WO2016076353A1 - Au-Sn ALLOY SOLDER PASTE, METHOD FOR MANUFACTURING Au-Sn ALLOY SOLDER LAYER, AND Au-Sn ALLOY SOLDER LAYER - Google Patents

Au-Sn ALLOY SOLDER PASTE, METHOD FOR MANUFACTURING Au-Sn ALLOY SOLDER LAYER, AND Au-Sn ALLOY SOLDER LAYER Download PDF

Info

Publication number
WO2016076353A1
WO2016076353A1 PCT/JP2015/081728 JP2015081728W WO2016076353A1 WO 2016076353 A1 WO2016076353 A1 WO 2016076353A1 JP 2015081728 W JP2015081728 W JP 2015081728W WO 2016076353 A1 WO2016076353 A1 WO 2016076353A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
alloy solder
mass
temperature
solder paste
Prior art date
Application number
PCT/JP2015/081728
Other languages
French (fr)
Japanese (ja)
Inventor
石川 雅之
佳史 山本
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020167034907A priority Critical patent/KR20170080536A/en
Publication of WO2016076353A1 publication Critical patent/WO2016076353A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin

Definitions

  • the present invention relates to, for example, an Au—Sn alloy solder paste used when joining a base material and an object to be joined, a method for producing an Au—Sn alloy solder layer using this Au—Sn alloy solder paste, and Au—
  • the present invention relates to a Sn alloy solder layer.
  • Patent Document 1 discloses an Au-90 mass% Sn alloy solder containing 90 mass% of Sn.
  • Patent Document 2 discloses an Au-20 mass% Sn alloy solder containing 20 mass% of Sn.
  • the melting point (eutectic temperature) is as low as 217 ° C. as shown in the Au—Sn binary phase diagram of FIG. There is a possibility that the formed solder layer may be melted due to heat generation or temperature rise in the use environment. That is, a solder layer having sufficient heat resistance could not be obtained.
  • the melting point (eutectic temperature) is 278 ° C. as shown in the Au—Sn binary phase diagram of FIG. Therefore, it is superior in heat resistance to Au-90 mass% Sn alloy solder.
  • the Au-20 mass% Sn alloy solder contains more Au that is more expensive than the Au-90 mass% Sn alloy solder, there is a problem in that the manufacturing cost is significantly increased.
  • Patent Document 3 Au-20 mass% Sn alloy solder powder and Au-90 mass% Sn solder alloy powder are mixed, and Sn is 55 to 70 with respect to a total of 100 mass parts of Au and Sn.
  • An Au—Sn alloy solder paste containing parts by mass is disclosed.
  • the Au-90 mass% Sn solder alloy powder having a low eutectic temperature is melted to wet the semiconductor element or circuit board as the joined body, and then melted.
  • the Au—90 mass% Sn solder alloy and the Au-20 mass% Sn solder alloy diffuse to form an Au—Sn solder alloy layer having a composition in which they are mixed.
  • the present invention has been made in view of the above-described circumstances, and is an Au—Sn alloy solder paste that is excellent in meltability and can form a solder layer having sufficient heat resistance even when bonded at a relatively low temperature. Another object is to provide an Au—Sn alloy solder layer manufacturing method using this Au—Sn alloy solder paste, and an Au—Sn alloy solder layer.
  • an Au—Sn alloy solder paste which is one embodiment of the present invention includes an Au—Sn alloy containing Sn in a range of 61 mass% to 70 mass% with the balance being Au and inevitable impurities. Including the powder and the flux, the oxygen concentration in the Au—Sn alloy powder is in the range of 50 ppm to 1800 ppm by mass.
  • the Au—Sn alloy solder paste Sn is contained in the range of 61 mass% to 70 mass%, and the balance has Au—Sn alloy powder having a composition composed of Au and inevitable impurities.
  • the solidus temperature of this Au—Sn alloy powder is 252 ° C. For this reason, it is possible to perform bonding even under relatively low temperature conditions. Further, since the liquidus temperature is about 300 ° C., the heat resistance of the formed solder alloy layer can be ensured.
  • the oxygen concentration in the Au—Sn alloy powder is 50 ppm by mass or more, an oxide film is formed on the surface of the Au—Sn alloy powder, thereby suppressing aggregation of the Au—Sn alloy powder. It becomes possible. Thereby, the yield of Au-Sn alloy powder after classification can be improved. In addition, it is possible to suppress the occurrence of poor melting or printing failure of the Au—Sn alloy solder paste. Furthermore, since the oxygen concentration in the Au—Sn alloy powder is limited to 1800 ppm by mass or less, the meltability is not adversely affected when mixed with the flux.
  • the average particle diameter of the Au—Sn alloy powder is in the range of 1 ⁇ m to 25 ⁇ m.
  • the average particle diameter of the Au—Sn alloy powder is in the range of 1 ⁇ m or more and 25 ⁇ m or less, the Au—Sn alloy solder paste can be printed on a minute area without causing printing defects using a printing machine.
  • the Au—Sn alloy powder can be reliably melted during the melting process, the occurrence of poor melting can be suppressed.
  • the content of the flux is preferably in the range of 5 mass% to 40 mass% of the entire paste.
  • the content of the flux is in the range of 5% by mass or more and 40% by mass or less of the entire paste, the printability of the Au—Sn alloy solder paste is improved and the Au at the time of the melting process is improved. -Insufficient aggregation of Sn alloy powder can be suppressed.
  • the above Au—Sn alloy solder paste is disposed on the surface of a base material, and the Au—Sn alloy solder paste is heated and melted. It is characterized by that. According to the manufacturing method of the Au—Sn alloy solder layer having this configuration, since the Au—Sn alloy solder paste described above is heated and melted, the liquidus temperature becomes about 300 ° C., and Au having excellent heat resistance. A Sn alloy solder layer can be obtained.
  • the base material having an Au film formed on the surface thereof is prepared, and the Au—Sn alloy solder is formed on the Au film. It is preferable to dispose a paste and to melt by heating to a temperature between the solidus temperature of the Au—Sn alloy constituting the Au—Sn alloy solder paste + 30 ° C. or more and the liquidus temperature or less.
  • the Au—Sn alloy solder paste When the above-mentioned Au—Sn alloy solder paste is heated to a temperature of the solidus temperature of the Au—Sn alloy constituting the Au—Sn alloy solder paste + 30 ° C. or more and the liquidus temperature or less, the Au—Sn alloy solder paste A part of it melts to form a sherbet, and the liquid phase Au—Sn spreads out to form a thin film phase. Further, it was found that a thin film phase was formed, and the remaining composition region of the thin film phase wetted and spread as a liquid phase was formed as a thick film phase at the center of the thin film phase. It was found that the thin film phase spread by wetting was a Sn—Au phase containing Sn as a main component.
  • the thick film phase in the central part was formed with a high Au content phase in which the Au content was relatively higher than that of the liquid Sn—Au phase. That is, it can be seen that the central portion of the formed Au—Sn alloy solder layer is further heated (the solidus temperature and the liquidus temperature are rising).
  • the Sn-Au phase thin film phase
  • the Au—Sn alloy solder layer formed after solidification has an increased solidus temperature and liquidus temperature, and is particularly excellent in heat resistance.
  • the actual use temperature at the time of joining is usually performed at a temperature 30 to 50 degrees higher than the melting end temperature of the solder (liquidus temperature, eutectic temperature in the case of a eutectic alloy). Therefore, in the Au-20 mass% Sn alloy solder described in Patent Document 2, since the melting point (eutectic temperature) is 278 ° C., the actual temperature is reflowed from 308 ° C. to 328 ° C. and mounted. Depending on the type of the object, for example, the LED element, it is reflowed at a temperature close to the heat resistant limit temperature, and there is a risk of thermally damaging the mounted object.
  • the solidus temperature of the Au—Sn alloy powder is 252 ° C.
  • the liquidus temperature is about 300 ° C.
  • Patent Documents 1, 2, and 3 all of eutectic alloy powder paste is used, but in the present invention, an alloy having a difference between the solidus temperature and the liquidus temperature of about 50 ° C. is used instead of the eutectic alloy. .
  • the melting end temperature (liquidus temperature) which is set as the MAX temperature of the normal mounting reflow temperature +30 to 50 ° C., the solidus temperature +30 to It was clarified that the material can be sufficiently melted and bonded at 50 ° C., that is, from 282 ° C. which is a solidus temperature of 252 ° C. + 30 ° C. to 302 ° C. which is a solidus temperature of 252 ° C. + 50 ° C. That is, compared with the case where the Au-20 mass% Sn solder alloy of patent document 2 is used, the thermal damage of a to-be-mounted object can be reduced.
  • An Au—Sn alloy solder layer which is one embodiment of the present invention is obtained by the above-described method for producing an Au—Sn alloy solder layer.
  • the Au—Sn alloy solder layer having this structure once formed after reflow has a relatively high solidus temperature and liquidus temperature, and is excellent in heat resistance. Therefore, it can be used satisfactorily even under high temperature use conditions.
  • an Au—Sn alloy solder paste having excellent meltability and capable of forming a solder layer having sufficient heat resistance even when bonded at a relatively low temperature, and this Au—Sn alloy solder paste were used. It is possible to provide a method for producing an Au—Sn alloy solder layer and an Au—Sn alloy solder layer.
  • the Au—Sn alloy solder paste 20 is used when, for example, an LED element (material to be joined) and a circuit board (base material) are joined.
  • the Au—Sn alloy solder paste 20 includes Sn in a range of 61 mass% to 70 mass%, with the balance being Au—Sn alloy powder composed of Au and inevitable impurities, and a flux.
  • the oxygen concentration in the Au—Sn alloy powder is in the range of 50 ppm to 1800 ppm by mass.
  • the average particle diameter of the Au—Sn alloy powder is in the range of 1 ⁇ m to 25 ⁇ m. Furthermore, in this embodiment, the content of the flux is in the range of 5% by mass or more and 40% by mass or less of the entire paste. The reason why the composition of the Au—Sn alloy powder, the oxygen concentration in the Au—Sn alloy powder, the average particle diameter of the Au—Sn alloy powder, and the flux content are specified as described above will be described below.
  • the Sn content in the Au—Sn alloy powder is set in the range of 61 mass% to 70 mass%.
  • the Sn content in the Au—Sn alloy powder is preferably 65% by mass or more and 70% by mass or less, but is not limited thereto.
  • the oxygen concentration in the Au—Sn alloy powder is set in the range of 50 ppm to 1800 ppm by mass.
  • the oxygen concentration in the Au—Sn alloy powder is preferably 50 mass ppm or more and 400 mass ppm or less, but is not limited thereto.
  • the average particle diameter of the Au—Sn alloy powder is set in the range of 1 ⁇ m to 25 ⁇ m.
  • the average particle diameter of the Au—Sn alloy powder is preferably 3 ⁇ m or more and 15 ⁇ m or less, but is not limited thereto.
  • the content of the flux is set within a range of 5% by mass or more and 40% by mass or less of the entire paste.
  • the flux for example, a general flux (for example, a flux containing rosin, an activator, a solvent, a thickener, etc.) can be used. From the viewpoint of wettability of the Au—Sn alloy solder paste 20, it is preferable to use, for example, a weakly active (RMA) type flux, an active (RA) type flux, or the like.
  • a weakly active (RMA) type flux for example, an active (RA) type flux, or the like.
  • a molten Au—Sn alloy is obtained by weighing and melting the molten raw material so as to have the above-mentioned composition.
  • This Au—Sn alloy molten metal is mechanically stirred while being kept at a predetermined temperature (eg, 700 to 800 ° C.).
  • a predetermined temperature eg, 700 to 800 ° C.
  • propeller stirring is preferable.
  • mechanical stirring and electrical stirring such as electromagnetic stirring may be used in combination.
  • the rotation speed of the propeller can be set to, for example, 60 to 100 rpm.
  • the stirring time can be, for example, in the range of 3 to 10 minutes.
  • the above-mentioned Au—Sn alloy powder is manufactured by a gas atomization method using a molten Au—Sn alloy.
  • the pressure is applied to the above-mentioned molten Au—Sn alloy (for example, 300 to 800 kPa) while being derived from a small diameter nozzle (diameter 1 to 2 mm), and atomized gas is sprayed onto the molten Au—Sn alloy.
  • the spraying pressure can be 5000 to 8000 kPa, and the nozzle gap can be 0.3 mm or less.
  • the oxygen concentration in the produced Au—Sn alloy powder is controlled by using a mixed gas containing an inert gas and oxygen as the atomizing gas. That is, in this embodiment, the oxygen concentration in the atomized gas is adjusted so that the oxygen concentration of the produced Au—Sn alloy powder is in the range of 50 mass ppm to 1800 mass ppm.
  • a gas having the same oxygen concentration is used, when a powder having a large particle size is produced, the specific surface area of the powder is small, so that the oxygen concentration in the powder is inevitably low.
  • the specific surface area is increased, so that the oxygen concentration is increased. For this reason, it is necessary to adjust the oxygen concentration in the gas according to the target particle size and oxygen concentration of the powder.
  • the Au-Sn alloy solder paste 20 according to the present embodiment is manufactured by mixing the Au-Sn alloy powder and the flux at a predetermined mixing ratio.
  • a mixing method at this time a planetary stirring method or a mechanical stirring method can be applied.
  • the Au—Sn alloy solder layer 30 prints the Au—Sn alloy solder paste 20 according to the present embodiment on the substrate 11 on which the Au film 12 is formed.
  • the Au—Sn alloy solder paste 20 is manufactured by heating and melting the Au—Sn alloy constituting the Au—Sn alloy solder paste 20 to a temperature not lower than + 30 ° C. and not higher than the liquidus temperature.
  • the Au film 12 preferably has a film thickness in the range of 0.01 ⁇ m to 0.1 ⁇ m.
  • the Au film 12 can be formed by plating or the like.
  • the solidus temperature is 252 ° C. and the liquidus temperature is about 300 ° C.
  • the MAX temperature in reflow at the time of joining is in the range of the solidus temperature to the liquidus temperature, preferably the solidus temperature + 30 ° C. to the liquidus temperature.
  • the Au film 12 has a larger area than the printed Au—Sn alloy solder paste 20, and the thin film phase 31 formed by wetting and spreading the liquid Au—Sn sufficiently reacts with the Au film 12. Is configured to do.
  • the Au—Sn alloy solder layer 30 having a structure in which the thick film phase 32 having a high Au content is formed in the central portion and the thin film phase 31 mainly composed of Sn is formed around the thick film phase 32. Is formed.
  • the Au—Sn alloy solder layer 30 shown in FIG. 2 since the solidus temperature and the liquidus temperature of the thick film phase 32 and the thin film phase 31 are increased, the heat resistance is greatly improved.
  • the Au—Sn alloy solder paste of the present embodiment having the above-described configuration, the Au—Sn composition containing Sn in the range of 61 mass% to 70 mass% with the balance being Au and inevitable impurities. Since it has Sn alloy powder, according to the Au—Sn binary phase diagram of FIG. 1, the solidus temperature is 252 ° C., and it is possible to perform bonding even under relatively low temperature conditions. Further, according to the Au—Sn binary phase diagram of FIG. 1, since the liquidus temperature is about 300 ° C., the heat resistance of the formed solder alloy layer can be ensured.
  • the oxygen concentration in the Au—Sn alloy powder is 50 mass ppm or more, an oxide film is formed on the surface of the Au—Sn alloy powder, thereby suppressing the aggregation of the Au—Sn alloy powder. It becomes possible to do. Thereby, the yield of Au-Sn alloy powder after classification can be improved. In addition, it is possible to suppress the occurrence of poor melting or printing failure of the Au—Sn alloy solder paste. Furthermore, in this embodiment, since the oxygen concentration in the Au—Sn alloy powder is limited to 1800 mass ppm or less, the meltability is not adversely affected when mixed with the flux.
  • the Au—Sn alloy powder is used when the Au—Sn alloy solder paste is melted after printing. Can be reliably melted, and printing defects and melting defects of the Au—Sn alloy solder paste can be suppressed.
  • the flux content is in the range of 5% by mass or more and 40% by mass or less of the entire paste, so that the printability of the Au—Sn alloy solder paste is improved and the melting treatment is performed. It is possible to suppress insufficient aggregation of the Au—Sn alloy powder at the time.
  • the Au—Sn alloy solder paste 20 according to this embodiment is printed on the base material 11 on which the Au film 12 is formed, and this Au -Since the Au-Sn alloy constituting the Sn alloy solder paste 20 is heated at a temperature not lower than the solidus temperature and not higher than the liquidus temperature, the wet thin film phase 31 reacts with the Au film 12 to cause the solidus line Since the solidus temperature and the liquidus temperature also rise in the thick film phase 32 as the temperature and the liquidus temperature rise, it is possible to form the Au—Sn alloy solder layer 30 with excellent heat resistance. It becomes.
  • a mixed gas containing an inert gas and oxygen is used as the atomizing gas used when producing the Au—Sn alloy powder, and the oxygen content in the atomizing gas is adjusted. Therefore, the oxygen concentration in the produced Au—Sn alloy powder can be controlled so as to be in the range of 50 ppm to 1800 ppm by mass.
  • this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
  • semiconductor elements such as a LED element, and a circuit board
  • it is not limited to this, It may be used when joining other members. Good.
  • the Au—Sn alloy solder paste printed on the substrate on which the Au film is formed is a liquidus line above the solidus temperature of the Au—Sn alloy constituting the Au—Sn alloy solder paste.
  • the present invention is not limited to this, and the above-described Au—Sn alloy solder paste is printed on the base material, and MAX at the time of reflow exceeding the normal liquidus temperature
  • the Au—Sn alloy solder layer may be formed by heating to a temperature (eg, liquidus temperature +30 to 50 ° C.).
  • reflow MAX temperatures not lower than the solidus temperature and not higher than the liquidus temperature can be applied, and bonding of mounted objects having high heat resistance can be applied.
  • the normal reflow MAX temperature, liquidus temperature + 30-50 ° C. can be applied.
  • the present invention is not limited to this, and the Au— An Sn alloy solder paste may be disposed.
  • the Au film is formed by plating.
  • the present invention is not limited to this, and the Au film may be formed by other means such as vapor deposition.
  • Au—Sn alloy powder having the composition shown in Table 1 was produced by the method described in the above embodiment. Specifically, the melting raw material is weighed so as to have the composition shown in Table 1 and melted to form a molten Au—Sn alloy. The Au—Sn alloy is heated to 700 ° C. and stirred by propeller stirring. . The Au—Sn alloy molten metal was discharged from a small nozzle having a diameter of 1.5 mm under a pressure of 6000 kPa while pressurizing the molten Au—Sn alloy at 500 kPa. Au—Sn alloy powder was produced by spraying O 2 ).
  • the oxygen concentration of the Au—Sn alloy powder was controlled by adjusting the oxygen content in the atomizing gas.
  • the oxygen concentration of the Au—Sn alloy powder was measured by an inert gas melting-infrared absorption method. Further, the obtained Au—Sn alloy powder was subjected to air classification to adjust the average particle size of the Au—Sn alloy powder as shown in Table 1.
  • the particle size of the Au—Sn alloy powder was measured by a laser diffraction method.
  • the results of measuring the solidus temperature and the liquidus temperature of the obtained Au—Sn alloy powder by differential scanning calorimetry (DSC) are shown in Table 1.
  • the maximum temperature during heating was measured using a K thermocouple.
  • the obtained Au—Sn alloy powder and a flux (RA type) were mixed at a flux ratio of 10% by weight by a planetary stirring method to prepare an Au—Sn alloy solder paste.
  • a Ni film was formed by plating on a 2 mm square substrate made of Cu, and an Au film was further formed thereon. At this time, the thickness of the Au film was set to 0.05 ⁇ m.
  • the above-described Au—Sn alloy solder paste is printed to a thickness of 20 ⁇ m and a diameter of 600 ⁇ m, and a 1 mm square LED element is laminated, heated to the temperature shown in Table 1, and melted. An Sn alloy solder layer was formed and the LED element was joined.
  • the Sn content in the Au—Sn alloy powder was 58 mass%, which was less than the range of the present invention.
  • the solidus temperature measured using DSC was as high as 310 ° C., and the junction temperature had to be 340 ° C. or higher. There is a concern that the LED element is thermally damaged.
  • the Sn content in the Au—Sn alloy powder was 73 mass%, which was larger than the range of the present invention.
  • the measurement of the solidus temperature using DSC was as low as 218 ° C., and the MAX temperature in reflow was 248 ° C., which is the solidus temperature + 30 ° C. It was judged that the formed Au—Sn alloy solder layer was insufficient in heat resistance because it was remelted by reflowing at 0 ° C.
  • the MAX temperature during heating was the solidus temperature + 9 ° C. and the solidus temperature + 24 ° C., which was lower than the range of the present invention where the solidus temperature + 30 ° C. or higher. Unmelted residue was generated in the reflowed powder, resulting in poor meltability.
  • Comparative Example 5 since the oxygen concentration of the Au—Sn alloy powder was reduced to 30 mass ppm, which was less than the range of the present invention, it was possible to confirm the occurrence of lumps when pasted, and to suppress aggregation between the powders. could not. For this reason, unmelted residue was generated in the powder after reflow, and poor meltability occurred. In Comparative Example 6, since the oxygen concentration of the Au—Sn alloy powder was 2200 mass ppm, which was larger than the range of the present invention, unmelted residue was generated in the reflowed powder, and poor melting occurred.
  • the Au—Sn alloy solder paste and Au—Sn alloy solder layer of the present invention example agglomeration of powders is suppressed, the meltability after reflow is excellent, and the heat damage property of the LED element is reduced. Without concern, the heat resistance of the joint portion of the LED element was obtained, and the LED element could be reliably joined.
  • the inventive examples 1 to 7 in which the Au—Sn alloy solder paste printed on the Au film was heated at a temperature not lower than the solidus temperature and not higher than the liquidus temperature the formed Au—Sn alloy solder layer The liquidus temperature was rising, melting was not observed even at 300 ° C., and it was confirmed to have high heat resistance. Further, FIG.
  • Example 3 shows an observation photograph of the Au—Sn alloy solder layer formed by changing only the printing diameter of the paste using the same material and the same procedure as Example 2 of the present invention.
  • An Au—Sn alloy solder layer 30 having a thin film phase 31 mainly composed of Sn that has spread and a thick film phase 32 having a relatively high Au content formed in the central portion is formed. It was confirmed.
  • an Au—Sn alloy solder paste that can form a solder layer that is excellent in meltability and has sufficient heat resistance even in bonding at relatively low temperature conditions, and It has been confirmed that an Au—Sn alloy solder layer can be provided.
  • an Au—Sn alloy solder paste having excellent meltability and capable of forming a solder layer having sufficient heat resistance even when bonded at a relatively low temperature, and this Au—Sn alloy solder paste were used.
  • An Au—Sn alloy solder layer manufacturing method and an Au—Sn alloy solder layer can be provided. According to the Au—Sn alloy solder layer manufacturing method using the Au—Sn alloy solder paste, the thermal damage to the mounted object can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

This Au-Sn alloy solder paste includes an Au-Sn alloy powder that includes Sn at a level within a range of 61-70 mass%, with the remainder being Au and unavoidable impurities, and a flux. The oxygen concentration in the Au-Sn alloy powder is within the range of 50-1,800 mass ppm.

