WO2016084914A1 - Drill tip and drill bit - Google Patents

Drill tip and drill bit Download PDF

Info

Publication number
WO2016084914A1
WO2016084914A1 PCT/JP2015/083276 JP2015083276W WO2016084914A1 WO 2016084914 A1 WO2016084914 A1 WO 2016084914A1 JP 2015083276 W JP2015083276 W JP 2015083276W WO 2016084914 A1 WO2016084914 A1 WO 2016084914A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tip
hardness
excavation
hardness layer
Prior art date
Application number
PCT/JP2015/083276
Other languages
French (fr)
Japanese (ja)
Inventor
エコ ワルドヨ アフマディ
松尾 俊彦
稚晃 桜沢
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015230103A external-priority patent/JP6641925B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to AU2015354591A priority Critical patent/AU2015354591A1/en
Priority to US15/531,255 priority patent/US10352104B2/en
Priority to EP15864189.4A priority patent/EP3225775B1/en
Priority to CN201580064114.5A priority patent/CN107002465B/en
Priority to RU2017121909A priority patent/RU2017121909A/en
Priority to CA2968940A priority patent/CA2968940C/en
Priority to KR1020177013913A priority patent/KR102446207B1/en
Publication of WO2016084914A1 publication Critical patent/WO2016084914A1/en
Priority to ZA2017/03837A priority patent/ZA201703837B/en
Priority to AU2020264372A priority patent/AU2020264372B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts

