I/O)、及びこれらの構成を接続するバスラインなどを備えている。
The control unit 1 is configured as a normal computer, and includes a well-known CPU 11, a memory 12, a storage 13, an input / output interface (hereinafter referred to as I / O), a bus line connecting these configurations, and the like.
CPU11は、周知の中央処理装置であり、メモリ12を演算領域としても用いることで、種々の演算処理を実行する。メモリ12は、例えばRAMなどの一時記憶媒体によって実現されればよく、CPU11にとっての主記憶装置として機能する。ストレージ13は、ROMやフラッシュメモリなどの不揮発性の記憶媒体によって実現されればよく、CPU11にとっての補助記憶装置として機能する。なお、ここではCPU11は1つしか図示していないが複数備えていてもよい。
The CPU 11 is a well-known central processing unit, and executes various arithmetic processes by using the memory 12 as an arithmetic area. The memory 12 may be realized by a temporary storage medium such as a RAM, for example, and functions as a main storage device for the CPU 11. The storage 13 may be realized by a non-volatile storage medium such as a ROM or a flash memory, and functions as an auxiliary storage device for the CPU 11. Although only one CPU 11 is shown here, a plurality of CPUs 11 may be provided.
I/Oは、例えば前方カメラ2や後方カメラ3等の、制御部1に接続する外部装置と、制御部1との間で行われるデータの送受信を制御する。なお、I/Oは、前方カメラ2及び後方カメラ3から入力された映像信号を、後述する俯瞰化などの画像処理が可能な形式の画像データに変換して、メモリ12に蓄積する。
The I / O controls data transmission / reception between the control unit 1 and an external device connected to the control unit 1 such as the front camera 2 and the rear camera 3. The I / O converts the video signals input from the front camera 2 and the rear camera 3 into image data in a format that allows image processing such as a bird's-eye view described later, and stores the image data in the memory 12.
ストレージ13には、種々の処理を実行するためのプログラムが格納されている。また、ストレージ13には、車載カメラ毎に予め設定されているカメラパラメータが格納されている。カメラパラメータは、自車両の中心に対する各車載カメラの設置位置や取付姿勢を示すパラメータ(外部パラメータとする)や、レンズの歪み係数や、焦点距離、光軸中心、画素サイズ、画素比などを示すパラメータ(内部パラメータ)を含む。
The storage 13 stores programs for executing various processes. The storage 13 stores camera parameters set in advance for each in-vehicle camera. Camera parameters indicate parameters indicating the installation position and mounting orientation of each in-vehicle camera with respect to the center of the vehicle (external parameters), lens distortion coefficient, focal length, optical axis center, pixel size, pixel ratio, etc. Includes parameters (internal parameters).
各車載カメラの設置位置は、例えば、自車両の中心を原点とし、車両前後方向をX軸とし、車幅方向をY軸、車両高さ方向をZ軸とする3次元座標によって表されれば良い。取付姿勢とは、車載カメラの光軸方向を表すものである。例えば、取付姿勢は、前述のX軸、Y軸、Z軸のそれぞれに対する車載カメラの光軸の為す角度(いゆわるピッチ角、ロール角、ヨー角)によって表されれば良い。
The installation position of each in-vehicle camera can be represented by, for example, three-dimensional coordinates with the center of the host vehicle as the origin, the vehicle longitudinal direction as the X axis, the vehicle width direction as the Y axis, and the vehicle height direction as the Z axis. good. The mounting posture represents the optical axis direction of the in-vehicle camera. For example, the mounting posture may be represented by the angles (the so-called pitch angle, roll angle, and yaw angle) formed by the optical axis of the in-vehicle camera with respect to each of the aforementioned X axis, Y axis, and Z axis.
なお、設置位置を定義するための基準点としての自車両の中心は、例えば、自車両の両側面から等距離にある車両の中心線上において、車両前端から後端までの距離が等しい点とする。もちろん、その他、後輪軸の車幅方向中央となる位置を中心としてもよい。
The center of the host vehicle as a reference point for defining the installation position is, for example, a point where the distance from the front end of the vehicle to the rear end is equal on the center line of the vehicle equidistant from both sides of the host vehicle. . Of course, the center position in the vehicle width direction of the rear wheel shaft may be the center.
上述した内部パラメータは、各車載カメラが撮影した画像データに対して歪補正を行うため等に用いられる。また、外部パラメータは、歪補正処理を施した画像から視点変換(或いは座標変換)するために用いられたり、撮影画像中における被写体の位置からその被写体の自車両に対する相対位置を特定したりするため等に用いられる。
The internal parameters described above are used for performing distortion correction on image data taken by each in-vehicle camera. The external parameter is used for viewpoint conversion (or coordinate conversion) from the image subjected to distortion correction processing, or for specifying the relative position of the subject with respect to the subject vehicle from the position of the subject in the captured image. Used for etc.
ストレージ13が備える記憶領域のうち、上述したカメラパラメータを記憶している領域13aが請求項に記載のパラメータ記憶部に相当する。ストレージ13は、その他、自車両を俯瞰的に見た画像のデータなどを記憶している。
Of the storage areas provided in the storage 13, the area 13a storing the camera parameters described above corresponds to the parameter storage unit described in the claims. In addition, the storage 13 stores data of an image obtained by looking down at the host vehicle.
制御部1は、ストレージ13に格納されているプログラムを実行することによって実現する機能ブロックとして、図2に示すように、パラメータ取得部F1、俯瞰変換処理部F2、移動量特定部F3、履歴画像管理部F4、補間俯瞰画像生成部F5、画像合成部F6、表示処理部F7を備える。また、上記の機能に加えて、基準カメラ設定部F8、共通撮影物判定部F9、前方側相対位置特定部G1、後方側相対位置特定部G2、乖離度合い算出部G3、パラメータ算出部G4を備える。なお、制御部1が備える機能の一部又は全部は、一つあるいは複数のIC等によりハードウェア的に構成してもよい。この制御部1が請求項に記載のカメラパラメータ調整装置に相当する。
As shown in FIG. 2, the control unit 1 includes a parameter acquisition unit F1, an overhead view conversion processing unit F2, a movement amount specifying unit F3, and a history image as functional blocks realized by executing a program stored in the storage 13. A management unit F4, an interpolation overhead image generation unit F5, an image composition unit F6, and a display processing unit F7 are provided. In addition to the above functions, a reference camera setting unit F8, a common object determination unit F9, a front relative position specifying unit G1, a rear relative position specifying unit G2, a deviation degree calculating unit G3, and a parameter calculating unit G4 are provided. . Note that some or all of the functions of the control unit 1 may be configured by hardware using one or a plurality of ICs. The control unit 1 corresponds to the camera parameter adjusting device described in the claims.
パラメータ取得部F1は、まず、ストレージ13を参照し、車載カメラ毎のカメラパラメータを取得する。また、本実施形態におけるパラメータ取得部F1は、特許文献1に開示されているカメラ取付誤差補正機能に相当する誤差補正部F11を備える。
The parameter acquisition unit F1 first refers to the storage 13 and acquires camera parameters for each in-vehicle camera. Further, the parameter acquisition unit F1 in the present embodiment includes an error correction unit F11 corresponding to the camera mounting error correction function disclosed in Patent Document 1.
誤差補正部F11は、車載カメラに対応する種々のパラメータのうち、ピッチ角と取付高さについて、設計上の値との誤差を算出し、その算出した誤差を補正したピッチ角及び取付高さを算出する。つまり、誤差補正部F11は、種々のカメラパラメータのうち、ピッチ角と取付高さを補正する役割を担う。誤差補正部F11によって算出された、ピッチ角と取付高さの設計上の値との差を示すデータ(誤差データ)は、基準カメラ設定部F8に提供される。誤差補正部F11が請求項に記載の誤差算出部に相当する。
The error correction unit F11 calculates an error between a design value for the pitch angle and the mounting height among various parameters corresponding to the vehicle-mounted camera, and calculates the pitch angle and the mounting height by correcting the calculated error. calculate. That is, the error correction unit F11 plays a role of correcting the pitch angle and the mounting height among various camera parameters. Data (error data) indicating the difference between the pitch angle and the design value of the mounting height calculated by the error correction unit F11 is provided to the reference camera setting unit F8. The error correction unit F11 corresponds to the error calculation unit described in the claims.
俯瞰変換処理部F2は、メモリ12に蓄積されている、各車載カメラが撮影した画像データから、その車載カメラの撮影範囲に対応する俯瞰画像(つまり部分俯瞰画像)を生成する。例えば俯瞰変換処理部F2は、前方カメラ2が撮影した画像データに対して、前方カメラ2に対応する歪み補正パラメータを用いて、周知の歪み補正処理を実施する。そして、その歪み補正処理を施した画像に対して、前方カメラ2に対応するカメラパラメータを用いて、視点変換処理を行い、前方カメラ2の撮影領域に対応する部分俯瞰画像(前方俯瞰画像)を作成する。以降では、撮影画像から部分俯瞰画像を生成する一連の処理を俯瞰変換処理とも称する。
The overhead view conversion processing unit F2 generates an overhead view image (that is, a partial overhead view image) corresponding to the shooting range of the in-vehicle camera from the image data captured by each in-vehicle camera stored in the memory 12. For example, the overhead conversion processing unit F2 performs a known distortion correction process on the image data captured by the front camera 2 using a distortion correction parameter corresponding to the front camera 2. Then, viewpoint conversion processing is performed on the image subjected to the distortion correction processing using camera parameters corresponding to the front camera 2, and a partial overhead view image (front overhead image) corresponding to the imaging region of the front camera 2 is obtained. create. Hereinafter, a series of processes for generating a partial overhead view image from a captured image is also referred to as an overhead view conversion process.
俯瞰変換処理部F2が、後方カメラ3が撮影した画像データから、後方カメラ3の撮影領域に対応する部分俯瞰画像(後方俯瞰画像)を生成するプロセスも、前方カメラ2が撮影した画像データから前方俯瞰画像を生成するプロセスと同様である。俯瞰変換処理部F2は、後方カメラ3が撮影した画像データと、後方カメラ3に対応するカメラパラメータとに基づいて後方俯瞰画像を生成する。
The process in which the overhead conversion processing unit F2 generates a partial overhead image (rear overhead image) corresponding to the imaging area of the rear camera 3 from the image data captured by the rear camera 3 is also forward from the image data captured by the front camera 2. This is the same as the process for generating the overhead image. The overhead view conversion processing unit F <b> 2 generates a backward overhead image based on image data captured by the rear camera 3 and camera parameters corresponding to the rear camera 3.
ここでは前方俯瞰画像は、前方撮影範囲のうちの所定の範囲を俯瞰的に表す画像であり、後方俯瞰画像は、後方撮影範囲のうちの所定の範囲を俯瞰的に表す画像とする。以降では、自車両の周辺領域のうち、前方俯瞰画像が表す領域を前方俯瞰化領域とし、後方俯瞰画像が表す領域を後方俯瞰化領域とする。
Here, the front bird's-eye view image is an image representing a predetermined range in the front photographing range, and the rear bird's-eye view image is an image representing the predetermined range in the rear photographing range. Hereinafter, among the peripheral areas of the host vehicle, the area represented by the front bird's-eye image is referred to as a front bird's-eye view area, and the area represented by the rear bird's-eye view image is referred to as a rear bird's-eye view area.
俯瞰変換処理部F2が生成した前方俯瞰画像及び後方俯瞰画像は、いったんメモリ12に格納され、他の機能ブロックによって利用される。なお、俯瞰変換処理部F2が逐次生成する最新の部分俯瞰画像は、車載カメラの撮影領域の現在の状況をリアルタイムに表す俯瞰画像である。
The front overhead image and the rear overhead image generated by the overhead conversion processing unit F2 are temporarily stored in the memory 12 and used by other functional blocks. The latest partial bird's-eye view image sequentially generated by the bird's-eye conversion processing unit F2 is a bird's-eye view image that represents the current state of the shooting region of the in-vehicle camera in real time.
メモリ12内において、前方俯瞰画像及び後方俯瞰画像は互いに区別されて保存される。また、複数の時点で生成された前方俯瞰画像及び後方俯瞰画像は、それぞれ時系列順にソートされて保存されれば良い。メモリ12が備える記憶領域のうち、各車載カメラに対応する部分俯瞰画像を記憶している領域12aが請求項に記載の画像データ記憶部に相当する。なお、ここでは一例として画像データ記憶部をメモリ12に設ける態様を例示するが、画像データ記憶部はストレージ13に設けられてもよい。
In the memory 12, the front overhead image and the rear overhead image are distinguished from each other and stored. Moreover, the front bird's-eye view image and the rear bird's-eye view image generated at a plurality of time points may be sorted and stored in time series order. Of the storage areas provided in the memory 12, the area 12a that stores partial overhead images corresponding to the respective in-vehicle cameras corresponds to the image data storage unit described in the claims. Here, an example in which the image data storage unit is provided in the memory 12 is illustrated as an example, but the image data storage unit may be provided in the storage 13.
