WO2016059277A1 - Peptide derived from trkb-fl and use thereof as a neuroprotector - Google Patents
Peptide derived from trkb-fl and use thereof as a neuroprotector Download PDFInfo
- Publication number
- WO2016059277A1 WO2016059277A1 PCT/ES2015/070744 ES2015070744W WO2016059277A1 WO 2016059277 A1 WO2016059277 A1 WO 2016059277A1 ES 2015070744 W ES2015070744 W ES 2015070744W WO 2016059277 A1 WO2016059277 A1 WO 2016059277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peptide
- trkb
- seq
- tfl
- pharmaceutical composition
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/71—Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
Definitions
- the present invention is encompassed in the pharmaceutical sector, and in the public, social and collective services sector. Specifically, the present invention is directed to pharmaceutical companies working in the field of neuroprotection, both referred to acute (ischemia, acute trauma) and chronic (neurodegenerative diseases). 5 STATE OF THE TECHNIQUE
- Cerebrovascular diseases represent the second leading cause of death worldwide, with 6.7 million deaths and 0 11.9% of the total (according to recent WHO data from 2012).
- cerebral ischemia is the second cause of dementia after Alzheimer's disease, and the first reason for disability in adults.
- Cerebral ischemia or stroke is a phenomenon that characterizes CVDs and is defined5 as the reduction by different causes of blood supply to insufficient levels to maintain the normal metabolism and functioning of brain cells.
- the heart of the infarct which suffers the most severe reduction of blood flow and experiences irreversible damage
- the area of ischemic penumbra characterized by being functionally silent but structurally intact.
- this region may undergo secondary neuronal degeneration processes that cause the heart attack to expand to the area of ischemic penumbra.
- the only treatment approved in clinical practice against ischemic stroke is thrombolysis with the tissue plasminogen activator (tPA), which contributes to the restoration of cerebral blood flow by dissolving the clot that obstructs the artery.
- tPA tissue plasminogen activator
- thrombolytic therapy results in relatively frequent symptomatic intracerebral hemorrhages and, in addition, tPA has an associated toxicity that increases neuronal degeneration in experimental models.
- These adverse effects entail the existence of numerous contraindications for this type of therapy, which causes an additional problem: the therapeutic window in which the benefits of the treatment are greater than the risks narrows considerably, being within 3-4.5 hours after the onset of symptoms.
- the therapeutic window in which the benefits of the treatment are greater than the risks narrows considerably, being within 3-4.5 hours after the onset of symptoms.
- excitotoxicity a process induced by the increase in the concentration of the excitatory neurotransmitter glutamate in the extracellular space and the over-activation of its specific receptors, mainly those of the N-methyl-D-aspartate type (NMDARs) ) (Olney, 1986). Therefore, excitotoxicity is a fundamental target in the search for neuroprotection strategies.
- NMDARs antagonists
- glutamate release inhibitors for example, glutamate release inhibitors, voltage-dependent calcium channel antagonists
- a common defect to most of these drugs is their lack of selectivity, mainly due to the lack of knowledge of the dual nature of NMDARs, receptors that are critical at the same time in processes of survival and cell death (Hardingham et al., 2002 ).
- NMDARs also play a preponderant role in synaptic transmission and neuronal communication of the central nervous system (CNS), both during development and in adult life, and are critical in vital processes such as learning, memory, plasticity synaptic and synaptogenesis. Because of this, previously developed drugs in general block both the physiological activation of NMDAR and the pathological one and, therefore, have side effects on learning and produce drowsiness, hallucinations or even coma.
- CNS central nervous system
- excitotoxicity is also critical in neurological disorders characterized by hyperexcitability or neuronal hypersensitization (some types of dyskinesias, neuropathic pain), and ocular pathologies (glaucoma, diabetic retinopathy, ischemic optic neuropathy and optic nerve trauma).
- peptide NA-1 (Tat-NR2B9c, US patent 2010/0137224 A1) is capable of reducing ischemic damage in murine models (Aarts et al., 2002) and primates (Cook et al., 2012b) and, more recently, in patients undergoing endovascular surgery for the repair of an aneurysm participants in a small phase 2 clinical study (Hill et al., 2012; reviewed in Dolgin, 2012). Although promising, this therapeutic approach is not exempt from possible complications since the subunits of the target NMDAR of this peptide participate in processes of synaptic plasticity and memory formation in adult individuals (Brigman et al., 2010).
- neurotrophins such as BDNF (brain-derived neurotrophic factor), which by binding to its high affinity receptor TrkB-FL induces its dimerization and transphosphorylation, and the activation of various procellular intracellular signaling cascades survival.
- Neurotrophins further regulate other fundamental CNS processes such as neurotransmitter release, gene expression or synaptic transmission.
- TrkB gene mRNA encodes for the complete TrkB-FL isoform, which is the catalytically active TrkB receptor, and for several truncated isoforms (TrkB-T1, TrkB-T2 and TrkB-T-Shc) lacking the tyrosine domain kinase involved in the modulation of the active receptor.
- TrkB-T1 isoform blocks the function of the TrkB-FL receptor by competition for BDNF binding or the formation of inactive TrkB-FL / TrkB-T1 heterodimers (Carim-Todd et al., 2009).
- BDNF / TrkB pathway alterations have also been observed in schizophrenia, Down syndrome models or depressive and stress states (Dawbarn and Alien, 2003). Recently, it has been shown that the BDNF / TrkB pathway is inhibited in situations of excitotoxicity and transient cerebral ischemia (Vidaurre et al., 2012).
- TrkB-FL and TrkB-T1 isoforms through two mechanisms: the inversion of the balance between the mRNAs of the isoforms, which leads to an increase in the expression of TrkB-T1 to the detriment of that of TrkB-FL, and the Calpain proteolysis of TrkB-FL, which reduces the levels of the active receptor and produces a truncated protein similar in size to TrkB-T1 and which, like it, could act as a negative dominant (Vidaurre et al., 2012).
- TrkB-T1 The increase in TrkB-T1 has been observed in cellular and animal models of excitotoxicity, and also in necropsies of patients who died as a result of CVD, supporting the relevance of this mechanism for ischemic pathology in humans.
- TrkB-FL active neurotrophin receptor levels were a useful therapeutic strategy in numerous CNS pathologies with an excitotoxic component.
- neuroprotective peptides with TrkB-FL as a target would allow the treatment and prevention of neuronal damage caused by pathologies of the SN in which the BDNF / TrkB survival pathway is altered, as CNS pathologies associated with the excitotoxicity process , CVDs such as stroke or cerebral ischemia, or in neuronal damage caused by lack of neurotrophic support, hypoxia, disconnection or mechanical damage due to brain and / or spinal trauma.
- these therapeutic methods could constitute a complement and / or alternative to the current thrombolytic therapies, the only ones existing today.
- the present invention relates to a neuroprotective peptide, hereafter referred to as "neuroprotective peptide of the invention", characterized in that it consists of 15 amino acids of the human TrkB-FL sequence (SEQ ID NO: 1) corresponding to positions 458 to 472 of the canonical sequence (NCBI Gene ID: 4915, UniProt Q16620).
- TrkB-FL protein is highly conserved in mammals and the neuroprotective peptide sequence of the invention is identical in rat (NCBI Gene ID: 25054, UniProt Q63604) and mouse (NCBI Gene ID: 18212, UniProt P15209) proteins, where occupies residues 457 to 471.
- the neuroprotective peptide of the invention has been designed to interfere in the processing of TrkB-FL by proteases and, in particular, by calpain.
- the reduction of TrkB-FL processing increases its levels in the neuronal plasma membrane and, in this way, increases the responsiveness of these cells to the BDNF neurotrophin, which activates various neuronal cascades of pro-survival signaling.
- the reduction of neurotrophic support is a common common factor in pathological situations of neuronal damage associated with the excitotoxicity process.
- the stimulants that cause this form of cell death can be: cerebrovascular accidents (CVAs, such as ischemic stroke or hemorrhagic stroke), traumatic brain injuries (including neurosurgery injuries), CNS tumors, side effects of cancer treatment , or chronic pathologies of the central nervous system associated with an excitotoxicity process (neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington and amyotrophic lateral sclerosis or ALS).
- CVAs cerebrovascular accidents
- traumatic brain injuries including neurosurgery injuries
- CNS tumors CNS tumors
- side effects of cancer treatment or chronic pathologies of the central nervous system associated with an excitotoxicity process (neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington and amyotrophic lateral sclerosis or ALS).
- a first object of the invention is a neuroprotective peptide, hereafter referred to as the "neuroprotective peptide of the invention", characterized in that it consists of 15 amino acids of the TrkB-FL sequence corresponding to positions 458-472 of the human canonical sequence or positions 457-471 of the rat (NCBI Gene ID: 25054, UniProt Q63604) and mouse sequences (NCBI Gene ID: 18212, UniProt P15209) (SEQ ID NO: 1).
- neuroprotective peptide refers to an amino acid sequence capable of preventing, mitigating or delaying the biochemical processes that occur in the nervous system and cause neurodegeration or neuronal death of apoptotic type or necrotic.
- excitotoxicity refers to a pathological process by which neurons are damaged and destroyed by over-activation mediated by binding to their membrane receptors of excitatory neurotransmitters, primarily glutamate or its analogues.
- NMDA in English, N-methyl-D-aspartate receptor
- AMPA in English, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
- kainic acid kainic acid.
- Ca +2 The entry of Ca +2 into cells activates a series of enzymes, including phospholipases, endonucleases, and proteases such as calpain that damage cell structures, such as those that make up the cytoskeleton, membrane and DNA. Other important contributions to the excitotoxicity process are the generation of free radicals and mitochondrial dysfunction.
- said neuroprotective peptide comprises an "internalization agent”; with the term “internalization agent” refers to a molecule capable of facilitating the passage of a specific peptide through the blood brain barrier and the plasma membrane to allow access to the interior of neurons and / or glial cells. Said molecule may be covalently bound or not to the neuroprotective peptide sequence.
- Non-limiting examples can be cited: cyclodextrin, poloxamers, acetyl choline receptor binding peptides, viruses and VLPs (Virus Like Particles), Cereport (RMP-7), nanocarriers (including polyethylene glycols: PEG-PLA, PEG-PCL, PEG-PHDCA, etc.), or cellular penetrating peptides.
- the neuroprotective peptide of the invention is covalently linked to a cellular penetrating peptide or CPP (Cell Penetrating Peptide) (Milletti, 2012; Regberg et al., 2013).
- CPP Cell Penetrating Peptide
- MAP model amphipathic peptide
- Antp Antennapedia
- SBP sequence signal-based peptide
- FBP sequence-based peptide fusion
- TAT HIV-1 trans-activating transcriptor
- pVEC vascular endothelial-cadherin
- RVG Rabies Virus Glycoprotein fragment.
- CPPs or "cell penetrating peptides” refers to a group of short peptides of less than 30 amino acids that are capable of penetrating the membrane along with the charge they carry to the cell interior without producing cytolytic effects; they are positively charged peptides, amphipathic characteristics, theoretical hydrophobicity, helical moment or able to interact with lipid membranes and adopt a distinctive secondary structure after their association with lipids.
- CPPs penetrate the cell primarily by endocytosis or macropinocytosis mediated by lipid raffis. CPPs are used as a means of transport to introduce bioactive molecules into cells; usually by a covalent bond, although non-covalent bonds are also possible.
- the neuroprotective peptide of the invention is linked to the basic domain of the Tat immunodeficiency virus (HIV) transactivating protein, TAT47-57 (SEQ ID NO: 17) or TAT48-60 (SEQ ID NO: 16).
- HIV Tat immunodeficiency virus
- sequence of the neuroprotective peptide object of the present invention is a chimeric peptide with sequence SEQ ID NO: 6 and is characterized by comprising: i. the 11 amino acid sequence of CPP TAT47-57 (SEQ ID NO: 17), fused with
- TrkB-FL the 15 amino acid sequence of TrkB-FL corresponding to positions 458-472 of the human protein (SEQ ID NO: 1), with the particularity that the C-terminal arginine of the Tat sequence is also the first amino acid of the TrkB-FL sequence.
- chimeric peptide or “fusion protein” is understood in the present invention, a peptide created from the binding in a fusion gene or by chemical synthesis of two or more polynucleotides with different known activities.
- fusion gene we refer to genes or gene fragments, which originally code for separate peptides, but whose translation results in an individual peptide with functional properties derived from each of the original peptides.
- Peptides or polypeptides whose amino acid sequence is identical or homologous to the sequences described in the present invention are also included within the scope of the present invention; preferably, the percentage of identity is between 70-95%, even more preferably the percentage of identity is between 90-95%, and even more preferably the percentage of identity is between 95-99%.
- Protein or peptide fusion is a technique that is frequently used in molecular biology. It is usually related to the production of proteins or peptides in living systems, such as, but not limited to, bacteria, yeasts, or mammalian cells. The inclusion of the coding sequence of interest in phase, respecting the reading pattern, allows the production of a chimeric protein or peptide.
- a fusion or chimeric peptide such as that of the present invention, is easily purified, using the characteristics of the proteins and peptides to bind to a chromatographic matrix, or to precipitate under certain conditions. Purification of a fusion peptide can be accomplished by, for example, but not limited to, sepharose-glutathione columns.
- identity refers to the proportion of identical amino acids between two polypeptides that are compared. Sequence comparison methods are known in the state of the art, and include, but are not limited to, the BLASTP or BLASTN, ClustalW and FASTA program. Since two proteins are considered homologous if they have the same evolutionary origin, in general, it is assumed that similarity or identity values greater than 60% indicate homologous structures. We can consider, therefore, that identity percentages of at least 80% will maintain the same properties of said polypeptide.
- conservative substitution is understood as one that maintains the polarity and charge characteristics of the substituted amino acid.
- lysine and arginine are amino acids whose side chains are positively charged at neutral pH, so it is accepted that changes of lysine by arginine or vice versa represent conservative changes.
- the 20 amino acids that constitute the basis of all natural proteins have been classified according to their conservativity into groups: (i) aromatic amino acids (phenylalanine, tyrosine, tryptophan); (ii) aliphatic amino acids (glycine, alanine, valine, leucine, isoleucine and methionine); (iii) basic ionizable amino acids (histidine, lysine and arginine); (iv) ionizable amino acids acids (aspartic and glutamic acids); (v) acid amino acid amides (asparagine and glutamine); and (vi) hydroxylated amino acids (serine and threonine). Some authors would include cysteine in this last group.
- nucleotide sequence of the invention which codes for the peptide of the invention, or to the nucleotide sequence complementary to said sequence.
- nucleotide without limiting it to other nucleotide sequences that could be generated by the degeneracy of the genetic code and give rise to the same polypeptide sequence.
- sequences SEQ ID NO: 26 and SEQ ID NO: 27 describe the nucleotide sequences from which the amino acid sequences SEQ ID NO: 1, and SEQ ID NO: 6, respectively, are derived.
- nucleotide sequence refers to a polymer composed of a multiplicity of nucleotide units (deoxyribonucleotides or ribonucleotides or related structural variants or synthetic analogs thereof) linked through phosphodiester bonds (or related structural variants or synthetic analogs thereof).
- polynucleotide includes genomic DNA or double or single stranded coding DNA, RNA, any synthetic and genetically manipulated polynucleotide and both both the coding chain and the antisense (although only the coding chain is highlighted herein). This includes single and double stranded molecules, such as DNA-DNA, DNA-RNA and RNA-RNA hybrids.
- the nucleotide sequence of the invention can be obtained artificially by conventional cloning and selection methods widely known in the state of the art.
- nucleotide sequence of the invention in addition to the coding sequence, can carry other elements, such as, but not limited to, introns, non-coding sequences at the 5 'or 3' ends, ribosome binding sites, stabilizing sequences, sequences of cell detection, etc.
- These polynucleotides can additionally also include coding sequences for additional amino acids that may be useful, for example, but not limited, to increase the stability of the peptide generated from it or to allow a better purification thereof.
- the polynucleotide sequences of the invention can be found as part of vectors that allow their multiplication or cloning as well as their expression.
- Said vector may be, for example a cloning vector or an expression vector or a recombinant vector.
- the cloning of the nucleotide sequence of the invention can be perform using an expression or recombinant vector, or a plasmid.
- These vectors comprise the nucleotide sequence of the invention or, where appropriate, the polynucleotide sequence encoding a carrier protein and the nucleotide sequence of the invention, and a series of amino acid coding sequences that are protease cleavage targets.
- the advantage of this structure is that, once the fusion protein or peptide is produced, the expression system is lysed and purified by, for example, although without limitation, affinity chromatography, the carrier protein of the peptide of the invention can be cleaved by digestion with a protease and repurifying the peptide of the invention by the same chromatographic system.
- vector refers to a nucleic acid molecule that is capable of transferring nucleic acid sequences contained therein to the cell that transduces and is produced by means of techniques. of molecular biology.
- recombinant vectors are linear DNA, plasmid DNA, modified viruses, adenoviruses / adeno-associated viruses, retroviral and viral vectors, etc .; all of them widely described in the literature and that can be used following standard molecular biology techniques or purchased from suppliers.
- Vectors or plasmids can be introduced, for example, but not limited to, by transfection, transformation or infection of host cells, such as, but not limited to, plant, mammalian, bacterial, yeast or insect cells.
- the introduction of the expression vector into the host cell can be carried out by any of the physical or biological methods to give rise to transformed or transfected cells.
- Such biological methods include, but are not limited to, the use of viral DNA and RNA vectors.
- the main advantage of physical methods is that they are not associated with oncogenic or pathological virus processes. However, physical methods are less accurate and often result in insertions of multiple copies, random integrations, disruption of own and foreign genetic sequences, as well as unpredictable expression.
- vectors of the invention comprising the nucleotide sequences of the invention SEQ ID NO: 26 and / or SEQ ID NO : 27.
- vector of the invention refers to a DNA molecule in which another DNA fragment can be integrated, without losing the ability to replicate.
- expression vectors are, but are not limited to, plasmids, cosmids, DNA phages or artificial yeast chromosomes.
- expression vector refers to a cloning vector suitable for expressing a nucleic acid that has been cloned therein after being introduced into a cell, called a host cell. Said nucleic acid is generally operatively linked to control sequences.
- the term "recombinant vector”, as used herein, refers to a vector suitable for expressing a nucleic acid that has been cloned therein, so that the expression of the neuroprotective peptide is performed directly in the tissue. or target cell.
- said vector is a virus, and is produced by the union of different fragments of nucleic acids from different sources and whose expression gives rise to a viral particle with infective capacity characteristically composed of protein capsid, viral genome and proteins associated with the viral genome. ; This virus is designed in such a way that it allows the expression in the target tissue or cell of the nucleotide or peptide sequences of interest.
- Expression in a tissue or cell of interest is carried out by the operative binding of the polynucleotide to control sequences, preferably specific control sequences of the tissue or cell where it is to be expressed; preferably said control sequences are promoters or enhancers of the CNS.
- a recombinant vector according to the invention can therefore be used both as a biotechnological tool to multiply the virus and be used in pharmaceutical compositions as a pharmacological treatment per se.
- a typical recombinant vector is selected from the group consisting of a lentiviral vector, an adenoviral vector and / or an adeno-associated virus vector.
- expression refers to the process by which a polypeptide is synthesized from a polynucleotide.
- mRNA messenger RNA
- Fusion can take place in a host cell, but also by any process of protein expression in vivo.
- host cell refers to any prokaryotic or eukaryotic organism that is the recipient of an expression vector, cloning or any other DNA molecule.
- a “host cell” or “host cell” includes any cultivable cell that can be modified by introducing non-naturally occurring DNA into the cell, hereinafter "host cell of the invention”.
- a host cell is one in which the polynucleotide of the invention can be expressed, giving rise to a stable polypeptide, post-translationally modified and located in the appropriate subcellular compartment.
- the choice of a suitable host cell may also be influenced by the choice of the detection signal.
- the use of constructs with reporter genes eg, lacZ, luciferase, thymidine kinase or the green fluorescent protein "GFP"
- GFP green fluorescent protein
- the host cell phenotype should be considered.
- a host cell of the present invention includes prokaryotic and eukaryotic cells.
- Prokaryotes include Gram negative (for example, Escherichia coli) or Gram positive organisms (for example, bacteria of the genus Bacillus).
- the prokaryotic cells will preferably be used for the propagation of the transcription control sequence of the vector containing the polynucleotide (s) object (s) of the invention, which will allow a greater number of copies of the vector to be achieved. containing the polynucleotide (s) object (s) of the invention.
- suitable prokaryotic host cells for the transformation of this vector are found, for example, but not limited to E.
- yeast does not only include yeast in the strict taxonomic sense, that is, unicellular organisms, but also multicellular fungi similar to yeasts or filamentous fungi.
- yeasts that can be used in the production of the polypeptide sequence (s) of the present invention are Neurospora crassa, Aspergillus niger, Aspergillus nidulans, Candida tropicalis, and Hansenula polymorpha.
- Culture systems with mammalian host cells include established cell lines such as COS cells, L cells, 3T3 cells, Chinese hamster ovary (CHO) cells, embryonic stem cells, with BHK, HeK or HeLa cells as preferred cells.
- Eukaryotic cells are preferably used for the expression of the recombinant gene by the application of the transcriptional regulation sequence or the vector of the present invention.
- a culture of host cells refers to the process of maintaining and growing host cells.
- Cell cultures need controlled conditions of temperature, pH, percentages of gases (oxygen and carbon dioxide), as well as the presence of adequate nutrients to allow viability and cell division.
- Cell cultures can be grown on solid substrates such as agar, or in a liquid medium, allowing large numbers of suspended cells to be cultured.
- the choice of one cell type and another for the propagation of the vector of the invention depends on its characteristics, as is known in the state of the art.
- viral cultures also require host cells that provide the cellular and metabolic machinery they lack.
- Another object of the invention is the cell that contains at least one of the polynucleotides of the invention, hereafter referred to as the "host cell of the invention".
- a particular embodiment of the invention relates to the host cell of the invention containing at least one of the polynucleotides of the invention SEQ ID NO: 26 or SEQ ID NO: 27.
- Another embodiment of the invention relates to the use of the host cell of the invention to obtain the neuroprotective peptide of the invention, to reproduce and maintain the polynucleotide of the invention and / or to obtain the vector of the invention.
- Methods for obtaining the neuroprotective polypeptide of the invention are known to the person skilled in the art. These comprise both the culture methods of the host cell of the invention and subsequent purification of the peptide, as well as chemical synthesis methods described above.
- purify refers to the isolation and concentration of the polypeptide of the invention with respect to the rest of polypeptides present in the culture medium and the host cell of the invention.
- the isolation of the polypeptide of the invention can be carried out by differential solubility, chromatography, electrophoresis or isoelectric focusing techniques. Chromatography techniques can be based on molecular weight, ionic charge (based on the ionization state of amino acids in working conditions), protein affinity for certain chromatographic matrices or columns, or by purification labels, and can be done in column, on paper or on plate.
- Protein isolation can be carried out, for example, by precipitation with ammonium sulfate, fast liquid chromatography (FPLC) or "High Performance Liquid Chromatography” (HPLC). , using automated systems that significantly reduce the purification time and increase the purification performance.
- FPLC fast liquid chromatography
- HPLC High Performance Liquid Chromatography
- purification tag refers to an amino acid sequence that has been incorporated (generally, by genetic engineering) into a protein to facilitate its purification.
- the tag which can be another protein or a short amino acid sequence, allows the protein to be purified, for example, by affinity chromatography.
- Purification tags known in the state of the art are, for example, but not limited to, calmodulin-binding peptide (CBP), glutathione-S-transferase enzyme (GST) or a tail of histidine residues.
- Another embodiment of the invention relates to the use of the first host cell of the invention for obtaining the polypeptide of the invention.
- the host cell of the invention is a bacterium, more preferably Escherichia coli.
- composition of the invention comprising at least one of the following: i. the neuroprotective peptide of the invention,
- the pharmaceutical composition comprises the neuroprotective peptide of the invention, and more preferably comprises peptides with sequence SEQ ID NO: 1 and / or SEQ ID NO: 6.
- Another embodiment is the use of the neuroprotective peptide of the invention in the manufacture of a pharmaceutical composition or medicament.
- the pharmaceutical composition comprises the vector of the invention, such that the peptide of the invention can be expressed directly in the desired tissues and / or target cells.
- the vector of the invention is a lentiviral vector, an adenoviral vector and / or an adeno-associated virus vector.
- Another embodiment is the use of the vector of the invention in the manufacture of a pharmaceutical composition or medicament.
- the present invention also refers to the neuroprotective peptide of the invention, as well as the polynucleotide that encodes it and the vector that expresses it, for use in medicine.