Definitions

  • the present invention relates to a drilling tip that is attached to a distal end portion of a drilling bit to perform excavation, and a drilling bit in which such a drilling tip is attached to the distal end portion.
  • Patent Documents 1 to 5 propose a hard layer having a multilayer structure mainly for the purpose of relaxing stress in a polycrystalline diamond sintered body.
  • the hardness is inclined from the outermost layer on the surface of the hard layer toward the chip body, and the toughness is increased.
  • the outermost layer of the hard layer having such a multilayer structure is a polycrystalline diamond sintered body having a composition in which diamond particles are sintered by adding Co or the like as a metal binder (metal catalyst).
  • the toughness is increased while maintaining a higher hardness than the chip body by reducing the diamond content and adding a metal carbide such as WC instead.
  • a multilayer structure of the inner layer has also been proposed.
  • the inner layer has a lower diamond content and a higher WC content to give a gradient in hardness and toughness.
  • the present invention has been made under such a background, and even if a defect or chipping occurs in the outer layer at the time of excavation, the wear does not immediately reach the tip body, and the excavation performance can be maintained.
  • a drilling tip is a drilling tip that is attached to the tip of a drilling bit to perform drilling, and includes a tip body, A hard layer made of a diamond sintered body harder than the chip body and coated on the tip of the chip body, and the hard layer is at least from the surface side of the hard layer toward the chip body side. It has two high-hardness layers and a low-hardness layer having a lower hardness than the high-hardness layer disposed between these high-hardness layers.
  • the hard layer made of a diamond sintered body coated on the tip of the tip body is directed from the surface side of the hard layer toward the tip body side, that is, the outer layer of the hard layer. From the side to the inside, it has at least two high-hardness layers and a low-hardness layer having a lower hardness than the high-hardness layer disposed between these high-hardness layers. Even if chipping or chipping occurs in the high hardness layer on the side and the inside is exposed, and the inner low hardness layer is worn away from this exposed portion, the high hardness layer on the chip body side located inside this low hardness layer The progress of wear can be suppressed.
  • the excavation tip having the above-described configuration, it is possible to prevent wear generated in the hard layer from abruptly progressing and reaching the tip body, and to maintain the excavation performance of the excavation tip by the inner high hardness layer. Can do. Therefore, in the excavation bit of the present invention in which such excavation tip is attached to the tip, it is possible to extend its life, and it is not necessary to replace the excavation tip in the middle of excavating a large number of excavation holes, It becomes possible to promote the efficiency of excavation work.
  • an inner high hardness layer is provided.
  • the stress can be relieved by the low hardness layer which is disposed further inside and has a lower hardness and higher toughness than the high hardness layer.
  • the life of the excavation tip can be extended according to the number of high-hardness layers.
  • the thickness of the high hardness layer be in a range of 1/2 or more of the thickness of the low hardness layer and not more than the thickness of the low hardness layer.
  • the thickness of the low hardness layer can be relatively more than twice that of the high hardness layer. The excavation length and time until wear reaches the inner high hardness layer when a defect or the like occurs in the layer can be secured.
  • the stress of the high hardness layer may not be sufficiently relaxed.
  • the thickness of each of the high hardness layer and the thickness of the low hardness layer is preferably 150 ⁇ m or more at the thinnest part and 800 ⁇ m or less at the thickest part.
  • the thickness of the thinnest part of both the high hardness layer and the low hardness layer is less than 150 ⁇ m, it is difficult to form the layer uniformly and there is a possibility that sufficient wear resistance cannot be obtained.
  • the thickness of the thickest part exceeds 800 ⁇ m, when the outer high hardness layer is lost in this part and the inner low hardness layer is worn away, the surface of the hard layer is greatly peeled off and excavated. There is a possibility that the shape of the tip of the tip becomes distorted and the desired excavation performance cannot be obtained.
  • the high hardness layer is a polycrystalline diamond sintered body obtained by adding a metal binder (metal catalyst) such as Co to diamond particles and sintering
  • the low hardness layer is the content of diamond particles. It is good also as a layer which consists of a diamond sintered compact to which particle
  • the high hardness layer and the low hardness layer are both formed as a diamond sintered body layer which is sintered by containing diamond particles, a metal binder, and additive particles such as metal carbide, metal nitride and metal carbonitride.
  • the hardness may be lowered by adjusting the content and particle size of diamond particles, the content, type and composition ratio of additive particles such as metal binder and metal carbide in the low hardness layer.
  • the hardness is lower than the high hardness layer between the high hardness layer and the low hardness layer from the surface side of the hard layer toward the chip body side.
  • the excavation tip hits an extremely hard cemented rock in the rock suddenly during excavation, resulting in defects and chipping in the high hardness layer of the hard outer layer, and from the exposed portion. Even if wear progresses to the inner low hardness layer, it can prevent the wear from reaching the tip body at a stretch and maintain drilling performance, extending the life of the drill bit and achieving efficient drilling work it can.
  • FIG. 1 is a sectional view showing an embodiment of a drilling tip 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of the excavation bit of the present invention to which the excavation tip 1 of this embodiment is attached.
  • the excavation tip 1 of the present embodiment includes a tip body 2 made of a hard material such as cemented carbide and a diamond harder than the tip body 2 covered by the tip portion (upper portion in FIG. 1) of the tip body 2. And a hard layer 3 made of a sintered body.
  • the chip body 2 has a rear end portion (lower portion in FIG. 1) formed in a columnar shape centered on the chip center line C, and the tip portion has a radius equal to the radius of the column formed by the rear end portion.
  • a hemisphere having a center on the center line C is formed so that the outer diameter from the chip center line C gradually decreases toward the tip side. That is, the excavation tip 1 of this embodiment is a button tip.
  • the excavation bit to which the excavation tip 1 is attached is provided with a bit body 11 formed of a steel material or the like and having a substantially bottomed cylindrical shape centering on an axis O as shown in FIG.
  • the bottom part is a tip part (upper part in FIG. 2) and the excavation tip 1 is attached.
  • a female threaded portion 12 is formed on the inner periphery of the cylindrical rear end (the lower portion in FIG. 2), and a drilling rod connected to the excavator is screwed into the female threaded portion 12 so as to be in the direction of the axis O.
  • the striking force and thrust toward the tip side and the rotational force around the axis O are transmitted. Thereby, the rock is crushed by the excavation tip 1 to form an excavation hole.
  • the front end portion of the bit body 11 has a slightly larger outer diameter than the rear end portion, and a plurality of discharge grooves 13 extending in parallel with the axis O are formed on the outer periphery of the front end portion at intervals in the circumferential direction. Then, the crushed debris generated by crushing the rock by the excavation tip 1 is discharged to the rear end side through the discharge groove 13.
  • a blow hole 14 is formed along the axis O from the bottom surface of the female screw portion 12 of the bottomed bit body 11. This blow hole 14 branches obliquely at the tip of the bit body 11 and opens at the tip surface of the bit body 11, and ejects fluid such as compressed air supplied through the excavation rod to discharge crushed debris. Facilitate.
  • the front end surface of the bit body 11 has a circular face surface 15 centering on an axis O perpendicular to the inner peripheral axis O, and a rear end side located on the outer periphery of the face surface 15 toward the outer periphery. And a frustoconical gauge surface 16 facing toward the surface.
  • the blow hole 14 opens to the face surface 15, and the tip of the discharge groove 13 opens to the gauge surface 16.
  • a plurality of mounting holes 17 having a circular cross section are formed in the face surface 15 and the gauge surface 16 so as to avoid the openings of the blow holes 14 and the discharge grooves 13, respectively.
  • the excavation tip 1 is fixed by fastening its cylindrical rear end portion into these mounting holes 17 by press-fitting, shrink fitting, or brazing, and the tip center line C is fixed to the face surface 15. It is attached so as to be perpendicular to the gauge surface 16.
  • the hard layer 3 covered at the tip portion is at least two layers from the surface side of the hard layer 3 toward the tip body 2 side.
  • the high hardness layer 4 and a low hardness layer 5 having a lower hardness than the high hardness layer 4 disposed between the high hardness layers 4.
  • the low hardness layer 5 is also disposed between the high hardness layer 4 on the chip body 2 side and the chip body 2, and each of the multiple layers of the high hardness layer 4 and the low hardness layer 4.
  • the hardness layers 5 are alternately arranged in this order from the surface of the hard layer 3 toward the surface of the chip body 2.
  • the high hardness layer 4 is a polycrystalline diamond sintered body that is sintered by simply adding a metal binder (metal catalyst) such as Co, Ni, or Fe—Ni alloy to the diamond particles.
  • the low hardness layer 5 reduces the content of diamond particles relative to the high hardness layer 4, and also includes metal carbide particles such as WC, TaC and TiC, metal nitride particles such as TiN and cBN, or TiCN.
  • a sintered carbon layer is obtained by adding metal carbonitride particles and the above-described metal binder and sintering.
  • the hardness of the low hardness layer 5 can be made lower than that of the high hardness layer 4.
  • the high hardness layer 4 has a Vickers hardness of about 2500 to 4000
  • the low hardness layer 5 has a Vickers hardness of about 1500 to 2500.
  • both the high hardness layer 4 and the low hardness layer 5 were sintered by containing diamond particles and additive particles such as metal binder and metal carbide, metal nitride, metal carbonitride as described above. It may be a sintered body layer.
  • the high hardness layer in the low hardness layer 5, can be obtained by reducing the content and particle size of diamond particles, or adjusting the content, type and composition ratio of additive particles such as metal carbides.
  • the hardness can be made lower than 4.
  • the excavation tip 1 in which the hard layer 3 is coated on the tip end of the tip body 2 is basically sintered in the diamond stable region, and is known as described in Patent Documents 1 to 5, for example. This is possible by the sintering method.
  • the tip main body 2 when the excavation tip 1 suddenly hits an extremely hard hard rock or the like in the rock during excavation.
  • the hard layer 3 covered at least at the tip of the first hard layer 4 which is the outermost layer, defects and chipping occur, and the inside of the hard layer 3 is exposed.
  • the inner low-hardness layer 5 is worn, but since the second high-hardness layer 4 having a higher hardness than the low-hardness layer 5 is disposed further inside the low-hardness layer 5, the wear is reduced. The rapid progress until reaching the chip body 2 can be suppressed by the second high hardness layer 4.
  • the low hardness layer 5 having a high toughness is interposed between the first and second high hardness layers 4, the hardness is lower than those of the high hardness layers 4. Even in the case of a polycrystalline diamond sintered body that is sintered by adding only a metal binder to diamond particles, the residual stress generated in the high hardness layer 4 can be relaxed.
  • the high hardness layer 4 and the low hardness layer 5 are alternately arranged in plural layers (two layers) from the surface side of the hard layer 3 toward the chip body 2 side. Therefore, the stress of the inner second high hardness layer 4 can be relaxed by the inner layer, that is, the low hardness layer 5 interposed between the second high hardness layer 4 and the chip body 2.
  • two high hardness layers 4 and two low hardness layers 5 are alternately arranged from the surface side of the hard layer 3 toward the chip body 2 side. 3, at least two high-hardness layers 4 and one low-hardness layer 5 disposed therebetween need only be provided. That is, the second high hardness layer 4 closest to the chip body 2 may be coated directly on the tip portion surface of the chip body 2. Three or more high-hardness layers 4 may be alternately arranged with the low-hardness layers 5 interposed therebetween. For example, an even number layer in which the same number of high-hardness layers 4 and low-hardness layers 5 are alternately laminated.
  • the hard layer 3 may be an odd-numbered hard layer 3 in which the outermost layer and the innermost layer are the high-hardness layer 4 and the low-hardness layer 5 is disposed between the high-hardness layers 4.
  • two to six high hardness layers 4 and low hardness layers 5 may be alternately arranged from the surface side of the hard layer 3 toward the chip body 2 side.
  • the total number of layers of the high hardness layer and the low hardness layer may be 4 or more and 12 or less.
  • an intermediate layer having a hardness lower than that of the high hardness layer 4 and higher than that of the low hardness layer 5 is disposed between the high hardness layer 4 and the low hardness layer 5 from the surface side of the hard layer 3 toward the chip body 2 side. You may make it do.
  • the high hardness layer 4 is a polycrystalline diamond sintered body layer obtained by adding only a metal binder to diamond particles and sintered, the inclusion of diamond particles between the high hardness layer 4 and the low hardness layer 5
  • Such an intermediate layer has low hardness and high toughness with respect to the high hardness layer 4 on the outer layer side, so that the stress of the high hardness layer 4 can be relieved to some extent.
  • the hardness is high for the low hardness layer 5 on the inner layer side, it is possible to maintain the excavation performance until wear reaches the low hardness layer 5 when the high hardness layer 4 is chipped or chipped. As a result, the life of the excavation tip 1 can be extended.
  • the intermediate layer itself may also be formed of a plurality of layers whose hardness decreases sequentially from the surface side of the hard layer 3 to the chip body 2 side, that is, from the outer layer side to the inner layer side.
  • the thickness of each high hardness layer 4 be in the range of 1/2 or more of the thickness of the low hardness layer 5 and not more than the thickness of the low hardness layer 5. If the thickness of the high hardness layer 4 is not larger than the thickness of the low hardness layer 5, the low hardness layer 5 is sufficient to relieve the stress of the high hardness layer 4. If the thickness of the high hardness layer 4 is 1 ⁇ 2 or more of the thickness of the low hardness layer 5, the thickness of the low hardness layer 5 is relatively more than twice the thickness of the high hardness layer 4. Therefore, the stress relaxation of the high hardness layer 4 can be achieved more reliably.
  • the high hardness layer 4 inside the low hardness layer 5 is formed by the low hardness layer 5 which is harder than the chip body 2 even at a low altitude.
  • each high hardness layer 4 and the thickness of the low hardness layer 5 are preferably 150 ⁇ m or more at the thinnest portion and 800 ⁇ m or less at the thickest portion.
  • the high hardness layer 4 and the low hardness layer 5 are sintered layers containing diamond particles as described above. In this case, it is difficult to make the thickness uniform, and there is a possibility that sufficient wear resistance cannot be obtained.
  • the thickness of the thickest portion exceeds 800 ⁇ m
  • the high hardness layer 4 is lost and the low hardness layer 5 is worn out at the thickest portion
  • the surface of the hard layer 3 is largely peeled off,
  • the shape of the tip may be distorted and the desired excavation performance may not be obtained.
  • the overall thickness of the hard layer 3 is preferably in the range of 450 ⁇ m to 2500 ⁇ m. If the thickness of the entire hard layer 3 is less than 450 ⁇ m, even if the hard layer 3 is formed by the two high-hardness layers 4 and the one low-hardness layer 5 having the smallest number of layers, As described above, the layer with the thinnest portion having a thickness of less than 150 ⁇ m is formed in the layer, and the absolute hard layer 3 is too thin to be worn away, thereby forming a drilling hole having a necessary drilling length. There is a risk that it will not be possible.
  • the thickness of the hard layer 3 exceeds 2500 ⁇ m, if the high hardness layer 4 and the low hardness layer 5 are diamond sintered body layers, even if the stress is relaxed by the low hardness layer 5, There is a possibility that the entire excavation tip 1 is easily cracked.
  • the present invention is applied to the button type excavation tip in which the tip portion of the tip body 2 forms a hemisphere as described above has been described.
  • the so-called ballistic type drilling tip and the rear end side of the tip portion are conical and reduce in diameter toward the tip side, and the tip is smaller than the cylindrical rear end portion of the tip body
  • the present invention to a so-called spike type excavation tip having a spherical shape with a radius.
  • the cutting tip has a particle size and volume content of diamond particles and additive particles such as metal carbide in the high hardness layer and the low hardness layer of the hard layer (and the intermediate layer in Example 3), the composition of the metal binder, and The coating was performed by changing the addition ratio, the number of layers, and the thickness of each layer. These were designated as Examples 1 to 5.
  • the high hardness layer contains 30 vol% of diamond particles having a particle diameter of 2 to 4 ⁇ m, 70 vol% of diamond particles having a particle diameter of 20 to 40 ⁇ m, and contains no additive particles.
  • a metal binder was formed to a thickness of 200 ⁇ m by a mixture containing 15 vol% (content ratio relative to the whole layer including particles; hereinafter the same).
  • the low hardness layer is a mixture containing 60 vol% of diamond particles having a particle size of 4 to 6 ⁇ m, 40 vol% of TaC particles of 0.5 to 2 ⁇ m as additive particles, and 10 vol% of Co: 100 wt% metal binder. To form a thickness of 400 ⁇ m.
  • a hard layer in which three layers were alternately arranged from the surface side to the chip body side was coated on the tip portion.
  • the high hardness layer contains 100 vol% of diamond particles having a particle size of 10 to 20 ⁇ m, contains no additive particles, and has a thickness of Co: 100 wt% of a metal binder containing 10 vol% of a metal binder. It was formed to 150 ⁇ m.
  • the low hardness layer is a mixture containing 50 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, 50 vol% of WC particles having a particle diameter of 0.5 to 2 ⁇ m as additive particles, and 15 vol% of a Co: 100 wt% metal binder. To form a thickness of 200 ⁇ m.
  • a hard layer in which six layers were alternately arranged from the surface side toward the chip body side was coated on the tip portion.
  • the high hardness layer contains 30 vol% of diamond particles having a particle diameter of 0.5 to 2 ⁇ m, 70 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, and contains no additive particles. It was formed to a thickness of 200 ⁇ m by a mixture containing 10% by volume of a metal binder.
  • the intermediate layer has a thickness of 60 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, 40 vol% of WC particles of 0.5 to 2 ⁇ m as additive particles, and 5 vol% of Co: 100 wt% metal binder. It was formed to 200 ⁇ m.
  • the low hardness layer is thickened by a mixture containing 20 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, 80 vol% of WC particles of 0.5 to 2 ⁇ m as additive particles, and 5 vol% of a Co: 100 wt% metal binder.
  • the thickness was 200 ⁇ m.
  • a hard layer in which two layers were arranged in order from the surface side to the chip body side was coated on the tip portion.
  • the high hardness layer is 65 vol% of diamond particles having a particle size of 15 to 30 ⁇ m, 35 vol% of TiC particles having a particle size of 0.5 to 1.3 ⁇ m as additive particles, and a metal binder of Co: 100 wt%.
  • a thickness of 400 ⁇ m was formed by a mixture containing 15 vol%.
  • the low hardness layer is a mixture containing 30 vol% of diamond particles having a particle diameter of 15 to 30 ⁇ m, 70 vol% of TiCN particles having a particle diameter of 0.5 to 2 ⁇ m as additive particles, and 10 vol% of a Co: 100 wt% metal binder.
  • a hard layer in which two layers were alternately arranged from the surface side toward the chip body side was coated on the tip portion.
  • the high hardness layer contains 80 vol% of diamond particles having a particle diameter of 6 to 12 ⁇ m, 20 vol% of WC particles having a particle diameter of 2 to 4 ⁇ m as additive particles, Fe: 69 wt%, Ni: 31 wt%.
  • the metal binder was formed to a thickness of 200 ⁇ m with a mixture containing 15 vol%.
  • the low hardness layer is thickened by a mixture containing 40 vol% of diamond particles having a particle diameter of 15 to 30 ⁇ m, 60 vol% of cBN particles having a particle diameter of 2 to 4 ⁇ m as additive particles, and 10 vol% of Co: 100 wt% metal binder.
  • the thickness was 300 ⁇ m.
  • a hard layer in which two layers were alternately arranged from the surface side toward the chip body side was coated on the tip portion.
  • Comparative Examples 1 to 4 a button type in which the diameter of the hemisphere formed by the tip portion coated with the hard layer having no low hardness layer between the two high hardness layers is similarly 11 mm. 4 types of drilling chips were manufactured. These are referred to as Comparative Examples 1 to 4. The firing of this comparative example was also performed using an ultrahigh pressure / high temperature generator as in this example, in a diamond stable region at a pressure of 5.8 GPa, a temperature of 1500 ° C., and a sintering time of 10 minutes.
  • the high hardness layer contains 30 vol% of diamond particles with a particle size of 0.5 to 2 ⁇ m, 70 vol% of diamond particles with a particle size of 4 to 6 ⁇ m, and does not contain additive particles. It was formed to a thickness of 200 ⁇ m by a mixture containing 10% by volume of a metal binder. Further, the intermediate layer is made of a mixture containing 60 vol% of diamond particles having a particle size of 4 to 6 ⁇ m, 40 vol% of WC particles of 0.5 to 2 ⁇ m as additive particles, and 5 vol% of Co: 100 wt% metal binder. A thickness of 400 ⁇ m was formed.
  • the low-hardness layer contains 20 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, 80 vol% of WC particles of 0.5 to 2 ⁇ m as additive particles, and 5 vol% of a metal binder of Co: 100 wt%.
  • the mixture was formed to a thickness of 600 ⁇ m.
  • a hard layer in which only one layer was disposed in order from the surface side toward the chip body side was coated on the tip.
  • the hard layer contains 30 vol% of diamond particles having a particle diameter of 0.5 to 2 ⁇ m, 70 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, does not contain additive particles, and contains Co: 100 wt%. Only one layer having a thickness of 800 ⁇ m was covered with a mixture containing 10 vol% of a metal binder.
  • the high hardness layer contains 30 vol% of diamond particles having a particle diameter of 0.5 to 2 ⁇ m, 70 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, does not contain additive particles, and Co: 100 wt% Was formed to a thickness of 400 ⁇ m by a mixture containing 10 vol% of a metal binder.
  • the low hardness layer is made of a mixture containing 60 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, 40 vol% of WC particles of 0.5 to 2 ⁇ m as additive particles, and 5 vol% of Co: 100 wt% metal binder. A thickness of 600 ⁇ m was formed. A hard layer in which only one layer was disposed in order from the surface side toward the chip body side was coated on the tip.
  • the high hardness layer contains 30 vol% of diamond particles having a particle diameter of 0.5 to 2 ⁇ m, 70 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, and does not contain additive particles. It was formed to a thickness of 400 ⁇ m by a mixture containing 10% by volume of a metal binder. Further, the low hardness layer is a mixture containing 20 vol% of diamond particles having a particle diameter of 4 to 6 ⁇ m, 80 vol% of WC particles having a particle diameter of 0.5 to 2 ⁇ m as additive particles, and 5 vol% of Co: 100 wt% metal binder. To form a thickness of 600 ⁇ m. A hard layer in which only one layer was disposed in order from the surface side toward the chip body side was coated on the tip.
  • Example 3 In the excavation bit to which the excavation tips of Examples 1 to 5 are attached, approximately 60 excavation holes can be formed even in Example 3 with the shortest total excavation length, and more than a dozen places on one surface of the rock mass. In the case of forming the excavation hole, efficient excavation was possible without replacing excavation bits with respect to approximately three surfaces. Particularly, in Example 2 where the number of high hardness layers is large, 100 or more excavation holes can be formed, and extremely efficient excavation work was possible.
  • the thickness of the high hardness layer is 1000 ⁇ m
  • the thickness of the low hardness layer is 200 ⁇ m
  • the high hardness layer and the low hardness layer are alternately two layers.
  • the thickness of the high hardness layer exceeds 800 ⁇ m
  • the residual stress of the high hardness layer in the hard layer is high
  • the excavation tip hits an extremely hard hard rock in the rock suddenly during excavation to cause a defect or chipping in the high hardness layer of the hard outer layer, and from the exposed portion to the inner side. Even if wear progresses to the low hardness layer, it is possible to maintain the drilling performance by preventing the wear from reaching the tip body at a stretch, and it is possible to extend the life of the drill bit and perform efficient drilling work Become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