移動量特定部F3は、車輪速センサ4、操舵角センサ5、シフトポジションセンサ6から入力される信号に基づいて、或る時点から現在までの自車両の移動量を算出する。ここでの自車両の移動量は、移動距離、移動方向を含む。車両情報から自車位置の変化量を特定する方法は周知の方法を援用すればよい。
The movement amount specifying unit F3 calculates the movement amount of the host vehicle from a certain time point to the present time based on signals input from the wheel speed sensor 4, the steering angle sensor 5, and the shift position sensor 6. The movement amount of the host vehicle here includes a movement distance and a movement direction. A known method may be used as a method for specifying the amount of change in the vehicle position from the vehicle information.
例えば、移動量特定部F3は、車輪速センサ4から入力される信号に基づいて現在の車速を逐次特定し、車速を積分することで単位時間あたりの移動距離を算出する。また、移動量特定部F3は、シフトポジションセンサ6から入力される信号と、操舵角センサ5から入力される信号に基づいて、自車両の移動方向を特定する。この移動量特定部F3が逐次算出する自車位置の変化量は、履歴画像管理部F4等で利用される。
For example, the movement amount specifying unit F3 sequentially specifies the current vehicle speed based on the signal input from the wheel speed sensor 4, and calculates the movement distance per unit time by integrating the vehicle speed. Further, the movement amount specifying unit F3 specifies the moving direction of the host vehicle based on the signal input from the shift position sensor 6 and the signal input from the steering angle sensor 5. The change amount of the vehicle position sequentially calculated by the movement amount specifying unit F3 is used by the history image management unit F4 and the like.
また、移動量特定部F3は、自車両が前進しているのか、後退しているのかを判定する。移動量特定部F3は、例えば、シフトポジションセンサ6から入力される信号に基づいて、自車両が前進しているのか、後退しているのかを判定する。なお、自車両が前進しているか後退しているか(つまり進行方向)を判定方法は、これに限らない。例えばタイヤの回転方向を検出するセンサを備えている場合には、その回転方向から自車両が前進しているか後退しているかを判定してもよい。また、GPS受信機などを備えている場合には、GPS受信機の受信結果に応じて定まる自車両の位置の時間変化から前進しているか後退しているかを判定してもよい。
Further, the movement amount specifying unit F3 determines whether the host vehicle is moving forward or backward. For example, the movement amount specifying unit F3 determines whether the host vehicle is moving forward or backward based on a signal input from the shift position sensor 6. Note that the method of determining whether the host vehicle is moving forward or backward (that is, the traveling direction) is not limited to this. For example, when a sensor for detecting the rotation direction of the tire is provided, whether the host vehicle is moving forward or backward may be determined from the rotation direction. Further, when a GPS receiver or the like is provided, it may be determined whether the vehicle is moving forward or backward based on a time change in the position of the host vehicle determined according to the reception result of the GPS receiver.
履歴画像管理部F4は、メモリ12に格納されている複数の前方俯瞰画像及び後方俯瞰画像を管理する。具体的には、移動量特定部F3が特定する移動量に基づいて、部分俯瞰画像毎に、自車両の周辺領域のうち、その部分俯瞰画像が表す領域の相対位置(対応領域とする)を管理する。つまり、或る部分俯瞰画像が生成された時点から現在までの自車両の移動量に基づいて、その部分俯瞰画像の対応領域を逐次算出し、更新する。
The history image management unit F4 manages a plurality of front overhead images and rear overhead images stored in the memory 12. Specifically, based on the movement amount specified by the movement amount specifying unit F3, for each partial overhead image, the relative position (corresponding region) of the area represented by the partial overhead image of the surrounding area of the host vehicle is set. to manage. That is, the corresponding area of the partial overhead image is sequentially calculated and updated based on the movement amount of the vehicle from the time when the partial overhead image is generated to the present.
図3は、部分俯瞰画像の対応領域と自車両との、自車両の移動に伴う位置関係の変化について説明するための図である。図3の左側に示すように、時刻T1において新しく生成された前方俯瞰画像If(T1)の対応領域とは、前方俯瞰化領域である。図3の右側に示す図は、時刻T1から自車両が0.3m前進した時点(時刻T2とする)での、前方俯瞰画像If(T1)の対応領域と自車両との位置関係を表している。
FIG. 3 is a diagram for explaining a change in a positional relationship between the corresponding region of the partial overhead view image and the own vehicle accompanying the movement of the own vehicle. As shown on the left side of FIG. 3, the corresponding area of the front overhead image If (T1) newly generated at time T1 is a front overhead area. The diagram shown on the right side of FIG. 3 shows the positional relationship between the corresponding area of the front bird's-eye view image If (T1) and the host vehicle when the host vehicle has advanced 0.3 m from time T1 (referred to as time T2). Yes.
前方俯瞰化領域自体の、自車両に対する相対位置は一定である。つまり、時刻T2において生成された前方俯瞰画像If(T2)の対応領域は、前方俯瞰化領域である。一方、前方俯瞰画像If(T1)の対応領域は、図5に示すように、自車両の前進に伴って前方俯瞰化領域よりも0.3mだけ相対的に自車両の後方側の領域となる。
The relative position of the front-viewing area itself with respect to the host vehicle is constant. That is, the corresponding area of the front bird's-eye view image If (T2) generated at time T2 is a front bird's-eye view area. On the other hand, as shown in FIG. 5, the corresponding region of the front bird's-eye view image If (T1) becomes a region on the rear side of the host vehicle relatively by 0.3 m from the front bird's-eye view region as the host vehicle advances. .
履歴画像管理部F4は、移動量特定部F3が特定する移動量に基づいて、部分俯瞰画像毎に、その部分俯瞰画像の対応領域を逐次更新する。各部分俯瞰画像の対応領域は、前述のXYZ座標系が備えるX軸とY軸とからなるXY平面上の座標で表されれば良い。部分俯瞰画像と対応付けられて保存される対応領域を示すデータが、請求項に記載の位置特定用データの一例に相当する。
The history image management unit F4 sequentially updates the corresponding area of the partial overhead image for each partial overhead image based on the movement amount specified by the movement amount specifying unit F3. The corresponding area of each partial bird's-eye view image may be represented by coordinates on the XY plane composed of the X axis and the Y axis included in the XYZ coordinate system described above. The data indicating the corresponding area stored in association with the partial overhead image corresponds to an example of the position specifying data described in the claims.
なお、本実施形態では部分俯瞰画像をそのまま(つまりフルサイズで)保存する態様とするが、他の態様として、古い部分俯瞰画像のうち、新しく生成された部分俯瞰画像との差分部分のみを保存する対応としてもよい。差分部分とは、例えば、図5において前方俯瞰画像If(T1)のうち、前方俯瞰画像If(T2)と重なっていない領域である。
In the present embodiment, the partial overhead view image is stored as it is (that is, in full size). However, as another aspect, only the difference between the old partial overhead image and the newly generated partial overhead image is stored. It is good also as correspondence. The difference portion is, for example, a region that does not overlap with the front overhead image If (T2) in the front overhead image If (T1) in FIG.
また、各部分俯瞰画像の対応領域は逐次更新しなくとも、他の態様として、その部分俯瞰画像を生成した時点における自車両の位置を特定するための情報(例えば時刻情報や位置情報)を記録しておき、後に必要に応じて対応領域を算出する態様としてもよい。部分俯瞰画像を生成した時点における時刻や位置情報があれば、自車両の現在位置に対するその部分俯瞰画像の対応領域を逆算することができるためである。例えば、部分俯瞰画像を生成した時点の時刻情報があれば、その時刻から現在までの総移動量から、自車両の現在位置に対するその部分俯瞰画像の対応領域を逆算することができる。つまり、部分俯瞰画像を生成した時点における時刻や位置情報もまた請求項に記載の位置特定用データの一例に相当する。
Moreover, even if the corresponding region of each partial overhead view image is not sequentially updated, information (for example, time information and location information) for specifying the position of the own vehicle at the time when the partial overhead view image is generated is recorded as another aspect. In addition, a mode may be employed in which the corresponding region is calculated later as necessary. This is because if there is time and position information at the time of generating the partial overhead image, the corresponding area of the partial overhead image with respect to the current position of the host vehicle can be calculated backward. For example, if there is time information at the time when the partial overhead image is generated, the corresponding area of the partial overhead image with respect to the current position of the host vehicle can be calculated from the total movement amount from that time to the present. That is, the time and position information at the time when the partial overhead image is generated also correspond to an example of the position specifying data described in the claims.
メモリ12に格納されている車載カメラ毎の部分俯瞰画像のうち、最新の部分俯瞰画像以外の部分俯瞰画像を履歴画像と称する。また、最新ではない前方俯瞰画像は前方履歴画像と称し、最新ではない後方俯瞰画像は後方履歴画像と称する。
Of the partial overhead images stored in the memory 12 for each in-vehicle camera, the partial overhead images other than the latest partial overhead image are referred to as history images. In addition, a front bird's-eye view image that is not the latest is referred to as a front history image, and a rear bird's-eye view image that is not the latest is referred to as a rear history image.
補間俯瞰画像生成部F5は、メモリ12に格納されている履歴画像に基づいて、前方俯瞰化領域と、後方俯瞰化領域の間の領域を表す部分俯瞰画像(補間俯瞰画像とする)を生成する。例えば、移動量特定部F3によって自車両が前進していると判定されている場合には、前方履歴画像に基づいて補間俯瞰画像を生成する。また、移動量特定部F3によって自車両が後退していると判定されている場合には、後方履歴画像に基づいて補間俯瞰画像を生成する。つまり、自車両の進行方向側の車載カメラ(進行方向側カメラとする)の撮影画像から生成された部分俯瞰画像に基づいて、補間俯瞰画像を生成する。
The interpolated overhead image generation unit F5 generates a partial overhead image (referred to as an interpolated overhead image) representing an area between the front overhead area and the backward overhead area based on the history image stored in the memory 12. . For example, when it is determined by the movement amount specifying unit F3 that the host vehicle is moving forward, an interpolated overhead image is generated based on the forward history image. Further, when it is determined by the movement amount specifying unit F3 that the host vehicle is moving backward, an interpolated overhead image is generated based on the rear history image. That is, the interpolated overhead image is generated based on the partial overhead image generated from the captured image of the in-vehicle camera (referred to as the traveling direction camera) on the traveling direction side of the host vehicle.
画像合成部F6は、最新の前方俯瞰画像と、最新の後方俯瞰画像と、補間俯瞰画像とを合成することで、自車両及び自車両の周辺の所定領域を自車両上方から俯瞰的に見た画像(統合俯瞰画像とする)を生成する。この画像合成部F6が請求項に記載の俯瞰画像統合処理部に相当する。なお、統合俯瞰画像のうち、自車両自体の俯瞰画像はそのストレージ13から読み出したものが用いられる。
The image composition unit F6 synthesizes the latest front bird's-eye image, the latest rear bird's-eye view image, and the interpolated bird's-eye view image, so that the vehicle and the predetermined area around the own vehicle are seen from above the own vehicle. An image (assumed as an integrated overhead image) is generated. The image composition unit F6 corresponds to the overhead image integration processing unit described in the claims. Of the integrated bird's-eye view images, the one read from the storage 13 is used as the bird's-eye view image of the host vehicle itself.
一例として、図4に示すように白線L1、L2で区画される車線を自車両が前進走行している時に生成される統合俯瞰画像を、図5に示す。なお、図4における符号Afで示す破線で囲まれる領域は、前方俯瞰化領域の一例を表しており、符号Arで示す破線で囲まれる領域は、後方俯瞰化領域の一例を表している。
As an example, FIG. 5 shows an integrated bird's-eye view image generated when the host vehicle is traveling forward on a lane defined by white lines L1 and L2 as shown in FIG. In addition, the area | region enclosed with the broken line shown with the code | symbol Af in FIG. 4 represents an example of the front bird's-eye view area | region, and the area | region enclosed with the broken line shown with the code | symbol Ar represents an example of the rear bird's-eye view area | region.
図5に示されるように、統合俯瞰画像は、最新の前方俯瞰画像If、最新の後方俯瞰画像Ir、及び補間俯瞰画像Imのそれぞれを、自車両を基準として定まる所定の位置に配置した画像である。ここでは一例として統合俯瞰画像における各画像の繋ぎ目部分には、繋ぎ目を表す境界線B1、B2を表示する態様を例示するが、他の態様として境界線B1、B2は表示しなくてもよい。
As shown in FIG. 5, the integrated overhead image is an image in which the latest front overhead image If, the latest rear overhead image Ir, and the interpolated overhead image Im are arranged at predetermined positions determined with reference to the own vehicle. is there. Here, as an example, an example in which boundary lines B1 and B2 representing joints are displayed at the joint portion of each image in the integrated overhead image is illustrated, but the boundary lines B1 and B2 may not be displayed as another aspect. Good.