Description

Au-Sn合金はんだペースト、Au-Sn合金はんだ層の製造方法、及びAu-Sn合金はんだ層Au-Sn alloy solder paste, method for producing Au-Sn alloy solder layer, and Au-Sn alloy solder layer
 本発明は、例えば基材と被接合体とを接合する際に用いられるAu-Sn合金はんだペースト、このAu-Sn合金はんだペーストを用いたAu-Sn合金はんだ層の製造方法、及び、Au-Sn合金はんだ層に関する。
 本願は、2014年11月13日に、日本に出願された特願2014-230609号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to, for example, an Au—Sn alloy solder paste used when joining a base material and an object to be joined, a method for producing an Au—Sn alloy solder layer using this Au—Sn alloy solder paste, and Au— The present invention relates to a Sn alloy solder layer.
This application claims priority on November 13, 2014 based on Japanese Patent Application No. 2014-230609 for which it applied to Japan, and uses the content here.
 一般に、LED装置等の半導体装置においては、回路基板(基材)と半導体素子(被接合体)とを接合する際に各種はんだペーストが用いられている。
 上述の半導体装置等に用いられるはんだペーストとして、例えば、特許文献1には、Snを90質量%含有するAu-90質量%Sn合金はんだが開示されている。また、特許文献2には、Snを20質量%含有するAu-20質量%Sn合金はんだが開示されている。
In general, in a semiconductor device such as an LED device, various solder pastes are used when a circuit board (base material) and a semiconductor element (joined body) are joined.
As a solder paste used in the above-described semiconductor device or the like, for example, Patent Document 1 discloses an Au-90 mass% Sn alloy solder containing 90 mass% of Sn. Patent Document 2 discloses an Au-20 mass% Sn alloy solder containing 20 mass% of Sn.
 特許文献1に記載されたAu-90質量%Sn合金はんだにおいては、図1のAu-Sn二元状態図に示されるように、融点(共晶温度)が217℃と低いため、使用時の発熱や使用環境の温度上昇等によって、形成されたはんだ層が溶融してしまうおそれがあった。すなわち、十分な耐熱性を有するはんだ層を得ることができなかった。
 また、特許文献2に記載されたAu-20質量%Sn合金はんだにおいては、図1のAu-Sn二元状態図に示されるように、融点(共晶温度)が278℃とされていることからAu-90質量%Sn合金はんだよりも耐熱性に優れている。しかし、Au-20質量%Sn合金はんだは、Au-90質量%Sn合金はんだよりも高価なAuを多く含有しているため、製造コストが大幅に上昇してしまうといった問題があった。
In the Au-90 mass% Sn alloy solder described in Patent Document 1, the melting point (eutectic temperature) is as low as 217 ° C. as shown in the Au—Sn binary phase diagram of FIG. There is a possibility that the formed solder layer may be melted due to heat generation or temperature rise in the use environment. That is, a solder layer having sufficient heat resistance could not be obtained.
In addition, in the Au-20 mass% Sn alloy solder described in Patent Document 2, the melting point (eutectic temperature) is 278 ° C. as shown in the Au—Sn binary phase diagram of FIG. Therefore, it is superior in heat resistance to Au-90 mass% Sn alloy solder. However, since the Au-20 mass% Sn alloy solder contains more Au that is more expensive than the Au-90 mass% Sn alloy solder, there is a problem in that the manufacturing cost is significantly increased.
 そこで、特許文献3においては、Au-20質量%Sn合金はんだ粉末とAu-90質量%Snはんだ合金粉末とを混合し、AuとSnとの合計100質量部に対して、Snを55~70質量部含むAu-Sn合金はんだペーストが開示されている。
 このAu-Sn合金はんだペーストは、はんだ接合時において、まず共晶温度が低いAu-90質量%Snはんだ合金粉末が溶融して被接合体である半導体素子や回路基板を濡らし、その後、溶融したAu-90質量%Snはんだ合金とAu―20質量%Snはんだ合金とが拡散することにより、これらが混合した組成のAu-Snはんだ合金層が形成される。
Therefore, in Patent Document 3, Au-20 mass% Sn alloy solder powder and Au-90 mass% Sn solder alloy powder are mixed, and Sn is 55 to 70 with respect to a total of 100 mass parts of Au and Sn. An Au—Sn alloy solder paste containing parts by mass is disclosed.
In this Au—Sn alloy solder paste, at the time of soldering, the Au-90 mass% Sn solder alloy powder having a low eutectic temperature is melted to wet the semiconductor element or circuit board as the joined body, and then melted. The Au—90 mass% Sn solder alloy and the Au-20 mass% Sn solder alloy diffuse to form an Au—Sn solder alloy layer having a composition in which they are mixed.
特開2008-137017号公報JP 2008-137017 A 特開2006-007288号公報JP 2006-007288 A 特開2011-167761号公報JP 2011-167741 A
 ところで、特許文献3に記載されたAu-Sn合金はんだペーストにおいては、Au-20質量%Sn合金はんだ粉末とAu-90質量%Snはんだ合金粉末を混合し、溶融したAu-90質量%Snはんだ合金とAu―20質量%Snはんだ合金とを拡散させている。そのため、溶融後に形成されるAu-Sn合金はんだ層の組成にばらつきが生じる可能性が高いことがわかった。
 また、2種の合金組成の粉末を製造する工程、つまり、アトマイズ工程及び分級工程が必要で、その後、粉末同士を混合する工程も必要であるため、スループットも悪いという課題も有していた。
 ここで、特許文献3に記載された組成のAu-Sn合金粉末を用いて、Au-Sn合金はんだペーストを製造することが考えられる。
By the way, in the Au—Sn alloy solder paste described in Patent Document 3, Au-20 mass% Sn alloy solder powder and Au-90 mass% Sn solder alloy powder are mixed and melted Au-90 mass% Sn solder. The alloy and Au-20 mass% Sn solder alloy are diffused. For this reason, it has been found that the composition of the Au—Sn alloy solder layer formed after melting is highly likely to vary.
Moreover, since the process which manufactures the powder of two types of alloy compositions, ie, the atomization process and the classification process, is needed, and the process of mixing powders is also required after that, there also existed the subject that throughput was also bad.
Here, it is conceivable to produce an Au—Sn alloy solder paste using the Au—Sn alloy powder having the composition described in Patent Document 3.
 しかしながら、Au-Sn合金粉末においては、Sn含有量が多くなると、粉末同士が凝集しやくすくなり、分級後のAu-Sn合金粉末の歩留りが低下してしまうといった問題が生じることが明確になった。また、凝集したAu-Sn合金粉末が存在する状態でペースト化した場合には、凝集したAu-Sn合金粉末がフラックスと十分に接触することができず、溶融不良や印刷不良が発生するおそれがあった。これは、Sn含有量が多いAu-Sn合金粉末においては、金属表面が酸化されていないと、表面の活性が非常に高く不安定な状態となり、粉末同士が凝集することで安定な状態になろうとするためであると推測される。 However, in the Au—Sn alloy powder, it becomes clear that when the Sn content is increased, the powders easily aggregate together and the yield of the Au—Sn alloy powder after classification is reduced. It was. Further, when the paste is formed in the presence of the agglomerated Au—Sn alloy powder, the agglomerated Au—Sn alloy powder cannot sufficiently contact with the flux, and there is a possibility that poor melting or poor printing may occur. there were. This is because, in an Au—Sn alloy powder having a high Sn content, if the metal surface is not oxidized, the surface activity becomes very high and unstable, and the powder is agglomerated and becomes stable. It is presumed to be due to trying.
 この発明は、前述した事情に鑑みてなされたものであって、溶融性に優れ、かつ、比較的低温条件での接合でも十分な耐熱性を有するはんだ層を形成可能なAu-Sn合金はんだペースト、このAu-Sn合金はんだペーストを用いたAu-Sn合金はんだ層の製造方法、及びAu-Sn合金はんだ層を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and is an Au—Sn alloy solder paste that is excellent in meltability and can form a solder layer having sufficient heat resistance even when bonded at a relatively low temperature. Another object is to provide an Au—Sn alloy solder layer manufacturing method using this Au—Sn alloy solder paste, and an Au—Sn alloy solder layer.
 上記課題を解決するために、本発明の一態様であるAu-Sn合金はんだペーストは、Snを61質量%以上70質量%以下の範囲で含み、残部がAu及び不可避不純物よりなるAu-Sn合金粉末と、フラックスとを含み、前記Au-Sn合金粉末における酸素濃度が、50質量ppm以上1800質量ppm以下の範囲内とされていることを特徴としている。 In order to solve the above problems, an Au—Sn alloy solder paste which is one embodiment of the present invention includes an Au—Sn alloy containing Sn in a range of 61 mass% to 70 mass% with the balance being Au and inevitable impurities. Including the powder and the flux, the oxygen concentration in the Au—Sn alloy powder is in the range of 50 ppm to 1800 ppm by mass.
 前記Au-Sn合金はんだペーストによれば、Snを61質量%以上70質量%以下の範囲で含み、残部がAu及び不可避不純物よりなる組成のAu-Sn合金粉末を有しているので、図1に示すAu-Sn二元状態図によれば、このAu-Sn合金粉末の固相線温度が252℃となる。このため、比較的低温条件でも接合を行うことが可能となる。また、液相線温度が300℃程度となることから、形成されたはんだ合金層の耐熱性を確保することができる。 According to the Au—Sn alloy solder paste, Sn is contained in the range of 61 mass% to 70 mass%, and the balance has Au—Sn alloy powder having a composition composed of Au and inevitable impurities. According to the Au—Sn binary phase diagram shown in FIG. 2, the solidus temperature of this Au—Sn alloy powder is 252 ° C. For this reason, it is possible to perform bonding even under relatively low temperature conditions. Further, since the liquidus temperature is about 300 ° C., the heat resistance of the formed solder alloy layer can be ensured.
 さらに、前記Au-Sn合金粉末における酸素濃度が50質量ppm以上とされているので、前記Au-Sn合金粉末の表面に酸化膜が形成され、前記Au-Sn合金粉末の凝集を抑制することが可能となる。これにより、分級後のAu-Sn合金粉末の歩留りを向上させることができる。また、Au-Sn合金はんだペーストの溶融不良や印刷不良の発生を抑制することが可能となる。
 さらに、前記Au-Sn合金粉末における酸素濃度を、1800質量ppm以下に制限していることから、フラックスと混合した場合に溶融性に悪影響を与えない。
Furthermore, since the oxygen concentration in the Au—Sn alloy powder is 50 ppm by mass or more, an oxide film is formed on the surface of the Au—Sn alloy powder, thereby suppressing aggregation of the Au—Sn alloy powder. It becomes possible. Thereby, the yield of Au-Sn alloy powder after classification can be improved. In addition, it is possible to suppress the occurrence of poor melting or printing failure of the Au—Sn alloy solder paste.
Furthermore, since the oxygen concentration in the Au—Sn alloy powder is limited to 1800 ppm by mass or less, the meltability is not adversely affected when mixed with the flux.
 ここで、本発明の一態様であるAu-Sn合金はんだペーストにおいては、前記Au-Sn合金粉末の平均粒径が1μm以上25μm以下の範囲内とされていることが好ましい。
 この場合、Au-Sn合金粉末の平均粒径が1μm以上25μm以下の範囲内とされているので、Au-Sn合金はんだペーストを、印刷機を用いて微小な領域に印刷不良を生じることなく印刷でき、また、溶融処理する際には、Au-Sn合金粉末を確実に溶融させることができるため、溶融不良の発生を抑制することができる。
Here, in the Au—Sn alloy solder paste which is one embodiment of the present invention, it is preferable that the average particle diameter of the Au—Sn alloy powder is in the range of 1 μm to 25 μm.
In this case, since the average particle diameter of the Au—Sn alloy powder is in the range of 1 μm or more and 25 μm or less, the Au—Sn alloy solder paste can be printed on a minute area without causing printing defects using a printing machine. In addition, since the Au—Sn alloy powder can be reliably melted during the melting process, the occurrence of poor melting can be suppressed.
 また、本発明の一態様であるAu-Sn合金はんだペーストにおいては、前記フラックスの含有量が、ペースト全体の5質量%以上40質量%以下の範囲内であることが好ましい。
 この場合、前記フラックスの含有量が、ペースト全体の5質量%以上40質量%以下の範囲内とされているので、Au-Sn合金はんだペーストの印刷性が良好になるとともに、溶融処理時におけるAu-Sn合金粉末の凝集不足を抑制することが可能となる。
In the Au—Sn alloy solder paste which is one embodiment of the present invention, the content of the flux is preferably in the range of 5 mass% to 40 mass% of the entire paste.