- the present invention also refers to the use of the neuroprotective peptide object of the invention, as well as to the polynucleotide of the invention, the vector of the invention and / or the host cell of the invention for the preparation or manufacture of a pharmaceutical composition. or medication
- the term: "medicament or pharmaceutical composition”, as used refers to any substance used for prevention, relief, treatment and / or cure of diseases in man and / or animals. In the context of the present invention it refers to a pharmaceutical composition or a medicament characterized by comprising the peptide of the invention or the polynucleotides and vectors that allow its expression in the organism to be treated, so that the neuroprotective peptide exerts its function in the target tissue / cell.
- the pharmaceutical composition or medicament of the invention further comprises a pharmaceutically acceptable carrier or excipient.
- the pharmaceutical composition or medicament of the invention further comprises an adjuvant.
- the pharmaceutical composition or medicament of the invention further comprises another active ingredient (additional active ingredient).
- the term "therapeutically effective amount” refers to the amount of the agent or compound capable of increasing neuronal survival in situations of excitotoxicity, calculated to produce the desired effect and, in general, will be determined, to the case of a therapeutic composition, due to the characteristics of the compounds, the route, form and frequency of administration thereof, and other factors, including the age, condition of the patient, as well as the severity of the alteration or disorder.
- excipient refers to a substance that helps the absorption of the elements of the composition of the invention, stabilizes said elements and activates or aids the preparation of the composition in the sense of giving it consistency or providing flavors that make it nicer.
- the excipients could have the function of keeping the ingredients together, such as in the case of starches, sugars or cellulose, the function of sweetening, the function as a dye, the function of protection of the composition, for example, to isolate it from air and / or moisture, the filling function of a tablet, capsule or any other Form of presentation, as for example, is the case of dibasic calcium phosphate, the disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph.
- vehicle like the excipient, refers to a substance that is used in the pharmaceutical composition or medicament to dilute any of the components of the present invention comprised therein to a certain volume or weight.
- pharmaceutically acceptable carrier is an inert substance or action analogous to any of the elements of the present invention.
- the function of the vehicle is to facilitate the incorporation of other elements, allow a better dosage and administration or give consistency and form to the composition.
- the pharmacologically acceptable carrier is the diluent.
- adjuvant refers to an agent that enhances the neuroprotective effect of the peptide of the invention when it is delivered jointly to it or as part of the same treatment protocol.
- said pharmaceutical composition is prepared in the form of a solid form or aqueous suspension, in a pharmaceutically acceptable diluent.
- the therapeutic composition provided by this invention may be administered by any appropriate route of administration, for which said composition will be formulated in the pharmaceutical form appropriate to the route of administration chosen.
- the administration of the therapeutic composition provided by this invention is carried out parenterally, orally, intraperitoneally, subcutaneously, etc.
- Cell death induced by excitotoxicity or "excitotoxicity”, as described earlier in this invention, is a pathological process by which neurons are damaged and destroyed by overactivations of glutamate excitatory neurotransmitter receptors, such as the NMDA receptor ( in English, N-methyl-D-aspartate receptor) and AMPA receptors (in English, a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptor) and kainate.
- glutamate excitatory neurotransmitter receptors such as the NMDA receptor ( in English, N-methyl-D-aspartate receptor) and AMPA receptors (in English, a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptor) and kainate.
- Excitotoxins such as NMDA and kainic acid that bind to these receptors, as well as high pathological levels of glutamate, can cause excitotoxicity by allowing elevated levels of calcium ions to enter the cell.
- the entry of Ca 2+ into cells activates a series of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes continue to damage cellular structures such as those that make up the cytoskeleton, membrane and DNA.
- a preferred embodiment of the present invention refers to the use of the pharmaceutical composition or medicament of the invention for the prevention and / or treatment of neuronal damage caused by a CNS pathology associated with excitotoxicity, such as cerebrovascular accidents (CVAs).
- CVAs cerebrovascular accidents
- ischemic stroke or hemorrhagic stroke traumatic brain injuries (including neurosurgery injuries), hypoxia, hypoglycemia, epilepsy, CNS tumors and their cancer treatment, chronic central nervous system pathologies associated with an excitotoxicity process (diseases neurodegeneratives such as Alzheimer's, Parkinson's, Huntington and amyotrophic lateral sclerosis or ALS), etc.
- Excitotoxicity is also critical in eye diseases such as glaucoma, diabetic retinopathy, ischemic optic neuropathy and optic nerve trauma.
- the use of the pharmaceutical composition is to prevent or treat a stroke.
- CAVs cerebrovascular accidents
- thrombotic stroke thrombotic stroke
- thrombus thrombotic stroke
- embolic stroke thrombus comes from another part of the body
- stroke is selected from the following: stroke or stroke, transient ischemic attack, intracerebral hemorrhages, including subarachnoid and vascular dementia.
- traumatic brain injuries refers to damage caused to the brain caused by a blow or a violent head shake. Lesions are classified as penetrating injuries and closed head injuries. Penetrating injuries are caused by the introduction of a foreign object in the brain (such as a bullet or the scalpel of a neurosurgeon) that causes damage to specific regions of the brain along the path of penetration of the object. Closed head injuries include those resulting from blows to the head, such as a car accident or a fall.
- hypoxia refers to that situation in which the organism or a part thereof, such as the CNS, does not receive a sufficient supply of oxygen. It can occur as a result of various circumstances such as ischemia; hypoxemic hypoxia that can be caused by respiratory alkalosis, by the short-circuit ("shunting") of the physiological or pathological blood circulation, and / or by pulmonary ventilation problems due to lung lesions, alteration of the perfusion ventilation ratio ( V / Q ratio) and / or physical circumstances such as exposure to high altitudes (mountaineering) or depths (diving); the alteration of the dissociation rate of 0 2 of hemoglobin; anemia carbon monoxide poisoning; cyanide poisoning; and / or the intake of some chemical compounds (such as sodium nitrite) or drugs.
- ischemia hypoxemic hypoxia that can be caused by respiratory alkalosis, by the short-circuit ("shunting") of the physiological or pathological blood circulation, and / or by pulmonary ventilation problems due to lung lesions
- hypoglycemia refers to an abnormally low blood glucose concentration, generally associated with alterations and / or loss of consciousness.
- the normal functioning of the CNS and neurons is dependent on a continuous supply of glucose; If the amount of blood glucose falls the CNS is one of the first organs affected.
- the set of effects on the brain and the CNS are known as neuroglycopenia and include: reduced mental efficiency (values below 65mg / dl of blood glucose concentration), impaired motor and reasoning abilities ( values below 40mg / dl), seizures, and even coma (values below 10mg / dl). Severe or prolonged hypoglycemia can cause permanent damage to the CNS, which includes impaired cognitive function, motor control, and even consciousness.
- the causes of hypoglycemia can be multiple, and include, but are not limited to: prolonged voluntary or secondary fasting to a disease (such as diarrhea), hyperinsulinemia (due to a failure in the administration of insulin of for example an individual with diabetes , congenital hyperinsulinemia, insulin-secreting pancreatic tumors, reactive hypoglycemia, idiopathic postprandial syndrome), sepsis, Addison's disease, congenital hypopituitarism, metabolic diseases (glycogen storage disease, fatty acid oxidation diseases, etc.) , the ingestion of certain chemicals (alcohol, propanolol, sulfonylureas, some medications), acquired adrenal insufficiency, etc.
- a disease such as diarrhea
- hyperinsulinemia due to a failure in the administration of insulin of for example an individual with diabetes , congenital hyperinsulinemia, insulin-secreting pancreatic tumors, reactive hypoglycemia, idiopathic postprandial syndrome), se
- epilepsy refers to a disorder caused by an imbalance in the electrical activity of neurons in some area of the brain. It is characterized by one or several neurological disorders that leave a predisposition in the brain to suffer from recurrent seizures, which usually lead to neurobiological, cognitive and psychological consequences. The role of excitotoxicity-induced death in epilepsy is associated with persistent activation of the glutamate, NMDA and kainate pathways in different epileptic seizures.
- tumors of the central nervous system refers to a mass of transformed cells, with abnormal growth and multiplication located in the brain and / or spinal cord. Its origin may be in the brain cells, in the membranes around the brain (meninges), or in the nerves or glands of the head.
- cancer treatment usually leads to cell death of healthy surrounding tissues, whether it is the use of chemotherapeutics or radiation (by-stander effect).
- chronic pathologies of the central nervous system refers to a set of diseases that mainly affect the brain and / or spinal cord in its pathology and whose development over time is prolonged.
- these diseases are neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington or amyotrophic lateral sclerosis (ALS).
- ALS amyotrophic lateral sclerosis
- glaucoma refers to an ocular pathology that is characterized by the pathological increase in infraocular pressure, for lack of drainage of aqueous humor, and which ultimately results in optic neuropathy. It is characterized by the progressive loss of nerve fibers of the optic nerve and changes in their appearance.
- diabetes refers to an ocular complication of diabetes that is caused by the deterioration of blood vessels that supply the retina; Damage to the blood vessels can be accompanied by proliferation of fibrous tissue in the retina, which leads to impaired vision.
- ischemic optic neuropathy refers to a sudden loss of central vision, lateral vision or both due to a decrease or interruption of blood flow to the optic nerve.
- Another preferred embodiment of the present invention refers to the use of the pharmaceutical composition or medicament of the invention for the prevention and / or treatment of neuronal damage caused by a stroke.
- the LCA is an ischemic stroke.
- Another preferred embodiment of the present invention refers to the use of the pharmaceutical composition or medicament of the invention for the prevention and / or treatment of neuronal damage caused by a traumatic brain injury.
- Another preferred embodiment of the present invention refers to the use of the pharmaceutical composition or medicament of the invention, characterized in that it is used alone or in combination with other medicaments to prevent and / or treat CNS damage caused by exocytotoxicity, and more preferably, to prevent and / or treat ischemic stroke.
- anticoagulant medications such as heparin, warfarin, acetylsalicylic acid, clopidogrel, acenocoumarol, dabigatran, rivaroxaban, apixaban, fondaparinux, etc.
- antihypertensive medications such as captopril, enalapril, lisinpril, lisinprin, , ramipril, valsartan, telmisartan, losartan, irbesartan, olmesartan, acetazolamide, vorzolamide, ketoconazole, amiloride, triamterene, spironolactone, canrenoate, eplerenone, mannitol, alprenolol, bucindolol, carteolol, carvedilol, pyrololol, pyrol
- the pharmaceutical composition or medicament of the invention is used in medicine.
- it is used in the prevention and / or treatment of neuronal damage.
- said neuronal damage is caused by a CNS pathology associated with excitotoxicity.
- the excitotoxicity is caused by a stroke, and more preferably even by an ischemic stroke.
- Another embodiment of the present invention refers to a method for the prevention and / or treatment of neuronal damage characterized by comprising the administration of a therapeutically effective amount of the pharmaceutical composition of the invention.
- said neuronal damage is caused by a CNS pathology associated with excitotoxicity.
- said neuronal damage is caused by a stroke.
- the present invention also refers to a method for the prevention and / or treatment of ACVs and CNS diseases associated with excitotoxicity, characterized by comprising the administration to the patient of a therapeutically effective amount of the pharmaceutical composition of the invention.
- the present invention also refers to a method for the prevention and / or treatment of a stroke, preferably cerebral ischemia, and / or a traumatic brain or spinal lesion, characterized by understanding the administration to the patient of a therapeutically effective amount of the pharmaceutical composition of the invention.
- prevention as understood in the present invention, is to prevent or reduce the occurrence of neuronal damage caused by excitotoxicity.
- treatment means combating neuronal damage caused by excitotoxicity, to stabilize the condition of individuals or prevent further damage.
- Another embodiment of the present invention refers to a method for preventing and / or treating ischemic damage characterized by comprising the administration of a therapeutically effective amount of the pharmaceutical composition of the invention used alone or in combination with other medicaments to prevent and / or treat damage caused by excitotoxicity, preferably a stroke and more preferably an ischemic stroke; for example, and in a non-limiting way, it can be found in combination with: anticoagulant medications (such as heparin, warfarin, acetylsalicylic acid, clopidogrel, acenocoumarol, dabigatran, rivaroxaban, apixaban, fondaparinux, etc.), antihypertensive medications (such as captopril, enalapril, lislapril, lislapril, lislapril, lislapril, lislapril, lislapril, lislapril , ramipril, vals
- Fig. 1 Designed Tat peptides.
- A Partial sequence of the rat TrkB-FL protein (amino acids 401-821) indicating the position of the residues included in the different designed Tat peptides (gray boxes), as well as their transmembrane region (amino acids 430-453, italic) and the tyrosine kinase domain (amino acids 537-806, bold). This sequence has an identity of 97.6% with respect to the corresponding human sequence (amino acids 402-822) and 100% for residues included in Tat peptides.
- B Sequence of designed Tat peptides. The 11 amino acids corresponding to the HIV Tat protein occupy N-terminal positions and are common to all peptides (italic).
- the sequences corresponding to TrkB-FL occupy C-terminal positions, indicating in each case the positions of the first and last amino acid contained according to the numbering of the rat protein.
- TFL 457 peptides with SEQ ID NO 6, corresponding to the binding of HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 458-472 fragment, SEQ ID NO 1
- TFL 54 i with SEQ ID NO 8, corresponding to the binding of HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 542-556 fragment, SEQ ID NO 3
- the C-terminal arginine of the Tat sequence is also the first amino acid of the 15 amino acid sequence of TrkB-FL contained therein.
- TFL 48 2 peptides with SEQ ID NO 7, corresponding to the binding of HIV TAT47-57 CPP, SEQ ID NO 17, and the TrkB-FL 483-496 fragment human, SEQ ID NO 2) and TFL 6 39 (with SEQ ID NO 9, corresponding to the junction of HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 640-653 fragment, SEQ ID NO 4 ) , like the previous 25 amino acids, only contain 14 amino acids of TrkB-FL. The amino acids of TFL 457 also present in the TrkB-T1 isoform are shown in bold.
- the Tat sequences are 408-421 amino acid-bound transcription factor c-Myc.
- Fig. 2 Permeability of the TMyc peptide in neurons. Primary cultures of rat embryonic cortical neurons of 13 DIVs were incubated for 1 h with the TMyc peptide (15 ⁇ ) labeled with FITC (fluorescein isothiocyanate) (C and D) and compared with control cultures that did not receive the peptide (A and B). The cells were fixed, permeabilized and analyzed by immunofluorescence with antibodies to the neuronal protein NeuN. The images shown are individual sections of 0.5-1 ⁇ thickness of confocal microscopy. Scale bar: 10 ⁇ .
- TrkB-FL levels (Mr 145 kDa) were analyzed by immunoblot with the TrkB-ECD antibody, which recognizes an extracellular region common to all TrkB isoforms including truncated forms (trkB; Mr 95 kDa).
- NSE neuronal specific enolasa
- TrkB-FL levels were determined by densitometric analysis of the bands present in the immunoblots and normalized with respect to those of the NSE protein. The results are represented as a percentage of the value obtained in neurons not preincubated with peptide or treated with NMDA, to which 100% was arbitrarily assigned.
- Fig. 4 Neuroprotective effect of preincubation with the TFL 457 peptide on induced neuronal death under conditions of chronic NMDA treatment.
- TFL 457 A
- TFL 48 2 B
- TFL 541 C
- TFL 6 39 D
- Neural viability was established by the MTT tetrazolium salt reduction test and the results are presented as relative values with respect to those obtained in control cultures not treated with NMDA, to which a value of 100% was arbitrarily assigned.
- glial cells present in mixed cultures were treated in parallel with NMDA 400 ⁇ and glycine 10 ⁇ for 24 h, conditions that induce neuronal death in its entirety without affecting the viability of glial cells.
- Rat cortical neurons were pre-incubated as before with TMyc or TFL 457 (5, 15 or 25 ⁇ ) peptides and then treated with NMDA (100 ⁇ ) and glycine (10 ⁇ ) for 2 (A) or 4 h (B) .
- NMDA 100 ⁇
- glycine 100 ⁇
- B 4 h
- pCREB phospho-antibody specific for its Ser 133
- TFL 457 peptides 25 ⁇
- NMDA 100 ⁇
- glycine 10 ⁇
- Protein extracts were analyzed by immunoblot with the TrkB-ECD antibody, or antibodies specific for the TrkB-T1 isoform, pCREB, spectrin and NSE. Quantification of TFL 457 interference from TrkB-FL (B) calpain processing and CREB inactivation (C) induced under conditions of excitotoxicity.
- TrkB-FL and pCREB levels were determined by densitometric analysis of the bands present in the immunoblots and normalized with respect to those of the NSE protein. The results are represented as a percentage of the value obtained in neurons without dealing with NMDA, to which we assign an arbitrary value of 100%. Mean values are shown ⁇ sem of 5 independent experiments and statistical calculations were performed using the Kruskal-Wallis test followed by a Mann Whitney U test, comparing the levels obtained in cultures treated with NMDA and pre-incubated with TMyc or TFL 457 (* p ⁇ 0.05; ** p ⁇ 0.01, *** p ⁇ 0.001). Fig. 7.
- TFL 457 peptide transduction subsequently added to the induction of neuronal death by acute treatment with NMDA.
- Primary neuronal cultures of 13 DIVs were treated with NMDA (50 ⁇ ) and glycine (10 ⁇ ) for 1 h. This medium was then replaced by agonist-free conditioned medium containing the DL-AP-5 NMDAR antagonist (200 ⁇ ) and the TFL 457 or TMyc (15 ⁇ ) peptides.
- Neural viability was established as previously by the MTT test 20 h after the change of medium and the results are presented as relative values with respect to those obtained in cultures incubated with TMyc and not treated with NMDA, to which a value of 100% was arbitrarily assigned.
- Fig. 8 Comparison of the neuroprotective effect of the TFL 457 peptide and calpain inhibitors. Cultures of rat cortical neurons were pre-incubated with calpain inhibitors, calpeptin (Calp) and inhibitor III (Cilll; both at 10 ⁇ ) as indicated and, 30 min later with TMyc or TFL 457 (25 ⁇ ) peptides. After an additional 30 min, the cultures were treated with NMDA as before for 4 h. Neural viability was established by the MTT test and the results are presented as relative values with respect to those obtained in control cultures pre-incubated with TMyc and treated in the same way but not with NMDA, to which a value of 100% was arbitrarily assigned. .
- TrkB-FL generated by calpain was carried out in primary cultures of rat cortical neurons subjected to excitotoxicity, both for the endogenous receptor and for the expressed recombinant HA-TrkB-FL protein by neuro-specific lentiviral vectors (Vidaurre et al., 2012).
- These experiments allowed us to establish that a majority processing sequence in TrkB-FL must be found in the 100 intracellular amino acids closest to its transmembrane region (amino acids 430-453 of the rat sequence; Fig. 1A), overlapping with the onset of the tyrosine kinase domain.
- TrkB-FL region mentioned above was then analyzed in silico using different network databases (www.calpain.org, www.dmbr.ugent.be) and the GPS-CDD application (http: // gps.biocuckoo.org/), tools that allow theoretical predictions about possible calpain processing sites in their substrates.
- sequences have recently been used successfully as a vehicle to introduce various sequences into neurons, including the C-terminal end of the GluN2B subunit of the NMDAR. These sequences were able to interfere with the interaction of GluN2B with the PSD-95 postsynaptic density scaffolding protein (Tat-NR2B9c or NA-1 peptide) (Aarts et al., 2002); (Cook et al., 2012a, b).
- PSD-95 postsynaptic density scaffolding protein Teat-NR2B9c or NA-1 peptide
- the designed Tat peptides therefore, contain amino acids 457-471 (TFL 457 of SEQ ID NO 6, corresponding to the binding of HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 458-472 fragment , SEQ ID NO 1), 482-495 (TFL 482 of SEQ ID NO 7, corresponding to the junction of the CPP TAT47-57 of HIV, SEQ ID NO 17, and the human TrkB-FL 483-496 fragment, SEQ ID NO 2), 541-555 (TFL 54 i of SEQ ID NO 8, corresponding to the junction of the CPP TATt47-57 of HIV, SEQ ID NO 17, and the human TrkB-FL 542-556 fragment, SEQ ID NO 3) and 639-652 (TFL 639 of SEQ ID NO 9, corresponding to the junction of the HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 640-653 fragment, SEQ ID NO 4) of the TrkB- sequence Rat FL fused with the Tat
- the first 9 amino acids of the TrkB-FL sequence are also present in the truncated isoform of the TrkB-T1 receptor while the 5 C-terminal residues are exclusive to the complete isoform.
- a peptide of the same size as the previous ones containing the Tat sequence linked to amino acids 408-421 of the transcription factor c-Myc (TMyc with SEQ ID NO 10, corresponding to the binding of the CPP TAT47-57 of HIV, SEQ ID NO 17 , and the human c-Myc 408-421 fragment, SEQ ID NO 5) was synthesized and used as a negative control in the experiments performed.
- TrkB-FL sequences used in the above peptides are completely conserved in the human protein sequence; therefore, the neuroprotective effects of the peptides designed in murine excitotoxicity models would be extrapolar for human cells.
- Example 2 The TMycFITC peptide is capable of crossing the neuronal plasma membrane.
- Example 3 The effects of the TFL 457 peptide on the processing of TrkB-FL and neuronal death under conditions of excitotoxicity are specific, depend on the dose of peptide used and follow parallel kinetics.
- TFL peptides generated on the processing of TrkB-FL induced by NMDAR overactivation was then analyzed (Fig. 3).
- Primary cultures of 13 IVDs were incubated with the TMyc, TFL 457, TFL 48 2, TFL 541 or TFL 6 39 (25 ⁇ ) peptides for 30 min prior to their treatment for 2 h with NMDAR agonists, NMDA (100 ⁇ ) and glycine (10 ⁇ ).
- NMDAR agonists 100 ⁇
- glycine 10 ⁇
- TrkB-FL levels Mr 145 kDa
- TrkB-ECD antibody As a control, neuronal specific enolasa (NSE), a neuronal protein that is not processed by calpain, was also analyzed. TrkB-FL processing interference was quantified for each of the peptides, showing the results of 4 independent experiments (Fig. 3B).
- TrkB-FL levels In cultures that did not receive peptide, there was a notable reduction in TrkB-FL levels and an increase in truncated forms (tTrkB) that were induced by excitotoxicity conditions, as previously demonstrated (Vidaurre et al., 2012 ).
- TFL 457 which greatly reduced Remarkable TrkB-FL processing induced by NMDA treatment.
- TrkB-FL levels only underwent a moderate reduction, reaching values of 80 ⁇ 7% with respect to the same cultures without treating with NMDA, a value significantly higher than that obtained in pre-incubated cells with TMyc (36 ⁇ 1 1%, p ⁇ 0.5).
- the treatment with the different peptides did not have a significant effect on the basal levels of TrkB-FL found in the cells not subjected to excitotoxicity conditions.
- the effect of the generated TFL peptides on neuronal death induced by the excitotoxicity process was then investigated (Fig. 4).
- the primary cultures were pre-incubated with the TMyc, TFL 457 , TFL 48 2, TFL 541 or TFL 6 3g peptides and treated chronically with NMDA and glycine as above for 0, 2, 4 or 6 h.
- Neural viability was established by the MTT tetrazolium salt reduction test and the results of 3-1 independent experiments were represented as relative values compared to those obtained in control cultures treated with the same peptide but not NMDA.
- cultures pretreated with TFL 457 presented a significantly greater neuronal viability compared to those incubated with the control peptide at all times evaluated for treatment with NMDA (Fig. 4A).
- the viability of cultures incubated for 2 hours with NMDA in the presence of TMyc was 49 ⁇ 5% compared to untreated cells, while these values reached 80 ⁇ 8% in cultures treated with TFL 457 (p ⁇ 0.01).
- TFL 457 For the rest of the TFL peptides no significant differences were observed with respect to TMyc (Figs. 4C and D), with the exception of TFL 48 2 that had a very transient neuroprotective effect (Fig. 4B) that did not correlate with greater stability of TrkB-FL in excitotoxic neurons (Fig. 3).
- the previous data demonstrated that only the TFL 457 peptide had a sustained and significant neuroprotective effect on the excitotoxicity induced by chronic treatment with NMDA, which corresponded with its ability to interfere with the processing of the TrkB-FL protein.
- TFL 457 In order to establish the most appropriate treatment conditions with the TFL 457 peptide, the primary cultures were then incubated with different concentrations of TMyc or TFL 457 (5, 15 or 25 ⁇ ) for 30 min prior to their treatment with the NMDAR agonists for 2 (Fig. 5A) or 4 (Fig. 5B) h. He Analysis of TrkB-FL levels in cultures pre-incubated with TMyc showed results similar to those above at all peptide concentrations used. In contrast, TFL 457 was able to interfere with the processing of TrkB-FL induced by NMDA, modestly at the lowest concentration used and very noticeably for 15 and 25 ⁇ (Fig. 5A).
- TFL 457 observed on the activation status of CREB are relevant to its clinical utility since it has previously been shown that the increase in pCREB is a factor that stimulates neurogenesis in the dentate gyrus of adult brain, a repair mechanism. brain that is activated after ischemic damage (Zhu et al., 2004).