補間俯瞰画像Imは前方履歴画像に基づいて生成されるため、補間俯瞰画像Imと前方履歴画像との繋ぎ目部分において白線L1、L2に対応する画像である白線L1fと白線L1m、白線L2fと白線L2mは連続する。一方、後方俯瞰画像Irと補間俯瞰画像Imとの繋ぎ目部分には、その俯瞰画像の元となった画像データを撮影した車載カメラが異なるため、車載カメラ毎の特性の違いに起因したズレが生じる場合がある。つまり、白線L1mと白線L1r、白線L2mと白線L2rはそれぞれ不連続となる場合がある。
Since the interpolated overhead image Im is generated based on the forward history image, the white line L1f and the white line L1m, the white line L2f and the white line, which are images corresponding to the white lines L1 and L2, at the joint portion between the interpolated overhead image Im and the forward history image. L2m is continuous. On the other hand, since the in-vehicle camera that has captured the image data that is the source of the overhead image is different at the joint between the rear overhead image Ir and the interpolated overhead image Im, there is a shift due to the difference in the characteristics of each in-vehicle camera. May occur. That is, the white line L1m and the white line L1r, and the white line L2m and the white line L2r may be discontinuous, respectively.
なお、本実施形態では、補間俯瞰画像生成部F5を備え、統合俯瞰画像に補間俯瞰画像を含ませる態様とするが、これに限らない。補間俯瞰画像生成部F5は備えていなくてもよい。
In this embodiment, the interpolation overhead image generation unit F5 is provided and the integrated overhead image includes the interpolation overhead image. However, the present invention is not limited to this. The interpolation overhead image generation unit F5 may not be provided.
表示処理部F7は、画像合成部F6が生成した統合俯瞰画像をディスプレイ7に表示する。基準カメラ設定部F8は、前方カメラ2と後方カメラ3のうちの何れか一方を、後述する整合化パラメータを決定する際の基準とする車載カメラ(以降、基準カメラ)に設定する。本実施形態において基準カメラ設定部F8は、パラメータ取得部F1から提供される、車載カメラ毎の誤差データに基づいて基準カメラを決定する。
The display processing unit F7 displays the integrated overhead image generated by the image composition unit F6 on the display 7. The reference camera setting unit F8 sets one of the front camera 2 and the rear camera 3 as an in-vehicle camera (hereinafter referred to as a reference camera) that is used as a reference when determining a matching parameter to be described later. In the present embodiment, the reference camera setting unit F8 determines a reference camera based on error data for each in-vehicle camera provided from the parameter acquisition unit F1.
より具体的には、前方カメラ2におけるピッチ角の誤差の大きさと、取り付け高さの誤差の大きさから前方カメラ2の信頼度を算出するとともに、後方カメラ3におけるピッチ角の誤差の大きさと、取り付け高さの誤差の大きさから後方カメラ3の信頼度を算出する。基準カメラ設定部F8が備える信頼度算出部F81は、この車載カメラ毎の信頼度を算出する機能部である。信頼度算出部F81が請求項に記載の信頼度評価部に相当する。
More specifically, the reliability of the front camera 2 is calculated from the magnitude of the pitch angle error in the front camera 2 and the magnitude of the mounting height error, and the pitch angle error magnitude in the rear camera 3 is calculated. The reliability of the rear camera 3 is calculated from the magnitude of the mounting height error. The reliability calculation unit F81 included in the reference camera setting unit F8 is a functional unit that calculates the reliability for each in-vehicle camera. The reliability calculation unit F81 corresponds to the reliability evaluation unit described in the claims.
そして、基準カメラ設定部F8は、前方カメラ2と後方カメラ3のうち、信頼度算出部F81が算出した信頼度が高いほうの車載カメラを、基準カメラとして採用する。信頼度は、ピッチ角の誤差の大きさと取り付け高さの誤差の大きさを変数とする所定の関数やテーブル等を用いて算出されればよい。なお、ピッチ角の誤差が大きいほど、また、取り付け高さの誤差が大きいほど信頼度は小さい値となるものとする。
The reference camera setting unit F8 employs, as the reference camera, the onboard camera having the higher reliability calculated by the reliability calculation unit F81 among the front camera 2 and the rear camera 3. The reliability may be calculated using a predetermined function, a table, or the like having variables of the pitch angle error and the mounting height error. It is assumed that the reliability is smaller as the pitch angle error is larger and the mounting height error is larger.
ここでは一例として、特許文献1に開示の方法によって車載カメラの取付誤差を評価し、各車載カメラの信頼度を算出する方法を採用するが、これに限らない。例えば特許文献2に開示の方法によって取付誤差を評価し、各車載カメラの信頼度を算出してもよい。
Here, as an example, a method of evaluating the mounting error of the in-vehicle camera by the method disclosed in Patent Document 1 and calculating the reliability of each in-vehicle camera is adopted, but is not limited thereto. For example, the mounting error may be evaluated by the method disclosed in Patent Document 2, and the reliability of each in-vehicle camera may be calculated.
この基準カメラ設定部F8が請求項に記載の基準カメラ選択部に相当する。以降では、基準カメラとして決定されている車載カメラを単に基準カメラとも称し、基準カメラとして採用されていない側の車載カメラを整合対象カメラとも称する。整合対象カメラが、請求項に記載の調整対象カメラに相当する。
This reference camera setting unit F8 corresponds to the reference camera selection unit described in the claims. Hereinafter, the vehicle-mounted camera determined as the reference camera is also simply referred to as a reference camera, and the vehicle-mounted camera on the side not employed as the reference camera is also referred to as a matching target camera. The matching target camera corresponds to the adjustment target camera described in the claims.
共通撮影物判定部F9は、前方カメラ2と後方カメラ3が、同一の物体(共通撮影物とする)を撮影したか否かを判定する。この共通撮影物判定部F9の作動についての詳細は別途後述する。なお、この共通撮影物判定部F9が請求項に記載の判定部に相当する。前方側相対位置特定部G1は、最新の前方俯瞰画像を含む、メモリ12に格納されている前方俯瞰画像から共通撮影物の相対位置を特定する。後方側相対位置特定部G2は、最新の後方俯瞰画像を含む、メモリ12に格納されている後方俯瞰画像から共通撮影物の相対位置を特定する。基準カメラ設定部F8によって前方カメラ2が基準カメラに設定されている場合には、前方側相対位置特定部G1が請求項に記載の第1相対位置特定部に相当し、後方側相対位置特定部G2が請求項に記載の第2相対位置特定部に相当する。また、基準カメラ設定部F8によって後方カメラ3が基準カメラに設定されている場合には、前方側相対位置特定部G1が請求項に記載の第2相対位置特定部に相当し、後方側相対位置特定部G2が請求項に記載の第1相対位置特定部に相当する。
The common photographed object determination unit F9 determines whether or not the front camera 2 and the rear camera 3 have photographed the same object (referred to as a common photographed object). Details of the operation of the common photographed object determination unit F9 will be described later. The common photographed object determination unit F9 corresponds to the determination unit described in the claims. The front side relative position specifying unit G1 specifies the relative position of the common photographed object from the front bird's-eye image stored in the memory 12 including the latest front bird's-eye view image. The rear-side relative position specifying unit G2 specifies the relative position of the common photographed object from the rear bird's-eye view image stored in the memory 12 including the latest rear bird's-eye view image. When the front camera 2 is set as the reference camera by the reference camera setting unit F8, the front side relative position specifying unit G1 corresponds to the first relative position specifying unit described in the claims, and the rear side relative position specifying unit. G2 is equivalent to the 2nd relative position specific part as described in a claim. Further, when the rear camera 3 is set as the reference camera by the reference camera setting unit F8, the front relative position specifying unit G1 corresponds to the second relative position specifying unit described in the claims, and the rear side relative position is set. The specifying unit G2 corresponds to the first relative position specifying unit described in the claims.
乖離度合い算出部G3は、前方側相対位置特定部G1が特定した共通撮影物の相対位置と、後方側相対位置特定部G2が特定した共通撮影物の相対位置との乖離度合いを算出する。この乖離度合いが請求項に記載のずれ度合いに相当し、乖離度合い算出部が請求項に記載のずれ度合い算出部に相当する。パラメータ算出部G4は、車載カメラに由来する部分俯瞰画像に基づいて特定された相対位置を基準に、整合対象カメラのカメラパラメータとして、乖離度合い算出部G3が算出した乖離度合いが0となるカメラパラメータ(整合化パラメータとする)を算出する。
The deviation degree calculation unit G3 calculates the degree of deviation between the relative position of the common photographed object specified by the front relative position specifying part G1 and the relative position of the common object specified by the rear relative position specifying part G2. This divergence degree corresponds to the degree of deviation described in the claims, and the divergence degree calculation unit corresponds to the deviation degree calculation unit described in the claims. The parameter calculation unit G4 is a camera parameter in which the divergence degree calculated by the divergence degree calculation unit G3 is 0 as the camera parameter of the matching target camera based on the relative position specified based on the partial overhead view image derived from the in-vehicle camera. (Consistency parameter) is calculated.
なお、カメラパラメータのうち、内部パラメータについては初期値から変化する可能性は小さいため、パラメータ算出部G4が算出する整合化パラメータは、カメラパラメータのうち、外部パラメータに対応するものとする。もちろん、他の態様として、整合化パラメータは、内部パラメータに対応するものであっても良い。
In addition, since the possibility that the internal parameters of the camera parameters change from the initial values is small, the matching parameters calculated by the parameter calculation unit G4 correspond to the external parameters of the camera parameters. Of course, as another aspect, the matching parameter may correspond to an internal parameter.
(パラメータ算出処理)
次に、制御部1が実施する、整合化パラメータを算出するための一連の処理(パラメータ算出処理とする)について、図6に示すフローチャートを用いて説明する。なお、図6は、一例として、自車両が前進している状況において制御部1が実施するパラメータ算出処理に対応するフローチャートである。例えば、自車両は図4に示すように白線L1、L2で区画される車線を、前進走行しているものとする。 (Parameter calculation process)
Next, a series of processes (referred to as parameter calculation processes) performed by thecontrol unit 1 for calculating the matching parameters will be described with reference to the flowchart shown in FIG. FIG. 6 is a flowchart corresponding to a parameter calculation process performed by the control unit 1 in a situation where the host vehicle is moving forward as an example. For example, it is assumed that the host vehicle travels forward on a lane defined by white lines L1 and L2 as shown in FIG.
次に、制御部1が実施する、整合化パラメータを算出するための一連の処理(パラメータ算出処理とする)について、図6に示すフローチャートを用いて説明する。なお、図6は、一例として、自車両が前進している状況において制御部1が実施するパラメータ算出処理に対応するフローチャートである。例えば、自車両は図4に示すように白線L1、L2で区画される車線を、前進走行しているものとする。 (Parameter calculation process)
Next, a series of processes (referred to as parameter calculation processes) performed by the
この図6に示すフローチャートは、所定の開始条件が充足された場合に開始すれば良い。ここでは、一例として、操舵角が0度となっており、かつ、車速が0km/hよりも大きく、所定の速度例えば30km/h以下の値となった場合に開始するものとする。車速に対して設定される範囲は適宜設計されればよい。
The flowchart shown in FIG. 6 may be started when a predetermined start condition is satisfied. Here, as an example, it is assumed that the operation is started when the steering angle is 0 degree, the vehicle speed is greater than 0 km / h, and a predetermined speed, for example, 30 km / h or less. The range set for the vehicle speed may be appropriately designed.
なお、本実施形態では処理の途中で、車速が上述した範囲外の値となったり、操舵角が0度以外の値となった場合には処理を中断するものとする。もちろん、他の態様として、処理の途中で、車速が上述した範囲外の値となったり、操舵角が0度以外の値となったりした場合であっても、処理を継続する態様としてもよい。
In the present embodiment, in the middle of processing, when the vehicle speed becomes a value outside the above-mentioned range or the steering angle becomes a value other than 0 degrees, the processing is interrupted. Of course, as another aspect, even if the vehicle speed becomes a value outside the above-described range or the steering angle becomes a value other than 0 degrees during the process, the process may be continued. .
まず、ステップS1ではパラメータ取得部F1がストレージ13から車載カメラ毎のカメラパラメータを読み出す。また、誤差補正部F11が、車載カメラ毎の取付誤差を算出し、ストレージ13から読み出したカメラパラメータを補正する。このステップS1での処理が完了するとステップS2に移る。このとき誤差補正部F11が算出した取付誤差を表す誤差データは基準カメラ設定部F8に提供される。
First, in step S1, the parameter acquisition unit F1 reads camera parameters for each in-vehicle camera from the storage 13. Further, the error correction unit F11 calculates an attachment error for each on-vehicle camera, and corrects the camera parameter read from the storage 13. When the process in step S1 is completed, the process proceeds to step S2. At this time, error data representing the attachment error calculated by the error correction unit F11 is provided to the reference camera setting unit F8.
