WO2016121945A1 - 変倍光学系、光学機器及び変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器及び変倍光学系の製造方法 Download PDF

Info

Publication number
WO2016121945A1
WO2016121945A1 PCT/JP2016/052700 JP2016052700W WO2016121945A1 WO 2016121945 A1 WO2016121945 A1 WO 2016121945A1 JP 2016052700 W JP2016052700 W JP 2016052700W WO 2016121945 A1 WO2016121945 A1 WO 2016121945A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
group
image
object side
Prior art date
Application number
PCT/JP2016/052700
Other languages
English (en)
French (fr)
Inventor
壮基 原田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US15/545,701 priority Critical patent/US10473901B2/en
Priority to EP16743548.6A priority patent/EP3252518A4/en
Priority to JP2016572193A priority patent/JP6406360B2/ja
Priority to CN201680016073.7A priority patent/CN107407794B/zh
Publication of WO2016121945A1 publication Critical patent/WO2016121945A1/ja
Priority to US16/660,747 priority patent/US20200049961A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1455Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
    • G02B15/145527Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged -+-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1465Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being negative
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective

Definitions

  • the present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.
  • variable magnification optical system is required to be an optical system having a brighter F value while having good optical performance.
  • a variable magnification optical system includes a first lens group having a negative refractive power and a second lens group having a positive refractive power, and is disposed closer to the image side than the second lens group.
  • An anti-vibration lens group that is disposed on the image side of the intermediate group and is configured to be movable so as to have a component orthogonal to the optical axis, and at least the first lens group And changing the distance between the second lens group and the second lens group and the intermediate group, zooming is performed, and the following conditional expression is satisfied. 1.500 ⁇ (Gn) t ⁇ 100.000 However, ⁇ (Gn) t: imaging magnification of the intermediate group in the telephoto end state.
  • a variable magnification optical system includes a first lens group having a negative refractive power and a second lens group having a positive refractive power, arranged in order from the object side,
  • An anti-vibration lens group configured to be movable so as to have a component orthogonal to the axis, and at least a distance between the first lens group and the second lens group, and the second lens group and the second lens group.
  • the zooming is performed by changing the distance from the n lens group, and the following conditional expression is satisfied. 1.500 ⁇ (Gn) t ⁇ 100.000 However, ⁇ (Gn) t: Imaging magnification of the nth lens group in the telephoto end state.
  • An optical apparatus includes the above-described variable magnification optical system.
  • a method for manufacturing a variable power optical system is a method for manufacturing a variable power optical system having a first lens group having a negative refractive power and a second lens group having a positive refractive power. And an intermediate group disposed on the image side of the second lens group, disposed on the image side of the intermediate group, and configured to be movable so as to have a component perpendicular to the optical axis.
  • a method for manufacturing a variable magnification optical system includes a first lens group having negative refractive power and a second lens group having positive refractive power, which are arranged in order from the object side.
  • a method of manufacturing a variable magnification optical system comprising: an nth lens group that is disposed on the image side of the second lens group and has a negative refracting power that is fixed in a direction orthogonal to the optical axis; An anti-vibration lens group disposed on the image side from the n-th lens group and configured to be movable so as to have a component orthogonal to the optical axis, and at least the first lens group and the second lens group; And changing the distance between the second lens group and the n-th lens group, zooming is performed, and each lens is arranged in the lens barrel so as to satisfy the following conditional expression. 1.500 ⁇ (Gn) t ⁇ 100.000 However, ⁇ (Gn) t: Imaging magnification of the nth lens
  • (W), (M), and (T) are cross-sectional views of the zoom optical system according to the first example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example, respectively.
  • (W), (M), and (T) are cross-sectional views of the zoom optical system according to the second example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams during focusing at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the second example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
  • (W), (M), and (T) are sectional views of the zoom optical system according to the third example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • (W), (M), and (T) are cross-sectional views of the zoom optical system according to the fourth example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams during focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the fourth example, respectively.
  • (W), (M), and (T) are cross-sectional views of the zoom optical system according to the fifth example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams during focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • (W), (M), and (T) are sectional views of the zoom optical system according to the sixth example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example.
  • (W), (M), and (T) are sectional views of the zoom optical system according to the seventh example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the seventh example, respectively.
  • (W), (M), and (T) are sectional views of the variable magnification optical system according to the eighth example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the eighth example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the eighth example.
  • (W), (M), and (T) are sectional views of the variable magnification optical system according to Example 9 in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the ninth example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the ninth example.
  • (W), (M), and (T) are sectional views of the zoom optical system according to the tenth example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the tenth example, respectively.
  • (W), (M), and (T) are cross-sectional views of the zoom optical system according to the eleventh example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively.
  • (A), (b), and (c) are various aberration diagrams during focusing at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the eleventh example. is there.
  • (A), (b), and (c) perform image blur correction at the time of focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the eleventh example.
  • FIG. 1 It is a figure which shows an example of a structure of the camera carrying a variable magnification optical system. It is a figure which shows the outline of an example of the manufacturing method of a variable magnification optical system.
  • FIG. 1 shows an example of the configuration of the variable magnification optical system ZL.
  • the number of lens groups, the lens configuration in each lens group, and the like can be changed as appropriate.
  • variable magnification optical system ZL includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power, and is closer to the image side than the second lens group G2.
  • An anti-vibration lens group VR that includes an intermediate group (n-th lens group) Gn, is arranged on the image side of the intermediate group Gn, and is configured to be movable so as to have a component orthogonal to the optical axis.
  • the zooming is performed by changing at least the distance between the first lens group G1 and the second lens group G2 and the distance between the second lens group G2 and the intermediate group Gn.
  • the intermediate group Gn has a fixed position in the direction orthogonal to the optical axis and can have a negative refractive power.
  • the 31st lens is used as an intermediate group Gn having a negative refractive power that is fixed in a direction perpendicular to the optical axis, and an anti-vibration lens group VR disposed on the image side of the intermediate group.
  • the group G31 and the 32nd lens group G32 correspond respectively.
  • the anti-vibration lens group VR arranged on the intermediate group Gn and the image side of the intermediate group the thirty-first lens group G31 and the thirty-second lens group Applicable to G32.
  • the fourth lens group G4 and the fifth lens group G5 correspond to the intermediate group Gn and the anti-vibration lens group VR disposed on the image side of the intermediate group.
  • the anti-vibration lens group VR preferably has a negative refractive power.
  • variable magnification optical system ZL includes a negative positive / negative positive or negative positive / negative positive / positive lens group, and realizes a variable magnification optical system having a wide angle of view by changing at least the distance between these groups. be able to.
  • the negative intermediate group Gn and the (negative) anti-vibration lens group VR are provided on the image side of the intermediate group, and the anti-vibration lens group VR is moved so as to have a component in a direction orthogonal to the optical axis.
  • variable magnification optical system ZL satisfies the following conditional expression (1). 1.500 ⁇ (Gn) t ⁇ 100.000 (1) However, ⁇ (Gn) t: imaging magnification of the intermediate group Gn in the telephoto end state.
  • Conditional expression (1) returns the incident light converged by the first lens group G1 and the second lens group G2 to a light beam (substantially afocal light beam) substantially parallel to the optical axis in the intermediate group Gn. This is a conditional expression for improving the anti-vibration performance by leading to the group VR.
  • conditional expression (1) a bright F-number of about F2.8 to F3.5 can be secured, and various aberrations including spherical aberration can be corrected well.
  • conditional expression (1) If the upper limit of conditional expression (1) is exceeded, the power of the intermediate group Gn becomes too large, and correction for various aberrations such as spherical aberration by the intermediate group Gn becomes insufficient, and a zoom ratio of about 3 times or more is obtained. It becomes difficult.
  • conditional expression (1) In order to ensure the effect, it is preferable that the upper limit value of conditional expression (1) is 50.000. In order to ensure the effect, it is preferable that the upper limit value of the conditional expression (1) is 25.000.
  • conditional expression (1) In order to ensure the effect, it is preferable that the lower limit value of conditional expression (1) is 2.000. In order to ensure the effect, it is preferable that the lower limit value of the conditional expression (1) is 2.500.
  • Conditional expression (2) is a condition for achieving both a zoom ratio of about 3 times and good optical performance by appropriately setting the combined focal length in the wide-angle end state of the intermediate group Gn and the anti-vibration lens group VR. It is a formula. By satisfying conditional expression (2), a bright F-number of about F2.8 to F3.5 can be secured, and various aberrations including spherical aberration can be corrected well.
  • conditional expression (2) If the upper limit value of conditional expression (2) is exceeded, the combined refractive power of the intermediate group Gn and the anti-vibration lens group VR becomes too small, and it becomes difficult to secure a zoom ratio of about 3 times in the entire system. As a result, it becomes necessary for the second lens group G2 and other groups to perform zooming, and as a result, correction of spherical aberration and coma becomes insufficient.
  • conditional expression (2) In order to ensure the effect, it is preferable to set the upper limit of conditional expression (2) to 4.000. In order to ensure the effect, it is preferable that the upper limit value of conditional expression (2) is 3.000.
  • conditional expression (2) If the lower limit value of conditional expression (2) is not reached, the combined refractive power of the intermediate group Gn and the anti-vibration lens group VR becomes too large, and it becomes difficult to correct spherical aberration and coma. As a result, it is difficult to realize good imaging performance while increasing the F value to about F2.8 to F3.5.
  • conditional expression (2) is 1.400. In order to ensure the effect, it is preferable that the lower limit value of the conditional expression (2) is 1.450.
  • the variable magnification optical system ZL has an image side lens group RP having the strongest positive refractive power among the lens groups having positive refractive power arranged on the image side from the image stabilizing lens group VR. It is preferable that the interval between the RP and the vibration-proof lens group VR changes during zooming and satisfies the following conditional expression (3). 0.400 ⁇ f (RP) / f (FP) ⁇ 2,000 (3) However, f (RP): focal length of the image side lens unit RP, f (FP): the combined focal length in the wide-angle end state of the lens disposed on the image plane side from the first lens group G1 and disposed on the object side from the intermediate group Gn.
  • Conditional expression (3) is a conditional expression for achieving both a zoom ratio of about 3 times and good optical performance by appropriately setting the refractive power of the image side lens unit RP.
  • conditional expression (3) a bright F-number of about F2.8 to F3.5 can be secured, and various aberrations including spherical aberration can be corrected well.
  • conditional expression (3) If the upper limit of conditional expression (3) is exceeded, it will be insufficient to change the magnification by the image side lens unit RP, and it will be difficult to secure a zoom ratio of about 3 times in the entire system. As a result, it becomes necessary for the second lens group G2 and other groups to perform zooming, and as a result, correction of spherical aberration and coma becomes insufficient.
  • conditional expression (3) is 1.800. In order to ensure the effect, it is preferable that the upper limit value of the conditional expression (3) is 1.700.
  • conditional expression (3) If the lower limit of conditional expression (3) is not reached, the refractive power of the image side lens unit RP becomes too large, and it becomes difficult to correct spherical aberration and coma. As a result, it is difficult to realize good imaging performance while increasing the F value to about F2.8 to F3.5.
  • conditional expression (3) In order to ensure the effect, it is preferable that the lower limit value of conditional expression (3) is 0.500. In order to ensure the effect, it is preferable that the lower limit value of the conditional expression (3) is 0.600.
  • the intermediate group Gn preferably has at least one positive lens component and one negative lens component.
  • Lens component means a single lens or a cemented lens.
  • the spherical aberration and coma aberration can be corrected satisfactorily in the intermediate group Gn, which can contribute to the improvement of the image stabilization performance.
  • the intermediate group Gn is composed of only one of the lens components, spherical aberration and coma aberration correction in the intermediate group Gn is insufficient, and it is necessary for the vibration-proof lens group VR to perform correction of those aberrations. appear.
  • the vibration-proof lens group VR As a result, the occurrence of decentration coma aberration or one-side blur that occurs during image blur correction increases, and it is difficult to maintain good imaging performance during image blur correction.
  • the intermediate group Gn has at least two negative lens components and one or more positive lens components.
  • the second lens group G2 has at least four lens components.
  • the second lens group G2 which can contribute to the improvement of the image stabilization performance.
  • the second lens group G2 is composed of three or less lens components, spherical aberration and coma aberration correction in the second lens group G2 becomes insufficient, and as a result, the intermediate group Gn is responsible for correcting these aberrations. Need to be generated. As a result, the occurrence of decentration coma aberration or one-side blur that occurs during image blur correction increases, and it is difficult to maintain good imaging performance during image blur correction.
  • the second lens group G2 has at least five or more lens components.
  • the second lens group G2 includes a twenty-first lens group G21 having a positive refractive power and a twenty-second lens group G22 having a positive refractive power, which are arranged in order from the object side. It is preferable to perform focusing from infinity to a close object by moving the 21 lens group G21 to the image side as a focusing lens group.
  • the lens group to be moved at the time of focusing can be reduced in size and weight, and the entire lens system can be downsized and the focusing speed at the time of autofocusing can be increased.
  • variable magnification optical system ZL preferably satisfies the following conditional expression (4). 10.00 ° ⁇ t ⁇ 30.00 ° (4) However, ⁇ t: Half field angle in the telephoto end state.
  • Conditional expression (4) is a condition that defines the value of the half angle of view in the telephoto end state. By satisfying conditional expression (4), a desired angle of view can be obtained, and coma, distortion, and field curvature can be favorably corrected.
  • conditional expression (4) is 27.00 °. In order to ensure the effect, it is preferable that the upper limit value of conditional expression (4) is 24.00 °.
  • conditional expression (4) is 11.00 °. In order to ensure the effect, it is preferable that the lower limit value of the conditional expression (4) is 12.00 °.
  • variable magnification optical system ZL preferably satisfies the following conditional expression (5). 30.00 ° ⁇ w ⁇ 50.00 ° (5) However, ⁇ w: Half angle of view in the wide angle end state.
  • Conditional expression (5) is a condition that defines the value of the half angle of view in the wide-angle end state. By satisfying conditional expression (5), a desired angle of view can be obtained, and coma, distortion, and field curvature can be favorably corrected.
  • conditional expression (5) is 48.00 °. In order to make the effect more reliable, it is preferable that the upper limit value of the conditional expression (5) is 45.00 °.
  • conditional expression (5) be 32.00 °. In order to ensure the effect, it is preferable that the lower limit value of the conditional expression (5) is 34.00 °.
  • the distance between the twenty-first lens group G21 and the twenty-second lens group G22 may be fixed or variable at the time of zooming.
  • the interval between the intermediate group Gn and the anti-vibration lens group VR may be fixed or variable during variable magnification. In the case of fixing, it is preferable that the combined refractive power of the intermediate group Gn and the anti-vibration lens group VR can be negative.
  • variable magnification optical system ZL it is preferable that the refractive power of the optical system including the lens disposed on the image side from the image stabilizing lens group VR is positive.
  • variable magnification optical system ZL preferably has at least one lens group having positive refractive power on the image side from the image stabilizing lens group VR.
  • variable magnification optical system ZL preferably has an aperture stop between the second lens group G2 and the intermediate group Gn.
  • variable magnification optical system ZL having a bright F value, a wide angle of view, and various aberrations corrected satisfactorily.
  • FIG. 37 shows an example of the configuration of a camera equipped with a variable magnification optical system.
  • the camera 1 is an interchangeable lens camera (so-called mirrorless camera) provided with the above-described variable magnification optical system ZL as the photographing lens 2.
  • this camera 1 light from an object (not shown) that is not shown is condensed by the taking lens 2, and then on the image pickup surface of the image pickup unit 3 via an OLPF (Optical Low Pass Filter) that is not shown.
  • a subject image is formed on the screen.
  • the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject.
  • This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1.
  • EVF Electronic view finder
  • variable magnification optical system ZL mounted on the camera 1 as the photographing lens 2 has a bright F value, a wide angle of view, and various aberrations due to its characteristic lens configuration, as will be understood from each of the embodiments described later. And has good optical performance. Therefore, according to the camera 1, it is possible to realize an optical apparatus having a bright F value, a wide angle of view, various aberrations being favorably corrected, and good optical performance.
  • the example of the mirrorless camera was demonstrated as the camera 1, it is not limited to this.
  • the above zooming optical system ZL is mounted on a single-lens reflex camera that has a quick return mirror in the camera body and observes a subject with a viewfinder optical system, the same effect as the camera 1 can be obtained. Can do.
  • FIG. 38 shows an example of a manufacturing method of the variable magnification optical system ZL.
  • each lens is arranged in the lens barrel so as to have a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power (step ST10).
  • Each lens is arranged so as to have an intermediate group Gn arranged on the image side from the second lens group G2 (step ST20).
  • Each lens is arranged so as to have an anti-vibration lens group VR arranged on the image side from the intermediate group Gn and configured to be movable so as to have a component orthogonal to the optical axis (step ST30).
  • Each lens is arranged so as to perform zooming by changing at least the distance between the first lens group G1 and the second lens group G2 and the distance between the second lens group G2 and the intermediate group Gn (step) ST40).
  • Each lens is arranged so as to satisfy the following conditional expression (1) (step ST50). 1.500 ⁇ (Gn) t ⁇ 100.000 (1) However, ⁇ (Gn) t: imaging magnification of the intermediate group Gn in the telephoto end state.
  • a first lens group G1 and a biconvex lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a cemented lens of a biconvex lens L23 and a biconcave lens L24, and a biconvex lens L25 are arranged.
  • the twenty-first lens group G21 includes a biconvex lens L26, which serves as a twenty-second lens group G22.
  • a biconcave lens L31, a negative meniscus lens L32 having a concave surface facing the object side, and a biconvex lens L33 are disposed.
  • a biconcave lens L34 and a positive meniscus lens L35 having a convex surface facing the object side are arranged as a thirty-second lens group G32.
  • L41, a cemented lens of a negative meniscus lens L42 having a concave surface facing the image side and a biconvex lens L43, and a cemented lens of a biconvex lens L44, a biconcave lens L45, and a positive meniscus lens L46 having a convex surface facing the object side are arranged.
  • the fourth lens group G4 is obtained.
  • the lens groups thus prepared are arranged in the above-described procedure to manufacture the variable magnification optical system ZL.
  • variable magnification optical system ZL having a bright F value, a wide angle of view, and various aberrations corrected favorably.
  • FIG. 11 is a cross-sectional view showing the configuration of ZL12) and refractive power distribution.
  • the optical axis of each lens group when changing the magnification from the wide-angle end state (W) to the telephoto end state (T) through the intermediate focal length state (M) is shown.
  • the moving direction along is indicated by an arrow.
  • variable magnification optical systems ZL1 to ZL12 In the upper part of the sectional view of the variable magnification optical systems ZL1 to ZL12, the moving direction of the focusing lens group when focusing on an object at a short distance from infinity is indicated by an arrow, and the image stabilizing lens group for correcting image blurring The state of VR is also shown.
  • each reference symbol for FIG. 1 according to the first embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference symbol. Therefore, even if the same reference numerals as those in the drawings according to the other embodiments are given, they are not necessarily in the same configuration as the other embodiments.
  • Tables 1 to 12 are shown below. These are tables of specifications in the first to twelfth embodiments.
  • d-line (wavelength 587.562 nm) and g-line (wavelength 435.835 nm) are selected as the calculation targets of the aberration characteristics.
  • the surface number is the order of the optical surfaces from the object side along the light traveling direction
  • R is the radius of curvature of each optical surface
  • D is the next optical surface from each optical surface ( Or an optical plane distance to the image plane)
  • n (d) is the refractive index of the optical member material with respect to the d-line
  • ⁇ d is the Abbe number based on the d-line of the optical member material
  • “Aperture” indicates an aperture stop S.
  • the curvature radius “0.00000” indicates a plane in the case of a lens surface, and indicates an aperture or an aperture surface in the case of a stop.
  • the optical surface is an aspherical surface
  • the surface number is marked with *
  • the column of curvature radius R indicates the paraxial curvature radius.
  • f is the focal length of the entire lens system
  • FNo is the F number
  • is the half angle of view (unit: °)
  • Y is the maximum image height
  • TL is the optical axis when focusing on infinity.
  • the distance from the forefront lens to the last lens surface, BF is the distance from the last lens surface to the image plane I on the optical axis when focused at infinity, and BF (air equivalent) is the distance when focused at infinity.
  • the distance from the last lens surface on the optical axis to the image plane I is expressed in terms of the air equivalent length.
  • D0 is the axial air distance between the object surface and the lens surface on the most object side of the first lens group G1
  • mm is generally used for the focal length f, the radius of curvature R, the surface interval D, and other lengths, etc. unless otherwise specified.
  • the optical system is not limited to this because the same optical performance can be obtained even when proportional expansion or proportional reduction is performed.
  • the unit is not limited to “mm”, and other appropriate units can be used.
  • variable magnification optical system ZL (ZL1) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group having positive refractive power.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the biconcave lens L12 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape.
  • the second lens group G2 is composed of a twenty-first lens group G21 (focusing lens group) having positive refractive power and a twenty-second lens group G22 having positive refractive power, which are arranged in order from the object side.