In this case, since the content of the flux is in the range of 5% by mass or more and 40% by mass or less of the entire paste, the printability of the Au—Sn alloy solder paste is improved and the Au at the time of the melting process is improved. -Insufficient aggregation of Sn alloy powder can be suppressed.
 本発明の一態様であるAu-Sn合金はんだ層の製造方法は、基材の表面に、上述のAu-Sn合金はんだペーストを配設し、このAu-Sn合金はんだペーストを加熱して溶融することを特徴としている。
 この構成のAu-Sn合金はんだ層の製造方法によれば、上述のAu-Sn合金はんだペーストを加熱して溶融しているので、液相線温度が300℃程度となり、耐熱性に優れたAu-Sn合金はんだ層を得ることができる。
In the method for producing an Au—Sn alloy solder layer which is one embodiment of the present invention, the above Au—Sn alloy solder paste is disposed on the surface of a base material, and the Au—Sn alloy solder paste is heated and melted. It is characterized by that.
According to the manufacturing method of the Au—Sn alloy solder layer having this configuration, since the Au—Sn alloy solder paste described above is heated and melted, the liquidus temperature becomes about 300 ° C., and Au having excellent heat resistance. A Sn alloy solder layer can be obtained.
 ここで、本発明の一態様であるAu-Sn合金はんだ層の製造方法においては、表面にAu膜が形成された前記基材を準備し、このAu膜の上に、前記Au-Sn合金はんだペーストを配設し、前記Au-Sn合金はんだペーストを構成するAu-Sn合金の固相線温度+30℃以上液相線温度以下の温度に加熱して溶融するが好ましい。 Here, in the method for producing an Au—Sn alloy solder layer according to an aspect of the present invention, the base material having an Au film formed on the surface thereof is prepared, and the Au—Sn alloy solder is formed on the Au film. It is preferable to dispose a paste and to melt by heating to a temperature between the solidus temperature of the Au—Sn alloy constituting the Au—Sn alloy solder paste + 30 ° C. or more and the liquidus temperature or less.
 上述のAu-Sn合金はんだペーストを、前記Au-Sn合金はんだペーストを構成するAu-Sn合金の固相線温度+30℃以上液相線温度以下の温度に加熱すると、Au-Sn合金はんだペーストの一部が溶融してシャーベット状となって液相のAu-Snが濡れ広がって薄膜相が形成される。また、薄膜相が形成されるとともに、この薄膜相の中央部には、液相として濡れ広がった薄膜相の残りの組成域が厚膜相として形成されていることが判明した。この濡れ広がった薄膜相はSnを主成分としたSn-Au相であることが分かった。また、中央部の厚膜相は、液相のSn-Au相よりも相対的にAuの含有量が高くなった高Au含有相が形成されていることが判明した。つまり、形成されたAu-Sn合金はんだ層の中央部は、更なる高温化している(固相線温度及び液相線温度が上昇している)ことがわかる。
 また、濡れ広がったSn-Au相(薄膜相)は基材の表面に形成されたAu膜と反応することで固相線温度及び液相線温度が上昇し、加熱温度で保持した状態で凝固する。よって、凝固後に形成されるAu-Sn合金はんだ層は、固相線温度及び液相線温度が上昇しており、耐熱性に特に優れる。
When the above-mentioned Au—Sn alloy solder paste is heated to a temperature of the solidus temperature of the Au—Sn alloy constituting the Au—Sn alloy solder paste + 30 ° C. or more and the liquidus temperature or less, the Au—Sn alloy solder paste A part of it melts to form a sherbet, and the liquid phase Au—Sn spreads out to form a thin film phase. Further, it was found that a thin film phase was formed, and the remaining composition region of the thin film phase wetted and spread as a liquid phase was formed as a thick film phase at the center of the thin film phase. It was found that the thin film phase spread by wetting was a Sn—Au phase containing Sn as a main component. Further, it was found that the thick film phase in the central part was formed with a high Au content phase in which the Au content was relatively higher than that of the liquid Sn—Au phase. That is, it can be seen that the central portion of the formed Au—Sn alloy solder layer is further heated (the solidus temperature and the liquidus temperature are rising).
In addition, the Sn-Au phase (thin film phase) that has spread out reacts with the Au film formed on the surface of the base material, so that the solidus temperature and the liquidus temperature rise, and solidifies while being held at the heating temperature. To do. Therefore, the Au—Sn alloy solder layer formed after solidification has an increased solidus temperature and liquidus temperature, and is particularly excellent in heat resistance.
 ここで、接合時の実使用温度では、通常、はんだの溶融終了温度(液相線温度、共晶合金においては共晶温度)に対し30度から50度高い温度でリフローされる。そのため、特許文献2に記載されたAu-20質量%Sn合金はんだにおいては、融点(共晶温度)が278℃とされていることから、実温度として308℃から328℃でリフローされ、被搭載物、例えばLED素子の種類によっては耐熱限界温度に近い温度でリフローされ、被搭載物に熱的に損傷を与えるリスクがあった。
 これに対して、本発明の一態様であるAu-Sn合金はんだ層の製造方法においては、Au-Sn合金粉末の固相線温度が252℃とされ、液相線温度は300℃程度となる。特許文献1、2、3では全て共晶合金粉末ペーストを用いているが、本発明では共晶合金ではなく、固相線温度と液相線温度が50℃ほど差異がある合金を用いている。上記合金を用いた種々評価の結果において、通常の実装リフロー温度のMAX温度として設定する溶融終了温度(液相線温度)+30~50℃を用いずとも溶融開始温度である固相線温度+30~50℃、つまり、固相線温度252℃+30℃である282℃から固相線温度252℃+50℃である302℃で十分溶融し、接合できることが明確になった。つまり、特許文献2のAu―20質量%Snはんだ合金を用いる場合と比較して、被搭載物の熱的ダメージを低減することができる。
Here, at the actual use temperature at the time of joining, reflow is usually performed at a temperature 30 to 50 degrees higher than the melting end temperature of the solder (liquidus temperature, eutectic temperature in the case of a eutectic alloy). Therefore, in the Au-20 mass% Sn alloy solder described in Patent Document 2, since the melting point (eutectic temperature) is 278 ° C., the actual temperature is reflowed from 308 ° C. to 328 ° C. and mounted. Depending on the type of the object, for example, the LED element, it is reflowed at a temperature close to the heat resistant limit temperature, and there is a risk of thermally damaging the mounted object.
On the other hand, in the method for producing an Au—Sn alloy solder layer which is one embodiment of the present invention, the solidus temperature of the Au—Sn alloy powder is 252 ° C., and the liquidus temperature is about 300 ° C. . In Patent Documents 1, 2, and 3, all of eutectic alloy powder paste is used, but in the present invention, an alloy having a difference between the solidus temperature and the liquidus temperature of about 50 ° C. is used instead of the eutectic alloy. . As a result of various evaluations using the above-mentioned alloys, the melting end temperature (liquidus temperature) which is set as the MAX temperature of the normal mounting reflow temperature +30 to 50 ° C., the solidus temperature +30 to It was clarified that the material can be sufficiently melted and bonded at 50 ° C., that is, from 282 ° C. which is a solidus temperature of 252 ° C. + 30 ° C. to 302 ° C. which is a solidus temperature of 252 ° C. + 50 ° C. That is, compared with the case where the Au-20 mass% Sn solder alloy of patent document 2 is used, the thermal damage of a to-be-mounted object can be reduced.
 本発明の一態様であるAu-Sn合金はんだ層は、上述のAu-Sn合金はんだ層の製造方法により得られたことを特徴としている。
 リフロー後、一旦形成されたこの構成のAu-Sn合金はんだ層は、固相線温度及び液相線温度が比較的高く、耐熱性に優れている。よって、高温となる使用状況下においても良好に使用することが可能となる。
An Au—Sn alloy solder layer which is one embodiment of the present invention is obtained by the above-described method for producing an Au—Sn alloy solder layer.
The Au—Sn alloy solder layer having this structure once formed after reflow has a relatively high solidus temperature and liquidus temperature, and is excellent in heat resistance. Therefore, it can be used satisfactorily even under high temperature use conditions.
 本発明によれば、溶融性に優れ、かつ、比較的低温条件での接合でも十分な耐熱性を有するはんだ層を形成可能なAu-Sn合金はんだペースト、このAu-Sn合金はんだペーストを用いたAu-Sn合金はんだ層の製造方法、及びAu-Sn合金はんだ層を提供することが可能となる。 According to the present invention, an Au—Sn alloy solder paste having excellent meltability and capable of forming a solder layer having sufficient heat resistance even when bonded at a relatively low temperature, and this Au—Sn alloy solder paste were used. It is possible to provide a method for producing an Au—Sn alloy solder layer and an Au—Sn alloy solder layer.
Au-Sn二元状態図である。It is an Au-Sn binary phase diagram. 本実施形態であるAu-Sn合金はんだ層の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the Au-Sn alloy solder layer which is this embodiment. 本発明のAu-Sn合金はんだ層の観察写真である。2 is an observation photograph of an Au—Sn alloy solder layer of the present invention.
 以下に、本発明の一実施形態であるAu-Sn合金はんだペースト20、および、Au-Sn合金はんだ層30の製造方法、Au-Sn合金はんだ層30について説明する。
 本実施形態であるAu-Sn合金はんだペースト20は、例えばLED素子(被接合材)と回路基板(基材)と接合する際に用いられる。
Hereinafter, the Au—Sn alloy solder paste 20, the method for producing the Au—Sn alloy solder layer 30, and the Au—Sn alloy solder layer 30 according to an embodiment of the present invention will be described.
The Au—Sn alloy solder paste 20 according to this embodiment is used when, for example, an LED element (material to be joined) and a circuit board (base material) are joined.
 本実施形態であるAu-Sn合金はんだペースト20は、Snを61質量%以上70質量%以下の範囲で含み、残部がAu及び不可避不純物よりなるAu-Sn合金粉末と、フラックスと、を含み、Au-Sn合金粉末における酸素濃度が、50質量ppm以上1800質量ppm以下の範囲内とされている。 The Au—Sn alloy solder paste 20 according to the present embodiment includes Sn in a range of 61 mass% to 70 mass%, with the balance being Au—Sn alloy powder composed of Au and inevitable impurities, and a flux. The oxygen concentration in the Au—Sn alloy powder is in the range of 50 ppm to 1800 ppm by mass.
 また、本実施形態では、Au-Sn合金粉末の平均粒径が1μm以上25μm以下の範囲内とされている。
 さらに、本実施形態においては、フラックスの含有量が、ペースト全体の5質量%以上40質量%以下の範囲内とされている。
 以下に、Au-Sn合金粉末の組成、Au-Sn合金粉末における酸素濃度、Au-Sn合金粉末の平均粒径、フラックスの含有量を、上述のように規定した理由について説明する。
In the present embodiment, the average particle diameter of the Au—Sn alloy powder is in the range of 1 μm to 25 μm.
Furthermore, in this embodiment, the content of the flux is in the range of 5% by mass or more and 40% by mass or less of the entire paste.
The reason why the composition of the Au—Sn alloy powder, the oxygen concentration in the Au—Sn alloy powder, the average particle diameter of the Au—Sn alloy powder, and the flux content are specified as described above will be described below.
(Au-Sn合金粉末の組成)
 Au-Sn合金粉末におけるSn含有量が61質量%未満の場合には、図1のAu-Sn二元状態図によれば固相線温度が309℃のδ相が生じることになり、低温での溶融が困難となり、被搭載物の熱的損傷が懸念される。一方、Au-Sn合金粉末におけるSn含有量が70質量%を超えると、固相線温度が217℃まで低下してしまい、形成されたAu-Sn合金はんだ層30の耐熱性を確保できなくなるおそれがある。
 以上のことから、本実施形態では、Au-Sn合金粉末におけるSn含有量を、61質量%以上70質量%以下の範囲内に設定している。上記Au-Sn合金粉末におけるSn含有量は、65質量%以上70質量%以下とすることが好ましいが、これに限定されることはない。
(Composition of Au-Sn alloy powder)