ステップS2では基準カメラ設定部F8が、ステップS1で算出された誤差データに基づいて車載カメラ毎の信頼度を算出する。そして、算出した信頼度が高い方の車載カメラを基準カメラとして採用し、ステップS3に移る。ここでは一例として前方カメラ2を基準カメラとして採用することとする。
In step S2, the reference camera setting unit F8 calculates the reliability for each in-vehicle camera based on the error data calculated in step S1. Then, the in-vehicle camera having the higher reliability is adopted as the reference camera, and the process proceeds to step S3. Here, as an example, the front camera 2 is adopted as the reference camera.
ステップS3では俯瞰変換処理部F2が、前方カメラ2及び後方カメラ3のそれぞれから入力される画像データと、ステップS1で取得したカメラパラメータを用いて、前方俯瞰画像及び後方俯瞰画像を生成してステップS4に移る。
In step S3, the overhead view conversion processing unit F2 generates a forward overhead image and a backward overhead image using the image data input from each of the front camera 2 and the rear camera 3 and the camera parameters acquired in step S1. Move on to S4.
ステップS4では移動量特定部F3が、自車両の移動(ここでは前進)が継続しているか否かを判定する。車速が0よりも大きい値となっている場合には、移動が継続していると判定して(ステップS4 YES)、ステップS5に移る。一方、車速が0となっている場合には、移動が中断されたと判定して(ステップS4 NO)本フローを終了する。
In step S4, the movement amount specifying unit F3 determines whether or not the movement of the host vehicle (forward movement here) is continued. If the vehicle speed is greater than 0, it is determined that the movement is continuing (step S4 YES), and the process proceeds to step S5. On the other hand, when the vehicle speed is 0, it is determined that the movement is interrupted (NO in step S4), and this flow is finished.
ステップS5では俯瞰変換処理部F2が、前方カメラ2及び後方カメラ3のそれぞれから新しく入力された画像データに基づいて、新しい前方俯瞰画像及び後方俯瞰画像を生成してステップS6に移る。なお、最新の前方俯瞰画像ではなくなった前方俯瞰画像は、前方履歴画像としてメモリ12に保持される。
In step S5, the overhead conversion processing unit F2 generates a new front overhead image and a rear overhead image based on the image data newly input from each of the front camera 2 and the rear camera 3, and proceeds to step S6. Note that the front bird's-eye view image that is no longer the latest front bird's-eye view image is held in the memory 12 as a front history image.
ステップS6では移動量特定部F3が、前回ステップS4を実施してからの移動量を特定してステップS7に移る。ステップS7では履歴画像管理部F4が、ステップS6で移動量特定部F3が特定した移動量に基づいて、前方履歴画像の対応領域を更新してステップS8に移る。
In step S6, the movement amount specifying unit F3 specifies the movement amount since the previous step S4 was performed, and proceeds to step S7. In step S7, the history image management unit F4 updates the corresponding area of the forward history image based on the movement amount specified by the movement amount specifying unit F3 in step S6, and proceeds to step S8.
ステップS8では共通撮影物判定部F9が、前方カメラ2で撮影された物体が、後方カメラ3でも撮影されたか否かを判定する。共通撮影物判定部F9が前方カメラ2で撮影された物体が、後方カメラ3でも撮影されたと判定した場合には、ステップS8がYESとなってステップS9に移る。一方、共通撮影物判定部F9が前方カメラ2で撮影された物体が、後方カメラ3でも撮影されていないと判定した場合には、ステップS8がNOとなってステップS4に戻る。
In step S8, the common photographed object determination unit F9 determines whether an object photographed by the front camera 2 is photographed by the rear camera 3 or not. If the common object determination unit F9 determines that the object photographed by the front camera 2 is also photographed by the rear camera 3, step S8 is YES and the process proceeds to step S9. On the other hand, if the common photographed object determination unit F9 determines that the object photographed by the front camera 2 is not photographed by the rear camera 3, step S8 is NO and the process returns to step S4.
つまり、自車両の移動が継続している限りにおいて、共通撮影物判定部F9によって前方カメラ2で撮影された物体が、後方カメラ3でも撮影されたと判定されるまで、ステップS4からステップS8までの処理が繰り返し実施される。
That is, as long as the movement of the host vehicle continues, the steps from step S4 to step S8 are performed until it is determined that the object photographed by the front camera 2 is also photographed by the rear camera 3 by the common object determination unit F9. The process is repeated.
ここで、図7、図8を用いて、共通撮影物判定部F9が、前方カメラ2で撮影された物体が後方カメラ3でも撮影されたか否かを判定する際の作動の一例について説明する。
Here, an example of the operation when the common object determination unit F9 determines whether or not the object imaged by the front camera 2 is also imaged by the rear camera 3 will be described with reference to FIGS.
まず、共通撮影物判定部F9は、俯瞰変換処理部F2が前方俯瞰画像を生成する毎に、その前方俯瞰画像が所定の特徴量を有する物体を写した画像であるか否かを判定する。
First, every time the overhead view conversion processing unit F2 generates a front overhead image, the common captured object determination unit F9 determines whether or not the forward overhead image is an image of an object having a predetermined feature amount.
ここでの所定の特徴量を有する物体とは、例えば、車線を定義する白線などの区画線や、道路標示、道路沿いに設けられたブロック等の、周知のエッジ抽出、輪郭抽出などによって、他の物体と識別可能な物体である。前方俯瞰画像に含まれる、特徴量を有する物体が、共通撮影物として機能する。なお、道路標示とは、道路の交通に関し、規制又は指示を表示するために道路に描かれた線、記号又は文字である。
The object having a predetermined feature amount here is, for example, a known edge extraction or contour extraction such as a white line defining a lane, a road marking, a block provided along a road, or the like. It is an object that can be distinguished from the object. An object having a feature amount included in the front bird's-eye view image functions as a common photographed object. The road marking is a line, symbol, or character drawn on the road in order to display regulations or instructions regarding road traffic.
そして、俯瞰変換処理部F2が生成した前方俯瞰画像が、所定の特徴量を有する物体を写した前方俯瞰画像である場合には、共通撮影物判定部F9は、その前方俯瞰画像を、前方カメラ2で撮影された物体が後方カメラ3でも撮影されたか否かを判定するための画像(比較用画像とする)として採用する。
Then, when the front bird's-eye view image generated by the bird's-eye view conversion processing unit F2 is a front bird's-eye view image obtained by copying an object having a predetermined feature amount, the common photographed object determination unit F9 displays the front bird's-eye view image as a front camera. 2 is employed as an image (referred to as a comparative image) for determining whether or not the object photographed in 2 is also photographed by the rear camera 3.
図7は、或る時刻Tにおける最新の前方俯瞰画像If(T)の対応領域と自車両との位置関係を表した図である。前方俯瞰画像If(T)は、所定の特徴量を有する物体としての白線L1,L2を撮影した画像である。つまり、共通撮影物判定部F9は、この前方俯瞰画像If(T)を比較用画像として採用する。なお、図7中の符号L1fは、実際の白線L1に対応する画像を指し示しており、符号L2fは、実際の白線L2に対応する画像を指し示している。後方俯瞰画像Ir(T)は時刻Tにおいて生成された後方俯瞰画像を表している。
FIG. 7 is a diagram showing the positional relationship between the corresponding area of the latest forward-looking image If (T) at a certain time T and the host vehicle. The front bird's-eye view image If (T) is an image obtained by photographing white lines L1 and L2 as objects having a predetermined feature amount. That is, the common photographed object determination unit F9 employs the front overhead image If (T) as a comparison image. In addition, the code | symbol L1f in FIG. 7 has shown the image corresponding to the actual white line L1, and the code | symbol L2f has shown the image corresponding to the actual white line L2. The rear bird's-eye view image Ir (T) represents the rear bird's-eye view image generated at time T.
その後、自車両が前進するにつれて、図3を用いて説明したように、前方俯瞰画像If(T)の対応領域の相対位置は、後方俯瞰化領域に近づいていく。また、自車両が前進するにつれて、白線L1、L2は、後方撮影範囲に含まれるようになる。
Thereafter, as the host vehicle moves forward, as described with reference to FIG. 3, the relative position of the corresponding region of the front overhead image If (T) approaches the rear overhead region. Further, as the host vehicle moves forward, the white lines L1 and L2 are included in the rear photographing range.
図8は、白線L1、L2が、後方撮影範囲に含まれた時点(時刻T+nとする)における、前方俯瞰画像If(T)の対応領域と、後方俯瞰化領域との位置関係を示している。白線L1、L2が後方撮影範囲内に存在するため、図8に示すように、時刻T+nにおける最新の後方俯瞰画像Ir(T+n)には、白線L1、L2に対応する画像が含まれる。図8中の符号L1rは、実際の白線L1に対応する画像を指し示しており、符号L2rは、実際の白線L2に対応する画像を指し示している。
FIG. 8 shows the positional relationship between the corresponding area of the front bird's-eye view image If (T) and the rear bird's-eye view area at the time when the white lines L1 and L2 are included in the rear photographing range (time T + n). . Since the white lines L1 and L2 exist in the rear photographing range, as shown in FIG. 8, the latest rear overhead image Ir (T + n) at time T + n includes images corresponding to the white lines L1 and L2. A symbol L1r in FIG. 8 indicates an image corresponding to the actual white line L1, and a symbol L2r indicates an image corresponding to the actual white line L2.
このように後方俯瞰画像に白線L1、L2を撮像した画像L1r、L2rが含まれるようになるまで、共通撮影物判定部F9は、逐次生成される後方俯瞰画像と前方俯瞰画像If(T)と比較して、同一の撮影物(ここでは白線L1、L2)が含まれているか否かを判定する。
Thus, until the images L1r and L2r obtained by capturing the white lines L1 and L2 are included in the rear bird's-eye view image, the common object determination unit F9 generates the rear bird's-eye image and the front bird's-eye image If (T) that are sequentially generated. In comparison, it is determined whether or not the same photographed object (here, white lines L1 and L2) is included.
そして、前方カメラ2で撮影され、前方俯瞰画像で検出された所定の特徴量を有する物体が後方俯瞰画像からも検出された場合に、共通撮影物判定部F9は前方カメラ2で撮影された物体が、後方カメラ3でも撮影されたと判定する。
Then, when an object having a predetermined feature amount that is captured by the front camera 2 and detected from the front overhead image is also detected from the rear overhead image, the common captured object determination unit F9 captures the object captured by the front camera 2 However, it is determined that the rear camera 3 has also photographed.
なお、2つの画像を比較して同一の物体が写っているか否かは、例えばエッジ検出処理や輪郭抽出処理、画素分析処理など、周知の方法を援用して判定すればよい。
It should be noted that whether or not the same object is captured by comparing the two images may be determined with the aid of a known method such as edge detection processing, contour extraction processing, or pixel analysis processing.
再び図6に戻り、パラメータ算出処理の説明を続ける。ステップS9では前方側相対位置特定部G1が、時刻Tにおける前方俯瞰画像If(T)の対応領域と、前方俯瞰画像If(T)内における白線L1f、L2fの位置から、自車両に対する白線L1、L2の相対位置(前方側相対位置とする)を特定する。
Referring back to FIG. 6 again, the description of the parameter calculation process will be continued. In step S9, the front relative position specifying unit G1 determines the white line L1 for the host vehicle from the corresponding area of the front overhead image If (T) at the time T and the positions of the white lines L1f and L2f in the front overhead image If (T). The relative position of L2 (referred to as the front side relative position) is specified.
また、後方側相対位置特定部G2が、後方俯瞰画像Ir(T+n)内における白線L1r、L2rの位置から、自車両に対する白線L1、L2の相対位置(後方側相対位置とする)を特定する。このステップS9での処理が完了するとステップS10に移る。
Also, the rear relative position specifying unit G2 specifies the relative positions of the white lines L1 and L2 (rear side relative positions) with respect to the host vehicle from the positions of the white lines L1r and L2r in the rear overhead image Ir (T + n). When the process in step S9 is completed, the process proceeds to step S10.
ステップS10では乖離度合い算出部G3が、前方側相対位置と後方側相対位置の乖離度合いを算出してステップS11に移る。ステップS11ではパラメータ算出部G4が、乖離度合い算出部G3が算出した乖離度合いが0となる、後方カメラ3に対する整合化パラメータを算出する。この整合化パラメータは、後方側相対位置が前方側相対位置と一致するように算出された後方カメラ3のパラメータである。
In step S10, the divergence degree calculation unit G3 calculates the degree of divergence between the front relative position and the rear relative position, and proceeds to step S11. In step S11, the parameter calculation unit G4 calculates a matching parameter for the rear camera 3 in which the deviation degree calculated by the deviation degree calculation unit G3 is zero. This matching parameter is a parameter of the rear camera 3 calculated so that the rear relative position coincides with the front relative position.