- TFL 457 The effect of TFL 457 on neuronal death induced by the excitotoxicity process at the different peptide concentrations used was then investigated (Fig. 5B).
- the cultures pretreated with TFL 457 presented a significantly greater neuronal viability with respect to those incubated with the control peptide at the three peptide concentrations analyzed, the most significant differences being found for the concentration of 25 ⁇ .
- the viability of cultures incubated with NMDA in the presence of TMyc was 17 ⁇ 2% compared to untreated cells, while these values reached 50 ⁇ 5% in cultures treated with TFL 457 (p ⁇ 0.001 ).
- Previous data showed that the TFL 457 peptide had a neuroprotective effect significant on the excitotoxicity induced by chronic treatment with NMDA, this being dose dependent.
- This effect on viability corresponded with the ability of TFL 457 to interfere with the processing of the TrkB-FL protein and with the maintenance of pCREB levels, an active form of the pro-survival CREB transcription factor.
- TrkB-FL processing and CREB inactivation induced by NMDAR overactivation Fig. 6
- Fig. 4A the time course of TrkB-FL processing and CREB inactivation induced by NMDAR overactivation
- TrkB-FL As an additional control, NSE was analyzed, a protein that we already saw is not a calpain substrate nor is it regulated under conditions of excitotoxicity.
- treatment with NMDA caused the inactivation of pCREB from very early times as described (Hardingham et al., 2002).
- TFL 457 peptide had a specific and significant neuroprotective effect on the excitotoxicity induced by chronic NMDA treatment that corresponded with its ability to interfere with the processing of the TrkB-FL protein and the maintenance of levels of activation of the CREB transcription factor.
- TFL 457 peptide is also capable of reducing neuronal death induced by acute neuronal damage.
- Neural viability was established as before 20 h after the change of medium and the average values of 5 experiments were represented as relative values to those obtained in the corresponding cultures not treated with NMDA.
- the relative neuronal viability for cultures treated with TMyc was 36 ⁇ 9%, significantly lower than that obtained in neurons treated with TFL 457 , which reached 85 ⁇ 13% (p ⁇ 0.05).
- the previous results demonstrate that the TFL 457 peptide exerts a significant neuroprotective effect both when it is present in neurons subsequently subjected to chronic excitotoxic damage and if it is administered immediately after acute damage.
- Example 5 Inhibition of calpain does not block the neuroprotective effect of the TFL457 peptide in neurons subjected to excitotoxicity.
- TFL 457 peptide on TrkB-FL depends on its inhibition of calpain activity specifically on this substrate by neuroprotection tests performed in the presence of generic inhibitors of this protease (Fig. 8 ).
- the primary cultures were pre-incubated with the calpain inhibitors, calpeptin (Calp, 10 ⁇ ) and inhibitor III (Cilll; 10 ⁇ ) and, 30 min later, with the TMyc or TFL 457 (25 ⁇ ) peptides. After an additional 30 min, the cells were treated chronically with NMDA (4 h).
- TrkB.TI receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J Neurosci 29, 678-685.
- Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways.
- TrkB-FI_ / TrkB-T1 induces neuronal death in excitotoxicity.
- Cell death & disease 3 e256.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Toxicology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The invention relates to a neuroprotective peptide characterised in that it consists of 15 amino acids of the human TrkB-FL sequence corresponding to positions 458 to 472 of the canonical sequence, and can exert a neuroprotective effect when the pro-survival response time is increased. The invention also relates to the use of said peptide for preventing and/or treating neuronal damage in mammals caused by a pathology of the central nervous system associated with excitotoxicity. The invention further relates to a pharmaceutical composition characterised in that it comprises said neuroprotective peptide, and to the use of same in the treatment of cerebrovascular diseases and other pathologies of the CNS.
Description
PÉPTIDO DERIVADO DE TRKB-FL Y SU USO COMO NEUROPROTECTOR PEPTIDE DERIVED FROM TRKB-FL AND ITS USE AS A NEUROPROTECTOR
5 5
DESCRIPCIÓN SECTOR Y OBJETO DE LA INVENCIÓN SECTOR DESCRIPTION AND OBJECT OF THE INVENTION
La presente invención se engloba en el sector farmacéutico, y en el sector de servicios0 públicos, sociales y colectivos. En concreto, la presente invención se dirige a compañías farmacéuticas que trabajan en el campo de la neuroprotección, tanto referida a daños agudos (isquemia, trauma agudo) como crónicos (enfermedades neurodegenerativas). 5 ESTADO DE LA TÉCNICA The present invention is encompassed in the pharmaceutical sector, and in the public, social and collective services sector. Specifically, the present invention is directed to pharmaceutical companies working in the field of neuroprotection, both referred to acute (ischemia, acute trauma) and chronic (neurodegenerative diseases). 5 STATE OF THE TECHNIQUE
La industria farmacéutica tiene gran interés en las patologías humanas de alta incidencia y de prevalencia creciente debido a los cambios demográficos y las mayores expectativas de vida. Las enfermedades cerebrovasculares (ECV) representan la segunda causa de muerte mundial, con 6,7 millones de defunciones y0 un 11 ,9% del total (según datos recientes de la OMS del año 2012). Así mismo, la isquemia cerebral es la segunda causa de demencia tras la enfermedad de Alzheimer, y el primer motivo de incapacidad en adultos. The pharmaceutical industry has great interest in human diseases of high incidence and increasing prevalence due to demographic changes and higher life expectancy. Cerebrovascular diseases (CVD) represent the second leading cause of death worldwide, with 6.7 million deaths and 0 11.9% of the total (according to recent WHO data from 2012). Likewise, cerebral ischemia is the second cause of dementia after Alzheimer's disease, and the first reason for disability in adults.
La isquemia cerebral o ictus es un fenómeno que caracteriza a las ECVs y se define5 como la reducción por diferentes causas del aporte sanguíneo hasta unos niveles insuficientes para mantener el metabolismo y funcionamiento normales de las células cerebrales. Existen dos tipos de ictus según su origen: ictus hemorrágico, generado por la ruptura de un vaso cerebral, el espasmo vascular asociado a una hemorragia subaracnoidea y la hipertensión intracraneal, y el ictus isquémico, producido por la0 falta de riego sanguíneo en una región del cerebro debido a la presencia de un trombo o placa aterosclerótica. En el tejido afectado podemos diferenciar dos áreas: el núcleo del infarto, que sufre la reducción más severa de flujo sanguíneo y experimenta un daño irreversible, y la zona de penumbra isquémica, caracterizada por ser funcionalmente silente pero intacta desde el punto de vista estructural. Sin embargo, si5 el flujo sanguíneo no se recupera en un periodo de tiempo denominado ventana
terapéutica, esta región puede sufrir procesos de degeneración neuronal secundaria que provocan la expansión del núcleo del infarto hacia la zona de penumbra isquémica. El único tratamiento aprobado en la práctica clínica frente al ictus isquémico es la trombólisis con el activador tisular del plasminógeno (tPA), que contribuye a la restauración del flujo sanguíneo cerebral mediante la disolución del coágulo que obstruye la arteria. No obstante, la terapia trombolítica da lugar con relativa frecuencia a hemorragias intracerebrales sintomáticas y, además, el tPA presenta una toxicidad asociada que incrementa la degeneración neuronal en modelos experimentales. Estos efectos adversos conllevan la existencia de numerosas contraindicaciones para este tipo de terapia, lo cual ocasiona un problema adicional: la ventana terapéutica en la que los beneficios del tratamiento son superiores a los riesgos se estrecha considerablemente, estando dentro de las 3-4,5 horas tras el comienzo de los síntomas. Esto supone que en España únicamente un 5-10% de los pacientes de un ictus isquémico puede beneficiarse del uso de compuestos trombolíticos. Por tanto, aun mejorando la evolución de algunos pacientes, el uso del tPA no está exento de riesgos, tiene un uso muy limitado y solo es eficaz en una estrecha ventana terapéutica. Cerebral ischemia or stroke is a phenomenon that characterizes CVDs and is defined5 as the reduction by different causes of blood supply to insufficient levels to maintain the normal metabolism and functioning of brain cells. There are two types of stroke according to their origin: hemorrhagic stroke, generated by the rupture of a cerebral vessel, vascular spasm associated with subarachnoid hemorrhage and intracranial hypertension, and ischemic stroke, caused by the lack of blood supply in a region of the brain due to the presence of a thrombus or atherosclerotic plaque. In the affected tissue we can differentiate two areas: the heart of the infarct, which suffers the most severe reduction of blood flow and experiences irreversible damage, and the area of ischemic penumbra, characterized by being functionally silent but structurally intact. However, if the blood flow does not recover in a period of time called a window Therapeutically, this region may undergo secondary neuronal degeneration processes that cause the heart attack to expand to the area of ischemic penumbra. The only treatment approved in clinical practice against ischemic stroke is thrombolysis with the tissue plasminogen activator (tPA), which contributes to the restoration of cerebral blood flow by dissolving the clot that obstructs the artery. However, thrombolytic therapy results in relatively frequent symptomatic intracerebral hemorrhages and, in addition, tPA has an associated toxicity that increases neuronal degeneration in experimental models. These adverse effects entail the existence of numerous contraindications for this type of therapy, which causes an additional problem: the therapeutic window in which the benefits of the treatment are greater than the risks narrows considerably, being within 3-4.5 hours after the onset of symptoms. This means that in Spain only 5-10% of patients with an ischemic stroke can benefit from the use of thrombolytic compounds. Therefore, even improving the evolution of some patients, the use of tPA is not risk-free, has a very limited use and is only effective in a narrow therapeutic window.
Entre las alternativas terapéuticas que se están tratando de desarrollar está la interferencia de las cascadas de señalización bioquímicas inducidas por la ECV que conducen al daño isquémico y la muerte neuronal secundaria de la zona de penumbra. Reducir esta muerte neuronal secundaria sería extremadamente beneficioso porque permitiría atenuar el daño neurológico y el grado de discapacidad de los pacientes. El mecanismo fundamental de la muerte neuronal secundaria es la excitotoxicidad, un proceso inducido por el aumento de la concentración del neurotransmisor excitatorio glutamato en el espacio extracelular y la sobreactivación de sus receptores específicos, principalmente los de tipo N-metil-D-aspartato (NMDARs) (Olney, 1986). Por ello, la excitotoxicidad es una diana fundamental en la búsqueda de estrategias de neuroprotección. En el pasado, como primera aproximación, se utilizaron fármacos que al unirse directamente a los NMDARs (antagonistas) o de manera indirecta (por ejemplo, inhibidores de la liberación de glutamato, antagonistas de los canales de calcio dependientes de voltaje) disminuían la sobreactivación del NMDAR. Sin embargo, estos fármacos mostraron resultados esperanzadores en modelos
experimentales de isquemia pero fueron ineficaces en el tratamiento de la isquemia cerebral en humanos y, por tanto, no superaron los ensayos clínicos (Ikonomidou and Turski, 2002). Un defecto común a la mayoría de estos fármacos es su falta de selectividad, motivada fundamentalmente por el desconocimiento de la naturaleza dual de los NMDARs, receptores que son críticos a un tiempo en procesos de supervivencia y de muerte celular (Hardingham et al., 2002). Además, los NMDARs juegan también un papel preponderante en la transmisión sináptica y la comunicación neuronal del sistema nervioso central (SNC), tanto durante el desarrollo como en su vida adulta, y son críticos en procesos vitales como el aprendizaje, la memoria, la plasticidad sináptica y la sinaptogénesis. Debido a ello, los fármacos desarrollados anteriormente en general bloquean tanto la activación fisiológica del NMDAR como la patológica y, por tanto, tienen efectos secundarios sobre el aprendizaje y producen somnolencia, alucinaciones o incluso coma. Among the therapeutic alternatives that are being tried to develop is the interference of the biochemical signaling cascades induced by CVD that lead to ischemic damage and secondary neuronal death in the twilight zone. Reducing this secondary neuronal death would be extremely beneficial because it would mitigate the neurological damage and the degree of disability of the patients. The fundamental mechanism of secondary neuronal death is excitotoxicity, a process induced by the increase in the concentration of the excitatory neurotransmitter glutamate in the extracellular space and the over-activation of its specific receptors, mainly those of the N-methyl-D-aspartate type (NMDARs) ) (Olney, 1986). Therefore, excitotoxicity is a fundamental target in the search for neuroprotection strategies. In the past, as a first approximation, drugs were used that by directly binding to NMDARs (antagonists) or indirectly (for example, glutamate release inhibitors, voltage-dependent calcium channel antagonists) decreased over-activation of the NMDAR However, these drugs showed encouraging results in models. Experiments of ischemia but were ineffective in the treatment of cerebral ischemia in humans and, therefore, did not pass clinical trials (Ikonomidou and Turski, 2002). A common defect to most of these drugs is their lack of selectivity, mainly due to the lack of knowledge of the dual nature of NMDARs, receptors that are critical at the same time in processes of survival and cell death (Hardingham et al., 2002 ). In addition, NMDARs also play a preponderant role in synaptic transmission and neuronal communication of the central nervous system (CNS), both during development and in adult life, and are critical in vital processes such as learning, memory, plasticity synaptic and synaptogenesis. Because of this, previously developed drugs in general block both the physiological activation of NMDAR and the pathological one and, therefore, have side effects on learning and produce drowsiness, hallucinations or even coma.
El interés por desarrollar nuevos fármacos capaces de reducir el proceso excitotóxico va mucho más allá de las ECVs, ya que las alteraciones funcionales del NMDAR son también causantes de la degeneración o muerte neuronal en un gran número de patologías neurológicas, como son la hipoglucemia, epilepsia y el trauma agudo (Choi, 1988). Además, la excitotoxicidad también aparece asociada a ciertas enfermedades neurodegenerativas como las enfermedades de Alzheimer, Parkinson, Huntington y la esclerosis lateral amiotrófica (ELA). En general, todas estas enfermedades carecen de tratamientos etiológicos y las terapias utilizadas son sintomáticas o paliativas. Así, por ejemplo, en casos moderados o graves de la enfermedad de Alzheimer se está utilizando un antagonista no-competitivo del NMDAR de desarrollo más reciente, la memantina, que presenta cierta eficacia en la reducción de la excitotoxicidad asociada a dicha enfermedad (Chen and Lipton, 2006). Por último, la excitotoxicidad también es crítica en trastornos neurológicos caracterizados por hiperexcitabilidad o hipersensibilización neuronal (algunos tipos de disquinesias, dolor neuropático), y patologías oculares (glaucoma, retinopatía diabética, neuropatía óptica isquémica y traumatismos del nervio óptico). The interest in developing new drugs capable of reducing the excitotoxic process goes well beyond CVDs, since the functional alterations of NMDAR are also causes of neuronal degeneration or death in a large number of neurological pathologies, such as hypoglycemia, epilepsy and acute trauma (Choi, 1988). In addition, excitotoxicity also appears associated with certain neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's diseases and amyotrophic lateral sclerosis (ALS). In general, all these diseases lack etiological treatments and the therapies used are symptomatic or palliative. Thus, for example, in more moderate or severe cases of Alzheimer's disease, a more recent non-competitive NMDAR antagonist, memantine, is being used, which has some efficacy in reducing the excitotoxicity associated with said disease (Chen and Lipton, 2006). Finally, excitotoxicity is also critical in neurological disorders characterized by hyperexcitability or neuronal hypersensitization (some types of dyskinesias, neuropathic pain), and ocular pathologies (glaucoma, diabetic retinopathy, ischemic optic neuropathy and optic nerve trauma).
En los últimos años se han comenzado a desarrollar pequeños péptidos permeables a la membrana plasmática y la barrera hematoencefálica (BHE), que no alteran la activación per se de los NMDARs pero si la formación de complejos con proteínas de andamiaje y señalización de la densidad postsináptica (PSD) que son necesarios para
las funciones patológicas del NMDAR (Aarts et al., 2002). Se ha demostrado que el péptido NA-1 (Tat-NR2B9c, patente US 2010/0137224 A1) es capaz de reducir el daño isquémico en modelos murinos (Aarts et al., 2002) y de primates (Cook et al., 2012b) y, más recientemente, en pacientes sometidos a cirugía endovascular para la reparación de un aneurisma participantes en un pequeño estudio clínico de fase 2 (Hill et al., 2012; revisado en Dolgin, 2012). Aunque prometedora, esta aproximación terapéutica no está exenta de posibles complicaciones ya que las subunidades del NMDAR diana de este péptido participan en procesos de plasticidad sináptica y formación de la memoria en individuos adultos (Brigman et al., 2010). In recent years, small peptides permeable to the plasma membrane and the blood-brain barrier (BHE) have begun to develop, which do not alter the activation of NMDARs per se, but the formation of complexes with scaffolding proteins and postsynaptic density signaling (PSD) that are necessary for the pathological functions of NMDAR (Aarts et al., 2002). It has been shown that peptide NA-1 (Tat-NR2B9c, US patent 2010/0137224 A1) is capable of reducing ischemic damage in murine models (Aarts et al., 2002) and primates (Cook et al., 2012b) and, more recently, in patients undergoing endovascular surgery for the repair of an aneurysm participants in a small phase 2 clinical study (Hill et al., 2012; reviewed in Dolgin, 2012). Although promising, this therapeutic approach is not exempt from possible complications since the subunits of the target NMDAR of this peptide participate in processes of synaptic plasticity and memory formation in adult individuals (Brigman et al., 2010).
En neuronas existen otros mecanismos de control de la supervivencia neuronal, relacionados funcionalmente con los mediados por los NMDARs aunque diferentes a ellos, que también resultan alterados en condiciones patológicas. Ejemplo de estos mecanismos son los regulados por las neurotrofinas como BDNF (brain-derived neurotrophic factor), que mediante la unión a su receptor de alta afinidad TrkB-FL induce su dimerización y transfosforilación, y la activación de diversas cascadas de señalización intracelular pro-supervivencia. Las neurotrofinas regulan adicionalmente otros procesos fundamentales del SNC como la liberación de neurotransmisores, la expresión génica o la trasmisión sináptica. El ARNm del gen de TrkB (Ntrk2) codifica para la isoforma TrkB-FL completa, que es el receptor TrkB catalíticamente activo, y para varias isoformas truncadas (TrkB-T1 , TrkB-T2 y TrkB-T-Shc) carentes del dominio tirosina quinasa que participan en la modulación del receptor activo. Particularmente, la isoforma TrkB-T1 bloquea la función del receptor TrkB-FL mediante la competición por la unión del BDNF o la formación de heterodímeros inactivos TrkB-FL/TrkB-T1 (Carim-Todd et al., 2009). In neurons there are other mechanisms for controlling neuronal survival, functionally related to those mediated by NMDARs, although different from them, which are also altered in pathological conditions. Examples of these mechanisms are those regulated by neurotrophins such as BDNF (brain-derived neurotrophic factor), which by binding to its high affinity receptor TrkB-FL induces its dimerization and transphosphorylation, and the activation of various procellular intracellular signaling cascades survival. Neurotrophins further regulate other fundamental CNS processes such as neurotransmitter release, gene expression or synaptic transmission. The TrkB gene mRNA (Ntrk2) encodes for the complete TrkB-FL isoform, which is the catalytically active TrkB receptor, and for several truncated isoforms (TrkB-T1, TrkB-T2 and TrkB-T-Shc) lacking the tyrosine domain kinase involved in the modulation of the active receptor. Particularly, the TrkB-T1 isoform blocks the function of the TrkB-FL receptor by competition for BDNF binding or the formation of inactive TrkB-FL / TrkB-T1 heterodimers (Carim-Todd et al., 2009).
La reducción del soporte neurotrófico es un componente importante en la patogénesis de numerosas patologías del SNC. En enfermedades neurodegenerativas como la enfermedad de Alzheimer, Parkinson, Huntington o ELA se han observado niveles alterados de BDNF y TrkB, y una disminución en la señalización (Dawbarn and Alien, 2003); también se han observado alteraciones de la vía BDNF/TrkB en esquizofrenia, modelos de síndrome de Down o estados depresivos y de estrés (Dawbarn and Alien, 2003). Recientemente, se ha demostrado que la vía BDNF/TrkB está inhibida en situaciones de excitotoxicidad e isquemia cerebral transitoria (Vidaurre et al., 2012). En concreto, se ha observado la modificación en sentido opuesto de los niveles
neuronales de las isoformas TrkB-FL y TrkB-T1 mediante dos mecanismos: la inversión del balance entre los ARNm de las isoformas, que da lugar a un aumento en la expresión de TrkB-T1 en detrimento de la de TrkB-FL, y la proteólisis por calpaína de TrkB-FL, que reduce los niveles del receptor activo y produce una proteína truncada de tamaño similar a TrkB-T1 y que, al igual que ella, podría actuar como un dominante negativo (Vidaurre et al., 2012). El aumento de TrkB-T1 se ha observado en modelos celulares y animales de excitotoxicidad, y también en necropsias de pacientes fallecidos a consecuencia de una ECV, apoyando la relevancia de este mecanismo para la patología isquémica en humanos. Mediante el uso de vectores lentivirales que revierten el desbalance entre las isoformas, se ha demostrado que los cambios en la expresión de TrkB son fundamentales en este proceso de muerte neuronal (Vidaurre et al., 2012). Estos resultados apuntan a que el mantenimiento de los niveles del receptor activo de neurotrofinas TrkB-FL podría ser una estrategia terapéutica útil en numerosas patologías del SNC con un componente excitotóxico. Concretamente, el desarrollo de péptidos neuroprotectores con TrkB-FL como diana permitiría el tratamiento y prevención del daño neuronal causado por patologías del SN en las que se encuentra alterada la vía de supervivencia BDNF/TrkB, como patologías del SNC asociadas con el proceso de excitotoxicidad, ECVs como el ictus o la isquemia cerebral, o bien en el daño neuronal causado por falta de soporte neurotrófico, hipoxia, desconexión o daño mecánico consecuencia de traumatismos cerebrales y/o medulares. En el caso del ictus o isquemia cerebral, estos métodos terapéuticos podrían constituir un complemento y/o alternativa a las actuales terapias trombolíticas, las únicas existentes hoy en día. DESCRIPCION DETALLADA DE LA INVENCION The reduction of neurotrophic support is an important component in the pathogenesis of numerous CNS pathologies. In neurodegenerative diseases such as Alzheimer's disease, Parkinson's, Huntington or ALS, altered levels of BDNF and TrkB have been observed, and a decrease in signaling (Dawbarn and Alien, 2003); BDNF / TrkB pathway alterations have also been observed in schizophrenia, Down syndrome models or depressive and stress states (Dawbarn and Alien, 2003). Recently, it has been shown that the BDNF / TrkB pathway is inhibited in situations of excitotoxicity and transient cerebral ischemia (Vidaurre et al., 2012). Specifically, the modification in the opposite direction of the levels has been observed neurons of the TrkB-FL and TrkB-T1 isoforms through two mechanisms: the inversion of the balance between the mRNAs of the isoforms, which leads to an increase in the expression of TrkB-T1 to the detriment of that of TrkB-FL, and the Calpain proteolysis of TrkB-FL, which reduces the levels of the active receptor and produces a truncated protein similar in size to TrkB-T1 and which, like it, could act as a negative dominant (Vidaurre et al., 2012). The increase in TrkB-T1 has been observed in cellular and animal models of excitotoxicity, and also in necropsies of patients who died as a result of CVD, supporting the relevance of this mechanism for ischemic pathology in humans. Through the use of lentiviral vectors that reverse the imbalance between isoforms, it has been shown that changes in TrkB expression are fundamental in this process of neuronal death (Vidaurre et al., 2012). These results suggest that the maintenance of TrkB-FL active neurotrophin receptor levels could be a useful therapeutic strategy in numerous CNS pathologies with an excitotoxic component. Specifically, the development of neuroprotective peptides with TrkB-FL as a target would allow the treatment and prevention of neuronal damage caused by pathologies of the SN in which the BDNF / TrkB survival pathway is altered, as CNS pathologies associated with the excitotoxicity process , CVDs such as stroke or cerebral ischemia, or in neuronal damage caused by lack of neurotrophic support, hypoxia, disconnection or mechanical damage due to brain and / or spinal trauma. In the case of stroke or cerebral ischemia, these therapeutic methods could constitute a complement and / or alternative to the current thrombolytic therapies, the only ones existing today. DETAILED DESCRIPTION OF THE INVENTION
La presente invención se refiere a un péptido neuroprotector, a partir de ahora denominado "péptido neuroprotector de la invención", caracterizado por consistir en 15 aminoácidos de la secuencia de TrkB-FL humana (SEQ ID NO: 1) correspondiente a las posiciones 458 hasta 472 de la secuencia canónica (NCBI Gene ID: 4915, UniProt Q16620). La proteína TrkB-FL está altamente conservada en mamíferos y la secuencia del péptido neuroprotector de la invención es idéntica en las proteínas de rata (NCBI Gene ID: 25054, UniProt Q63604) y ratón (NCBI Gene ID:18212, UniProt P15209), donde ocupa los residuos 457 hasta 471. El péptido neuroprotector de la invención ha sido diseñado para interferir en el procesamiento de TrkB-FL por
proteasas y, en particular, por la calpaína. La reducción del procesamiento de TrkB-FL incrementa sus niveles en la membrana plasmática neuronal y, de esta forma, aumenta la capacidad de respuesta de estas células a la neurotrofina BDNF, que activa diversas cascadas neuronales de señalización pro-supervivencia. La reducción del soporte neurotrófico es un factor común frecuente en situaciones patológicas de daño neuronal asociado al proceso de excitotoxicidad. Los estímulos causantes de esta forma de muerte celular pueden ser: accidentes cerebro-vasculares (ACVs, como el ictus isquémico o el ictus hemorrágico), lesiones cerebrales traumáticas (incluidas las lesiones por neurocirugía), tumores del SNC, efectos secundarios de su tratamiento oncológico, o patologías crónicas del sistema nervioso central asociadas con un proceso de excitotoxicidad (enfermedades neurodegenerativas como Alzheimer, Parkinson, Huntington y esclerosis lateral amiotrófica o ELA). The present invention relates to a neuroprotective peptide, hereafter referred to as "neuroprotective peptide of the invention", characterized in that it consists of 15 amino acids of the human TrkB-FL sequence (SEQ ID NO: 1) corresponding to positions 458 to 472 of the canonical sequence (NCBI Gene ID: 4915, UniProt Q16620). The TrkB-FL protein is highly conserved in mammals and the neuroprotective peptide sequence of the invention is identical in rat (NCBI Gene ID: 25054, UniProt Q63604) and mouse (NCBI Gene ID: 18212, UniProt P15209) proteins, where occupies residues 457 to 471. The neuroprotective peptide of the invention has been designed to interfere in the processing of TrkB-FL by proteases and, in particular, by calpain. The reduction of TrkB-FL processing increases its levels in the neuronal plasma membrane and, in this way, increases the responsiveness of these cells to the BDNF neurotrophin, which activates various neuronal cascades of pro-survival signaling. The reduction of neurotrophic support is a common common factor in pathological situations of neuronal damage associated with the excitotoxicity process. The stimulants that cause this form of cell death can be: cerebrovascular accidents (CVAs, such as ischemic stroke or hemorrhagic stroke), traumatic brain injuries (including neurosurgery injuries), CNS tumors, side effects of cancer treatment , or chronic pathologies of the central nervous system associated with an excitotoxicity process (neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington and amyotrophic lateral sclerosis or ALS).
