WO2016067625A1 - 高強度鋼板およびその製造方法 - Google Patents

高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2016067625A1
WO2016067625A1 PCT/JP2015/005459 JP2015005459W WO2016067625A1 WO 2016067625 A1 WO2016067625 A1 WO 2016067625A1 JP 2015005459 W JP2015005459 W JP 2015005459W WO 2016067625 A1 WO2016067625 A1 WO 2016067625A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
amount
hot
retained austenite
cold
Prior art date
Application number
PCT/JP2015/005459
Other languages
English (en)
French (fr)
Inventor
由康 川崎
松田 広志
横田 毅
孝子 山下
瀬戸 一洋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020177014210A priority Critical patent/KR101949627B1/ko
Priority to CN201580058560.5A priority patent/CN107075644B/zh
Priority to EP15855263.8A priority patent/EP3214197B1/en
Priority to MX2017005571A priority patent/MX2017005571A/es
Priority to JP2016556370A priority patent/JP6179676B2/ja
Priority to US15/520,236 priority patent/US10954578B2/en
Publication of WO2016067625A1 publication Critical patent/WO2016067625A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet having excellent formability and a low yield ratio, which is suitable as a member used in industrial fields such as automobiles and electricity, and a method for producing the same.
  • Patent Document 1 proposes a steel sheet having a very high ductility utilizing work-induced transformation of retained austenite having a tensile strength of 1000 MPa or more and a total elongation (EL) of 30% or more.
  • Patent Document 2 proposes a steel plate that attempts to obtain a high strength-ductility balance by performing heat treatment in a two-phase region of ferrite and austenite using high Mn steel.
  • Patent Document 3 the structure after hot rolling with a high Mn steel is made into a structure containing bainite and martensite, and further, fine retained austenite is formed by annealing and tempering, and then tempered bainite or tempered martensite.
  • a steel sheet has been proposed that seeks to improve local ductility by using an organization that includes a site.
  • the steel sheet described in Patent Document 1 is manufactured by performing a so-called austempering process in which a steel sheet containing C, Si, and Mn as basic components is austenitized, and then quenched into a bainite transformation temperature range and held isothermally. Is done. And when this austemper process is performed, a retained austenite is produced
  • Patent Document 1 is mainly intended to improve ductility, and no consideration is given to hole expansibility, bendability, and yield ratio.
  • the present invention has been developed in view of such circumstances, and is a high-strength steel sheet having excellent formability and a low yield ratio. Specifically, YR (yield ratio) is less than 68%, and TS ( An object of the present invention is to provide a high-strength steel sheet having a tensile strength of 590 MPa or more together with its advantageous production method.
  • the high-strength steel plate referred to in the present invention includes a high-strength steel plate (high-strength hot-dip galvanized steel plate) having a hot-dip galvanized layer on the surface and a high-strength steel plate (high-strength hot-dip aluminum plating having a hot-dip aluminum plating layer on the surface). Steel plate) and high strength steel plate (high strength electrogalvanized steel plate) having an electrogalvanized layer on its surface.
  • -Mn is contained in the range of 2.60 mass% or more and 4.20 mass% or less, and other component compositions are adjusted to a predetermined range.
  • the steel structure is a structure containing appropriate amounts of polygonal ferrite, martensite, and retained austenite, and these constituent phases are refined. Further, the average aspect ratio of crystal grains of these constituent phases and the value obtained by dividing the amount of Mn (mass%) in retained austenite by the amount of Mn (mass%) in polygonal ferrite are optimized.
  • the component composition is adjusted to a predetermined range, the manufacturing conditions, particularly the heat treatment conditions after hot rolling (hot-rolled sheet annealing), and the conditions after cold rolling. It is important to appropriately control the heat treatment (cold rolled sheet annealing) conditions.
  • the present invention was completed after further studies based on the above findings.
  • the gist configuration of the present invention is as follows. 1.
  • the component composition is C: 0.030% or more and 0.250% or less, Si: 0.01% or more and 3.00% or less, Mn: 2.60% or more and 4.20% or less, and P: 0.00% by mass.
  • the balance consists of Fe and inevitable impurities, Steel structure is area ratio, polygonal ferrite is 35% or more and 80% or less, martensite is 5% or more and 25% or less, and volume ratio is residual austenite is 8% or more,
  • the average crystal grain size of the polygonal ferrite is 6 ⁇ m or less
  • the average crystal grain size of the martensite is 3 ⁇ m or less
  • the average crystal grain size of the retained austenite is 3 ⁇ m or less
  • the average aspect ratio of the residual austenite crystal grains is 2.0 or less
  • strength steel plate whose value which remove
  • the component composition further includes, by mass, Al: 0.01% to 2.00%, Nb: 0.005% to 0.200%, B: 0.0003% to 0.0050%, Ni: 0.005% to 1.000%, Cr: 0.005% to 1.000%, V: 0.005% to 0.500%, Mo: 0.005% to 1.000%
  • Cu 0.005% to 1.000%
  • Sn 0.002% to 0.200%
  • Sb 0.002% to 0.200%
  • Ta 0.001% to 0.000. 010% or less
  • Ca 0.0005% or more and 0.0050% or less
  • Mg 0.0005% or more and 0.0050% or less
  • REM 0.0005% or more and 0.0050% or less.
  • the element described in 1 above is contained. High-strength steel sheet.
  • the amount of C in the retained austenite is related to the amount of Mn in the retained austenite by the following formula: 0.09 ⁇ [Mn amount] ⁇ 0.130 ⁇ 0.140 ⁇ [C amount] ⁇ 0.09 ⁇ [Mn amount] ⁇ 0.130 + 0.140 [C amount]: C amount (% by mass) in retained austenite [Mn amount]: Mn amount (% by mass) in retained austenite
  • the high-strength steel sheet according to any one of 1 to 3, wherein a volume ratio of retained austenite after applying a tensile process of 10% in elongation value is divided by a volume ratio of residual austenite before the tensile process.
  • a high-strength steel sheet having a value of 0.3 or more.
  • the steel slab having the component composition according to claim 1 or 2 is heated to 1100 ° C. or higher and 1300 ° C. or lower, hot rolled at a finish rolling exit temperature of 750 ° C. or higher and 1000 ° C. or lower, and an average winding temperature is set to 300.
  • a hot-rolled sheet annealing step for holding the hot-rolled sheet in a temperature range of Ac 1 transformation point + 20 ° C.
  • a cold rolling step in which the hot-rolled sheet is cold-rolled by cold rolling at a reduction ratio of 30% or more;
  • a cold-rolled sheet annealing step in which the cold-rolled sheet is held in the temperature range from the Ac 1 transformation point to the Ac 1 transformation point + 100 ° C. in excess of 900 s to 21600 s, and then cooled.
  • a method for manufacturing a high-strength steel sheet is
  • the cold-rolled plate is further subjected to a galvanizing treatment or a hot-dip galvanizing treatment, followed by a step of performing an alloying treatment in a temperature range of 450 ° C. or more and 600 ° C. or less.
  • a galvanizing treatment or a hot-dip galvanizing treatment followed by a step of performing an alloying treatment in a temperature range of 450 ° C. or more and 600 ° C. or less.
  • a high-strength steel sheet having excellent formability, YR (yield ratio) of less than 68%, and TS (tensile strength) of 590 MPa or more is obtained. Further, by applying the high-strength steel sheet of the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.
  • C 0.030% or more and 0.250% or less C is an element necessary for generating a low-temperature transformation phase such as martensite and increasing the strength. Moreover, it is an element effective in improving the stability of retained austenite and improving the ductility of steel.
  • the amount of C is less than 0.030%, it is difficult to secure a desired martensite area ratio, and a desired strength cannot be obtained. Moreover, it is difficult to ensure a sufficient volume ratio of retained austenite, and good ductility cannot be obtained.
  • C is added excessively exceeding 0.250%, the area ratio of hard martensite becomes excessive, and microvoids at the grain boundaries of martensite increase.
  • the C content is in the range of 0.030% to 0.250%. Preferably, it is 0.080% or more and 0.200% or less of range.
  • Si 0.01% or more and 3.00% or less Si is an element effective for ensuring good ductility because it improves the work hardening ability of ferrite.
  • the Si content is less than 0.01%, the effect of addition becomes poor, so the lower limit is made 0.01%.
  • excessive addition of Si exceeding 3.00% not only causes embrittlement of the steel but also causes deterioration of the surface properties due to the occurrence of red scale and the like.
  • the Si content is in the range of 0.01% to 3.00%. Preferably, it is 0.20% or more and 2.00% or less of range.
  • Mn 2.60% or more and 4.20% or less Mn is an extremely important element in the present invention. That is, Mn is an element that stabilizes retained austenite and is effective in ensuring good ductility, and further increases the strength of steel by solid solution strengthening. Such an effect is recognized when the Mn content of the steel is 2.60% or more. On the other hand, an excessive addition of Mn exceeding 4.20% causes an increase in cost. From such a viewpoint, the amount of Mn is set in the range of 2.60% to 4.20%. Preferably it is 3.00% or more.
  • P 0.001% or more and 0.100% or less
  • P is an element that has an effect of solid solution strengthening and can be added according to a desired strength.
  • it is an element that promotes ferrite transformation and is effective in forming a composite structure of a steel sheet.
  • P amount 0.001% or more.
  • the P content exceeds 0.100%, weldability is deteriorated.
  • rate is reduced and the quality of zinc plating is impaired. Therefore, the P amount is in the range of 0.001% to 0.100%. Preferably it is 0.005% or more and 0.050% or less of range.
  • S 0.0001% or more and 0.0200% or less S segregates at the grain boundary and embrittles the steel during hot working, and also exists as a sulfide and lowers the local deformability of the steel sheet. Therefore, the amount of S needs to be 0.0200% or less, preferably 0.0100% or less, more preferably 0.0050% or less. However, the amount of S is made 0.0001% or more due to production technology restrictions. Therefore, the S content is in the range of 0.0001% to 0.0200%. Preferably it is 0.0001% or more and 0.0100% or less of range, More preferably, it is 0.0001% or more and 0.0050% or less of range.
  • N 0.0005% or more and 0.0100% or less
  • N is an element that deteriorates the aging resistance of steel.
  • the N content exceeds 0.0100%, the deterioration of aging resistance becomes significant.
  • the amount of N is set to 0.0005% or more because of restrictions on production technology. Therefore, the N content is in the range of 0.0005% to 0.0100%. Preferably it is 0.0010% or more and 0.0070% or less of range.
  • Ti 0.003% or more and 0.200% or less
  • Ti is an extremely important element in the present invention. That is, Ti is effective for precipitation strengthening of steel, and the effect is obtained by adding 0.003% or more of Ti.
  • the Ti amount exceeds 0.200%, the area ratio of hard martensite becomes excessive, and microvoids at the grain boundaries of martensite increase. For this reason, the propagation of cracks easily progresses during the bending test and the hole expansion test, and the bendability and stretch flangeability deteriorate. Therefore, the Ti amount is set in the range of 0.003% to 0.200%. Preferably, it is 0.010% or more and 0.100% or less of range.
  • Al 0.01% to 2.00%, Nb: 0.005% to 0.200%, B: 0.0003% to 0.0050%, Ni: 0.005% to 1.000%, Cr: 0.005% to 1.000%, V: 0.005% to 0.500%, Mo: 0.005% to 1.000%, Cu: 0.005% to 1.000%, Sn: 0.002% to 0.200%, Sb: 0.002% to 0.200%, Ta: 0.001% to 0.010%
  • at least one element selected from Ca: 0.0005% to 0.0050%, Mg: 0.0005% to 0.0050% and REM: 0.0005% to 0.0050% Can be contained.
  • Al 0.01% or more and 2.00% or less
  • Al is an element that expands the two-phase region of ferrite and austenite, reduces the dependency on annealing temperature, that is, is effective for material stability.
  • Al also acts as a deoxidizer and is an effective element for the cleanliness of steel.
  • the Al content is less than 0.01%, the effect of addition is poor, so the lower limit is made 0.01%.
  • the addition of a large amount of Al exceeding 2.00% increases the risk of steel piece cracking during continuous casting, and decreases productivity. Therefore, when Al is added, the amount is in the range of 0.01% to 2.00%. Preferably, it is 0.20% or more and 1.20% or less of range.
  • Nb 0.005% or more and 0.200% or less
  • Nb is effective for precipitation strengthening of steel, and the effect of addition is obtained at 0.005% or more.
  • the Nb content exceeds 0.200%, the area ratio of hard martensite becomes excessive, and microvoids at the grain boundaries of martensite increase. For this reason, the propagation of cracks easily progresses during the bending test and the hole expansion test, and the bendability and stretch flangeability deteriorate. In addition, the cost increases. Therefore, when Nb is added, the amount is in the range of 0.005% to 0.200%. Preferably it is 0.010% or more and 0.100% or less of range.
  • B 0.0003% or more and 0.0050% or less B has an effect of suppressing the formation and growth of ferrite from the austenite grain boundary, and can be flexibly controlled in the structure, so it is added as necessary. Can do. The effect of addition is obtained at 0.0003% or more. On the other hand, if the amount of B exceeds 0.0050%, the moldability deteriorates. Therefore, when adding B, the quantity shall be 0.0003% or more and 0.0050% or less of range. Preferably, it is 0.0005% or more and 0.0030% or less of range.
  • Ni 0.005% or more and 1.000% or less
  • Ni is an element that stabilizes retained austenite and is effective in securing good ductility, and further increases the strength of the steel by solid solution strengthening. The effect of addition is obtained at 0.005% or more.
  • the Ni content exceeds 1.000%, the area ratio of hard martensite becomes excessive, and microvoids at the grain boundaries of martensite increase. For this reason, the propagation of cracks easily progresses during the bending test and the hole expansion test, and the bendability and stretch flangeability deteriorate. In addition, the cost increases. Therefore, when adding Ni, the quantity shall be 0.005% or more and 1.000% or less.
  • Cr 0.005% to 1.000%, V: 0.005% to 0.500%, Mo: 0.005% to 1.000% Cr, V, and Mo balance strength and ductility Is an element that can be added as needed.
  • the addition effect is obtained when Cr: 0.005% or more, V: 0.005% or more, and Mo: 0.005% or more.
  • the area ratio of hard martensite becomes excessive, and the martensite grain boundary Increases microvoids. For this reason, the propagation of cracks easily progresses during the bending test and the hole expansion test, and the bendability and stretch flangeability deteriorate.
  • the cost increases. Therefore, when these elements are added, the amounts thereof are Cr: 0.005% to 1.000%, V: 0.005% to 0.500% and Mo: 0.005% to 1.000%, respectively. % Or less.
  • Cu 0.005% or more and 1.000% or less
  • Cu is an element effective for strengthening steel, and may be used for strengthening steel within the above range. Moreover, the addition effect is acquired at 0.005% or more.
  • the amount of Cu exceeds 1.000%, the area ratio of hard martensite becomes excessive, and microvoids at the grain boundary of martensite increase. For this reason, the propagation of cracks easily progresses during the bending test and the hole expansion test, and the bendability and stretch flangeability deteriorate. Therefore, when adding Cu, the quantity shall be 0.005% or more and 1.000% or less.