  • the twenty-first lens group G21 includes a biconvex lens L21, a positive meniscus lens L22 having a convex surface directed toward the object side, a cemented lens of a biconvex lens L23 and a biconcave lens L24, and a biconvex lens L25 arranged in order from the object side.
  • the 22nd lens group G22 includes a biconvex lens L26.
  • the third lens group G3 includes a thirty-first lens group G31 (intermediate group) that is arranged in order from the object side and has a negative refractive power and whose position in the direction orthogonal to the optical axis is fixed, and a thirty-second lens that has a negative refractive power. It consists of a group G32 (anti-vibration lens group).
  • the thirty-first lens group G31 includes a biconcave lens L31, a negative meniscus lens L32 having a concave surface directed toward the object side, and a biconvex lens L33 arranged in order from the object side.
  • the thirty-second lens group G32 includes a biconcave lens L34 arranged in order from the object side, and a positive meniscus lens L35 having a convex surface directed toward the object side.
  • the fourth lens group G4 includes a biconvex lens L41 arranged in order from the object side, a cemented lens of a negative meniscus lens L42 having a concave surface facing the image side, and a biconvex lens L43, a biconvex lens L44, a biconcave lens L45, and the object side. And a cemented lens with a positive meniscus lens L46 having a convex surface facing the surface.
  • the biconvex lens L41 has an aspheric object side surface.
  • the positive meniscus lens L46 has an aspheric image side surface.
  • a first flare cut stop FC1 and an aperture stop S arranged in order from the object side are provided between the second lens group G2 and the third lens group G3. Between the fourth lens group G4 and the image plane I, a second flare cut stop FC2 is provided.
  • the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved. This is done by moving to the object side, moving the third lens group G3 once to the image side, then moving to the object side, and moving the fourth lens group G4 to the object side.
  • the first flare cut stop FC1, the aperture stop S, and the second flare cut stop FC2 are fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the 21st lens group G21 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the thirty-second lens group G32 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization coefficient in the wide-angle end state, is ⁇ 0.45 and the focal length is 24.80 mm. Therefore, the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is used.
  • the amount of movement is -0.29 mm.
  • the image stabilization coefficient In the intermediate focal length state, the image stabilization coefficient is ⁇ 0.51 and the focal length is 50.01 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 51 mm.
  • the image stabilization coefficient In the telephoto end state, the image stabilization coefficient is ⁇ 0.58 and the focal length is 67.85 mm, so that the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 61 mm.
  • Table 1 below shows the values of each item in the first example.
  • Surface numbers 1 to 40 in Table 1 correspond to the optical surfaces m1 to m40 shown in FIG.
  • variable magnification optical system ZL1 satisfies the conditional expressions (1) to (5).
  • FIG. 2 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) at the time of focusing on infinity of the variable magnification optical system ZL1 according to the first example.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • 3A and 3B are lateral aberration diagrams when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL1 according to the first example.
  • FIG. 3A is a wide-angle end state
  • FIG. 3B is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • FNO represents the F number
  • Y represents the image height
  • d indicates the d-line
  • g indicates the aberration at the g-line.
  • those without these descriptions show aberrations at the d-line.
  • the value of the F number corresponding to the maximum aperture is shown.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • variable magnification optical system ZL1 has excellent optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL2) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group G1 having positive refractive power.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the biconcave lens L12 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape.
  • the second lens group G2 is composed of a twenty-first lens group G21 (focusing lens group) having positive refractive power and a twenty-second lens group G22 having positive refractive power, which are arranged in order from the object side.
  • the twenty-first lens group G21 includes a biconvex lens L21, a positive meniscus lens L22 having a convex surface directed toward the object side, a cemented lens of a biconvex lens L23 and a biconcave lens L24, and a biconvex lens L25 arranged in order from the object side.
  • the 22nd lens group G22 includes a biconvex lens L26.
  • the third lens group G3 includes a thirty-first lens group G31 (intermediate group) that is arranged in order from the object side and has a negative refractive power and whose position in the direction orthogonal to the optical axis is fixed, and a thirty-second lens that has a negative refractive power. It consists of a group G32 (anti-vibration lens group).
  • the thirty-first lens group G31 includes a biconcave lens L31, a negative meniscus lens L32 having a concave surface directed toward the object side, and a biconvex lens L33 arranged in order from the object side.
  • the thirty-second lens group G32 includes a biconcave lens L34 arranged in order from the object side, and a positive meniscus lens L35 having a convex surface directed toward the object side.
  • the biconcave lens L34 has an aspheric object side surface.
  • the fourth lens group G4 includes a biconvex lens L41 arranged in order from the object side, a cemented lens of a negative meniscus lens L42 having a concave surface facing the image side, and a biconvex lens L43, a biconvex lens L44, a biconcave lens L45, and the object side. And a cemented lens with a positive meniscus lens L46 having a convex surface facing the surface.
  • the biconvex lens L41 has an aspheric object side surface.
  • the positive meniscus lens L46 has an aspheric image side surface.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3.
  • a flare cut stop FC is provided between the fourth lens group G4 and the image plane I.
  • the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved. This is done by moving to the object side, moving the third lens group G3 once to the image side, then moving to the object side, and moving the fourth lens group G4 to the object side.
  • the aperture stop S and the flare cut stop FC are fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the 21st lens group G21 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the thirty-second lens group G32 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization coefficient is ⁇ 0.44 and the focal length is 24.80 mm in the wide-angle end state.
  • the amount of movement is -0.30 mm.
  • the image stabilization coefficient is ⁇ 0.50 and the focal length is 47.76 mm. .50 mm.
  • the image stabilization coefficient is ⁇ 0.58, and the focal length is 67.85 mm. 62 mm.
  • Table 2 shows the values of each item in the second example.
  • Surface numbers 1 to 39 in Table 2 correspond to the respective optical surfaces m1 to m39 shown in FIG.
  • variable magnification optical system ZL2 satisfies the conditional expressions (1) to (5).
  • FIG. 5 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) of the variable magnification optical system ZL2 according to the second example when focusing on infinity.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • 6A and 6B are lateral aberration diagrams when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL2 according to the second example.
  • FIG. 6A is a wide-angle end state
  • FIG. 6B is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL2 has good optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL3) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group having positive refractive power.
  • the second lens group G2 includes a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the biconcave lens L12 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape.
  • the second lens group G2 is composed of a twenty-first lens group G21 (focusing lens group) having positive refractive power and a twenty-second lens group G22 having positive refractive power, which are arranged in order from the object side.
  • the twenty-first lens group G21 includes a biconvex lens L21, a positive meniscus lens L22 having a convex surface directed toward the object side, a cemented lens of a biconvex lens L23 and a biconcave lens L24, and a biconvex lens L25 arranged in order from the object side.
  • the 22nd lens group G22 includes a biconvex lens L26.
  • the third lens group G3 includes a thirty-first lens group G31 (intermediate group) that is arranged in order from the object side and has a negative refractive power and whose position in the direction orthogonal to the optical axis is fixed, and a thirty-second lens that has a negative refractive power. It consists of a group G32 (anti-vibration lens group).
  • the thirty-first lens group G31 includes a biconcave lens L31, a negative meniscus lens L32 having a concave surface directed toward the object side, and a biconvex lens L33 arranged in order from the object side.
  • the thirty-second lens group G32 includes a biconcave lens L34 arranged in order from the object side, and a positive meniscus lens L35 having a convex surface directed toward the object side.
  • the biconcave lens L34 has an aspheric object side surface.
  • the fourth lens group G4 includes a biconvex lens L41 arranged in order from the object side, a cemented lens of a negative meniscus lens L42 having a concave surface directed toward the image side, and a biconvex lens L43, and a cemented lens of the biconvex lens L44 and the biconcave lens L45. It consists of a lens.
  • the biconvex lens L41 has an aspheric object side surface.
  • the biconcave lens L45 has an aspheric image side surface.
  • the fifth lens group G5 is composed of a cemented lens which is arranged in order from the object side and includes a positive meniscus lens L51 having a convex surface directed toward the object side and a negative meniscus lens L52 having a concave surface directed toward the image side.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3.
  • the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved. This is done by moving to the object side, moving the third lens group G3 once to the image side, then moving to the object side, and moving the fourth lens group G4 to the object side.
  • the fifth lens group G5 and the aperture stop S are fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the 21st lens group G21 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the thirty-second lens group G32 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization coefficient is ⁇ 0.45 and the focal length is 24.82 mm in the wide-angle end state.
  • the amount of movement is -0.29 mm.
  • the image stabilization coefficient is ⁇ 0.50 and the focal length is 47.49 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 49 mm.
  • the image stabilization coefficient is ⁇ 0.58 and the focal length is 67.84 mm. 62 mm.
  • Table 3 shows the values of each item in the third example.
  • Surface numbers 1 to 40 in Table 3 correspond to the respective optical surfaces m1 to m40 shown in FIG.
  • variable magnification optical system ZL3 satisfies the conditional expressions (1) to (5).
  • FIG. 8 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) at the time of focusing on infinity of the variable magnification optical system ZL3 according to Example 3.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • 9A and 9B are lateral aberration diagrams when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL3 according to the third example, where FIG. 9A is a wide-angle end state and FIG. 9B is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL3 has good optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL4) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group having positive refractive power.
  • the sixth lens group G6 includes a seventh lens group G7 having a negative refractive power.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the biconcave lens L12 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape.
  • the second lens group G2 (focusing lens group) includes a biconvex lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a cemented lens of a biconvex lens L23 and a biconcave lens L24, and a biconvex lens L25. .
  • the third lens group G3 is composed of a biconvex lens L31.
  • the fourth lens group G4 (intermediate group) is fixed at a position orthogonal to the optical axis, and is arranged in order from the object side, a biconcave lens L41, a negative meniscus lens L42 with a concave surface facing the object side, Consists of a convex lens L43.
  • the fifth lens group G5 (anti-vibration lens group) includes a biconcave lens L51 arranged in order from the object side, and a positive meniscus lens L52 having a convex surface directed toward the object side.
  • the biconcave lens L51 has an aspheric object side surface.
  • the sixth lens group G6 includes a biconvex lens L61 arranged in order from the object side, a cemented lens of a negative meniscus lens L62 having a concave surface directed to the image side and a biconvex lens L63, and a cemented lens of the biconvex lens L64 and the biconcave lens L65. It consists of a lens.
  • the biconvex lens L61 has an aspheric object side surface.
  • the biconcave lens L65 has an aspheric image side surface.
  • the seventh lens group G7 is composed of a cemented lens which is arranged in order from the object side and includes a positive meniscus lens L71 having a convex surface directed toward the object side and a negative meniscus lens L72 having a concave surface directed toward the image side.
  • An aperture stop S is provided between the third lens group G3 and the fourth lens group G4.
  • the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved.
  • Move to the object side move the third lens group G3 to the object side, move the fourth lens group G4 once to the image side, then move to the object side, and move the fifth lens group G5 once to the image side Then, it is moved to the object side, and the sixth lens group G6 is moved to the object side.
  • the seventh lens group G7 and the aperture stop S are fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the second lens group G2 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the fifth lens group G5 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization coefficient in the wide-angle end state, is ⁇ 0.46 and the focal length is 25.49 mm. The amount of movement is -0.29 mm. In the intermediate focal length state, the image stabilization coefficient is ⁇ 0.53 and the focal length is 48.81 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 49 mm. In the telephoto end state, the image stabilization coefficient is ⁇ 0.61 and the focal length is 69.45 mm. 59 mm.
  • Table 4 shows the values of each item in the fourth example.
  • Surface numbers 1 to 40 in Table 4 correspond to the optical surfaces m1 to m40 shown in FIG.
  • variable magnification optical system ZL4 satisfies the conditional expressions (1) to (5).
  • FIG. 11 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) at the time of focusing on infinity of the variable magnification optical system ZL4 according to Example 4.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • FIG. 12 is a lateral aberration diagram when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL4 according to the fourth example, where (a) is a wide-angle end state, and (b) is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL4 has good optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL5) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group G1 having positive refractive power.
  • the second lens group G2 includes a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the biconcave lens L12 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape.
  • the second lens group G2 is composed of a twenty-first lens group G21 (focusing lens group) having positive refractive power and a twenty-second lens group G22 having positive refractive power, which are arranged in order from the object side.
  • the twenty-first lens group G21 includes a biconvex lens L21, a positive meniscus lens L22 having a convex surface directed toward the object side, a cemented lens of a biconvex lens L23 and a biconcave lens L24, and a biconvex lens L25 arranged in order from the object side.
  • the 22nd lens group G22 includes a biconvex lens L26.
  • the third lens group G3 includes an aperture stop S arranged in order from the object side, a thirty-first lens group G31 (intermediate group) having a negative refractive power and a fixed position in the direction orthogonal to the optical axis, and a negative refractive power. And a thirty-second lens group G32 (anti-vibration lens group).
  • the thirty-first lens group G31 includes a biconcave lens L31, a negative meniscus lens L32 having a concave surface directed toward the object side, and a biconvex lens L33 arranged in order from the object side.
  • the thirty-second lens group G32 includes a biconcave lens L34 arranged in order from the object side, and a positive meniscus lens L35 having a convex surface directed toward the object side.
  • the biconcave lens L34 has an aspheric object side surface.
  • the fourth lens group G4 includes a biconvex lens L41 arranged in order from the object side, a cemented lens of a negative meniscus lens L42 having a concave surface directed toward the image side, and a biconvex lens L43, and a cemented lens of the biconvex lens L44 and the biconcave lens L45. It consists of a lens.
  • the biconvex lens L41 has an aspheric object side surface.
  • the biconcave lens L45 has an aspheric image side surface.
  • the fifth lens group G5 is composed of a cemented lens of a biconvex lens L51 and a biconcave lens L52, which are arranged in order from the object side.
  • the first lens group G1 In zooming from the wide-angle end state to the telephoto end state, the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved. This is done by moving to the object side and moving the fourth lens group G4 to the object side.
  • the third lens group G3 and the fifth lens group G5 are fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the 21st lens group G21 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the thirty-second lens group G32 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization lens group VR for correcting rotational blur of 0.30 degrees is used.
  • the amount of movement is -0.28 mm.
  • the image stabilization coefficient is ⁇ 0.52 and the focal length is 47.50 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 48 mm.
  • the image stabilization coefficient is ⁇ 0.58, and the focal length is 67.85 mm. 62 mm.
  • Table 5 below shows the values of each item in the fifth example.
  • Surface numbers 1 to 40 in Table 5 correspond to the optical surfaces m1 to m40 shown in FIG.
  • variable magnification optical system ZL5 satisfies the conditional expressions (1) to (5).
  • FIG. 14 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) at the time of focusing on infinity of the variable magnification optical system ZL5 according to Example 5, (A) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state.
  • FIGS. 15A and 15B are lateral aberration diagrams when performing image blur correction at the time of focusing on infinity of the variable magnification optical system ZL5 according to Example 5, where FIG. 15A is a wide-angle end state, and FIG. 15B is an intermediate focus. The distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL5 has good optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL6) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group having positive refractive power.
  • the sixth lens group G6 includes a seventh lens group G7 having a positive refractive power.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the biconcave lens L12 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape.
  • the second lens group G2 (focusing lens group) includes a biconvex lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a cemented lens of a biconvex lens L23 and a biconcave lens L24, and a biconvex lens L25. .
  • the third lens group G3 is composed of a biconvex lens L31.
  • the fourth lens group G4 (intermediate group) has a fixed position in the direction orthogonal to the optical axis, and is arranged in order from the object side, with an aperture stop S, a biconcave lens L41, and a negative meniscus with a concave surface facing the object side. It consists of a lens L42 and a biconvex lens L43.
  • the fifth lens group G5 (anti-vibration lens group) includes a biconcave lens L51 arranged in order from the object side, and a positive meniscus lens L52 having a convex surface directed toward the object side.
  • the biconcave lens L51 has an aspheric object side surface.
  • the sixth lens group G6 includes a biconvex lens L61 arranged in order from the object side, a cemented lens of a negative meniscus lens L62 having a concave surface directed to the image side and a biconvex lens L63, and a cemented lens of the biconvex lens L64 and the biconcave lens L65. It consists of a lens.
  • the biconvex lens L61 has an aspheric object side surface.
  • the biconcave lens L65 has an aspheric image side surface.
  • the seventh lens group G7 is composed of a cemented lens of a biconvex lens L71 and a biconcave lens L72 arranged in order from the object side.
  • the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved.
  • Move to the object side move the third lens group G3 to the object side, move the fourth lens group G4 to the image side, move the fifth lens group G5 once to the image side, and then move to the object side
  • the sixth lens group G6 is moved to the object side.
  • the seventh lens group G7 is fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the second lens group G2 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the fifth lens group G5 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization coefficient in the wide-angle end state, is ⁇ 0.46 and the focal length is 24.73 mm. The amount of movement is -0.28 mm. In the intermediate focal length state, the image stabilization coefficient is ⁇ 0.53 and the focal length is 47.48 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 48 mm. In the telephoto end state, the image stabilization coefficient is ⁇ 0.58 and the focal length is 67.41 mm. 61 mm.
  • Table 6 shows the values of each item in the sixth example.
  • Surface numbers 1 to 40 in Table 6 correspond to the optical surfaces m1 to m40 shown in FIG.
  • Table 6 shows that the variable magnification optical system ZL6 according to the sixth example satisfies the conditional expressions (1) to (5).
  • FIG. 17 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) when the variable magnification optical system ZL6 according to Example 6 is focused at infinity.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • 18A and 18B are lateral aberration diagrams when performing image blur correction at the time of focusing on infinity of the variable magnification optical system ZL6 according to the sixth example.
  • FIG. 18A is a wide-angle end state
  • FIG. 18B is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL6 has excellent optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL7) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group having positive refractive power.
  • the second lens group G2 includes a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the biconcave lens L12 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape.
  • the second lens group G2 is composed of a twenty-first lens group G21 (focusing lens group) having positive refractive power and a twenty-second lens group G22 having positive refractive power, which are arranged in order from the object side.
  • the 21st lens group G21 includes a positive meniscus lens L21 having a convex surface directed toward the object side, a biconvex lens L22, a biconcave lens L23, and a biconvex lens L24, which are arranged in order from the object side.
  • the twenty-second lens group G22 includes a biconvex lens L25.
  • the third lens group G3 includes an aperture stop S arranged in order from the object side, a thirty-first lens group G31 (intermediate group) having a negative refractive power and a fixed position in the direction orthogonal to the optical axis, and a negative refractive power. And a thirty-second lens group G32 (anti-vibration lens group).
  • the thirty-first lens group G31 includes a biconcave lens L31, a negative meniscus lens L32 having a concave surface directed toward the object side, and a biconvex lens L33 arranged in order from the object side.
  • the thirty-second lens group G32 includes a biconcave lens L34 arranged in order from the object side, and a positive meniscus lens L35 having a convex surface directed toward the object side.
  • the biconcave lens L34 has an aspheric object side surface.
  • the fourth lens group G4 is composed of a biconvex lens L41, a biconvex lens L42, and a cemented lens of a biconvex lens L43 and a biconcave lens L44, which are arranged in order from the object side.
  • the biconvex lens L41 has an aspheric object side surface.
  • the fifth lens group G5 is composed of a cemented lens composed of a negative meniscus lens L51 having a concave surface facing the image side and a positive meniscus lens L52 having a convex surface facing the object side, which are arranged in order from the object side.
  • the first lens group G1 In zooming from the wide-angle end state to the telephoto end state, the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved. This is done by moving to the object side and moving the fourth lens group G4 to the object side.
  • the third lens group G3 and the fifth lens group G5 are fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the 21st lens group G21 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the thirty-second lens group G32 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization coefficient in the wide-angle end state, is ⁇ 0.46 and the focal length is 24.77 mm. The amount of movement is -0.29 mm. In the intermediate focal length state, the image stabilization coefficient is ⁇ 0.52 and the focal length is 47.50 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 48 mm. In the telephoto end state, the image stabilization coefficient is ⁇ 0.58 and the focal length is 67.86 mm. 62 mm.
  • Table 7 shows the values of each item in the seventh example.
  • Surface numbers 1 to 38 in Table 7 correspond to the respective optical surfaces m1 to m38 shown in FIG.
  • FIG. 20 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) at the time of focusing on infinity of the variable magnification optical system ZL7 according to Example 7, (A) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state.
  • FIG. 21 is a lateral aberration diagram when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL7 according to Example 7, where (a) is a wide-angle end state and (b) is an intermediate focus. The distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL7 according to the seventh example has excellent optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL8) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group having positive refractive power.