Un resumen de los polinucleótidos y péptidos descritos en la presente invención se describe en la siguiente tabla: A summary of the polynucleotides and peptides described in the present invention is described in the following table:
Tabla 1. Listado de secuencias mencionadas en la invención. Table 1. List of sequences mentioned in the invention.
SEQ ID NO SEQ ID NO SEQ ID NO SEQ ID NO
Nombre Name
aminoacídica nucleotídica nucleotide amino acid
TrkB-FL 458-472 1 26 TrkB-FL 458-472 1 26
TrkB-FL 483-496 2 TrkB-FL 483-496 2
TrkB-FL 542-556 3 TrkB-FL 542-556 3
TrkB-FL 640-653 4 TrkB-FL 640-653 4
c-Myc 408-421 5 c-Myc 408-421 5
TFL457 6 27 TFL457 6 27
TFL482 7 TFL 482 7
TFL541 8 TFL541 8
TFL639 9 TFL639 9
TMyc 10 TMyc 10
MAP 11 MAP 11
pAntp43-68/Penetratin 12 pAntp43-68 / Penetratin 12
Transportan/TP10 13 Transport / TP10 13
SBP 14
FBP 15 SBP 14 FBP 15
TAT48-60 16 TAT48-60 16
TAT47-57 17 28 TAT47-57 17 28
SynB1 18 SynB1 18
SynB3 19 SynB3 19
pVEC 20 pVEC 20
Pep-1 21 Pep-1 21
OctaArginine 22 OctaArginine 22
NonaArginine 23 NonaArginine 23
CADY 24 CADY 24
RVG 25 RVG 25
Así un primer objeto de la invención es un péptido neuroprotector, a partir de ahora denominado "péptido neuroprotector de la invención", caracterizado por consistir en15 aminoácidos de la secuencia de TrkB-FL correspondientes a las posiciones 458-472 de la secuencia canónica humana o las posiciones 457-471 de las secuencias de rata (NCBI Gene ID: 25054, UniProt Q63604) y ratón (NCBI Gene ID: 18212, UniProt P15209) (SEQ ID NO: 1). Thus a first object of the invention is a neuroprotective peptide, hereafter referred to as the "neuroprotective peptide of the invention", characterized in that it consists of 15 amino acids of the TrkB-FL sequence corresponding to positions 458-472 of the human canonical sequence or positions 457-471 of the rat (NCBI Gene ID: 25054, UniProt Q63604) and mouse sequences (NCBI Gene ID: 18212, UniProt P15209) (SEQ ID NO: 1).
La expresión: "péptido neuroprotector", tal y como se emplea en la presente invención, hace referencia a una secuencia de aminoácidos capaz de prevenir, mitigar o retrasar los procesos bioquímicos que ocurren en el sistema nervioso y originan neurodegeración o muerte neuronal de tipo apoptótica o necrótica. The expression: "neuroprotective peptide", as used in the present invention, refers to an amino acid sequence capable of preventing, mitigating or delaying the biochemical processes that occur in the nervous system and cause neurodegeration or neuronal death of apoptotic type or necrotic.
La expresión "muerte celular inducida por excitotoxicidad" o "excitotoxicidad" se refiere a un proceso patológico por el cual las neuronas son dañadas y destruidas por la sobreactivación mediada por la unión a sus receptores de membrana de los neurotransmisores excitatorios, fundamentalmente glutamato o sus análogos farmacológicos: NMDA (en inglés, N-methyl-D-aspartate receptor), AMPA (en inglés, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) y ácido kaínico. La presencia en el sistema nervioso de niveles patológicamente elevados de glutamato, o sus análogos NMDA o kainato, puede provocar la excitotoxicidad al permitir que niveles elevados de iones de calcio entren en las neuronas. La entrada de Ca+2 en las células activa una serie de enzimas, incluyendo las fosfolipasas, las endonucleasas, y
proteasas tales como la calpaína que dañan las estructuras celulares, como las que componen el citoesqueleto, la membrana y el ADN. Otras contribuciones importantes al proceso de excitotoxicidad son la generación de radicales libres y la disfunción mitocondrial. The term "cell death induced by excitotoxicity" or "excitotoxicity" refers to a pathological process by which neurons are damaged and destroyed by over-activation mediated by binding to their membrane receptors of excitatory neurotransmitters, primarily glutamate or its analogues. Pharmacological: NMDA (in English, N-methyl-D-aspartate receptor), AMPA (in English, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) and kainic acid. The presence in the nervous system of pathologically elevated levels of glutamate, or its NMDA or kainate analogues, can cause excitotoxicity by allowing elevated levels of calcium ions to enter neurons. The entry of Ca +2 into cells activates a series of enzymes, including phospholipases, endonucleases, and proteases such as calpain that damage cell structures, such as those that make up the cytoskeleton, membrane and DNA. Other important contributions to the excitotoxicity process are the generation of free radicals and mitochondrial dysfunction.
Preferentemente, dicho péptido neuroprotector comprende un "agente de internalización"; con el término "agente de internalización" se hace referencia a una molécula capaz de facilitar el paso de un péptido determinado a través de la barrera hematoencefálica y la membrana plasmática para permitir su acceso al interior de las neuronas y/o células gliales. Dicha molécula puede hallarse covalentemente unida o no a la secuencia de péptido neuroprotector. Como ejemplos no limitantes pueden citarse: ciclodextrina, poloxámeros, péptidos de unión al receptor de acetil colina, virus y VLPs (Virus Like Particles), Cereport (RMP-7), nanocarriers (incluyendo los polietilenglicolados: PEG-PLA, PEG-PCL, PEG-PHDCA, etc), o péptidos penetrantes celulares. Preferably, said neuroprotective peptide comprises an "internalization agent"; with the term "internalization agent" refers to a molecule capable of facilitating the passage of a specific peptide through the blood brain barrier and the plasma membrane to allow access to the interior of neurons and / or glial cells. Said molecule may be covalently bound or not to the neuroprotective peptide sequence. Non-limiting examples can be cited: cyclodextrin, poloxamers, acetyl choline receptor binding peptides, viruses and VLPs (Virus Like Particles), Cereport (RMP-7), nanocarriers (including polyethylene glycols: PEG-PLA, PEG-PCL, PEG-PHDCA, etc.), or cellular penetrating peptides.
En una realización preferente de esta invención, el péptido neuroprotector de la invención está unido covalentemente a un péptido penetrante celular o CPP (Cell Penetrating Peptide) (Milletti, 2012; Regberg et al., 2013). Algunos ejemplos de CPPs pueden verse en la Tabla 2. In a preferred embodiment of this invention, the neuroprotective peptide of the invention is covalently linked to a cellular penetrating peptide or CPP (Cell Penetrating Peptide) (Milletti, 2012; Regberg et al., 2013). Some examples of CPPs can be seen in Table 2.
Tabla 2: Ejemplos de CPPs y sus secuencias. Abreviaturas: MAP: model amphipathic peptide; Antp: Antennapedia; SBP: sequence signal-based peptide; FBP, fusión sequence-based peptide; TAT: HIV-1 trans-activating transcriptor, pVEC: vascular endothelial-cadherin; RVG: Rabies Virus Glycoprotein fragment. Table 2: Examples of CPPs and their sequences. Abbreviations: MAP: model amphipathic peptide; Antp: Antennapedia; SBP: sequence signal-based peptide; FBP, sequence-based peptide fusion; TAT: HIV-1 trans-activating transcriptor, pVEC: vascular endothelial-cadherin; RVG: Rabies Virus Glycoprotein fragment.
SEQ ID NO SEQ ID NO
Nombre del péptido Peptide Name
aminoacídica amino acid
MAP 11 MAP 11
pAntp43-68/Penetratin 12 pAntp43-68 / Penetratin 12
Transportan/TP10 13 Transport / TP10 13
SBP 14 SBP 14
FBP 15 FBP 15
TAT48-60 16
TAT47-57 17 TAT48-60 16 TAT47-57 17
SynB1 18 SynB1 18
SynB3 19 SynB3 19
pVEC 20 pVEC 20
Pep-1 21 Pep-1 21
OctaArginine 22 OctaArginine 22
NonaArginine 23 NonaArginine 23
CADY 24 CADY 24
RVG 25 RVG 25
En la presente invención "CPPs" o "péptidos penetrantes celulares", se refiere a un grupo de péptidos cortos de menos de 30 aminoácidos que son capaces de penetrar la membrana junto con la carga que transportan hasta el interior celular sin producir efectos citolíticos; son péptidos con carga positiva, características anfipáticas, hidrofobicidad teorética, momento helicoidal o capaces de interactuar con membranas lipídicas y adoptar una estructura secundaria distintiva tras su asociación con lípidos. Los CPPs penetran en la célula fundamentalmente mediante endocitosis o macropinocitosis mediada por rafís lipidíeos. Los CPPs son empleados como medio de transporte para introducir en las células moléculas bioactivas; normalmente mediante una unión covalente, aunque las uniones no covalentes también son posibles. In the present invention "CPPs" or "cell penetrating peptides" refers to a group of short peptides of less than 30 amino acids that are capable of penetrating the membrane along with the charge they carry to the cell interior without producing cytolytic effects; they are positively charged peptides, amphipathic characteristics, theoretical hydrophobicity, helical moment or able to interact with lipid membranes and adopt a distinctive secondary structure after their association with lipids. CPPs penetrate the cell primarily by endocytosis or macropinocytosis mediated by lipid raffis. CPPs are used as a means of transport to introduce bioactive molecules into cells; usually by a covalent bond, although non-covalent bonds are also possible.
Así, en una realización aún más preferente el péptido neuroprotector de la invención está unido al dominio básico de la proteína transactivadora Tat del virus de la inmunodeficiencia humana (HIV), TAT47-57 (SEQ ID NO: 17) o TAT48-60 (SEQ ID NO: 16). Thus, in an even more preferred embodiment, the neuroprotective peptide of the invention is linked to the basic domain of the Tat immunodeficiency virus (HIV) transactivating protein, TAT47-57 (SEQ ID NO: 17) or TAT48-60 (SEQ ID NO: 16).
En un objeto particular de la invención la secuencia del péptido neuroprotector objeto de la presente invención, es un péptido quimérico con secuencia SEQ ID NO: 6 y se caracteriza por comprender: i. la secuencia de 11 aminoácidos del CPP TAT47-57 (SEQ ID NO: 17), fusionada con In a particular object of the invention the sequence of the neuroprotective peptide object of the present invention is a chimeric peptide with sequence SEQ ID NO: 6 and is characterized by comprising: i. the 11 amino acid sequence of CPP TAT47-57 (SEQ ID NO: 17), fused with
¡i. la secuencia de 15 aminoácidos de TrkB-FL correspondiente a las posiciones 458-472 de la proteína humana (SEQ ID NO: 1),
con la particularidad de que la arginina C-terminal de la secuencia Tat es también el primer aminoácido de la secuencia de TrkB-FL. Como "péptido quimérico" o "proteína de fusión" se entiende en la presente invención, un péptido creado a partir de la unión en un gen de fusión o por síntesis química de dos o más polinucleótidos con actividades conocidas diferentes. Cuando se emplea un "gen de fusión" nos refererimos a genes o fragmentos de genes, que originalmente codifican para péptidos separados, pero cuya traducción resulta en un péptido individual con propiedades funcionales derivadas de cada una de los péptidos originales. Dentro del alcance de la presente invención también se incluyen los péptidos o polipéptidos cuya secuencia de aminoácidos sea idéntica u homologa a las secuencias descritas en la presente invención; preferentemente, el porcentaje de identidad es entre 70-95%, aún más preferentemente el porcentaje de identidad es entre 90-95%, y más preferentemente aún el porcentaje de identidad es entre 95-99%. I. the 15 amino acid sequence of TrkB-FL corresponding to positions 458-472 of the human protein (SEQ ID NO: 1), with the particularity that the C-terminal arginine of the Tat sequence is also the first amino acid of the TrkB-FL sequence. As "chimeric peptide" or "fusion protein" is understood in the present invention, a peptide created from the binding in a fusion gene or by chemical synthesis of two or more polynucleotides with different known activities. When a "fusion gene" is used we refer to genes or gene fragments, which originally code for separate peptides, but whose translation results in an individual peptide with functional properties derived from each of the original peptides. Peptides or polypeptides whose amino acid sequence is identical or homologous to the sequences described in the present invention are also included within the scope of the present invention; preferably, the percentage of identity is between 70-95%, even more preferably the percentage of identity is between 90-95%, and even more preferably the percentage of identity is between 95-99%.
La fusión proteica o peptídica es una técnica que se emplea frecuentemente en biología molecular. Habitualmente está relacionada con la producción de proteínas o péptidos en sistemas vivos, como por ejemplo, aunque sin limitarnos, en bacterias, levaduras, o células de mamífero. La inclusión de la secuencia codificante de interés en fase, respetando la pauta de lectura, permite la producción de una proteína o péptido quimérico. Protein or peptide fusion is a technique that is frequently used in molecular biology. It is usually related to the production of proteins or peptides in living systems, such as, but not limited to, bacteria, yeasts, or mammalian cells. The inclusion of the coding sequence of interest in phase, respecting the reading pattern, allows the production of a chimeric protein or peptide.
Un péptido de fusión o quimérico, como el de la presente invención, se purifica con facilidad, empleando para ello las características de las proteínas y los péptidos de unirse a una matriz cromatográfica, o de precipitar en ciertas condiciones. La purificación de un péptido de fusión puede realizarse mediante, por ejemplo, aunque sin limitarnos a, columnas de sefarosa-glutation. La síntesis química de polipéptidos de pequeño tamaño es conocida por el experto en la materia y puede realizarse según métodos convencionales conocidos en el estado de la técnica, como por ejemplo mediante métodos de síntesis de péptidos en fase sólida (Stewart and Young, 1984; Bodanzsky and Bodanzsky, 1994; Lloyd-Williams et al., 1997), la síntesis en solución, una combinación de los métodos de síntesis en fase sólida y en solución o la síntesis enzimática (Kullmann, 1980).
El término "homología", tal y como se utiliza en esta memoria, hace referencia a la semejanza entre dos estructuras debida a una ascendencia evolutiva común, y más concretamente a la semejanza o identidad entre los nucleótidos de posiciones equivalentes en dos o más polinucleótidos. A fusion or chimeric peptide, such as that of the present invention, is easily purified, using the characteristics of the proteins and peptides to bind to a chromatographic matrix, or to precipitate under certain conditions. Purification of a fusion peptide can be accomplished by, for example, but not limited to, sepharose-glutathione columns. The chemical synthesis of small-sized polypeptides is known to those skilled in the art and can be carried out according to conventional methods known in the state of the art, such as by solid phase peptide synthesis methods (Stewart and Young, 1984; Bodanzsky and Bodanzsky, 1994; Lloyd-Williams et al., 1997), solution synthesis, a combination of solid phase and solution synthesis methods or enzymatic synthesis (Kullmann, 1980). The term "homology", as used herein, refers to the similarity between two structures due to a common evolutionary ancestry, and more specifically to the similarity or identity between nucleotides of equivalent positions in two or more polynucleotides.
El término "identidad", tal y como se utiliza en esta memoria, hace referencia a la proporción de aminoácidos idénticos entre dos polipéptidos que se comparan. Los métodos de comparación de secuencias son conocidos en el estado de la técnica, e incluyen, aunque sin limitarse a ellos, el programa BLASTP o BLASTN, ClustalW y FASTA. Puesto que dos proteínas se consideran homologas si tienen el mismo origen evolutivo, en general, se asume que valores de similitud o identidad superiores al 60% indican estructuras homologas. Podemos considerar, por tanto, que porcentajes de identidad de, al menos, un 80% mantendrán las mismas propiedades de dicho polipéptido. The term "identity", as used herein, refers to the proportion of identical amino acids between two polypeptides that are compared. Sequence comparison methods are known in the state of the art, and include, but are not limited to, the BLASTP or BLASTN, ClustalW and FASTA program. Since two proteins are considered homologous if they have the same evolutionary origin, in general, it is assumed that similarity or identity values greater than 60% indicate homologous structures. We can consider, therefore, that identity percentages of at least 80% will maintain the same properties of said polypeptide.
Además, con la información suministrada, un experto en la materia es capaz de combinar las mutaciones para generar nuevas variantes del péptido neuroprotector con actividad similar o mejorada. Una posibilidad es la sustitución conservativa de los aminoácidos; así, por ejemplo, se entiende por sustitución conservativa aquella que mantiene las características de polaridad y carga del aminoácido sustituido. Por ejemplo, lisina y arginina son aminoácidos cuyas cadenas laterales están cargadas positivamente a pH neutro, por lo que se acepta que los cambios de lisina por arginina o viceversa representan cambios conservativos. Se han clasificado los 20 aminoácidos que constituyen la base de todas las proteínas naturales de acuerdo a su conservatividad en grupos: (i) aminoácidos aromáticos (fenilalanina, tirosina, triptófano); (ii) aminoácidos alifáticos (glicina, alanina, valina, leucina, isoleucina y metionina); (iii) aminoácidos ionizables básicos (histidina, lisina y arginina); (iv) aminoácidos ionizables ácidos (ácidos aspártico y glutámico); (v) amidas de aminoácidos ácidos (asparagina y glutamina); y (vi) aminoácidos hidroxilados (serina y treonina). Algunos autores incluirían la cisteína en este último grupo. In addition, with the information provided, one skilled in the art is able to combine the mutations to generate new variants of the neuroprotective peptide with similar or improved activity. One possibility is the conservative substitution of amino acids; Thus, for example, conservative substitution is understood as one that maintains the polarity and charge characteristics of the substituted amino acid. For example, lysine and arginine are amino acids whose side chains are positively charged at neutral pH, so it is accepted that changes of lysine by arginine or vice versa represent conservative changes. The 20 amino acids that constitute the basis of all natural proteins have been classified according to their conservativity into groups: (i) aromatic amino acids (phenylalanine, tyrosine, tryptophan); (ii) aliphatic amino acids (glycine, alanine, valine, leucine, isoleucine and methionine); (iii) basic ionizable amino acids (histidine, lysine and arginine); (iv) ionizable amino acids acids (aspartic and glutamic acids); (v) acid amino acid amides (asparagine and glutamine); and (vi) hydroxylated amino acids (serine and threonine). Some authors would include cysteine in this last group.
Otro objeto de la invención se refiere a una secuencia nucleotídica aislada, de ahora en adelante "secuencia nucleotídica de la invención", que codifica para el péptido de la invención, o a la secuencia nucleotídica complementaria a dicha secuencia
nucleotídica, sin que ello limite a otras secuencias nucleotídicas que por la degeneración del código genético pudieran generarse y den origen a la misma secuencia polipeptídica. Las secuencias SEQ ID NO: 26 y SEQ ID NO: 27 describen las secuencias nucleotídicas a partir de las cuales derivan las secuencias aminoacídicas SEQ ID NO: 1 , y SEQ ID NO: 6, respectivamente. Another object of the invention relates to an isolated nucleotide sequence, hereafter referred to as the "nucleotide sequence of the invention", which codes for the peptide of the invention, or to the nucleotide sequence complementary to said sequence. nucleotide, without limiting it to other nucleotide sequences that could be generated by the degeneracy of the genetic code and give rise to the same polypeptide sequence. The sequences SEQ ID NO: 26 and SEQ ID NO: 27 describe the nucleotide sequences from which the amino acid sequences SEQ ID NO: 1, and SEQ ID NO: 6, respectively, are derived.
Los términos "secuencia nucleotídica", "secuencia de nucleótidos", "ácido nucleico", "oligonucleótido" y "polinucleótido" se refieren de forma intercambiable a un polímero compuesto de una multiplicidad de unidades de nucleótidos (desoxirribonucleótidos o ribonucleótidos o variantes estructurales relacionadas o análogos sintéticos de los mismos) enlazados a través de enlaces fosfodiéster (o variantes estructurales relacionadas o análogos sintéticos de la misma). El término polinucleótido incluye ADN genómico o ADN codificante de cadena doble o sencilla, ARN, cualquier polinucleótido sintético y manipulado genéticamente y ambos tanto la cadena codificante como la antisentido (aunque sólo se destaca la cadena codificante en la presente memoria). Esto incluye moléculas de cadena sencilla y de doble cadena, como por ejemplo, híbridos de ADN-ADN, ADN-ARN y ARN-ARN. The terms "nucleotide sequence", "nucleotide sequence", "nucleic acid", "oligonucleotide" and "polynucleotide" interchangeably refer to a polymer composed of a multiplicity of nucleotide units (deoxyribonucleotides or ribonucleotides or related structural variants or synthetic analogs thereof) linked through phosphodiester bonds (or related structural variants or synthetic analogs thereof). The term polynucleotide includes genomic DNA or double or single stranded coding DNA, RNA, any synthetic and genetically manipulated polynucleotide and both both the coding chain and the antisense (although only the coding chain is highlighted herein). This includes single and double stranded molecules, such as DNA-DNA, DNA-RNA and RNA-RNA hybrids.
La secuencia nucleotídica de la invención puede obtenerse de manera artificial mediante métodos de clonación y selección convencional ampliamente conocidos en el estado de la técnica. The nucleotide sequence of the invention can be obtained artificially by conventional cloning and selection methods widely known in the state of the art.
La secuencia nucleotídica de la invención, adicionalmente a la secuencia codificante, puede llevar otros elementos, como por ejemplo aunque sin limitarse, intrones, secuencias no codificantes en los extremos 5' ó 3', sitios de unión a ribosomas, secuencias estabilizadoras, secuencias de detección celular, etc. Estos polinucleótidos adicionalmente también pueden incluir secuencias codificantes para aminoácidos adicionales que pueden ser útiles, por ejemplo, aunque sin limitarse, para aumentar la estabilidad del péptido generado a partir de él o para permitir una mejor purificación del mismo. The nucleotide sequence of the invention, in addition to the coding sequence, can carry other elements, such as, but not limited to, introns, non-coding sequences at the 5 'or 3' ends, ribosome binding sites, stabilizing sequences, sequences of cell detection, etc. These polynucleotides can additionally also include coding sequences for additional amino acids that may be useful, for example, but not limited, to increase the stability of the peptide generated from it or to allow a better purification thereof.