This drill tip performs drilling when attached to the leading end of a drill bit, and comprises a tip main body and a hard layer which is coated on at least the leading end of the tip main body and is formed from a hard diamond sintered body harder than the tip main body, wherein, from the surface side to the tip main body side of the hard layer, the hard layer comprises at least two high-hardness layers and, arranged between said high-hardness layers, a low-hardness layer which has a hardness lower than that of the high-hardness layers.

Description

掘削チップおよび掘削ビットDrilling tip and drilling bit
 本発明は、掘削ビットの先端部に取り付けられて掘削を行う掘削チップ、およびこのような掘削チップが先端部に取り付けられた掘削ビットに関する。
 本願は、2014年11月27日に、日本に出願された特願2014-240087号、及び2015年11月25日に、日本に出願された特願2015-230103号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a drilling tip that is attached to a distal end portion of a drilling bit to perform excavation, and a drilling bit in which such a drilling tip is attached to the distal end portion.
This application claims priority based on Japanese Patent Application No. 2014-240087 filed in Japan on November 27, 2014 and Japanese Patent Application No. 2015-230103 filed in Japan on November 25, 2015. , The contents of which are incorporated herein.
 掘削ビットの先端部に取り付けられて掘削を行う掘削チップとしては、超硬合金よりなるチップ本体の先端部に、このチップ本体よりも硬質な多結晶ダイヤモンドの焼結体よりなる硬質層が被覆されたものが知られている。ここで、特許文献1~5には、主に多結晶ダイヤモンド焼結体における応力の緩和を目的として硬質層を多層構造としたものが提案されている。その多層構造では、硬質層表面の最外層からチップ本体側に向けて硬度は低く、靱性は高くなるように傾斜を持たせている。 As a drilling tip attached to the tip of the drill bit for drilling, the tip of the tip body made of cemented carbide is coated with a hard layer made of a sintered polycrystalline diamond harder than the tip body. Is known. Here, Patent Documents 1 to 5 propose a hard layer having a multilayer structure mainly for the purpose of relaxing stress in a polycrystalline diamond sintered body. In the multilayer structure, the hardness is inclined from the outermost layer on the surface of the hard layer toward the chip body, and the toughness is increased.
 一般的に、このような多層構造の硬質層の最外層はダイヤモンド粒子に金属バインダー(金属触媒)としてCo等を添加して焼結した組成の多結晶ダイヤモンド焼結体とされている。また、内側の層ではダイヤモンドの含有量を減少させて代わりにWC等の金属炭化物を添加することにより、チップ本体よりも高い硬度を維持しつつ、靱性を高めている。この内側の層をさらに多層構造としたものも提案されており、内側の層になるほどダイヤモンド含有量を少なく、WC含有量を多くして硬度と靱性に傾斜を持たせている。 Generally, the outermost layer of the hard layer having such a multilayer structure is a polycrystalline diamond sintered body having a composition in which diamond particles are sintered by adding Co or the like as a metal binder (metal catalyst). Further, in the inner layer, the toughness is increased while maintaining a higher hardness than the chip body by reducing the diamond content and adding a metal carbide such as WC instead. There has also been proposed a multilayer structure of the inner layer. The inner layer has a lower diamond content and a higher WC content to give a gradient in hardness and toughness.
米国特許第4694918号明細書US Pat. No. 4,649,918 米国特許第8573330号明細書US Pat. No. 8,573,330 米国特許第8695733号明細書US Pat. No. 8,695,733 米国特許第8292006号明細書U.S. Pat. No. 8,292006 特許第4676700号公報Japanese Patent No. 4676700
 ところで、このような掘削チップを取り付けた掘削ビットによる掘削作業では、例えば岩盤一面に深さ数メートルの掘削孔を十数カ所掘削し、これらの掘削孔に爆薬を仕込んで発破することにより、大きな掘削孔を形成してゆく。従って、掘削作業の効率化のためには、一面に十数カ所の掘削孔を掘削する際に、途中で交換を必要とすることのない長寿命の掘削ビットが求められる。 By the way, in the excavation work using the excavation bit with such excavation tips, for example, excavation of dozens of excavation holes with a depth of several meters in one surface of the bedrock, and explosives are loaded into these excavation holes for blasting. A hole is formed. Therefore, in order to increase the efficiency of excavation work, a long-life excavation bit that does not require replacement when excavating dozens of excavation holes on one side is required.
 しかしながら、上述のような多層構造の硬質層を有する掘削チップにおいては、掘削時に突発的に岩盤中の極めて硬い超硬岩等に当たって最外層の多結晶ダイヤモンド焼結体層に欠損やチッピングが生じると、硬質層の内部の硬度が低くて比較的柔らかい層が露出する。そのように硬質層の内部が露出すると、この露出した部分から急激に摩耗が進行して、その摩耗がチップ本体に達してしまい、掘削が不可能となって掘削ビットの寿命が費えてしまう。 However, in the excavation tip having the hard layer having the multilayer structure as described above, when the excavation or chipping occurs in the outermost polycrystalline diamond sintered body layer suddenly hitting an extremely hard cemented rock in the rock during excavation. A relatively soft layer with a low hardness inside the hard layer is exposed. When the inside of the hard layer is exposed in such a manner, wear rapidly progresses from the exposed portion, and the wear reaches the tip body, so that excavation becomes impossible and the life of the excavation bit is consumed.
 本発明は、このような背景の下になされたもので、掘削時に万一外層に欠損やチッピングが生じても、直ちに摩耗がチップ本体に達することがなく、掘削性能を維持することが可能な掘削チップを提供する。また、このような掘削チップを取り付けた長寿命の掘削ビットを提供することを目的としている。 The present invention has been made under such a background, and even if a defect or chipping occurs in the outer layer at the time of excavation, the wear does not immediately reach the tip body, and the excavation performance can be maintained. Provide drilling tips. It is another object of the present invention to provide a long-life drill bit having such a drill tip attached thereto.
 上記課題を解決して、このような目的を達成するために、本発明の一態様である掘削チップは、掘削ビットの先端部に取り付けられて掘削を行う掘削チップであって、チップ本体と、このチップ本体の先端部に被覆された該チップ本体よりも硬質なダイヤモンド焼結体よりなる硬質層とを備え、上記硬質層は、該硬質層の表面側から上記チップ本体側に向けて、少なくとも2層の高硬度層と、これらの高硬度層の間に配設された該高硬度層よりも硬度が低い低硬度層とを有していることを特徴とする。 In order to solve the above problems and achieve such an object, a drilling tip according to one aspect of the present invention is a drilling tip that is attached to the tip of a drilling bit to perform drilling, and includes a tip body, A hard layer made of a diamond sintered body harder than the chip body and coated on the tip of the chip body, and the hard layer is at least from the surface side of the hard layer toward the chip body side. It has two high-hardness layers and a low-hardness layer having a lower hardness than the high-hardness layer disposed between these high-hardness layers.
 このように構成された掘削チップにおいては、チップ本体の先端部に被覆されたダイヤモンド焼結体よりなる硬質層が、この硬質層の表面側からチップ本体側に向けて、すなわち該硬質層の外層側から内側に向けて、少なくとも2層の高硬度層と、これらの高硬度層の間に配設された高硬度層よりも硬度が低い低硬度層とを有しているので、掘削時に外層側の高硬度層に欠損やチッピングが生じて内部が露出し、この露出した部分から内側の低硬度層が摩耗しても、この低硬度層の内側に位置するチップ本体側の高硬度層によって摩耗の進行を抑えることができる。 In the excavation tip thus configured, the hard layer made of a diamond sintered body coated on the tip of the tip body is directed from the surface side of the hard layer toward the tip body side, that is, the outer layer of the hard layer. From the side to the inside, it has at least two high-hardness layers and a low-hardness layer having a lower hardness than the high-hardness layer disposed between these high-hardness layers. Even if chipping or chipping occurs in the high hardness layer on the side and the inside is exposed, and the inner low hardness layer is worn away from this exposed portion, the high hardness layer on the chip body side located inside this low hardness layer The progress of wear can be suppressed.
 このため、上記構成の掘削チップによれば、硬質層に生じた摩耗が急激に進行してチップ本体に達するのを防ぐことができ、内側の高硬度層によって掘削チップの掘削性能を維持することができる。従って、このような掘削チップを先端部に取り付けた本発明の掘削ビットにおいては、その寿命の延長を図ることができて、多数の掘削孔を掘削する途中で掘削チップを交換する必要がなくなり、掘削作業の効率化を促すことが可能となる。 For this reason, according to the excavation tip having the above-described configuration, it is possible to prevent wear generated in the hard layer from abruptly progressing and reaching the tip body, and to maintain the excavation performance of the excavation tip by the inner high hardness layer. Can do. Therefore, in the excavation bit of the present invention in which such excavation tip is attached to the tip, it is possible to extend its life, and it is not necessary to replace the excavation tip in the middle of excavating a large number of excavation holes, It becomes possible to promote the efficiency of excavation work.
 また、硬質層に、該硬質層の表面側から上記チップ本体側に向けて、それぞれ複数層ずつの上記高硬度層と上記低硬度層とを交互に配設することにより、内側の高硬度層に対しても、そのさらに内側に配設される、高硬度層よりは硬度が低く、靱性は高くなる低硬度層によって応力の緩和を図ることができる。さらに、3層以上の高硬度層を低硬度層と交互に配設すれば、高硬度層の層数に応じて掘削チップの寿命を延長することができる。 In addition, by arranging a plurality of high hardness layers and low hardness layers alternately on the hard layer from the surface side of the hard layer toward the chip body side, an inner high hardness layer is provided. On the other hand, the stress can be relieved by the low hardness layer which is disposed further inside and has a lower hardness and higher toughness than the high hardness layer. Furthermore, if three or more high-hardness layers are alternately arranged with low-hardness layers, the life of the excavation tip can be extended according to the number of high-hardness layers.
 ここで、上記高硬度層の厚さは、上記低硬度層の厚さの1/2以上で該低硬度層の厚さ以下の範囲とされるのが望ましい。高硬度層の厚さを低硬度層の厚さの1/2以上とすることにより、相対的に低硬度層を高硬度層の2倍以上の厚さとすることができるので、外層の高硬度層に欠損等が生じたときに摩耗が内側の高硬度層に達するまでの掘削長や時間を確保することができる。ただし、高硬度層の厚さが低硬度層の厚さよりも厚いと、高硬度層の応力を十分に緩和することができなくなるおそれがある。 Here, it is desirable that the thickness of the high hardness layer be in a range of 1/2 or more of the thickness of the low hardness layer and not more than the thickness of the low hardness layer. By setting the thickness of the high hardness layer to ½ or more of the thickness of the low hardness layer, the thickness of the low hardness layer can be relatively more than twice that of the high hardness layer. The excavation length and time until wear reaches the inner high hardness layer when a defect or the like occurs in the layer can be secured. However, if the thickness of the high hardness layer is larger than the thickness of the low hardness layer, the stress of the high hardness layer may not be sufficiently relaxed.
 また、具体的に、個々の上記高硬度層の厚さと上記低硬度層の厚さは、それぞれ最も薄い部分で150μm以上であり、最も厚い部分で800μm以下とされているのが望ましい。高硬度層および低硬度層ともに、最も薄い部分の厚さが150μm未満の場合には、層を均一に形成することが困難となって十分な耐摩耗性を得ることができなくなるおそれがある。一方、最も厚い部分の厚さが800μmを上回る場合には、この部分で外層の高硬度層が欠損してその内側の低硬度層が摩耗したときに、硬質層の表面が大きく剥がれ落ち、掘削チップ先端部の形状が歪になって所望の掘削性能を得ることができなくなるおそれがある。 Further, specifically, the thickness of each of the high hardness layer and the thickness of the low hardness layer is preferably 150 μm or more at the thinnest part and 800 μm or less at the thickest part. When the thickness of the thinnest part of both the high hardness layer and the low hardness layer is less than 150 μm, it is difficult to form the layer uniformly and there is a possibility that sufficient wear resistance cannot be obtained. On the other hand, when the thickness of the thickest part exceeds 800 μm, when the outer high hardness layer is lost in this part and the inner low hardness layer is worn away, the surface of the hard layer is greatly peeled off and excavated. There is a possibility that the shape of the tip of the tip becomes distorted and the desired excavation performance cannot be obtained.
 なお、上述のように高硬度層はダイヤモンド粒子にCo等の金属バインダー(金属触媒)を添加して焼結した多結晶ダイヤモンド焼結体の層とするとともに、低硬度層はダイヤモンド粒子の含有量を減少させて金属炭化物または金属窒化物等の粒子を添加したダイヤモンド焼結体よりなる層としてもよい。また、高硬度層と低硬度層をいずれもダイヤモンド粒子と金属バインダーおよび金属炭化物、金属窒化物、金属炭窒化物等の添加粒子を含有して焼結したダイヤモンド焼結体層として、高硬度層と低硬度層でダイヤモンド粒子の含有量や粒径、金属バインダーや金属炭化物等の添加粒子の含有量、種類、組成比等を調整して硬度を低くしてもよい。 As described above, the high hardness layer is a polycrystalline diamond sintered body obtained by adding a metal binder (metal catalyst) such as Co to diamond particles and sintering, and the low hardness layer is the content of diamond particles. It is good also as a layer which consists of a diamond sintered compact to which particle | grains, such as reducing a metal carbide and metal nitride, were added. Further, the high hardness layer and the low hardness layer are both formed as a diamond sintered body layer which is sintered by containing diamond particles, a metal binder, and additive particles such as metal carbide, metal nitride and metal carbonitride. In addition, the hardness may be lowered by adjusting the content and particle size of diamond particles, the content, type and composition ratio of additive particles such as metal binder and metal carbide in the low hardness layer.
 さらに、このように硬度を調整することにより、上記硬質層の表面側から上記チップ本体側に向けて、上記高硬度層と上記低硬度層との間に、該高硬度層よりも硬度が低く上記低硬度層よりも硬度が高い中間層を配設するようにしてもよい。このような中間層を設けることによって外層側の高硬度層の応力緩和を維持しつつ、高硬度層に欠損等が生じた際でも摩耗が低硬度層に至るまでの掘削性能を確保することができる。 Further, by adjusting the hardness in this way, the hardness is lower than the high hardness layer between the high hardness layer and the low hardness layer from the surface side of the hard layer toward the chip body side. You may make it arrange | position the intermediate | middle layer whose hardness is higher than the said low hardness layer. By providing such an intermediate layer, while maintaining stress relaxation of the high hardness layer on the outer layer side, it is possible to ensure excavation performance until wear reaches the low hardness layer even when a defect or the like occurs in the high hardness layer. it can.