When the Sn content in the Au—Sn alloy powder is less than 61% by mass, the δ phase having a solidus temperature of 309 ° C. is produced according to the Au—Sn binary phase diagram of FIG. It becomes difficult to melt the material, and there is a concern about thermal damage of the mounted object. On the other hand, if the Sn content in the Au—Sn alloy powder exceeds 70% by mass, the solidus temperature decreases to 217 ° C., and the heat resistance of the formed Au—Sn alloy solder layer 30 may not be ensured. There is.
From the above, in this embodiment, the Sn content in the Au—Sn alloy powder is set in the range of 61 mass% to 70 mass%. The Sn content in the Au—Sn alloy powder is preferably 65% by mass or more and 70% by mass or less, but is not limited thereto.
(Au-Sn合金粉末の酸素濃度)
 Au-Sn合金粉末においては、Sn含有量が高くなると、粉末同士が凝集しやくなる。これは、金属表面が酸化されていない状態では、表面の活性が非常に高く不安定な状態となるため、粉末同士が凝集することで安定な状態になろうとすることに起因するものと推測される。
 ここで、Au-Sn合金粉末における酸素濃度が50質量ppm未満の場合には、Au-Sn合金粉末の表面に酸化膜を形成することができず、粉末の凝集を抑制することができないおそれがある。一方、Au-Sn合金粉末における酸素濃度が1800質量ppmを超えた場合には、溶融性が阻害されるおそれがある。
 以上のことから、本実施形態では、Au-Sn合金粉末における酸素濃度を、50質量ppm以上1800質量ppm以下の範囲内に設定している。上記Au-Sn合金粉末における酸素濃度は、50質量ppm以上400質量ppm以下とすることが好ましいが、これに限定されることはない。
(Oxygen concentration of Au-Sn alloy powder)
In the Au—Sn alloy powder, as the Sn content increases, the powders tend to aggregate. This is presumably because the surface activity is very high and unstable when the metal surface is not oxidized, and the powder tends to agglomerate and become stable. The
Here, when the oxygen concentration in the Au—Sn alloy powder is less than 50 mass ppm, an oxide film cannot be formed on the surface of the Au—Sn alloy powder, and aggregation of the powder may not be suppressed. is there. On the other hand, when the oxygen concentration in the Au—Sn alloy powder exceeds 1800 ppm by mass, the meltability may be hindered.
From the above, in this embodiment, the oxygen concentration in the Au—Sn alloy powder is set in the range of 50 ppm to 1800 ppm by mass. The oxygen concentration in the Au—Sn alloy powder is preferably 50 mass ppm or more and 400 mass ppm or less, but is not limited thereto.
(Au-Sn合金粉末の平均粒径)
 Au-Sn合金粉末の平均粒径が1μm未満の場合には、Au-Sn合金はんだペースト20を加熱した際に溶融不良が発生するおそれがある。一方、Au-Sn合金粉末の平均粒径が25μmを超える場合には、Au-Sn合金はんだペースト20の印刷性が低下するとともに、フラックスとAu-Sn合金粉末とが分離して溶融不良が発生するおそれがある。
 以上のことから、本実施形態では、Au-Sn合金粉末の平均粒径を、1μm以上25μm以下の範囲内に設定している。上記Au-Sn合金粉末の平均粒径は、3μm以上15μm以下とすることが好ましいが、これに限定されることはない。
(Average particle size of Au-Sn alloy powder)
When the average particle diameter of the Au—Sn alloy powder is less than 1 μm, there is a possibility that poor melting occurs when the Au—Sn alloy solder paste 20 is heated. On the other hand, when the average particle diameter of the Au—Sn alloy powder exceeds 25 μm, the printability of the Au—Sn alloy solder paste 20 is deteriorated, and the flux and the Au—Sn alloy powder are separated to cause poor melting. There is a risk.
From the above, in this embodiment, the average particle diameter of the Au—Sn alloy powder is set in the range of 1 μm to 25 μm. The average particle diameter of the Au—Sn alloy powder is preferably 3 μm or more and 15 μm or less, but is not limited thereto.
(フラックスの含有量)
 Au-Sn合金はんだペースト20において、フラックスの含有量がペースト全体の5質量%未満の場合には、Au-Sn合金はんだペースト20の粘度が高くなりすぎて、印刷性が大きく低下するおそれがある。一方、フラックスの含有量がペースト全体の40質量%を超える場合には、Au-Sn合金はんだペースト20を印刷する際に印刷ダレが発生しやすくなるとともに、溶融時にAu-Sn合金粉末の凝集不足が発生するおそれがある。
 以上のことから、本実施形態では、フラックスの含有量を、ペースト全体の5質量%以上40質量%以下の範囲内に設定している。上記フラックスの含有量を、ペースト全体の6質量%以上25質量%以下とすることが好ましいが、これに限定されることはない。
 ここで、フラックスとしては、例えば、一般的なフラックス(例えば、ロジン、活性剤、溶剤、増粘剤等を含むフラックス)を用いることができる。また、Au-Sn合金はんだペースト20の濡れ性の観点から、例えば、弱活性(RMA)タイプのフラックスや活性(RA)タイプのフラックス等を用いることが好ましい。
(Flux content)
In the Au—Sn alloy solder paste 20, when the flux content is less than 5% by mass of the entire paste, the viscosity of the Au—Sn alloy solder paste 20 becomes too high, and the printability may be greatly reduced. . On the other hand, if the flux content exceeds 40% by mass of the entire paste, printing sag is likely to occur when printing the Au—Sn alloy solder paste 20 and the Au—Sn alloy powder is not sufficiently agglomerated during melting. May occur.
From the above, in this embodiment, the content of the flux is set within a range of 5% by mass or more and 40% by mass or less of the entire paste. Although it is preferable to make content of the said flux into 6 mass% or more and 25 mass% or less of the whole paste, it is not limited to this.
Here, as the flux, for example, a general flux (for example, a flux containing rosin, an activator, a solvent, a thickener, etc.) can be used. From the viewpoint of wettability of the Au—Sn alloy solder paste 20, it is preferable to use, for example, a weakly active (RMA) type flux, an active (RA) type flux, or the like.
 次に、本実施形態であるAu-Sn合金はんだペースト20の製造方法について簡単に説明する。
 始めに、Snを61質量%以上70質量%以下の範囲で含み、残部がAu及び不可避不純物よりなるAu-Sn合金粉末を準備する。
Next, a method for manufacturing the Au—Sn alloy solder paste 20 according to the present embodiment will be briefly described.
First, an Au—Sn alloy powder containing Sn in a range of 61% by mass to 70% by mass with the balance being Au and inevitable impurities is prepared.
 上述の組成となるように溶融原料を秤量して溶解することにより、Au-Sn合金溶湯を得る。このAu-Sn合金溶湯を所定温度(例えば、700~800℃)に保持して機械撹拌する。
 機械撹拌としては、例えば、プロペラ撹拌が好ましい。また、機械撹拌と電磁撹拌のような電気的撹拌を併用してもよい。機械撹拌としてプロペラ撹拌を用いる場合、プロペラの回転速度は、例えば、60~100rpmとすることができる。この場合の撹拌時間は、例えば、3~10分の範囲内とすることができる。
A molten Au—Sn alloy is obtained by weighing and melting the molten raw material so as to have the above-mentioned composition. This Au—Sn alloy molten metal is mechanically stirred while being kept at a predetermined temperature (eg, 700 to 800 ° C.).
As the mechanical stirring, for example, propeller stirring is preferable. Further, mechanical stirring and electrical stirring such as electromagnetic stirring may be used in combination. When propeller stirring is used as mechanical stirring, the rotation speed of the propeller can be set to, for example, 60 to 100 rpm. In this case, the stirring time can be, for example, in the range of 3 to 10 minutes.
 次に、Au-Sn合金溶湯を用いてガスアトマイズ法により、上述のAu-Sn合金粉末を製造する。具体的には、上述のAu-Sn合金溶湯を加圧(例えば、300~800kPa)しながら、小径ノズル(口径1~2mm)から導出し、このAu-Sn合金溶湯にアトマイズガスを噴霧することで形成される。
 噴霧の条件としては、例えば、噴霧圧力を5000~8000kPa、ノズルギャップを0.3mm以下とすることができる。
Next, the above-mentioned Au—Sn alloy powder is manufactured by a gas atomization method using a molten Au—Sn alloy. Specifically, the pressure is applied to the above-mentioned molten Au—Sn alloy (for example, 300 to 800 kPa) while being derived from a small diameter nozzle (diameter 1 to 2 mm), and atomized gas is sprayed onto the molten Au—Sn alloy. Formed with.
As the spraying conditions, for example, the spraying pressure can be 5000 to 8000 kPa, and the nozzle gap can be 0.3 mm or less.
 また、本実施形態においては、上述のアトマイズガスとして不活性ガスと酸素とを含有した混合ガスを用いることにより、製造されるAu-Sn合金粉末中の酸素濃度を制御している。すなわち、本実施形態では、製造されるAu-Sn合金粉末の酸素濃度が50質量ppm以上1800質量ppm以下の範囲内となるように、アトマイズガス中の酸素濃度を調整しているのである。
 なお、同じ酸素濃度のガスを用いた場合、粒径の大きい粉末を作製すると、粉末の比表面積が小さいため、必然的に粉末中の酸素濃度は低くなる。一方で、粒径の小さい粉末を作製した場合は、比表面積が大きくなるため、酸素濃度は高くなる。このため、目標とする粉末の粒径と酸素濃度に応じて、ガス中の酸素濃度を調整する必要がある。
In this embodiment, the oxygen concentration in the produced Au—Sn alloy powder is controlled by using a mixed gas containing an inert gas and oxygen as the atomizing gas. That is, in this embodiment, the oxygen concentration in the atomized gas is adjusted so that the oxygen concentration of the produced Au—Sn alloy powder is in the range of 50 mass ppm to 1800 mass ppm.
When a gas having the same oxygen concentration is used, when a powder having a large particle size is produced, the specific surface area of the powder is small, so that the oxygen concentration in the powder is inevitably low. On the other hand, when a powder having a small particle size is produced, the specific surface area is increased, so that the oxygen concentration is increased. For this reason, it is necessary to adjust the oxygen concentration in the gas according to the target particle size and oxygen concentration of the powder.
 そして、上述のガスアトマイズ法によって得られたAu-Sn合金粉末を分級することにより、平均粒径が1μm以上25μm以下の範囲内とされたAu-Sn合金粉末が製造される。 Then, by classifying the Au—Sn alloy powder obtained by the gas atomization method described above, an Au—Sn alloy powder having an average particle size in the range of 1 μm to 25 μm is manufactured.
 次に、このAu-Sn合金粉末と、フラックスと、を所定の混合比で混合することにより、本実施形態であるAu-Sn合金はんだペースト20が製造される。なお、このときの混合方法としては、遊星撹拌法や機械撹拌法を適用することができる。 Next, the Au-Sn alloy solder paste 20 according to the present embodiment is manufactured by mixing the Au-Sn alloy powder and the flux at a predetermined mixing ratio. As a mixing method at this time, a planetary stirring method or a mechanical stirring method can be applied.
 次に、本実施形態に係るAu-Sn合金はんだ層30の製造方法、及び、Au-Sn合金はんだ層30について説明する。
 本実施形態であるAu-Sn合金はんだ層30は、図2に示すように、Au膜12を形成した基材11の上に、本実施形態であるAu-Sn合金はんだペースト20を印刷し、このAu-Sn合金はんだペースト20を構成するAu-Sn合金の固相線温度+30℃以上液相線温度以下の温度に加熱して溶融することによって製造される。
 なお、Au膜12としては、膜厚を0.01μm以上0.1μm以下の範囲内とすることが好ましい。また、Au膜12は、めっき等によって成膜することができる。
Next, a method for manufacturing the Au—Sn alloy solder layer 30 and the Au—Sn alloy solder layer 30 according to this embodiment will be described.
As shown in FIG. 2, the Au—Sn alloy solder layer 30 according to the present embodiment prints the Au—Sn alloy solder paste 20 according to the present embodiment on the substrate 11 on which the Au film 12 is formed. The Au—Sn alloy solder paste 20 is manufactured by heating and melting the Au—Sn alloy constituting the Au—Sn alloy solder paste 20 to a temperature not lower than + 30 ° C. and not higher than the liquidus temperature.
The Au film 12 preferably has a film thickness in the range of 0.01 μm to 0.1 μm. The Au film 12 can be formed by plating or the like.