Las secuencias de polinucleótidos de la invención pueden hallarse formando parte de vectores que permitan su multiplicación o clonaje así como su expresión. Dicho vector puede ser, por ejemplo un vector de clonación o un vector de expresión o un vector recombinante. El clonaje de la secuencia nucleotídica de la invención se puede
realizar empleando un vector de expresión o recombinante, o un plásmido. Estos vectores comprenden la secuencia nucleotídica de la invención o, en su caso, la secuencia polinucleotídica codificante para una proteína portadora y la secuencia nucleotídica de la invención, y una serie de secuencias codificantes para aminoácidos que son dianas de corte de proteasas. La ventaja de esta estructura es que, una vez producida la proteína o péptido de fusión, lisado el sistema de expresión y purificada ésta mediante, por ejemplo, aunque sin limitarnos, cromatografía de afinidad, se puede escindir la proteína portadora del péptido de la invención mediante digestión con una proteasa y repurificar el péptido de la invención mediante el mismo sistema cromatográfico. The polynucleotide sequences of the invention can be found as part of vectors that allow their multiplication or cloning as well as their expression. Said vector may be, for example a cloning vector or an expression vector or a recombinant vector. The cloning of the nucleotide sequence of the invention can be perform using an expression or recombinant vector, or a plasmid. These vectors comprise the nucleotide sequence of the invention or, where appropriate, the polynucleotide sequence encoding a carrier protein and the nucleotide sequence of the invention, and a series of amino acid coding sequences that are protease cleavage targets. The advantage of this structure is that, once the fusion protein or peptide is produced, the expression system is lysed and purified by, for example, although without limitation, affinity chromatography, the carrier protein of the peptide of the invention can be cleaved by digestion with a protease and repurifying the peptide of the invention by the same chromatographic system.
El término "vector", tal y como se emplea en la presente memoria, se refiere a una molécula de ácido nucleico que es capaz de transferir secuencias de ácidos nucleicos contenidas en la misma a la célula que trasduce y que se produce por medio de técnicas de biología molecular. Algunos ejemplos de vectores recombinantes son ADN lineal, ADN plasmídico, virus modificados, adenovirus/virus adenoasociados, vectores retrovirales y virales, etc.; todos ellos ampliamente descritos en la literatura y que pueden ser empleados siguiendo técnicas estándar de biología molecular o comprados a proveedores. The term "vector", as used herein, refers to a nucleic acid molecule that is capable of transferring nucleic acid sequences contained therein to the cell that transduces and is produced by means of techniques. of molecular biology. Some examples of recombinant vectors are linear DNA, plasmid DNA, modified viruses, adenoviruses / adeno-associated viruses, retroviral and viral vectors, etc .; all of them widely described in the literature and that can be used following standard molecular biology techniques or purchased from suppliers.
Los vectores o plásmidos pueden ser introducidos, por ejemplo, aunque sin limitarnos, mediante transfección, transformación o infección de las células hospedadoras, como son, aunque sin limitarse a ellas, células vegetales, de mamífero, bacterias, levaduras o células de insecto. La introducción del vector de expresión en la célula hospedadora se puede llevar a cabo mediante cualquiera de los métodos físicos o biológicos para dar lugar a células transformadas o transfectadas. Dichos métodos biológicos incluyen, pero sin limitarse, el uso de vectores de ADN y ARN virales. La principal ventaja de los métodos físicos reside en que éstos no están asociados con procesos oncogénicos ni patológicos de virus. Sin embargo, los métodos físicos son menos precisos y, a menudo, resultan en inserciones de múltiples copias, integraciones aleatorias, interrupción de secuencias genéticas propias y foráneas, así como expresión impredecible. Entre los vectores virales más usados para la introducción de genes en células de mamífero, se encuentran, vectores de poxvirus, de herpes simplex, adenovirus, vectores asociados a adenovirus, etc.
Por ello, otra realización de la invención se refiere a un vector de expresión o un vector recombinante, de ahora en adelante "vector de la invención", que comprenden las secuencias nucleotídicas de la invención SEQ ID NO: 26 y/o SEQ ID NO: 27. El término "vector de clonación", tal y como se utiliza en la presente descripción, se refiere a una molécula de ADN en la que se puede integrar otro fragmento de ADN, sin que pierda la capacidad de replicación. Ejemplos de vectores de expresión son, pero sin limitarse, plásmidos, cósmidos, fagos de ADN o cromosomas artificiales de levadura. Vectors or plasmids can be introduced, for example, but not limited to, by transfection, transformation or infection of host cells, such as, but not limited to, plant, mammalian, bacterial, yeast or insect cells. The introduction of the expression vector into the host cell can be carried out by any of the physical or biological methods to give rise to transformed or transfected cells. Such biological methods include, but are not limited to, the use of viral DNA and RNA vectors. The main advantage of physical methods is that they are not associated with oncogenic or pathological virus processes. However, physical methods are less accurate and often result in insertions of multiple copies, random integrations, disruption of own and foreign genetic sequences, as well as unpredictable expression. Among the most used viral vectors for the introduction of genes into mammalian cells, there are vectors of poxvirus, herpes simplex, adenovirus, vectors associated with adenovirus, etc. Therefore, another embodiment of the invention relates to an expression vector or a recombinant vector, hereinafter "vector of the invention", comprising the nucleotide sequences of the invention SEQ ID NO: 26 and / or SEQ ID NO : 27. The term "cloning vector", as used in the present description, refers to a DNA molecule in which another DNA fragment can be integrated, without losing the ability to replicate. Examples of expression vectors are, but are not limited to, plasmids, cosmids, DNA phages or artificial yeast chromosomes.
El término "vector de expresión", tal y como se utiliza en la presente descripción, se refiere a un vector de clonación adecuado para expresar un ácido nucleico que ha sido clonado en el mismo tras ser introducido en una célula, denominada célula huésped. Dicho ácido nucleico se encuentra, por lo general, unido operativamente a secuencias de control. The term "expression vector", as used herein, refers to a cloning vector suitable for expressing a nucleic acid that has been cloned therein after being introduced into a cell, called a host cell. Said nucleic acid is generally operatively linked to control sequences.
El término "vector recombinante", tal y como se utiliza en la presente descripción, se refiere a un vector adecuado para expresar un ácido nucleico que ha sido clonado en el mismo, de forma que la expresión del péptido neuroprotector se realiza directamente en el tejido o célula diana. Generalmente dicho vector es un virus, y es producido por la unión de diferentes fragmentos de ácidos nucleicos a partir de diferentes fuentes y cuya expresión da lugar a una partícula viral con capacidad infectiva compuesta característicamente de cápside proteica, genoma viral y proteínas asociadas al genoma viral; este virus está diseñado de tal forma que permite la expresión en el tejido o célula diana de las secuencias nucleotídicas o peptídicas de interés. La expresión en un tejido o célula de interés se realiza mediante la unión operativa del polinucléotido a secuencias de control, preferentemente secuencias de control específicas del tejido o célula donde se quiere expresar; preferentemente dichas secuencias de control son promotores o enhancers del SNC. Un vector recombinante según la invención puede, por tanto, emplearse tanto como herramienta biotecnológica para multiplicar el virus como emplearse en composiciones farmacéuticas como tratamiento farmacológico per se. Un vector recombinante típico se selecciona del grupo que consiste en un vector lentiviral, un vector adenoviral y/o un vector de virus adenoasociados.
El término "expresión" se refiere al proceso por el cual se sintetiza un polipéptido a partir de un polinucleótido. Incluye la transcripción del polinucleótido en un ARN mensajero (ARNm) y la traducción de dicho ARNm en una proteína o un polipéptido. La expresión puede tener lugar en una célula hospedadora, pero también mediante cualquier proceso de expresión proteica in vivo. The term "recombinant vector", as used herein, refers to a vector suitable for expressing a nucleic acid that has been cloned therein, so that the expression of the neuroprotective peptide is performed directly in the tissue. or target cell. Generally said vector is a virus, and is produced by the union of different fragments of nucleic acids from different sources and whose expression gives rise to a viral particle with infective capacity characteristically composed of protein capsid, viral genome and proteins associated with the viral genome. ; This virus is designed in such a way that it allows the expression in the target tissue or cell of the nucleotide or peptide sequences of interest. Expression in a tissue or cell of interest is carried out by the operative binding of the polynucleotide to control sequences, preferably specific control sequences of the tissue or cell where it is to be expressed; preferably said control sequences are promoters or enhancers of the CNS. A recombinant vector according to the invention can therefore be used both as a biotechnological tool to multiply the virus and be used in pharmaceutical compositions as a pharmacological treatment per se. A typical recombinant vector is selected from the group consisting of a lentiviral vector, an adenoviral vector and / or an adeno-associated virus vector. The term "expression" refers to the process by which a polypeptide is synthesized from a polynucleotide. It includes transcription of the polynucleotide into a messenger RNA (mRNA) and the translation of said mRNA into a protein or a polypeptide. Expression can take place in a host cell, but also by any process of protein expression in vivo.
El término "célula hospedadora" o "célula huésped", tal y como se utiliza en la presente descripción se refiere a cualquier organismo procariota o eucariota que es recipiente de un vector de expresión, de clonación o de cualquier otra molécula de ADN. The term "host cell" or "host cell", as used herein, refers to any prokaryotic or eukaryotic organism that is the recipient of an expression vector, cloning or any other DNA molecule.
Tal y como se utiliza en la presente memoria, una "célula hospedadora" o "célula huésped" incluye cualquier célula cultivable que puede ser modificada mediante la introducción de ADN no contenido de manera natural en la célula, de aquí en adelante "célula hospedadora de la invención". As used herein, a "host cell" or "host cell" includes any cultivable cell that can be modified by introducing non-naturally occurring DNA into the cell, hereinafter "host cell of the invention".
Preferiblemente, una célula hospedadora es aquella en la que el polinucleótido de la invención puede ser expresado, dando lugar a un polipéptido estable, modificado post- traduccionalmente y localizado en el compartimento subcelular apropiado. La elección de una célula hospedadora adecuada puede también estar influida por la elección de la señal de detección. Por ejemplo, el uso de construcciones con genes reporteros (por ejemplo, lacZ, luciferasa, timidina quinasa o la proteína verde fluorescente "GFP") puede proporcionar una señal seleccionare mediante la activación o inhibición de la transcripción del gen de interés en respuesta a una proteína reguladora de la transcripción. De cara a conseguir una selección o "screening" óptimo, el fenotipo de la célula hospedadora deberá ser considerado. Preferably, a host cell is one in which the polynucleotide of the invention can be expressed, giving rise to a stable polypeptide, post-translationally modified and located in the appropriate subcellular compartment. The choice of a suitable host cell may also be influenced by the choice of the detection signal. For example, the use of constructs with reporter genes (eg, lacZ, luciferase, thymidine kinase or the green fluorescent protein "GFP") may provide a signal to be selected by activating or inhibiting transcription of the gene of interest in response to a transcription regulatory protein. In order to achieve optimal screening or screening, the host cell phenotype should be considered.
Una célula hospedadora de la presente invención incluye células procariotas y eucariotas. Entre las procariotas se incluyen organismos Gram negativos (por ejemplo, Escherichia coli) o Gram positivos (por ejemplo, bacterias del género Bacillus). Las células procariotas se usarán, preferiblemente, para la propagación de la secuencia del control de la transcripción del vector que contiene el(los) polinucleótido(s) objeto(s) de la invención, lo que permitirá conseguir un mayor número de copias del vector conteniendo el(los) polinucleótido(s) objeto(s) de la invención. Entre las células hospedadoras procariotas adecuadas para la transformación de este vector se
encuentran, por ejemplo, pero sin limitarse a, E. coli, Bacillus subtilis, Salmonella typhimurium, y otras especies dentro de los géneros Pseudomonas, Streptomyces y Staphylococcus. Las células eucariotas incluyen, entre otras, células de levadura, células de plantas, células de hongos, células de insectos, células de mamífero, y células de organismos parásitos (por ejemplo, Trypanosomas). Tal y como se emplea en esta memoria, el término levadura no incluye sólo levadura en el sentido taxonómico estricto, es decir, organismos unicelulares, sino también hongos multicelulares similares a las levaduras u hongos filamentosos. Ejemplos de especies son Kluyveromyces lactis, Schizosaccharomyces pombe, y Ustilago maydis, con Saccharomyces cerevisiae y Pichia pastoris como organismos preferidos. Otras levaduras que pueden utilizarse en la producción de la(s) secuencia(s) polipeptídica(s) de la presente invención son Neurospora crassa, Aspergillus niger, Aspergillus nidulans, Candida tropicalis, y Hansenula polymorpha. Los sistemas de cultivo con células hospedadora de mamífero incluyen líneas celulares establecidas como las células COS, células L, células 3T3, células de ovario de hámster chino (CHO), células madre embrionarias, con las células BHK, HeK o HeLa como células preferidas. Las células eucariotas son, preferiblemente, utilizadas para la expresión del gen recombinante mediante la aplicación de la secuencia de regulación de la transcripción o el vector de la presente invención. A host cell of the present invention includes prokaryotic and eukaryotic cells. Prokaryotes include Gram negative (for example, Escherichia coli) or Gram positive organisms (for example, bacteria of the genus Bacillus). The prokaryotic cells will preferably be used for the propagation of the transcription control sequence of the vector containing the polynucleotide (s) object (s) of the invention, which will allow a greater number of copies of the vector to be achieved. containing the polynucleotide (s) object (s) of the invention. Among suitable prokaryotic host cells for the transformation of this vector are found, for example, but not limited to E. coli, Bacillus subtilis, Salmonella typhimurium, and other species within the genera Pseudomonas, Streptomyces and Staphylococcus. Eukaryotic cells include, among others, yeast cells, plant cells, fungal cells, insect cells, mammalian cells, and parasitic organism cells (eg, Trypanosomas). As used herein, the term "yeast" does not only include yeast in the strict taxonomic sense, that is, unicellular organisms, but also multicellular fungi similar to yeasts or filamentous fungi. Examples of species are Kluyveromyces lactis, Schizosaccharomyces pombe, and Ustilago maydis, with Saccharomyces cerevisiae and Pichia pastoris as preferred organisms. Other yeasts that can be used in the production of the polypeptide sequence (s) of the present invention are Neurospora crassa, Aspergillus niger, Aspergillus nidulans, Candida tropicalis, and Hansenula polymorpha. Culture systems with mammalian host cells include established cell lines such as COS cells, L cells, 3T3 cells, Chinese hamster ovary (CHO) cells, embryonic stem cells, with BHK, HeK or HeLa cells as preferred cells. Eukaryotic cells are preferably used for the expression of the recombinant gene by the application of the transcriptional regulation sequence or the vector of the present invention.
Un cultivo de células hospedadoras se refiere al proceso de mantener y crecer las células hospedadoras. Los cultivos celulares necesitan condiciones controladas de temperatura, pH, porcentajes de gases (oxígeno y dióxido de carbono), así como la presencia de los nutrientes adecuados para permitir la viabilidad y la división celular. Los cultivos celulares pueden desarrollarse en sustratos sólidos como el agar, o en medio líquido, lo que permite cultivar grandes cantidades de células en suspensión. La elección de un tipo celular y otro para la propagación del vector de la invención depende de las características de éste, tal y como es conocido en el estado de la técnica. Además, cuando el vector de la invención es un virus, los cultivos virales además precisan de células hospedadoras que aporten la maquinaria celular y metabólica de la que carecen. Esto permite que el virus pueda no sólo mantenerse sino también multiplicarse por lo que la expresión del polinucleótido de la invención en dicho cultivo celular puede utilizarse para propagar el vector de la invención.
De esta manera, otro objeto de la invención es la célula que contiene al menos uno de los polinucleótidos de la invención, de ahora en adelante "célula hospedadora de la invención". Una realización particular de la invención se refiere a la célula hospedadora de la invención que contiene al menos uno de los polinucleótidos de la invención SEQ ID NO: 26 ó SEQ ID NO: 27. A culture of host cells refers to the process of maintaining and growing host cells. Cell cultures need controlled conditions of temperature, pH, percentages of gases (oxygen and carbon dioxide), as well as the presence of adequate nutrients to allow viability and cell division. Cell cultures can be grown on solid substrates such as agar, or in a liquid medium, allowing large numbers of suspended cells to be cultured. The choice of one cell type and another for the propagation of the vector of the invention depends on its characteristics, as is known in the state of the art. In addition, when the vector of the invention is a virus, viral cultures also require host cells that provide the cellular and metabolic machinery they lack. This allows the virus not only to be maintained but also to multiply so that the expression of the polynucleotide of the invention in said cell culture can be used to propagate the vector of the invention. Thus, another object of the invention is the cell that contains at least one of the polynucleotides of the invention, hereafter referred to as the "host cell of the invention". A particular embodiment of the invention relates to the host cell of the invention containing at least one of the polynucleotides of the invention SEQ ID NO: 26 or SEQ ID NO: 27.
Así, otra realización de la invención se refiere al uso de la célula hospedadora de la invención para obtener el péptido neuroprotector de la invención, para reproducir y mantener el polinucleótido de la invención y/o para obtener el vector de la invención. Thus, another embodiment of the invention relates to the use of the host cell of the invention to obtain the neuroprotective peptide of the invention, to reproduce and maintain the polynucleotide of the invention and / or to obtain the vector of the invention.
Métodos para la obtención del polipéptido neuroprotector de la invención son conocidos para el experto en el estado de la técnica. Estos comprenden tanto los métodos de cultivo de la célula hospedadora de la invención y posterior purificación del péptido, como métodos de síntesis química descritos anteriormente. Methods for obtaining the neuroprotective polypeptide of the invention are known to the person skilled in the art. These comprise both the culture methods of the host cell of the invention and subsequent purification of the peptide, as well as chemical synthesis methods described above.
El término "purificar" tal y como se emplea en la descripción, se refiere al aislamiento y concentración del polipéptido de la invención respecto del resto de polipéptidos presentes en el medio de cultivo y de la célula hospedadora de la invención. El aislamiento del polipéptido de la invención puede llevarse a cabo mediante técnicas de solubilidad diferencial, cromatografía, electroforesis o isoelectroenfoque. Las técnicas de cromatografía pueden estar basadas en el peso molecular, la carga iónica (basada en el estado de ionización de los aminoácidos en las condiciones de trabajo), la afinidad de la proteína por determinadas matrices o columnas cromatográficas, o mediante etiquetas de purificación, y puede realizarse en columna, en papel o en placa. El aislamiento de la proteína puede realizarse, por ejemplo, mediante precipitación con sulfato amónico, cromatografía líquida rápida (FPLC, del inglés "Fast Protein Liquid Cromatography") o cromatografía líquida de alta eficacia (HPLC, del inglés "High Performance Liquid Chromatography"), empleando sistemas automatizados que reducen notablemente el tiempo de purificación e incrementan el rendimiento de la purificación. The term "purify" as used in the description refers to the isolation and concentration of the polypeptide of the invention with respect to the rest of polypeptides present in the culture medium and the host cell of the invention. The isolation of the polypeptide of the invention can be carried out by differential solubility, chromatography, electrophoresis or isoelectric focusing techniques. Chromatography techniques can be based on molecular weight, ionic charge (based on the ionization state of amino acids in working conditions), protein affinity for certain chromatographic matrices or columns, or by purification labels, and can be done in column, on paper or on plate. Protein isolation can be carried out, for example, by precipitation with ammonium sulfate, fast liquid chromatography (FPLC) or "High Performance Liquid Chromatography" (HPLC). , using automated systems that significantly reduce the purification time and increase the purification performance.
La expresión "etiqueta de purificación" o "etiqueta de afinidad", tal y como se utiliza en la presente descripción se refiere a una secuencia de aminoácidos que ha sido
incorporada (generalmente, por ingeniería genética) a una proteína para facilitar su purificación. La etiqueta, que puede ser otra proteína o una secuencia corta de aminoácidos, permite la purificación de la proteína, por ejemplo, mediante cromatografía de afinidad. Etiquetas de purificación conocidas en el estado de la técnica son, por ejemplo, pero sin limitarse a, el péptido de unión a calmodulina (CBP), la enzima glutatión-S-transferasa (GST) o una cola de residuos de histidina. The term "purification tag" or "affinity tag", as used herein, refers to an amino acid sequence that has been incorporated (generally, by genetic engineering) into a protein to facilitate its purification. The tag, which can be another protein or a short amino acid sequence, allows the protein to be purified, for example, by affinity chromatography. Purification tags known in the state of the art are, for example, but not limited to, calmodulin-binding peptide (CBP), glutathione-S-transferase enzyme (GST) or a tail of histidine residues.
Otra realización de la invención se refiere al uso de la célula primera hospedadora de la invención para la obtención del polipéptido de la invención. Preferentemente, la célula hospedadora de la invención es una bacteria, más preferentemente Escherichia coli. Another embodiment of the invention relates to the use of the first host cell of the invention for obtaining the polypeptide of the invention. Preferably, the host cell of the invention is a bacterium, more preferably Escherichia coli.
Otro objeto de la invención se refiere a una composición farmacéutica o medicamento, de ahora en adelante "composición farmacéutica de la invención", que comprende al menos uno de los siguientes: i. el péptido neuroprotector de la invención, Another object of the invention relates to a pharmaceutical composition or medicament, hereinafter "pharmaceutical composition of the invention", comprising at least one of the following: i. the neuroprotective peptide of the invention,
¡i. el polinucleótido de la invención, I. the polynucleotide of the invention,
Ni. el vector de la invención. En una realización más preferente la composición farmacéutica comprende el péptido neuroprotector de la invención, y de forma más preferentemente comprende los péptidos con secuencia SEQ ID NO: 1 y/o SEQ ID NO: 6. Neither. The vector of the invention. In a more preferred embodiment, the pharmaceutical composition comprises the neuroprotective peptide of the invention, and more preferably comprises peptides with sequence SEQ ID NO: 1 and / or SEQ ID NO: 6.
Otra realización es el uso del péptido neuroprotector de la invención en la fabricación de una composición farmacéutica o medicamento. Another embodiment is the use of the neuroprotective peptide of the invention in the manufacture of a pharmaceutical composition or medicament.
En otra realización más preferente la composición farmacéutica comprende el vector de la invención, de tal modo que el péptido de la invención pueda expresarse directamente en los tejidos y/o células diana deseados. En una realización aún más preferente el vector de la invención es un vector lentiviral, un vector adenoviral y/o un vector de virus adenoasociados. In another more preferred embodiment, the pharmaceutical composition comprises the vector of the invention, such that the peptide of the invention can be expressed directly in the desired tissues and / or target cells. In an even more preferred embodiment, the vector of the invention is a lentiviral vector, an adenoviral vector and / or an adeno-associated virus vector.
Otra realización es el uso del vector de la invención en la fabricación de una composición farmacéutica o medicamento.
La presente invención también hace referencia al péptido neuroprotector de la invención, así como el polinucleótido que lo codifica y el vector que lo expresa, para su uso en medicina. Así mismo, la presente invención también hace referencia al uso del péptido neuroprotector objeto de la invención, así como al polinucleótido de la invención, el vector de la invención y/o la célula hospedadora de la invención para la preparación o fabricación de una composición farmacéutica o medicamento. Another embodiment is the use of the vector of the invention in the manufacture of a pharmaceutical composition or medicament. The present invention also refers to the neuroprotective peptide of the invention, as well as the polynucleotide that encodes it and the vector that expresses it, for use in medicine. Likewise, the present invention also refers to the use of the neuroprotective peptide object of the invention, as well as to the polynucleotide of the invention, the vector of the invention and / or the host cell of the invention for the preparation or manufacture of a pharmaceutical composition. or medication
En la presente invención, el término: "medicamento o composición farmacéutica", tal y como se usa hace referencia a cualquier sustancia usada para prevención, alivio, tratamiento y/o curación de enfermedades en el hombre y/o los animales. En el contexto de la presente invención se refiere a una composición farmacéutica o un medicamento caracterizado por comprender el péptido de la invención o los polinucleótidos y vectores que permiten su expresión en el organismo a tratar, de forma que el péptido neuroprotector ejerza su función en el tejido/célula diana. In the present invention, the term: "medicament or pharmaceutical composition", as used refers to any substance used for prevention, relief, treatment and / or cure of diseases in man and / or animals. In the context of the present invention it refers to a pharmaceutical composition or a medicament characterized by comprising the peptide of the invention or the polynucleotides and vectors that allow its expression in the organism to be treated, so that the neuroprotective peptide exerts its function in the target tissue / cell.
En una realización preferida, la composición farmacéutica o medicamento de la invención además comprende un vehículo o excipiente farmacéuticamente aceptable. En una realización más preferida, la composición farmacéutica o medicamento de la invención además comprende un adyuvante. En una realización aún más preferida, la composición farmacéutica o medicamento de la invención además comprende otro principio activo (principio activo adicional). In a preferred embodiment, the pharmaceutical composition or medicament of the invention further comprises a pharmaceutically acceptable carrier or excipient. In a more preferred embodiment, the pharmaceutical composition or medicament of the invention further comprises an adjuvant. In an even more preferred embodiment, the pharmaceutical composition or medicament of the invention further comprises another active ingredient (additional active ingredient).