 以上説明したように、本発明によれば、掘削時に突発的に岩盤中の極めて硬い超硬岩等に掘削チップが当たって硬質層外層の高硬度層に欠損やチッピングが生じ、露出した部分から内側の低硬度層に摩耗が進行しても、一気に摩耗がチップ本体まで達するのを防いで掘削性能を維持することができ、掘削ビットの寿命を延長して効率的な掘削作業を図ることができる。 As described above, according to the present invention, the excavation tip hits an extremely hard cemented rock in the rock suddenly during excavation, resulting in defects and chipping in the high hardness layer of the hard outer layer, and from the exposed portion. Even if wear progresses to the inner low hardness layer, it can prevent the wear from reaching the tip body at a stretch and maintain drilling performance, extending the life of the drill bit and achieving efficient drilling work it can.
本発明の掘削チップの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the excavation tip of this invention. 図1に示す実施形態の掘削チップを先端部に取り付けた本発明の掘削ビットの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the excavation bit of this invention which attached the excavation tip of embodiment shown in FIG. 1 to the front-end | tip part.
 図1は本発明の掘削チップ1の一実施形態を示す断面図である。図2はこの実施形態の掘削チップ1を取り付けた本発明の掘削ビットの一実施形態を示す断面図である。本実施形態の掘削チップ1は、超硬合金等の硬質材料よりなるチップ本体2と、このチップ本体2の先端部(図1において上側部分)に被覆された、チップ本体2よりも硬質のダイヤモンド焼結体よりなる硬質層3とを備えている。 FIG. 1 is a sectional view showing an embodiment of a drilling tip 1 of the present invention. FIG. 2 is a cross-sectional view showing an embodiment of the excavation bit of the present invention to which the excavation tip 1 of this embodiment is attached. The excavation tip 1 of the present embodiment includes a tip body 2 made of a hard material such as cemented carbide and a diamond harder than the tip body 2 covered by the tip portion (upper portion in FIG. 1) of the tip body 2. And a hard layer 3 made of a sintered body.
 チップ本体2は、その後端部(図1において下側部分)がチップ中心線Cを中心とした円柱状をなしているとともに、先端部は、後端部がなす円柱の半径と等しい半径でチップ中心線C上に中心を有する半球状をなして、先端側に向かうに従いチップ中心線Cからの外径が漸次小さくなるように形成されている。すなわち、本実施形態の掘削チップ1はボタンチップとされている。 The chip body 2 has a rear end portion (lower portion in FIG. 1) formed in a columnar shape centered on the chip center line C, and the tip portion has a radius equal to the radius of the column formed by the rear end portion. A hemisphere having a center on the center line C is formed so that the outer diameter from the chip center line C gradually decreases toward the tip side. That is, the excavation tip 1 of this embodiment is a button tip.
 このような掘削チップ1が先端部に取り付けられる掘削ビットは、鋼材等により形成されて図2に示すように軸線Oを中心とした概略有底円筒状をなすビット本体11を有し、その有底部が先端部(図2において上側部分)とされて掘削チップ1が取り付けられる。
 また、円筒状の後端部(図2において下側部分)の内周には雌ネジ部12が形成され、掘削装置に連結された掘削ロッドがこの雌ネジ部12にねじ込まれて軸線O方向先端側に向けての打撃力と推力、および軸線O回りの回転力が伝達される。これにより、掘削チップ1によって岩盤を破砕して掘削孔を形成する。
The excavation bit to which the excavation tip 1 is attached is provided with a bit body 11 formed of a steel material or the like and having a substantially bottomed cylindrical shape centering on an axis O as shown in FIG. The bottom part is a tip part (upper part in FIG. 2) and the excavation tip 1 is attached.
Also, a female threaded portion 12 is formed on the inner periphery of the cylindrical rear end (the lower portion in FIG. 2), and a drilling rod connected to the excavator is screwed into the female threaded portion 12 so as to be in the direction of the axis O. The striking force and thrust toward the tip side and the rotational force around the axis O are transmitted. Thereby, the rock is crushed by the excavation tip 1 to form an excavation hole.
 ビット本体11の先端部は後端部よりも僅かに外径が大径とされており、この先端部の外周には軸線Oに平行に延びる排出溝13が周方向に間隔をあけて複数形成されて、上記掘削チップ1により岩盤が破砕されて生成された破砕屑がこの排出溝13を通して後端側に排出される。また、有底とされたビット本体11の雌ネジ部12底面からは軸線Oに沿ってブロー孔14が形成されている。このブロー孔14はビット本体11先端部において斜めに分岐してビット本体11の先端面に開口し、上記掘削ロッドを介して供給される圧縮空気のような流体を噴出して破砕屑の排出を促進する。 The front end portion of the bit body 11 has a slightly larger outer diameter than the rear end portion, and a plurality of discharge grooves 13 extending in parallel with the axis O are formed on the outer periphery of the front end portion at intervals in the circumferential direction. Then, the crushed debris generated by crushing the rock by the excavation tip 1 is discharged to the rear end side through the discharge groove 13. A blow hole 14 is formed along the axis O from the bottom surface of the female screw portion 12 of the bottomed bit body 11. This blow hole 14 branches obliquely at the tip of the bit body 11 and opens at the tip surface of the bit body 11, and ejects fluid such as compressed air supplied through the excavation rod to discharge crushed debris. Facilitate.
 さらに、ビット本体11の先端面は、内周側の軸線Oに垂直な軸線Oを中心とした円形のフェイス面15と、このフェイス面15の外周に位置して外周側に向かうに従い後端側に向かう円錐台面状のゲージ面16とを備えている。ブロー孔14はフェイス面15に開口するとともに、排出溝13の先端はゲージ面16に開口している。 Furthermore, the front end surface of the bit body 11 has a circular face surface 15 centering on an axis O perpendicular to the inner peripheral axis O, and a rear end side located on the outer periphery of the face surface 15 toward the outer periphery. And a frustoconical gauge surface 16 facing toward the surface. The blow hole 14 opens to the face surface 15, and the tip of the discharge groove 13 opens to the gauge surface 16.
 そして、これらフェイス面15とゲージ面16には、それぞれブロー孔14と排出溝13の開口部を避けるようにして、断面円形の複数の取付孔17が形成されている。上記掘削チップ1は、その円柱状の後端部がこれらの取付孔17に圧入や焼き嵌め等によって締まり嵌めされたり、ロウ付けされたりすることにより固定され、チップ中心線Cがフェイス面15とゲージ面16に垂直となるように取り付けられる。 A plurality of mounting holes 17 having a circular cross section are formed in the face surface 15 and the gauge surface 16 so as to avoid the openings of the blow holes 14 and the discharge grooves 13, respectively. The excavation tip 1 is fixed by fastening its cylindrical rear end portion into these mounting holes 17 by press-fitting, shrink fitting, or brazing, and the tip center line C is fixed to the face surface 15. It is attached so as to be perpendicular to the gauge surface 16.
 このようにして掘削ビットの先端部に取り付けられる掘削チップ1においては、その先端部に被覆された上記硬質層3が、該硬質層3の表面側からチップ本体2側に向けて、少なくとも2層の高硬度層4と、これらの高硬度層4の間に配設された高硬度層4よりも硬度が低い低硬度層5とを有している。さらに、本実施形態では、チップ本体2側の高硬度層4とチップ本体2との間にも低硬度層5が配設されていて、それぞれ複数層の2層ずつの高硬度層4と低硬度層5とが、この順に硬質層3の表面からチップ本体2の表面に向けて交互に配設されている。 In the excavation tip 1 attached to the tip portion of the excavation bit in this way, the hard layer 3 covered at the tip portion is at least two layers from the surface side of the hard layer 3 toward the tip body 2 side. The high hardness layer 4 and a low hardness layer 5 having a lower hardness than the high hardness layer 4 disposed between the high hardness layers 4. Furthermore, in the present embodiment, the low hardness layer 5 is also disposed between the high hardness layer 4 on the chip body 2 side and the chip body 2, and each of the multiple layers of the high hardness layer 4 and the low hardness layer 4. The hardness layers 5 are alternately arranged in this order from the surface of the hard layer 3 toward the surface of the chip body 2.
 このうち、高硬度層4は、ダイヤモンド粒子にCo、Ni、あるいはFe-Ni合金等の金属バインダー(金属触媒)を添加しただけで焼結した多結晶ダイヤモンド焼結体の層とする。一方、低硬度層5は、高硬度層4に対してダイヤモンド粒子の含有量を減少させるとともに、WC、TaC、TiC等の金属炭化物粒子、TiN、cBN等の金属窒化物粒子、あるいはTiCN等の金属炭窒化物粒子と、上述のような金属バインダーとを添加して焼結した焼結体層とする。これにより、高硬度層4よりも低硬度層5の硬度を低くすることができる。このように作製した場合には、高硬度層4のビッカース硬さは2500~4000程度、低硬度層5のビッカース硬さは1500~2500程度の範囲となる。 Of these, the high hardness layer 4 is a polycrystalline diamond sintered body that is sintered by simply adding a metal binder (metal catalyst) such as Co, Ni, or Fe—Ni alloy to the diamond particles. On the other hand, the low hardness layer 5 reduces the content of diamond particles relative to the high hardness layer 4, and also includes metal carbide particles such as WC, TaC and TiC, metal nitride particles such as TiN and cBN, or TiCN. A sintered carbon layer is obtained by adding metal carbonitride particles and the above-described metal binder and sintering. Thereby, the hardness of the low hardness layer 5 can be made lower than that of the high hardness layer 4. In this case, the high hardness layer 4 has a Vickers hardness of about 2500 to 4000, and the low hardness layer 5 has a Vickers hardness of about 1500 to 2500.
 さらに、高硬度層4と低硬度層5を、いずれもダイヤモンド粒子と、上述のような金属バインダーおよび金属炭化物、金属窒化物、金属炭窒化物等の添加物粒子とを含有して焼結した焼結体層としてもよい。このうち低硬度層5おいては、ダイヤモンド粒子の含有量や粒径を小さくしたり、金属炭化物等の添加物粒子の含有量、種類、組成比等を調整したりすることにより、高硬度層4よりも硬度を低くすることもできる。なお、このような硬質層3がチップ本体2の先端部に被覆された掘削チップ1の焼結は、基本的にダイヤモンド安定領域で行われ、例えば特許文献1~5に記載されたような公知の焼結方法によって可能である。 Furthermore, both the high hardness layer 4 and the low hardness layer 5 were sintered by containing diamond particles and additive particles such as metal binder and metal carbide, metal nitride, metal carbonitride as described above. It may be a sintered body layer. Among these, in the low hardness layer 5, the high hardness layer can be obtained by reducing the content and particle size of diamond particles, or adjusting the content, type and composition ratio of additive particles such as metal carbides. The hardness can be made lower than 4. The excavation tip 1 in which the hard layer 3 is coated on the tip end of the tip body 2 is basically sintered in the diamond stable region, and is known as described in Patent Documents 1 to 5, for example. This is possible by the sintering method.
 このような構成の掘削チップ1および該掘削チップ1を先端部に取り付けた掘削ビットでは、掘削チップ1が掘削時に突発的に岩盤中の極めて硬い超硬岩等に当たった場合に、チップ本体2の少なくとも先端部に被覆された硬質層3のうち最外層の第1の高硬度層4に欠損やチッピングが生じて硬質層3の内部が露出する。これにより内側の低硬度層5が摩耗するが、この低硬度層5のさらに内側には低硬度層5よりも高硬度となる第2の高硬度層4が配設されているので、摩耗がチップ本体2に達するまで急激に進行するのを、この第2の高硬度層4によって抑制することができる。 In the excavation tip 1 having such a configuration and the excavation bit in which the excavation tip 1 is attached to the tip portion, the tip main body 2 when the excavation tip 1 suddenly hits an extremely hard hard rock or the like in the rock during excavation. Of the hard layer 3 covered at least at the tip of the first hard layer 4 which is the outermost layer, defects and chipping occur, and the inside of the hard layer 3 is exposed. As a result, the inner low-hardness layer 5 is worn, but since the second high-hardness layer 4 having a higher hardness than the low-hardness layer 5 is disposed further inside the low-hardness layer 5, the wear is reduced. The rapid progress until reaching the chip body 2 can be suppressed by the second high hardness layer 4.
 従って、摩耗の進行によって第1、第2の高硬度層4の間の低硬度層5が摩滅した後でも、硬質層3のチップ本体2側すなわち内側の第2の高硬度層4によって掘削を続行することができるので、掘削性能を維持することが可能となる。このため、そのような掘削チップ1を先端部に取り付けた掘削ビットによれば、当該掘削ビットの寿命を延長させることができ、岩盤一面に数メートルの掘削孔を十数カ所形成するような場合でも、途中で掘削ビットを交換する必要がなくなって効率的な掘削作業を行うことが可能となる。 Therefore, even after the low hardness layer 5 between the first and second high hardness layers 4 is worn by the progress of wear, excavation is performed by the second high hardness layer 4 on the chip body 2 side of the hard layer 3, that is, the inner side. Since it can continue, excavation performance can be maintained. For this reason, according to the excavation bit having such an excavation tip 1 attached to the tip portion, the life of the excavation bit can be extended, and even when several dozens of excavation holes of several meters are formed on the entire rock surface. This eliminates the need for exchanging excavation bits in the middle of the course, and enables efficient excavation work.
 また、これら第1、第2の高硬度層4の間には、これらの高硬度層4より硬度が低い反面、靱性は高い低硬度層5が介装されているので、特に高硬度層4がダイヤモンド粒子に金属バインダーのみを添加して焼結した多結晶ダイヤモンド焼結体である場合でも、高硬度層4に生じる残留応力の緩和を図ることができる。しかも、本実施形態では、高硬度層4と低硬度層5とがそれぞれ複数層(2層)ずつ、硬質層3の表面側からチップ本体2側に向けて交互に配設されている。そのため、内側の第2の高硬度層4の応力も、その内側すなわち第2の高硬度層4とチップ本体2との間に介装される低硬度層5により緩和することができる。 In addition, since the low hardness layer 5 having a high toughness is interposed between the first and second high hardness layers 4, the hardness is lower than those of the high hardness layers 4. Even in the case of a polycrystalline diamond sintered body that is sintered by adding only a metal binder to diamond particles, the residual stress generated in the high hardness layer 4 can be relaxed. In addition, in the present embodiment, the high hardness layer 4 and the low hardness layer 5 are alternately arranged in plural layers (two layers) from the surface side of the hard layer 3 toward the chip body 2 side. Therefore, the stress of the inner second high hardness layer 4 can be relaxed by the inner layer, that is, the low hardness layer 5 interposed between the second high hardness layer 4 and the chip body 2.