 ここで、Au膜12上に印刷されたAu-Sn合金はんだペースト20においては、Snを61質量%以上70質量%以下の範囲で含み、残部がAu及び不可避不純物よりなるAu-Sn合金粉末を含有している。そのため、図1に示すAu-Sn二元状態図によれば、固相線温度が252℃となり、液相線温度が300℃程度となる。本実施形態では、接合時のリフローにおけるMAX温度が、この固相線温度以上液相線温度以下、好ましくは固相線温度+30℃以上液相線温度以下の範囲内とされる。 Here, in the Au—Sn alloy solder paste 20 printed on the Au film 12, an Au—Sn alloy powder containing Sn in a range of 61 mass% to 70 mass% with the balance being Au and inevitable impurities is used. Contains. Therefore, according to the Au—Sn binary phase diagram shown in FIG. 1, the solidus temperature is 252 ° C. and the liquidus temperature is about 300 ° C. In the present embodiment, the MAX temperature in reflow at the time of joining is in the range of the solidus temperature to the liquidus temperature, preferably the solidus temperature + 30 ° C. to the liquidus temperature.
 上述の温度に加熱されると、印刷されたAu-Sn合金はんだペースト20の一部が溶融し、シャーベット状となって液相のAu-Snが濡れ広がる。これにより、図2に示すように、Snを主成分とする薄膜相31と、液相のAu-Sn成分が抜けることによってAuの含有量が高くなった厚膜相32と、が形成される。
 そして、濡れ広がって形成されたSnを主成分とする薄膜相31においては、基材11の表面に形成されたAu膜12と反応することで固相線温度及び液相線温度が上昇し、加熱温度で保持した状態で凝固する。また、液相のAu-Sn成分が抜けることによって相対的にAuの含有量が高くなった厚膜相32も固相線温度及び液相線温度が上昇する。
 なお、Au膜12は、印刷されたAu-Sn合金はんだペースト20の面積よりも大きくされており、液相のAu-Snが濡れ広がって形成された薄膜相31がAu膜12と十分に反応するように構成されている。
When heated to the above-mentioned temperature, a part of the printed Au—Sn alloy solder paste 20 is melted to form a sherbet, and the liquid Au—Sn spreads out. As a result, as shown in FIG. 2, a thin film phase 31 containing Sn as a main component and a thick film phase 32 in which the Au content is increased by the elimination of the Au—Sn component in the liquid phase are formed. .
And, in the thin film phase 31 mainly composed of Sn formed by wetting and spreading, the solidus temperature and the liquidus temperature are increased by reacting with the Au film 12 formed on the surface of the substrate 11, It solidifies while being kept at the heating temperature. In addition, the solidus temperature and the liquidus temperature also rise in the thick film phase 32 in which the Au content is relatively high due to the elimination of the Au—Sn component in the liquid phase.
The Au film 12 has a larger area than the printed Au—Sn alloy solder paste 20, and the thin film phase 31 formed by wetting and spreading the liquid Au—Sn sufficiently reacts with the Au film 12. Is configured to do.
 上述のようにして、中心部にAuの含有量が高くなった厚膜相32が形成され、その周囲にSnを主成分とする薄膜相31が形成された構造のAu-Sn合金はんだ層30が形成される。
 ここで、図2に示すAu-Sn合金はんだ層30においては、厚膜相32及び薄膜相31の固相線温度及び液相線温度が上昇していることから、耐熱性が大きく向上する。
As described above, the Au—Sn alloy solder layer 30 having a structure in which the thick film phase 32 having a high Au content is formed in the central portion and the thin film phase 31 mainly composed of Sn is formed around the thick film phase 32. Is formed.
Here, in the Au—Sn alloy solder layer 30 shown in FIG. 2, since the solidus temperature and the liquidus temperature of the thick film phase 32 and the thin film phase 31 are increased, the heat resistance is greatly improved.
 以上のような構成とされた本実施形態であるAu-Sn合金はんだペーストによれば、Snを61質量%以上70質量%以下の範囲で含み、残部がAu及び不可避不純物よりなる組成のAu-Sn合金粉末を有しているので、図1のAu-Sn二元状態図によれば、固相線温度が252℃となり、比較的低温度条件でも接合を行うことが可能となる。また、図1のAu-Sn二元状態図によれば、液相線温度が約300℃程度となることから、形成されたはんだ合金層の耐熱性を確保することができる。 According to the Au—Sn alloy solder paste of the present embodiment having the above-described configuration, the Au—Sn composition containing Sn in the range of 61 mass% to 70 mass% with the balance being Au and inevitable impurities. Since it has Sn alloy powder, according to the Au—Sn binary phase diagram of FIG. 1, the solidus temperature is 252 ° C., and it is possible to perform bonding even under relatively low temperature conditions. Further, according to the Au—Sn binary phase diagram of FIG. 1, since the liquidus temperature is about 300 ° C., the heat resistance of the formed solder alloy layer can be ensured.
 また、本実施形態においては、Au-Sn合金粉末における酸素濃度が50質量ppm以上とされているので、Au-Sn合金粉末の表面に酸化膜が形成され、Au-Sn合金粉末の凝集を抑制することが可能となる。これにより、分級後のAu-Sn合金粉末の歩留りを向上させることができる。また、Au-Sn合金はんだペーストの溶融不良や印刷不良の発生を抑制することができる。
 さらに、本実施形態においては、Au-Sn合金粉末における酸素濃度を、1800質量ppm以下に制限していることから、フラックスと混合した場合に溶融性に悪影響を与えない。
Further, in this embodiment, since the oxygen concentration in the Au—Sn alloy powder is 50 mass ppm or more, an oxide film is formed on the surface of the Au—Sn alloy powder, thereby suppressing the aggregation of the Au—Sn alloy powder. It becomes possible to do. Thereby, the yield of Au-Sn alloy powder after classification can be improved. In addition, it is possible to suppress the occurrence of poor melting or printing failure of the Au—Sn alloy solder paste.
Furthermore, in this embodiment, since the oxygen concentration in the Au—Sn alloy powder is limited to 1800 mass ppm or less, the meltability is not adversely affected when mixed with the flux.
 また、本実施形態では、Au-Sn合金粉末の平均粒径が1μm以上25μm以下の範囲内とされているので、Au-Sn合金はんだペーストを印刷後に溶融処理する際に、Au-Sn合金粉末を確実に溶融することができるとともに、Au-Sn合金はんだペーストの印刷不良や溶融不良の発生を抑制することができる。
 さらに、本実施形態では、フラックスの含有量が、ペースト全体の5質量%以上40質量%以下の範囲内とされているので、Au-Sn合金はんだペーストの印刷性が良好になるとともに、溶融処理時におけるAu-Sn合金粉末の凝集不足を抑制することが可能となる。
In this embodiment, since the average particle diameter of the Au—Sn alloy powder is in the range of 1 μm to 25 μm, the Au—Sn alloy powder is used when the Au—Sn alloy solder paste is melted after printing. Can be reliably melted, and printing defects and melting defects of the Au—Sn alloy solder paste can be suppressed.
Furthermore, in this embodiment, the flux content is in the range of 5% by mass or more and 40% by mass or less of the entire paste, so that the printability of the Au—Sn alloy solder paste is improved and the melting treatment is performed. It is possible to suppress insufficient aggregation of the Au—Sn alloy powder at the time.
 さらに、本実施形態であるAu-Sn合金はんだ層の製造方法においては、Au膜12を形成した基材11の上に、本実施形態であるAu-Sn合金はんだペースト20を印刷し、このAu-Sn合金はんだペースト20を構成するAu-Sn合金の固相線温度以上液相線温度以下の温度で加熱しているので、濡れ広がった薄膜相31がAu膜12と反応して固相線温度及び液相線温度が上昇するとともに、厚膜相32においても固相線温度及び液相線温度が上昇することから、耐熱性に優れたAu-Sn合金はんだ層30を形成することが可能となる。 Furthermore, in the manufacturing method of the Au—Sn alloy solder layer according to this embodiment, the Au—Sn alloy solder paste 20 according to this embodiment is printed on the base material 11 on which the Au film 12 is formed, and this Au -Since the Au-Sn alloy constituting the Sn alloy solder paste 20 is heated at a temperature not lower than the solidus temperature and not higher than the liquidus temperature, the wet thin film phase 31 reacts with the Au film 12 to cause the solidus line Since the solidus temperature and the liquidus temperature also rise in the thick film phase 32 as the temperature and the liquidus temperature rise, it is possible to form the Au—Sn alloy solder layer 30 with excellent heat resistance. It becomes.
 また、本実施形態では、Au-Sn合金粉末を製造する際に用いられるアトマイズガスとして不活性ガスと酸素とを含有した混合ガスを用いており、このアトマイズガス中の酸素含有量を調整しているので、製造されるAu-Sn合金粉末中の酸素濃度を50質量ppm以上1800質量ppm以下の範囲内となるように制御することが可能となる。 In the present embodiment, a mixed gas containing an inert gas and oxygen is used as the atomizing gas used when producing the Au—Sn alloy powder, and the oxygen content in the atomizing gas is adjusted. Therefore, the oxygen concentration in the produced Au—Sn alloy powder can be controlled so as to be in the range of 50 ppm to 1800 ppm by mass.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、LED素子等の半導体素子と回路基板とを接合する際に用いるものとして説明したが、これに限定されることはなく、他の部材を接合する際に使用してもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in this embodiment, although demonstrated as what is used when joining semiconductor elements, such as a LED element, and a circuit board, it is not limited to this, It may be used when joining other members. Good.
 また、本実施形態では、Au膜が形成された基材上に印刷されたAu-Sn合金はんだペーストを、Au-Sn合金はんだペーストを構成するAu-Sn合金の固相線温度以上液相線温度以下の温度で加熱するものとして説明したが、これに限定されることはなく、基材上に上述のAu-Sn合金はんだペーストを印刷し、通常の液相線温度を超えるリフロー時のMAX温度(例えば、液相線温度+30~50℃)に加熱してAu-Sn合金はんだ層を形成してもよい。種々ある被搭載物の中でも耐熱性の観点で熱的損傷が懸念されるものについては、固相線温度以上液相線温度以下のリフローMAX温度を適用でき、耐熱性が高い被搭載物の接合時には、通常のリフローMAX温度である液相線温度+30~50℃を適用できる。 In this embodiment, the Au—Sn alloy solder paste printed on the substrate on which the Au film is formed is a liquidus line above the solidus temperature of the Au—Sn alloy constituting the Au—Sn alloy solder paste. Although described as heating at a temperature lower than the temperature, the present invention is not limited to this, and the above-described Au—Sn alloy solder paste is printed on the base material, and MAX at the time of reflow exceeding the normal liquidus temperature The Au—Sn alloy solder layer may be formed by heating to a temperature (eg, liquidus temperature +30 to 50 ° C.). Among the various mounted objects, for those in which thermal damage is a concern from the viewpoint of heat resistance, reflow MAX temperatures not lower than the solidus temperature and not higher than the liquidus temperature can be applied, and bonding of mounted objects having high heat resistance can be applied. Sometimes, the normal reflow MAX temperature, liquidus temperature + 30-50 ° C., can be applied.
 さらに、本実施形態では、基材の上にAu-Sn合金はんだペーストを印刷法によって配設するものとして説明したが、これに限定されることはなく、ディスペンス法やピン転写法等によってAu-Sn合金はんだペーストを配設してもよい。
 また、本実施形態では、Au膜をめっきによって形成するものとして説明したが、これに限定されることはなく、蒸着等の他の手段によってAu膜を成膜してもよい。
Furthermore, in the present embodiment, the description has been made on the assumption that the Au—Sn alloy solder paste is disposed on the base material by the printing method. However, the present invention is not limited to this, and the Au— An Sn alloy solder paste may be disposed.
In the present embodiment, the Au film is formed by plating. However, the present invention is not limited to this, and the Au film may be formed by other means such as vapor deposition.
 以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。 Hereinafter, the results of a confirmation experiment performed to confirm the effectiveness of the present invention will be described.
 表1に示す組成のAu-Sn合金粉末を、上述の実施形態で記載した方法によって製造した。