En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad del agente o compuesto capaz de aumentar la supervivencia neuronal en situaciones de excitotoxicidad, calculada para producir el efecto deseado y, en general, vendrá determinada, para el caso de una composición terapéutica, por las características propias de los compuestos, la ruta, forma y frecuencia de administración de los mismos, y otros factores, incluyendo la edad, estado del paciente, así como la severidad de la alteración o trastorno. In the sense used in this description, the term "therapeutically effective amount" refers to the amount of the agent or compound capable of increasing neuronal survival in situations of excitotoxicity, calculated to produce the desired effect and, in general, will be determined, to the case of a therapeutic composition, due to the characteristics of the compounds, the route, form and frequency of administration thereof, and other factors, including the age, condition of the patient, as well as the severity of the alteration or disorder.
El término "excipiente" hace referencia a una sustancia que ayuda a la absorción de los elementos de la composición de la invención, estabiliza dichos elementos y activa o ayuda a la preparación de la composición en el sentido de darle consistencia o aportar sabores que la hagan más agradable. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos, como por ejemplo es el caso de
almidones, azúcares o celulosas, la función de endulzar, la función como colorante, la función de protección de la composición, como por ejemplo, para aislarla del aire y/o la humedad, la función de relleno de una pastilla, cápsula o cualquier otra forma de presentación, como por ejemplo, es el caso del fosfato de calcio dibásico, la función desintegradora para facilitar la disolución de los componentes y su absorción en el intestino, sin excluir otro tipo de excipientes no mencionados en este párrafo. The term "excipient" refers to a substance that helps the absorption of the elements of the composition of the invention, stabilizes said elements and activates or aids the preparation of the composition in the sense of giving it consistency or providing flavors that make it nicer. Thus, the excipients could have the function of keeping the ingredients together, such as in the case of starches, sugars or cellulose, the function of sweetening, the function as a dye, the function of protection of the composition, for example, to isolate it from air and / or moisture, the filling function of a tablet, capsule or any other Form of presentation, as for example, is the case of dibasic calcium phosphate, the disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph.
El término "vehículo", al igual que el excipiente, hace referencia a una sustancia que se emplea en la composición farmacéutica o medicamento para diluir cualquiera de los componentes de la presente invención comprendidos en ella hasta un volumen o peso determinado. El "vehículo farmacológicamente aceptable" es una sustancia inerte o de acción análoga a cualquiera de los elementos de la presente invención. La función del vehículo es facilitar la incorporación de otros elementos, permitir una mejor dosificación y administración o dar consistencia y forma a la composición. Cuando la forma de presentación es líquida, el vehículo farmacológicamente aceptable es el diluyente. The term "vehicle", like the excipient, refers to a substance that is used in the pharmaceutical composition or medicament to dilute any of the components of the present invention comprised therein to a certain volume or weight. The "pharmacologically acceptable carrier" is an inert substance or action analogous to any of the elements of the present invention. The function of the vehicle is to facilitate the incorporation of other elements, allow a better dosage and administration or give consistency and form to the composition. When the form of presentation is liquid, the pharmacologically acceptable carrier is the diluent.
En esta memoria, el término "adyuvante" se refiere a un agente que aumenta el efecto neuroprotector del péptido de la invención cuando es suministrado de forma conjunta a éste o bien formando parte de un mismo protocolo de tratamiento. Here, the term "adjuvant" refers to an agent that enhances the neuroprotective effect of the peptide of the invention when it is delivered jointly to it or as part of the same treatment protocol.
En otra realización particular, dicha composición farmacéutica se prepara en forma de una forma sólida o suspensión acuosa, en un diluyente farmacéuticamente aceptable. La composición terapéutica proporcionada por esta invención puede ser administrada por cualquier vía de administración apropiada, para lo cual dicha composición se formulará en la forma farmacéutica adecuada a la vía de administración elegida. En una realización particular, la administración de la composición terapéutica proporcionada por esta invención se efectúa por vía parenteral, por vía oral, por vía intraperitoneal, subcutánea, etc. Una revisión de las distintas formas farmacéuticas de administración de medicamentos y de los excipientes necesarios para la obtención de las mismas puede encontrarse, por ejemplo, en el "Tratado de Farmacia Galénica", C. Faulí i Trillo, 1993, Luzán 5, S.A. Ediciones, Madrid.
Otra realizaicón de la presente invención es el uso de la composición farmacéutica o medicamento de la invención para la prevención y/o tratamiento de la muerte celular inducida por excitotoxicidad. La "muerte celular inducida por excitotoxicidad" o "excitotoxicidad", como se ha descrito anteriormente en esta invención, es un proceso patológico por el cual las neuronas son dañadas y destruidas por las sobreactivaciones de receptores del neurotransmisor excitatorio glutamato, como el receptor NMDA (en inglés, N-methyl-D- aspartate receptor) y los receptores AMPA (en inglés, a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptor) y kainato. Las excitotoxinas como el NMDA y el ácido kaínico que se unen a estos receptores, así como altos niveles patológicos de glutamato, pueden provocar la excitotoxicidad al permitir que niveles elevados de iones de calcio entren en la célula. La entrada de Ca2+ en las células activa una serie de enzimas, incluyendo las fosfolipasas, las endonucleasas, y proteasas tales como la calpaína. Estas enzimas continúan dañando estructuras celulares como las que componen el citoesqueleto, la membrana y el ADN. In another particular embodiment, said pharmaceutical composition is prepared in the form of a solid form or aqueous suspension, in a pharmaceutically acceptable diluent. The therapeutic composition provided by this invention may be administered by any appropriate route of administration, for which said composition will be formulated in the pharmaceutical form appropriate to the route of administration chosen. In a particular embodiment, the administration of the therapeutic composition provided by this invention is carried out parenterally, orally, intraperitoneally, subcutaneously, etc. A review of the different pharmaceutical forms of drug administration and of the excipients necessary to obtain them can be found, for example, in the "Galician Pharmacy Treaty", C. Faulí i Trillo, 1993, Luzán 5, SA Ediciones , Madrid. Another embodiment of the present invention is the use of the pharmaceutical composition or medicament of the invention for the prevention and / or treatment of cell death induced by excitotoxicity. "Cell death induced by excitotoxicity" or "excitotoxicity", as described earlier in this invention, is a pathological process by which neurons are damaged and destroyed by overactivations of glutamate excitatory neurotransmitter receptors, such as the NMDA receptor ( in English, N-methyl-D-aspartate receptor) and AMPA receptors (in English, a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptor) and kainate. Excitotoxins such as NMDA and kainic acid that bind to these receptors, as well as high pathological levels of glutamate, can cause excitotoxicity by allowing elevated levels of calcium ions to enter the cell. The entry of Ca 2+ into cells activates a series of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes continue to damage cellular structures such as those that make up the cytoskeleton, membrane and DNA.
Una realización preferente de la presente invención, hace referencia al uso de la composición farmacéutica o medicamento de la invención para la prevención y/o tratamiento del daño neuronal causado por una patología del SNC asociada a excitotoxicidad, como pueden ser accidentes cerebro-vasculares (ACVs, como el ictus isquémico o el ictus hemorrágico), lesiones cerebrales traumáticas (incluidas las lesiones por neurocirugía), hipoxia, hipoglucemia, epilepsia, tumores del SNC y su tratamiento oncológico, patologías crónicas del sistema nervioso central asociadas con un proceso de excitotoxicidad (enfermedades neurodegenerativas como Alzheimer, Parkinson, Huntington y esclerosis lateral amiotrófica o ELA), etc. La excitotoxicidad también es crítica en patologías oculares como el glaucoma, la retinopatía diabética, neuropatía óptica isquémica y traumatismos del nervio óptico. Preferentemente, el uso de la composición farmacéutica es para prevenir o tratar un ACV. A preferred embodiment of the present invention refers to the use of the pharmaceutical composition or medicament of the invention for the prevention and / or treatment of neuronal damage caused by a CNS pathology associated with excitotoxicity, such as cerebrovascular accidents (CVAs). such as ischemic stroke or hemorrhagic stroke), traumatic brain injuries (including neurosurgery injuries), hypoxia, hypoglycemia, epilepsy, CNS tumors and their cancer treatment, chronic central nervous system pathologies associated with an excitotoxicity process (diseases neurodegeneratives such as Alzheimer's, Parkinson's, Huntington and amyotrophic lateral sclerosis or ALS), etc. Excitotoxicity is also critical in eye diseases such as glaucoma, diabetic retinopathy, ischemic optic neuropathy and optic nerve trauma. Preferably, the use of the pharmaceutical composition is to prevent or treat a stroke.
La expresión: "accidentes cerebro-vasculares" o "ACVs", tal y como se emplea en la presente invención, hace referencia a un suceso que provoca que el flujo de sangre a una parte del cerebro se detenga o limite causando muerte celular. Los ACVs se clasifican en función del mecanismo de bloqueo del flujo sanguíneo, así se habla de ictus isquémico cuando el vaso sanguíneo se encuentra bloqueado por la formación de
un trombo (accidente cerebrovascular trombótico) o bien el trombo procede de otra parte del cuerpo (embolia cerebral o accidente cerebrovascular embólico). Por otro lado, se habla de ictus hemorrágico cuando la interrupción del flujo sanguíneo es por una hemorragia, provocada por la rotura de un vaso sanguíneo por traumatismo o por defectos congénitos; los defectos congénitos causantes de un ictus hemorrágico pueden ser, entre otros, el aneurisma (un área débil en la pared de un vaso sanguíneo que provoca que éste protruya o se abombe) y la malformación arteriovenosa o MAV (una conexión anormal entre las arterias y las venas en el cerebro). Preferentemente, las ACVs se seleccionan de entre las siguientes: ictus o infarto cerebral, ataque isquémico transitorio, hemorragias intracerebrales, incluyendo la subaracnoidea y la demencia vascular. The expression: "cerebrovascular accidents" or "ACVs", as used in the present invention, refers to an event that causes blood flow to a part of the brain to stop or limit causing cell death. LCAs are classified according to the mechanism of blood flow block, so we speak of ischemic stroke when the blood vessel is blocked by the formation of a thrombus (thrombotic stroke) or the thrombus comes from another part of the body (cerebral embolism or embolic stroke). On the other hand, there is talk of hemorrhagic stroke when the interruption of blood flow is due to hemorrhage, caused by the rupture of a blood vessel due to trauma or congenital defects; Congenital defects causing a hemorrhagic stroke can be, among others, the aneurysm (a weak area in the wall of a blood vessel that causes it to bulge or bulge) and arteriovenous malformation or AVM (an abnormal connection between the arteries and veins in the brain) Preferably, stroke is selected from the following: stroke or stroke, transient ischemic attack, intracerebral hemorrhages, including subarachnoid and vascular dementia.
La expresión "lesiones cerebrales traumáticas", tal y como se emplea en la presente invención, hace referencia a un daño provocado al cerebro provocado por un golpe o una violenta sacudida a la cabeza. Las lesiones se clasifican en lesiones penetrantes y lesiones cerradas de cabeza. Las lesiones penetrantes se producen por la introducción de un objeto ajeno en el cerebro (como por ejemplo, una bala o el bisturí de un neurocijano) que causa daños a regiones específicas del mismo a lo largo de la trayectoria de penetración del objeto. Las lesiones cerradas de cabeza incluyen aquellas derivadas de golpes en la cabeza, como por ejemplo, un accidente de coche o una caída. The term "traumatic brain injuries", as used in the present invention, refers to damage caused to the brain caused by a blow or a violent head shake. Lesions are classified as penetrating injuries and closed head injuries. Penetrating injuries are caused by the introduction of a foreign object in the brain (such as a bullet or the scalpel of a neurosurgeon) that causes damage to specific regions of the brain along the path of penetration of the object. Closed head injuries include those resulting from blows to the head, such as a car accident or a fall.
La expresión "hipoxia", tal y como se emplea en la presente invención, hace referencia a aquella situación en la que el organismo o una parte del mismo, como puede ser el SNC, no recibe un aporte suficiente de oxígeno. Puede producirse como consecuencia de diversas circunstancias como la isquemia; la hipoxia hipoxémica que puede ser causada por la alcalosis respiratoria, por el corto-circuito ("shunting") de la circulación sanguínea fisiológico o patológico, y/o por problemas de ventilación pulmonar debidos a lesiones pulmonares, alteración de la relación ventilación perfusión (V/Q ratio) y/o circunstancias físicas como la exposición a grandes altitudes (alpinismo) o profundidades (buceo); la alteración de la tasa de disociación del 02 de la hemoglobina; la anemia; el envenenamiento por monóxido de carbono; el envenenamiento por cianuro; y/o la ingesta de algunos compuestos químicos (como el nitrito sódico) o fármacos.
La expresión "hipoglucemia", tal y como se emplea en la presente invención, hace referencia a una concentración de glucosa en la sangre anormalmente baja, asociada generalmente a alteraciones y/o pérdida del conocimiento. El normal funcionamiento del SNC y las neuronas es dependiente de un aporte continuo de glucosa; si la cantidad de glucosa en sangre cae el SNC es uno de los primeros órganos afectados. El conjunto de los efectos sobre el cerebro y el SNC son conocidos como neuroglicopenia e incluyen: la reducción de la eficiencia mental (valores por debajo de 65mg/dl de la concentración de glucosa en sangre), deterioro en las capacidades motoras y de razonamiento (valores por debajo de 40mg/dl), convulsiones, e incluso coma (valores por debajo de 10mg/dl). La hipoglucemia severa o prolongada puede producir daños permanentes en el SNC, lo que incluye la alteración de la función cognitiva, del control motor, e incluso de la consciencia. Las causas de la hipoglucemia pueden ser múltiples, y se incluyen, entre otras: el ayuno prolongado voluntario o secundario a una enfermedad (como la diarrea), la hiperinsulinemia (debida a un fallo en la administración de insulina de por ejemplo un individuo con diabetes, hiperinsulinemia congénita, tumores pancreáticos secretores de insulina, hipoglucemia reactiva, síndrome idiopático postprandial), la sepsis, la enfermedad de Addison, el hipopituitarismo congénito, las enfermedades metabólicas (enfermedad de almacenamiento de glucógeno, enfermedades de oxidación de los ácidos grasos, etc), la ingestión de ciertos productos químicos (alcohol, propanolol, sulfonilureas, algunos medicamentos), la insuficiencia adrenal adquirida, etc. The term "hypoxia", as used in the present invention, refers to that situation in which the organism or a part thereof, such as the CNS, does not receive a sufficient supply of oxygen. It can occur as a result of various circumstances such as ischemia; hypoxemic hypoxia that can be caused by respiratory alkalosis, by the short-circuit ("shunting") of the physiological or pathological blood circulation, and / or by pulmonary ventilation problems due to lung lesions, alteration of the perfusion ventilation ratio ( V / Q ratio) and / or physical circumstances such as exposure to high altitudes (mountaineering) or depths (diving); the alteration of the dissociation rate of 0 2 of hemoglobin; anemia carbon monoxide poisoning; cyanide poisoning; and / or the intake of some chemical compounds (such as sodium nitrite) or drugs. The term "hypoglycemia", as used in the present invention, refers to an abnormally low blood glucose concentration, generally associated with alterations and / or loss of consciousness. The normal functioning of the CNS and neurons is dependent on a continuous supply of glucose; If the amount of blood glucose falls the CNS is one of the first organs affected. The set of effects on the brain and the CNS are known as neuroglycopenia and include: reduced mental efficiency (values below 65mg / dl of blood glucose concentration), impaired motor and reasoning abilities ( values below 40mg / dl), seizures, and even coma (values below 10mg / dl). Severe or prolonged hypoglycemia can cause permanent damage to the CNS, which includes impaired cognitive function, motor control, and even consciousness. The causes of hypoglycemia can be multiple, and include, but are not limited to: prolonged voluntary or secondary fasting to a disease (such as diarrhea), hyperinsulinemia (due to a failure in the administration of insulin of for example an individual with diabetes , congenital hyperinsulinemia, insulin-secreting pancreatic tumors, reactive hypoglycemia, idiopathic postprandial syndrome), sepsis, Addison's disease, congenital hypopituitarism, metabolic diseases (glycogen storage disease, fatty acid oxidation diseases, etc.) , the ingestion of certain chemicals (alcohol, propanolol, sulfonylureas, some medications), acquired adrenal insufficiency, etc.
La expresión "epilepsia", tal y como se emplea en la presente invención, hace referencia a un trastorno provocado por un desequilibrio en la actividad eléctrica de las neuronas de alguna zona del cerebro. Se caracteriza por uno o varios trastornos neurológicos que dejan una predisposición en el cerebro a padecer convulsiones recurrentes, que suelen dar lugar a consecuencias neurobiológicas, cognitivas y psicológicas. El papel de la muerte inducida por excitotoxicidad en la epilepsia está asociado con la activación persistente de la ruta del glutamato, los receptores NMDA y de kainato en las diferentes crisis epilépticas. The term "epilepsy", as used in the present invention, refers to a disorder caused by an imbalance in the electrical activity of neurons in some area of the brain. It is characterized by one or several neurological disorders that leave a predisposition in the brain to suffer from recurrent seizures, which usually lead to neurobiological, cognitive and psychological consequences. The role of excitotoxicity-induced death in epilepsy is associated with persistent activation of the glutamate, NMDA and kainate pathways in different epileptic seizures.
La expresión "tumores del sistema nervioso central", tal y como se emplea en la presente invención, hace referencia a una masa de células transformadas, con crecimiento y multiplicación anormales localizada en el encéfalo y/o médula espinal. Su origen puede estar en las células cerebrales, en las membranas alrededor del
cerebro (meninges), o en los nervios o glándulas de la cabeza. El tratamiento de los tumores mediante los tratamientos habituales (tratamiento oncológico) suele conllevar la muerte celular de los tejidos circundantes sanos, tanto si se trata del uso de quimioterapéuticos como radiación (efecto by-stander). The expression "tumors of the central nervous system", as used in the present invention, refers to a mass of transformed cells, with abnormal growth and multiplication located in the brain and / or spinal cord. Its origin may be in the brain cells, in the membranes around the brain (meninges), or in the nerves or glands of the head. The treatment of tumors through the usual treatments (cancer treatment) usually leads to cell death of healthy surrounding tissues, whether it is the use of chemotherapeutics or radiation (by-stander effect).
La expresión "patologías crónicas del sistema nervioso central", tal y como se emplea en la presente invención hace referencia a un conjunto de enfermedades que afectan principalmente al encéfalo y/o médula espinal en su patología y cuyo desarrollo en el tiempo es prolongado. Entre estas enfermedades se encuentran las enfermedades neurodegenerativas como el Alzheimer, el Parkinson, el Huntington o la esclerosis lateral amiotrófica (ELA). En todas ellas se ha visto la implicación del mecanismo de supervivencia celular basado en la ruta de señalización BDNF/TrkB, en la que el péptido neuroprotector de la invención interfiere aumentando el tiempo de respuesta pro-supervivencia de la misma. The expression "chronic pathologies of the central nervous system", as used in the present invention refers to a set of diseases that mainly affect the brain and / or spinal cord in its pathology and whose development over time is prolonged. Among these diseases are neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington or amyotrophic lateral sclerosis (ALS). In all of them, the involvement of the cell survival mechanism based on the BDNF / TrkB signaling pathway, in which the neuroprotective peptide of the invention interferes with increasing the pro-survival response time thereof, has been seen.
La expresión "glaucoma", tal y como se emplea en la presente invención, hace referencia a una patología ocular que se caracteriza por el aumento patológico de la presión infraocular, por falta de drenaje del humor acuoso, y que deriva finalmente en una neuropatía óptica que se caracteriza por la pérdida progresiva de las fibras nerviosas del nervio óptico y cambios en su aspecto. The term "glaucoma", as used in the present invention, refers to an ocular pathology that is characterized by the pathological increase in infraocular pressure, for lack of drainage of aqueous humor, and which ultimately results in optic neuropathy. It is characterized by the progressive loss of nerve fibers of the optic nerve and changes in their appearance.
La expresión "retinopatía diabética", tal y como se emplea en la presente invención, hace referencia a una complicación ocular de la diabetes que está causada por el deterioro de los vasos sanguíneos que irrigan la retina; el daño en los vasos sanguíneos puede acompañarse de proliferación de tejido fibroso en la retina, lo que conlleva un deterioro de la visión. The term "diabetic retinopathy", as used in the present invention, refers to an ocular complication of diabetes that is caused by the deterioration of blood vessels that supply the retina; Damage to the blood vessels can be accompanied by proliferation of fibrous tissue in the retina, which leads to impaired vision.
La expresión "neuropatía óptica isquémica", tal y como se emplea en la presente invención, hace referencia a una pérdida repentina de la visión central, la visión lateral o ambas debido a una disminución o interrupción del flujo sanguíneo hacia el nervio óptico. The term "ischemic optic neuropathy", as used in the present invention, refers to a sudden loss of central vision, lateral vision or both due to a decrease or interruption of blood flow to the optic nerve.
Otra realización preferente de la presente invención, hace referencia al uso de la composición farmacéutica o medicamento de la invención para la prevención y/o tratamiento del daño neuronal causado por un ACV. En una realización aún más preferente el ACV es un ictus isquémico.
Otra realización preferente de la presente invención, hace referencia al uso de la composición farmacéutica o medicamento de la invención para la prevención y/o tratamiento del daño neuronal causado por una lesión cerebral traumática. Another preferred embodiment of the present invention refers to the use of the pharmaceutical composition or medicament of the invention for the prevention and / or treatment of neuronal damage caused by a stroke. In an even more preferred embodiment the LCA is an ischemic stroke. Another preferred embodiment of the present invention refers to the use of the pharmaceutical composition or medicament of the invention for the prevention and / or treatment of neuronal damage caused by a traumatic brain injury.
Otra realización preferente de la presente invención, hace referencia al uso de la composición farmacéutica o medicamento de la invención, caracterizado por que se emplea sólo o en combinación con otros medicamentos para prevenir y/o tratar el daño causado en el SNC por exocitotoxicidad, y más preferentemente, para prevenir y/o tratar el ictus isquémico. Por ejemplo, y de manera no limitante puede hallarse en combinación con: medicamentos anticoagulantes (como heparina, warfarina, ácido acetilsalicílico, clopidogrel, acenocumarol, dabigatrán, rivaroxaban, apixaban, fondaparinux, etc.), medicamentos antihipertensivos (como captopril, enalapril, lisinopril, ramipril, valsartán, telmisartán, losartán, irbesartán, olmesartán, acetazolamida, vorzolamida, cetoconazol, amilorida, triamtereno, espironolactona, canrenoato, eplerenona, manitol, alprenolol, bucindolol, carteolol, carvedilol, labetalol, nadolol, penbutolol, pindolol, propranolol, timolol, sotalol, acebutolol, atenolol, betaxolol, bisoprolol, celiprolol, esmolol, metoprolol, nebivolol, butaxaminam, dihidropiridinas (bepridilo, mibefradilo, amlodipino, felodipino, nicardipino) y no dihidropiridinas, etc.), medicamentos trombolíticos (como el activador del plasminógeno tisular (tPA), lanoteplasa, reteplasa, estafilocinasa, estreptocinasa (SK), tenecteplasa, urocinasa, etc), también se incluyen aquí otros péptidos conocidos con propiedades neuroprotectoras, como Tat-NR2B9c o NA-1. En una realización preferente, la composición farmacéutica o medicamento de la invención se usa en medicina. Preferentemente, se usa en la prevención y/o tratamiento del daño neuronal. Aún más preferentemente, dicho daño neuronal es causado por una patología del SNC asociada a excitotoxicidad. Y más preferentemente aún, la excitotoxicidad está causada por un ACV, y más preferentemente aún por un ictus isquémico. Another preferred embodiment of the present invention refers to the use of the pharmaceutical composition or medicament of the invention, characterized in that it is used alone or in combination with other medicaments to prevent and / or treat CNS damage caused by exocytotoxicity, and more preferably, to prevent and / or treat ischemic stroke. For example, and in a non-limiting way it can be found in combination with: anticoagulant medications (such as heparin, warfarin, acetylsalicylic acid, clopidogrel, acenocoumarol, dabigatran, rivaroxaban, apixaban, fondaparinux, etc.), antihypertensive medications (such as captopril, enalapril, lisinpril, lisinprin, , ramipril, valsartan, telmisartan, losartan, irbesartan, olmesartan, acetazolamide, vorzolamide, ketoconazole, amiloride, triamterene, spironolactone, canrenoate, eplerenone, mannitol, alprenolol, bucindolol, carteolol, carvedilol, pyrololol, pyrololol, pyrololol, pyrololol , sotalol, acebutolol, atenolol, betaxolol, bisoprolol, celiprolol, esmolol, metoprolol, nebivolol, butaxaminam, dihydropyridines (bepridyl, mibefradil, amlodipine, felodipine, nicardipine) and non-dihydropyridisbolic thrombolyroid drugs, etc.) (tPA), lanoteplase, reteplasa, staphylokinase, streptokinase (SK), tenecteplase, urokinase, etc.) Other known peptides with neuroprotective properties, such as Tat-NR2B9c or NA-1, are also included here. In a preferred embodiment, the pharmaceutical composition or medicament of the invention is used in medicine. Preferably, it is used in the prevention and / or treatment of neuronal damage. Even more preferably, said neuronal damage is caused by a CNS pathology associated with excitotoxicity. And more preferably, the excitotoxicity is caused by a stroke, and more preferably even by an ischemic stroke.