以上のように求めた整合化パラメータを用いて後方俯瞰画像及び統合俯瞰画像を生成することにより、例えば、図9に示すように、部分俯瞰画像間における被写体(白線L1、L2)の表示位置のずれが抑制された統合俯瞰画像を表示できる。
By generating the rear bird's-eye view image and the integrated bird's-eye view image using the matching parameters obtained as described above, for example, as shown in FIG. 9, the display position of the subject (white lines L1, L2) between the partial bird's-eye images is displayed. An integrated overhead view image in which the shift is suppressed can be displayed.
なお、以上では一例として、前方カメラ2を基準カメラとしたため、後方カメラ3に対する整合化パラメータを算出する態様を例示したが、基準カメラを後方カメラ3とした場合には、パラメータ算出部G4は、前方カメラ2に対する整合化パラメータを算出する。
In addition, since the front camera 2 was used as the reference camera as an example in the above, an example in which the alignment parameter for the rear camera 3 is calculated is illustrated. However, when the reference camera is the rear camera 3, the parameter calculation unit G4 A matching parameter for the front camera 2 is calculated.
また、以上では、自車両が前進している場合の制御部1の作動を例示したが、自車両が後退している場合も同様の処理を行えばよい。
In the above, the operation of the control unit 1 when the host vehicle is moving forward is exemplified, but the same processing may be performed when the host vehicle is moving backward.
(本実施形態のまとめ)
以上の構成では、共通撮影物判定部F9が、前方カメラ2と後方カメラ3とが同一の物体を撮影したと判定した場合、乖離度合い算出部G3が、各車載カメラの撮影画像から定まる共通撮影物の相対位置の乖離度合いを算出する。また、パラメータ算出部G4は、整合対象カメラのカメラパラメータとして、その乖離度合いが0となる(又は、乖離度合いが低減された)カメラパラメータ(つまり整合化パラメータ)を算出する。そして、俯瞰変換処理部F2が、算出された整合化パラメータを用いて、整合対象カメラが撮影した画像から部分俯瞰画像を生成し、さらに、画像合成部F6は、その整合化パラメータを用いて生成された部分俯瞰画像を用いて統合俯瞰画像を生成する。 (Summary of this embodiment)
In the above configuration, when the common object determination unit F9 determines that thefront camera 2 and the rear camera 3 have photographed the same object, the divergence degree calculation unit G3 determines the common photographing determined from the captured images of the in-vehicle cameras. The degree of deviation of the relative position of the object is calculated. Further, the parameter calculation unit G4 calculates a camera parameter (that is, a matching parameter) in which the deviation degree is 0 (or the deviation degree is reduced) as the camera parameter of the matching target camera. Then, the overhead conversion processing unit F2 generates a partial overhead image from the image captured by the matching target camera using the calculated matching parameter, and further, the image composition unit F6 generates using the matching parameter. An integrated overhead view image is generated using the partial overhead view image.
以上の構成では、共通撮影物判定部F9が、前方カメラ2と後方カメラ3とが同一の物体を撮影したと判定した場合、乖離度合い算出部G3が、各車載カメラの撮影画像から定まる共通撮影物の相対位置の乖離度合いを算出する。また、パラメータ算出部G4は、整合対象カメラのカメラパラメータとして、その乖離度合いが0となる(又は、乖離度合いが低減された)カメラパラメータ(つまり整合化パラメータ)を算出する。そして、俯瞰変換処理部F2が、算出された整合化パラメータを用いて、整合対象カメラが撮影した画像から部分俯瞰画像を生成し、さらに、画像合成部F6は、その整合化パラメータを用いて生成された部分俯瞰画像を用いて統合俯瞰画像を生成する。 (Summary of this embodiment)
In the above configuration, when the common object determination unit F9 determines that the
例えば、前方カメラ2を基準カメラとして採用した場合には、パラメータ算出部G4は後方カメラ3に対する整合化パラメータを算出する。整合化パラメータを用いて生成される後方俯瞰画像が表す、その後方俯瞰画像内における物体と車両との位置関係は、前方俯瞰画像が表す、前方俯瞰画像内における物体と車両との位置関係と整合するようになる。
For example, when the front camera 2 is adopted as the reference camera, the parameter calculation unit G4 calculates a matching parameter for the rear camera 3. The positional relationship between the object and the vehicle in the rear overhead image represented by the rear overhead image generated using the alignment parameter matches the positional relationship between the object and the vehicle in the front overhead image represented by the front overhead image. To come.
したがって、1つの被写体が複数の部分俯瞰画像にまたがって表示される場合であっても、その被写体の輪郭が部分俯瞰画像同士の繋ぎ目においてずれて表示されることを抑制することができる。
Therefore, even when one subject is displayed across a plurality of partial overhead images, it is possible to prevent the contours of the subject from being shifted and displayed at the joint between the partial overhead images.
また、本実施形態では、前方カメラ2と後方カメラ3のうち、信頼度算出部F81が算出した信頼度が高い方の車載カメラを基準カメラとして採用する態様としている。信頼度が高い方の車載カメラとは、取付誤差が小さいほうの車載カメラである。
Moreover, in this embodiment, it is set as the aspect which employ | adopts the vehicle-mounted camera with the higher reliability calculated by the reliability calculation part F81 among the front cameras 2 and the back cameras 3 as a reference camera. The in-vehicle camera with higher reliability is the in-vehicle camera with the smaller mounting error.
相対的に取付誤差が小さい方の車載カメラを基準として、他方の車載カメラに対する整合化パラメータを生成するため、その整合化パラメータを用いて生成される部分俯瞰画像を含む統合俯瞰画像が示す、自車両周辺の物体の自車両に対する相対位置が、実際の相対位置とずれてしまうことを抑制することができる。
Since an in-vehicle camera with a relatively small mounting error is used as a reference to generate an alignment parameter for the other in-vehicle camera, an integrated overhead image including a partial overhead image generated using the alignment parameter is used. It can suppress that the relative position with respect to the own vehicle of the object around a vehicle shift | deviates from an actual relative position.
つまり、本実施形態の構成によれば、自車両と自車両周辺に存在する物体との位置関係をより適切に表す部分俯瞰画像及び統合俯瞰画像を表示することができる。なお、本実施形態では、取付誤差が小さいほど信頼度が高く算出する態様を例示したが、その他、車載カメラ自体の性能(例えば分解能や画素数)、取り付けてからの経過年数などを考慮して信頼度を算出してもよい。例えば、取り付けてからの経過年数が短いほど信頼度を高くしたり、性能が良いほど信頼度を高く算出してもよい。
That is, according to the configuration of the present embodiment, it is possible to display a partial overhead image and an integrated overhead image that more appropriately represent the positional relationship between the host vehicle and an object existing around the host vehicle. In the present embodiment, an example in which the reliability is calculated to be higher as the mounting error is smaller is exemplified. However, in consideration of the performance of the in-vehicle camera itself (for example, the resolution and the number of pixels), the number of years since the mounting, and the like. The reliability may be calculated. For example, the reliability may be increased as the number of years since installation is shorter, or the reliability may be calculated higher as the performance is improved.
ところで、比較構成として、撮影範囲の一部が重畳するように設けられた2つの車載カメラを備えるシステムにおいて、互いに共通して撮影するエリア(重畳エリア)に存在する物体の相対位置から、これらの車載カメラのカメラパラメータを調整する構成も考えられる。つまり、比較構成では、重畳エリアに存在する物体が存在する位置をそれぞれの車載カメラの撮影画像から算出し、各相対位置が整合するようにカメラパラメータを調整する。
By the way, as a comparative configuration, in a system including two in-vehicle cameras provided so that a part of an imaging range is superimposed, from the relative position of an object existing in an area (superimposition area) that is commonly captured, these A configuration for adjusting the camera parameters of the in-vehicle camera is also conceivable. In other words, in the comparison configuration, the position where the object existing in the overlapping area exists is calculated from the captured image of each in-vehicle camera, and the camera parameters are adjusted so that the relative positions match.
しかしながら、そのような態様においては、共通して撮影するエリアが生じない前方カメラ2と後方カメラ3の組み合わせでは、カメラパラメータを調整することができない。一方、上述した本実施形態によれば、メモリ12に格納されている履歴画像を用いて、前方カメラ2又は後方カメラ3のカメラパラメータを調整することができる。
However, in such a mode, the camera parameter cannot be adjusted by a combination of the front camera 2 and the rear camera 3 in which a common shooting area does not occur. On the other hand, according to the above-described embodiment, the camera parameters of the front camera 2 or the rear camera 3 can be adjusted using the history image stored in the memory 12.
なお、以上では整合化パラメータを俯瞰画像の生成(つまり俯瞰変換処理)に用いる態様を例示したが、これに限らない。算出された整合化パラメータは、俯瞰変換処理以外にも適用することができる。
In addition, although the aspect which uses a matching parameter for the production | generation of a bird's-eye view image (namely, bird's-eye view conversion process) was illustrated above, it is not restricted to this. The calculated matching parameter can be applied to other than the overhead conversion process.
以上、本発明の実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、次の変形例も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, The following modification is also contained in the technical scope of this invention, Furthermore, the summary other than the following is also included. Various modifications can be made without departing from the scope.
<変形例1>
上述した実施形態では、撮部分俯瞰画像内における物体の位置から、その相対位置を特定する態様を例示したがこれに限らない。部分俯瞰画像に変換する前の画像や、歪み補正処理を実施する前の画像(つまり撮影画像)内における物体の位置から、その物体の相対位置を特定してもよい。また、履歴画像管理部F4が管理する画像も、部分俯瞰画像ではなく、車載カメラから入力される画像であってもよい。 <Modification 1>
In the above-described embodiment, the aspect in which the relative position is specified from the position of the object in the captured partial overhead view image is illustrated, but the present invention is not limited thereto. The relative position of the object may be specified based on the position of the object in the image before being converted into the partial overhead image or in the image before the distortion correction processing (that is, the captured image). Further, the image managed by the history image management unit F4 may be an image input from the in-vehicle camera instead of the partial overhead view image.
上述した実施形態では、撮部分俯瞰画像内における物体の位置から、その相対位置を特定する態様を例示したがこれに限らない。部分俯瞰画像に変換する前の画像や、歪み補正処理を実施する前の画像(つまり撮影画像)内における物体の位置から、その物体の相対位置を特定してもよい。また、履歴画像管理部F4が管理する画像も、部分俯瞰画像ではなく、車載カメラから入力される画像であってもよい。 <
In the above-described embodiment, the aspect in which the relative position is specified from the position of the object in the captured partial overhead view image is illustrated, but the present invention is not limited thereto. The relative position of the object may be specified based on the position of the object in the image before being converted into the partial overhead image or in the image before the distortion correction processing (that is, the captured image). Further, the image managed by the history image management unit F4 may be an image input from the in-vehicle camera instead of the partial overhead view image.
<変形例2>
以上では、各車載カメラの取付誤差から各車載カメラの信頼度を算出し、信頼度の高いほうの車載カメラを基準カメラとする態様を例示したがこれに限らない。基準カメラ設定部F8は、進行方向側カメラを基準カメラとしてもよい。つまり、自車両が前進している場合には前方カメラ2を基準カメラとし、自車両が後退している場合には後方カメラ3を基準カメラとしてもよい。 <Modification 2>
In the above, the reliability of each on-vehicle camera is calculated from the mounting error of each on-vehicle camera, and the aspect in which the on-vehicle camera with the higher reliability is used as the reference camera is exemplified, but the present invention is not limited thereto. The reference camera setting unit F8 may use the traveling direction side camera as a reference camera. That is, thefront camera 2 may be the reference camera when the host vehicle is moving forward, and the rear camera 3 may be the reference camera when the host vehicle is moving backward.
以上では、各車載カメラの取付誤差から各車載カメラの信頼度を算出し、信頼度の高いほうの車載カメラを基準カメラとする態様を例示したがこれに限らない。基準カメラ設定部F8は、進行方向側カメラを基準カメラとしてもよい。つまり、自車両が前進している場合には前方カメラ2を基準カメラとし、自車両が後退している場合には後方カメラ3を基準カメラとしてもよい。 <
In the above, the reliability of each on-vehicle camera is calculated from the mounting error of each on-vehicle camera, and the aspect in which the on-vehicle camera with the higher reliability is used as the reference camera is exemplified, but the present invention is not limited thereto. The reference camera setting unit F8 may use the traveling direction side camera as a reference camera. That is, the
ドライバにとっては、進行方向側の周辺状況が、離脱していく側の周辺状況よりも相対的に重要となる。そのため、ユーザは統合俯瞰画像の中でも、相対的に進行方向側カメラの撮影範囲に対応する部分俯瞰画像を注視する傾向が強くなる。一方、進行方向側ではない側、つまり離脱していく側の障害物に対して自車両は離れていくことになるため、離脱していく側の周辺状況についての情報は、相対的に有用性が低い。
For the driver, the surrounding situation on the traveling direction side is more important than the surrounding situation on the leaving side. Therefore, the user is more likely to gaze at the partial overhead view image corresponding to the shooting range of the traveling direction side camera in the integrated overhead view image. On the other hand, since the vehicle will move away from the obstacle that is not in the direction of travel, that is, the side that is leaving, information about the surrounding situation on the side that is leaving is relatively useful. Is low.