  • Sn 0.002% or more and 0.200% or less
  • Sb 0.002% or more and 0.200% or less
  • Sn nitriding and oxidation
  • Sn and Sb are effective in securing strength and material stability.
  • Sn and Sb are added excessively in excess of 0.200%, toughness is reduced. Therefore, when adding Sn and Sb, the amount is in the range of 0.002% to 0.200%, respectively.
  • Ta 0.001% or more and 0.010% or less Ta, like Ti and Nb, generates alloy carbide and alloy carbonitride and contributes to high strength.
  • Ta partially dissolves in Nb carbide and Nb carbonitride, and suppresses the coarsening of the precipitate by generating a composite precipitate such as (Nb, Ta) (C, N), It is considered that there is an effect of stabilizing the contribution to strength improvement by precipitation strengthening. For this reason, it is preferable to contain Ta.
  • the effect of stabilizing the precipitate described above can be obtained by setting the content of Ta to 0.001% or more.
  • Ta even if Ta is added excessively, the effect of addition is saturated and the alloy cost also increases. Therefore, when Ta is added, the amount is in the range of 0.001% to 0.010%.
  • Ca, Mg, and REM have a sulfide shape. It is an effective element for spheroidizing and improving the adverse effect of sulfides on hole expandability (stretch flangeability). In order to obtain this effect, 0.0005% or more must be added. On the other hand, excessive addition of each of Ca, Mg and REM exceeding 0.0050% causes an increase in inclusions and the like, resulting in surface and internal defects. Therefore, when adding Ca, Mg and REM, the amount is in the range of 0.0005% or more and 0.0050% or less, respectively.
  • components other than the above are Fe and inevitable impurities.
  • Polygonal ferrite area ratio 35% or more and 80% or less
  • the area ratio of polygonal ferrite needs to be 35% or more in order to ensure sufficient ductility.
  • Polygonal ferrite referred to here is ferrite that is relatively soft and rich in ductility.
  • Martensite area ratio 5% or more and 25% or less
  • the martensite area ratio needs to be 5% or more.
  • the martensite area ratio needs to be 25% or less. Preferably it is 8% or more and 20% or less of range.
  • the area ratio of polygonal ferrite and martensite can be determined as follows. That is, after the plate thickness cross section (L cross section) parallel to the rolling direction of the steel plate is polished, it corrodes with 3 vol.% Nital and corresponds to the plate thickness 1/4 position (1/4 plate thickness in the depth direction from the steel plate surface). 10 positions are observed at a magnification of 2000 using a SEM (scanning electron microscope) to obtain a tissue image. Using this obtained tissue image, the area ratio of each tissue (polygonal ferrite, martensite) is calculated for 10 visual fields by Image-Pro of Media Cybernetics, and the values can be obtained by averaging. Further, in the above structure image, polygonal ferrite is identified by a gray structure (underground structure), and martensite is identified by a white structure.
  • volume ratio of retained austenite 8% or more
  • the volume ratio of retained austenite needs to be 8% or more in order to ensure sufficient ductility.
  • it is 10% or more.
  • the upper limit of the volume fraction of retained austenite is not particularly limited, but 60% because retained austenite having a small effect of improving ductility, that is, so-called unstable retained austenite in which components such as C and Mn are diluted increases. It is preferable to set the degree. More preferably, it is 50% or less.
  • the volume ratio of retained austenite is determined by polishing the steel plate to a 1 ⁇ 4 surface in the plate thickness direction (a surface corresponding to 1 ⁇ 4 of the plate thickness in the depth direction from the steel plate surface). Obtained by measuring the line strength.
  • MoK ⁇ rays are used as incident X-rays, and ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ , ⁇ 311 ⁇ planes of the retained austenite have peak integrated intensities of ferrite ⁇ 110 ⁇ , ⁇ 200 ⁇ , ⁇ 211 ⁇ .
  • the intensity ratios of all 12 combinations with respect to the integrated intensity of the peak of the surface are obtained, and the average value thereof is taken as the volume ratio of retained austenite.
  • Average crystal grain size of polygonal ferrite 6 ⁇ m or less
  • the refinement of crystal grains of polygonal ferrite contributes to improvement of TS (tensile strength) and improvement of bendability and stretch flangeability (hole expansion property).
  • the average crystal grain size of polygonal ferrite needs to be 6 ⁇ m or less. Preferably it is 5 micrometers or less.
  • the lower limit of the average crystal grain size of polygonal ferrite is not particularly limited, but is preferably about 0.3 ⁇ m industrially.
  • Martensite average crystal grain size 3 ⁇ m or less
  • the average crystal grain size of martensite in order to ensure high bendability and high stretch flangeability (high hole expansibility), the average crystal grain size of martensite must be 3 ⁇ m or less. Preferably, it is 2.5 ⁇ m or less.
  • the lower limit of the average crystal grain size of martensite is not particularly limited, but is preferably about 0.1 ⁇ m industrially.
  • Average crystal grain size of retained austenite 3 ⁇ m or less
  • the refinement of crystal grains of retained austenite contributes to the improvement of ductility and the improvement of bendability and stretch flangeability (hole expandability).
  • the average crystal grain size of retained austenite needs to be 3 ⁇ m or less. Preferably, it is 2.5 ⁇ m or less.
  • the lower limit of the average crystal grain size of retained austenite is not particularly limited, but is preferably about 0.1 ⁇ m industrially.
  • the average crystal grain size of polygonal ferrite, martensite and retained austenite was determined from the structure image obtained in the same manner as the measurement of the area ratio using the above-mentioned Image-Pro, polygonal ferrite grains, martensite grains and The area of each retained austenite grain is determined, the equivalent circle diameter is calculated, and the average of these values is determined.
  • martensite and retained austenite are identified by Phase Map of EBSD (Electron BackScatter Diffraction). In determining the average crystal grain size, crystal grains having a grain size of 0.01 ⁇ m or more are measured.
  • Average aspect ratio of crystal grains of polygonal ferrite, martensite, and retained austenite 2.0 or less
  • the average aspect ratio of crystal grains of polygonal ferrite, martensite, and retained austenite is 2.0 or less.
  • the small aspect ratio of the crystal grains means that the grains grow after recovery and recrystallization of ferrite and austenite during holding in the heat treatment after cold rolling (cold rolled sheet annealing), and are close to equiaxed grains This means that crystal grains were formed.
  • Such crystal grains having a low aspect ratio greatly contribute to a decrease in YR (yield ratio).
  • the average aspect ratio of the crystal grains of polygonal ferrite, martensite and retained austenite is set to 2.0 or less. Preferably it is 1.8 or less, More preferably, it is 1.6 or less.
  • the lower limit value of the average aspect ratio of the crystal grains of polygonal ferrite, martensite and retained austenite is not particularly limited, but is preferably about 1.1.
  • the aspect ratio of the crystal grain here is a value obtained by dividing the major axis length of the crystal grain by the minor axis length, and the average aspect ratio of each crystal grain can be obtained as follows. It can. That is, the long axis length of 30 crystal grains in each of the polygonal ferrite grains, martensite grains and residual austenite grains from the structure image obtained in the same manner as the area ratio measurement using the above-mentioned Image-Pro. And the minor axis length is calculated, the major axis length is divided by the minor axis length for each crystal grain, and these values are averaged.
  • the amount of Mn (mass%) in retained austenite is the amount of Mn in polygonal ferrite ( It is very important in the present invention that the value divided by (mass%) is 2.0 or more. This is because in order to ensure good ductility, it is necessary to increase stable retained austenite enriched in Mn.
  • the upper limit of the value obtained by dividing the amount of Mn (mass%) in the retained austenite by the amount of Mn (mass%) in polygonal ferrite is not particularly limited, but from the viewpoint of stretch flangeability, 16. It is preferably about 0.
  • the amount of Mn in retained austenite and polygonal ferrite can be determined as follows. That is, using an EPMA (Electron Probe Micro Analyzer), the distribution state of Mn to each phase of the cross section in the rolling direction at the 1/4 position of the plate thickness is quantified, and then 30 residual austenite grains Further, the amount of Mn of 30 polygonal ferrite grains can be analyzed, and the amount of Mn of each retained austenite grain and polygonal ferrite grain obtained from the analysis results can be averaged.
  • EPMA Electro Probe Micro Analyzer
  • the microstructure of the high-strength steel sheet of the present invention includes not only polygonal ferrite, martensite and retained austenite, but also carbides such as granular ferrite, acicular ferrite, bainitic ferrite, tempered martensite, pearlite and cementite (pearlite). May be included). These structures may be included as long as the total area ratio is within a range of 10% or less, and the effects of the present invention are not impaired.
  • the amount of C in the retained austenite is related to the amount of Mn in the retained austenite by the following formula: 0.09 ⁇ [Mn amount] ⁇ 0.130 ⁇ 0.140 ⁇ [C amount] ⁇ 0.09 ⁇ [Mn amount] ⁇ 0.130 + 0.140 [C amount]: C amount mass% in retained austenite) [Mn amount]: Mn amount (% by mass) in retained austenite It is preferable to satisfy
  • Residual austenite is a structure that tends to remain when the Ms point (martensitic transformation start point) determined by the component elements contained in the steel structure is low (for example, as low as about 15 ° C. or less).
  • the inventors have conducted intensive studies on the steel structure after press forming and processing the steel sheet.
  • the retained austenite present in steel is subject to martensitic transformation immediately when press forming or processing is performed (so-called unstable retained austenite), and retained austenite until the amount of processing increases.
  • unstable retained austenite there is a material (so-called stable retained austenite) that causes martensite transformation and causes a TRIP phenomenon after the processing amount becomes large.
  • good elongation can be obtained particularly effectively when there is a large amount of so-called stable retained austenite that undergoes martensitic transformation after the amount of processing increases.
  • a steel sheet having a good elongation and a low one is selected from various steel sheets, these steel sheets are subjected to tensile processing at various working degrees of 0 to 20%, and residual austenite remaining in the steel sheets after the tensile processing is selected.
  • the volume ratio was measured. And when the relationship between the workability of a steel plate and the volume ratio of the retained austenite of the steel plate after a tensile process was investigated, the tendency as shown in FIG. 1 was recognized between both. As shown in FIG. 1, it can be seen that in a steel sheet with good elongation, the method of reducing retained austenite when the degree of work is increased is moderate.
  • a workability here is an elongation value when a tensile test is performed using a JIS No. 5 test piece taken so that the tensile direction is perpendicular to the rolling direction of the steel sheet.
  • the inventors prepared various steel plates with a TS of 780 MPa class, applied tensile processing of 10% in elongation value to these steel plates, and measured the volume fraction of retained austenite in the steel plates after tensile processing. did.
  • the measuring method of the volume ratio of a retained austenite was performed by the method mentioned above. Then, a value obtained by dividing the volume ratio of retained austenite after applying a tensile process of 10% by an elongation value by the volume ratio of residual austenite before the tensile process (that is, [applying a tensile process of 10% by an elongation value).
  • the effect of the volume fraction of retained austenite after] / [volume fraction of retained austenite before tensile processing]) on the elongation of the steel sheet was investigated. The result is shown in FIG.
  • the elongation of the steel plate in FIG. 2 is the total elongation obtained by conducting a tensile test similar to that of the examples described later on the steel plate before tensile processing.
  • volume ratio of retained austenite after applying a tensile process of 10% in terms of elongation is divided by the volume ratio of retained austenite before tensile processing is 0.3 or more. High elongation can be obtained, while those outside this range have low elongation.
  • the value obtained by dividing the volume ratio of retained austenite after imparting 10% tensile processing by the elongation value with the volume ratio of retained austenite before tensile processing is 0.3 or more.
  • the amount of C in the retained austenite is related to the amount of Mn in the retained austenite, and the following formula: 0.09 ⁇ [Mn amount] ⁇ 0.130 ⁇ 0.140 ⁇ [C amount] ⁇ 0.09 ⁇ [Mn amount] ⁇ 0.130 + 0.140 [C amount]: C amount (% by mass) in retained austenite
  • Mn amount Mn amount (% by mass) in retained austenite
  • the work-induced transformation (TRIP) phenomenon which is the main factor for improving ductility, is interrupted until the end of processing of the steel sheet.
  • TRIP work-induced transformation
  • the amount of C (mass%) in the retained austenite can be determined by the following procedure in the same manner as the amount of Mn in the retained austenite described above. That is, using the above-mentioned EPMA, the distribution state of C to each phase of the cross section in the rolling direction at the plate thickness 1/4 position is quantified. Next, the amount of C of the 30 retained austenite grains can be analyzed, and the amount of C of each retained austenite grain obtained from the analysis result can be averaged.
  • the method for producing a high-strength steel sheet according to the present invention comprises heating a steel slab having the above component composition to 1100 ° C. or more and 1300 ° C. or less, hot rolling at a finish rolling exit temperature of 750 ° C. or more and 1000 ° C. or less, and averaging A hot rolling process in which a coiling temperature is wound at a temperature of 300 ° C. or higher and 750 ° C.
  • a hot-rolled sheet annealing process in which the sheet is held in a temperature range of not less than Ac 1 transformation point + 20 ° C. and not more than Ac 1 transformation point + 120 ° C. for not less than 600 s and not more than 21600 s, Cold-rolling by rolling into a cold-rolled sheet, and cooling the cold-rolled sheet after holding the cold-rolled sheet in the temperature range from the Ac 1 transformation point to the Ac 1 transformation point + 100 ° C. for over 900 s and 21600 s or less.
  • a sheet annealing process is provided. Hereinafter, the reasons for limiting these manufacturing conditions will be described.
  • Steel slab heating temperature 1100 ° C or higher and 1300 ° C or lower
  • Precipitates present in the steel slab heating stage exist as coarse precipitates in the finally obtained steel sheet and do not contribute to strength. It is necessary to redissolve the deposited Ti and Nb-based precipitates.
  • the heating temperature of the steel slab is less than 1100 ° C., it is difficult to sufficiently dissolve the carbide, and further problems such as an increased risk of occurrence of trouble during hot rolling due to an increase in rolling load occur. Therefore, the heating temperature of the steel slab needs to be 1100 ° C. or higher.