 なお、本実施形態では、このように2層ずつの高硬度層4と低硬度層5とが硬質層3の表面側からチップ本体2側に向けて交互に配設されているが、硬質層3においては少なくとも、2層の高硬度層4と、その間に配設される1層の低硬度層5とが備えられていればよい。すなわち、最もチップ本体2側の第2の高硬度層4はチップ本体2の先端部表面に直接被覆されたものであってもよい。また、3層以上の高硬度層4が低硬度層5を間にして交互に配設されていてもよく、例えば同数の高硬度層4と低硬度層5とが交互に積層された偶数層の硬質層3であってもよく、最外層と最内層が高硬度層4で各高硬度層4の間に低硬度層5が配設された奇数層の硬質層3であってもよい。硬質層3には、硬質層3の表面側からチップ本体2側に向けて、2~6層ずつの高硬度層4と低硬度層5とが交互に配設されてもよい。また、高硬度層と低硬度層との合計層数は、4層以上12層以下としてもよい。 In the present embodiment, two high hardness layers 4 and two low hardness layers 5 are alternately arranged from the surface side of the hard layer 3 toward the chip body 2 side. 3, at least two high-hardness layers 4 and one low-hardness layer 5 disposed therebetween need only be provided. That is, the second high hardness layer 4 closest to the chip body 2 may be coated directly on the tip portion surface of the chip body 2. Three or more high-hardness layers 4 may be alternately arranged with the low-hardness layers 5 interposed therebetween. For example, an even number layer in which the same number of high-hardness layers 4 and low-hardness layers 5 are alternately laminated. The hard layer 3 may be an odd-numbered hard layer 3 in which the outermost layer and the innermost layer are the high-hardness layer 4 and the low-hardness layer 5 is disposed between the high-hardness layers 4. In the hard layer 3, two to six high hardness layers 4 and low hardness layers 5 may be alternately arranged from the surface side of the hard layer 3 toward the chip body 2 side. The total number of layers of the high hardness layer and the low hardness layer may be 4 or more and 12 or less.
 さらに、硬質層3の表面側からチップ本体2側に向けて高硬度層4から低硬度層5の間に、硬度が高硬度層4よりも低く低硬度層5よりは高い中間層を配設するようにしてもよい。例えば、高硬度層4がダイヤモンド粒子に金属バインダーのみを添加して焼結した多結晶ダイヤモンド焼結体層である場合に、この高硬度層4と低硬度層5の間に、ダイヤモンド粒子の含有量や粒径、金属バインダーや金属炭化物等の添加粒子の含有量、種類、組成比等を調整することにより、硬度を低硬度層5よりも高く、高硬度層4よりは低くした中間層を配設してもよい。 Further, an intermediate layer having a hardness lower than that of the high hardness layer 4 and higher than that of the low hardness layer 5 is disposed between the high hardness layer 4 and the low hardness layer 5 from the surface side of the hard layer 3 toward the chip body 2 side. You may make it do. For example, when the high hardness layer 4 is a polycrystalline diamond sintered body layer obtained by adding only a metal binder to diamond particles and sintered, the inclusion of diamond particles between the high hardness layer 4 and the low hardness layer 5 An intermediate layer having a hardness higher than that of the low-hardness layer 5 and lower than that of the high-hardness layer 4 by adjusting the amount, particle size, content of additive particles such as metal binder and metal carbide, type, composition ratio, etc. It may be arranged.
 このような中間層は、外層側の高硬度層4に対しては硬度が低くて靱性を高くすることができるため、この高硬度層4の応力をある程度は緩和することができる。その一方で、内層側の低硬度層5に対しては高い硬度であるため、高硬度層4に欠損やチッピングが生じたときに摩耗が低硬度層5に達するまで掘削性能を維持することができ、結果的に掘削チップ1の長寿命化を図ることができる。なお、この中間層自体も、硬質層3の表面側からチップ本体2側すなわち外層側から内層側に向けて順次硬度が低くなる複数の層によって形成されていてもよい。 Such an intermediate layer has low hardness and high toughness with respect to the high hardness layer 4 on the outer layer side, so that the stress of the high hardness layer 4 can be relieved to some extent. On the other hand, since the hardness is high for the low hardness layer 5 on the inner layer side, it is possible to maintain the excavation performance until wear reaches the low hardness layer 5 when the high hardness layer 4 is chipped or chipped. As a result, the life of the excavation tip 1 can be extended. The intermediate layer itself may also be formed of a plurality of layers whose hardness decreases sequentially from the surface side of the hard layer 3 to the chip body 2 side, that is, from the outer layer side to the inner layer side.
 ここで、各高硬度層4の厚さは、低硬度層5の厚さの1/2以上で低硬度層5の厚さ以下の範囲とされるのが望ましい。高硬度層4の厚さが低硬度層5の厚さよりも大きくなければ、この低硬度層5によって高硬度層4の応力を緩和するのに十分である。また、高硬度層4の厚さが低硬度層5の厚さの1/2以上であれば、相対的に低硬度層5の厚さは高硬度層4の厚さの2倍以上となるので、一層確実に高硬度層4の応力緩和を図ることができる。さらに、このように低硬度層5の厚さが確保されるのに伴い、低高度といえどもチップ本体2よりは硬質な低硬度層5により、該低硬度層5の内側の高硬度層4やチップ本体2に摩耗が達するまでの掘削長や時間を長く確保することができる。 Here, it is desirable that the thickness of each high hardness layer 4 be in the range of 1/2 or more of the thickness of the low hardness layer 5 and not more than the thickness of the low hardness layer 5. If the thickness of the high hardness layer 4 is not larger than the thickness of the low hardness layer 5, the low hardness layer 5 is sufficient to relieve the stress of the high hardness layer 4. If the thickness of the high hardness layer 4 is ½ or more of the thickness of the low hardness layer 5, the thickness of the low hardness layer 5 is relatively more than twice the thickness of the high hardness layer 4. Therefore, the stress relaxation of the high hardness layer 4 can be achieved more reliably. Further, as the thickness of the low hardness layer 5 is secured in this way, the high hardness layer 4 inside the low hardness layer 5 is formed by the low hardness layer 5 which is harder than the chip body 2 even at a low altitude. In addition, it is possible to ensure a long excavation length and time until the tip body 2 reaches wear.
 より具体的には、個々の高硬度層4の厚さと低硬度層5の厚さは、それぞれ最も薄い部分で150μm以上であり、最も厚い部分で800μm以下とされているのが望ましい。これら各高硬度層4および低硬度層5において、最も薄い部分の厚さが150μm未満であると、上述のように高硬度層4と低硬度層5がダイヤモンド粒子を含む焼結体層の場合には厚さを均一にすることが困難となり、十分な耐摩耗性を得ることができなくなるおそれがある。また、最も厚い部分の厚さが800μmを上回ると、この最も厚い部分で高硬度層4が欠損して低硬度層5が摩耗したときには、硬質層3の表面が大きく剥がれ落ち、掘削チップ1の先端部の形状が歪になって所望の掘削性能を得ることができなくなるおそれがある。これは、中間層についても同様である。 More specifically, the thickness of each high hardness layer 4 and the thickness of the low hardness layer 5 are preferably 150 μm or more at the thinnest portion and 800 μm or less at the thickest portion. In each of the high hardness layer 4 and the low hardness layer 5, when the thickness of the thinnest part is less than 150 μm, the high hardness layer 4 and the low hardness layer 5 are sintered layers containing diamond particles as described above. In this case, it is difficult to make the thickness uniform, and there is a possibility that sufficient wear resistance cannot be obtained. When the thickness of the thickest portion exceeds 800 μm, when the high hardness layer 4 is lost and the low hardness layer 5 is worn out at the thickest portion, the surface of the hard layer 3 is largely peeled off, The shape of the tip may be distorted and the desired excavation performance may not be obtained. The same applies to the intermediate layer.
 硬質層3の全体の厚さは、450μm~2500μmの範囲とされるのが望ましい。硬質層3全体の厚さが450μm未満であると、層の数が最も少ない2層の高硬度層4と1層の低硬度層5によって硬質層3が形成されている場合でも、いずれかの層に上述のように最も薄い部分の厚さが150μm未満の箇所が生じるとともに、絶対的な硬質層3の厚さが薄すぎて直ぐに摩耗してしまい、必要な掘削長の掘削孔を形成することができなくなるおそれがある。一方、硬質層3の厚さが2500μmを超えると、高硬度層4と低硬度層5がダイヤモンド焼結体層の場合は、低硬度層5によって応力が緩和されているとしても、残留応力によって掘削チップ1全体に割れが生じ易くなるおそれがある。 The overall thickness of the hard layer 3 is preferably in the range of 450 μm to 2500 μm. If the thickness of the entire hard layer 3 is less than 450 μm, even if the hard layer 3 is formed by the two high-hardness layers 4 and the one low-hardness layer 5 having the smallest number of layers, As described above, the layer with the thinnest portion having a thickness of less than 150 μm is formed in the layer, and the absolute hard layer 3 is too thin to be worn away, thereby forming a drilling hole having a necessary drilling length. There is a risk that it will not be possible. On the other hand, when the thickness of the hard layer 3 exceeds 2500 μm, if the high hardness layer 4 and the low hardness layer 5 are diamond sintered body layers, even if the stress is relaxed by the low hardness layer 5, There is a possibility that the entire excavation tip 1 is easily cracked.
 なお、本実施形態の掘削チップ1では、上述のようにチップ本体2の先端部が半球状をなすボタンタイプの掘削チップに本発明を適用した場合について説明したが、チップ本体の先端部が砲弾状をなす、いわゆるバリスティックタイプの掘削チップや、先端部の後端側が円錐面状をなして先端側に向かうに従い縮径するとともに、その先端がチップ本体の円柱状の後端部よりも小さな半径の球面状をなす、いわゆるスパイクタイプの掘削チップに本発明を適用することも可能である。 In the excavation tip 1 of the present embodiment, the case where the present invention is applied to the button type excavation tip in which the tip portion of the tip body 2 forms a hemisphere as described above has been described. The so-called ballistic type drilling tip and the rear end side of the tip portion are conical and reduce in diameter toward the tip side, and the tip is smaller than the cylindrical rear end portion of the tip body It is also possible to apply the present invention to a so-called spike type excavation tip having a spherical shape with a radius.
 次に、本発明の掘削チップおよび掘削ビットにおける効果について、実施例を挙げて実証する。本実施例では、先端部がなす半球の直径が11mmのボタンタイプの掘削チップを5種製造した。前記切削チップは、硬質層の高硬度層と低硬度層と(実施例3では中間層も)におけるダイヤモンド粒子と金属炭化物等の添加物粒子との粒径および体積含有率、金属バインダーの組成および添加割合、層数および各層の厚さを種々に変えて被覆した。これらを実施例1~5とした。本実施例の焼結はすべて、特許文献1~5に記載された方法と同様に、超高圧・高温発生装置を用いて、ダイヤモンド安定領域である、圧力5.8GPa、温度1500℃、焼結時間10分で行った。 Next, the effects of the excavation tip and excavation bit of the present invention will be demonstrated with examples. In this example, five types of button-type drilling tips having a hemispherical diameter of 11 mm formed by the tip were manufactured. The cutting tip has a particle size and volume content of diamond particles and additive particles such as metal carbide in the high hardness layer and the low hardness layer of the hard layer (and the intermediate layer in Example 3), the composition of the metal binder, and The coating was performed by changing the addition ratio, the number of layers, and the thickness of each layer. These were designated as Examples 1 to 5. In all of the sintering of the present example, similarly to the methods described in Patent Documents 1 to 5, using an ultrahigh pressure / high temperature generator, a diamond stable region, pressure 5.8 GPa, temperature 1500 ° C., sintering The time was 10 minutes.
 実施例1では、高硬度層を、粒径2~4μmのダイヤモンド粒子を30vol%、粒径20~40μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Ni:100wt%の金属バインダーを15vol%(粒子を含んだ層全体に対する含有率。以下、同様。)含有した混合物によって、厚さ200μmに形成した。また、低硬度層を、粒径4~6μmのダイヤモンド粒子を60vol%、添加物粒子として粒径0.5~2μmのTaC粒子を40vol%、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ400μmに形成した。これらを表面側からチップ本体側に向けて3層ずつ交互に配設した硬質層を先端部に被覆した。 In Example 1, the high hardness layer contains 30 vol% of diamond particles having a particle diameter of 2 to 4 μm, 70 vol% of diamond particles having a particle diameter of 20 to 40 μm, and contains no additive particles. A metal binder was formed to a thickness of 200 μm by a mixture containing 15 vol% (content ratio relative to the whole layer including particles; hereinafter the same). Further, the low hardness layer is a mixture containing 60 vol% of diamond particles having a particle size of 4 to 6 μm, 40 vol% of TaC particles of 0.5 to 2 μm as additive particles, and 10 vol% of Co: 100 wt% metal binder. To form a thickness of 400 μm. A hard layer in which three layers were alternately arranged from the surface side to the chip body side was coated on the tip portion.
 実施例2では、高硬度層を粒径10~20μmのダイヤモンド粒子を100vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%を含有した混合物によって、厚さ150μmに形成した。また、低硬度層を、粒径4~6μmのダイヤモンド粒子を50vol%、添加物粒子として粒径0.5~2μmのWC粒子を50vol%、Co:100wt%の金属バインダーを15vol%含有した混合物によって厚さ200μmに形成した。これらを表面側からチップ本体側に向けて6層ずつ交互に配設した硬質層を先端部に被覆した。 In Example 2, the high hardness layer contains 100 vol% of diamond particles having a particle size of 10 to 20 μm, contains no additive particles, and has a thickness of Co: 100 wt% of a metal binder containing 10 vol% of a metal binder. It was formed to 150 μm. Further, the low hardness layer is a mixture containing 50 vol% of diamond particles having a particle diameter of 4 to 6 μm, 50 vol% of WC particles having a particle diameter of 0.5 to 2 μm as additive particles, and 15 vol% of a Co: 100 wt% metal binder. To form a thickness of 200 μm. A hard layer in which six layers were alternately arranged from the surface side toward the chip body side was coated on the tip portion.