したがって、離脱していく側の障害物と自車両との位置関係を、進行方向側に存在する障害物と自車両との位置関係ほど、厳密に表示する必要性は高くないと考える事もできる。
Therefore, it can be considered that the positional relationship between the obstacle on the leaving side and the own vehicle is not as strictly required as the positional relationship between the obstacle and the own vehicle existing on the traveling direction side. .
また、統合俯瞰画像において、図5にも示したように、白線などの自車両と外部環境との位置関係の目印となる物体(指標物とする)が、複数の部分俯瞰画像にまたがって表示されている場合であって、その指標物の位置が画像同士の繋ぎ目においてずれて表示されている場合には、ユーザに違和感を与えてしまう恐れがある。
In addition, in the integrated bird's-eye view image, as shown in FIG. 5, an object that serves as a mark of the positional relationship between the vehicle and the external environment (such as an index object) such as a white line is displayed across a plurality of partial bird's-eye view images. In such a case, if the position of the index object is shifted and displayed at the joint between the images, the user may feel uncomfortable.
本変形例の構成によれば、ドライバにとってより重要な、進行方向側の周辺状況を表している部分俯瞰画像が示す情報に対する信頼性を損なうこと無く、統合俯瞰画像の美観を向上させることができる。
According to the configuration of this modification, it is possible to improve the aesthetics of the integrated overhead image without impairing the reliability with respect to the information indicated by the partial overhead image that represents the peripheral situation on the traveling direction side, which is more important for the driver. .
<変形例3>
運転支援システムの中には、所定の検出範囲に探査波を送信することでその検出範囲に存在する物体の相対位置を検出する物体検出装置を備えるものも存在する。運転支援システム100が、そのような物体検出装置を備えている場合には、同一の物体に対して、物体検出装置が検出した相対位置と、車載カメラの撮影画像から特定される相対位置とを比較することで、車載カメラの信頼度を評価し、その評価結果に基づいて基準カメラを決定してもよい。 <Modification 3>
Some driving support systems include an object detection device that detects a relative position of an object existing in a detection range by transmitting a search wave to a predetermined detection range. When the drivingsupport system 100 includes such an object detection device, the relative position detected by the object detection device and the relative position specified from the captured image of the in-vehicle camera are detected for the same object. By comparing, the reliability of the in-vehicle camera may be evaluated, and the reference camera may be determined based on the evaluation result.
運転支援システムの中には、所定の検出範囲に探査波を送信することでその検出範囲に存在する物体の相対位置を検出する物体検出装置を備えるものも存在する。運転支援システム100が、そのような物体検出装置を備えている場合には、同一の物体に対して、物体検出装置が検出した相対位置と、車載カメラの撮影画像から特定される相対位置とを比較することで、車載カメラの信頼度を評価し、その評価結果に基づいて基準カメラを決定してもよい。 <
Some driving support systems include an object detection device that detects a relative position of an object existing in a detection range by transmitting a search wave to a predetermined detection range. When the driving
例えば、この変形例は次のような構成とすればよい。まず、運転支援システム100は、前方撮影範囲の少なくとも一部を検出範囲に含む前方物体検出装置と、後方撮影範囲の少なくとも一部を検出範囲に含む後方物体検出装置と、を備える。前方物体検出装置及び後方物体検出装置は、例えばレーザレーダや、ソナ-、ミリ波レーダなどを採用することができる。
For example, this modification may be configured as follows. First, the driving support system 100 includes a front object detection device that includes at least a part of the front shooting range in the detection range, and a rear object detection device that includes at least a part of the rear shooting range in the detection range. As the front object detection device and the rear object detection device, for example, a laser radar, a sonar, a millimeter wave radar, or the like can be adopted.
また、この変形例における制御部1は、図10に示すように、前述の実施形態における制御部1が備える種々の機能ブロックに加えて、各車載カメラが撮影した画像を解析する画像解析部G5を備える。画像解析部G5は、より細かい機能単位として前方カメラ2が撮影した画像を解析する前方画像解析部G51と、後方カメラ3が撮影した画像を解析する後方画像解析部G52とを備える。
Further, as shown in FIG. 10, the control unit 1 in this modified example, in addition to the various functional blocks provided in the control unit 1 in the above-described embodiment, an image analysis unit G5 that analyzes an image captured by each in-vehicle camera. Is provided. The image analysis unit G5 includes a front image analysis unit G51 that analyzes an image captured by the front camera 2 as a finer functional unit, and a rear image analysis unit G52 that analyzes an image captured by the rear camera 3.
前方画像解析部G51は、前方カメラ2が撮影した画像に対して、エッジ抽出、輪郭抽出、ガウシアン処理、ノイズ除去処理、パターンマッチング処理などを行い、所定の検出対象物を検出する。また、検出対象物を検出した場合には、画像内におけるその検出対象物の位置や大きさから、自車両に対するその検出対象物の位置を特定する。
The front image analysis unit G51 performs edge extraction, contour extraction, Gaussian processing, noise removal processing, pattern matching processing, and the like on the image captured by the front camera 2 to detect a predetermined detection target. When a detection target is detected, the position of the detection target with respect to the host vehicle is specified from the position and size of the detection target in the image.
なお、画像から所定の検出対象物を検出したり、その相対位置を特定したりする方法は周知の方法を援用すればよい。検出対象物は、例えば、路面上に設けられるブロックや縁石、道路標識など、探査波の送受信によっても検出可能な物体であることが好ましい。また、静止物であることが好ましい。
In addition, what is necessary is just to use a well-known method for the method of detecting a predetermined detection target object from an image, or specifying the relative position. The detection target is preferably an object that can also be detected by transmission and reception of exploration waves, such as blocks, curbs, road signs, and the like provided on the road surface. Moreover, it is preferable that it is a stationary object.
後方画像解析部G52も、後方カメラ3が撮影した画像に対して前方画像解析部G51と同様の処理を行い、所定の検出対象物を検出するとともに、画像から検出対象物を検出した場合には、その検出対象物の自車両に対する相対位置を特定する。
The rear image analysis unit G52 also performs the same processing as the front image analysis unit G51 on the image captured by the rear camera 3, detects a predetermined detection target, and detects a detection target from the image. Then, the relative position of the detection object with respect to the host vehicle is specified.
そして、基準カメラ設定部F8は、自車両前方に存在する所定の物体に対して、前方画像解析部G51が特定した相対位置と、前方物体検出装置が検出した相対位置との誤差を算出する。また、自車両後方に存在する所定の物体に対して、後方画像解析部G52が特定した相対位置と、後方物体検出装置が検出した相対位置との誤差を算出する。
The reference camera setting unit F8 calculates an error between the relative position specified by the front image analysis unit G51 and the relative position detected by the front object detection device with respect to a predetermined object existing in front of the host vehicle. Further, an error between the relative position specified by the rear image analysis unit G52 and the relative position detected by the rear object detection device is calculated for a predetermined object existing behind the host vehicle.
一般に、1つの(つまり単眼の)車載カメラが撮影した画像から画像解析によって特定される相対位置よりも、物体検出装置によって検出される相対位置のほうが精度は高い。したがって、物体検出装置が検出した相対位置とのずれが大きいほうの車載カメラのほうが、信頼度が低いとみなすことができる。言い換えれば、物体検出装置が検出した相対位置とのずれが小さい方の車載カメラのほうが信頼度を高く評価することができる。つまり、物体検出装置が検出した相対位置とのずれが小さい方の車載カメラを基準カメラとして採用してもよい。
Generally, the relative position detected by the object detection device is higher in accuracy than the relative position specified by image analysis from an image taken by one (that is, monocular) vehicle-mounted camera. Therefore, it can be considered that the in-vehicle camera having the larger deviation from the relative position detected by the object detection device has lower reliability. In other words, the in-vehicle camera with the smaller deviation from the relative position detected by the object detection device can be evaluated with higher reliability. That is, an in-vehicle camera having a smaller deviation from the relative position detected by the object detection device may be adopted as the reference camera.
<変形例4>
前方カメラ2と後方カメラ3とが共通の物体を撮影したか否かの判断材料とするデータは、撮影された画像、またはその画像から生成される俯瞰画像といった単位ではなく、その画像に含まれる、所定の特徴量を有する検出対象物の単位であってもよい。 <Modification 4>
Data that is used as a material for determining whether or not thefront camera 2 and the rear camera 3 have photographed a common object is included in the image, not a unit such as a photographed image or an overhead image generated from the image. A unit of a detection target having a predetermined feature amount may be used.
前方カメラ2と後方カメラ3とが共通の物体を撮影したか否かの判断材料とするデータは、撮影された画像、またはその画像から生成される俯瞰画像といった単位ではなく、その画像に含まれる、所定の特徴量を有する検出対象物の単位であってもよい。 <Modification 4>
Data that is used as a material for determining whether or not the
この変形例4における制御部1の構成及び作動について、自車両が前進している場合を例にとって説明する。前提として、この変形例4における制御部1は変形例3で前述した画像解析部G5を備えるものとする。
The configuration and operation of the control unit 1 in the modified example 4 will be described taking as an example the case where the host vehicle is moving forward. As a premise, it is assumed that the control unit 1 in the fourth modification includes the image analysis unit G5 described in the third modification.
自車両が前進している場合、前方画像解析部G51は前方カメラ2が撮影した画像から所定の検出対象物を抽出するとともに、その相対位置を特定し、その相対位置を含む検出対象物についての情報をメモリ12に格納していく。検出対象物の相対位置は、前述のXY平面における座標で表されれば良い。相対位置以外の検出対象物についての情報とは、検出対象物の輪郭や、色などが該当する。なお、検出対象物の相対位置は、前方側相対位置特定部G1が、移動量特定部F3が特定する移動量に基づいて逐次更新すれば良い。
When the host vehicle is moving forward, the front image analysis unit G51 extracts a predetermined detection object from the image captured by the front camera 2, specifies its relative position, and detects the detection object including the relative position. Information is stored in the memory 12. The relative position of the detection target may be expressed by the coordinates on the XY plane described above. The information about the detection target other than the relative position corresponds to the outline or color of the detection target. Note that the relative position of the detection target may be sequentially updated by the front side relative position specifying unit G1 based on the movement amount specified by the movement amount specifying unit F3.
なお、検出された検出対象物は、固有の識別子である検出IDなどを付与し、その検出IDによって区別すればよい。また、複数のフレーム間において共通して検出された検出対象物は同一のものとして扱えばよい。前時刻の画像に含まれる物体と、次時刻の画像に含まれる物体とが同一物であるか否かを判定する方法は、周知の方法を援用して実施すればよい。
In addition, what is necessary is just to distinguish the detection target detected by giving detection ID etc. which are unique identifiers, and the detection ID. Further, detection objects detected in common between a plurality of frames may be handled as the same object. A method for determining whether or not the object included in the image at the previous time and the object included in the image at the next time are the same may be performed with the aid of a known method.
また、後方画像解析部G52は、後方カメラ3が撮影した画像に対して、エッジ抽出、輪郭抽出、ガウシアン処理、ノイズ除去処理などを行う。そのような種々の処理を施した画像を処理済み画像とする。そして、共通撮影物判定部F9は、パターンマッチング処理等を用いて、後方画像解析部G52が生成した処理済み画像に、前方画像解析部G51が検出した物体が含まれているか否かを判定すればよい。
In addition, the rear image analysis unit G52 performs edge extraction, contour extraction, Gaussian processing, noise removal processing, and the like on the image captured by the rear camera 3. An image that has been subjected to such various processes is defined as a processed image. Then, the common photographed object determination unit F9 determines whether or not the processed image generated by the rear image analysis unit G52 includes the object detected by the front image analysis unit G51 using pattern matching processing or the like. That's fine.
以上では、自車両が前進している場合を例にとって説明したが、自車両が後退している場合も同様に実施すればよい。
In the above, the case where the host vehicle is moving forward has been described as an example, but the same may be performed when the host vehicle is moving backward.
また、検出対象物の相対位置を示すデータは、より細かくは、その検出対象物を構成する複数の特徴点毎の相対位置として表されていても良い。
Further, the data indicating the relative position of the detection target object may be expressed in more detail as a relative position for each of a plurality of feature points constituting the detection target object.