  • the heating temperature of the steel slab needs to be 1100 ° C or higher. is there.
  • the heating temperature of the steel slab exceeds 1300 ° C., the scale loss increases as the oxidation amount increases. Therefore, the heating temperature of the steel slab needs to be 1300 ° C. or lower. Therefore, the heating temperature of the steel slab is set in the range of 1100 ° C. or higher and 1300 ° C. or lower. Preferably, it is the range of 1150 degreeC or more and 1250 degrees C or less.
  • the steel slab is preferably manufactured by a continuous casting method in order to prevent macro segregation, but it can also be manufactured by an ingot-making method or a thin slab casting method.
  • the conventional method of once cooling to room temperature and heating again after that can be used.
  • energy-saving processes such as direct feed rolling and direct rolling, which do not cool to room temperature, are charged in a heating furnace as they are, or are rolled immediately after being kept warm, are also problematic. Applicable without any problem.
  • steel slabs are made into sheet bars by rough rolling under normal conditions, but if the heating temperature is lowered, a bar heater or the like is used before finish rolling from the viewpoint of preventing troubles during hot rolling. It is preferable to heat the sheet bar.
  • Finishing rolling delivery temperature of hot rolling 750 ° C. or more and 1000 ° C. or less
  • the heated steel slab is hot rolled by rough rolling and finish rolling to become a hot rolled steel sheet.
  • the finish rolling exit temperature exceeds 1000 ° C.
  • the amount of oxide (scale) generated increases rapidly, the interface between the base iron and the oxide becomes rough, the surface of the steel plate after pickling and cold rolling.
  • the quality tends to deteriorate.
  • a part of the hot-rolled scale remains after pickling, the ductility and stretch flangeability are adversely affected.
  • the crystal grain size becomes excessively large, and the surface of the pressed product may be roughened during processing.
  • the finish rolling exit temperature is less than 750 ° C.
  • the rolling load increases, the rolling load increases, and the rolling reduction in a state where austenite is not recrystallized increases.
  • an abnormal texture develops, the in-plane anisotropy in the final product becomes remarkable, and not only the material uniformity is impaired, but also the ductility itself is lowered. Therefore, it is necessary to set the finish rolling temperature of the hot rolling in the range of 750 ° C. or higher and 1000 ° C. or lower.
  • it is the range of 800 degreeC or more and 950 degrees C or less.
  • Average coiling temperature after hot rolling 300 ° C. or more and 750 ° C. or less
  • the average coiling temperature after hot rolling exceeds 750 ° C.
  • the ferrite crystal grain size in the hot-rolled sheet structure increases, and the desired strength is ensured. It becomes difficult.
  • the average coiling temperature after hot rolling is less than 300 ° C.
  • the hot-rolled sheet strength is increased, the rolling load in cold rolling is increased, and a defective plate shape is generated. Decreases. Therefore, the average winding temperature after hot rolling needs to be in the range of 300 ° C. or higher and 750 ° C. or lower.
  • it is the range of 400 degreeC or more and 650 degrees C or less.
  • rough rolling sheets may be joined together during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once. Moreover, in order to reduce the rolling load during hot rolling, part or all of the finish rolling may be lubricated rolling. Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable to make the friction coefficient at the time of lubrication rolling into the range of 0.10 or more and 0.25 or less.
  • pickling can remove oxides (scale) on the surface of the steel sheet, it is important for ensuring good chemical conversion properties and plating quality of the high-strength steel sheet as the final product. Moreover, pickling may be performed once, or pickling may be performed in a plurality of times.
  • Hot-rolled sheet annealing (heat treatment) conditions Ac 1 transformation point + 20 ° C. or higher and Ac 1 transformation point + 120 ° C. or lower and maintained at 600 s or more and 21600 s or less
  • Ac 1 transformation point + 20 ° C. or higher and Ac 1 transformation point +120 It is extremely important in the present invention to maintain the temperature in the temperature range of ⁇ ° C. for 600 s or more and 21600 s or less. That is, when the annealing temperature (holding temperature) of hot-rolled sheet annealing is less than Ac 1 transformation point + 20 ° C.
  • the heat treatment method may be any of continuous annealing and batch annealing.
  • it is cooled to room temperature, but the cooling method and cooling rate are not particularly specified, and any cooling such as furnace cooling in batch annealing, gas jet cooling in air cooling and continuous annealing, mist cooling and water cooling, etc. I do not care.
  • the pickling may be performed according to a conventional method.
  • Cold rolling reduction 30% or more
  • the rolling reduction is 30% or more.
  • austenite is finely generated during heat treatment.
  • fine retained austenite and martensite are obtained, and not only the strength-ductility balance is improved, but also bendability and stretch flangeability (hole expandability) are improved.
  • the upper limit of the rolling reduction of cold rolling is not specifically limited, it is preferable to set it as about 85% from the point of the load load of cold rolling.
  • Cold-rolled sheet annealing (heat treatment) Condition Ac in 900s super 21600s less holding the cold-rolled sheet annealing in 1 transformation point or more Ac 1 transformation point + 100 ° C. or less of a temperature range, Ac 1 transformation point or above Ac 1 transformation point + 100 ° C. below the temperature It is extremely important in the present invention to hold the region in the range of more than 900 s and not more than 21600 s. That is, when the annealing temperature (holding temperature) of cold-rolled sheet annealing is less than the Ac 1 transformation point or exceeds the Ac 1 transformation point + 100 ° C., the concentration of Mn in the austenite does not proceed, and a sufficient amount It becomes difficult to secure retained austenite, and ductility is reduced.
  • the retention time is 900 s or less, unrecrystallized ferrite remains, the amount of interphase interface between the ferrite and the hard second phase (martensite and retained austenite) decreases, and the crystal grains in each constituent phase The average aspect ratio also increases.
  • YP yield strength
  • YR yield ratio
  • the holding time exceeds 21600 s, the concentration of Mn in the austenite is saturated, and not only the effect margin on the ductility in the steel sheet obtained after the final annealing (cold rolling sheet annealing) is reduced, but also the cost is increased. It becomes a factor.
  • the temperature is from the Ac 1 transformation point to the Ac 1 transformation point + 100 ° C. or less (preferably, the Ac 1 transformation point + 20 ° C. to the Ac 1 transformation point + 80 ° C. or less), more than 900 s and 21600 s or less (preferably Is held for a period of 1200 s to 18000 s).
  • the amount of C in the retained austenite in the steel structure is represented by the following formula in relation to the amount of Mn in the retained austenite: 0.09 ⁇ [Mn amount] ⁇ 0.130 ⁇ 0.140 ⁇ [C amount] ⁇ 0.09 ⁇ [Mn amount] ⁇ 0.130 + 0.140 [C amount]: C amount (% by mass) in retained austenite [Mn amount]: Mn amount (% by mass) in retained austenite
  • the above-mentioned cold-rolled sheet annealing conditions are also important, and in particular, it is preferable to hold in a temperature range of Ac 1 transformation point + 20 ° C. or higher and Ac 1 transformation point + 80 ° C. or lower.
  • the cold-rolled sheet obtained as described above is subjected to plating treatment such as hot dip galvanizing treatment, hot dip aluminum plating treatment, and electro galvanizing treatment, so that the surface is hot dip galvanized layer, hot dip aluminum plated layer, electro zinc A high-strength steel plate having a plating layer can be obtained.
  • plating treatment such as hot dip galvanizing treatment, hot dip aluminum plating treatment, and electro galvanizing treatment, so that the surface is hot dip galvanized layer, hot dip aluminum plated layer, electro zinc A high-strength steel plate having a plating layer can be obtained.
  • the “hot dip galvanizing” includes alloyed hot dip galvanizing.
  • the cold rolled plate obtained by performing the cold rolled plate annealing is immersed in a galvanizing bath at 440 ° C. or higher and 500 ° C. or lower, hot dip galvanizing treatment is applied, and then gas The amount of plating adhesion is adjusted by wiping or the like.
  • the galvanization bath whose amount of Al is 0.10 mass% or more and 0.22 mass% or less for hot dip galvanization.
  • the alloying treatment of galvanization is performed, the alloying treatment of galvanizing is performed in a temperature range of 450 ° C. or more and 600 ° C. or less after the galvanizing treatment.
  • the alloying treatment When the alloying treatment is performed at a temperature exceeding 600 ° C., untransformed austenite is transformed into pearlite, and a desired volume ratio of retained austenite cannot be secured, and ductility may be lowered. On the other hand, if the alloying treatment temperature is less than 450 ° C., alloying does not proceed and it is difficult to produce an alloy layer. Therefore, when the galvanizing alloying treatment is performed, it is preferable to perform the galvanizing alloying treatment in a temperature range of 450 ° C. or more and 600 ° C. or less.
  • CGL Continuous Galvanizing Line
  • the cold-rolled plate obtained by performing the cold-rolled plate annealing is immersed in an aluminum plating bath at 660 to 730 ° C., and hot-dip aluminum plating is performed. To adjust the amount of plating adhesion.
  • steel that conforms to a temperature range where the temperature of the aluminum plating bath is not less than the Ac 1 transformation point and not more than the Ac 1 transformation point + 100 ° C. is produced by the molten aluminum plating process, so that finer and more stable retained austenite is generated. Can be improved.
  • the film thickness is preferably in the range of 5 ⁇ m to 15 ⁇ m, although not particularly limited.
  • skin pass rolling can be performed on the high-strength steel plate manufactured as described above for the purpose of shape correction, adjustment of surface roughness, and the like.
  • the rolling reduction of the skin pass rolling is preferably in the range of 0.1% to 2.0%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit of the good range. Moreover, since productivity will fall remarkably when it exceeds 2.0%, this is made the upper limit of a favorable range.
  • skin pass rolling may be performed online or offline.
  • a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.
  • the high-strength steel plate produced as described above can be further subjected to various coating treatments such as resin and oil coating.
  • the hot dip galvanizing bath uses a zinc bath containing Al: 0.19% by mass in GI, and uses a zinc bath containing Al: 0.14% by mass in GA, and the bath temperature is 465 ° C. did.
  • the plating adhesion amount was 45 g / m 2 (double-sided plating) per side, and GA had an Fe concentration in the plating layer of 9% by mass or more and 12% by mass or less.
  • the bath temperature of the hot dip aluminum plating bath for hot dip galvanized steel sheets was set to 700 ° C.
  • the Ac 1 transformation point (° C.) in Table 1 was determined using the following formula.
  • Ac 1 transformation point (° C.) 751-16 ⁇ (% C) + 11 ⁇ (% Si) ⁇ 28 ⁇ (% Mn) ⁇ 5.5 ⁇ (% Cu) ⁇ 16 ⁇ (% Ni) + 13 ⁇ (% Cr) + 3.4 ⁇ (% Mo )
  • (% C), (% Si), (% Mn), (% Cu), (% Ni), (% Cr), (% Mo) are the contents of each element in steel (mass%) ).
  • the steel sheet obtained as described above was subjected to a tensile test, a bending test, and a hole expanding test, and the tensile properties, bendability, and hole expanding characteristics were evaluated as follows.
  • the tensile test is performed in accordance with JIS Z 2241 (2011) using a JIS No. 5 specimen obtained by taking a sample so that the tensile direction is perpendicular to the rolling direction of the steel sheet, and YP (yield stress), YR. (Yield ratio), TS (tensile strength) and EL (total elongation) were measured.
  • YR is a value expressed by percentage by dividing YP by TS. YR ⁇ 68%, TS ⁇ 590 MPa or more, and TS ⁇ EL ⁇ 24000 MPa ⁇ %.
  • TS: 590 MPa class is a steel sheet having a TS of 590 MPa or more and less than 780 MPa
  • TS: 780 MPa class is a steel sheet having a TS of 780 MPa or more and less than 980 MPa
  • TS: 980 MPa class is a TS having a TS of 980 MPa or more and less than 1180 MPa. It is a steel plate.
  • the hole expansion test was performed in accordance with JIS Z 2256 (2010). After each steel plate obtained was cut to 100 mm ⁇ 100 mm, a hole with a diameter of 10 mm was punched out with a clearance of 12% ⁇ 1%, and then it was suppressed with a wrinkle holding force of 9 ton (88.26 kN) using a die with an inner diameter of 75 mm. The hole diameter at the crack initiation limit was measured by pushing a punch with a 60 ° cone into the hole. Then, the critical hole expansion rate ⁇ (%) was obtained from the following equation, and the hole expansion property was evaluated from the value of the critical hole expansion rate.
  • Limit hole expansion ratio ⁇ (%) ⁇ (D f ⁇ D 0 ) / D 0 ⁇ ⁇ 100
  • D f hole diameter at crack initiation (mm) D 0 is the initial hole diameter (mm).
  • ⁇ ⁇ 30% the TS780 MPa class, ⁇ ⁇ 25%, and the TS980 MPa class, ⁇ ⁇ 20% were judged to be good.
  • productivity in the production of the steel sheet, productivity, and further, the sheet properties during hot rolling and cold rolling, and the surface properties of the final annealed sheet (steel sheet after cold-rolled sheet annealing) were evaluated.
  • productivity (1) A hot rolled sheet has a shape defect
  • (2) When it is necessary to correct the shape of the hot-rolled sheet in order to proceed to the next process (3) When holding time of annealing treatment is long, Evaluated lead time cost. A case that does not correspond to any of (1) to (3) is determined as “good”, and a case that corresponds to any of (1) to (3) is determined to be “bad”.
  • the plateability of hot rolling was judged as poor when the risk of trouble during rolling increased due to an increase in rolling load.
  • the platenability of cold rolling was also judged to be defective when the risk of trouble during rolling increased due to an increase in rolling load.
  • the tensile strength (TS) is 590 MPa or more and the yield ratio (YR) is less than 68%, and also good ductility and balance between strength and ductility, as well as bendability and hole expansibility. It can be seen that an excellent high-strength steel sheet can be produced. Moreover, all of the examples of the present invention are excellent in productivity, plate-passability of hot rolling and cold rolling, and surface properties of the final annealed plate. On the other hand, in the comparative example, desired properties are not obtained with respect to any one or more of tensile strength, yield ratio, ductility, balance between strength and ductility, bendability, and hole expandability.
  • the present invention it is possible to produce a high-strength steel sheet having a YR (yield ratio) of less than 68%, excellent formability having a TS (tensile strength) of 590 MPa or more, and a low yield ratio. Further, by applying the high-strength steel sheet of the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is very large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 所定の成分組成とし、かつ、鋼組織を、面積率で、ポリゴナルフェライト:35%以上80%以下、マルテンサイト:5%以上25%以下とし、体積率で、残留オーステナイト:8%以上とし、また、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの平均結晶粒径をそれぞれ6μm以下、3μm以下、3μm以下にするとともに、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比をそれぞれ2.0以下とし、さらに、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値を2.0以上とする。