  • the second lens group G2 includes a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the biconcave lens L12 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape.
  • the second lens group G2 includes a flare-cut stop FC, a twenty-first lens group G21 (focusing lens group) having positive refractive power, and a twenty-second lens group G22 having positive refractive power, which are arranged in order from the object side. It consists of.
  • the 21st lens group G21 includes a positive meniscus lens L21 having a convex surface directed toward the object side, a biconvex lens L22, a biconcave lens L23, and a biconvex lens L24, which are arranged in order from the object side.
  • the twenty-second lens group G22 includes a biconvex lens L25.
  • the third lens group G3 includes an aperture stop S arranged in order from the object side, a thirty-first lens group G31 (intermediate group) having a negative refractive power and a fixed position in the direction orthogonal to the optical axis, and a negative refractive power. And a thirty-second lens group G32 (anti-vibration lens group).
  • the thirty-first lens group G31 includes a biconcave lens L31, a negative meniscus lens L32 having a concave surface directed toward the object side, and a biconvex lens L33 arranged in order from the object side.
  • the thirty-second lens group G32 includes a biconcave lens L34 arranged in order from the object side, and a positive meniscus lens L35 having a convex surface directed toward the object side.
  • the biconcave lens L34 has an aspheric object side surface.
  • the fourth lens group G4 is composed of a positive meniscus lens L41 having a convex surface directed toward the image side, a biconvex lens L42, and a cemented lens of a biconvex lens L43 and a biconcave lens L44, which are arranged in order from the object side.
  • the positive meniscus lens L41 has an aspheric object side surface.
  • the fifth lens group G5 is composed of a cemented lens composed of a negative meniscus lens L51 having a concave surface facing the image side and a positive meniscus lens L52 having a convex surface facing the object side, which are arranged in order from the object side.
  • the first lens group G1 In zooming from the wide-angle end state to the telephoto end state, the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved. This is done by moving to the object side and moving the fourth lens group G4 to the object side.
  • the third lens group G3 and the fifth lens group G5 are fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the 21st lens group G21 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the thirty-second lens group G32 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization lens group VR for correcting rotational blur of 0.30 degrees is used.
  • the amount of movement is -0.26 mm.
  • the image stabilization coefficient is ⁇ 0.58 and the focal length is 47.50 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. .43 mm.
  • the image stabilization coefficient is ⁇ 0.66 and the focal length is 67.85 mm. 54 mm.
  • Table 8 shows the values of each item in the eighth example.
  • Surface numbers 1 to 39 in Table 8 correspond to the optical surfaces m1 to m39 shown in FIG.
  • variable magnification optical system ZL8 satisfies the conditional expressions (1) to (5).
  • FIG. 23 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) at the time of focusing on infinity of the variable magnification optical system ZL8 according to Example 8.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • FIG. 24 is a lateral aberration diagram when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL8 according to Example 8, where (a) is a wide-angle end state, and (b) is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL8 has good optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL9) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group having positive refractive power.
  • the second lens group G2 includes a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the second lens group G2 is composed of a twenty-first lens group G21 (focusing lens group) having positive refractive power and a twenty-second lens group G22 having positive refractive power, which are arranged in order from the object side.
  • the twenty-first lens group G21 includes a biconvex lens L21, a positive meniscus lens L22 having a convex surface directed toward the object side, a cemented lens of a biconvex lens L23 and a biconcave lens L24, and a biconvex lens L25 arranged in order from the object side.
  • the 22nd lens group G22 is composed of a cemented lens which is arranged in order from the object side and includes a biconvex lens L26 and a negative meniscus lens L27 having a concave surface directed toward the object side.
  • the third lens group G3 includes a thirty-first lens group G31 (intermediate group) that is arranged in order from the object side and has a negative refractive power and whose position in the direction orthogonal to the optical axis is fixed, and a thirty-second lens that has a negative refractive power. It consists of a group G32 (anti-vibration lens group).
  • the thirty-first lens group G31 includes a biconcave lens L31 arranged in order from the object side, a negative meniscus lens L32 having a concave surface facing the object side, and a positive meniscus lens L33 having a convex surface facing the image side.
  • the thirty-second lens group G32 is composed of a biconcave lens L34 and a biconvex lens L35 arranged in this order from the object side.
  • the biconcave lens L34 is aspheric on both sides.
  • the fourth lens group G4 is composed of a biconvex lens L41, a biconvex lens L42, and a cemented lens of a biconvex lens L43 and a biconcave lens L44, which are arranged in order from the object side.
  • the biconvex lens L41 has an aspheric object side surface.
  • the biconcave lens L44 has an aspheric image side surface.
  • the fifth lens group G5 is composed of a cemented lens of a biconvex lens L51 and a biconcave lens L52, which are arranged in order from the object side.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3.
  • the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved. This is done by moving to the object side, moving the third lens group G3 once to the image side, then moving to the object side, and moving the fourth lens group G4 to the object side.
  • the fifth lens group G5 and the aperture stop S are fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the 21st lens group G21 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the thirty-second lens group G32 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization lens group VR for correcting the rotational blur of 0.30 degrees is used.
  • the amount of movement is -0.25 mm.
  • the image stabilization coefficient is ⁇ 0.57 and the focal length is 47.50 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. .43 mm.
  • the image stabilization coefficient is ⁇ 0.66 and the focal length is 67.85 mm. 54 mm.
  • Table 9 shows the values of each item in the ninth example.
  • Surface numbers 1 to 39 in Table 9 correspond to the optical surfaces m1 to m39 shown in FIG.
  • Table 9 shows that the variable magnification optical system ZL9 according to Example 9 satisfies the conditional expressions (1) to (5).
  • FIG. 26 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) when the zoom optical system ZL9 according to Example 9 is in focus at infinity.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • 27A and 27B are lateral aberration diagrams when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL9 according to the ninth example.
  • FIG. 27A is a wide-angle end state
  • FIG. 27B is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL9 has good optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • the variable magnification optical system ZL (ZL10) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group G1 having positive refractive power.
  • the second lens group G2 includes a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a concave surface facing the image side, a cemented lens of a positive meniscus lens L12 having a convex surface facing the object side, and a biconcave lens L13, and the object side. And a positive meniscus lens L14 having a convex surface.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the second lens group G2 is composed of a twenty-first lens group G21 (focusing lens group) having positive refractive power and a twenty-second lens group G22 having positive refractive power, which are arranged in order from the object side.
  • the twenty-first lens group G21 includes a positive meniscus lens L21 having a convex surface directed toward the object side, a positive meniscus lens L22 having a convex surface directed toward the object side, and a biconvex lens L23 and a biconcave lens L24, which are arranged in order from the object side. It consists of a lens and a biconvex lens L25.
  • the 22nd lens group G22 includes a biconvex lens L26.
  • the positive meniscus lens L22 has an aspheric object side surface.
  • the third lens group G3 includes an aperture stop S arranged in order from the object side, a thirty-first lens group G31 (intermediate group) having a negative refractive power and a fixed position in the direction orthogonal to the optical axis, and a negative refractive power. And a thirty-second lens group G32 (anti-vibration lens group).
  • the thirty-first lens group G31 includes a biconcave lens L31 arranged in order from the object side, and a positive meniscus lens L32 having a convex surface directed toward the object side.
  • the thirty-second lens group G32 includes a biconcave lens L33 arranged in order from the object side, and a positive meniscus lens L34 having a convex surface directed toward the object side.
  • the biconcave lens L33 has an aspheric object side surface.
  • the fourth lens group G4 includes a biconvex lens L41 arranged in order from the object side, a cemented lens of a negative meniscus lens L42 having a concave surface directed toward the image side, and a biconvex lens L43, and a cemented lens of the biconvex lens L44 and the biconcave lens L45. It consists of a lens.
  • the biconvex lens L41 has an aspheric object side surface.
  • the biconcave lens L45 has an aspheric image side surface.
  • the fifth lens group G5 is composed of a cemented lens which is arranged in order from the object side and includes a positive meniscus lens L51 having a convex surface directed toward the object side and a negative meniscus lens L52 having a concave surface directed toward the image side.
  • the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved. This is done by moving to the object side, moving the third lens group G3 once to the image side, then moving to the object side, and moving the fourth lens group G4 to the object side.
  • the fifth lens group G5 is fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the 21st lens group G21 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the thirty-second lens group G32 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization coefficient in the wide-angle end state, is ⁇ 0.50 and the focal length is 24.77 mm. Therefore, the image stabilization lens group VR for correcting the rotational blur of 0.30 degrees is used.
  • the amount of movement is -0.26 mm.
  • the image stabilization coefficient In the intermediate focal length state, the image stabilization coefficient is ⁇ 0.57 and the focal length is 47.50 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 44 mm.
  • the image stabilization coefficient In the telephoto end state, the image stabilization coefficient is ⁇ 0.66, and the focal length is 67.84 mm. 54 mm.
  • Table 10 shows the values of each item in the tenth embodiment.
  • Surface numbers 1 to 38 in Table 10 correspond to the optical surfaces m1 to m38 shown in FIG.
  • variable magnification optical system ZL10 satisfies the conditional expressions (1) to (5).
  • FIG. 29 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) when the variable magnification optical system ZL10 according to Example 10 is focused at infinity.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • 30A and 30B are lateral aberration diagrams when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL10 according to the tenth example.
  • FIG. 30A is a wide-angle end state
  • FIG. 30B is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL10 has good optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL11) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group G1 having positive refractive power.
  • the second lens group G2 includes a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 which is arranged in order from the object side, has a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, a positive meniscus lens L13 having a convex surface facing the object side, and a concave surface facing the image side. And a cemented lens with the negative meniscus lens L14.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the second lens group G2 is composed of a twenty-first lens group G21 (focusing lens group) having positive refractive power and a twenty-second lens group G22 having positive refractive power, which are arranged in order from the object side.
  • the twenty-first lens group G21 includes a positive meniscus lens L21 having a convex surface directed toward the object side, a positive meniscus lens L22 having a convex surface directed toward the object side, and a negative meniscus lens having a concave surface directed toward the image side. L23 and a biconvex lens L24.
  • the 22nd lens group G22 is composed of a cemented lens composed of a negative meniscus lens L25 and a biconvex lens L26, which are arranged in order from the object side and have a concave surface directed toward the image side.
  • the positive meniscus lens L22 has an aspheric object side surface.
  • the third lens group G3 includes an aperture stop S arranged in order from the object side, a thirty-first lens group G31 (intermediate group) having a negative refractive power and a fixed position in the direction orthogonal to the optical axis, and a negative refractive power. And a thirty-second lens group G32 (anti-vibration lens group).
  • the thirty-first lens group G31 includes a biconcave lens L31 arranged in order from the object side, and a positive meniscus lens L32 having a convex surface directed toward the object side.
  • the thirty-second lens group G32 includes a biconcave lens L33 arranged in order from the object side, and a positive meniscus lens L34 having a convex surface directed toward the object side.
  • the biconcave lens L33 has an aspheric object side surface.
  • the fourth lens group G4 is composed of a biconvex lens L41, a positive meniscus lens L42 having a convex surface facing the image side, a negative meniscus lens L43 having a concave surface facing the image side, and a biconvex lens L44 arranged in order from the object side. It consists of a lens.
  • the biconvex lens L44 has an aspheric image side surface.
  • the fifth lens group G5 is composed of a cemented lens which is arranged in order from the object side and includes a positive meniscus lens L51 having a convex surface directed toward the object side and a negative meniscus lens L52 having a concave surface directed toward the image side.
  • the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved. This is done by moving to the object side, moving the third lens group G3 once to the image side, then moving to the object side, and moving the fourth lens group G4 to the object side.
  • the fifth lens group G5 is fixed at the time of zooming.
  • Focusing from infinity to a close object is performed by moving the 21st lens group G21 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the thirty-second lens group G32 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization coefficient in the wide-angle end state, is ⁇ 0.54 and the focal length is 24.77 mm. Therefore, the image stabilization lens group VR for correcting the rotational blur of 0.30 degrees is used.
  • the amount of movement is -0.24 mm.
  • the image stabilization coefficient In the intermediate focal length state, the image stabilization coefficient is ⁇ 0.61 and the focal length is 47.53 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. .41 mm.
  • the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 51 mm.
  • Table 11 shows the values of each item in the eleventh embodiment.
  • Surface numbers 1 to 37 in Table 11 correspond to the optical surfaces m1 to m37 shown in FIG.
  • variable magnification optical system ZL11 satisfies the conditional expressions (1) to (5).
  • FIG. 32 is a diagram of various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) at the time of focusing on infinity of the variable magnification optical system ZL11 according to the eleventh example.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • FIG. 33 is a lateral aberration diagram when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL11 according to Example 11, where (a) is a wide-angle end state and (b) is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL11 has excellent optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system ZL (ZL12) includes a first lens group G1 having negative refractive power arranged in order from the object side, and a first lens group G1 having positive refractive power.
  • the sixth lens group G6 includes a seventh lens group G7 having a positive refractive power.
  • the first lens group G1 which is arranged in order from the object side, has a negative meniscus lens L11 having a concave surface facing the image side, a biconcave lens L12, a positive meniscus lens L13 having a convex surface facing the object side, and a concave surface facing the image side. And a cemented lens with the negative meniscus lens L14.
  • the negative meniscus lens L11 has an aspheric image side surface.
  • the second lens group G2 (focusing lens group) includes a positive meniscus lens L21 having a convex surface facing the object side, a positive meniscus lens L22 having a convex surface facing the object side, and a negative meniscus lens L23 having a concave surface facing the image side. And a biconvex lens L24.
  • the positive meniscus lens L22 has an aspheric object side surface.
  • the third lens group G3 is composed of a cemented lens composed of a negative meniscus lens L31 and a biconvex lens L32 arranged in order from the object side and having a concave surface directed toward the image side.
  • the fourth lens group G4 (intermediate group) has a fixed position in the direction orthogonal to the optical axis, and is arranged in order from the object side, with an aperture stop S, a biconcave lens L41, and a positive meniscus with a convex surface facing the object side. Lens L42.
  • the fifth lens group G5 (anti-vibration lens group) includes a biconcave lens L51 arranged in order from the object side, and a positive meniscus lens L52 having a convex surface directed toward the object side.
  • the biconcave lens L51 has an aspheric object side surface.
  • the sixth lens group G6 is composed of a biconvex lens L61, a positive meniscus lens L62 having a convex surface facing the image side, a negative meniscus lens L63 having a concave surface facing the image side, and a biconvex lens L64, which are arranged in order from the object side. It consists of a lens.
  • the biconcave lens L64 has an aspheric image side surface.
  • the seventh lens group G7 is composed of a cemented lens which is arranged in order from the object side and includes a positive meniscus lens L71 having a convex surface directed toward the object side and a negative meniscus lens L72 having a concave surface directed toward the image side.
  • the first lens group G1 is once moved to the image side and then moved to the object side so that the distance between the lens groups changes, and the second lens group G2 is moved.
  • Move to the object side move the third lens group G3 to the object side, move the fourth lens group G4 once to the image side, then move to the object side, and move the fifth lens group G5 once to the image side.
  • the object is moved to the object side
  • the sixth lens group G6 is moved to the object side
  • the seventh lens group G7 is moved to the object side.
  • Focusing from infinity to a close object is performed by moving the second lens group G2 to the image side as a focusing lens group.
  • image blur correction on the image plane I is performed by moving the fifth lens group G5 as a vibration-proof lens group VR so as to have a component orthogonal to the optical axis.
  • the image stabilization coefficient ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction
  • K rotational blurring at an angle ⁇ is used.
  • the image stabilization coefficient in the wide-angle end state, is ⁇ 0.54 and the focal length is 24.77 mm. Therefore, the image stabilization lens group VR for correcting the rotational blur of 0.30 degrees is used.
  • the amount of movement is -0.24 mm.
  • the image stabilization coefficient In the intermediate focal length state, the image stabilization coefficient is ⁇ 0.61 and the focal length is 47.33 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. .41 mm.
  • the image stabilization coefficient In the telephoto end state, the image stabilization coefficient is ⁇ 0.72 and the focal length is 67.34 mm. Therefore, the movement amount of the image stabilization lens group VR for correcting the rotation blur of 0.30 degrees is ⁇ 0. 50 mm.
  • Table 12 below shows values of various specifications in the twelfth embodiment.
  • Surface numbers 1 to 37 in Table 12 correspond to the respective optical surfaces m1 to m37 shown in FIG.
  • variable magnification optical system ZL12 satisfies the conditional expressions (1) to (5).
  • FIG. 35 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, lateral chromatic aberration diagram, and lateral aberration diagram) of the zoom optical system ZL12 according to Example 12 at the time of focusing on infinity.
  • (A) shows a wide-angle end state
  • (b) shows an intermediate focal length state
  • (c) shows a telephoto end state.
  • FIG. 36 is a lateral aberration diagram when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL12 according to Example 12, where (a) is a wide-angle end state and (b) is an intermediate focus.
  • the distance state, (c) shows the telephoto end state.
  • variable magnification optical system ZL12 according to the twelfth example has good optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that high image forming performance is achieved even during image blur correction.
  • variable magnification optical system having a bright F value of about F2.8 to F3.5, a wide field angle of about 50 or more at a half field angle, and various aberrations being corrected well. Can be realized.
  • variable magnification optical system ZL As numerical examples of the variable magnification optical system ZL, the four-group, five-group, and seven-group configurations have been shown. Is possible. Specifically, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. A configuration in which a lens group having a positive or negative refractive power is added between the first lens group and the second lens group may be used.
  • the lens group whose position in the orthogonal direction is fixed may have a configuration in which an interval between the lens unit VR and the image stabilizing lens group VR may be changed during zooming.
  • Examples 1 to 3, 5, 7 to 11 shows the fourth lens group G4, and in Examples 4, 6, and 12, the example of the sixth lens group G6 is shown, but this is not restrictive.
  • the lens interval included in the image side lens unit RP is fixed at the time of zooming.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes at the time of zooming or focusing.
  • the intermediate group is a lens group that is disposed on the image side of the second lens group and is disposed on the object side of the image stabilizing lens group and at a position facing the image stabilizing lens group.
  • An aperture stop may be disposed on the object side of the intermediate group and at a position facing the intermediate group.
  • the lenses constituting the intermediate group may be integrated in the position in the optical axis direction at the time of zooming, or may be divided into two or more lens groups to change the interval at the time of zooming. Further, at least a part of the lenses of the intermediate group may be moved (or fixed) in the optical axis direction integrally with the image stabilizing lens group at the time of zooming.
  • variable magnification optical system ZL in order to focus from infinity to a short distance object, a part of the lens group, one entire lens group, or a plurality of lens groups is moved in the optical axis direction as a focusing lens group.
  • a configuration may be adopted.
  • such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor (for example, an ultrasonic motor).
  • an autofocus motor for example, an ultrasonic motor.
  • variable magnification optical system ZL either one of the entire lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or rotated (oscillated) in an in-plane direction including the optical axis.
  • the image stabilizing lens group VR may be configured to correct image blur caused by camera shake or the like.
  • at least a part of the optical system disposed on the image side from the intermediate group Gn having a negative refractive power disposed on the image side from the aperture stop S is the anti-vibration lens group VR.
  • the third lens group G3 is the anti-vibration lens group VR.
  • the fifth lens group G5 is the anti-vibration lens group VR.
  • a lens whose position in the direction orthogonal to the optical axis is fixed on the image side of the image stabilizing lens group VR may be moved or fixed integrally with the image stabilizing lens group VR at the time of zooming.
  • the lens surface may be formed as a spherical surface, a flat surface, or an aspherical surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented. Further, even when the image plane is deviated, there is little deterioration in drawing performance.
  • the lens surface is an aspheric surface
  • the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • variable magnification optical system ZL it is preferable to form an aspherical surface on a lens of a medium having a refractive index nd of d-line smaller than 70. It is preferable that the lens of the medium having a refractive index nd smaller than 70 in the d-line be arranged in the lens group having the strongest positive refractive power among the lens groups arranged on the image side from the image stabilizing lens group VR. is there.
  • the lens of the medium having a refractive index nd of less than 70 for the d-line is the most object side or the most object of the lens group having the strongest positive refracting power among the lens groups arranged on the image side from the image stabilizing lens group VR.
  • the aspherical surface of the lens of the medium having a refractive index nd smaller than 70 at the d-line is the most object plane of the lens group having the strongest positive refractive power among the lens groups arranged on the image side from the image stabilizing lens group VR. More preferably, it is possible.
  • the aperture stop S can be preferably disposed between the second lens group and the intermediate group Gn as described above, but without providing a member as an aperture stop.
  • the role of the lens may be substituted.
  • each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve good optical performance with high contrast.
  • the zoom optical system ZL has a zoom ratio of about 2.0 to 3.5 times.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Nonlinear Science (AREA)