<変形例5>
以上では、前方カメラ2と後方カメラ3を備え、どちらかを基準カメラとし、他方を整合対象カメラとする態様を例示したが、これに限らない。運転支援システム100は、図11に示すように、右側方カメラ8、左側方カメラ9を備えていてもよい。この場合、前方カメラ2、後方カメラ3の何れか一方を基準カメラとし、その他の車載カメラを順番に整合対象カメラとして整合化パラメータを算出してもよい。例えば、前方カメラ2を基準カメラとし、右側方カメラ8を整合対象カメラとした場合には、共通撮影物判定部F9は、前方カメラ2の撮影画像と右側方カメラ8の撮影画像とを比較して、共通撮影物の有無を判定すればよい。 <Modification 5>
In the above description, thefront camera 2 and the rear camera 3 are provided, one of which is the reference camera and the other is the matching target camera. However, the present invention is not limited thereto. The driving support system 100 may include a right side camera 8 and a left side camera 9, as shown in FIG. In this case, the matching parameter may be calculated using either the front camera 2 or the rear camera 3 as a reference camera and the other in-vehicle cameras in order as matching target cameras. For example, when the front camera 2 is the reference camera and the right side camera 8 is the matching target camera, the common captured object determination unit F9 compares the captured image of the front camera 2 with the captured image of the right side camera 8. Thus, the presence or absence of the common photographed object may be determined.
以上では、前方カメラ2と後方カメラ3を備え、どちらかを基準カメラとし、他方を整合対象カメラとする態様を例示したが、これに限らない。運転支援システム100は、図11に示すように、右側方カメラ8、左側方カメラ9を備えていてもよい。この場合、前方カメラ2、後方カメラ3の何れか一方を基準カメラとし、その他の車載カメラを順番に整合対象カメラとして整合化パラメータを算出してもよい。例えば、前方カメラ2を基準カメラとし、右側方カメラ8を整合対象カメラとした場合には、共通撮影物判定部F9は、前方カメラ2の撮影画像と右側方カメラ8の撮影画像とを比較して、共通撮影物の有無を判定すればよい。 <
In the above description, the
なお、前方カメラ2の撮影範囲と右側方カメラ8の撮影範囲が重畳するエリア(以後、重畳エリア)を備えるように設定されている場合には、共通撮影物判定部F9は、その重畳エリア内において所定の特徴点を有する物体を検出した場合に、基準カメラで撮影された物体が整合対象カメラでも撮影されたと判定すればよい。その物体が共通撮影物に相当する。
Note that if the shooting range of the front camera 2 and the shooting range of the right-side camera 8 are set so as to have an overlapping area (hereinafter referred to as a superimposition area), the common captured object determination unit F9 includes the overlapping area. When an object having a predetermined feature point is detected in step, it may be determined that the object photographed by the reference camera is also photographed by the matching target camera. The object corresponds to a common photographed object.
そして、前方カメラ2の撮影画像から特定される共通撮影物の相対位置と、右側方カメラ8の撮影画像から特定される共通撮影物の相対位置とが一致するように、右側方カメラ8に対する整合化パラメータを算出すればよい。その整合化パラメータを右側方カメラ8の撮影画像から部分俯瞰画像を生成するためのパラメータとして適用することで、前方部分俯瞰画像と、右側方カメラ8の撮影領域に対応する部分俯瞰画像との繋ぎ目における被写体のズレを抑制することができる。また、前方カメラ2を基準カメラとし、左側方カメラ9を整合対象カメラとした場合も同様である。
Then, the matching with respect to the right-side camera 8 is performed so that the relative position of the common photographed object specified from the photographed image of the front camera 2 matches the relative position of the common photographed object specified from the photographed image of the right-side camera 8. The calculation parameter may be calculated. By applying the matching parameter as a parameter for generating a partial overhead view image from a photographed image of the right-side camera 8, the front partial overhead view image and the partial overhead view image corresponding to the photographing region of the right-side camera 8 are connected. The deviation of the subject in the eyes can be suppressed. The same applies when the front camera 2 is the reference camera and the left camera 9 is the matching target camera.
さらに、前方カメラ2を基準カメラとし、後方カメラ3、右側方カメラ8、及び左側方カメラ9をそれぞれに対して整合化パラメータを算出し、それらの整合化パラメータを俯瞰変換処理部F2による俯瞰変換処理に適用してもよい。そのような態様によれば、部分画像間の繋ぎ目におけるずれが抑制された統合俯瞰画像を表示することができる。なお、図12の左側は、整合化パラメータを適用せずに生成された統合俯瞰画像を表しており、右側は、整合化パラメータを適用して生成された統合俯瞰画像を表す概念図である。
Further, the front camera 2 is used as a reference camera, the alignment parameters are calculated for the rear camera 3, the right side camera 8, and the left side camera 9, respectively, and these alignment parameters are converted into an overhead view by the overhead view conversion processing unit F2. You may apply to processing. According to such an aspect, the integrated bird's-eye view image in which the shift at the joint between the partial images is suppressed can be displayed. Note that the left side of FIG. 12 represents an integrated overhead image generated without applying the matching parameter, and the right side is a conceptual diagram showing the integrated overhead image generated by applying the matching parameter.
以上では、前方カメラ2を基準カメラとした場合を例示したが、後方カメラ3を基準カメラとした場合も同様である。
In the above, the case where the front camera 2 is used as the reference camera has been exemplified, but the same applies to the case where the rear camera 3 is used as the reference camera.
100 運転支援システム、1 制御部(カメラパラメータ調整装置)、2 前方カメラ、3 後方カメラ、4 車輪速センサ、5 操舵角センサ、6 シフトポジションセンサ、7 ディスプレイ、F1 パラメータ取得部、F11 誤差補正部(誤差算出部)、F2 俯瞰変換処理部、F3 移動量特定部、F4 履歴画像管理部、F5 補間俯瞰画像生成部、F6 画像合成部(俯瞰画像統合処理部)、F7 表示処理部、F8 基準カメラ設定部(基準カメラ選択部)、F81 信頼度算出部(信頼度評価部)、F9 共通撮影物判定部(判定部)、G1 前方側相対位置特定部、G2 後方側相対位置特定部、G3 乖離度合い算出部(ずれ度合い算出部)、G4 パラメータ算出部
100 driving support system, 1 control unit (camera parameter adjustment device), 2 front camera, 3 rear camera, 4 wheel speed sensor, 5 steering angle sensor, 6 shift position sensor, 7 display, F1 parameter acquisition unit, F11 error correction unit (Error calculation unit), F2 overhead conversion processing unit, F3 movement amount specifying unit, F4 history image management unit, F5 interpolated overhead image generation unit, F6 image composition unit (overhead image integration processing unit), F7 display processing unit, F8 standard Camera setting unit (reference camera selection unit), F81, reliability calculation unit (reliability evaluation unit), F9, common object determination unit (determination unit), G1, front side relative position specification unit, G2, rear side relative position specification unit, G3 Deviation degree calculation part (deviation degree calculation part), G4 parameter calculation part
Claims (8)
- 車両に搭載され、前記車両の周辺のうち、それぞれ異なる範囲を撮影する少なくとも2つのカメラ(2,3)と、
前記カメラ毎に設定されている、前記車両に対する搭載位置及び取付姿勢を表すカメラパラメータを記憶するパラメータ記憶部(13a)と、
前記カメラが撮影した画像と、そのカメラに対応する前記カメラパラメータに基づいて、そのカメラの撮影範囲に対応する俯瞰画像である部分俯瞰画像を生成する俯瞰変換処理部(F2)と、
複数の前記カメラのうち、所定の前記カメラの前記カメラパラメータを調整する際の基準とする前記カメラである基準カメラを選択する基準カメラ選択部(F8)と、
前記基準カメラが撮影した画像と、前記基準カメラに対応する前記カメラパラメータに基づいて、前記基準カメラによって撮影された物体の前記車両に対する相対位置を特定する第1相対位置特定部(G1)と、
複数の前記カメラのうち、前記基準カメラ以外の前記カメラであって、前記カメラパラメータの調整対象とする前記カメラである調整対象カメラが撮影した画像と、前記調整対象カメラに対応する前記カメラパラメータに基づいて、前記調整対象カメラによって撮影された物体の前記車両に対する相対位置を特定する第2相対位置特定部(G2)と、
前記基準カメラが撮影した画像と、前記調整対象カメラが撮影した画像とに基づいて、前記基準カメラと前記調整対象カメラとが、同一の物体を撮影したか否かを判定する判定部(F9)と、
前記判定部が前記調整対象カメラと前記基準カメラとが同一の物体を撮影したと判定した場合に、前記調整対象カメラと前記基準カメラの両方によって撮影された物体である共通撮影物に対して前記第2相対位置特定部が特定した相対位置と、前記第1相対位置特定部が前記共通撮影物に対して特定した相対位置とのずれ度合いを算出するずれ度合い算出部(G3)と、
前記調整対象カメラに対する前記カメラパラメータとして、前記ずれ度合い算出部が算出した前記ずれ度合いが0となる又は前記ずれ度合いを低減する前記カメラパラメータである整合化パラメータを算出するパラメータ算出部(G4)と、を備え、
前記俯瞰変換処理部は、前記パラメータ算出部が算出した前記整合化パラメータを、前記調整対象カメラが撮像した画像から前記部分俯瞰画像を生成する際の前記カメラパラメータとして用いるカメラパラメータ調整装置。 At least two cameras (2, 3) that are mounted on a vehicle and photograph different ranges of the periphery of the vehicle;
A parameter storage unit (13a) that stores camera parameters that are set for each camera and that represents a mounting position and a mounting posture with respect to the vehicle;
An overhead conversion processing unit (F2) that generates a partial overhead image that is an overhead image corresponding to the shooting range of the camera based on the image captured by the camera and the camera parameter corresponding to the camera;
A reference camera selection unit (F8) that selects a reference camera that is the camera to be used as a reference when adjusting the camera parameters of the predetermined camera among the plurality of cameras;
A first relative position specifying unit (G1) for specifying a relative position of an object photographed by the reference camera with respect to the vehicle based on an image photographed by the reference camera and the camera parameter corresponding to the reference camera;
Among the plurality of cameras, the camera other than the reference camera, the image captured by the adjustment target camera that is the camera to be adjusted for the camera parameter, and the camera parameter corresponding to the adjustment target camera A second relative position specifying unit (G2) for specifying a relative position of the object photographed by the adjustment target camera with respect to the vehicle;
A determination unit (F9) that determines whether the reference camera and the adjustment target camera have captured the same object based on an image captured by the reference camera and an image captured by the adjustment target camera. When,
When the determination unit determines that the adjustment target camera and the reference camera have photographed the same object, the common photographing object that is an object photographed by both the adjustment target camera and the reference camera A deviation degree calculating unit (G3) that calculates a deviation degree between the relative position specified by the second relative position specifying unit and the relative position specified by the first relative position specifying unit with respect to the common photographed object;
A parameter calculation unit (G4) that calculates a matching parameter that is the camera parameter that reduces or reduces the deviation degree calculated by the deviation degree calculation unit as the camera parameter for the adjustment target camera; With
The overhead view conversion processing unit uses the matching parameter calculated by the parameter calculation unit as the camera parameter when generating the partial overhead image from an image captured by the adjustment target camera. - 請求項1において、
前記カメラ毎の信頼度を評価する信頼度評価部(F81)を備え、
前記基準カメラ選択部は、前記信頼度評価部が評価した信頼度が最も高い前記カメラを前記基準カメラとして採用するカメラパラメータ調整装置。 In claim 1,
A reliability evaluation unit (F81) for evaluating the reliability of each camera;
The reference camera selection unit is a camera parameter adjustment device that employs the camera having the highest reliability evaluated by the reliability evaluation unit as the reference camera. - 請求項2において、
前記カメラに設定されている前記カメラパラメータが表すそのカメラの搭載位置及び取付姿勢と、実際のそのカメラの搭載位置及び取付姿勢との誤差である取付誤差を、複数の前記カメラのそれぞれに対して算出する誤差算出部(F11)を備え、
前記信頼度評価部は、前記誤差算出部が算出する誤差が小さいほど、そのカメラに対する信頼度を高く評価するカメラパラメータ調整装置。 In claim 2,
A mounting error that is an error between the mounting position and mounting posture of the camera represented by the camera parameter set in the camera and the actual mounting position and mounting posture of the camera is represented for each of the plurality of cameras. An error calculating unit (F11) for calculating,
The reliability evaluation unit is a camera parameter adjustment device that evaluates the reliability of the camera higher as the error calculated by the error calculation unit is smaller. - 請求項1から3の何れか1項において、
前記カメラが撮影した画像、又は、前記カメラが撮影した画像に基づいて前記俯瞰変換処理部が生成した前記部分俯瞰画像を、その画像に含まれる物体の前記車両に対する現在の相対位置を特定するためのデータである位置特定用データと対応づけて記憶する画像データ記憶部(12a)を備え、
前記第1相対位置特定部は、
前記共通撮影物が前記基準カメラによる現在の撮影画像に含まれている場合には、現在の撮影画像と前記カメラパラメータとに基づいて前記共通撮影物の相対位置を特定する一方、
前記共通撮影物が前記基準カメラによる現在の撮影画像に含まれていない場合には、前記画像データ記憶部に格納されている前記基準カメラに対応する画像のうち、前記共通撮影物を含む画像と、その画像に対応付けられている前記位置特定用データと、前記基準カメラの前記カメラパラメータとに基づいて前記共通撮影物の相対位置を特定し、
前記第2相対位置特定部は、
前記共通撮影物が前記調整対象カメラによる現在の撮影画像に含まれている場合には、現在の撮影画像と前記カメラパラメータと基づいて前記共通撮影物の相対位置を特定する一方、
前記共通撮影物が前記調整対象カメラによる現在の撮影画像に含まれていない場合には、前記画像データ記憶部に格納されている前記調整対象カメラに対応する画像のうち、前記共通撮影物を含む画像と、その画像に対応付けられている前記位置特定用データと、前記調整対象カメラの前記カメラパラメータとに基づいて、前記共通撮影物の相対位置を特定するカメラパラメータ調整装置。 In any one of Claims 1-3,
In order to identify the current relative position of the object included in the image captured by the camera or the partial overhead image generated by the overhead conversion processing unit based on the image captured by the camera with respect to the vehicle An image data storage unit (12a) for storing the data in association with the position specifying data,