Otra realización de la presente invención hace referencia a un método para la prevención y/o el tratamiento del daño neuronal caracterizado por comprender la administración de una cantidad terapéuticamente efectiva de la composición farmacéutica de la invención. Aún más preferentemente, dicho daño neuronal es
causado por una patología del SNC asociada a excitotoxicidad. Preferentemente, dicho daño neuronal es causado por un ACV. Another embodiment of the present invention refers to a method for the prevention and / or treatment of neuronal damage characterized by comprising the administration of a therapeutically effective amount of the pharmaceutical composition of the invention. Even more preferably, said neuronal damage is caused by a CNS pathology associated with excitotoxicity. Preferably, said neuronal damage is caused by a stroke.
La presente invención también hace referencia a un método para la prevención y/o el tratamiento de ACVs y enfermedades del SNC asociadas a excitotoxicidad, caracterizado por comprender la administración al paciente de una cantidad terapéuticamente efectiva de la composición farmacéutica de la invención. The present invention also refers to a method for the prevention and / or treatment of ACVs and CNS diseases associated with excitotoxicity, characterized by comprising the administration to the patient of a therapeutically effective amount of the pharmaceutical composition of the invention.
La presente invención también hace referencia a un método para la prevención y/o el tratamiento de un ACV, preferentemente la isquemia cerebral, y/o una lesión traumática cerebral o medular, caracterizado por comprender la administración al paciente de una cantidad terapéuticamente efectiva de la composición farmacéutica de la invención. El término "prevención", tal como se entiende en la presente invención, consiste en evitar o reducir la aparición de daños neuronales causados por la excitotoxicidad. El término "tratamiento" supone combatir los daños neuronales causados por la excitotoxicidad, para estabilizar el estado de los individuos o prevenir daños posteriores. The present invention also refers to a method for the prevention and / or treatment of a stroke, preferably cerebral ischemia, and / or a traumatic brain or spinal lesion, characterized by understanding the administration to the patient of a therapeutically effective amount of the pharmaceutical composition of the invention. The term "prevention", as understood in the present invention, is to prevent or reduce the occurrence of neuronal damage caused by excitotoxicity. The term "treatment" means combating neuronal damage caused by excitotoxicity, to stabilize the condition of individuals or prevent further damage.
Otra realización de la presente invención hace referencia a un método para prevenir y/o tratar el daño isquémico caracterizado por comprender la administración de una cantidad terapéuticamente efectiva de la composición farmacéutica de la invención empleada sola o combinada con otros medicamentos para prevenir y/o tratar el daño provocado por excitotoxicidad, preferentemente un ACV y más preferentemente aún un ictus isquémico; por ejemplo, y de manera no limitante, puede hallarse en combinación con: medicamentos anticoagulantes (como heparina, warfarina, ácido acetilsalicílico, clopidogrel, acenocumarol, dabigatrán, rivaroxaban, apixaban, fondaparinux, etc), medicamentos antihipertensivos (como captopril, enalapril, lisinopril, ramipril, valsartán, telmisartán, losartán, irbesartán, olmesartán, acetazolamida, vorzolamida, cetoconazol, amilorida, triamtereno, espironolactona, canrenoato, eplerenona, manitol, alprenolol, bucindolol, carteolol, carvedilol, labetalol, nadolol, penbutolol, pindolol, propranolol, timolol, sotalol, acebutolol, atenolol, betaxolol, bisoprolol, celiprolol, esmolol, metoprolol, nebivolol, butaxaminam, dihidropiridinas (bepridilo, mibefradilo, amlodipino, felodipino, nicardipino) y no
dihidropiridinas, etc), medicamentos trombolíticos (como el activador del plasminógeno tisular (tPA), lanoteplasa, reteplasa, estafilocinasa, estreptocinasa (SK), tenecteplasa, urocinasa, etc), también se incluyen aquí otros péptidos con propiedades neuroprotectoras conocidas como son Tat-NR2B9c o NA-1. Another embodiment of the present invention refers to a method for preventing and / or treating ischemic damage characterized by comprising the administration of a therapeutically effective amount of the pharmaceutical composition of the invention used alone or in combination with other medicaments to prevent and / or treat damage caused by excitotoxicity, preferably a stroke and more preferably an ischemic stroke; for example, and in a non-limiting way, it can be found in combination with: anticoagulant medications (such as heparin, warfarin, acetylsalicylic acid, clopidogrel, acenocoumarol, dabigatran, rivaroxaban, apixaban, fondaparinux, etc.), antihypertensive medications (such as captopril, enalapril, lislapril, lislapril, lislapril, lislapril, lislapril, lislapril , ramipril, valsartan, telmisartan, losartan, irbesartan, olmesartan, acetazolamide, vorzolamide, ketoconazole, amiloride, triamterene, spironolactone, canrenoate, eplerenone, mannitol, alprenolol, bucindolol, carteolol, carvedilol, pyrololol, pyrololol, pyrololol, pyrololol , sotalol, acebutolol, atenolol, betaxolol, bisoprolol, celiprolol, esmolol, metoprolol, nebivolol, butaxaminam, dihydropyridines (bepridyl, mibefradil, amlodipine, felodipine, nicardipine) and no dihydropyridines, etc.), thrombolytic medications (such as tissue plasminogen activator (tPA), lanoteplase, reteplase, staphylokinase, streptokinase (SK), tenecteplase, urokinase, etc.), other peptides with neuroprotective properties known as Tat are also included here. NR2B9c or NA-1.
A lo largo de la descripción y las reivindicaciones, la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following figures and examples are provided by way of illustration and are not intended to be limiting of the present invention.
MODO DE REALIZACIÓN DE LA INVENCIÓN Descripción de las figuras MODE OF CARRYING OUT THE INVENTION Description of the figures
Fig. 1. Péptidos Tat diseñados. A. Secuencia parcial de la proteína TrkB-FL de rata (aminoácidos 401-821) indicando la posición de los residuos incluidos en los distintos péptidos Tat diseñados (cajas grises), así como su región transmembrana (aminoácidos 430-453, itálica) y el dominio tirosina quinasa (aminoácidos 537-806, negrita). Esta secuencia tiene una identidad del 97,6% respecto a la secuencia humana correspondiente (aminoácidos 402-822) y del 100% para los residuos incluidos en los péptidos Tat. B. Secuencia de los péptidos Tat diseñados. Los 11 aminoácidos correspondientes a la proteína Tat de HIV ocupan posiciones N- terminales y son comunes a todos los péptidos (itálica). Las secuencias correspondientes a TrkB-FL ocupan posiciones C-terminales, indicándose en cada caso las posiciones del primer y último aminoácido contenido de acuerdo a la numeración de la proteína de rata. En el caso de los péptidos TFL457 (con SEQ ID NO 6, correspondiente a la unión del CPP TAT47-57 del HIV, SEQ ID NO 17, y el fragmento TrkB-FL 458-472 humano, SEQ ID NO 1) y TFL54i (con SEQ ID NO 8, correspondiente a la unión del CPP TAT47-57 del HIV, SEQ ID NO 17, y el fragmento TrkB-FL 542-556 humano, SEQ ID NO 3), la arginina C-terminal de la secuencia Tat es también el primer aminoácido de la secuencia de 15 aminoácidos de TrkB-FL contenida en los mismos. Los péptidos TFL482 (con SEQ ID NO 7, correspondiente a la unión del CPP TAT47-57 del HIV, SEQ ID NO 17, y el fragmento TrkB-FL 483-496
humano, SEQ ID NO 2) y TFL639 (con SEQ ID NO 9, correspondiente a la unión del CPP TAT47-57 del HIV, SEQ ID NO 17, y el fragmento TrkB-FL 640-653 humano, SEQ ID NO 4), como los anteriores de 25 aminoácidos, sólo contienen 14 aminoácidos de TrkB-FL. Se muestran en negrita los aminoácidos de TFL457 también presentes en la isoforma TrkB-T1. En el péptido control TMyc (con SEQ ID NO 10, correspondiente a la unión del CPP TAT47-57 del HIV, SEQ ID NO 17, y el fragmento c-Myc 408-421 humano, SEQ ID NO 5), las secuencias Tat están unidas a los aminoácidos 408-421 del factor de transcripción c-Myc. Fig. 2. Permeabilidad del péptido TMyc en neuronas. Cultivos primarios de neuronas corticales embrionarias de rata de 13 DIVs fueron incubados durante 1 h con el péptido TMyc (15 μΜ) marcado con FITC (isotiocianato de fluoresceina) (C y D) y comparados con cultivos control que no recibieron el péptido (A y B). Las células fueron fijadas, permeabilizadas y analizadas mediante inmunofluorescencia con anticuerpos para la proteína neuronal NeuN. Las imágenes que se muestran son secciones individuales de 0,5-1 μηι de grosor de microscopía confocal. Barra de escala: 10 μΜ. Fig. 1. Designed Tat peptides. A. Partial sequence of the rat TrkB-FL protein (amino acids 401-821) indicating the position of the residues included in the different designed Tat peptides (gray boxes), as well as their transmembrane region (amino acids 430-453, italic) and the tyrosine kinase domain (amino acids 537-806, bold). This sequence has an identity of 97.6% with respect to the corresponding human sequence (amino acids 402-822) and 100% for residues included in Tat peptides. B. Sequence of designed Tat peptides. The 11 amino acids corresponding to the HIV Tat protein occupy N-terminal positions and are common to all peptides (italic). The sequences corresponding to TrkB-FL occupy C-terminal positions, indicating in each case the positions of the first and last amino acid contained according to the numbering of the rat protein. In the case of TFL 457 peptides (with SEQ ID NO 6, corresponding to the binding of HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 458-472 fragment, SEQ ID NO 1) and TFL 54 i (with SEQ ID NO 8, corresponding to the binding of HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 542-556 fragment, SEQ ID NO 3) , the C-terminal arginine of the Tat sequence is also the first amino acid of the 15 amino acid sequence of TrkB-FL contained therein. TFL 48 2 peptides (with SEQ ID NO 7, corresponding to the binding of HIV TAT47-57 CPP, SEQ ID NO 17, and the TrkB-FL 483-496 fragment human, SEQ ID NO 2) and TFL 6 39 (with SEQ ID NO 9, corresponding to the junction of HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 640-653 fragment, SEQ ID NO 4 ) , like the previous 25 amino acids, only contain 14 amino acids of TrkB-FL. The amino acids of TFL 457 also present in the TrkB-T1 isoform are shown in bold. In the TMyc control peptide (with SEQ ID NO 10, corresponding to the binding of HIV TAT47-57 CPP, SEQ ID NO 17, and the human c-Myc 408-421 fragment, SEQ ID NO 5), the Tat sequences are 408-421 amino acid-bound transcription factor c-Myc. Fig. 2. Permeability of the TMyc peptide in neurons. Primary cultures of rat embryonic cortical neurons of 13 DIVs were incubated for 1 h with the TMyc peptide (15 μΜ) labeled with FITC (fluorescein isothiocyanate) (C and D) and compared with control cultures that did not receive the peptide (A and B). The cells were fixed, permeabilized and analyzed by immunofluorescence with antibodies to the neuronal protein NeuN. The images shown are individual sections of 0.5-1 μηι thickness of confocal microscopy. Scale bar: 10 μΜ.
Fig. 3. Especificidad de la interferencia mediada por el péptido TFL457 sobre el procesamiento de TrkB-FL inducido en condiciones de excitotoxicidad. A.Fig. 3. Specificity of interference mediated by the TFL 457 peptide on the processing of TrkB-FL induced under conditions of excitotoxicity. TO.
Cultivos primarios de neuronas corticales de rata de 13 DIVs fueron preincubados durante 30 min con los péptidos TMyc o los distintos péptidos TFL (25 μΜ) y tratados a continuación con NMDA (100 μΜ) y glicina (10 μΜ) durante 2 h según se indica. Cultivos en los que el pretratamiento con los péptidos Tat fue omitido fueron utilizados como control. Se analizaron mediante immunoblot los niveles de TrkB-FL (Mr 145 kDa) con el anticuerpo TrkB-ECD, que reconoce una región extracelular común a todas las isoformas de TrkB incluyendo las formas truncadas (trkB; Mr 95 kDa). Como control también analizamos la enolasa específica neuronal (NSE), una proteína neuronal que no es procesada por calpaína. B. Cuantificación de la interferencia por TFL457 del procesamiento de TrkB-FL por calpaína inducido en condiciones de excitotoxicidad. Los niveles de TrkB-FL se determinaron mediante análisis densitométrico de las bandas presentes en los immunoblots y se normalizaron respecto a los de la proteína NSE. Los resultados aparecen representados como porcentaje del valor obtenido en neuronas no preincubadas con péptido ni tratadas con NMDA, al que se le asignó arbitrariamente el 100%. Se representan los valores medios ± s.e.m. de 4
experimentos independientes y los cálculos estadísticos se realizaron mediante la prueba de ANOVA seguida de un test post-hoc HSD de Tukey, comparando los niveles obtenidos en cultivos preincubados con los distintos péptidos respecto a los correspondientes no preincubados, tratados o no con NMDA. Solo se encontraron diferencias significativas para TFL457 (*p<0,05) pero no para el resto de cultivos tratados con NMDA y preincubados con TMyc, TFL482, TFL541 o TFL639 o para los no sometidos a excitotoxicidad. Primary cultures of rat cortical neurons of 13 DIVs were pre-incubated for 30 min with the TMyc peptides or the different TFL peptides (25 μΜ) and then treated with NMDA (100 μΜ) and glycine (10 μΜ) for 2 h as indicated . Cultures in which pretreatment with Tat peptides was omitted were used as control. TrkB-FL levels (Mr 145 kDa) were analyzed by immunoblot with the TrkB-ECD antibody, which recognizes an extracellular region common to all TrkB isoforms including truncated forms (trkB; Mr 95 kDa). As a control, we also analyze neuronal specific enolasa (NSE), a neuronal protein that is not processed by calpain. B. Quantification of interference by TFL 457 from the processing of TrkB-FL by calpain induced under conditions of excitotoxicity. TrkB-FL levels were determined by densitometric analysis of the bands present in the immunoblots and normalized with respect to those of the NSE protein. The results are represented as a percentage of the value obtained in neurons not preincubated with peptide or treated with NMDA, to which 100% was arbitrarily assigned. Mean values are shown ± sem of 4 Independent experiments and statistical calculations were performed using the ANOVA test followed by a post-hoc HSD Tukey test, comparing the levels obtained in pre-incubated cultures with the different peptides with respect to the corresponding ones not pre-incubated, whether or not treated with NMDA. Only significant differences were found for TFL 457 (* p <0.05) but not for the rest of cultures treated with NMDA and pre-incubated with TMyc, TFL 48 2, TFL 541 or TFL 6 39 or for those not subjected to excitotoxicity.
Fig. 4. Efecto neuroprotector de la preincubación con el péptido TFL457 sobre la muerte neuronal inducida en condiciones de tratamiento crónico con NMDA.Fig. 4. Neuroprotective effect of preincubation with the TFL 457 peptide on induced neuronal death under conditions of chronic NMDA treatment.
Cultivos primarios neuronales de 13 DIVs fueron preincubados durante 30 min con los péptidos TMyc y: TFL457 (A), TFL482 (B) TFL541 (C) o TFL639 (D), (todos a concentración: 25 μΜ) y tratados con NMDA como anteriormente durante 0, 2, 4 ó 6 h. La viabilidad neuronal se estableció por el ensayo de reducción de la sal de tetrazolio MTT y los resultados se presentan como valores relativos respecto a los obtenidos en los cultivos control no tratados con NMDA, a los que arbitrariamente se asignó un valor del 100%. Para establecer la contribución de las células gliales presentes en los cultivos mixtos a la viabilidad celular total, cultivos hermanos fueron tratados en paralelo con NMDA 400 μΜ y glicina 10 μΜ durante 24 h, condiciones que inducen la muerte neuronal en su totalidad sin afectar a la viabilidad de las células gliales. La viabilidad neuronal se calculó sustrayendo este valor de absorbancia de los obtenidos para cada una de las condiciones estudiadas. Se muestran valores medios ± s.e.m. (n=1 1 , TMyc y TFL457; n=7, TFL541 y FL63g; n=3, TFL482). Los cálculos estadísticos se realizaron mediante la prueba de Kruskal-Wallis seguido de un test de U-Mann Whitney, comparando para cada uno de los tiempos de tratamiento con NMDA la viabilidad neuronal de los cultivos preincubados con TMyc o los diferentes TFLs (*p<0,05; **p<0,01 , ***p<0,001). Primary neuronal cultures of 13 DIVs were pre-incubated for 30 min with the TMyc peptides and: TFL 457 (A) , TFL 48 2 (B) TFL 541 (C) or TFL 6 39 (D), (all at concentration: 25 μΜ) and treated with NMDA as before for 0, 2, 4 or 6 h. Neural viability was established by the MTT tetrazolium salt reduction test and the results are presented as relative values with respect to those obtained in control cultures not treated with NMDA, to which a value of 100% was arbitrarily assigned. To establish the contribution of glial cells present in mixed cultures to total cell viability, sister cultures were treated in parallel with NMDA 400 μΜ and glycine 10 μΜ for 24 h, conditions that induce neuronal death in its entirety without affecting the viability of glial cells. Neural viability was calculated by subtracting this absorbance value from those obtained for each of the conditions studied. Mean values ± sem are shown (n = 1 1, TMyc and TFL 457; n = 7, TFL 541 and FL 6 3g ; n = 3, TFL 48 2). Statistical calculations were performed using the Kruskal-Wallis test followed by a U-Mann Whitney test, comparing for each of the treatment times with NMDA the neuronal viability of cultures pre-incubated with TMyc or the different TFLs (* p <0.05; ** p <0.01, *** p <0.001).
Fig. 5. Dependencia de la dosis de péptido TFL457 para los efectos ejercidos sobre el procesamiento de TrkB-FL y la muerte neuronal inducida por excitotoxicidad. Neuronas corticales de rata fueron preincubadas como anteriormente con los péptidos TMyc o TFL457 (5, 15 ó 25 μΜ) y tratadas a continuación con NMDA (100 μΜ) y glicina (10 μΜ) durante 2 (A) ó 4 h (B). A. Análisis mediante immunoblot de los niveles de TrkB-FL con el anticuerpo TrkB-ECD, de la forma activa del factor de transcripción pro-supervivencia CREB mediante un fosfo-anticuerpo específico para su Ser 133 (pCREB) y NSE. Se muestra un cultivo no tratado con péptido ni NMDA como
control. B. Cuantificación mediante el ensayo de MTT de la viabilidad neuronal en cultivos preincubados con distintas concentraciones de péptido y tratados con NMDA. Los resultados se presentan como valores relativos respecto a los obtenidos en cultivos control pretratados con una concentración igual del mismo péptido pero no tratados con NMDA, a los que arbitrariamente se asignó un valor del 100%. En todos los casos, se muestran valores medios ± s.e.m. (n=6). Los cálculos estadísticos se realizaron mediante la prueba de Kruskal-Wallis seguido de un test de U de Mann Whitney, comparando para cada una de las concentraciones de péptido la viabilidad neuronal de los cultivos tratados con NMDA y preincubados con TMyc o TFL457 (*p<0,05; **p<0,01 , ***p<0,001). Fig. 5. TFL 457 peptide dose dependence for the effects exerted on TrkB-FL processing and excitotoxicity-induced neuronal death. Rat cortical neurons were pre-incubated as before with TMyc or TFL 457 (5, 15 or 25 μΜ) peptides and then treated with NMDA (100 μΜ) and glycine (10 μΜ) for 2 (A) or 4 h (B) . A. Analysis by immunoblot of the TrkB-FL levels with the TrkB-ECD antibody, of the active form of the pro-survival transcription factor CREB by means of a phospho-antibody specific for its Ser 133 (pCREB) and NSE. A culture not treated with peptide or NMDA is shown as control. B. Quantification by MTT assay of neuronal viability in cultures pre-incubated with different concentrations of peptide and treated with NMDA. The results are presented as relative values with respect to those obtained in pre-treated control cultures with an equal concentration of the same peptide but not treated with NMDA, to which a value of 100% was arbitrarily assigned. In all cases, mean values ± sem (n = 6) are shown. Statistical calculations were performed using the Kruskal-Wallis test followed by a Mann Whitney U test, comparing for each of the peptide concentrations the neuronal viability of cultures treated with NMDA and pre-incubated with TMyc or TFL 457 (* p <0.05; ** p <0.01, *** p <0.001).
Fig. 6. Cinética de la interferencia mediada por el péptido TFL457 del procesamiento de TrkB-FL inducido en condiciones de excitotoxicidad. A.Fig. 6. Kinetics of interference mediated by TFL 457 peptide from TrkB-FL processing induced under conditions of excitotoxicity. TO.
Cultivos primarios neuronales fueron preincubados como anteriormente durante 30 min con los péptidos TMyc o TFL457 (25 μΜ) y tratados a continuación con NMDA (100 μΜ) y glicina (10 μΜ) durante 0, 2, 4 ó 6 h. Los extractos proteicos se analizaron por immunoblot con el anticuerpo TrkB-ECD, o anticuerpos específicos para la isoforma TrkB-T1 , pCREB, espectrina y NSE. Cuantificación de la interferencia por TFL457 del procesamiento por calpaína de TrkB-FL (B) y de la inactivación de CREB (C) inducidos en condiciones de excitotoxicidad. Los niveles de TrkB-FL y pCREB se determinaron mediante análisis densitométrico de las bandas presentes en los immunoblots y se normalizaron respecto a los de la proteína NSE. Los resultados aparecen representados como porcentaje del valor obtenido en neuronas sin tratar con NMDA, al que asignamos un valor arbitrario del 100%. Se representan los valores medios ± s.e.m. de 5 experimentos independientes y los cálculos estadísticos se realizaron mediante la prueba de Kruskal-Wallis seguido de un test de U de Mann Whitney, comparando los niveles obtenidos en cultivos tratados con NMDA y preincubados con TMyc o TFL457 (*p<0,05; **p<0,01 , ***p<0,001). Fig. 7. Efecto neuroprotector de la transducción del péptido TFL457 añadido posteriormente a la inducción de muerte neuronal mediante tratamiento agudo con NMDA. Cultivos primarios neuronales de 13 DIVs fueron tratados con NMDA (50 μΜ) y glicina (10 μΜ) durante 1 h. A continuación este medio fue sustituido por medio condicionado libre de agonistas conteniendo el antagonista del NMDAR DL-AP-5 (200 μΜ) y los péptidos TFL457 o TMyc (15 μΜ). La viabilidad neuronal se estableció como
anteriormente por el ensayo de MTT 20 h después del cambio de medio y los resultados se presentan como valores relativos respecto a los obtenidos en los cultivos incubados con TMyc y no tratados con NMDA, a los que arbitrariamente se asignó un valor del 100%. Se representan valores medios ± s.e.m. de 5 experimentos independientes. Los cálculos estadísticos se realizaron mediante el test de la t de Student desapareada, comparando la viabilidad de los cultivos tratados con NMDA e incubados con TMyc o TFL457 (*p<0,05). Primary neuronal cultures were pre-incubated as before for 30 min with the TMyc or TFL 457 peptides (25 μΜ) and then treated with NMDA (100 μΜ) and glycine (10 μΜ) for 0, 2, 4 or 6 h. Protein extracts were analyzed by immunoblot with the TrkB-ECD antibody, or antibodies specific for the TrkB-T1 isoform, pCREB, spectrin and NSE. Quantification of TFL 457 interference from TrkB-FL (B) calpain processing and CREB inactivation (C) induced under conditions of excitotoxicity. TrkB-FL and pCREB levels were determined by densitometric analysis of the bands present in the immunoblots and normalized with respect to those of the NSE protein. The results are represented as a percentage of the value obtained in neurons without dealing with NMDA, to which we assign an arbitrary value of 100%. Mean values are shown ± sem of 5 independent experiments and statistical calculations were performed using the Kruskal-Wallis test followed by a Mann Whitney U test, comparing the levels obtained in cultures treated with NMDA and pre-incubated with TMyc or TFL 457 (* p <0.05; ** p <0.01, *** p <0.001). Fig. 7. Neuroprotective effect of TFL 457 peptide transduction subsequently added to the induction of neuronal death by acute treatment with NMDA. Primary neuronal cultures of 13 DIVs were treated with NMDA (50 μΜ) and glycine (10 μΜ) for 1 h. This medium was then replaced by agonist-free conditioned medium containing the DL-AP-5 NMDAR antagonist (200 μΜ) and the TFL 457 or TMyc (15 μΜ) peptides. Neural viability was established as previously by the MTT test 20 h after the change of medium and the results are presented as relative values with respect to those obtained in cultures incubated with TMyc and not treated with NMDA, to which a value of 100% was arbitrarily assigned. Mean values are shown ± sem of 5 independent experiments. Statistical calculations were performed using the unpaired Student's t-test, comparing the viability of cultures treated with NMDA and incubated with TMyc or TFL 457 (* p <0.05).