Abstract

 変倍光学系は、負の屈折力を有する第1レンズ群(G1)と、正の屈折力を有する第2レンズ群(G2)とを有し、第2レンズ群(G2)より像側に配置された中間群(Gn)を有し、中間群(Gn)より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群(VR)を有し、少なくとも、第1レンズ群(G1)と第2レンズ群(G2)との間隔と、第2レンズ群(G2)と中間群(Gn)との間隔とを変化させることにより変倍を行い、次の条件式(1)を満足する。 1.500 < β(Gn)t < 100.000 …(1) 但し、 β(Gn)t:望遠端状態における中間群(Gn)の結像倍率。

Description

変倍光学系、光学機器及び変倍光学系の製造方法
 本発明は、変倍光学系、光学機器及び変倍光学系の製造方法に関する。
 本願は、2015年1月30日に出願された日本国特許出願2015-017917号に基づき優先権を主張し、その内容をここに援用する。
 従来より、手振れ補正機構を備えた広画角の変倍光学系が提案されている(例えば、特許文献1を参照)。
特開平11-231220号公報
 近年、このような変倍光学系では、良好な光学性能を備えつつ、よりF値の明るい光学系であることが求められている。
 本発明の一態様に係る変倍光学系は、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、前記第2レンズ群より像側に配置された中間群を有し、前記中間群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記中間群との間隔とを変化させることにより変倍を行い、以下の条件式を満足する。
 1.500 < β(Gn)t < 100.000
 但し、
 β(Gn)t:望遠端状態における前記中間群の結像倍率。
 本発明の別の一態様に係る変倍光学系は、物体側から順に並んだ、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、前記第2レンズ群より像側に配置され、光軸と直交方向の位置を固定されており負の屈折力を有する第nレンズ群を有し、前記第nレンズ群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記第nレンズ群との間隔とを変化させることにより変倍を行い、次の条件式を満足する。
 1.500 < β(Gn)t < 100.000
 但し、
 β(Gn)t:望遠端状態における前記第nレンズ群の結像倍率。
 本発明の別の一態様に係る光学機器は、上述の変倍光学系を搭載する。
 本発明の別の一態様に係る変倍光学系の製造方法は、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有する変倍光学系の製造方法であって、前記第2レンズ群より像側に配置された中間群を有し、前記中間群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記中間群との間隔とを変化させることにより変倍を行い、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 1.500 < β(Gn)t < 100.000
 但し、
 β(Gn)t:望遠端状態における前記中間群の結像倍率。
 本発明の別の一態様に係る変倍光学系の製造方法は、物体側から順に並んだ、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有する変倍光学系の製造方法であって、前記第2レンズ群より像側に配置され、光軸と直交方向の位置を固定されており負の屈折力を有する第nレンズ群を有し、前記第nレンズ群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記第nレンズ群との間隔とを変化させることにより変倍を行い、次の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 1.500 < β(Gn)t < 100.000
 但し、
 β(Gn)t:望遠端状態における前記第nレンズ群の結像倍率。
(W)、(M)、及び(T)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 変倍光学系を搭載したカメラの構成の一例を示す図である。 変倍光学系の製造方法の一例の概略を示す図である。
 以下、実施形態について、図面を参照しながら説明する。図1は、変倍光学系ZLの構成の一例を示す。他の例において、レンズ群の数、各レンズ群におけるレンズ構成等は適宜変更可能である。
 一実施形態において、変倍光学系ZLは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有し、第2レンズ群G2より像側に配置された中間群(第nレンズ群)Gnとを有し、中間群Gnより像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群VRを有し、少なくとも、第1レンズ群G1と第2レンズ群G2との間隔と、第2レンズ群G2と中間群Gnとの間隔とを変化させることにより変倍を行う。一例において、中間群Gnは、光軸と直交方向の位置を固定されており負の屈折力を有することが可能である。
 図1に示す第1実施例では、光軸と直交方向の位置を固定され負の屈折力を有する中間群Gnと、中間群の像側に配置された防振レンズ群VRとして、第31レンズ群G31と、第32レンズ群G32とがそれぞれ該当する。また、後述の第2、3、5、7~11実施例では、中間群Gnと、中間群の像側に配置された防振レンズ群VRとして、第31レンズ群G31と、第32レンズ群G32とが該当する。第4、6、12実施例では、中間群Gnと、中間群の像側に配置された防振レンズ群VRとして、第4レンズ群G4と、第5レンズ群G5とが該当する。
 なお、防振レンズ群VRは、負の屈折力を有することが好ましくは可能である。
 変倍光学系ZLは、上記のように、負正負正もしくは負正負正正のレンズ群を有し、少なくともこれらの群の間隔が変化することにより、広画角の変倍光学系を実現することができる。また、負の中間群Gnと、中間群の像側に(負の)防振レンズ群VRとを有し、防振レンズ群VRを光軸と直交する方向の成分を持つように移動させて像ブレ補正を行うことにより、像ブレ補正時の偏心コマ収差の発生及び片ボケの発生を抑え、良好な結像性能を実現することができる。
 変倍光学系ZLは、次の条件式(1)を満足する。
 1.500 < β(Gn)t < 100.000 …(1)
 但し、
 β(Gn)t:望遠端状態における中間群Gnの結像倍率。
 条件式(1)は、第1レンズ群G1と第2レンズ群G2とにより収束した入射光を、中間群Gnで光軸とほぼ平行な光線(ほぼアフォーカルな光線)に戻し、防振レンズ群VRへと導くことにより、防振性能を向上させるための条件式である。条件式(1)を満足することにより、F2.8~F3.5程度の明るいF値を確保し、球面収差をはじめとする諸収差を良好に補正することができる。
 条件式(1)の上限値を上回ると、中間群Gnのパワーが大きくなりすぎ、中間群Gnによる球面収差などの諸収差に対する補正が不十分となり、3倍程度以上のズーム比を得るのが困難となる。
 効果を確実なものにするために、条件式(1)の上限値を50.000とすることが好ましくは可能である。効果をより確実なものにするために、条件式(1)の上限値を25.000とすることが好ましくは可能である。
 条件式(1)の下限値を下回ると、防振レンズ群VRに対して強い収束光が入ることになり、像ブレ補正時の望遠端状態における偏心コマ収差の発生や、広角端状態における片ボケの発生を抑えることが困難となる。その結果、F値をF2.8~F3.5程度に明るくするのが困難となる。あるいは、球面収差の発生が甚大となり、良好な結像性能の実現が難しい可能性がある。
 効果を確実なものにするために、条件式(1)の下限値を2.000とすることが好ましくは可能である。効果をより確実なものにするために、条件式(1)の下限値を2.500とすることが好ましくは可能である。
 変倍光学系ZLにおいて、次の条件式(2)を満足することが好ましくは可能である。
 1.360 < -f(Gn~G(VR))w/fw < 5.000…(2)
 但し、
 f(Gn~G(VR))w:広角端状態における中間群Gnから防振レンズ群VRまでの合成焦点距離、
 fw:広角端状態における全系の焦点距離。
 条件式(2)は、中間群Gnと防振レンズ群VRの広角端状態における合成焦点距離を適切に設定することにより、3倍程度の変倍比と良好な光学性能を両立させるための条件式である。条件式(2)を満足することにより、F2.8~F3.5程度の明るいF値を確保し、球面収差をはじめとする諸収差を良好に補正することができる。
 条件式(2)の上限値を上回ると、中間群Gnと防振レンズ群VRの合成の屈折力が小さくなりすぎ、全系で3倍程度の変倍比を確保することが困難となる。その結果、第2レンズ群G2やほかの群が変倍を担う必要が生じ、結果として球面収差やコマ収差の補正が不十分となる。
 効果を確実なものとするために、条件式(2)の上限値を4.000とすることが好ましくは可能である。効果をより確実なものとするために、条件式(2)の上限値を3.000とすることが好ましくは可能である。
 条件式(2)の下限値を下回ると、中間群Gnと防振レンズ群VRの合成の屈折力が大きくなりすぎ、球面収差やコマ収差の補正が困難となる。その結果、F値をF2.8~F3.5程度に明るくしつつ、良好な結像性能を実現するのが難しい。
 効果を確実なものとするために、条件式(2)の下限値を1.400とすることが好ましくは可能である。効果をより確実なものとするために、条件式(2)の下限値を1.450とすることが好ましくは可能である。
 変倍光学系ZLは、防振レンズ群VRより像側に配置された正の屈折力を有するレンズ群のうち、正の屈折力が最も強い像側レンズ群RPを有し、像側レンズ群RPと防振レンズ群VRとの間隔は変倍の際に変化し、次の条件式(3)を満足することが好ましくは可能である。
 0.400 < f(RP)/f(FP) < 2.000…(3)
 但し、
 f(RP):像側レンズ群RPの焦点距離、
 f(FP):第1レンズ群G1より像面側に配置され、中間群Gnより物体側に配置されたレンズの広角端状態における合成焦点距離。
 条件式(3)は、像側レンズ群RPの屈折力を適切に設定することにより、3倍程度の変倍比と良好な光学性能を両立させるための条件式である。条件式(3)を満足することにより、F2.8~F3.5程度の明るいF値を確保し、球面収差をはじめとする諸収差を良好に補正することができる。
 条件式(3)の上限値を上回ると、像側レンズ群RPで変倍させることが不十分となり、全系で3倍程度の変倍比を確保することが困難となる。その結果、第2レンズ群G2やほかの群が変倍を担う必要が生じ、結果として球面収差やコマ収差の補正が不十分となる。
 効果を確実なものとするために、条件式(3)の上限値を1.800とすることが好ましくは可能である。効果をより確実なものとするために、条件式(3)の上限値を1.700とすることが好ましくは可能である。
 条件式(3)の下限値を下回ると、像側レンズ群RPの屈折力が大きくなりすぎ、球面収差やコマ収差の補正が困難となる。その結果、F値をF2.8~F3.5程度に明るくしつつ、良好な結像性能を実現するのが難しい。
 効果を確実なものとするために、条件式(3)の下限値を0.500とすることが好ましくは可能である。効果をより確実なものとするために、条件式(3)の下限値を0.600とすることが好ましくは可能である。
 変倍光学系ZLにおいて、中間群Gnは、正レンズ成分と、負レンズ成分を、それぞれ1つ以上有することが好ましくは可能である。
 「レンズ成分」とは、単レンズ又は接合レンズをいう。
 この構成により、中間群Gnで球面収差、コマ収差を良好に補正することができ、防振性能の向上に寄与することができる。なお、中間群Gnがどちらかのレンズ成分のみで構成された場合、中間群Gnでの球面収差、コマ収差補正が不十分となり、防振レンズ群VRにてそれらの収差補正を担わせる必要が発生する。その結果、像ブレ補正時に発生する偏心コマ収差、あるいは片ボケの発生が増大し、像ブレ補正時に良好な結像性能を維持することが難しい。
 効果を確実にするために、中間群Gnは、少なくとも負レンズ成分を2つ、正レンズ成分を1つ以上有することがより好ましくは可能である。
 変倍光学系ZLにおいて、第2レンズ群G2は、少なくとも4つ以上のレンズ成分を有することが好ましくは可能である。
 この構成により、第2レンズ群G2で球面収差、コマ収差を良好に補正することができ、防振性能の向上に寄与することができる。なお、第2レンズ群G2が3つ以下のレンズ成分で構成された場合、第2レンズ群G2での球面収差、コマ収差補正が不十分となる結果、中間群Gnへそれらの収差補正を担わせる必要が発生する。その結果、像ブレ補正時に発生する偏心コマ収差、あるいは片ボケの発生が増大し、像ブレ補正時に良好な結像性能を維持することが難しい。
 効果を確実にするために、第2レンズ群G2は、少なくとも5つ以上のレンズ成分を有することが好ましくは可能である。
 変倍光学系ZLにおいて、第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21と、正の屈折力を有する第22レンズ群G22とからなり、第21レンズ群G21を合焦レンズ群として像側に移動させることにより無限遠から近距離物体への合焦を行うことが好ましくは可能である。
 この構成により、合焦時に移動させるレンズ群を小型軽量にすることができ、レンズ全系の小型化と、オートフォーカス時の合焦速度の高速化を実現することができる。
 変倍光学系ZLは、次の条件式(4)を満足することが好ましくは可能である。
 10.00° <ωt< 30.00° …(4)
 但し、
 ωt:望遠端状態における半画角。
 条件式(4)は、望遠端状態における半画角の値を規定する条件である。条件式(4)を満足することにより、所望の画角が得られるとともに、コマ収差、歪曲収差、像面湾曲を良好に補正することができる。
 効果を確実なものとするために、条件式(4)の上限値を27.00°とすることが好ましくは可能である。効果をより確実なものとするために、条件式(4)の上限値を24.00°とすることが好ましくは可能である。
 効果を確実なものとするために、条件式(4)の下限値を11.00°とすることが好ましくは可能である。効果をより確実なものとするために、条件式(4)の下限値を12.00°とすることが好ましくは可能である。
 変倍光学系ZLは、次の条件式(5)を満足することが好ましくは可能である。
 30.00° <ωw< 50.00° …(5)
 但し、
 ωw:広角端状態における半画角。
 条件式(5)は、広角端状態における半画角の値を規定する条件である。条件式(5)を満足することにより、所望の画角が得られるとともに、コマ収差、歪曲収差、像面湾曲を良好に補正することができる。
 効果を確実なものとするために、条件式(5)の上限値を48.00°とすることが好ましくは可能である。効果をより確実なものとするために、条件式(5)の上限値を45.00°とすることが好ましくは可能である。
 効果を確実なものとするために、条件式(5)の下限値を32.00°とすることが好ましくは可能である。効果をより確実なものとするために、条件式(5)の下限値を34.00°とすることが好ましくは可能である。
 変倍光学系ZLにおいて、第21レンズ群G21と第22レンズ群G22との間隔は、変倍時、固定でも可変でもよい。
 変倍光学系ZLにおいて、中間群Gnと防振レンズ群VRとの間隔は、変倍時、固定でも可変でもよい。固定の場合は、中間群Gnと防振レンズ群VRとの合成の屈折力は、負であることが好ましくは可能である。
 変倍光学系ZLにおいて、防振レンズ群VRより像側に配置されるレンズからなる光学系の屈折力は、正であることが好ましくは可能である。
 変倍光学系ZLは、防振レンズ群VRより像側に、少なくとも1つの正に屈折力を有するレンズ群を有するのが好ましくは可能である。
 変倍光学系ZLは、第2レンズ群G2と中間群Gnとの間に、開口絞りを有することが好ましくは可能である。
 以上のように、F値が明るく、広画角を有し、諸収差が良好に補正された変倍光学系ZLを実現することができる。
 次に、上述の変倍光学系ZLを備えたカメラ(光学機器)について、図面を参照しながら説明する。図37は、変倍光学系を搭載したカメラの構成の一例を示す。
 カメラ1は、図37に示すように、撮影レンズ2として上述の変倍光学系ZLを備えたレンズ交換式のカメラ(所謂ミラーレスカメラ)である。このカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリーに記憶される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。
 カメラ1に撮影レンズ2として搭載した変倍光学系ZLは、後述の各実施例からも分かるようにその特徴的なレンズ構成によって、F値が明るく、広画角を有し、諸収差が良好に補正され、良好な光学性能を有している。したがって、カメラ1によれば、F値が明るく、広画角を有し、諸収差が良好に補正され、良好な光学性能を有する光学機器を実現することができる。
 なお、カメラ1として、ミラーレスカメラの例を説明したが、これに限定されるものではない。例えば、カメラ本体にクイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに、上述の変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
 続いて、上述の変倍光学系ZLの製造方法の一例について概説する。図38は、変倍光学系ZLの製造方法の一例を示す。
 まず、鏡筒内に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有するように、各レンズを配置する(ステップST10)。第2レンズ群G2より像側に配置された中間群Gnを有するように、各レンズを配置する(ステップST20)。中間群Gnより像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群VRを有するように、各レンズを配置する(ステップST30)。少なくとも、第1レンズ群G1と第2レンズ群G2との間隔と、第2レンズ群G2と中間群Gnとの間隔とを変化させることにより変倍を行うように、各レンズを配置する(ステップST40)。次の条件式(1)を満足するように、各レンズを配置する(ステップST50)。
 1.500 < β(Gn)t < 100.000 …(1)
 但し、
 β(Gn)t:望遠端状態における中間群Gnの結像倍率。
 レンズ配置の一例を挙げると、図1に示すように、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とを配置して第1レンズ群G1とし、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とを配置して第21レンズ群G21とし、両凸レンズL26を配置して第22レンズ群G22とし、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とを配置して第31レンズ群G31とし、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とを配置して第32レンズ群G32とし、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45と物体側に凸面を向けた正メニスカスレンズL46との接合レンズとを配置して第4レンズ群G4とする。このように準備した各レンズ群を、上述の手順で配置して変倍光学系ZLを製造する。
 上記の製造方法によれば、F値が明るく、広画角を有し、諸収差が良好に補正された変倍光学系ZLを製造することができる。
 以下、各実施例について、図面に基づいて説明する。
 図1、図4、図7、図10、図13、図16、図19、図22、図25、図28、図31、及び図34は、各実施例に係る変倍光学系ZL(ZL1~ZL12)の構成及び屈折力配分を示す断面図である。変倍光学系ZL1~ZL12の断面図の下部には、広角端状態(W)から中間焦点距離状態(M)を経て望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示す。変倍光学系ZL1~ZL12の断面図の上部には、無限遠から近距離物体に合焦する際の合焦レンズ群の移動方向を矢印で示すとともに、像ブレを補正する際の防振レンズ群VRの様子も示している。
 なお、第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。
 以下に表1~表12を示すが、これらは第1実施例~第12実施例における各諸元の表である。
 各実施例では収差特性の算出対象として、d線(波長587.562nm)、g線(波長435.835nm)を選んでいる。
 表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、n(d)は光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数、(開口絞り)は開口絞りSをそれぞれ示す。曲率半径の「0.00000」は、レンズ面の場合は平面を示し、絞りの場合は開口又は絞り面を示す。光学面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。
 表中の[非球面データ]には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数をそれぞれ示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、記載を省略する。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10+A12×y12 …(a)
 表中の[各種データ]において、fはレンズ全系の焦点距離、FNoはFナンバー、ωは半画角(単位:°)、Yは最大像高、TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離、BF(空気換算)は無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離を空気換算長により表記したもの、をそれぞれ示す。
 表中の[可変間隔データ]において、D0は物体面と第1レンズ群G1の最も物体側のレンズ面との軸上空気間隔、Diは第i面と第(i+1)面との面間隔(i=1、2、3…)、fはレンズ全系の焦点距離をそれぞれ示す。
 表中の[レンズ群データ]において、各レンズ群の始面と焦点距離を示す。
 表中の[フォーカシングデータ]において、合焦時のレンズ移動量と撮影距離を示す。
 表中の[条件式対応値]には、上記の条件式(1)~(5)に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われる。しかし、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
 ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。
(第1実施例)
 第1実施例について、図1~図3及び表1を用いて説明する。第1実施例に係る変倍光学系ZL(ZL1)は、図1に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
 第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
 第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。
 第3レンズ群G3は、物体側から順に並んだ、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
 第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。
 第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45と物体側に凸面を向けた正メニスカスレンズL46との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。正メニスカスレンズL46は、像側面が非球面形状である。
 第2レンズ群G2と第3レンズ群G3との間に、物体側から順に並んだ、第1のフレアカット絞りFC1と、開口絞りSとを備える。第4レンズ群G4と像面Iとの間に、第2のフレアカット絞りFC2を備える。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第1のフレアカット絞りFC1、開口絞りSおよび第2のフレアカット絞りFC2は、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第1実施例では、広角端状態において、防振係数は-0.45であり、焦点距離は24.80mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.29mmである。中間焦点距離状態において、防振係数は-0.51であり、焦点距離は50.01mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.51mmである。望遠端状態において、防振係数は-0.58であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.61mmである。
 下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1~40が、図1に示すm1~m40の各光学面に対応している。
(表1)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   121.85638   2.900   1.74389   49.5
 *2   29.63670  15.360   1.00000
 *3  -197.50816   0.200   1.56093   36.6
  4  -169.39125   2.100   1.80400   46.6
  5   60.51496   0.150   1.00000
  6   52.85097   5.600   2.00100   29.1
  7   146.47986    D7     1.00000
  8   148.41161   3.000   1.59349   67.0
  9  -517.10678   0.100   1.00000
  10   49.87002   3.500   1.59349   67.0
  11   157.35190   4.762   1.00000
  12   87.49334   4.800   1.59349   67.0
  13  -132.22400   1.500   1.90366   31.3
  14   45.76622   1.640   1.00000
  15   78.93526   4.450   1.77250   49.6
  16  -176.75459   D16    1.00000
  17   57.14809   5.300   1.81600   46.6
  18  -583.40702   D18    1.00000
  19    0.00000   1.200   1.00000
  20   (開口絞り)   D20    1.00000
  21  -141.85186   1.200   1.80400   46.6
  22   33.20059   4.360   1.00000
  23   -33.72704   1.200   1.60300   65.4
  24   -60.09530   0.100   1.00000
  25   65.48868   3.150   1.84666   23.8
  26  -127.25009   D26    1.00000
  27  -119.24441   1.100   1.59349   67.0
  28   67.70394   1.150   1.00000
  29   62.36800   2.100   1.80518   25.5
  30   107.42000   D30    1.00000
 *31   119.87584   4.700   1.55332   71.7
  32  -115.00129   0.100   1.00000
  33   71.95116   1.400   1.83481   42.7
  34   38.48800   6.800   1.59319   67.9
  35  -237.01429   0.280   1.00000
  36   43.00799   9.500   1.49782   82.6
  37   -42.99900   1.400   1.80518   25.5
  38   98.94100   4.600   1.69350   53.3
 *39   462.40647   D39    1.00000
  40    0.00000   D40    1.00000
 