 実施例3では、高硬度層を、粒径0.5~2μmのダイヤモンド粒子を30vol%、粒径4~6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ200μmに形成した。中間層を、粒径4~6μmのダイヤモンド粒子を60vol%、添加物粒子として粒径0.5~2μmのWC粒子を40vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ200μmに形成した。低硬度層を、粒径4~6μmのダイヤモンド粒子を20vol%、添加物粒子として粒径0.5~2μmのWC粒子を80vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ200μmに形成した。これらを表面側からチップ本体側に向けて順に2層ずつ配設した硬質層を先端部に被覆した。 In Example 3, the high hardness layer contains 30 vol% of diamond particles having a particle diameter of 0.5 to 2 μm, 70 vol% of diamond particles having a particle diameter of 4 to 6 μm, and contains no additive particles. It was formed to a thickness of 200 μm by a mixture containing 10% by volume of a metal binder. The intermediate layer has a thickness of 60 vol% of diamond particles having a particle diameter of 4 to 6 μm, 40 vol% of WC particles of 0.5 to 2 μm as additive particles, and 5 vol% of Co: 100 wt% metal binder. It was formed to 200 μm. The low hardness layer is thickened by a mixture containing 20 vol% of diamond particles having a particle diameter of 4 to 6 μm, 80 vol% of WC particles of 0.5 to 2 μm as additive particles, and 5 vol% of a Co: 100 wt% metal binder. The thickness was 200 μm. A hard layer in which two layers were arranged in order from the surface side to the chip body side was coated on the tip portion.
 実施例4では、高硬度層を、粒径15~30μmのダイヤモンド粒子を65vol%、添加物粒子として粒径0.5~1.3μmのTiC粒子を35vol%、Co:100wt%の金属バインダーを15vol%含有した混合物によって厚さ400μmに形成した。また、低硬度層を、粒径15~30μmのダイヤモンド粒子を30vol%、添加物粒子として粒径0.5~2μmのTiCN粒子を70vol%、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ800μmに形成した。これらを表面側からチップ本体側に向けて2層ずつ交互に配設した硬質層を先端部に被覆した。 In Example 4, the high hardness layer is 65 vol% of diamond particles having a particle size of 15 to 30 μm, 35 vol% of TiC particles having a particle size of 0.5 to 1.3 μm as additive particles, and a metal binder of Co: 100 wt%. A thickness of 400 μm was formed by a mixture containing 15 vol%. Further, the low hardness layer is a mixture containing 30 vol% of diamond particles having a particle diameter of 15 to 30 μm, 70 vol% of TiCN particles having a particle diameter of 0.5 to 2 μm as additive particles, and 10 vol% of a Co: 100 wt% metal binder. Was formed to a thickness of 800 μm. A hard layer in which two layers were alternately arranged from the surface side toward the chip body side was coated on the tip portion.
 実施例5では、高硬度層を、粒径6~12μmのダイヤモンド粒子を80vol%、添加物粒子として粒径2~4μmのWC粒子を20vol%含有し、Fe:69wt%、Ni:31wt%の金属バインダーを15vol%含有した混合物によって厚さ200μmに形成した。また、低硬度層を、粒径15~30μmのダイヤモンド粒子を40vol%、添加物粒子として粒径2~4μmのcBN粒子を60vol%、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ300μmに形成した。これらを表面側からチップ本体側に向けて2層ずつ交互に配設した硬質層を先端部に被覆した。 In Example 5, the high hardness layer contains 80 vol% of diamond particles having a particle diameter of 6 to 12 μm, 20 vol% of WC particles having a particle diameter of 2 to 4 μm as additive particles, Fe: 69 wt%, Ni: 31 wt%. The metal binder was formed to a thickness of 200 μm with a mixture containing 15 vol%. Further, the low hardness layer is thickened by a mixture containing 40 vol% of diamond particles having a particle diameter of 15 to 30 μm, 60 vol% of cBN particles having a particle diameter of 2 to 4 μm as additive particles, and 10 vol% of Co: 100 wt% metal binder. The thickness was 300 μm. A hard layer in which two layers were alternately arranged from the surface side toward the chip body side was coated on the tip portion.
 一方、これらの実施例1~5に対する比較例として、2層の高硬度層の間に低硬度層を有することのない硬質層が被覆された先端部がなす半球の直径が同じく11mmのボタンタイプの掘削チップを4種製造した。これらを比較例1~4とする。本比較例の焼成も本実施例と同様に超高圧・高温発生装置を用いて、ダイヤモンド安定領域である、圧力5.8GPa、温度1500℃、焼結時間10分で行った。 On the other hand, as a comparative example with respect to Examples 1 to 5, a button type in which the diameter of the hemisphere formed by the tip portion coated with the hard layer having no low hardness layer between the two high hardness layers is similarly 11 mm. 4 types of drilling chips were manufactured. These are referred to as Comparative Examples 1 to 4. The firing of this comparative example was also performed using an ultrahigh pressure / high temperature generator as in this example, in a diamond stable region at a pressure of 5.8 GPa, a temperature of 1500 ° C., and a sintering time of 10 minutes.
 比較例1では、高硬度層を、粒径0.5~2μmのダイヤモンド粒子を30vol%、粒径4~6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ200μmに形成した。また、中間層を、粒径4~6μmのダイヤモンド粒子を60vol%、添加物粒子として粒径0.5~2μmのWC粒子を40vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ400μmに形成した。さらに、低硬度層を粒径4~6μmのダイヤモンド粒子を20vol%、添加物粒子として粒径0.5~2μmのWC粒子を80vol%含有してCo:100wt%の金属バインダーを5vol%含有した混合物によって厚さ600μmに形成した。これらを表面側からチップ本体側に向けて順に1層ずつだけ配設した硬質層を先端部に被覆した。 In Comparative Example 1, the high hardness layer contains 30 vol% of diamond particles with a particle size of 0.5 to 2 μm, 70 vol% of diamond particles with a particle size of 4 to 6 μm, and does not contain additive particles. It was formed to a thickness of 200 μm by a mixture containing 10% by volume of a metal binder. Further, the intermediate layer is made of a mixture containing 60 vol% of diamond particles having a particle size of 4 to 6 μm, 40 vol% of WC particles of 0.5 to 2 μm as additive particles, and 5 vol% of Co: 100 wt% metal binder. A thickness of 400 μm was formed. Further, the low-hardness layer contains 20 vol% of diamond particles having a particle diameter of 4 to 6 μm, 80 vol% of WC particles of 0.5 to 2 μm as additive particles, and 5 vol% of a metal binder of Co: 100 wt%. The mixture was formed to a thickness of 600 μm. A hard layer in which only one layer was disposed in order from the surface side toward the chip body side was coated on the tip.
 比較例2では、硬質層を粒径0.5~2μmのダイヤモンド粒子を30vol%、粒径4~6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ800μmの1層だけ被覆した。 In Comparative Example 2, the hard layer contains 30 vol% of diamond particles having a particle diameter of 0.5 to 2 μm, 70 vol% of diamond particles having a particle diameter of 4 to 6 μm, does not contain additive particles, and contains Co: 100 wt%. Only one layer having a thickness of 800 μm was covered with a mixture containing 10 vol% of a metal binder.
 比較例3では、高硬度層を粒径0.5~2μmのダイヤモンド粒子を30vol%、粒径4~6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ400μmに形成した。また、低硬度層を粒径4~6μmのダイヤモンド粒子を60vol%、添加物粒子として粒径0.5~2μmのWC粒子を40vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ600μmに形成した。これらを表面側からチップ本体側に向けて順に1層ずつだけ配設した硬質層を先端部に被覆した。 In Comparative Example 3, the high hardness layer contains 30 vol% of diamond particles having a particle diameter of 0.5 to 2 μm, 70 vol% of diamond particles having a particle diameter of 4 to 6 μm, does not contain additive particles, and Co: 100 wt% Was formed to a thickness of 400 μm by a mixture containing 10 vol% of a metal binder. Further, the low hardness layer is made of a mixture containing 60 vol% of diamond particles having a particle diameter of 4 to 6 μm, 40 vol% of WC particles of 0.5 to 2 μm as additive particles, and 5 vol% of Co: 100 wt% metal binder. A thickness of 600 μm was formed. A hard layer in which only one layer was disposed in order from the surface side toward the chip body side was coated on the tip.
 比較例4では、高硬度層を、粒径0.5~2μmのダイヤモンド粒子を30vol%、粒径4~6μmのダイヤモンド粒子を70vol%含有し、添加物粒子は含有せずに、Co:100wt%の金属バインダーを10vol%含有した混合物によって厚さ400μmに形成した。また、低硬度層を、粒径4~6μmのダイヤモンド粒子を20vol%、添加物粒子として粒径0.5~2μmのWC粒子を80vol%、Co:100wt%の金属バインダーを5vol%含有した混合物によって厚さ600μmに形成した。これらを表面側からチップ本体側に向けて順に1層ずつだけ配設した硬質層を先端部に被覆した。 In Comparative Example 4, the high hardness layer contains 30 vol% of diamond particles having a particle diameter of 0.5 to 2 μm, 70 vol% of diamond particles having a particle diameter of 4 to 6 μm, and does not contain additive particles. It was formed to a thickness of 400 μm by a mixture containing 10% by volume of a metal binder. Further, the low hardness layer is a mixture containing 20 vol% of diamond particles having a particle diameter of 4 to 6 μm, 80 vol% of WC particles having a particle diameter of 0.5 to 2 μm as additive particles, and 5 vol% of Co: 100 wt% metal binder. To form a thickness of 600 μm. A hard layer in which only one layer was disposed in order from the surface side toward the chip body side was coated on the tip.
 このように製造した実施例1~5と比較例1~4の掘削チップ(ボタンチップ)を、ビット径45mmの掘削ビットのゲージ面に5つ、フェイス面に2つの合計で7つ取り付けた。これらを用いて硬岩と超硬岩とを含む平均一軸圧縮強度180MPaの銅鉱山に、掘削長4mの掘削孔を掘削する掘削作業を行い、掘削チップが寿命に至るまでのトータル掘削長(m)を測定するとともに掘削終了時の掘削チップの摩耗形態を確認した。なお、掘削条件は、掘削装置がTAMROCK社製型番H205D、打撃圧力が160bar、フィード(送り)圧力が80bar、回転圧力が55barとした。また、ブロー孔からは水を供給してその水圧は18barであった。この結果を表1に示す。 The thus manufactured excavation tips (button tips) of Examples 1 to 5 and Comparative Examples 1 to 4 were attached to a total of seven excavation bits having a bit diameter of 45 mm on the gauge surface and two on the face surface. Using these, drilling work to drill a 4m drilling hole in a copper mine with an average uniaxial compressive strength of 180MPa including hard rock and super hard rock, and the total drilling length (m ) And the wear form of the excavation tip at the end of excavation was confirmed. Excavation conditions were as follows: the excavator was model number H205D manufactured by TAMROCK, the striking pressure was 160 bar, the feed pressure was 80 bar, and the rotational pressure was 55 bar. Water was supplied from the blow hole and the water pressure was 18 bar. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果より、比較例1~4の掘削チップを取り付けた掘削ビットでは、最も掘削長の長い比較例1でも、掘削チップに正常摩耗以外に一部チッピングが生じ、実施例1~5の掘削チップを取り付けた掘削ビットのおよそ1/2の掘削長で寿命に達してしまった。特に、硬質層が1層の比較例2では、層剥離により10孔を掘削したところで寿命となり、1つの掘削ビットで岩盤の1面に十分な数の掘削孔を形成することはできなかった。 As a result, in the excavation bit to which the excavation tip of Comparative Examples 1 to 4 was attached, even in Comparative Example 1 with the longest excavation length, some chipping occurred on the excavation tip in addition to normal wear, and the excavation tips of Examples 1 to 5 The life span has been reached with a drilling length of about half that of a drilling bit fitted with a. In particular, in Comparative Example 2 with one hard layer, the life was reached when 10 holes were excavated by delamination, and a sufficient number of excavation holes could not be formed on one surface of the rock with one excavation bit.
 これに対して、実施例1~5の掘削チップを取り付けた掘削ビットでは、トータル掘削長が最も短い実施例3でも略60孔の掘削孔を形成することができ、岩盤1面に十数箇所の掘削孔を形成する場合には、略3面に対して掘削ビットを交換することなく効率的な掘削が可能であった。特に、高硬度層の層数が多い実施例2では、100以上の掘削孔を形成することができ、極めて効率的な掘削作業が可能であった。 On the other hand, in the excavation bit to which the excavation tips of Examples 1 to 5 are attached, approximately 60 excavation holes can be formed even in Example 3 with the shortest total excavation length, and more than a dozen places on one surface of the rock mass. In the case of forming the excavation hole, efficient excavation was possible without replacing excavation bits with respect to approximately three surfaces. Particularly, in Example 2 where the number of high hardness layers is large, 100 or more excavation holes can be formed, and extremely efficient excavation work was possible.
 なお、実施例1と同じ高硬度層と低硬度層の組成で、高硬度層の厚さが1000μm、低硬度層の厚さが200μmで、高硬度層と低硬度層が交互に2層ずつ積層された硬質層を有する掘削チップを製造しようとしたところ、高硬度層の厚さが800μmを越えていて硬質層における高硬度層の残留応力が高く、焼結時に高硬度層に層間クラックが発生して製造することができなかった。 The same composition of the high hardness layer and the low hardness layer as in Example 1, the thickness of the high hardness layer is 1000 μm, the thickness of the low hardness layer is 200 μm, and the high hardness layer and the low hardness layer are alternately two layers. When trying to manufacture a drilling tip having a laminated hard layer, the thickness of the high hardness layer exceeds 800 μm, the residual stress of the high hardness layer in the hard layer is high, and there are interlayer cracks in the high hardness layer during sintering. It was generated and could not be manufactured.
 以上説明したように、本発明では、掘削時に突発的に岩盤中の極めて硬い超硬岩等に掘削チップが当たって硬質層外層の高硬度層に欠損やチッピングが生じ、露出した部分から内側の低硬度層に摩耗が進行しても、一気に摩耗がチップ本体まで達するのを防いで掘削性能を維持することができ、掘削ビットの寿命を延長して効率的な掘削作業を図ることが可能となる。 As described above, according to the present invention, the excavation tip hits an extremely hard hard rock in the rock suddenly during excavation to cause a defect or chipping in the high hardness layer of the hard outer layer, and from the exposed portion to the inner side. Even if wear progresses to the low hardness layer, it is possible to maintain the drilling performance by preventing the wear from reaching the tip body at a stretch, and it is possible to extend the life of the drill bit and perform efficient drilling work Become.
 1 掘削チップ
 2 チップ本体
 3 硬質層
 4 高硬度層
 5 低硬度層
 11 ビット本体
 C チップ中心線
 O ビット本体11の軸線
DESCRIPTION OF SYMBOLS 1 Drilling tip 2 Tip body 3 Hard layer 4 High hardness layer 5 Low hardness layer 11 Bit body C Tip center line O Bit body 11 axis