Description

高強度鋼板およびその製造方法
 本発明は、自動車、電気等の産業分野で使用される部材として好適な、成形性に優れ、かつ低い降伏比を有する高強度鋼板およびその製造方法に関する。
 近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発となってきている。
 しかしながら、一般的に鋼板の高強度化は成形性の低下を招くことから、高強度化を図ると鋼板の成形性が低下して、成形時の割れなどの問題を生じる。そのため、単純には鋼板の薄肉化が図れない。そこで、高強度と高成形性を併せ持つ材料の開発が望まれている。また、TS(引張強さ):590MPa以上の鋼板は、自動車の製造工程において、プレス加工後にアーク溶接、スポット溶接等により組み付けられて、モジュール化されるため、組付け時に高い寸法精度が求められる。
 このため、このような鋼板では、成形性に加え、加工後にスプリングバック等を起こりにくくする必要があり、そのためには、加工前にYR(降伏比)が低いことが重要となる。
 例えば、特許文献1には、引張強さが1000MPa以上で、全伸び(EL)が30%以上の残留オーステナイトの加工誘起変態を利用した非常に高い延性を有する鋼板が提案されている。
 また、特許文献2には、高Mn鋼を用いて、フェライトとオーステナイトの2相域での熱処理を施すことにより、高い強度-延性バランスを得ようとする鋼板が提案されている。
 さらに、特許文献3には、高Mn鋼で熱延後の組織をベイナイトやマルテンサイトを含む組織とし、さらに焼鈍と焼戻しを施すことによって微細な残留オーステナイトを形成させたのち、焼戻しベイナイトもしくは焼戻しマルテンサイトを含む組織とすることで、局部延性を改善しようとする鋼板が提案されている。
特開昭61-157625号公報 特開平1-259120号公報 特開2003-138345号公報
 ここで、特許文献1に記載された鋼板では、C、SiおよびMnを基本成分とする鋼板をオーステナイト化した後に、ベイナイト変態温度域に焼入れて等温保持する、いわゆるオーステンパー処理を行うことにより製造される。そして、このオーステンパー処理を施す際に、オーステナイトへのCの濃化によって残留オーステナイトが生成される。
 しかしながら、多量の残留オーステナイトを得るためには、0.3質量%を超える多量のCが必要となるが、0.3質量%を超えるようなC濃度では、スポット溶接性の低下が顕著であり、自動車用鋼板としては実用化が困難である。
 加えて、特許文献1に記載された鋼板では、延性の向上を主目的としており、穴広げ性や曲げ性、降伏比については考慮が払われていない。
 さらに、特許文献2および3に記載された鋼板では、成形性の観点では延性の向上について述べられているが、その曲げ性や降伏比については考慮が払われていない。
 本発明は、かかる事情に鑑み開発されたものであって、成形性に優れるとともに、低い降伏比を有する高強度鋼板、具体的には、YR(降伏比)が68%未満で、かつTS(引張強さ)が590MPa以上の高強度鋼板を、その有利な製造方法とともに提供することを目的とする。
 なお、本発明でいう高強度鋼板には、表面に溶融亜鉛めっき層をそなえる高強度鋼板(高強度溶融亜鉛めっき鋼板)や、表面に溶融アルミニウムめっき層をそなえる高強度鋼板(高強度溶融アルミニウムめっき鋼板)、表面に電気亜鉛めっき層をそなえる高強度鋼板(高強度電気亜鉛めっき鋼板)が含まれる。
 さて、発明者らは、成形性に優れ、低い降伏比を有する高強度鋼板を開発すべく、鋭意検討を重ねたところ、以下のことを見出した。
(1)延性や曲げ性、穴広げ性といった成形性に優れ、YRが68%未満でかつTSが590MPa以上の高強度鋼板を得るには、以下の点が重要である。
・Mnを2.60質量%以上4.20質量%以下の範囲で含有させるとともに、その他の成分組成を所定の範囲に調整する。
・鋼組織を、ポリゴナルフェライトとマルテンサイト、残留オーステナイトを適正量含む組織とし、これらの構成相を微細化する。また、これらの構成相の結晶粒の平均アスペクト比や、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値を、適正化する。
(2)さらに、上記のような組織を造り込むには、成分組成を所定の範囲に調整するとともに、製造条件、特に熱間圧延後の熱処理(熱延板焼鈍)条件および冷間圧延後の熱処理(冷延板焼鈍)条件を適正に制御することが重要である。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.成分組成が、質量%でC:0.030%以上0.250%以下、Si:0.01%以上3.00%以下、Mn:2.60%以上4.20%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、N:0.0005%以上0.0100%以下およびTi:0.003%以上0.200%以下を含有し、残部がFeおよび不可避的不純物からなり、
 鋼組織が、面積率で、ポリゴナルフェライトが35%以上80%以下、マルテンサイトが5%以上25%以下であって、体積率で、残留オーステナイトが8%以上であり、
 また、前記ポリゴナルフェライトの平均結晶粒径が6μm以下、前記マルテンサイトの平均結晶粒径が3μm以下、前記残留オーステナイトの平均結晶粒径が3μm以下であるとともに、前記ポリゴナルフェライト、前記マルテンサイトおよび前記残留オーステナイトの結晶粒の平均アスペクト比がそれぞれ2.0以下であり、
 さらに、前記残留オーステナイト中のMn量(質量%)を前記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である、高強度鋼板。
2.前記成分組成が、さらに、質量%で、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、前記1に記載の高強度鋼板。
3.前記残留オーステナイト中のC量が、前記残留オーステナイト中のMn量との関係で、次式:
0.09×[Mn量]-0.130-0.140≦[C量]≦0.09×[Mn量]-0.130+0.140
  [C量] :残留オーステナイト中のC量(質量%)
  [Mn量]:残留オーステナイト中のMn量(質量%)
を満足する、前記1または2に記載の高強度鋼板。
4.前記1~3のいずれかに記載の高強度鋼板であって、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、該引張加工前の残留オーステナイトの体積率で除した値が0.3以上である、高強度鋼板。
5.前記1~4のいずれかに記載の高強度鋼板であって、溶融亜鉛めっき層をさらにそなえる、高強度鋼板。
6.前記1~4のいずれかに記載の高強度鋼板であって、溶融アルミニウムめっき層をさらにそなえる、高強度鋼板。
7.前記1~4のいずれかに記載の高強度鋼板であって、電気亜鉛めっき層をさらにそなえる、高強度鋼板。
8.前記1~7のいずれかに記載の高強度鋼板の製造方法であって、
 請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、平均巻き取り温度を300℃以上750℃以下で巻き取り、熱延板とする、熱間圧延工程と、
 前記熱延板に、酸洗を施し、スケールを除去する、酸洗工程と、
 前記熱延板を、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持する、熱延板焼鈍工程と、
 前記熱延板を、圧下率:30%以上で冷間圧延して冷延板とする、冷間圧延工程と、
 前記冷延板を、Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持した後、冷却する、冷延板焼鈍工程、
とをそなえる、高強度鋼板の製造方法。
9.前記冷延板焼鈍工程後、前記冷延板に、亜鉛めっき処理を施す、または溶融亜鉛めっき処理を施したのち、450℃以上600℃以下の温度域で合金化処理を施す工程をさらにそなえる、前記8に記載の高強度鋼板の製造方法。
10.前記冷延板焼鈍工程後、前記冷延板に溶融アルミニウムめっき処理を施す工程をさらにそなえる、前記8に記載の高強度鋼板の製造方法。
11.前記冷延板焼鈍工程後、前記冷延板に電気亜鉛めっき処理を施す工程をさらにそなえる、前記8に記載の高強度鋼板の製造方法。
 本発明によれば、成形性に優れるとともに、YR(降伏比)が68%未満で、590MPa以上のTS(引張強さ)を有する高強度鋼板が得られる。
 また、本発明の高強度鋼板を、例えば、自動車構造部材に適用することにより、車体軽量化による燃費改善を図ることができ、産業的な利用価値は極めて大きい。
引張加工の加工度と残留オーステナイトの体積率との関係を示す図である。 伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を引張加工前の残留オーステナイト体積率で除した値と、鋼板の伸びとの関係を示す図である。
 以下、本発明を具体的に説明する。まず、本発明の高強度鋼板の成分組成について説明する。
 なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.030%以上0.250%以下
 Cは、マルテンサイトなどの低温変態相を生成させて、強度を上昇させるために必要な元素である。また、残留オーステナイトの安定性を向上させ、鋼の延性を向上させるのに有効な元素である。
 ここで、C量が0.030%未満では所望のマルテンサイトの面積率を確保することが難しく、所望の強度が得られない。また、十分な残留オーステナイトの体積率を確保することが難しく、良好な延性が得られない。一方、Cを、0.250%を超えて過剰に添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、溶接部および熱影響部の硬化が著しくなって、溶接部の機械的特性が低下するため、スポット溶接性やアーク溶接性なども劣化する。
 こうした観点から、C量は0.030%以上0.250%以下の範囲とする。好ましくは、0.080%以上0.200%以下の範囲である。
Si:0.01%以上3.00%以下
 Siはフェライトの加工硬化能を向上させるため、良好な延性の確保に有効な元素である。しかしながら、Si量が0.01%に満たないとその添加効果が乏しくなるため、その下限は0.01%とする。一方、3.00%を超えるSiの過剰な添加は、鋼の脆化を引き起こすばかりか赤スケールなどの発生による表面性状の劣化を引き起こす。そのため、Si量は0.01%以上3.00%以下の範囲とする。好ましくは、0.20%以上2.00%以下の範囲である。
Mn:2.60%以上4.20%以下
 Mnは、本発明において極めて重要な元素である。すなわち、Mnは、残留オーステナイトを安定化させる元素で、良好な延性の確保に有効であり、さらに、固溶強化により鋼の強度を上昇させる元素である。このような効果は、鋼のMn量が2.60%以上で認められる。一方、Mn量が4.20%を超える過剰な添加は、コストアップの要因になる。こうした観点から、Mn量は2.60%以上4.20%以下の範囲とする。好ましくは3.00%以上である。
P:0.001%以上0.100%以下
 Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。また、フェライト変態を促進し、鋼板の複合組織化にも有効な元素である。こうした効果を得るためには、P量を0.001%以上にする必要がある。一方、P量が0.100%を超えると、溶接性の劣化を招く。また、亜鉛めっきを合金化処理する場合には、合金化速度を低下させ、亜鉛めっきの品質を損なわせる。したがって、P量は0.001%以上0.100%以下の範囲とする。好ましくは0.005%以上0.050%以下の範囲である。
S:0.0001%以上0.0200%以下
 Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して鋼板の局部変形能を低下させる。そのため、S量は0.0200%以下、好ましくは0.0100%以下、より好ましくは0.0050%以下にする必要がある。しかしながら、生産技術上の制約から、S量は0.0001%以上にする。したがって、S量は0.0001%以上0.0200%以下の範囲とする。好ましくは0.0001%以上0.0100%以下の範囲、より好ましくは0.0001%以上0.0050%以下の範囲である。
N:0.0005%以上0.0100%以下
 Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.0100%を超えると、耐時効性の劣化が顕著となる。N量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする。したがって、N量は0.0005%以上0.0100%以下の範囲とする。好ましくは0.0010%以上0.0070%以下の範囲である。
Ti:0.003%以上0.200%以下
 Tiは、本発明において極めて重要な元素である。すなわち、Tiは、鋼の析出強化に有効であり、その効果はTiを0.003%以上添加することにより得られる。しかし、Ti量が0.200%を超えると、硬質なマルテンサイトの面積率が過大となり、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。したがって、Ti量は0.003%以上0.200%以下の範囲とする。好ましくは、0.010%以上0.100%以下の範囲である。
 また、上記の成分に加えて、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有させることができる。
Al:0.01%以上2.00%以下
 Alは、フェライトとオーステナイトの二相域を拡大させ、焼鈍温度依存性の低減、つまり、材質安定性に有効な元素である。また、Alは、脱酸剤として作用し、鋼の清浄度に有効な元素でもある。しかしながら、Al量が0.01%に満たないとその添加効果に乏しいので、その下限は0.01%とする。一方、Alの2.00%を超える多量の添加は、連続鋳造時の鋼片割れ発生の危険性が高まり、製造性を低下させる。したがって、Alを添加する場合、その量は0.01%以上2.00%以下の範囲とする。好ましくは、0.20%以上1.20%以下の範囲である。
Nb:0.005%以上0.200%以下
 Nbは、鋼の析出強化に有効で、その添加効果は0.005%以上で得られる。しかし、Nb量が0.200%を超えると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。したがって、Nbを添加する場合、その量は0.005%以上0.200%以下の範囲とする。好ましくは0.010%以上0.100%以下の範囲である。
B:0.0003%以上0.0050%以下
 Bは、オーステナイト粒界からのフェライトの生成および成長を抑制する作用を有し、臨機応変な組織制御が可能なため、必要に応じて添加することができる。その添加効果は、0.0003%以上で得られる。一方、B量が0.0050%を超えると、成形性が低下する。したがって、Bを添加する場合、その量は0.0003%以上0.0050%以下の範囲とする。好ましくは、0.0005%以上0.0030%以下の範囲である。
Ni:0.005%以上1.000%以下
 Niは、残留オーステナイトを安定化させる元素で、良好な延性の確保に有効であり、さらに、固溶強化により鋼の強度を上昇させる元素である。その添加効果は、0.005%以上で得られる。一方、Ni量が1.000%を超えると、硬質なマルテンサイトの面積率が過大となり、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。したがって、Niを添加する場合、その量は0.005%以上1.000%以下の範囲とする。
Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下
 Cr、VおよびMoは、強度と延性のバランスを向上させる作用を有するので、必要に応じて添加することができる元素である。その添加効果は、Cr:0.005%以上、V:0.005%以上およびMo:0.005%以上で得られる。しかしながら、それぞれCr:1.000%、V:0.500%およびMo:1.000%を超えて過剰に添加すると、硬質なマルテンサイトの面積率が過大となり、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。したがって、これらの元素を添加する場合、その量はそれぞれCr:0.005%以上1.000%以下、V:0.005%以上0.500%以下およびMo:0.005%以上1.000%以下の範囲とする。
Cu:0.005%以上1.000%以下
 Cuは、鋼の強化に有効な元素であり、上記の範囲内であれば鋼の強化に使用して差し支えない。また、その添加効果は0.005%以上で得られる。一方、Cu量が1.000%を超えると、硬質なマルテンサイトの面積率が過大となり、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。したがって、Cuを添加する場合、その量は0.005%以上1.000%以下の範囲とする。
Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下
 SnおよびSbは、鋼板表面の窒化や酸化によって生じる鋼板表層の数十μm程度の厚み領域の脱炭を抑制する観点から、必要に応じて添加することができる元素である。このような窒化や酸化を抑制することで、鋼板表面におけるマルテンサイトの面積率が減少するのを防止できるため、SnおよびSbは強度や材質安定性の確保に有効である。一方、SnおよびSbをそれぞれ0.200%を超えて過剰に添加すると、靭性の低下を招く。従って、Sn、Sbを添加する場合には、その量はそれぞれ、0.002%以上0.200%以下の範囲とする。