[非球面データ]
 第2面
 κ = 0.00000e+00
 A4 = 2.21510e-06
 A6 = 2.57690e-09
 A8 =-6.01500e-12
 A10= 1.09200e-14
 A12=-7.29000e-18
 
 第3面
 κ = 1.00000e+00
 A4 =-3.83430e-07
 A6 = 7.93340e-10
 A8 =-3.53630e-12
 A10= 5.08120e-15
 A12=-3.43370e-18
 
 第31面
 κ = 1.00000e+00
 A4 = 4.80890e-06
 A6 = 5.06980e-10
 A8 =-2.73140e-12
 A10=-7.78150e-16
 A12= 0.00000e+00
 
 第39面
 κ = 1.00000e+00
 A4 = 7.56540e-06
 A6 =-9.88600e-10
 A8 = 5.61740e-12
 A10=-8.07750e-15
 A12= 0.00000e+00
 
[各種データ]
          W       M       T
 f        24.80    50.01     67.85
 FNo       2.92     2.92     2.92
 ω        42.5     22.7     17.2
 Y        21.60    21.60     21.60
 TL       220.251   198.419    200.827
 BF       41.035    48.522    55.686
 BF(空気換算)  41.035    48.522    55.686
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.80    50.01     67.85
 D7     48.945    10.930     1.902
 D16     7.735    7.735     7.735
 D18     1.802    17.931    29.439
 D20     2.088    4.668     3.620
 D26     1.250    1.250     1.250
 D30    17.692    7.680     1.492
 D39     2.530    10.000    17.180
 D40    38.505    38.522    38.506
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -38.47
 第2レンズ群      8   42.49
   第21レンズ群   8    78.58
   第22レンズ群   17    64.02
 第3レンズ群     21   -39.26
   第31レンズ群   21   -65.76
   第32レンズ群   27  -121.07
 第4レンズ群     31   48.95
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.735     6.735     6.735
 撮影距離(m)   0.4183    0.3810     0.3966
 
[条件式対応値]
 条件式(1) β(Gn)t = 12.080
 条件式(2) -f(Gn~G(VR))w/fw = 1.583
 条件式(3) f(RP)/f(FP) = 1.152
 条件式(4) ωt = 17.2
 条件式(5) ωw = 42.5
 表1から、第1実施例に係る変倍光学系ZL1は、条件式(1)~(5)を満足することが分かる。
 図2は、第1実施例に係る変倍光学系ZL1の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図3は、第1実施例に係る変倍光学系ZL1の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図3のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図において、FNOはFナンバー、Yは像高を示す。dはd線、gはg線における収差を示す。また、これらの記載のないものは、d線における収差を示す。但し、無限遠合焦時の球面収差図では、最大口径に対応するFナンバーの値を示す。非点収差図では、実線はサジタル像面、破線はメリディオナル像面を示す。後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
 各収差図から明らかなように、第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第2実施例)
 第2実施例について、図4~図6及び表2を用いて説明する。第2実施例に係る変倍光学系ZL(ZL2)は、図4に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
 第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
 第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。
 第3レンズ群G3は、物体側から順に並んだ、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
 第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
 第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45と物体側に凸面を向けた正メニスカスレンズL46との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。正メニスカスレンズL46は、像側面が非球面形状である。
 第2レンズ群G2と第3レンズ群G3との間に、開口絞りSを備える。第4レンズ群G4と像面Iとの間に、フレアカット絞りFCを備える。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。開口絞りSおよびフレアカット絞りFCは、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第2実施例では、広角端状態において、防振係数は-0.44であり、焦点距離は24.80mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.30mmである。中間焦点距離状態において、防振係数は-0.50であり、焦点距離は47.76mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.50mmである。望遠端状態において、防振係数は-0.58であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.62mmである。
 下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1~39が、図4に示すm1~m39の各光学面に対応している。
(表2)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   123.86834   2.900   1.74389   49.5
 *2   29.53373  15.066   1.00000
 *3  -163.51331   0.300   1.56093   36.6
  4  -139.86223   2.100   1.80400   46.6
  5   65.45825   0.150   1.00000
  6   56.53091   5.625   2.00100   29.1
  7   182.99126    D7     1.00000
  8   143.07855   3.200   1.59349   67.0
  9  -394.38588   0.200   1.00000
  10   55.12400   3.500   1.59349   67.0
  11   197.46867   3.900   1.00000
  12   77.75166   4.842   1.59349   67.0
  13  -158.02225   1.500   1.90366   31.3
  14   46.02834   1.844   1.00000
  15   83.85157   3.848   1.77250   49.6
  16  -277.24360   D16    1.00000
  17   59.19194   5.400   1.80400   46.6
  18  -354.91781   D18    1.00000
  19   (開口絞り)   D19    1.00000
  20  -140.00000   1.178   1.77250   49.6
  21   33.57372   4.337   1.00000
  22   -36.69329   1.200   1.59349   67.0
  23   -63.63544   0.100   1.00000
  24   61.90037   3.102   1.84666   23.8
  25  -187.23382   D25    1.00000
 *26  -120.15188   1.100   1.61000   65.0
  27   78.56667   0.966   1.00000
  28   66.22584   1.921   1.80518   25.5
  29   108.00000   D29    1.00000
 *30   96.36461   5.000   1.55332   71.7
  31  -132.37171   0.200   1.00000
  32   103.35532   1.300   1.80518   25.5
  33   49.66548   6.742   1.59319   67.9
  34  -101.36549   0.188   1.00000
  35   55.76221   9.450   1.49782   82.6
  36   -36.89155   1.400   1.75000   31.4
  37   97.48202   4.003   1.69350   53.2
 *38   442.81061   D38    1.00000
  39    0.00000   D39    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2  1.48700e-01  1.33488e-06  1.45328e-09 -6.97898e-13  5.22062e-16
  3  4.31460e+00 -4.66997e-07  4.80176e-10 -1.05569e-12  3.62706e-16
 26 -2.40000e+01 -1.76198e-06  1.30497e-09  0.00000e+00  0.00000e+00
 30  3.97310e+00  3.04836e-06 -6.62447e-10  0.00000e+00  0.00000e+00
 38  3.71000e+02  4.89412e-06  1.67774e-10  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.80    47.76     67.85
 FNo       2.92     2.92     2.92
 ω       42.5     23.7     17.2
 Y        21.60    21.60     21.60
 TL       219.362   198.056    201.131
 BF       41.459    48.894    57.632
 BF(空気換算)  41.459    48.894    57.632
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.80    47.76     67.85
 D7     48.978    12.578     1.835
 D16     7.750    7.750     7.750
 D18     3.000    18.144    31.911
 D19     2.000    4.200     2.500
 D25     1.440    1.440     1.440
 D29    18.172    8.487     1.500
 D38     1.139    8.574    17.251
 D39    40.319    40.320    40.381
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -38.77
 第2レンズ群      8   42.97
   第21レンズ群   8    81.61
   第22レンズ群   17    63.47
 第3レンズ群     20   -40.68
   第31レンズ群   20   -68.40
   第32レンズ群   26  -123.54
 第4レンズ群     30   49.36
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.75     6.75     6.75
 撮影距離(m)   0.4124    0.3853     0.4059
 
[条件式対応値]
 条件式(1) β(Gn)t = 13.824
 条件式(2) -f(Gn~G(VR))w/fw = 1.640
 条件式(3) f(RP)/f(FP) = 1.149
 条件式(4) ωt = 17.2
 条件式(5) ωw = 42.5
 表2から、第2実施例に係る変倍光学系ZL2は、条件式(1)~(5)を満足することが分かる。
 図5は、第2実施例に係る変倍光学系ZL2の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図6は、第2実施例に係る変倍光学系ZL2の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図6のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第3実施例)
 第3実施例について、図7~図9及び表3を用いて説明する。第3実施例に係る変倍光学系ZL(ZL3)は、図7に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
 第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
 第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。
 第3レンズ群G3は、物体側から順に並んだ、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
 第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
 第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。両凹レンズL45は、像側面が非球面形状である。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と像側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。
 第2レンズ群G2と第3レンズ群G3との間に、開口絞りSを備える。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第5レンズ群G5および開口絞りSは、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第3実施例では、広角端状態において、防振係数は-0.45であり、焦点距離は24.82mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.29mmである。中間焦点距離状態において、防振係数は-0.50であり、焦点距離は47.49mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.49mmである。望遠端状態において、防振係数は-0.58であり、焦点距離は67.84mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.62mmである。
 下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1~40が、図7に示すm1~m40の各光学面に対応している。
(表3)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   134.61434   2.900   1.74389   49.5
 *2   30.98121  14.105   1.00000
 *3  -271.55507   0.300   1.56093   36.6
  4  -224.01871   2.100   1.80400   46.6
  5   65.07720   0.200   1.00000
  6   53.84066   5.401   2.00100   29.1
  7   113.70514    D7     1.00000
  8   259.91458   3.000   1.59349   67.0
  9  -443.80327   0.243   1.00000
  10   71.84029   3.500   1.69680   55.5
  11   238.64880   4.057   1.00000
  12   66.72188   5.288   1.59349   67.0
  13  -145.97738   1.500   1.90366   31.3
  14   49.38387   1.625   1.00000
  15   83.91292   4.117   1.77250   49.6
  16  -207.54373   D16    1.00000
  17   59.58569   5.400   1.80400   46.6
  18  -338.02309   D18    1.00000
  19   (開口絞り)   D19    1.00000
  20  -140.00000   1.178   1.77250   49.6
  21   34.70000   4.110   1.00000
  22   -37.39824   1.200   1.59349   67.0
  23   -64.12090   0.100   1.00000
  24   62.46432   2.941   1.90200   25.3
  25  -277.86426   D25    1.00000
 *26  -157.84803   1.100   1.77250   49.6
  27   61.66083   1.232   1.00000
  28   63.26230   2.386   1.84666   23.8
  29   198.11149   D29    1.00000
 *30   74.15506   5.000   1.55332   71.7
  31  -190.85228   0.100   1.00000
  32   414.99863   1.300   1.84666   23.8
  33   79.29491   6.640   1.59319   67.9
  34   -59.47223   0.188   1.00000
  35   77.14715   8.284   1.49700   81.6
  36   -39.12349   1.400   1.70600   30.9
 *37   467.32553   D37    1.00000
  38   74.86867   2.769   1.49700   81.6
  39   177.01793   1.400   1.79504   28.7
  40   100.00000   D40    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8     A10
  2 -8.40000e-03  1.76676e-06  1.42633e-09 -6.16355e-13  3.36393e-16
  3  5.89560e+00 -4.29758e-07  9.43230e-10 -1.79782e-12  8.72339e-16
 26 -2.40000e+01 -5.18855e-07  4.69601e-10  0.00000e+00  0.00000e+00
 30  7.93900e-01  2.20229e-06 -7.31449e-10  0.00000e+00  0.00000e+00
 37  4.51000e+02  4.05983e-06  9.42292e-10  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.82    47.49     67.84
 FNo       2.91     2.91     2.92
 ω       42.3     23.8     17.2
 Y        21.60    21.60     21.60
 TL       220.442   198.936    201.965
 BF       42.289    42.290    42.353
 BF(空気換算)  42.289    42.290    42.353
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.82    47.49     67.84
 D7     49.018    12.832     1.835
 D16     7.750    7.750     7.750
 D18     3.000    17.679    31.753
 D19     2.000    3.989     2.000
 D25     1.412    1.412     1.412
 D29    18.411    8.690     1.500
 D37     1.500    9.233    18.301
 D40    42.289    42.290    42.353
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -38.85
 第2レンズ群      8   42.32
   第21レンズ群   8    82.21
   第22レンズ群   17    63.39
 第3レンズ群     20   -41.39
   第31レンズ群   20   -69.44
   第32レンズ群   26  -122.74
 第4レンズ群     30   52.58
 第5レンズ群     38  2000.09
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.75     6.75     6.75
 撮影距離(m)   0.4144    0.3857     0.4059
 
[条件式対応値]
 条件式(1) β(Gn)t = 9.843
 条件式(2) -f(Gn~G(VR))w/fw = 1.668
 条件式(3) f(RP)/f(FP) = 1.242
 条件式(4) ωt = 17.2
 条件式(5) ωw = 42.3
 表3から、第3実施例に係る変倍光学系ZL3は、条件式(1)~(5)を満足することが分かる。
 図8は、第3実施例に係る変倍光学系ZL3の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図9は、第3実施例に係る変倍光学系ZL3の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図9のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第3実施例に係る変倍光学系ZL3は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第4実施例)
 第4実施例について、図10~図12及び表4を用いて説明する。第4実施例に係る変倍光学系ZL(ZL4)は、図10に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
 第2レンズ群G2(合焦レンズ群)は、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。
 第3レンズ群G3は、両凸レンズL31からなる。
 第4レンズ群G4(中間群)は、光軸と直交方向の位置が固定されており、物体側から順に並んだ、両凹レンズL41と、物体側に凹面を向けた負メニスカスレンズL42と、両凸レンズL43とからなる。
 第5レンズ群G5(防振レンズ群)は、物体側から順に並んだ、両凹レンズL51と、物体側に凸面を向けた正メニスカスレンズL52とからなる。両凹レンズL51は、物体側面が非球面形状である。
 第6レンズ群G6は、物体側から順に並んだ、両凸レンズL61と、像側に凹面を向けた負メニスカスレンズL62と両凸レンズL63との接合レンズと、両凸レンズL64と両凹レンズL65との接合レンズとからなる。両凸レンズL61は、物体側面が非球面形状である。両凹レンズL65は、像側面が非球面形状である。
 第7レンズ群G7は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL71と像側に凹面を向けた負メニスカスレンズL72との接合レンズからなる。
 第3レンズ群G3と第4レンズ群G4との間に、開口絞りSを備える。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を物体側へ移動させ、第4レンズ群G4を一旦像側へ移動させた後、物体側へ移動させ、第5レンズ群G5を一旦像側へ移動させた後、物体側へ移動させ、第6レンズ群G6を物体側へ移動させることにより行う。第7レンズ群G7および開口絞りSは、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第2レンズ群G2を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第5レンズ群G5を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第4実施例では、広角端状態において、防振係数は-0.46であり、焦点距離は25.49mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.29mmである。中間焦点距離状態において、防振係数は-0.53であり、焦点距離は48.81mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.49mmである。望遠端状態において、防振係数は-0.61であり、焦点距離は69.45mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.59mmである。
 下記の表4に、第4実施例における各諸元の値を示す。表4における面番号1~40が、図10に示すm1~m40の各光学面に対応している。
(表4)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   134.61434   2.900   1.74389   49.5
 *2   30.98121  14.105   1.00000
 *3  -271.55507   0.300   1.56093   36.6
  4  -224.01871   2.100   1.80400   46.6
  5   65.07720   0.200   1.00000
  6   53.84066   5.401   2.00100   29.1
  7   113.70514    D7     1.00000
  8   259.91458   3.000   1.59349   67.0
  9  -443.80327   0.243   1.00000
  10   71.84029   3.500   1.69680   55.5
  11   238.64880   4.057   1.00000
  12   66.72188   5.288   1.59349   67.0
  13  -145.97738   1.500   1.90366   31.3
  14   49.38387   1.625   1.00000
  15   83.91292   4.117   1.77250   49.6
  16  -207.54373   D16    1.00000
  17   59.58569   5.400   1.80400   46.6
  18  -338.02309   D18    1.00000
  19   (開口絞り)   D19    1.00000
  20  -140.00000   1.178   1.77250   49.6
  21   34.70000   4.110   1.00000
  22   -37.39824   1.200   1.59349   67.0
  23   -64.12090   0.100   1.00000
  24   62.46432   2.941   1.90200   25.3
  25  -277.86426   D25    1.00000
 *26  -157.84803   1.100   1.77250   49.6
  27   61.66083   1.232   1.00000
  28   63.26230   2.386   1.84666   23.8
  29   198.11149   D29    1.00000
 *30   74.15506   5.000   1.55332   71.7
  31  -190.85228   0.100   1.00000
  32   414.99863   1.300   1.84666   23.8
  33   79.29491   6.640   1.59319   67.9
  34   -59.47223   0.188   1.00000
  35   77.14715   8.284   1.49700   81.6
  36   -39.50000   1.400   1.70600   30.9
 *37   467.32553   D37    1.00000
  38   74.86867   2.769   1.48749   70.3
  39   300.00000   1.400   1.79504   28.7
  40   100.00000   D40    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2 -8.40000e-03  1.76676e-06  1.42633e-09 -6.16355e-13  3.36393e-16
  3  5.89560e+00 -4.29758e-07  9.43230e-10 -1.79782e-12  8.72339e-16
 26 -2.40000e+01 -5.18855e-07  4.69601e-10  0.00000e+00  0.00000e+00
 30  7.93900e-01  2.20229e-06 -7.31449e-10  0.00000e+00  0.00000e+00
 37  4.51000e+02  4.05983e-06  9.42292e-10  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        25.49    48.81     69.45
 FNo       2.92     2.92     2.92
 ω       41.6     23.3     16.8
 Y        21.60    21.60     21.60
 TL       222.079   204.772    203.978
 BF       44.388    45.157    44.803
 BF(空気換算)  44.388    45.157    44.803
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     25.49    48.81     69.45
 D7     49.018    12.832     1.900
 D16     7.750    12.000     8.300
 D18     2.500    16.500    30.700
 D19     2.000    3.989     2.000
 D25     1.412    3.000     1.412
 D29    18.450    7.000     1.500
 D37     1.500    9.233    18.301
 D40    44.388    45.157    44.803
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -38.85
 第2レンズ群      8   82.21
 第3レンズ群     17   63.39
 第4レンズ群     20   -69.44
 第5レンズ群     26  -122.74
 第6レンズ群     30   52.47
 第7レンズ群     38  -3528.86
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.75     11.00     7.30
 撮影距離(m)   0.4160    0.3019     0.3889
 