Claims (6)

  1.  掘削ビットの先端部に取り付けられて掘削を行う掘削チップであって、
     チップ本体と、このチップ本体の少なくとも先端部に被覆された該チップ本体よりも硬質なダイヤモンド焼結体よりなる硬質層とを備え、
     上記硬質層は、該硬質層の表面側から上記チップ本体側に向けて、少なくとも2層の高硬度層と、これらの高硬度層の間に配設された該高硬度層よりも硬度が低い低硬度層とを有している掘削チップ。
    A drilling tip attached to the tip of the drilling bit for drilling,
    A chip body and a hard layer made of a diamond sintered body harder than the chip body coated at least on the tip of the chip body;
    The hard layer has a hardness lower than that of at least two high-hardness layers and the high-hardness layer disposed between the high-hardness layers from the surface side of the hard layer toward the chip body side. Drilling tip having a low hardness layer.
  2.  上記硬質層には、該硬質層の表面側から上記チップ本体側に向けて、それぞれ複数層ずつの上記高硬度層と上記低硬度層とが交互に配設されている請求項1に記載の掘削チップ。 2. The hard layer according to claim 1, wherein a plurality of layers of the high hardness layer and the low hardness layer are alternately arranged from the surface side of the hard layer toward the chip body side. Drilling tip.
  3.  上記高硬度層の厚さは、上記低硬度層の厚さの1/2以上で該低硬度層の厚さ以下の範囲とされている請求項1または請求項2に記載の掘削チップ。 The excavation tip according to claim 1 or 2, wherein the thickness of the high hardness layer is in a range of 1/2 or more of the thickness of the low hardness layer and not more than the thickness of the low hardness layer.
  4.  個々の上記高硬度層の厚さと上記低硬度層の厚さは、それぞれ最も薄い部分で150μm以上であり、最も厚い部分で800μm以下とされている請求項1から請求項3のうちいずれか一項に記載の掘削チップ。 4. The thickness of each of the high hardness layer and the thickness of the low hardness layer is 150 μm or more at the thinnest portion and 800 μm or less at the thickest portion, respectively. Drilling tip according to item.
  5.  上記硬質層の表面側から上記チップ本体側に向けて、上記高硬度層と上記低硬度層との間には、該高硬度層よりも硬度が低く上記低硬度層よりも硬度が高い中間層が配設されている請求項1から請求項4のうちいずれか一項に記載の掘削チップ。 An intermediate layer having a lower hardness than the high hardness layer and a higher hardness than the low hardness layer between the high hardness layer and the low hardness layer from the surface side of the hard layer toward the chip body side. The excavation tip according to any one of claims 1 to 4, wherein is provided.
  6.  請求項1から請求項5のうちいずれか一項に記載の掘削チップが先端部に取り付けられている掘削ビット。 A excavation bit in which the excavation tip according to any one of claims 1 to 5 is attached to a tip portion.
PCT/JP2015/083276 2014-11-27 2015-11-26 Drill tip and drill bit WO2016084914A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2015354591A AU2015354591A1 (en) 2014-11-27 2015-11-26 Drill bit button insert and drill bit
US15/531,255 US10352104B2 (en) 2014-11-27 2015-11-26 Drill bit button insert and drill bit
EP15864189.4A EP3225775B1 (en) 2014-11-27 2015-11-26 Drill tip and drill bit
CN201580064114.5A CN107002465B (en) 2014-11-27 2015-11-26 Excavating blade and excavating bit
RU2017121909A RU2017121909A (en) 2014-11-27 2015-11-26 DRILL BIT DRILLING INSERT AND DRILL BIT
CA2968940A CA2968940C (en) 2014-11-27 2015-11-26 Drill bit button insert and drill bit
KR1020177013913A KR102446207B1 (en) 2014-11-27 2015-11-26 Drill tip and drill bit
ZA2017/03837A ZA201703837B (en) 2014-11-27 2017-06-05 Drill bit button insert and drill bit
AU2020264372A AU2020264372B2 (en) 2014-11-27 2020-11-06 Drill bit button insert and drill bit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014240087 2014-11-27
JP2014-240087 2014-11-27
JP2015230103A JP6641925B2 (en) 2014-11-27 2015-11-25 Drilling tips and bits
JP2015-230103 2015-11-25