Ta:0.001%以上0.010%以下
 Taは、TiやNbと同様に、合金炭化物や合金炭窒化物を生成して高強度化に寄与する。加えて、Taは、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成することで析出物の粗大化を抑制し、析出強化による強度向上への寄与を安定化させる効果があると考えられる。このため、Taを含有させることが好ましい。ここで、前述の析出物安定化の効果は、Taの含有量を0.001%以上とすることで得られる。一方、Taを過剰に添加してもその添加効果が飽和する上、合金コストも増加する。したがって、Taを添加する場合、その量は0.001%以上0.010%以下の範囲とする。
Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下
 Ca、MgおよびREMは、硫化物の形状を球状化し、穴広げ性(伸びフランジ性)への硫化物の悪影響を改善するために有効な元素である。この効果を得るためには、それぞれ0.0005%以上の添加が必要である。一方、Ca、MgおよびREMのそれぞれ0.0050%を超える過剰な添加は、介在物等の増加を引き起こし表面および内部欠陥などを引き起こす。したがって、Ca、MgおよびREMを添加する場合、その量はそれぞれ0.0005%以上0.0050%以下の範囲とする。
 なお、上記以外の成分はFeおよび不可避的不純物である。
 次に、本発明の高強度鋼板のミクロ組織について説明する。
ポリゴナルフェライトの面積率:35%以上80%以下
 本発明の高強度鋼板では、十分な延性を確保するため、ポリゴナルフェライトの面積率を35%以上にする必要がある。一方、590MPa以上のTSを確保するため、軟質なポリゴナルフェライトの面積率を80%以下にする必要がある。好ましくは、40%以上75%以下の範囲である。なお、ここでいうポリゴナルフェライトとは、比較的軟質で延性に富むフェライトのことである。
マルテンサイトの面積率:5%以上25%以下
 また、590MPa以上のTSを達成するためには、マルテンサイトの面積率を5%以上にする必要がある。一方、良好な延性の確保のためには、マルテンサイトの面積率を25%以下にする必要がある。好ましくは8%以上20%以下の範囲である。
 ここで、ポリゴナルフェライトとマルテンサイトの面積率は、以下のようにして求めることができる。
 すなわち、鋼板の圧延方向に平行な板厚断面(L断面)を研磨後、3vol.%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM(走査型電子顕微鏡)を用いて2000倍の倍率で10視野観察し、組織画像を得る。この得られた組織画像を用いて、Media Cybernetics社のImage-Proにより各組織(ポリゴナルフェライト、マルテンサイト)の面積率を10視野分算出し、それらの値を平均して求めることができる。また、上記の組織画像において、ポリゴナルフェライトは灰色の組織(下地組織)、マルテンサイトは白色の組織を呈していることで識別される。
残留オーステナイトの体積率:8%以上
 本発明の高強度鋼板では、十分な延性を確保するため、残留オーステナイトの体積率を8%以上にする必要がある。好ましくは10%以上である。また、残留オーステナイトの体積率の上限は、特に限定はされないが、延性向上の効果が小さい残留オーステナイト、すなわちCやMnなどの成分が希薄ないわゆる不安定な残留オーステナイトが増加することから、60%程度とすることが好ましい。より好ましくは50%以下である。
 残留オーステナイトの体積率は、鋼板を板厚方向の1/4面(鋼板表面から深さ方向で板厚の1/4に相当する面)まで研磨し、この板厚1/4面の回折X線強度を測定することにより求める。入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}面のピークの積分強度の、フェライトの{110}、{200}、{211}面のピークの積分強度に対する、12通り全ての組み合わせの強度比を求め、これらの平均値を残留オーステナイトの体積率とする。
ポリゴナルフェライトの平均結晶粒径:6μm以下
 ポリゴナルフェライトの結晶粒の微細化は、TS(引張強さ)の向上や曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。ここに、所望のTSを確保し、高曲げ性、高伸びフランジ性(高穴広げ性)を確保するためには、ポリゴナルフェライトの平均結晶粒径を6μm以下にする必要がある。好ましくは5μm以下である。
 なお、ポリゴナルフェライトの平均結晶粒径の下限値は特に限定されるものではないが、工業的には0.3μm程度とすることが好ましい。
マルテンサイトの平均結晶粒径:3μm以下
 マルテンサイトの結晶粒の微細化は、曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。ここに、高曲げ性、高伸びフランジ性(高穴広げ性)を確保するためには、マルテンサイトの平均結晶粒径を3μm以下にする必要がある。好ましくは2.5μm以下である。
 なお、マルテンサイトの平均結晶粒径の下限値は特に限定されるものではないが、工業的には0.1μm程度とすることが好ましい。
残留オーステナイトの平均結晶粒径:3μm以下
 残留オーステナイトの結晶粒の微細化は、延性の向上や曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。ここに、良好な延性、曲げ性、伸びフランジ性(穴広げ性)を確保するためには、残留オーステナイトの平均結晶粒径を3μm以下にする必要がある。好ましくは2.5μm以下である。
 なお、残留オーステナイトの平均結晶粒径の下限値は特に限定されるものではないが、工業的には0.1μm程度とすることが好ましい。
 また、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの平均結晶粒径は、上述のImage-Proを用いて、面積率の測定と同様にして得られる組織画像から、ポリゴナルフェライト粒、マルテンサイト粒および残留オーステナイト粒の各々の面積を求め、円相当直径を算出し、それらの値を平均して求める。なお、マルテンサイトと残留オーステナイトは、EBSD(Electron BackScatter Diffraction;電子線後方散乱回折法)のPhase Mapにより識別する。
 なお、上記の平均結晶粒径を求める際には、いずれも、粒径が0.01μm以上の結晶粒を測定することとする。
ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比:2.0以下
 ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比を2.0以下とすることは、本発明において極めて重要である。
 すなわち、結晶粒のアスペクト比が小さいことは、冷間圧延後の熱処理(冷延板焼鈍)における保持中に、フェライトおよびオーステナイトが回復および再結晶を起こした後に粒成長し、等軸粒に近い結晶粒が生成したことを意味している。このような低アスペクト比の結晶粒は、YR(降伏比)の低下に大きく寄与する。また、このような結晶粒により構成される組織では、マイクロボイドが発生し難く、曲げ試験時および穴広げ試験時に亀裂の伝播方向を分散させることにより、亀裂の進展が抑制される。その結果、曲げ性や伸びフランジ性の向上にも寄与する。
 したがって、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比は2.0以下とする。好ましくは1.8以下、さらに好ましくは1.6以下である。
 なお、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比の下限値は特に限定されるものではないが、1.1程度とすることが好ましい。
 また、ここでいう結晶粒のアスペクト比とは、結晶粒の長軸長さを短軸長さで除した値のことであり、各結晶粒の平均アスペクト比は以下のようにして求めることができる。
 すなわち、上述のImage-Proを用いて、面積率の測定と同様にして得られる組織画像から、ポリゴナルフェライト粒、マルテンサイト粒および残留オーステナイト粒の各々において、30個の結晶粒の長軸長さと短軸長さを算出し、結晶粒ごとに長軸長さを短軸長さで除し、それらの値を平均して求めることができる。
残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値:2.0以上
 残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上であることは、本発明において極めて重要である。というのは、良好な延性を確保するためには、Mnが濃化した安定な残留オーステナイトを多くする必要があるからである。
 なお、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値の上限値は特に限定されるものではないが、伸びフランジ性の観点から、16.0程度とすることが好ましい。
 また、残留オーステナイトおよびポリゴナルフェライト中のMn量は、以下のようにして、求めることができる。
 すなわち、EPMA(Electron Probe Micro Analyzer;電子プローブマイクロアナライザ)を用いて、板厚1/4位置における圧延方向断面の各相へのMnの分布状態を定量化する、ついで、30個の残留オーステナイト粒および30個のポリゴナルフェライト粒のMn量を分析し、分析結果より得られる各残留オーステナイト粒およびポリゴナルフェライト粒のMn量をそれぞれ平均することにより、求めることができる。
 なお、本発明の高強度鋼板のミクロ組織には、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイト以外に、グラニュラーフェライト、アシキュラーフェライト、ベイニティックフェライト、焼戻しマルテンサイト、パーライトおよびセメンタイト等の炭化物(パーライト中のセメンタイトを除く)が含まれる場合がある。これらの組織は、合計で面積率:10%以下の範囲であれば、含まれていてもよく、本発明の効果が損なわれることはない。
 また、本発明の高強度鋼板では、残留オーステナイト中のC量が、残留オーステナイト中のMn量との関係で、次式:
0.09×[Mn量]-0.130-0.140≦[C量]≦0.09×[Mn量]-0.130+0.140
  [C量] :残留オーステナイト中のC量質量%)
  [Mn量]:残留オーステナイト中のMn量(質量%)
を満足することが好適である。
 ここで、残留オーステナイトは加工を加えるとTRIP現象によりマルテンサイトに変態するが、この変態により、良好な伸びを確保できる。つまり、TRIP現象には、残留オーステナイトがプレス成形や加工前に存在していることが必須である。なお、残留オーステナイトは、鋼の組織に含まれる成分元素によって決まるMs点(マルテンサイト変態開始点)が低い場合(例えば、15℃以下程度と低い場合)に、残存しやい組織である。
 発明者らは、この残留オーステナイトのTRIP現象による変態挙動をより詳しく調査すべく、鋼板にプレス成形や加工を加えた後の鋼組織について、鋭意調査を行った。
 その結果、鋼中に存在する残留オーステナイトには、プレス成形や加工を加えたときに、すぐにマルテンサイト変態してしまうもの(いわゆる不安定な残留オーステナイト)と、加工量が大きくなるまで残留オーステナイトとして存在し、加工量が大きくなってからマルテンサイト変態してTRIP現象を生じるもの(いわゆる安定な残留オーステナイト)があることを見出した。そして、加工量が大きくなってからマルテンサイト変態するいわゆる安定な残留オーステナイトが多いと、特に効果的に、良好な伸びが得られることを究明した。
 すなわち、種々の鋼板から、伸びが良好なものと低位なものを選択し、これらの鋼板に0~20%の種々の加工度で引張加工を施し、引張加工後の鋼板に残存する残留オーステナイトの体積率を測定した。そして、鋼板の加工度と引張加工後の鋼板の残留オーステナイトの体積率との関係を調査したところ、両者の間には、図1に示すような傾向が認められた。
 図1に示したように、伸びが良好な鋼板では、加工度を上げたときの残留オーステナイトの減少の仕方が緩やかであることが分かる。なお、ここでいう加工度とは、引張方向が鋼板の圧延方向と直角方向となるように採取したJIS 5号試験片を用いて引張試験を行ったときの伸び値である。
 そこで、発明者らは、TSが780MPa級の種々の鋼板を準備し、これらの鋼板に、伸び値で10%の引張加工を付与し、引張加工後の鋼板において、残留オーステナイトの体積率を測定した。なお、残留オーステナイトの体積率の測定方法は、上述した方法により行った。
 そして、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、引張加工前の残留オーステナイトの体積率で除した値(すなわち、[伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率]/[引張加工前の残留オーステナイトの体積率])が、鋼板の伸びに与える影響について調査した。その結果を図2に示す。
 なお、上記した伸び値で10%となる引張加工を付与する際の条件を具体的に説明すると、次のとおりである。
 すなわち、引張方向が鋼板の圧延方向と直角方向となるように採取したJIS 5号試験片を用いて引張試験を行い、当該試験片の伸び値が10%のときに試験を中断することによって、伸び値で10%となる引張加工を付与するものである。
 また、図2の鋼板の伸びとは、引張加工前の鋼板に対し、後述する実施例と同様の引張試験を行って求めた全伸びである。
 図2に示したように、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、引張加工前の残留オーステナイトの体積率で除した値が0.3以上である場合には、高い伸びが得られる一方、この範囲から外れるものは伸びが低位である。
 このため、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、引張加工前の残留オーステナイトの体積率で除した値を、0.3以上にすることが好ましい。
 また、上記の条件を満足する鋼板の引張加工前の鋼組織をさらに詳細に調べたところ、残留オーステナイト中のC量が、残留オーステナイト中のMn量との関係で、次式:
0.09×[Mn量]-0.130-0.140≦[C量]≦0.09×[Mn量]-0.130+0.140
  [C量] :残留オーステナイト中のC量(質量%)
  [Mn量]:残留オーステナイト中のMn量(質量%)
を満足する場合に、加工を加えたときに高い加工硬化能を示すTRIP現象を生じて一層の良好な伸びを示すことがわかった。
 すなわち、上記の残留オーステナイト中のC量を、残留オーステナイト中のMn量との関係で適正に制御することにより、延性向上の主要因である加工誘起変態(TRIP)現象を鋼板の加工終盤まで断続的に発現させる、いわゆる安定な残留オーステナイトが多く得られ、これによって、高い強度とともに、一層の良好な伸びを達成できるのである。
 また、残留オーステナイト中のC量(質量%)は、上述した残留オーステナイト中のMn量と同様にして、以下の手順で求めることができる。
 すなわち、上述したEPMAを用いて、板厚1/4位置における圧延方向断面の各相へのCの分布状態を定量化する。ついで、30個の残留オーステナイト粒のC量を分析し、分析結果より得られる各残留オーステナイト粒のC量をそれぞれ平均することにより、求めることができる。
 次に、本発明の高強度鋼板の製造方法について説明する。
 本発明の高強度鋼板の製造方法は、上記の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、平均巻き取り温度を300℃以上750℃以下で巻き取り、熱延板とする、熱間圧延工程と、前記熱延板に、酸洗を施し、スケールを除去する、酸洗工程と、前記熱延板を、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持する、熱延板焼鈍工程と、前記熱延板を、圧下率:30%以上で冷間圧延して冷延板とする、冷間圧延工程と、前記冷延板を、Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持した後、冷却する、冷延板焼鈍工程、とをそなえるものである。
 以下、これらの製造条件の限定理由について、説明する。
鋼スラブの加熱温度:1100℃以上1300℃以下
 鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出したTi、Nb系析出物を再溶解させる必要がある。
 ここに、鋼スラブの加熱温度が1100℃未満では、炭化物の十分な溶解が困難であり、さらに、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。そのため、鋼スラブの加熱温度は1100℃以上にする必要がある。
 また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂や凹凸を減少し、平滑な鋼板表面を達成する観点からも、鋼スラブの加熱温度は1100℃以上にする必要がある。