[条件式対応値]
 条件式(1) β(Gn)t = 11.069
 条件式(2) -f(Gn~G(VR))w/fw = 1.624
 条件式(3) f(RP)/f(FP) = 1.240
 条件式(4) ωt = 16.8
 条件式(5) ωw = 41.6
 表4から、第4実施例に係る変倍光学系ZL4は、条件式(1)~(5)を満足することが分かる。
 図11は、第4実施例に係る変倍光学系ZL4の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図12は、第4実施例に係る変倍光学系ZL4の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図12のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第4実施例に係る変倍光学系ZL4は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第5実施例)
 第5実施例について、図13~図15及び表5を用いて説明する。第5実施例に係る変倍光学系ZL(ZL5)は、図13に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
 第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
 第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。
 第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
 第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
 第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。両凹レンズL45は、像側面が非球面形状である。
 第5レンズ群G5は、物体側から順に並んだ、両凸レンズL51と両凹レンズL52との接合レンズからなる。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第3レンズ群G3および第5レンズ群G5は、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第5実施例では、広角端状態において、防振係数は-0.46であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.28mmである。中間焦点距離状態において、防振係数は-0.52であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.48mmである。望遠端状態において、防振係数は-0.58であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.62mmである。
 下記の表5に、第5実施例における各諸元の値を示す。表5における面番号1~40が、図13に示すm1~m40の各光学面に対応している。
(表5)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   144.94817   2.900   1.74389   49.5
 *2   29.83529  14.301   1.00000
 *3  -322.90228   0.300   1.56093   36.6
  4  -228.59270   2.100   1.80400   46.6
  5   65.19707   0.200   1.00000
  6   54.96083   5.379   2.00100   29.1
  7   130.46571    D7     1.00000
  8   127.91888   3.200   1.59349   67.0
  9  -2245.90430   1.780   1.00000
  10   81.17716   3.500   1.69680   55.5
  11   679.72724   2.453   1.00000
  12   61.05134   5.724   1.59349   67.0
  13  -130.20006   1.500   1.90366   31.3
  14   46.24112   1.694   1.00000
  15   77.95470   3.722   1.77250   49.6
  16  -564.05655   D16    1.00000
  17   60.46759   5.400   1.80400   46.6
  18  -263.45861   D18    1.00000
  19   (開口絞り)  2.000   1.00000
  20  -140.00000   1.178   1.77250   49.6
  21   35.60000   4.059   1.00000
  22   -35.16240   1.200   1.72916   54.6
  23   -51.36153   0.100   1.00000
  24   69.55169   2.879   1.90200   25.3
  25  -209.71368   D25    1.00000
 *26  -118.85935   1.100   1.77250   49.6
  27   54.49135   1.415   1.00000
  28   60.78441   2.635   1.90200   25.3
  29   331.09581   D29    1.00000
 *30   118.81221   4.686   1.55332   71.7
  31  -102.83315   0.100   1.00000
  32   152.27830   1.300   1.72000   28.0
  33   85.35751   6.402   1.59319   67.9
  34   -54.69093   0.188   1.00000
  35   959.47501   7.222   1.49700   81.6
  36   -30.23774   1.400   1.70600   29.0
 *37  1029.85760   D37    1.00000
  38   53.49812   4.770   1.55332   71.7
  39  -6970.92580   1.400   1.90366   31.3
  40   100.00000   D40    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2 -1.01100e-01  1.43852e-06  1.71179e-09 -1.42870e-12  1.05723e-15
  3  2.81381e+01 -7.54473e-07  4.14335e-10 -5.77466e-13  3.16668e-16
 26 -1.90000e+01 -9.14707e-07  9.49568e-10  0.00000e+00  0.00000e+00
 30 -1.43460e+00  2.27762e-06 -5.51593e-10  0.00000e+00  0.00000e+00
 37  2.44600e+03  4.05698e-06  0.00000e+00  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.77    47.50     67.85
 FNo       2.90     2.90     2.91
 ω       42.4     23.8     17.2
 Y        21.60    21.60     21.60
 TL       218.725   198.522    200.695
 BF       41.843    41.843    41.903
 BF(空気換算)  41.843    41.843    41.903
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.77    47.50     67.85
 D7     49.003    12.690     1.835
 D16     7.750    7.750     7.750
 D18     1.450    17.610    30.588
 D25     1.473    1.473     1.473
 D29    17.519    8.681     1.500
 D37     1.500    10.288    17.459
 D40    41.843    41.843    41.903
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -38.88
 第2レンズ群      8   42.16
  第21レンズ群    8    80.98
  第22レンズ群    17   61.63
 第3レンズ群     19   -42.05
  第31レンズ群    19   -71.15
  第32レンズ群    26  -121.45
 第4レンズ群     30    56.98
 第5レンズ群     38   619.99
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.75     6.75     6.75
 撮影距離(m)   0.4148    0.3865     0.4059
 
[条件式対応値]
 条件式(1) β(Gn)t = 6.597
 条件式(2) -f(Gn~G(VR))w/fw = 1.698
 条件式(3) f(RP)/f(FP) = 1.352
 条件式(4) ωt = 17.2
 条件式(5) ωw = 42.4
 表5から、第5実施例に係る変倍光学系ZL5は、条件式(1)~(5)を満足することが分かる。
 図14は、第5実施例に係る変倍光学系ZL5の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図15は、第5実施例に係る変倍光学系ZL5の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図15のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第5実施例に係る変倍光学系ZL5は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第6実施例)
 第6実施例について、図16~図18及び表6を用いて説明する。第6実施例に係る変倍光学系ZL(ZL6)は、図16に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
 第2レンズ群G2(合焦レンズ群)は、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。
 第3レンズ群G3は、両凸レンズL31からなる。
 第4レンズ群G4(中間群)は、光軸と直交方向の位置が固定されており、物体側から順に並んだ、開口絞りSと、両凹レンズL41と、物体側に凹面を向けた負メニスカスレンズL42と、両凸レンズL43とからなる。
 第5レンズ群G5(防振レンズ群)は、物体側から順に並んだ、両凹レンズL51と、物体側に凸面を向けた正メニスカスレンズL52とからなる。両凹レンズL51は、物体側面が非球面形状である。
 第6レンズ群G6は、物体側から順に並んだ、両凸レンズL61と、像側に凹面を向けた負メニスカスレンズL62と両凸レンズL63との接合レンズと、両凸レンズL64と両凹レンズL65との接合レンズとからなる。両凸レンズL61は、物体側面が非球面形状である。両凹レンズL65は、像側面が非球面形状である。
 第7レンズ群G7は、物体側から順に並んだ、両凸レンズL71と両凹レンズL72との接合レンズからなる。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を物体側へ移動させ、第4レンズ群G4を像側へ移動させ、第5レンズ群G5を一旦像側へ移動させた後、物体側へ移動させ、第6レンズ群G6を物体側へ移動させることにより行う。第7レンズ群G7は、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第2レンズ群G2を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第5レンズ群G5を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第6実施例では、広角端状態において、防振係数は-0.46であり、焦点距離は24.73mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.28mmである。中間焦点距離状態において、防振係数は-0.53であり、焦点距離は47.48mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.48mmである。望遠端状態において、防振係数は-0.58であり、焦点距離は67.41mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.61mmである。
 下記の表6に、第6実施例における各諸元の値を示す。表6における面番号1~40が、図16に示すm1~m40の各光学面に対応している。
(表6)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   144.94817   2.900   1.74389   49.5
 *2   29.83529  14.301   1.00000
 *3  -322.90228   0.300   1.56093   36.6
  4  -228.59270   2.100   1.80400   46.6
  5   65.19707   0.200   1.00000
  6   54.96083   5.379   2.00100   29.1
  7   130.46571    D7     1.00000
  8   127.91888   3.200   1.59349   67.0
  9  -2245.90430   1.780   1.00000
  10   81.17716   3.500   1.69680   55.5
  11   679.72724   2.453   1.00000
  12   61.05134   5.724   1.59349   67.0
  13  -130.20006   1.500   1.90366   31.3
  14   46.24112   1.694   1.00000
  15   77.95470   3.722   1.77250   49.6
  16  -564.05655   D16    1.00000
  17   60.46759   5.400   1.80400   46.6
  18  -263.45861   D18    1.00000
  19   (開口絞り)  2.000   1.00000
  20  -140.00000   1.178   1.77250   49.6
  21   35.60000   4.059   1.00000
  22   -35.16240   1.200   1.72916   54.6
  23   -51.36153   0.100   1.00000
  24   69.55169   2.879   1.90200   25.3
  25  -209.71368   D25    1.00000
 *26  -118.85935   1.100   1.77250   49.6
  27   54.49135   1.415   1.00000
  28   60.78441   2.635   1.90200   25.3 
  29   331.09581   D29    1.00000
 *30   118.81221   4.686   1.55332   71.7
  31  -102.83315   0.100   1.00000
  32   152.27830   1.300   1.72000   28.0
  33   85.35751   6.402   1.59319   67.9
  34   -54.69093   0.188   1.00000
  35   959.47501   7.222   1.49700   81.6
  36   -30.23774   1.400   1.70600   29.0
 *37  1029.85760   D37    1.00000
  38   53.49812   4.770   1.55332   71.7
  39  -6970.92580   1.400   1.90366   31.3
  40   100.00000   D40    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2 -1.01100e-01  1.43852e-06  1.71179e-09 -1.42870e-12  1.05723e-15
  3  2.81381e+01 -7.54473e-07  4.14335e-10 -5.77466e-13  3.16668e-16
 26 -1.90000e+01 -9.14707e-07  9.49568e-10  0.00000e+00  0.00000e+00
 30 -1.43460e+00  2.27762e-06 -5.51593e-10  0.00000e+00  0.00000e+00
 37  2.44600e+03  4.05698e-06  0.00000e+00  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.73    47.48     67.41
 FNo       2.90     2.90     2.93
 ω       42.5     23.9     17.3
 Y        21.60    21.60     21.60
 TL       218.388   200.467    201.434
 BF       41.880    42.603    42.530
 BF(空気換算)  41.880    42.603    42.530
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.73    47.48     67.41
 D7     49.003    12.690     1.835
 D16     7.750    9.500     8.500
 D18     1.450    17.000    30.000
 D25     1.100    2.500     1.473
 D29    17.519    7.700     1.450
 D37     1.500    10.288    17.459
 D40    41.880    42.603    42.530
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -38.88
 第2レンズ群      8   80.98
 第3レンズ群     17   61.63
 第4レンズ群     19   -71.15
 第5レンズ群     26  -121.45
 第6レンズ群     30   56.98
 第7レンズ群     38   619.99
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.75     8.50     7.50
 撮影距離(m)   0.4145    0.3406     0.3816
 
[条件式対応値]
 条件式(1) β(Gn)t = 6.868
 条件式(2) -f(Gn~G(VR))w/fw = 1.704
 条件式(3) f(RP)/f(FP) = 1.352
 条件式(4) ωt = 17.3
 条件式(5) ωw = 42.5
 表6から、第6実施例に係る変倍光学系ZL6は、条件式(1)~(5)を満足することが分かる。
 図17は、第6実施例に係る変倍光学系ZL6の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図18は、第6実施例に係る変倍光学系ZL6の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図18のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第6実施例に係る変倍光学系ZL6は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第7実施例)
 第7実施例について、図19~図21及び表7を用いて説明する。第7実施例に係る変倍光学系ZL(ZL7)は、図19に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
 第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
 第21レンズ群G21は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、両凸レンズL22と、両凹レンズL23と、両凸レンズL24とからなる。第22レンズ群G22は、両凸レンズL25からなる。
 第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
 第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
 第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、両凸レンズL42と、両凸レンズL43と両凹レンズL44との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。
 第5レンズ群G5は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合レンズからなる。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第3レンズ群G3および第5レンズ群G5は、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第7実施例では、広角端状態において、防振係数は-0.46であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.29mmである。中間焦点距離状態において、防振係数は-0.52であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.48mmである。望遠端状態において、防振係数は-0.58であり、焦点距離は67.86mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.62mmである。
 下記の表7に、第7実施例における各諸元の値を示す。表7における面番号1~38が、図19に示すm1~m38の各光学面に対応している。
(表7)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   155.89691   2.900   1.74389   49.5
 *2   29.88191  12.307   1.00000
 *3  -998.95016   0.380   1.56093   36.6
  4  -380.00000   2.100   1.75500   52.3
  5   54.41504   0.200   1.00000
  6   48.25639   5.777   1.90200   25.3
  7   111.71017    D7     1.00000
  8   75.52522   4.500   1.75000   53.0
  9   599.23665   3.427   1.00000
  10   65.44832   4.500   1.75500   52.3
  11  -536.13486   0.864   1.00000
  12  -161.64034   1.550   1.90200   25.3
  13   48.60000   1.455   1.00000
  14   77.92408   4.650   1.77250   49.6
  15  -199.82321   D15    1.00000
  16   59.54554   5.676   1.81600   46.6
  17  -305.53264   D17    1.00000
  18   (開口絞り)  2.000   1.00000
  19  -140.00000   1.200   1.77250   49.6
  20   34.07853   4.022   1.00000
  21   -34.00000   1.200   1.72916   54.6
  22   -47.36695   0.100   1.00000
  23   60.05931   3.182   1.84666   23.8
  24  -160.47286   D24    1.00000
 *25  -266.90180   1.100   1.77250   49.6
  26   80.68524   0.780   1.00000
  27   68.16544   1.736   1.84666   23.8
  28   100.00000   D28    1.00000
 *29   300.52804   4.082   1.55332   71.7
  30   -61.39111   0.100   1.00000
  31   178.14990   4.513   1.60300   65.4
  32   -65.35343   0.200   1.00000
  33   142.59265   7.934   1.65160   58.6
  34   -28.88978   1.400   1.90200   29.1
  35   300.00000   D35    1.00000
  36   137.03160   1.400   1.83000   37.0
  37   64.66324   3.650   1.59319   67.9
  38   735.00000   D38    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2 -9.54700e-01  5.69885e-06 -1.82979e-09  8.49633e-13  0.00000e+00
  3 -1.40000e+01 -6.77491e-07 -2.49807e-10  0.00000e+00  0.00000e+00
 25 -1.90000e+01  3.06942e-07 -6.70956e-10  0.00000e+00  0.00000e+00
 29  5.86950e+00 -6.89526e-07  2.25877e-09  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.77    47.50     67.86
 FNo       2.90     2.90     2.90
 ω        42.4     23.9     17.2
 Y        21.60    21.60     21.60
 TL       210.992   190.994    193.977
 BF       39.982    39.983    40.044
 BF(空気換算)  39.982    39.983    40.044
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.77    47.50     67.86
 D7     49.068    12.647     1.800
 D15     7.785    7.785     7.785
 D17     3.346    19.816    33.635
 D24     0.999    0.999     0.999
 D28    19.428    10.413     3.291
 D35     1.500    10.465    17.538
 D38    39.982    39.983    40.044
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -38.96
 第2レンズ群      8   42.92
  第21レンズ群    8    85.00
  第22レンズ群    16   61.50
 第3レンズ群     18   -45.09
  第31レンズ群    18   -84.08
  第32レンズ群    25  -117.85
 第4レンズ群     29   56.15
 第5レンズ群     36   620.00
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.785     6.785     6.785
 撮影距離(m)   0.3997    0.3832     0.4060
 
[条件式対応値]
 条件式(1) β(Gn)t = 4.299
 条件式(2) -f(Gn~G(VR))w/fw = 1.820
 条件式(3) f(RP)/f(FP) = 1.308
 条件式(4) ωt = 17.2
 条件式(5) ωw = 42.4
 表7から、第7実施例に係る変倍光学系ZL7は、条件式(1)~(5)を満足することが分かる。
 図20は、第7実施例に係る変倍光学系ZL7の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図21は、第7実施例に係る変倍光学系ZL7の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図21のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第7実施例に係る変倍光学系ZL7は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第8実施例)
 第8実施例について、図22~図24及び表8を用いて説明する。第8実施例に係る変倍光学系ZL(ZL8)は、図22に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
 第2レンズ群G2は、物体側から順に並んだ、フレアカット絞りFCと、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
 第21レンズ群G21は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、両凸レンズL22と、両凹レンズL23と、両凸レンズL24とからなる。第22レンズ群G22は、両凸レンズL25からなる。
 第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
 第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
 第4レンズ群G4は、物体側から順に並んだ、像側に凸面を向けた正メニスカスレンズL41と、両凸レンズL42と、両凸レンズL43と両凹レンズL44との接合レンズとからなる。正メニスカスレンズL41は、物体側面が非球面形状である。
 第5レンズ群G5は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合レンズからなる。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第3レンズ群G3および第5レンズ群G5は、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第8実施例では、広角端状態において、防振係数は-0.50であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.26mmである。中間焦点距離状態において、防振係数は-0.58であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.43mmである。望遠端状態において、防振係数は-0.66であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.54mmである。
 下記の表8に、第8実施例における各諸元の値を示す。表8における面番号1~39が、図22に示すm1~m39の各光学面に対応している。
(表8)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   171.22378   2.900   1.74389   49.5
 *2   29.77139  12.208   1.00000
 *3  -2272.73400   0.380   1.56093   36.6
  4  -400.00000   2.100   1.75500   52.3
  5   59.96509   0.200   1.00000
  6   50.35816   7.000   1.90200   25.3
  7   111.56759    D7     1.00000
  8    0.00000   0.200   1.00000
  9   82.35931   3.100   1.75000   51.0
  10   869.55661   3.243   1.00000
  11   65.70660   4.150   1.77250   49.6
  12  -400.15117   0.889   1.00000
  13  -142.76803   1.550   1.90200   25.3
  14   49.72103   1.379   1.00000
  15   78.21406   4.000   1.77250   49.6
  16  -195.63433   D16    1.00000
  17   58.26284   5.676   1.81600   46.6
  18  -346.07444   D18    1.00000
  19   (開口絞り)  2.000   1.00000
  20  -140.00000   1.200   1.77250   49.6
  21   36.40792   4.110   1.00000
  22   -39.80791   1.200   1.72916   54.7
  23   -59.45079   0.100   1.00000
  24   69.32659   3.085   1.84666   23.8
  25  -134.48153   D25    1.00000
 *26  -251.99331   1.100   1.77250   49.6
  27   63.18500   0.868   1.00000
  28   59.71324   2.131   1.86000   24.2
  29   100.00000   D29    1.00000
 *30  -900.00000   3.663   1.55332   71.7
  31   -54.18440   0.100   1.00000
  32   84.94639   5.806   1.60300   65.5
  33   -60.43832   0.200   1.00000
  34   278.20778   6.810   1.65160   58.5
  35   -32.56689   1.400   1.90200   28.5
  36   191.68646   D36    1.00000
  37   132.64391   1.400   1.83000   34.0
  38   61.28313   3.734   1.59319   67.9
  39   735.00000   D39    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2 -3.84000e-01  2.66465e-06 -1.34312e-10 -5.72743e-14  0.00000e+00
  3  3.50000e+00 -9.48227e-07 -3.38888e-10  0.00000e+00  0.00000e+00
 26 -2.80000e+01  3.11252e-07 -7.78416e-10  0.00000e+00  0.00000e+00
 30 -6.00000e+00 -1.99894e-06  1.27933e-09  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.77    47.50     67.85
 FNo       2.90     2.90     2.90
 ω        42.4     24.0     17.2
 Y        21.60    21.60     21.60
 TL       209.253   187.862    189.544
 BF       40.016    40.020    40.085
 BF(空気換算)  40.016    40.020    40.085
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.77    47.50     67.85
 D7     49.018    12.518     1.800
 D16     7.835    7.835     7.835
 D18     3.200    18.355    30.700
 D25     0.930    0.930     0.930
 D29    18.873    9.373     1.900
 D36     1.500    10.950    18.413
 D39    40.016    40.020    40.085
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -39.60
 第2レンズ群      8   41.35
  第21レンズ群    8    84.99
  第22レンズ群    17   61.50
 第3レンズ群     19   -43.44
  第31レンズ群    19   -85.70
  第32レンズ群    26  -106.03
 第4レンズ群     30   54.89
 第5レンズ群     37   619.95
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.835     6.835     6.835
 撮影距離(m)   0.4055    0.3839     0.4040
 