The first relative position specifying unit includes:
When the common photographed object is included in the current photographed image by the reference camera, the relative position of the common photographed object is specified based on the current photographed image and the camera parameter,
In a case where the common photographed object is not included in the current photographed image by the reference camera, an image including the common photographed object among images corresponding to the reference camera stored in the image data storage unit; , Specifying the relative position of the common object based on the position specifying data associated with the image and the camera parameters of the reference camera,
The second relative position specifying unit is
When the common photographed object is included in the current photographed image by the adjustment target camera, the relative position of the common photographed object is specified based on the current photographed image and the camera parameter,
When the common photographed object is not included in the current photographed image by the adjustment target camera, the common photographed object is included among the images corresponding to the adjustment target camera stored in the image data storage unit. A camera parameter adjustment device that specifies a relative position of the common object based on an image, the position specifying data associated with the image, and the camera parameter of the adjustment target camera. - 請求項4において、
前記車両の移動に関する情報を逐次取得し、その情報に基づいて前記車両の移動量を逐次特定する移動量特定部(F3)を備え、
前記位置特定用データは、その位置特定用データと対応付けられる画像が撮影又は生成された時点における時刻情報、又は、前記移動量特定部が逐次特定する前記移動量に基づいて定まる、前記画像が撮影された時点から現在までの総移動量、又は、前記総移動量に基づいて定まる、前記車両の周辺のうち、前記画像が表す領域である対応領域を示すデータであることを特徴とするカメラパラメータ調整装置。 In claim 4,
A movement amount specifying unit (F3) that sequentially acquires information related to the movement of the vehicle and sequentially specifies the movement amount of the vehicle based on the information,
The position specifying data is determined based on time information at the time when an image associated with the position specifying data is taken or generated, or the moving amount sequentially specified by the moving amount specifying unit. A camera that is data indicating a corresponding area that is an area represented by the image in the periphery of the vehicle, which is determined based on a total movement amount from the time when the image was taken to the present or the total movement amount. Parameter adjustment device. - 請求項1から5の何れか1項において、
前記俯瞰変換処理部によって生成された複数の前記カメラのそれぞれの撮影画像に対応する前記部分俯瞰画像を合成することで前記車両の周辺の俯瞰画像である統合俯瞰画像を生成する俯瞰画像統合処理部(F6)と、
前記俯瞰画像統合処理部が生成した前記統合俯瞰画像をディスプレイに表示する表示処理部(F7)と、を備えるカメラパラメータ調整装置。 In any one of Claim 1 to 5,
An overhead image integration processing unit that generates an integrated overhead image that is an overhead image around the vehicle by combining the partial overhead images corresponding to the captured images of the plurality of cameras generated by the overhead conversion processing unit. (F6),
A camera parameter adjustment apparatus comprising: a display processing unit (F7) that displays the integrated overhead image generated by the overhead image integration processing unit on a display. - 請求項1から6の何れか1項において、
前記カメラとして、前記車両の前方の所定範囲を撮影する前方カメラと、前記車両の後方の所定範囲を撮影する後方カメラと、を備え、
前記基準カメラ選択部は、前記前方カメラと前記後方カメラの何れか一方を前記基準カメラとして採用し、他方を前記調整対象カメラとするカメラパラメータ調整装置。 In any one of Claim 1 to 6,
As the camera, a front camera for photographing a predetermined range in front of the vehicle, and a rear camera for photographing a predetermined range in the rear of the vehicle,
The reference camera selection unit is a camera parameter adjustment device that employs one of the front camera and the rear camera as the reference camera and uses the other as the adjustment target camera. - 請求項1から6の何れか1項において、
前記カメラとして、前記車両の前方の所定範囲を撮影する前方カメラと、前記車両の後方の所定範囲を撮影する後方カメラと、前記車両の右側方の所定範囲を撮影する右側方カメラ(8)と、前記車両の左側方の所定範囲を撮影する左側方カメラ(9)と、を備え、
前記前方カメラの撮影範囲は、前記右側方カメラの撮影範囲の一部、及び前記左側方カメラの撮影範囲の一部とそれぞれ重なっており、
前記後方カメラの撮影範囲は、前記右側方カメラの撮影範囲の一部、及び前記左側方カメラの撮影範囲の一部とそれぞれ重なっており、
前記基準カメラ選択部は、前記前方カメラと前記後方カメラの何れか一方を前記基準カメラとして採用し、
前記基準カメラ選択部が、前記前方カメラを前記基準カメラとした場合には、前記パラメータ算出部は前記後方カメラ、前記右側方カメラ、前記左側方カメラのそれぞれに対して前記整合化パラメータを算出する一方、前記後方カメラを前記基準カメラとした場合には、前記パラメータ算出部は前記前方カメラ、前記右側方カメラ、前記左側方カメラのそれぞれに対して前記整合化パラメータを算出するカメラパラメータ調整装置。 In any one of Claim 1 to 6,
As the camera, a front camera that captures a predetermined range in front of the vehicle, a rear camera that captures a predetermined range behind the vehicle, and a right-side camera (8) that captures a predetermined range on the right side of the vehicle; A left side camera (9) for photographing a predetermined range on the left side of the vehicle,
The shooting range of the front camera overlaps with a part of the shooting range of the right side camera and a part of the shooting range of the left side camera,
The shooting range of the rear camera overlaps with a part of the shooting range of the right side camera and a part of the shooting range of the left side camera,
The reference camera selection unit employs either the front camera or the rear camera as the reference camera,
When the reference camera selection unit uses the front camera as the reference camera, the parameter calculation unit calculates the matching parameter for each of the rear camera, the right side camera, and the left side camera. On the other hand, when the rear camera is the reference camera, the parameter calculation unit calculates the matching parameter for each of the front camera, the right side camera, and the left side camera.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016000689.6T DE112016000689T5 (en) | 2015-02-10 | 2016-02-08 | Kameraparametereinstellvorrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015024544A JP6471522B2 (en) | 2015-02-10 | 2015-02-10 | Camera parameter adjustment device |
JP2015-024544 | 2015-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016129552A1 true WO2016129552A1 (en) | 2016-08-18 |
Family
ID=56615543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053653 WO2016129552A1 (en) | 2015-02-10 | 2016-02-08 | Camera parameter adjustment device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6471522B2 (en) |
DE (1) | DE112016000689T5 (en) |
WO (1) | WO2016129552A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111566707A (en) * | 2018-01-11 | 2020-08-21 | 株式会社电装 | Installation position information providing device and installation position information providing method |
CN111693254A (en) * | 2019-03-12 | 2020-09-22 | 纬创资通股份有限公司 | Vehicle-mounted lens offset detection method and vehicle-mounted lens offset detection system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021144257A (en) | 2018-06-06 | 2021-09-24 | ソニーグループ株式会社 | Information processing device, information processing method, program, and moving object |
JP7153889B2 (en) * | 2019-03-01 | 2022-10-17 | パナソニックIpマネジメント株式会社 | Image correction device, image generation device, camera system and vehicle |
KR102611759B1 (en) * | 2019-06-20 | 2023-12-11 | 현대모비스 주식회사 | Apparatus for calibrating of around view image for vehicle and control method thereof |
CN110719406B (en) * | 2019-10-15 | 2022-06-14 | 腾讯科技(深圳)有限公司 | Shooting processing method, shooting equipment and computer equipment |
KR102387684B1 (en) * | 2020-08-28 | 2022-04-20 | 사이텍 주식회사 | Camera calibration apparatus for an autonomous driving vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006277738A (en) * | 2005-03-03 | 2006-10-12 | Nissan Motor Co Ltd | On-vehicle image processor and image processing method for vehicle |
JP2010244326A (en) * | 2009-04-07 | 2010-10-28 | Alpine Electronics Inc | In-vehicle circumference image display device |
JP2014048803A (en) * | 2012-08-30 | 2014-03-17 | Denso Corp | Image processor, and program |
-
2015
- 2015-02-10 JP JP2015024544A patent/JP6471522B2/en not_active Expired - Fee Related
-
2016
- 2016-02-08 DE DE112016000689.6T patent/DE112016000689T5/en not_active Withdrawn
- 2016-02-08 WO PCT/JP2016/053653 patent/WO2016129552A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006277738A (en) * | 2005-03-03 | 2006-10-12 | Nissan Motor Co Ltd | On-vehicle image processor and image processing method for vehicle |
JP2010244326A (en) * | 2009-04-07 | 2010-10-28 | Alpine Electronics Inc | In-vehicle circumference image display device |
JP2014048803A (en) * | 2012-08-30 | 2014-03-17 | Denso Corp | Image processor, and program |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111566707A (en) * | 2018-01-11 | 2020-08-21 | 株式会社电装 | Installation position information providing device and installation position information providing method |
CN111566707B (en) * | 2018-01-11 | 2023-06-16 | 株式会社电装 | Setting position information providing apparatus and setting position information providing method |
CN111693254A (en) * | 2019-03-12 | 2020-09-22 | 纬创资通股份有限公司 | Vehicle-mounted lens offset detection method and vehicle-mounted lens offset detection system |
Also Published As
Publication number | Publication date |
---|---|
JP6471522B2 (en) | 2019-02-20 |
DE112016000689T5 (en) | 2017-10-19 |
JP2016149613A (en) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6471522B2 (en) | Camera parameter adjustment device | |
JP4530060B2 (en) | Parking support apparatus and method | |
US9467679B2 (en) | Vehicle periphery monitoring device | |
US8880344B2 (en) | Method for displaying images on a display device and driver assistance system | |
JP5212748B2 (en) | Parking assistance device | |
WO2016002163A1 (en) | Image display device and image display method | |
JP5953824B2 (en) | Vehicle rear view support apparatus and vehicle rear view support method | |
US20130010119A1 (en) | Parking assistance apparatus, parking assistance system, and parking assistance camera unit | |
WO2019008764A1 (en) | Parking assistance method and parking assistance device | |
JP6586849B2 (en) | Information display device and information display method | |
US20140043466A1 (en) | Environment image display apparatus for transport machine | |
JP5516998B2 (en) | Image generation device | |
WO2020012879A1 (en) | Head-up display | |
WO2010070920A1 (en) | Device for generating image of surroundings of vehicle | |
US20190100141A1 (en) | Ascertainment of Vehicle Environment Data | |
JP7000383B2 (en) | Image processing device and image processing method | |
JP7426174B2 (en) | Vehicle surrounding image display system and vehicle surrounding image display method | |
CN110053625B (en) | Distance calculation device and vehicle control device | |
WO2015122124A1 (en) | Vehicle periphery image display apparatus and vehicle periphery image display method | |
JPWO2019142660A1 (en) | Image processing device, image processing method, and program | |
KR20170057684A (en) | Method for assistance parking vehicle using front camera | |
JP7316620B2 (en) | Systems and methods for image normalization | |
US20200231099A1 (en) | Image processing apparatus | |
JP2007134961A (en) | Vehicle detection device and display device for vehicle using the same | |
US20220222947A1 (en) | Method for generating an image of vehicle surroundings, and apparatus for generating an image of vehicle surroundings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16749196 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016000689 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16749196 Country of ref document: EP Kind code of ref document: A1 |