 一方、鋼スラブの加熱温度が1300℃超では、酸化量の増加に伴いスケールロスが増大してしまう。そのため、鋼スラブの加熱温度は1300℃以下にする必要がある。
 したがって、鋼スラブの加熱温度は1100℃以上1300℃以下の範囲とする。好ましくは、1150℃以上1250℃以下の範囲である。
 なお、鋼スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法や薄スラブ鋳造法などにより製造することも可能である。また、鋼スラブを製造した後、一旦室温まで冷却し、その後再度加熱する従来法を用いることができる。さらに、鋼スラブを製造した後、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。さらに、鋼スラブは通常の条件で粗圧延によりシートバーとされるが、加熱温度を低目にした場合は、熱間圧延時のトラブルを防止する観点から、仕上げ圧延前にバーヒーターなどを用いてシートバーを加熱することが好ましい。
熱間圧延の仕上げ圧延出側温度: 750℃以上1000℃以下
 加熱後の鋼スラブは、粗圧延および仕上げ圧延により熱間圧延され熱延鋼板となる。このとき、仕上げ圧延出側温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の鋼板の表面品質が劣化する傾向にある。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、延性や伸びフランジ性に悪影響を及ぼす。さらに、結晶粒径が過度に粗大となり、加工時にプレス品の表面荒れを生じる場合がある。
 一方、仕上げ圧延出側温度が750℃未満では、圧延荷重が増大し、圧延負荷が大きくなることや、オーステナイトが未再結晶の状態での圧下率が高くなる。その結果、異常な集合組織が発達し、最終製品における面内異方性が顕著となり、材質の均一性が損なわれるだけでなく、延性そのものも低下する。
 したがって、熱間圧延の仕上げ圧延出側温度を750℃以上1000℃以下の範囲にする必要がある。好ましくは800℃以上950℃以下の範囲である。
熱間圧延後の平均巻き取り温度:300℃以上750℃以下
 熱間圧延後の平均巻き取り温度が750℃を超えると、熱延板組織のフェライトの結晶粒径が大きくなり、所望の強度確保が困難となる。一方、熱間圧延後の平均巻き取り温度が300℃未満では、熱延板強度が上昇して、冷間圧延における圧延負荷が増大したり、板形状の不良が発生したりするため、生産性が低下する。したがって、熱間圧延後の平均巻き取り温度を300℃以上750℃以下の範囲にする必要がある。好ましくは400℃以上650℃以下の範囲である。
 なお、熱間圧延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。また、熱間圧延時の圧延荷重を低減するために仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下の範囲とすることが好ましい。
 このようにして製造した熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物(スケール)の除去が可能であることから、最終製品の高強度鋼板の良好な化成処理性やめっき品質の確保のために重要である。また、一回の酸洗を行っても良いし、複数回に分けて酸洗を行っても良い。
熱延板焼鈍(熱処理)条件:Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持
 熱延板焼鈍において、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持することは、本発明において極めて重要である。
 すなわち、熱延板焼鈍の焼鈍温度(保持温度)がAc1変態点+20℃未満またはAc1変態点+120℃超となる場合や、保持時間が600s未満となる場合、オーステナイト中へのMnの濃化が進行せず、また最終焼鈍(冷延板焼鈍)後に十分な量の残留オーステナイトを確保することが困難となり、延性が低下する。一方、保持時間が21600sを超えると、オーステナイト中へのMnの濃化が飽和し、最終焼鈍後に得られる鋼板における延性への効き代が小さくなるだけでなく、コストアップの要因にもなる。
 また、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持することは、鋼組織における残留オーステナイト中のC量が、残留オーステナイト中のMn量との関係で次式を満足するためにも重要である。
0.09×[Mn量]-0.130-0.140≦[C量]≦0.09×[Mn量]-0.130+0.140
  [C量] :残留オーステナイト中のC量(質量%)
  [Mn量]:残留オーステナイト中のMn量(質量%)
 したがって、熱延板焼鈍では、Ac1変態点+20℃以上Ac1変態点+120℃以下(好ましくは、Ac1変態点+30℃以上Ac1変態点+100℃以下)の温度域で、600s以上21600s以下(好ましくは、1000s以上18000s以下)の時間、保持するものとする。
 なお、熱処理方法は連続焼鈍やバッチ焼鈍のいずれの焼鈍方法でも構わない。また、前記の熱処理後、室温まで冷却するが、その冷却方法および冷却速度は特に規定せず、バッチ焼鈍における炉冷、空冷および連続焼鈍におけるガスジェット冷却、ミスト冷却および水冷などのいずれの冷却でも構わない。また、酸洗は常法に従えばよい。
冷間圧延の圧下率:30%以上
 冷間圧延では、圧下率を30%以上とする。30%以上の圧下率で冷間圧延を施すことにより、熱処理時にオーステナイトが微細に生成する。その結果、微細な残留オーステナイトおよびマルテンサイトが得られ、強度-延性バランスが向上するだけでなく、曲げ性と伸びフランジ性(穴広げ性)も向上する。
 なお、冷間圧延の圧下率の上限値は特に限定されるものではないが、冷間圧延の荷重負荷の点から、85%程度とすることが好ましい。
冷延板焼鈍(熱処理)条件:Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持
 冷延板焼鈍において、Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持することは、本発明において、極めて重要である。
 すなわち、冷延板焼鈍の焼鈍温度(保持温度)が、Ac1変態点未満またはAc1変態点+100℃超となる場合、オーステナイト中へのMnの濃化が進行せず、また十分な量の残留オーステナイトを確保することが困難となり、延性が低下する。
 加えて、保持時間が900s以下となる場合、未再結晶フェライトが残存し、フェライトと硬質第2相(マルテンサイトおよび残留オーステナイト)の異相界面量が低下し、また、各構成相における結晶粒の平均アスペクト比も増大する。その結果、YP(降伏強度)が上昇し、YR(降伏比)が高くなる。一方、保持時間が21600sを超えると、オーステナイト中へのMnの濃化が飽和し、最終焼鈍(冷延板焼鈍)後に得られる鋼板における延性への効き代が小さくなるだけでなく、コストアップの要因にもなる。
 したがって、冷延板焼鈍では、Ac1変態点以上Ac1変態点+100℃以下(好ましくは、Ac1変態点+20℃以上Ac1変態点+80℃以下)の温度域で、900s超21600s以下(好ましくは、1200s以上18000s以下)の時間、保持するものとする。
 なお、鋼組織における残留オーステナイト中のC量が、残留オーステナイト中のMn量との関係で次式:
0.09×[Mn量]-0.130-0.140≦[C量]≦0.09×[Mn量]-0.130+0.140
  [C量] :残留オーステナイト中のC量(質量%)
  [Mn量]:残留オーステナイト中のMn量(質量%)
を満足するためには、上記の冷延板焼鈍条件も重要であり、特に、Ac1変態点+20℃以上Ac1変態点+80℃以下の温度域で保持することが好適である。
 また、上記のようにして得た冷延板に、溶融亜鉛めっき処理や溶融アルミニウムめっき処理、電気亜鉛めっき処理といっためっき処理を施すことで、表面に溶融亜鉛めっき層や溶融アルミニウムめっき層、電気亜鉛めっき層をそなえる高強度鋼板を得ることができる。なお、「溶融亜鉛めっき」には、合金化溶融亜鉛めっきも含むものとする。
 例えば、溶融亜鉛めっき処理を施すときは、前記冷延板焼鈍を施して得た冷延板を440℃以上500℃以下の亜鉛めっき浴中に浸漬し、溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整する。なお、溶融亜鉛めっきはAl量が0.10質量%以上0.22質量%以下である亜鉛めっき浴を用いることが好ましい。また、亜鉛めっきの合金化処理を施すときは、溶融亜鉛めっき処理後に、450℃以上600℃以下の温度域で溶融亜鉛めっきの合金化処理を施す。600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、所望の残留オーステナイトの体積率を確保できず、延性が低下する場合がある。一方、合金化処理温度が450℃に満たないと、合金化が進行せず、合金層の生成が困難となる。したがって、亜鉛めっきの合金化処理を行うときは、450℃以上600℃以下の温度域で溶融亜鉛めっきの合金化処理を施すことが好ましい。
 なお、その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきの合金化処理などの一連の処理は、溶融亜鉛めっきラインであるCGL(Continuous Galvanizing Line)で行うのが好ましい。
 また、溶融アルミニウムめっき処理を施すときは、前記冷延板焼鈍を施して得た冷延板を660~730℃のアルミニウムめっき浴中に浸漬し、溶融アルミニウムめっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整する。また、アルミニウムめっき浴温度がAc1変態点以上Ac1変態点+100℃以下の温度域に適合する鋼は、溶融アルミニウムめっき処理により、さらに微細で安定な残留オーステナイトが生成されるため、更なる延性の向上が可能となる。
 さらに、電気亜鉛めっき処理を施すときは、とくに限定しないが、皮膜厚が5μmから15μmの範囲にすることが好ましい。
 なお、上記のようにして製造した高強度鋼板に、形状矯正や表面粗度の調整等を目的にスキンパス圧延を行うことができる。スキンパス圧延の圧下率は、0.1%以上2.0%以下の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、これが良好範囲の下限となる。また、2.0%を超えると、生産性が著しく低下するので、これを良好範囲の上限とする。
 また、スキンパス圧延は、オンラインで行っても良いし、オフラインで行っても良い。さらに、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。さらに、上記のようにして製造した高強度鋼板に、さらに樹脂や油脂コーティングなどの各種塗装処理を施すこともできる。
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にて鋼スラブとした。得られた鋼スラブを、表2に示す条件で熱間圧延し、酸洗後、熱延板焼鈍を施し、ついで冷間圧延し、その後、冷延板焼鈍を施すことにより、冷延板(CR)を得た。また、一部のものについては、さらに溶融亜鉛めっき処理(溶融亜鉛めっき処理後に合金化処理を行うものも含む)、溶融アルミニウムめっき処理または電気亜鉛めっき処理を施して、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、溶融アルミニウムめっき鋼板(Al)、電気亜鉛めっき鋼板(EG)とした。
 なお、溶融亜鉛めっき浴は、GIでは、Al:0.19質量%含有亜鉛浴を使用し、GAでは、Al:0.14質量%含有亜鉛浴を使用し、浴温はいずれも465℃とした。また、めっき付着量は片面あたり45g/m2(両面めっき)とし、GAは、めっき層中のFe濃度を9質量%以上12質量%以下とした。さらに、溶融アルミニウムめっき鋼板用の溶融アルミニウムめっき浴の浴温は700℃とした。
 なお、表1中のAc1変態点(℃)は、以下の式を用いて求めた。
 Ac1変態点(℃)=
 751-16×(%C)+11×(%Si)-28×(%Mn)-5.5×(%Cu)-16×(%Ni)+13×(%Cr)+3.4×(%Mo)
 ここで、(%C)、(%Si)、(%Mn)、(%Cu)、(%Ni)、(%Cr)、(%Mo)は、それぞれの元素の鋼中含有量(質量%)である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 かくして得られた鋼板について、前述した方法により断面ミクロ組織を調査した。また、前述した条件により各鋼板に伸び値で10%の引張加工を施し、引張加工後の鋼板における残留オーステナイトの体積率を前述した方法により求めた。これらの結果を表3-1および表3-2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 また、上記のようにして、得られた鋼板について、引張試験、曲げ試験および穴広げ試験を行い、引張特性、曲げ性および穴広げ性を以下のようにして評価した。
 引張試験は、引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、YP(降伏応力)、YR(降伏比)、TS(引張強さ)およびEL(全伸び)を測定した。ここで、YRは、YPをTSで除して、百分率で表した値である。
 なお、YR<68%、TS≧590MPa以上でかつ、TS×EL≧24000MPa・%であり、さらにTS590MPa級ではEL≧34%、TS780MPa級ではEL≧30%、TS980MPa級以上ではEL≧24%である場合を良好と判断した。
 なお、TS:590MPa級とは、TSが590MPa以上780MPa未満の鋼板であり、TS:780MPa級は、TSが780MPa以上980MPa未満の鋼板であり、TS:980MPa級は、TSが980MPa以上1180MPa未満の鋼板である。
 また、曲げ試験は、JIS Z 2248(1996年)のVブロック法に基づき実施した。曲げ部外側について実体顕微鏡で亀裂の有無を判定し、亀裂が発生していない最小の曲げ半径を限界曲げ半径Rとした。
 なお、90°V曲げにおいて、R/t≦1.5(t:鋼板の板厚)を満足する場合を、曲げ性が良好と判定した。
 さらに、穴広げ試験は、JIS Z 2256(2010年)に準拠して行った。得られた各鋼板を100mm×100mmに切断後、クリアランス12%±1%で直径10mmの穴を打ち抜いた後、内径75mmのダイスを用いてしわ押さえ力9ton(88.26kN)で抑えた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定した。そして、次式から、限界穴広げ率λ(%)を求め、この限界穴広げ率の値から穴広げ性を評価した。
  限界穴広げ率λ(%)={(Df-D0)/D0}×100
 ただし、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)である。
 なお、TS590MPa級ではλ≧30%、TS780MPa級ではλ≧25%、TS980MPa級ではλ≧20%の場合を良好と判断した。
 加えて、鋼板の製造に際し、生産性、さらには熱間圧延および冷間圧延時の通板性、最終焼鈍板(冷延板焼鈍後の鋼板)の表面性状について評価を行った。
 ここで、生産性については、
 (1)熱延板の形状不良が発生し、
 (2)次工程に進むために熱延板の形状矯正が必要であるときや、
 (3)焼鈍処理の保持時間が長いとき、
などのリードタイムコストを評価した。そして、(1)~(3)のいずれにも該当しない場合を「良好」、(1)~(3)のいずれかに該当する場合を「不良」と判断した。
 また、熱間圧延の通板性は、圧延荷重の増大によって、圧延時のトラブル発生の危険が増大する場合を不良と判断した。
 同様に、冷間圧延の通板性も、圧延荷重の増大によって、圧延時のトラブル発生の危険が増大する場合を不良と判断した。
 さらに、最終焼鈍板の表面性状については、スラブ表層の気泡、偏析などの欠陥をスケールオフできず、鋼板表面の亀裂、凹凸が増大し、平滑な鋼板表面が得られない場合を不良と判断した。また、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する場合や酸洗後に熱延スケールの取れ残りなどが一部に存在する場合についても、不良と判断した。
 これらの評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 本発明例ではいずれも、引張強さ(TS)が590MPa以上、かつ降伏比(YR)が68%未満であるとともに、良好な延性および強度と延性のバランス、さらには曲げ性および穴広げ性に優れる高強度鋼板が、製造できることがわかる。また、本発明例ではいずれも、生産性や熱間圧延および冷間圧延の通板性、さらには最終焼鈍板の表面性状にも優れている。
 一方、比較例では、引張強さ、降伏比、延性、強度と延性のバランス、曲げ性、穴広げ性のいずれか一つ以上について、所望の特性が得られていない。
 本発明によれば、YR(降伏比)が68%未満で、かつ590MPa以上のTS(引張強さ)を有する成形性に優れ、かつ低い降伏比を有する高強度鋼板の製造が可能になる。また、本発明の高強度鋼板を、例えば、自動車構造部材に適用することで、車体軽量化による燃費改善を図ることができ、産業上の利用価値は非常に大きい。