[条件式対応値]
 条件式(1) β(Gn)t = 3.949
 条件式(2) -f(Gn~G(VR))w/fw = 1.754
 条件式(3) f(RP)/f(FP) = 1.327
 条件式(4) ωt = 17.2
 条件式(5) ωw = 42.4
 表8から、第8実施例に係る変倍光学系ZL8は、条件式(1)~(5)を満足することが分かる。
 図23は、第8実施例に係る変倍光学系ZL8の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図24は、第8実施例に係る変倍光学系ZL8の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図24のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第8実施例に係る変倍光学系ZL8は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第9実施例)
 第9実施例について、図25~図27及び表9を用いて説明する。第9実施例に係る変倍光学系ZL(ZL9)は、図25に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。
 第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
 第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、物体側から順に並んだ、両凸レンズL26と物体側に凹面を向けた負メニスカスレンズL27との接合レンズからなる。
 第3レンズ群G3は、物体側から順に並んだ、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
 第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、像側に凸面を向けた正メニスカスレンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、両凸レンズL35とからなる。両凹レンズL34は、両側面が非球面形状である。
 第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、両凸レンズL42と、両凸レンズL43と両凹レンズL44との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。両凹レンズL44は、像側面が非球面形状である。
 第5レンズ群G5は、物体側から順に並んだ、両凸レンズL51と両凹レンズL52との接合レンズからなる。
 第2レンズ群G2と第3レンズ群G3との間に、開口絞りSを備える。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第5レンズ群G5および開口絞りSは、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第9実施例では、広角端状態において、防振係数は-0.51であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.25mmである。中間焦点距離状態において、防振係数は-0.57であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.43mmである。望遠端状態において、防振係数は-0.66であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.54mmである。
 下記の表9に、第9実施例における各諸元の値を示す。表9における面番号1~39が、図25に示すm1~m39の各光学面に対応している。
(表9)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   180.28031   2.900   1.74389   49.5
 *2   30.43353  15.281   1.00000
  3  -400.00000   2.100   1.80400   46.6
  4   61.64102   0.200   1.00000
  5   52.74108   5.413   2.00100   29.1
  6   127.21255    D6    1.00000
  7   250.61095   3.650   1.48749   70.3
  8  -249.39202   0.258   1.00000
  9   60.71776   3.347   1.69680   55.5
  10   223.73133   2.543   1.00000
  11   88.72642   4.052   1.59349   67.0
  12  -200.28776   1.450   1.90366   31.3
  13   46.94856   1.456   1.00000
  14   71.21863   4.324   1.77250   49.6
  15  -259.88006   D15    1.00000
  16   64.61643   5.373   1.80400   46.6
  17  -171.33576   1.500   1.85026   32.4
  18  -427.99181   D18    1.00000
  19   (開口絞り)   D19    1.00000
  20  -140.00000   1.200   1.77250   49.6
  21   98.73269   2.349   1.00000
  22   -46.53449   1.200   1.76000   50.0
  23   -88.62573   0.100   1.00000
  24  -227.14142   2.169   1.90200   25.3
  25   -65.70168   D25    1.00000
 *26   -82.31022   1.100   1.77250   49.6
 *27   41.14809   1.433   1.00000
  28   50.51593   3.020   1.90200   25.3
  29  -7587.28970   D29    1.00000
 *30   445.83969   3.966   1.55332   71.7
  31   -73.29859   0.100   1.00000
  32   153.51046   3.949   1.60300   65.4
  33  -101.27922   0.200   1.00000
  34   86.09865   7.212   1.59319   67.9
  35   -40.79305   1.200   1.79000   26.0
 *36   180.00000   D36    1.00000
  37   69.32616   4.432   1.61800   63.3
  38  -225.96343   1.200   1.90366   31.3
  39   140.29946   D39    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2 -1.14500e-01  2.30934e-06  4.18972e-10  6.24631e-13  0.00000e+00
 26 -4.22870e+00  4.95698e-23  1.31315e-09  0.00000e+00  0.00000e+00
 27  5.80700e-01  3.38518e-07  0.00000e+00  0.00000e+00  0.00000e+00
 30  1.94200e-01  3.81661e-06 -2.35375e-09  0.00000e+00  0.00000e+00
 36  1.00000e+00  4.12000e-06  0.00000e+00  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.77    47.50     67.85
 FNo       2.90     2.90     2.92
 ω        42.3     23.9     17.2
 Y        21.60    21.60     21.60
 TL       214.110   194.068    198.548
 BF       40.318    40.318    40.378
 BF(空気換算)  40.318    40.318    40.378
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.77    47.50     67.85
 D6     49.013    12.596     1.845
 D15     7.840    7.840     7.840
 D18     3.000    19.375    34.606
 D19     2.000    3.243     2.000
 D25     0.930    0.930     0.930
 D29    20.833    9.633     1.900
 D36     1.500    11.458    20.373
 D39    40.318    40.318    40.378
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -39.13
 第2レンズ群      7   43.78
  第21レンズ群    7    80.97
  第22レンズ群    16   71.04
 第3レンズ群     20   -48.53
  第31レンズ群    20   -95.21
  第32レンズ群    26  -105.72
 第4レンズ群     30   57.82
 第5レンズ群     37   700.00
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.840     6.840     6.840
 撮影距離(m)   0.4165    0.3788     0.3972
 
[条件式対応値]
 条件式(1) β(Gn)t = 3.341
 条件式(2) -f(Gn~G(VR))w/fw = 1.959
 条件式(3) f(RP)/f(FP) = 1.321
 条件式(4) ωt = 17.2
 条件式(5) ωw = 42.3
 表9から、第9実施例に係る変倍光学系ZL9は、条件式(1)~(5)を満足することが分かる。
 図26は、第9実施例に係る変倍光学系ZL9の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図27は、第9実施例に係る変倍光学系ZL9の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図27のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第9実施例に係る変倍光学系ZL9は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第10実施例)
 第10実施例について、図28~図30及び表10を用いて説明する。第10実施例に係る変倍光学系ZL(ZL10)は、図28に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と両凹レンズL13との接合レンズと、物体側に凸面を向けた正メニスカスレンズL14とからなる。負メニスカスレンズL11は、像側面が非球面形状である。
 第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
 第21レンズ群G21は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。正メニスカスレンズL22は、物体側面が非球面形状である。
 第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
 第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凸面を向けた正メニスカスレンズL32とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL33と、物体側に凸面を向けた正メニスカスレンズL34とからなる。両凹レンズL33は、物体側面が非球面形状である。
 第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。両凹レンズL45は、像側面が非球面形状である。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と像側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第5レンズ群G5は、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第10実施例では、広角端状態において、防振係数は-0.50であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.26mmである。中間焦点距離状態において、防振係数は-0.57であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.44mmである。望遠端状態において、防振係数は-0.66であり、焦点距離は67.84mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.54mmである。
 下記の表10に、第10実施例における各諸元の値を示す。表10における面番号1~38が、図28に示すm1~m38の各光学面に対応している。
(表10)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   179.73529   2.880   1.74389   49.5
 *2   28.00000   13.314   1.00000
  3  -709.59863   2.295   1.80518   25.4 
  4  -228.05154   2.100   1.76500   49.5 
  5   90.21469   0.200   1.00000
  6   56.00020   4.396   2.00100   29.1 
  7   96.29881    D7    1.00000
  8   96.54068   2.840   1.60300   65.4 
  9   715.47283   0.200   1.00000
 *10   57.08059   3.395   1.69680   55.5
  11   181.18928   5.604   1.00000
  12   98.04986   3.261   1.59319   67.9 
  13  -796.91447   1.450   1.76182   26.6
  14   41.75300   1.983   1.00000
  15   73.03256   3.630   1.74100   52.8
  16  -3863.66610   D16    1.00000
  17   58.79270   5.010   1.80400   46.6
  18  -393.67543   D18    1.00000
  19   (開口絞り)  1.540   1.00000
  20  -142.34068   1.200   1.81600   46.6
  21   35.05467   1.301   1.00000
  22   38.87328   2.715   1.90200   25.3
  23   117.88926   D23    1.00000
 *24  -118.17706   1.200   1.73231   53.2
  25   44.69744   1.030   1.00000
  26   52.10387   2.485   1.90200   25.3
  27   195.76461   D27    1.00000
 *28   71.27465   4.998   1.49782   82.6
  29  -102.88416   0.100   1.00000
  30   91.68269   1.200   1.90366   31.3
  31   52.62629   6.605   1.60300   65.4
  32   -69.88439   0.200   1.00000
  33  3314.77510   4.235   1.59319   67.9
  34   -54.08421   1.200   1.78500   26.2
 *35   216.08233   D35    1.00000
  36   56.19817   3.548   1.61800   63.3
  37   210.95097   1.200   1.83400   37.2
  38   84.00000   D38    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2 -6.73000e-02  2.59588e-06  7.45638e-10 -2.10470e-14  3.51745e-16
 10  1.00000e+00 -4.00000e-07  0.00000e+00  0.00000e+00  0.00000e+00
 24 -4.10880e+00  5.35515e-07  2.05353e-09  0.00000e+00  0.00000e+00
 28 -1.10460e+00  3.84373e-06 -4.29919e-09  3.81283e-12  0.00000e+00
 35  1.00000e+00  5.16409e-06  2.00000e-09  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.77    47.50     67.84
 FNo       2.90     2.90     2.90
 ω       42.2     23.9     17.2
 Y        21.60    21.60     21.60
 TL       208.124   187.432    190.017
 BF       40.315    40.322    40.381
 BF(空気換算)  40.315    40.322    40.381
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.77    47.50     67.84
 D7     48.968    12.510     1.800
 D16     7.185    7.185     7.185
 D18     1.300    17.853    29.355
 D23     2.232    2.232     2.232
 D27    19.311    9.731     1.900
 D35     1.500    10.287    19.851
 D38    40.315    40.322    40.381
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -39.97
 第2レンズ群      8   43.09
  第21レンズ群    8    80.97
  第22レンズ群    17   63.94
 第3レンズ群     19   -42.99
  第31レンズ群    19   -77.20
  第32レンズ群    24  -103.89
 第4レンズ群     28   56.10
 第5レンズ群     36   419.32
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.185     6.185     6.185
 撮影距離(m)   0.4444    0.4101     0.4308
 
[条件式対応値]
 条件式(1) β(Gn)t = 4.359
 条件式(2) -f(Gn~G(VR))w/fw = 1.736
 条件式(3) f(RP)/f(FP) = 1.302
 条件式(4) ωt = 17.2
 条件式(5) ωw = 42.2
 表10から、第10実施例に係る変倍光学系ZL10は、条件式(1)~(5)を満足することが分かる。
 図29は、第10実施例に係る変倍光学系ZL10の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図30は、第10実施例に係る変倍光学系ZL10の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図30のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第10実施例に係る変倍光学系ZL10は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第11実施例)
 第11実施例について、図31~図33及び表11を用いて説明する。第11実施例に係る変倍光学系ZL(ZL11)は、図31に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と像側に凹面を向けた負メニスカスレンズL14との接合レンズとからなる。負メニスカスレンズL11は、像側面が非球面形状である。
 第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
 第21レンズ群G21は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、像側に凹面を向けた負メニスカスレンズL23と、両凸レンズL24とからなる。第22レンズ群G22は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL25と両凸レンズL26との接合レンズからなる。正メニスカスレンズL22は、物体側面が非球面形状である。
 第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
 第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凸面を向けた正メニスカスレンズL32とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL33と、物体側に凸面を向けた正メニスカスレンズL34とからなる。両凹レンズL33は、物体側面が非球面形状である。
 第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凸面を向けた正メニスカスレンズL42と、像側に凹面を向けた負メニスカスレンズL43と両凸レンズL44との接合レンズとからなる。両凸レンズL44は、像側面が非球面形状である。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と像側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第5レンズ群G5は、変倍時、固定である。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第11実施例では、広角端状態において、防振係数は-0.54であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.24mmである。中間焦点距離状態において、防振係数は-0.61であり、焦点距離は47.53mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.41mmである。望遠端状態において、防振係数は-0.70であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.51mmである。
 下記の表11に、第11実施例における各諸元の値を示す。表11における面番号1~37が、図31に示すm1~m37の各光学面に対応している。
(表11)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   169.82392   2.880   1.74389   49.5
 *2   28.00000  13.823   1.00000
  3  -277.92141   2.100   1.69680   55.5
  4   89.48130   0.972   1.00000
  5   57.53130   5.977   1.90366   31.3
  6   288.24720   2.000   1.60311   60.7
  7   89.16103    D7    1.00000
  8   97.98839   2.906   1.62041   60.3
  9   988.16122   0.870   1.00000
 *10   52.75776   3.799   1.69680   55.5
  11   185.81817   3.941   1.00000
  12   244.48174   1.450   1.74077   27.7
  13   42.81836   2.225   1.00000
  14   81.99098   3.910   1.74100   52.8
  15  -359.52152   D15    1.00000
  16   56.22525   1.450   1.85000   25.5
  17   41.20061   6.609   1.75500   52.3
  18  -333.94984   D18    1.00000
  19   (開口絞り)  1.488   1.00000
  20  -133.09742   1.200   1.81600   46.6
  21   40.80390   0.998   1.00000
  22   48.84393   2.545   1.90200   25.3
  23   197.19167   D23    1.00000
 *24  -159.18908   1.200   1.70000   55.0
  25   46.35402   0.845   1.00000
  26   47.53111   2.169   1.90200   25.3
  27   92.34748   D27    1.00000
  28   59.48521   4.431   1.59319   67.9
  29  -192.71174   0.100   1.00000
  30  -6013.33410   3.364   1.59319   67.9
  31   -71.43167   0.200   1.00000
  32  5300.14030   1.404   1.90366   31.3
  33   31.44019   7.197   1.59319   67.9
 *34  -117.32485   D34    1.00000
  35   57.67894   3.814   1.70000   56.0
  36   263.45851   0.763   1.77250   49.6
  37   84.00000   D37    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2 -5.97000e-02  2.62042e-06  7.82559e-10  9.78767e-14  4.33213e-16
 10  5.28200e-01  6.32647e-08  1.88164e-10  0.00000e+00  0.00000e+00
 24 -6.74850e+00  4.82591e-07  2.86667e-10  0.00000e+00  0.00000e+00
 34 -1.67545e+01  1.36811e-06  3.39381e-09  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.77    47.53     67.85
 FNo       2.90     2.90     2.91
 ω        42.2     23.9     17.3
 Y        21.60    21.60     21.60
 TL       210.949   190.232    192.480
 BF       43.417    43.503    43.670
 BF(空気換算)  43.417    43.503    43.670
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.77    47.53     67.85
 D7     48.868    12.444     1.800
 D15     7.185    7.185     7.185
 D18     0.800    16.872    28.207
 D23     1.827    1.827     1.827
 D27    20.646    10.368     1.900
 D34     1.574    11.401    21.260
 D37    43.417    43.503    43.670
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -39.52
 第2レンズ群      8   42.67
  第21レンズ群    8    81.00
  第22レンズ群    16   66.83
 第3レンズ群     19   -43.84
  第31レンズ群    19   -83.74
  第32レンズ群    24   -98.45
 第4レンズ群     28   61.94
 第5レンズ群     35   285.15
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.185     6.185     6.185
 撮影距離(m)   0.4485    0.4038     0.4202
 
[条件式対応値]
 条件式(1) β(Gn)t = 3.303
 条件式(2) -f(Gn~G(VR))w/fw = 1.771
 条件式(3) f(RP)/f(FP) = 1.452
 条件式(4) ωt = 17.3
 条件式(5) ωw = 42.2
 表11から、第11実施例に係る変倍光学系ZL11は、条件式(1)~(5)を満足することが分かる。
 図32は、第11実施例に係る変倍光学系ZL11の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図33は、第11実施例に係る変倍光学系ZL11の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図33のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第11実施例に係る変倍光学系ZL11は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第12実施例)
 第12実施例について、図34~図36及び表12を用いて説明する。第12実施例に係る変倍光学系ZL(ZL12)は、図34に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7とからなる。
 第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と像側に凹面を向けた負メニスカスレンズL14との接合レンズとからなる。負メニスカスレンズL11は、像側面が非球面形状である。
 第2レンズ群G2(合焦レンズ群)は、物体側に凸面を向けた正メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、像側に凹面を向けた負メニスカスレンズL23と、両凸レンズL24とからなる。正メニスカスレンズL22は、物体側面が非球面形状である。
 第3レンズ群G3は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL31と両凸レンズL32との接合レンズからなる。
 第4レンズ群G4(中間群)は、光軸と直交方向の位置が固定されており、物体側から順に並んだ、開口絞りSと、両凹レンズL41と、物体側に凸面を向けた正メニスカスレンズL42とからなる。
 第5レンズ群G5(防振レンズ群)は、物体側から順に並んだ、両凹レンズL51と、物体側に凸面を向けた正メニスカスレンズL52とからなる。両凹レンズL51は、物体側面が非球面形状である。
 第6レンズ群G6は、物体側から順に並んだ、両凸レンズL61と、像側に凸面を向けた正メニスカスレンズL62と、像側に凹面を向けた負メニスカスレンズL63と両凸レンズL64との接合レンズとからなる。両凹レンズL64は、像側面が非球面形状である。
 第7レンズ群G7は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL71と像側に凹を向けた負メニスカスレンズL72との接合レンズからなる。
 広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を物体側へ移動させ、第4レンズ群G4を一旦像側へ移動させた後、物体側へ移動させ、第5レンズ群G5を一旦像側へ移動させた後、物体側へ移動させ、第6レンズ群G6を物体側へ移動させ、第7レンズ群G7を物体側へ移動させることにより行う。
 無限遠から近距離物体への合焦は、合焦レンズ群として、第2レンズ群G2を像側へ移動させることにより行う。
 像ブレ発生時には、防振レンズ群VRとして、第5レンズ群G5を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
 第12実施例では、広角端状態において、防振係数は-0.54であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.24mmである。中間焦点距離状態において、防振係数は-0.61であり、焦点距離は47.33mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.41mmである。望遠端状態において、防振係数は-0.72であり、焦点距離は67.34mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は-0.50mmである。
 下記の表12に、第12実施例における各諸元の値を示す。表12における面番号1~37が、図34に示すm1~m37の各光学面に対応している。
(表12)
[レンズ諸元]
 面番号   R      D    n(d)    νd
  1   169.82392   2.880   1.74389   49.5
 *2   28.00000  13.823   1.00000
  3  -277.92141   2.100   1.69680   55.5
  4   89.48130   0.972   1.00000
  5   57.53130   5.977   1.90366   31.3
  6   288.24720   2.000   1.60311   60.7
  7   89.16103    D7    1.00000
  8   97.98839   2.906   1.62041   60.3
  9   988.16122   0.870   1.00000
 *10   52.75776   3.799   1.69680   55.5
  11   185.81817   3.941   1.00000
  12   244.48174   1.450   1.74077   27.7
  13   42.81836   2.225   1.00000
  14   81.99098   3.910   1.74100   52.8
  15  -359.52152   D15    1.00000
  16   56.22525   1.450   1.85000   25.5
  17   41.20061   6.609   1.75500   52.3
  18  -333.94984   D18    1.00000
  19   (開口絞り)  1.488   1.00000
  20  -133.09742   1.200   1.81600   46.6
  21   40.80390   0.998   1.00000
  22   48.84393   2.545   1.90200   25.3
  23   197.19167   D23    1.00000
 *24  -159.18908   1.200   1.70000   55.0
  25   46.35402   0.845   1.00000
  26   47.53111   2.169   1.90200   25.3
  27   92.34748   D27    1.00000
  28   59.48521   4.431   1.59319   67.9
  29  -192.71174   0.100   1.00000
  30  -6013.33410   3.364   1.59319   67.9
  31   -71.43167   0.200   1.00000
  32  5300.14030   1.404   1.90366   31.3
  33   31.44019   7.197   1.59319   67.9
 *34  -117.32485   D34    1.00000
  35   57.67894   3.814   1.70000   56.0
  36   263.45851   0.763   1.77250   49.6
  37   84.00000   D37    1.00000
 