 具体的には、表1に示す組成となるように溶解原料を秤量し、溶解することでAu-Sn合金溶湯を形成し、このAu-Sn合金を700℃に加熱してプロペラ撹拌によって撹拌した。このAu-Sn合金溶湯を500kPaで加圧しながら、噴射圧力が6000kPaの条件で、口径1.5mmの小径ノズルから導出するとともに、導出されたAu-Sn合金溶湯に対して、アトマイズガス(ArとO)を噴射することで、Au-Sn合金粉末を作製した。
Au—Sn alloy powder having the composition shown in Table 1 was produced by the method described in the above embodiment.
Specifically, the melting raw material is weighed so as to have the composition shown in Table 1 and melted to form a molten Au—Sn alloy. The Au—Sn alloy is heated to 700 ° C. and stirred by propeller stirring. . The Au—Sn alloy molten metal was discharged from a small nozzle having a diameter of 1.5 mm under a pressure of 6000 kPa while pressurizing the molten Au—Sn alloy at 500 kPa. Au—Sn alloy powder was produced by spraying O 2 ).
 このとき、アトマイズガス中の酸素含有量を調整することで、表1に示すように、Au-Sn合金粉末の酸素濃度を制御した。なお、Au-Sn合金粉末の酸素濃度は、不活性ガス溶融-赤外線吸収法によって測定した。
 また、得られたAu-Sn合金粉末を風力分級することにより、Au-Sn合金粉末の平均粒径を表1に示すように調整した。なお、Au-Sn合金粉末の粒径は、レーザ回折法によって測定した。
At this time, as shown in Table 1, the oxygen concentration of the Au—Sn alloy powder was controlled by adjusting the oxygen content in the atomizing gas. The oxygen concentration of the Au—Sn alloy powder was measured by an inert gas melting-infrared absorption method.
Further, the obtained Au—Sn alloy powder was subjected to air classification to adjust the average particle size of the Au—Sn alloy powder as shown in Table 1. The particle size of the Au—Sn alloy powder was measured by a laser diffraction method.
 ここで、得られたAu-Sn合金粉末の固相線温度及び液相線温度を、示差走査熱量測定(DSC)によって測定した結果を表1に示す。
 加熱時の最高温度は、K熱電対を用いて測定した。
 得られたAu-Sn合金粉末と、フラックス(RAタイプ)をフラックス比率10重量%で、遊星撹拌法によって混合することにより、Au-Sn合金はんだペーストを作製した。
Here, the results of measuring the solidus temperature and the liquidus temperature of the obtained Au—Sn alloy powder by differential scanning calorimetry (DSC) are shown in Table 1.
The maximum temperature during heating was measured using a K thermocouple.
The obtained Au—Sn alloy powder and a flux (RA type) were mixed at a flux ratio of 10% by weight by a planetary stirring method to prepare an Au—Sn alloy solder paste.
 Cuからなる2mm角の基材の上に、めっき法によってNi膜を形成し、さらにその上にAu膜を成膜した。このとき、Au膜の厚さを0.05μmとした。
 このAu膜の上に、上述のAu-Sn合金はんだペーストを厚み20μm、600μm径に印刷するとともに1mm角のLED素子を積層し、表1に示す温度に加熱して溶融することで、Au-Sn合金はんだ層を形成するとともにLED素子を接合した。
A Ni film was formed by plating on a 2 mm square substrate made of Cu, and an Au film was further formed thereon. At this time, the thickness of the Au film was set to 0.05 μm.
On the Au film, the above-described Au—Sn alloy solder paste is printed to a thickness of 20 μm and a diameter of 600 μm, and a 1 mm square LED element is laminated, heated to the temperature shown in Table 1, and melted. An Sn alloy solder layer was formed and the LED element was joined.
 上述のAu-Sn合金はんだペースト、及び、Au-Sn合金はんだ層について、Au-Sn合金粉末の凝集の有無、リフロー後の溶融性、LED素子の熱損傷性の懸念の有無、LED素子の接合部の耐熱性について評価した。
 Au-Sn合金粉末の凝集については、ペースト化時のダマの有無を目視で確認した。
 リフロー後の溶融性は、実体顕微鏡(20倍)で観察し、粉末の溶け残りが生じたものは「不良」、生じなかったものは「合格」とした。
 LED素子の熱損傷性については、実装リフロー温度(加熱時の最高温度)として330℃以上必要なものは熱損傷の生じる可能性が高いため「C」とし、300℃を超え330℃未満のものは、「B」とし、300℃以下のものは「A」とした。
 LED素子の接合部の耐熱性については、LED素子を接合後、再度、MAX温度300℃でリフローした際の再溶融の有無をリフローシミュレーター(マルコム製ビデオ観察システム)にて観察した。再溶融の有無は、LED素子の動き、合金部の観察により判断した。
 評価結果を表2に示す。
Regarding the Au—Sn alloy solder paste and the Au—Sn alloy solder layer described above, presence or absence of aggregation of Au—Sn alloy powder, meltability after reflow, presence or absence of fear of thermal damage of LED elements, bonding of LED elements The heat resistance of the part was evaluated.
Regarding the agglomeration of the Au—Sn alloy powder, the presence or absence of lumps during paste formation was visually confirmed.
The meltability after reflow was observed with a stereomicroscope (20 times), and “poor” was given if the powder was not melted, and “pass” was given if it was not.
Regarding LED element thermal damage, if the mounting reflow temperature (maximum temperature during heating) is higher than 330 ° C, there is a high possibility of thermal damage. Was “B”, and those below 300 ° C. were “A”.
About the heat resistance of the junction part of an LED element, after joining an LED element, the presence or absence of the remelting at the time of reflowing again at the MAX temperature of 300 degreeC was observed with the reflow simulator (Video observation system made from Malcolm). The presence or absence of remelting was judged by observation of the movement of the LED element and the alloy part.
The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例1においては、Au-Sn合金粉末におけるSn含有量を58質量%と本発明の範囲よりも少なくした。DSCを用いた固相線温度の測定で310℃と高くなっており、接合温度を340℃以上とする必要があった。LED素子が熱的損傷を受ける懸念がある。
 比較例2においては、Au-Sn合金粉末におけるSn含有量を73質量%と本発明の範囲よりも多くした。DSCを用いた固相線温度の測定で218℃と低くなっており、リフローにおけるMAX温度は固相線温度+30℃の248℃で実施したが、LED素子の接合部の耐熱性評価において、300℃のリフローで再溶融してしまい、形成されたAu-Sn合金はんだ層の耐熱性が不足していると判断した。
In Comparative Example 1, the Sn content in the Au—Sn alloy powder was 58 mass%, which was less than the range of the present invention. The solidus temperature measured using DSC was as high as 310 ° C., and the junction temperature had to be 340 ° C. or higher. There is a concern that the LED element is thermally damaged.
In Comparative Example 2, the Sn content in the Au—Sn alloy powder was 73 mass%, which was larger than the range of the present invention. The measurement of the solidus temperature using DSC was as low as 218 ° C., and the MAX temperature in reflow was 248 ° C., which is the solidus temperature + 30 ° C. It was judged that the formed Au—Sn alloy solder layer was insufficient in heat resistance because it was remelted by reflowing at 0 ° C.
 比較例3、比較例4においては、加熱時のMAX温度が固相線温度+9℃、固相線温度+24℃で、固相線温度+30℃以上の本発明の範囲よりも低くなっていたので、リフロー後の粉末に溶け残りが発生し、溶融性不良が発生した。 In Comparative Example 3 and Comparative Example 4, the MAX temperature during heating was the solidus temperature + 9 ° C. and the solidus temperature + 24 ° C., which was lower than the range of the present invention where the solidus temperature + 30 ° C. or higher. Unmelted residue was generated in the reflowed powder, resulting in poor meltability.
 比較例5においては、Au-Sn合金粉末の酸素濃度を30質量ppmと本発明の範囲よりも少なくしたので、ペースト化した際にダマの発生が確認でき、粉末同士の凝集を抑制することができなかった。このため、リフロー後の粉末に溶け残りが発生し、溶融性不良が発生した。
 比較例6においては、Au-Sn合金粉末の酸素濃度を2200質量ppmと本発明の範囲よりも多くしたので、リフロー後の粉末に溶け残りが発生し、溶融性不良が発生した。
In Comparative Example 5, since the oxygen concentration of the Au—Sn alloy powder was reduced to 30 mass ppm, which was less than the range of the present invention, it was possible to confirm the occurrence of lumps when pasted, and to suppress aggregation between the powders. could not. For this reason, unmelted residue was generated in the powder after reflow, and poor meltability occurred.
In Comparative Example 6, since the oxygen concentration of the Au—Sn alloy powder was 2200 mass ppm, which was larger than the range of the present invention, unmelted residue was generated in the reflowed powder, and poor melting occurred.
 これに対して、本発明例のAu-Sn合金はんだペースト及びAu-Sn合金はんだ層においては、粉末同士の凝集が抑制され、リフロー後の溶融性に優れており、LED素子の熱損傷性の懸念もなく、LED素子の接合部の耐熱性を有しており、LED素子を確実に接合することができた。
 また、Au膜上に印刷したAu-Sn合金はんだペーストを、固相線温度以上液相線温度以下の温度で加熱した本発明例1~7においては、形成されたAu-Sn合金はんだ層において液相線温度が上昇しており、300℃においても溶融が認められず、高い耐熱性を有していることが確認された。また、本発明例2と同じ材料、同じ手順で、ペーストの印刷径のみを変更して形成したAu-Sn合金はんだ層の観察写真を図3に示す。濡れ広がったSnを主成分とする薄膜相31と、この中央部に形成された相対的にAuの含有量の高い厚膜相32と、を有するAu-Sn合金はんだ層30が形成されていることが確認された。
On the other hand, in the Au—Sn alloy solder paste and Au—Sn alloy solder layer of the present invention example, agglomeration of powders is suppressed, the meltability after reflow is excellent, and the heat damage property of the LED element is reduced. Without concern, the heat resistance of the joint portion of the LED element was obtained, and the LED element could be reliably joined.
In the inventive examples 1 to 7 in which the Au—Sn alloy solder paste printed on the Au film was heated at a temperature not lower than the solidus temperature and not higher than the liquidus temperature, the formed Au—Sn alloy solder layer The liquidus temperature was rising, melting was not observed even at 300 ° C., and it was confirmed to have high heat resistance. Further, FIG. 3 shows an observation photograph of the Au—Sn alloy solder layer formed by changing only the printing diameter of the paste using the same material and the same procedure as Example 2 of the present invention. An Au—Sn alloy solder layer 30 having a thin film phase 31 mainly composed of Sn that has spread and a thick film phase 32 having a relatively high Au content formed in the central portion is formed. It was confirmed.
 以上の確認実験の結果から、本発明例によれば、溶融性に優れ、かつ、比較的低温条件での接合でも十分な耐熱性を有するはんだ層を形成可能なAu-Sn合金はんだペースト、及び、Au-Sn合金はんだ層を提供可能であることが確認された。 From the results of the above confirmation experiment, according to the example of the present invention, an Au—Sn alloy solder paste that can form a solder layer that is excellent in meltability and has sufficient heat resistance even in bonding at relatively low temperature conditions, and It has been confirmed that an Au—Sn alloy solder layer can be provided.
 本発明によれば、溶融性に優れ、かつ、比較的低温条件での接合でも十分な耐熱性を有するはんだ層を形成可能なAu-Sn合金はんだペースト、このAu-Sn合金はんだペーストを用いたAu-Sn合金はんだ層の製造方法、及びAu-Sn合金はんだ層を提供することができる。前記Au-Sn合金はんだペーストを用いたAu-Sn合金はんだ層の製造方法によれば、被搭載物の熱的ダメージを低減することができる。 According to the present invention, an Au—Sn alloy solder paste having excellent meltability and capable of forming a solder layer having sufficient heat resistance even when bonded at a relatively low temperature, and this Au—Sn alloy solder paste were used. An Au—Sn alloy solder layer manufacturing method and an Au—Sn alloy solder layer can be provided. According to the Au—Sn alloy solder layer manufacturing method using the Au—Sn alloy solder paste, the thermal damage to the mounted object can be reduced.
20 Au-Sn合金はんだペースト
30 Au-Sn合金はんだ層
20 Au—Sn alloy solder paste 30 Au—Sn alloy solder layer