Claims (11)

  1.  成分組成が、質量%でC:0.030%以上0.250%以下、Si:0.01%以上3.00%以下、Mn:2.60%以上4.20%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、N:0.0005%以上0.0100%以下およびTi:0.003%以上0.200%以下を含有し、残部がFeおよび不可避的不純物からなり、
     鋼組織が、面積率で、ポリゴナルフェライトが35%以上80%以下、マルテンサイトが5%以上25%以下であって、体積率で、残留オーステナイトが8%以上であり、
     また、前記ポリゴナルフェライトの平均結晶粒径が6μm以下、前記マルテンサイトの平均結晶粒径が3μm以下、前記残留オーステナイトの平均結晶粒径が3μm以下であるとともに、前記ポリゴナルフェライト、前記マルテンサイトおよび前記残留オーステナイトの結晶粒の平均アスペクト比がそれぞれ2.0以下であり、
     さらに、前記残留オーステナイト中のMn量(質量%)を前記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である、高強度鋼板。
  2.  前記成分組成が、さらに、質量%で、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項1に記載の高強度鋼板。
  3.  前記残留オーステナイト中のC量が、前記残留オーステナイト中のMn量との関係で、次式:
    0.09×[Mn量]-0.130-0.140≦[C量]≦0.09×[Mn量]-0.130+0.140
      [C量] :残留オーステナイト中のC量(質量%)
      [Mn量]:残留オーステナイト中のMn量(質量%)
    を満足する、請求項1または2に記載の高強度鋼板。
  4.  請求項1~3のいずれかに記載の高強度鋼板であって、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、該引張加工前の残留オーステナイトの体積率で除した値が0.3以上である、高強度鋼板。
  5.  請求項1~4のいずれかに記載の高強度鋼板であって、溶融亜鉛めっき層をさらにそなえる、高強度鋼板。
  6.  請求項1~4のいずれかに記載の高強度鋼板であって、溶融アルミニウムめっき層をさらにそなえる、高強度鋼板。
  7.  請求項1~4のいずれかに記載の高強度鋼板であって、電気亜鉛めっき層をさらにそなえる、高強度鋼板。
  8.  請求項1~7のいずれかに記載の高強度鋼板の製造方法であって、
     請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、平均巻き取り温度を300℃以上750℃以下で巻き取り、熱延板とする、熱間圧延工程と、
     前記熱延板に、酸洗を施し、スケールを除去する、酸洗工程と、
     前記熱延板を、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持する、熱延板焼鈍工程と、
     前記熱延板を、圧下率:30%以上で冷間圧延して冷延板とする、冷間圧延工程と、
     前記冷延板を、Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持した後、冷却する、冷延板焼鈍工程、
    とをそなえる、高強度鋼板の製造方法。
  9.  前記冷延板焼鈍工程後、前記冷延板に、亜鉛めっき処理を施す、または溶融亜鉛めっき処理を施したのち、450℃以上600℃以下の温度域で合金化処理を施す工程をさらにそなえる、請求項8に記載の高強度鋼板の製造方法。
  10.  前記冷延板焼鈍工程後、前記冷延板に溶融アルミニウムめっき処理を施す工程をさらにそなえる、請求項8に記載の高強度鋼板の製造方法。
  11.  前記冷延板焼鈍工程後、前記冷延板に電気亜鉛めっき処理を施す工程をさらにそなえる、請求項8に記載の高強度鋼板の製造方法。
PCT/JP2015/005459 2014-10-30 2015-10-29 高強度鋼板およびその製造方法 WO2016067625A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177014210A KR101949627B1 (ko) 2014-10-30 2015-10-29 고강도 강판 및 그 제조 방법
CN201580058560.5A CN107075644B (zh) 2014-10-30 2015-10-29 高强度钢板及其制造方法
EP15855263.8A EP3214197B1 (en) 2014-10-30 2015-10-29 High-strength steel sheet and method for manufacturing same
MX2017005571A MX2017005571A (es) 2014-10-30 2015-10-29 Lamina de acero de alta resistencia y metodo para la fabricacion de la misma.
JP2016556370A JP6179676B2 (ja) 2014-10-30 2015-10-29 高強度鋼板およびその製造方法
US15/520,236 US10954578B2 (en) 2014-10-30 2015-10-29 High-strength steel sheet and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-221903 2014-10-30
JP2014221903 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016067625A1 true WO2016067625A1 (ja) 2016-05-06