[非球面データ]
 面    κ      A4      A6      A8      A10
  2 -5.97000e-02  2.62042e-06  7.82559e-10  9.78767e-14  4.33213e-16
 10  5.28200e-01  6.32647e-08  1.88164e-10  0.00000e+00  0.00000e+00
 24 -6.74850e+00  4.82591e-07  2.86667e-10  0.00000e+00  0.00000e+00
 34 -1.67545e+01  1.36811e-06  3.39381e-09  0.00000e+00  0.00000e+00
 
[各種データ]
          W       M       T
 f        24.77    47.33     67.34
 FNo       2.90     2.90     2.91
 ω       42.2     24.0     17.4
 Y        21.60    21.60     21.60
 TL       210.949   193.610    195.380
 BF       43.417    43.433    45.688
 BF(空気換算)  43.417    43.433    45.688
 
[可変間隔データ]
             無限遠
        W       M       T
 D0      ∞      ∞      ∞
 倍率     -       -       -
 f     24.77    47.33     67.34
 D7     48.868    12.444     1.600
 D15     7.185    12.000     9.500
 D18     0.800    16.872    26.900
 D23     1.827    1.827     2.000
 D27    20.646    9.000     1.800
 D34     1.574    11.401    21.260
 D37    43.417    43.433    45.688
 
[レンズ群データ]
 レンズ群       始面  焦点距離
 第1レンズ群      1   -39.52
 第2レンズ群      8   81.00
 第3レンズ群     16   66.83
 第4レンズ群     19   -83.74
 第5レンズ群     24   -98.45
 第6レンズ群     28   61.94
 第7レンズ群     35   285.15
 
[フォーカシングデータ]
           W       M       T
 レンズ移動量   6.185    11.000     8.500
 撮影距離(m)   0.4485    0.2946     0.3494
 
[条件式対応値]
 条件式(1) β(Gn)t = 3.516
 条件式(2) -f(Gn~G(VR))w/fw = 1.770
 条件式(3) f(RP)/f(FP) = 1.452
 条件式(4) ωt = 17.4
 条件式(5) ωw = 42.2
 表12から、第12実施例に係る変倍光学系ZL12は、条件式(1)~(5)を満足することが分かる。
 図35は、第12実施例に係る変倍光学系ZL12の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図36は、第12実施例に係る変倍光学系ZL12の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図36のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
 各収差図から明らかなように、第12実施例に係る変倍光学系ZL12は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
 以上の各実施例によれば、F2.8~F3.5程度とF値が明るく、半画角で50程度以上の広画角を有し、諸収差が良好に補正された変倍光学系を実現することができる。
 ここまで本発明の態様を分かりやすくするために、実施形態の要素の符号を付して説明したが、本発明の態様がこれに限定されるものではない。以下の内容は、変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 変倍光学系ZLの数値実施例として、4群、5群、7群構成のものを示したが、これに限定されず、他の群構成(例えば、6群や8群等)にも適用可能である。具体的には、最も物体側にレンズまたはレンズ群を追加した構成や、最も像面側にレンズまたはレンズ群を追加した構成でも構わない。第1レンズ群と第2レンズ群との間に正又は負の屈折力を有するレンズ群を追加した構成でも構わない。さらに、防振レンズ群VRの像面側に、負または正の屈折力を有し、光軸と直交方向の位置を固定されたレンズ群(この負または正の屈折力を有し、光軸と直交方向の位置を固定されたレンズ群は、変倍時に防振レンズ群VRとの間隔を変化させても、させなくても構わない)を追加した構成でも構わない。また、防振レンズ群VRより像側に配置された正の屈折力を有するレンズ群のうち、正の屈折力が最も強い像側レンズ群RPとして、上記実施例1~3、5、7~11では第4レンズ群G4であり、上記実施例4、6、12では第6レンズ群G6の例を示したが、この限りではない。像側レンズ群RPに含まれるレンズ間隔は、変倍時には固定である。なお、レンズ群とは、変倍時または合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 また、中間群は、第2レンズ群より像側に配置され、防振レンズ群の物体側であって防振レンズ群に対向する位置に配置されるレンズ群である。中間群の物体側であって中間群に対向する位置に開口絞りを配置することとしてもよい。
 また、中間群を構成するレンズは、変倍時に光軸方向の位置を一体としてもよく、2以上のレンズ群に分けてその間隔を変倍時に変化させることとしてもよい。
 また、中間群の少なくとも一部のレンズを、変倍時に防振レンズ群と一体的に光軸方向に移動(または固定)させることとしてもよい。
 変倍光学系ZLにおいて、無限遠から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として、光軸方向へ移動させる構成としてもよい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ(例えば、超音波モータ等)による駆動にも適している。特に、上記のように、第2レンズ群G2の少なくとも一部を合焦レンズ群とすることがより好ましくは可能である。
 変倍光学系ZLにおいて、いずれかのレンズ群全体または部分レンズ群を、光軸に垂直な方向の成分を持つように移動させるか、或いは光軸を含む面内方向に回転移動(揺動)させて、手ブレ等によって生じる像ブレを補正する防振レンズ群VRとしてもよい。特に、開口絞りSより像側に配置された負の屈折力を有する中間群Gnより像側に配置された光学系の少なくとも一部を防振レンズ群VRとすることが好ましくは可能である。また、4群または5群構成の場合、第3レンズ群G3の少なくとも一部を防振レンズ群VRとすることが好ましくは可能である。また、7群構成の場合、第5レンズ群G5の少なくとも一部を防振レンズ群VRとすることが好ましくは可能である。また、防振レンズ群VRの像側に光軸と直交方向の位置を固定したレンズを配置し、そのレンズを防振レンズ群VRと一体で変倍時に移動または固定させることとしてもよい。
 変倍光学系ZLにおいて、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げる。また、像面がずれた場合でも描写性能の劣化が少ない。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
 変倍光学系ZLにおいて、d線における屈折率ndが70より小さい媒質のレンズに非球面を形成することが好ましくは可能である。d線における屈折率ndが70より小さい媒質のレンズは、防振レンズ群VRより像側に配置されたレンズ群のなかで正の屈折力が最も強いレンズ群に配置するのが好ましくは可能である。また、d線における屈折率ndが70より小さい媒質のレンズは、防振レンズ群VRより像側に配置されたレンズ群のなかで正の屈折力が最も強いレンズ群の最も物体側または最も物体側から2番目のレンズ成分に配置するのがより好ましくは可能である。また、d線における屈折率ndが70より小さい媒質のレンズの非球面は、防振レンズ群VRより像側に配置されたレンズ群のなかで正の屈折力が最も強いレンズ群の最も物体面とするのがより好ましくは可能である。
 変倍光学系ZLにおいて、開口絞りSは、上記のように、第2レンズ群と中間群Gnとの間に配置されるのが好ましくは可能であるが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。
 変倍光学系ZLにおいて、各レンズ面には、フレアやゴーストを軽減し高コントラストの良好な光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
 変倍光学系ZLは、変倍比が2.0~3.5倍程度である。
 ZL(ZL1~ZL12) 変倍光学系
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 G4 第4レンズ群
 VR 防振レンズ群
 S 開口絞り
 I 像面
 1 カメラ(光学機器)。

Claims (9)

  1.  負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、
     前記第2レンズ群より像側に配置された中間群を有し、
     前記中間群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、
     少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記中間群との間隔とを変化させることにより変倍を行い、
     以下の条件式を満足することを特徴とする変倍光学系。
     1.500 < β(Gn)t < 100.000
     但し、
     β(Gn)t:望遠端状態における前記中間群の結像倍率。
  2.  以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
     1.360 < -f(Gn~G(VR))w/fw < 5.000
     但し、
     f(Gn~G(VR))w:広角端状態における中間群Gnから防振レンズ群までの合成焦点距離、
     fw:広角端状態における全系の焦点距離。
  3.  前記防振レンズ群より像側に配置された正の屈折力を有するレンズ群のうち、正の屈折力が最も強い像側レンズ群を有し、
     前記像側レンズ群と前記防振レンズ群との間隔は変倍の際に変化し、
     以下の条件式を満足することを特徴とする請求項1又は2に記載の変倍光学系。
     0.400 < f(RP)/f(FP) < 2.000
     但し、
     f(RP):前記像側レンズ群の焦点距離、
     f(FP):前記第1レンズ群より像面側に配置され、前記中間群より物体側に配置されたレンズの広角端状態における合成焦点距離。
  4.  前記中間群は、光軸と直交方向の位置を固定されており、負の屈折力を有することを特徴とする請求項1~3のいずれか一項に記載の変倍光学系。
  5.  前記中間群は、正レンズ成分と、負レンズ成分を、それぞれ1つ以上有することを特徴とする請求項1~4のいずれか一項に記載の変倍光学系。
  6.  前記第2レンズ群は、少なくとも4つ以上のレンズ成分で構成されていることを特徴とする請求項1~5のいずれか一項に記載の変倍光学系。
  7.  前記第2レンズ群は、物体側から順に並んだ、正の屈折力を有する第21レンズ群と、正の屈折力を有する第22レンズ群とからなり、
     前記第21レンズ群を合焦レンズ群として像側に移動させることにより無限遠から近距離物体への合焦を行うことを特徴とする請求項1~6のいずれか一項に記載の変倍光学系。
  8.  請求項1~7のいずれか一項に記載の変倍光学系を搭載することを特徴とする光学機器。
  9.  負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有する変倍光学系の製造方法であって、
     前記第2レンズ群より像側に配置された中間群を有し、
     前記中間群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、
     少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記中間群との間隔とを変化させることにより変倍を行い、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置することを特徴とする変倍光学系の製造方法。
     1.500 < β(Gn)t < 100.000
     但し、
     β(Gn)t:望遠端状態における前記中間群の結像倍率。
PCT/JP2016/052700 2015-01-30 2016-01-29 変倍光学系、光学機器及び変倍光学系の製造方法 WO2016121945A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/545,701 US10473901B2 (en) 2015-01-30 2016-01-29 Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
EP16743548.6A EP3252518A4 (en) 2015-01-30 2016-01-29 Variable power optical system, optical device, and method for producing variable power optical system
JP2016572193A JP6406360B2 (ja) 2015-01-30 2016-01-29 変倍光学系及び光学機器
CN201680016073.7A CN107407794B (zh) 2015-01-30 2016-01-29 变倍光学系统以及光学设备
US16/660,747 US20200049961A1 (en) 2015-01-30 2019-10-22 Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-017917 2015-01-30
JP2015017917 2015-01-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/545,701 A-371-Of-International US10473901B2 (en) 2015-01-30 2016-01-29 Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US16/660,747 Division US20200049961A1 (en) 2015-01-30 2019-10-22 Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system

Publications (1)

Publication Number Publication Date
WO2016121945A1 true WO2016121945A1 (ja) 2016-08-04

Family

ID=56543547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052700 WO2016121945A1 (ja) 2015-01-30 2016-01-29 変倍光学系、光学機器及び変倍光学系の製造方法

Country Status (5)

Country Link
US (2) US10473901B2 (ja)
EP (1) EP3252518A4 (ja)
JP (3) JP6406360B2 (ja)
CN (1) CN107407794B (ja)
WO (1) WO2016121945A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159823A (ja) * 2017-03-23 2018-10-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
WO2019229849A1 (ja) * 2018-05-29 2019-12-05 株式会社ニコン 光学系、光学機器、および光学系の製造方法
JP2020129022A (ja) * 2019-02-07 2020-08-27 株式会社シグマ 広角レンズ系

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211713A (ja) * 2018-06-07 2019-12-12 キヤノン株式会社 結像光学系およびこれを用いた画像投射装置、画像投射システム
CN112020784B (zh) 2018-12-21 2023-12-19 株式会社Lg新能源 用于电化学装置的隔板和包含该隔板的电化学装置
US20220113521A1 (en) * 2020-10-08 2022-04-14 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246043A (ja) * 2003-02-13 2004-09-02 Nikon Corp 可変焦点距離レンズ系
JP2007233045A (ja) * 2006-03-01 2007-09-13 Sony Corp ズームレンズ及び撮像装置
JP2010152145A (ja) * 2008-12-25 2010-07-08 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
WO2011145288A1 (ja) * 2010-05-19 2011-11-24 コニカミノルタオプト株式会社 ズームレンズ及び撮像装置
JP2012198505A (ja) * 2011-03-07 2012-10-18 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2013064912A (ja) * 2011-09-20 2013-04-11 Konica Minolta Advanced Layers Inc 撮像レンズ及び撮像装置
JP2014026169A (ja) * 2012-07-27 2014-02-06 Sony Corp 可変焦点距離レンズ系および撮像装置
JP2014160229A (ja) * 2013-01-25 2014-09-04 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046834B2 (ja) 1998-02-13 2008-02-13 キヤノン株式会社 防振機能を有した変倍光学系
WO2004073864A2 (en) * 2003-02-13 2004-09-02 Becton, Dickinson And Company Devices for component removal during blood collection, and uses thereof
JP4876510B2 (ja) * 2005-09-28 2012-02-15 株式会社ニコン ズームレンズ
JP5045267B2 (ja) * 2007-06-27 2012-10-10 コニカミノルタアドバンストレイヤー株式会社 ズームレンズ及び撮像装置
US8279531B2 (en) * 2008-12-25 2012-10-02 Panasonic Corporation Zoom lens system, imaging device and camera
JP5441599B2 (ja) * 2009-10-06 2014-03-12 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5621636B2 (ja) * 2010-03-15 2014-11-12 株式会社ニコン 撮影レンズ、この撮影レンズを備えた光学機器、撮影レンズの製造方法
US8720698B2 (en) * 2012-07-18 2014-05-13 Roger J. Petitpas Seafood grading apparatus
EP3361300A1 (en) 2012-08-09 2018-08-15 Nikon Corporation Variable magnification optical system comprising four lens groups with positive-negative-positive-positive refractive powers
US9250425B2 (en) * 2012-12-04 2016-02-02 Samsung Electronics Co., Ltd. Zoom lens and electronic device including the same
JP6099022B2 (ja) * 2012-12-19 2017-03-22 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP6177549B2 (ja) * 2013-03-13 2017-08-09 株式会社タムロン 超広角ズームレンズ
KR102052126B1 (ko) * 2013-07-09 2019-12-05 삼성전자주식회사 줌 렌즈 및 이를 포함한 촬영 장치
JP2015022220A (ja) * 2013-07-22 2015-02-02 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6221641B2 (ja) * 2013-11-01 2017-11-01 リコーイメージング株式会社 ズームレンズ系
JP2016014807A (ja) * 2014-07-03 2016-01-28 キヤノン株式会社 ズームレンズ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246043A (ja) * 2003-02-13 2004-09-02 Nikon Corp 可変焦点距離レンズ系
JP2007233045A (ja) * 2006-03-01 2007-09-13 Sony Corp ズームレンズ及び撮像装置
JP2010152145A (ja) * 2008-12-25 2010-07-08 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
WO2011145288A1 (ja) * 2010-05-19 2011-11-24 コニカミノルタオプト株式会社 ズームレンズ及び撮像装置
JP2012198505A (ja) * 2011-03-07 2012-10-18 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2013064912A (ja) * 2011-09-20 2013-04-11 Konica Minolta Advanced Layers Inc 撮像レンズ及び撮像装置
JP2014026169A (ja) * 2012-07-27 2014-02-06 Sony Corp 可変焦点距離レンズ系および撮像装置
JP2014160229A (ja) * 2013-01-25 2014-09-04 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159823A (ja) * 2017-03-23 2018-10-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
WO2019229849A1 (ja) * 2018-05-29 2019-12-05 株式会社ニコン 光学系、光学機器、および光学系の製造方法
JPWO2019229849A1 (ja) * 2018-05-29 2021-05-13 株式会社ニコン 光学系、光学機器、および光学系の製造方法
JP7143882B2 (ja) 2018-05-29 2022-09-29 株式会社ニコン 光学系、光学機器、および光学系の製造方法
US12025779B2 (en) 2018-05-29 2024-07-02 Nikon Corporation Optical system, optical equipment, and manufacturing method for optical system
JP2020129022A (ja) * 2019-02-07 2020-08-27 株式会社シグマ 広角レンズ系
JP7162883B2 (ja) 2019-02-07 2022-10-31 株式会社シグマ 広角レンズ系

Also Published As

Publication number Publication date
JP6406360B2 (ja) 2018-10-17
US20200049961A1 (en) 2020-02-13
JP2019008320A (ja) 2019-01-17
US10473901B2 (en) 2019-11-12
CN107407794B (zh) 2020-07-17
JP6673420B2 (ja) 2020-03-25
US20180180858A1 (en) 2018-06-28
EP3252518A4 (en) 2018-11-07
JP2020106860A (ja) 2020-07-09
CN107407794A (zh) 2017-11-28
EP3252518A1 (en) 2017-12-06
JPWO2016121945A1 (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6673420B2 (ja) 変倍光学系、及び光学機器
CN109477952B (zh) 变倍光学系统、光学设备以及变倍光学系统的制造方法
JP2011017912A (ja) 変倍光学系、この変倍光学系を備える光学機器、及び、変倍光学系の製造方法
WO2016121966A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP2009014766A (ja) 変倍光学系、光学装置、変倍光学系の変倍方法
JP2021096485A (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP6683238B2 (ja) 変倍光学系、及び光学機器
JP7227572B2 (ja) 変倍光学系及び光学機器
JP5906759B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2009300993A (ja) 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の変倍方法
JP6281200B2 (ja) 変倍光学系及び光学装置
WO2015079679A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JPH0792390A (ja) ズームレンズ
JP7526394B2 (ja) 変倍光学系及び光学機器
JP6281199B2 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
JP6446821B2 (ja) 変倍光学系及び光学機器
JP5115871B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2020136745A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP6507480B2 (ja) 変倍光学系および撮像装置
JP2016156902A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2016156903A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6435620B2 (ja) 変倍光学系および撮像装置
JP2010276747A (ja) レンズ系、光学機器及び製造方法
JP2019061271A (ja) 変倍光学系及び光学機器
JP2014048372A (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572193

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15545701

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016743548

Country of ref document: EP