Claims (6)

  1.  Snを61質量%以上70質量%以下の範囲で含み、残部がAu及び不可避不純物よりなるAu-Sn合金粉末と、フラックスと、を含み、
     前記Au-Sn合金粉末における酸素濃度が、50質量ppm以上1800質量ppm以下の範囲内とされているAu-Sn合金はんだペースト。
    An Au—Sn alloy powder containing Sn in a range of 61 mass% to 70 mass% with the balance being Au and inevitable impurities, and a flux,
    An Au—Sn alloy solder paste in which an oxygen concentration in the Au—Sn alloy powder is in a range of 50 mass ppm to 1800 mass ppm.
  2.  前記Au-Sn合金粉末の平均粒径が1μm以上25μm以下の範囲内とされている請求項1に記載のAu-Sn合金はんだペースト。 The Au-Sn alloy solder paste according to claim 1, wherein an average particle diameter of the Au-Sn alloy powder is in a range of 1 µm to 25 µm.
  3.  前記フラックスの含有量が、ペースト全体の5質量%以上40質量%以下の範囲内である請求項1又は請求項2に記載のAu-Sn合金はんだペースト。 The Au-Sn alloy solder paste according to claim 1 or 2, wherein a content of the flux is in a range of 5 mass% to 40 mass% of the entire paste.
  4.  基材の表面に、請求項1から請求項3のいずれか一項に記載されたAu-Sn合金はんだペーストを配設し、このAu-Sn合金はんだ層を加熱して溶融するAu-Sn合金はんだ層の製造方法。 An Au-Sn alloy in which the Au-Sn alloy solder paste according to any one of claims 1 to 3 is disposed on a surface of a substrate, and the Au-Sn alloy solder layer is heated and melted. Solder layer manufacturing method.
  5.  表面にAu膜が形成された前記基材を準備し、このAu膜の上に、前記Au-Sn合金はんだペーストを配設し、前記Au-Sn合金はんだペーストを構成するAu-Sn合金の固相線温度+30℃以上液相線温度以下の温度に加熱して溶融する請求項4に記載のAu-Sn合金はんだ層の製造方法。 The base material having an Au film formed on the surface is prepared, and the Au—Sn alloy solder paste is disposed on the Au film, and the Au—Sn alloy solder paste constituting the Au—Sn alloy solder paste is prepared. 5. The method for producing an Au—Sn alloy solder layer according to claim 4, wherein the Au—Sn alloy solder layer is melted by heating to a temperature of a phase line temperature of + 30 ° C. or more and a liquidus temperature of not more.
  6.  請求項4又は請求項5に記載のAu-Sn合金はんだ層の製造方法により得られたAu-Sn合金はんだ層。 An Au-Sn alloy solder layer obtained by the method for producing an Au-Sn alloy solder layer according to claim 4 or 5.
PCT/JP2015/081728 2014-11-13 2015-11-11 Au-Sn ALLOY SOLDER PASTE, METHOD FOR MANUFACTURING Au-Sn ALLOY SOLDER LAYER, AND Au-Sn ALLOY SOLDER LAYER WO2016076353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020167034907A KR20170080536A (en) 2014-11-13 2015-11-11 Au-Sn ALLOY SOLDER PASTE, METHOD FOR MANUFACTURING Au-Sn ALLOY SOLDER LAYER, AND Au-Sn ALLOY SOLDER LAYER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-230609 2014-11-13
JP2014230609A JP6888900B2 (en) 2014-11-13 2014-11-13 Au-Sn alloy solder paste, method of manufacturing Au-Sn alloy solder layer, and Au-Sn alloy solder layer