Family

ID=55856989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005459 WO2016067625A1 (ja) 2014-10-30 2015-10-29 高強度鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10954578B2 (ja)
EP (1) EP3214197B1 (ja)
JP (1) JP6179676B2 (ja)
KR (1) KR101949627B1 (ja)
CN (1) CN107075644B (ja)
MX (1) MX2017005571A (ja)
WO (1) WO2016067625A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062342A1 (ja) * 2016-09-30 2018-04-05 Jfeスチール株式会社 高強度めっき鋼板及びその製造方法
WO2018092817A1 (ja) * 2016-11-16 2018-05-24 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2019159771A1 (ja) * 2018-02-19 2019-08-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
US11560606B2 (en) * 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179676B2 (ja) 2014-10-30 2017-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP6172404B1 (ja) * 2015-09-04 2017-08-02 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
JP6372632B1 (ja) 2016-11-16 2018-08-15 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP6699711B2 (ja) * 2017-11-28 2020-05-27 Jfeスチール株式会社 高強度鋼帯の製造方法
JP6954211B2 (ja) * 2018-03-30 2021-10-27 日本製鉄株式会社 金属成形板、塗装金属成形板および成形方法
CN111936658B (zh) 2018-03-30 2021-11-02 杰富意钢铁株式会社 高强度钢板及其制造方法
EP3778973B1 (en) 2018-03-30 2024-09-11 JFE Steel Corporation High-strength sheet steel and method for manufacturing same
WO2019188643A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
US20220186334A1 (en) * 2019-02-25 2022-06-16 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
EP4029959A4 (en) * 2019-10-23 2023-02-15 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND METHOD OF PRODUCTION THE SAME
MX2022008344A (es) * 2020-01-14 2022-08-04 Nippon Steel Corp Lamina de acero y metodo de fabricacion de la misma.
RU2749411C1 (ru) * 2020-07-08 2021-06-09 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства холоднокатаного горячеоцинкованного проката из стали с двухфазной феррито-мартенситной структурой
WO2022018502A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet
KR102373222B1 (ko) * 2020-08-28 2022-03-11 현대제철 주식회사 우수한 홀확장성과 굽힘성을 가지는 고강도 냉연강재 및 그 제조방법
CN112375991A (zh) * 2020-11-11 2021-02-19 安徽金亿新材料股份有限公司 一种高热传导耐磨气门导管材料及其制备方法
CN114032457A (zh) * 2021-10-18 2022-02-11 首钢集团有限公司 一种连续热浸镀锌高强钢板及其制造方法
CN118639117A (zh) * 2024-08-16 2024-09-13 鞍钢股份有限公司 高延伸430MPa级冷冲压用汽车桥壳用钢及生产方法
CN118639114A (zh) * 2024-08-16 2024-09-13 鞍钢股份有限公司 高强度620MPa级冷冲压用汽车桥壳用钢及生产方法
CN118639116A (zh) * 2024-08-16 2024-09-13 鞍钢股份有限公司 一种560MPa级冷冲压用汽车桥壳用钢及其生产方法
CN118639118A (zh) * 2024-08-16 2024-09-13 鞍钢股份有限公司 高成形性485MPa级冷冲压汽车桥壳用钢及其生产方法
CN118639115A (zh) * 2024-08-16 2024-09-13 鞍钢股份有限公司 一种375MPa级冷冲压用汽车桥壳用钢及其生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014824A (ja) * 2011-07-06 2013-01-24 Nippon Steel & Sumitomo Metal Corp 冷延鋼板の製造方法
JP2013185196A (ja) * 2012-03-07 2013-09-19 Jfe Steel Corp 成形性に優れる高強度冷延鋼板およびその製造方法
JP2014514459A (ja) * 2011-05-10 2014-06-19 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 高い機械的強度、延性および成形性を有した鋼板、このような板材の特性、製造方法および使用

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157625A (ja) 1984-12-29 1986-07-17 Nippon Steel Corp 高強度鋼板の製造方法
JP2588420B2 (ja) 1988-04-11 1997-03-05 日新製鋼株式会社 延性の良好な超高強度鋼材の製造方法
JP3857939B2 (ja) 2001-08-20 2006-12-13 株式会社神戸製鋼所 局部延性に優れた高強度高延性鋼および鋼板並びにその鋼板の製造方法
JP2003277884A (ja) 2002-01-21 2003-10-02 Kobe Steel Ltd 加工性及び焼付硬化性に優れた高強度鋼板
JP4374196B2 (ja) * 2002-02-19 2009-12-02 新日本製鐵株式会社 加工性、めっき性および靱性に優れた微細組織を有する高強度鋼板及びその製造方法
JP4677714B2 (ja) * 2003-05-15 2011-04-27 住友金属工業株式会社 海浜耐候性に優れた橋梁用鋼材およびそれを用いた構造物
EP1512760B1 (en) * 2003-08-29 2011-09-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High tensile strength steel sheet excellent in processibility and process for manufacturing the same
JP4408386B2 (ja) * 2004-04-19 2010-02-03 新日本製鐵株式会社 結晶粒の微細な複合組織高張力鋼
JP4681290B2 (ja) * 2004-12-03 2011-05-11 本田技研工業株式会社 高強度鋼板及びその製造方法
DE102005046459B4 (de) * 2005-09-21 2013-11-28 MHP Mannesmann Präzisrohr GmbH Verfahren zur Herstellung von kaltgefertigten Präzisionsstahlrohren
JP4692259B2 (ja) 2005-12-07 2011-06-01 Jfeスチール株式会社 成形性および形状凍結性に優れる高強度鋼板
CN101675177A (zh) 2007-03-05 2010-03-17 住友金属工业株式会社 冷轧钢板和合金化熔融镀锌钢板以及它们的制造方法
JP5194878B2 (ja) * 2007-04-13 2013-05-08 Jfeスチール株式会社 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP4949124B2 (ja) * 2007-05-22 2012-06-06 新日鐵住金ステンレス株式会社 形状凍結性に優れた高強度複相ステンレス鋼板及びその製造方法
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4894863B2 (ja) 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4998756B2 (ja) * 2009-02-25 2012-08-15 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4962594B2 (ja) * 2010-04-22 2012-06-27 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
EP2719787B1 (en) * 2011-06-10 2016-04-13 Kabushiki Kaisha Kobe Seiko Sho Hot press molded article, method for producing same, and thin steel sheet for hot press molding
WO2013005714A1 (ja) 2011-07-06 2013-01-10 新日鐵住金株式会社 冷延鋼板の製造方法
JP5440672B2 (ja) * 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
PL2762585T3 (pl) * 2011-09-30 2020-01-31 Nippon Steel Corporation Blacha stalowa cienka o dużej wytrzymałości cynkowana zanurzeniowo na gorąco o doskonałych właściwościach skrawania mechanicznego, stopowa blacha stalowa cienka o dużej wytrzymałości cynkowana zanurzeniowo na gorąco oraz sposób wytwarzania wspomnianych blach cienkich
WO2013051238A1 (ja) * 2011-10-04 2013-04-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2013099235A1 (ja) * 2011-12-26 2013-07-04 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
JP5860308B2 (ja) 2012-02-29 2016-02-16 株式会社神戸製鋼所 温間成形性に優れた高強度鋼板およびその製造方法
US10202664B2 (en) * 2012-03-30 2019-02-12 Voestalpine Stahl Gmbh High strength cold rolled steel sheet
JP5860354B2 (ja) * 2012-07-12 2016-02-16 株式会社神戸製鋼所 降伏強度と成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
EP2881481B1 (en) * 2012-07-31 2019-04-03 JFE Steel Corporation High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same
MX2016003259A (es) * 2013-09-10 2016-06-07 Kobe Steel Ltd Placa de acero de prensado en caliente, articulo moldeado a presion, y metodo para fabricar articulo moldeado a presion.
JP6068314B2 (ja) * 2013-10-22 2017-01-25 株式会社神戸製鋼所 冷間加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
JP6179676B2 (ja) 2014-10-30 2017-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP3214193B1 (en) 2014-10-30 2019-03-06 JFE Steel Corporation High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
CN108779536B (zh) 2016-04-19 2020-06-30 杰富意钢铁株式会社 钢板、镀覆钢板和它们的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514459A (ja) * 2011-05-10 2014-06-19 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 高い機械的強度、延性および成形性を有した鋼板、このような板材の特性、製造方法および使用
JP2013014824A (ja) * 2011-07-06 2013-01-24 Nippon Steel & Sumitomo Metal Corp 冷延鋼板の製造方法
JP2013185196A (ja) * 2012-03-07 2013-09-19 Jfe Steel Corp 成形性に優れる高強度冷延鋼板およびその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
US11560606B2 (en) * 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
KR102210100B1 (ko) 2016-09-30 2021-01-29 제이에프이 스틸 가부시키가이샤 고강도 도금 강판 및 그의 제조 방법
JPWO2018062342A1 (ja) * 2016-09-30 2018-09-27 Jfeスチール株式会社 高強度めっき鋼板及びその製造方法
KR20190032543A (ko) * 2016-09-30 2019-03-27 제이에프이 스틸 가부시키가이샤 고강도 도금 강판 및 그의 제조 방법
WO2018062342A1 (ja) * 2016-09-30 2018-04-05 Jfeスチール株式会社 高強度めっき鋼板及びその製造方法
US11142805B2 (en) 2016-09-30 2021-10-12 Jfe Steel Corporation High-strength coated steel sheet and method for manufacturing the same
US11447841B2 (en) 2016-11-16 2022-09-20 Jfe Steel Corporation High-strength steel sheet and method for producing same
EP3543364A4 (en) * 2016-11-16 2019-09-25 JFE Steel Corporation HIGH STRENGTH STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME
KR102242067B1 (ko) * 2016-11-16 2021-04-19 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
KR20190073469A (ko) * 2016-11-16 2019-06-26 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
JP6372633B1 (ja) * 2016-11-16 2018-08-15 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2018092817A1 (ja) * 2016-11-16 2018-05-24 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP6614397B1 (ja) * 2018-02-19 2019-12-04 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2019159771A1 (ja) * 2018-02-19 2019-08-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
US11466350B2 (en) 2018-02-19 2022-10-11 Jfe Steel Corporation High-strength steel sheet and production method therefor

Also Published As

Publication number Publication date
JP6179676B2 (ja) 2017-08-16
US20170314091A1 (en) 2017-11-02
EP3214197A4 (en) 2017-11-22
KR101949627B1 (ko) 2019-02-18
EP3214197A1 (en) 2017-09-06
US10954578B2 (en) 2021-03-23
JPWO2016067625A1 (ja) 2017-04-27
EP3214197B1 (en) 2019-01-09
CN107075644B (zh) 2019-03-29
CN107075644A (zh) 2017-08-18
KR20170072322A (ko) 2017-06-26
MX2017005571A (es) 2017-06-23
US20180127847A9 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6179676B2 (ja) 高強度鋼板およびその製造方法
JP6179677B2 (ja) 高強度鋼板およびその製造方法
JP6179675B2 (ja) 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
JP6179674B2 (ja) 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
WO2017183349A1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5943156B1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5967319B2 (ja) 高強度鋼板およびその製造方法
JP5943157B1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5967320B2 (ja) 高強度鋼板およびその製造方法
JP6372633B1 (ja) 高強度鋼板およびその製造方法
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2017183348A1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP6372632B1 (ja) 高強度鋼板およびその製造方法
JP6210184B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP6210183B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556370

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15520236

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/005571

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015855263

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177014210

Country of ref document: KR

Kind code of ref document: A