Publications (1)

Publication Number Publication Date
WO2016084914A1 true WO2016084914A1 (en) 2016-06-02

Family

ID=56074464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083276 WO2016084914A1 (en) 2014-11-27 2015-11-26 Drill tip and drill bit

Country Status (2)

Country Link
WO (1) WO2016084914A1 (en)
ZA (1) ZA201703837B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295482A (en) * 1987-05-27 1988-12-01 Showa Denko Kk High-hardness composite sintered body
US6315065B1 (en) * 1999-04-16 2001-11-13 Smith International, Inc. Drill bit inserts with interruption in gradient of properties
JP2013513031A (en) * 2009-12-07 2013-04-18 エレメント シックス リミテッド Polycrystalline diamond structure
WO2013064433A2 (en) * 2011-10-31 2013-05-10 Element Six Abrasives S.A. Tip for a pick tool, method of making same and pick tool comprising same
US20140060937A1 (en) * 2012-08-31 2014-03-06 Diamond Innovations, Inc. Polycrystalline diamond compact coated with high abrasion resistance diamond layers
US9097111B2 (en) * 2011-05-10 2015-08-04 Element Six Abrasives S.A. Pick tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295482A (en) * 1987-05-27 1988-12-01 Showa Denko Kk High-hardness composite sintered body
US6315065B1 (en) * 1999-04-16 2001-11-13 Smith International, Inc. Drill bit inserts with interruption in gradient of properties
JP2013513031A (en) * 2009-12-07 2013-04-18 エレメント シックス リミテッド Polycrystalline diamond structure
US9097111B2 (en) * 2011-05-10 2015-08-04 Element Six Abrasives S.A. Pick tool
WO2013064433A2 (en) * 2011-10-31 2013-05-10 Element Six Abrasives S.A. Tip for a pick tool, method of making same and pick tool comprising same
US20140060937A1 (en) * 2012-08-31 2014-03-06 Diamond Innovations, Inc. Polycrystalline diamond compact coated with high abrasion resistance diamond layers

Also Published As

Publication number Publication date
ZA201703837B (en) 2022-03-30

Similar Documents

Publication Publication Date Title
CN102656334A (en) Highly wear resistant diamond insert with improved transition structure
JPH07150878A (en) Drill bit insert reinforced by polycrystalline diamond
AU2020264372B2 (en) Drill bit button insert and drill bit
US10465448B2 (en) Drill bit insert and drill bit
US9328565B1 (en) Diamond-enhanced carbide cutting elements, drill bits using the same, and methods of manufacturing the same
WO2016084914A1 (en) Drill tip and drill bit
EP2740884B1 (en) Rock bit tip and rock bit
KR102589417B1 (en) Drill tip and drill bit
WO2016148223A1 (en) Drill tip and drill bit
WO2016114344A1 (en) Drill tip and drill bit
CN212054509U (en) Hard alloy compression-resistant impact drill bit
JP2018204202A (en) PDC bit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177013913

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2968940

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15531255

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015864189

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015354591

Country of ref document: AU

Date of ref document: 20151126

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017121909

Country of ref document: RU

Kind code of ref document: A