Publications (1)

Publication Number Publication Date
WO2016076353A1 true WO2016076353A1 (en) 2016-05-19

Family

ID=55954432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081728 WO2016076353A1 (en) 2014-11-13 2015-11-11 Au-Sn ALLOY SOLDER PASTE, METHOD FOR MANUFACTURING Au-Sn ALLOY SOLDER LAYER, AND Au-Sn ALLOY SOLDER LAYER

Country Status (4)

Country Link
JP (1) JP6888900B2 (en)
KR (1) KR20170080536A (en)
TW (1) TWI723966B (en)
WO (1) WO2016076353A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102591964B1 (en) 2021-06-21 2023-10-23 주식회사 코닉에스티 Bonding metal laminate, laminated structure for metal bonding and method for metal bonding
KR102591963B1 (en) 2021-06-21 2023-10-23 주식회사 코닉에스티 Laminated structure for metal bonding and method for metal bonding
JP2024104885A (en) * 2023-01-25 2024-08-06 ミネベアパワーデバイス株式会社 Electronic component and manufacturing method for electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031697A (en) * 2002-06-26 2004-01-29 Kyocera Corp Thermoelectric module
JP2008010545A (en) * 2006-06-28 2008-01-17 Mitsubishi Materials Corp METHOD FOR JOINING WHOLE OF JUNCTION FACE OF ELEMENT TO SUBSTRATE BY USING Au-Sn ALLOY SOLDER PASTE
JP2008080393A (en) * 2006-09-29 2008-04-10 Toshiba Corp Joining body using peritectic system alloy, joining method, and semiconductor device
JP2011167761A (en) * 2010-01-25 2011-09-01 Mitsubishi Materials Corp Au-Sn ALLOY SOLDER PASTE, AND Au-Sn ALLOY SOLDER FORMED THEREBY

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411229B1 (en) * 1998-06-10 2003-12-18 쇼와 덴코 가부시키가이샤 Solder powder, flux, solder paste, soldering method, soldered circuit board, and soldered joint product
JP5589112B2 (en) * 2013-03-18 2014-09-10 株式会社フジクラ Joining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031697A (en) * 2002-06-26 2004-01-29 Kyocera Corp Thermoelectric module
JP2008010545A (en) * 2006-06-28 2008-01-17 Mitsubishi Materials Corp METHOD FOR JOINING WHOLE OF JUNCTION FACE OF ELEMENT TO SUBSTRATE BY USING Au-Sn ALLOY SOLDER PASTE
JP2008080393A (en) * 2006-09-29 2008-04-10 Toshiba Corp Joining body using peritectic system alloy, joining method, and semiconductor device
JP2011167761A (en) * 2010-01-25 2011-09-01 Mitsubishi Materials Corp Au-Sn ALLOY SOLDER PASTE, AND Au-Sn ALLOY SOLDER FORMED THEREBY

Also Published As

Publication number Publication date
KR20170080536A (en) 2017-07-10
TWI723966B (en) 2021-04-11
TW201634707A (en) 2016-10-01
JP2016093821A (en) 2016-05-26
JP6888900B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
US9095936B2 (en) Variable melting point solders
JP6717559B2 (en) Solder alloy and solder powder
JP6780994B2 (en) Solder materials and electronic components
JP7022434B2 (en) Flux for solder paste and solder paste
JP2018511482A (en) Hybrid alloy solder paste
JP5733610B2 (en) Au-Sn alloy solder paste and Au-Sn alloy solder formed thereby
WO2016076353A1 (en) Au-Sn ALLOY SOLDER PASTE, METHOD FOR MANUFACTURING Au-Sn ALLOY SOLDER LAYER, AND Au-Sn ALLOY SOLDER LAYER
TWI343295B (en)
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
JP5461125B2 (en) Lead-free high-temperature bonding material
WO2019198690A1 (en) Solder paste
JP2015105391A (en) Method for producing lead-free solder alloy powder
TWI654044B (en) Solder material and electronic parts
JP4811663B2 (en) Sn-Au alloy solder paste with low void generation
JP2017100176A (en) Au-Sn SOLDER POWDER AND PASTE FOR SOLDER CONTAINING THE POWDER
JP2007313548A (en) Cream solder
JP4811661B2 (en) Au-Sn alloy solder paste with less void generation
JP6428409B2 (en) Solder powder and solder paste using this powder
JP2017177122A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE AND MANUFACTURING METHOD THEREOF
JP6589272B2 (en) Au-Sn alloy solder paste, method for producing Au-Sn alloy solder layer
JP6511773B2 (en) Au-Sn alloy solder paste, method of manufacturing Au-Sn alloy solder paste, method of manufacturing Au-Sn alloy solder layer
JP2017177121A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE AND MANUFACTURING METHOD THEREOF
JP2017170480A (en) HIGH-TEMPERATURE SERVICE Pb-FREE SOLDER PASTE, AND MANUFACTURING METHOD THEREOF
WO2019117041A1 (en) Solder paste, joint structure, and method for producing joint structure
WO2016157971A1 (en) Solder paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034907

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858351

Country of ref document: EP

Kind code of ref document: A1