Fig. 8. Comparación del efecto neuroprotector del péptido TFL457 y de los inhibidores de calpaína. Cultivos de neuronas corticales de rata fueron preincubados con los inhibidores de calpaína, calpeptina (Calp) e inhibidor III (Cilll; ambos a 10 μΜ) según se indica y, 30 min después con los péptidos TMyc o TFL457 (25 μΜ). Pasados 30 min adicionales, los cultivos se trataron con NMDA como anteriormente durante 4 h. La viabilidad neuronal se estableció por el ensayo de MTT y los resultados se presentan como valores relativos respecto a los obtenidos en los cultivos control preincubados con TMyc y tratados de igual manera pero no con NMDA, a los que arbitrariamente se asignó un valor del 100%. Se muestran valores medios ± s.e.m. (n=10). Los cálculos estadísticos se realizaron mediante la prueba de Kruskal-Wallis seguido de un test de U de Mann Whitney, comparando la viabilidad neuronal de los cultivos preincubados con TMyc y tratados con NMDA, preincubados o no con inhibidores de calpaína (*p<0,05), o la de aquellos preincubados con TMyc o TFL457 para cada una de las condiciones (**p<0,01 , ***p<0,001). Fig. 8. Comparison of the neuroprotective effect of the TFL 457 peptide and calpain inhibitors. Cultures of rat cortical neurons were pre-incubated with calpain inhibitors, calpeptin (Calp) and inhibitor III (Cilll; both at 10 μΜ) as indicated and, 30 min later with TMyc or TFL 457 (25 μΜ) peptides. After an additional 30 min, the cultures were treated with NMDA as before for 4 h. Neural viability was established by the MTT test and the results are presented as relative values with respect to those obtained in control cultures pre-incubated with TMyc and treated in the same way but not with NMDA, to which a value of 100% was arbitrarily assigned. . Mean values ± sem (n = 10) are shown. Statistical calculations were performed using the Kruskal-Wallis test followed by a Mann Whitney U test, comparing the neuronal viability of cultures pre-incubated with TMyc and treated with NMDA, pre-incubated or not with calpain inhibitors (* p <0, 05), or that of those pre-incubated with TMyc or TFL 457 for each of the conditions (** p <0.01, *** p <0.001).
Ejemplos: Examples:
Ejemplo 1. Diseño de un péptido inhibidor del procesamiento del receptor TrkB- FL Example 1. Design of a TrkB-FL receptor processing inhibitor peptide
En primer lugar se realizó un análisis bioquímico detallado de los fragmentos N- terminales de TrkB-FL generados por calpaína en cultivos primarios de neuronas corticales de rata sometidos a excitotoxicidad, tanto para el receptor endógeno como para la proteína HA-TrkB-FL recombinante expresada mediante vectores lentivirales neuro-específicos (Vidaurre et al., 2012). Estos experimentos permitieron establecer que una secuencia mayoritaria de procesamiento en TrkB-FL debía de encontrarse en los 100 aminoácidos intracelulares más próximos a su región transmembrana
(aminoácidos 430-453 de la secuencia de rata; Fig. 1A), solapando con el inicio del dominio tirosina-quinasa. La localización precisa de los sitios putativos de procesamiento por calpaína en sus sustratos es un proceso complejo ya que no se ha establecido una secuencia consenso de reconocimiento para esta proteasa, que parece reconocer elementos estructurales de orden superior y tiene tendencia a procesar zonas de separación entre distintos dominios funcionales de sus sustratos (Tompa et al., 2004). Por ello, a continuación se analizó in silico la región de TrkB-FL mencionada anteriormente utilizando diferentes bases de datos en red (www.calpain.org, www.dmbr.ugent.be) y la aplicación GPS-CDD (https://gps.biocuckoo.org/), herramientas que permiten realizar predicciones teóricas sobre posibles sitios de procesamiento por calpaína en sus sustratos. Varios de los resultados predictivos de mayor valor estadístico se concentraban en torno a los aminoácidos 463, 489-494, 541-546 y 549-554 de TrkB-FL, lo que sugería que en estas secuencias podría encontrarse una diana mayoritaria de procesamiento por calpaína. Por otra parte, el análisis de los fragmentos C-terminales de TrkB-FL generados por calpaína mediante digestiones in vitro de formas recombinantes de proteínas expresadas en sistemas heterólogos sugería la posible existencia de un segundo sitio de procesamiento en su región tirosina quinasa. El análisis in silico de estas secuencias mediante los algoritmos anteriores señaló los aminoácidos en torno al 638 y 645-650 de TrkB-FL como posibles dianas adicionales de procesamiento por calpaína. First, a detailed biochemical analysis of the N-terminal fragments of TrkB-FL generated by calpain was carried out in primary cultures of rat cortical neurons subjected to excitotoxicity, both for the endogenous receptor and for the expressed recombinant HA-TrkB-FL protein by neuro-specific lentiviral vectors (Vidaurre et al., 2012). These experiments allowed us to establish that a majority processing sequence in TrkB-FL must be found in the 100 intracellular amino acids closest to its transmembrane region (amino acids 430-453 of the rat sequence; Fig. 1A), overlapping with the onset of the tyrosine kinase domain. The precise location of putative calpain processing sites in their substrates is a complex process since a consensus sequence of recognition for this protease has not been established, which seems to recognize higher order structural elements and has a tendency to process separation zones between different functional domains of their substrates (Tompa et al., 2004). Therefore, the TrkB-FL region mentioned above was then analyzed in silico using different network databases (www.calpain.org, www.dmbr.ugent.be) and the GPS-CDD application (http: // gps.biocuckoo.org/), tools that allow theoretical predictions about possible calpain processing sites in their substrates. Several of the predictive results of greater statistical value were concentrated around amino acids 463, 489-494, 541-546 and 549-554 of TrkB-FL, which suggested that in these sequences a major target of calpain processing could be found . On the other hand, the analysis of the C-terminal fragments of TrkB-FL generated by calpain by in vitro digestions of recombinant forms of proteins expressed in heterologous systems suggested the possible existence of a second processing site in its tyrosine kinase region. In silico analysis of these sequences using the above algorithms indicated amino acids around 638 and 645-650 of TrkB-FL as possible additional targets of calpain processing.
Con objeto de explorar estas hipótesis, se procedió a diseñar una serie de péptidos que, al contener las secuencias de TrkB-FL previamente establecidas (Fig. 1A), podrían interferir de manera específica el procesamiento de esta proteína por calpaína. Como método para facilitar el paso de los péptidos interferentes a través de BHE y la membrana plasmática, se eligió utilizar la transducción peptídica por varios motivos (Dietz and Bahr, 2004). En primer lugar, esta metodología aprovecha el hecho de que las propiedades de permeabilidad de determinadas proteínas, como la proteína transactivadora Tat del virus de la inmunodeficiencia humana (HIV), están mediadas por secuencias cortas generalmente de naturaleza básica, como son los aminoácidos 47-57 (YGRKKRRQRRR, SEQ ID NO 17) en el caso de Tat. Además, como se mencionó, recientemente estas secuencias han sido utilizadas con éxito como vehículo para introducir en neuronas diversas secuencias, incluido el extremo C- terminal de la subunidad GluN2B del NMDAR. Estas secuencias fueron capaces de
interferir la interacción de GluN2B con la proteína de andamiaje de la densidad postsináptica PSD-95 (péptido Tat-NR2B9c o NA-1) (Aarts et al., 2002); (Cook et al., 2012a, b). Los péptidos Tat diseñados, por tanto, contienen los aminoácidos 457-471 (TFL457 de SEQ ID NO 6, correspondiente a la unión del CPP TAT47-57 del HIV, SEQ I D NO 17, y el fragmento TrkB-FL 458-472 humano, SEQ ID NO 1), 482-495 (TFL482 de SEQ ID NO 7, correspondiente a la unión del CPP TAT47-57 del HIV, SEQ ID NO 17, y el fragmento TrkB-FL 483-496 humano, SEQ ID NO 2), 541-555 (TFL54i de SEQ ID NO 8, correspondiente a la unión del CPP TATt47-57 del HIV, SEQ ID NO 17, y el fragmento TrkB-FL 542-556 humano, SEQ ID NO 3) y 639-652 (TFL639 de SEQ ID NO 9, correspondiente a la unión del CPP TAT47-57 del HIV, SEQ ID NO 17, y el fragmento TrkB-FL 640-653 humano, SEQ ID NO 4) de la secuencia TrkB-FL de rata fusionados con la secuencia Tat mencionada anteriormente (Fig. 1 B). En el caso del péptido TFL457, los 9 primeros aminoácidos de la secuencia de TrkB-FL están también presentes en la isoforma truncada del receptor TrkB-T1 mientras que los 5 residuos C- terminales son exclusivos de la isoforma completa. Un péptido de igual tamaño que los anteriores conteniendo la secuencia Tat unida a los aminoácidos 408-421 del factor de transcripción c-Myc (TMyc con SEQ ID NO 10, correspondiente a la unión del CPP TAT47-57 del HIV, SEQ ID NO 17, y el fragmento c-Myc 408-421 humano, SEQ ID NO 5) fue sintetizado y utilizado como control negativo en los experimentos realizados. In order to explore these hypotheses, a series of peptides were designed that, by containing the previously established TrkB-FL sequences (Fig. 1A), could specifically interfere with the processing of this protein by calpain. As a method to facilitate the passage of interfering peptides through BHE and the plasma membrane, it was chosen to use peptide transduction for several reasons (Dietz and Bahr, 2004). First, this methodology takes advantage of the fact that the permeability properties of certain proteins, such as the Tat transactivator protein of the human immunodeficiency virus (HIV), are mediated by short sequences generally of a basic nature, such as amino acids 47- 57 (YGRKKRRQRRR, SEQ ID NO 17) in the case of Tat. In addition, as mentioned, these sequences have recently been used successfully as a vehicle to introduce various sequences into neurons, including the C-terminal end of the GluN2B subunit of the NMDAR. These sequences were able to interfere with the interaction of GluN2B with the PSD-95 postsynaptic density scaffolding protein (Tat-NR2B9c or NA-1 peptide) (Aarts et al., 2002); (Cook et al., 2012a, b). The designed Tat peptides, therefore, contain amino acids 457-471 (TFL 457 of SEQ ID NO 6, corresponding to the binding of HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 458-472 fragment , SEQ ID NO 1), 482-495 (TFL 482 of SEQ ID NO 7, corresponding to the junction of the CPP TAT47-57 of HIV, SEQ ID NO 17, and the human TrkB-FL 483-496 fragment, SEQ ID NO 2), 541-555 (TFL 54 i of SEQ ID NO 8, corresponding to the junction of the CPP TATt47-57 of HIV, SEQ ID NO 17, and the human TrkB-FL 542-556 fragment, SEQ ID NO 3) and 639-652 (TFL 639 of SEQ ID NO 9, corresponding to the junction of the HIV TAT47-57 CPP, SEQ ID NO 17, and the human TrkB-FL 640-653 fragment, SEQ ID NO 4) of the TrkB- sequence Rat FL fused with the Tat sequence mentioned above (Fig. 1 B). In the case of the TFL 457 peptide, the first 9 amino acids of the TrkB-FL sequence are also present in the truncated isoform of the TrkB-T1 receptor while the 5 C-terminal residues are exclusive to the complete isoform. A peptide of the same size as the previous ones containing the Tat sequence linked to amino acids 408-421 of the transcription factor c-Myc (TMyc with SEQ ID NO 10, corresponding to the binding of the CPP TAT47-57 of HIV, SEQ ID NO 17 , and the human c-Myc 408-421 fragment, SEQ ID NO 5) was synthesized and used as a negative control in the experiments performed.
Todas las secuencias de TrkB-FL utilizadas en los péptidos anteriores están completamente conservadas en la secuencia de la proteína humana; por tanto, los efectos neuroprotectores de los péptidos diseñados en los modelos murinos de excitotoxicidad serían extrapolares para células humanas. All TrkB-FL sequences used in the above peptides are completely conserved in the human protein sequence; therefore, the neuroprotective effects of the peptides designed in murine excitotoxicity models would be extrapolar for human cells.
Ejemplo 2. El péptido TMycFITC es capaz de atravesar la membrana plasmática neuronal. Example 2. The TMycFITC peptide is capable of crossing the neuronal plasma membrane.
Seguidamente se confirmó la permeabilidad a la membrana plasmática neuronal de aquellos péptidos que contienen las secuencias de transduccion de la proteína Tat (Dietz and Bahr, 2004). Para ello, cultivos primarios de neuronas corticales maduras de rata de 13 días in vitro (DIVs) fueron incubadas durante 1 h con TMyc (15 μΜ) marcado con FITC (Fig. 2, paneles C y D) y comparados con cultivos control sin tratar
(Fig. 2, paneles A y B). Dado que estos cultivos consisten en una población mixta de neuronas y células gliales, empleamos inmunoflurescencia con un anticuerpo específico neuronal (NeuN) para identificar esta subpoblación celular. Las células, crecidas sobre cubreobjetos, se fijaron en una solución de paraformaldehído 4% preparada en 0, 1 M PBS durante 30 min a temperatura ambiente. Tras bloquear durante 30 min con una solución de BSA al 1 % con Tritón X-100 0, 1 % en PBS, las células se incubaron durante 2 h con anticuerpo anti-NeuN diluido en solución de bloqueo. La inmunoreactividad fue detectada con anticuerpos secundarios conjugados con fluoróforos, incubados durante 1 h a temperatura ambiente. Los cubreobjetos se montaron con medio Prolong (Invitrogen, Carlsbad, CA, EEUU) sobre los portaobjetos. Mediante microscopía confocal se observó que, en estas condiciones, el péptido TMycFITC era capaz de atravesar la membrana de las neuronas presentes en estos cultivos primarios. Ejemplo 3. Los efectos del péptido TFL457 sobre el procesamiento de TrkB-FL y la muerte neuronal en condiciones de excitotoxicidad son específicos, dependen de la dosis de péptido utilizada y siguen cinéticas paralelas. Next, the neuronal plasma membrane permeability of those peptides containing the transduction sequences of the Tat protein was confirmed (Dietz and Bahr, 2004). For this, primary cultures of mature 13-day rat cortical neurons in vitro (IVDs) were incubated for 1 h with TMyc (15 μΜ) labeled with FITC (Fig. 2, panels C and D) and compared with untreated control cultures (Fig. 2, panels A and B). Since these cultures consist of a mixed population of neurons and glial cells, we employ immunoflurescence with a specific neuronal antibody (NeuN) to identify this cellular subpopulation. The cells, grown on coverslips, were fixed in a 4% paraformaldehyde solution prepared in 0.1 M PBS for 30 min at room temperature. After blocking for 30 min with a solution of 1% BSA with 0.1% Triton X-100 in PBS, the cells were incubated for 2 h with anti-NeuN antibody diluted in blocking solution. The immunoreactivity was detected with secondary antibodies conjugated with fluorophores, incubated for 1 h at room temperature. The coverslips were mounted with Prolong medium (Invitrogen, Carlsbad, CA, USA) on the slides. By confocal microscopy it was observed that, under these conditions, the TMycFITC peptide was able to cross the membrane of the neurons present in these primary cultures. Example 3. The effects of the TFL 457 peptide on the processing of TrkB-FL and neuronal death under conditions of excitotoxicity are specific, depend on the dose of peptide used and follow parallel kinetics.
A continuación se analizó el efecto de los distintos péptidos TFL generados sobre el procesamiento de TrkB-FL inducido por sobreactivación del NMDAR (Fig 3). Cultivos primarios de 13 DIVs fueron incubados con los péptidos TMyc, TFL457, TFL482, TFL541 o TFL639 (25 μΜ) durante 30 min previamente a su tratamiento durante 2 h con los agonistas del NMDAR, NMDA (100 μΜ) y glicina (10 μΜ). Utilizamos como control cultivos en los que el pretratamiento con los péptidos fue omitido. Mediante immunoblot fueron estudiados los niveles de TrkB-FL (Mr 145 kDa) (Fig 3A) utilizando el anticuerpo TrkB-ECD, que reconoce una región extracelular común a todas las isoformas de TrkB incluyendo las formas truncadas (trkB; Mr 95 kDa). Como control también se analizó la enolasa específica neuronal (NSE), una proteína neuronal que no es procesada por calpaína. La interferencia del procesamiento de TrkB-FL fue cuantificada para cada uno de los péptidos, mostrándose los resultados de 4 experimentos independientes (Fig. 3B). En los cultivos que no recibieron péptido se observó una reducción notable de los niveles de TrkB-FL y un aumento de las formas truncadas (tTrkB) que fueron inducidos por las condiciones de excitotoxicidad, tal como se demostró anteriormente (Vidaurre et al., 2012). Un resultado similar se obtuvo con el péptido control TMyc y con los distintos péptidos TFL, con la excepción de TFL457 que redujo de manera muy
notable el procesamiento de TrkB-FL inducido por el tratamiento con NMDA. Por ejemplo, en las células preincubadas con TFL457 y sometidas a excitotoxicidad los niveles de TrkB-FL sólo sufrieron una reducción moderada, alcanzando valores del 80 ± 7% respecto a los de cultivos iguales sin tratar con NMDA, valor significativamente superior al obtenido en las células preincubadas con TMyc (36 ± 1 1 %, p<0,5). El tratamiento con los distintos péptidos no tuvo un efecto significativo sobre los niveles básales de TrkB-FL encontrados en las células no sometidas a condiciones de excitotoxicidad. Se investigó seguidamente cual era el efecto de los péptidos TFL generados sobre la muerte neuronal inducida por el proceso de excitotoxicidad (Fig. 4). Para ello, los cultivos primarios fueron preincubados con los péptidos TMyc, TFL457, TFL482, TFL541 o TFL63g y tratados de forma crónica con NMDA y glicina como anteriormente durante 0, 2, 4 ó 6 h. La viabilidad neuronal fue establecida mediante el ensayo de reducción de la sal de tetrazolio MTT y los resultados de 3-1 1 experimentos independientes fueron representados como valores relativos respecto a los obtenidos en cultivos control tratados con el mismo péptido pero no NMDA. Como puede observarse, los cultivos pretratados con TFL457 presentaron una viabilidad neuronal significativamente mayor respecto a aquellos incubados con el péptido control en todos los tiempos evaluados de tratamiento con NMDA (Fig. 4A). Así por ejemplo, la viabilidad de los cultivos incubados 2 h con NMDA en presencia de TMyc fue del 49 ± 5% respecto a las células sin tratar, mientras que estos valores alcanzaron el 80 ± 8% en los cultivos tratados con TFL457 (p<0,01). Para el resto de los péptidos TFL no se observaron diferencias significativas respecto a TMyc (Figs. 4C y D), con la excepción de TFL482 que tenía un efecto neuroprotector muy transitorio (Fig. 4B) que no se correlacionaba con una mayor estabilidad de TrkB-FL en las neuronas excitotóxicas (Fig. 3). En conjunto, los datos anteriores demostraban que solo el péptido TFL457 tenía un efecto neuroprotector sostenido y significativo sobre la excitotoxicidad inducida por tratamiento crónico con NMDA, que se correspondía con su capacidad para interferir el procesamiento de la proteína TrkB-FL. The effect of the different TFL peptides generated on the processing of TrkB-FL induced by NMDAR overactivation was then analyzed (Fig. 3). Primary cultures of 13 IVDs were incubated with the TMyc, TFL 457, TFL 48 2, TFL 541 or TFL 6 39 (25 μΜ) peptides for 30 min prior to their treatment for 2 h with NMDAR agonists, NMDA (100 μΜ) and glycine (10 μΜ). We used as a control cultures in which pretreatment with the peptides was omitted. Using immunoblot, the TrkB-FL levels (Mr 145 kDa) (Fig 3A) were studied using the TrkB-ECD antibody, which recognizes an extracellular region common to all TrkB isoforms including truncated forms (trkB; Mr 95 kDa). As a control, neuronal specific enolasa (NSE), a neuronal protein that is not processed by calpain, was also analyzed. TrkB-FL processing interference was quantified for each of the peptides, showing the results of 4 independent experiments (Fig. 3B). In cultures that did not receive peptide, there was a notable reduction in TrkB-FL levels and an increase in truncated forms (tTrkB) that were induced by excitotoxicity conditions, as previously demonstrated (Vidaurre et al., 2012 ). A similar result was obtained with the TMyc control peptide and with the different TFL peptides, with the exception of TFL 457 which greatly reduced Remarkable TrkB-FL processing induced by NMDA treatment. For example, in cells preincubated with TFL 457 and subjected to excitotoxicity, TrkB-FL levels only underwent a moderate reduction, reaching values of 80 ± 7% with respect to the same cultures without treating with NMDA, a value significantly higher than that obtained in pre-incubated cells with TMyc (36 ± 1 1%, p <0.5). The treatment with the different peptides did not have a significant effect on the basal levels of TrkB-FL found in the cells not subjected to excitotoxicity conditions. The effect of the generated TFL peptides on neuronal death induced by the excitotoxicity process was then investigated (Fig. 4). For this, the primary cultures were pre-incubated with the TMyc, TFL 457 , TFL 48 2, TFL 541 or TFL 6 3g peptides and treated chronically with NMDA and glycine as above for 0, 2, 4 or 6 h. Neural viability was established by the MTT tetrazolium salt reduction test and the results of 3-1 independent experiments were represented as relative values compared to those obtained in control cultures treated with the same peptide but not NMDA. As can be seen, cultures pretreated with TFL 457 presented a significantly greater neuronal viability compared to those incubated with the control peptide at all times evaluated for treatment with NMDA (Fig. 4A). Thus, for example, the viability of cultures incubated for 2 hours with NMDA in the presence of TMyc was 49 ± 5% compared to untreated cells, while these values reached 80 ± 8% in cultures treated with TFL 457 (p <0.01). For the rest of the TFL peptides no significant differences were observed with respect to TMyc (Figs. 4C and D), with the exception of TFL 48 2 that had a very transient neuroprotective effect (Fig. 4B) that did not correlate with greater stability of TrkB-FL in excitotoxic neurons (Fig. 3). Together, the previous data demonstrated that only the TFL 457 peptide had a sustained and significant neuroprotective effect on the excitotoxicity induced by chronic treatment with NMDA, which corresponded with its ability to interfere with the processing of the TrkB-FL protein.
Con objeto de establecer las condiciones más adecuadas de tratamiento con el péptido TFL457, los cultivos primarios fueron incubados seguidamente con distintas concentraciones de TMyc o TFL457 (5, 15 ó 25 μΜ) durante 30 min previamente a su tratamiento con los agonistas del NMDAR durante 2 (Fig. 5A) ó 4 (Fig. 5B) h. El
análisis de los niveles de TrkB-FL en los cultivos preincubados con TMyc mostró resultados similares a los anteriores a todas las concentraciones de péptido empleadas. Por el contrario, TFL457 fue capaz de interferir el procesamiento de TrkB-FL inducido por NMDA, de forma modesta a la menor concentración empleada y muy notablemente para 15 y 25 μΜ (Fig. 5A). Un resultado adicional muy importante fue que la estabilización de la isoforma activa de TrkB mediada por el pretratamiento con TFL457 tuvo como consecuencia el mantenimiento en condiciones de excitotoxicidad de la actividad del factor de transcripción pro-supervivencia CREB, establecida mediante análisis con un fosfo-anticuerpo específico para su Ser 133 (Fig. 5A). Contrariamente, el tratamiento con NMDA de los cultivos preincubados con el péptido control TMyc produjo la inactivación de pCREB, tal como se describió anteriormente (Hardingham et al., 2002). La activación de CREB por fosforilación en este residuo ocurre como consecuencia de la activación fisiológica de receptores TrkB y NMDARs en neuronas y es un mecanismo importante de supervivencia ya que pCREB induce la expresión, entre otros, de BDNF (Tao et al., 1998) y TrkB (Deogracias et al., 2004). Por el contrario, en condiciones de excitotoxicidad, la inactivación de la actividad transcripcional de pCREB es un factor crítico en el proceso de muerte neuronal (Hardingham et al., 2002). Los efectos de TFL457 observados sobre el estado de activación de CREB son relevantes cara a su utilidad clínica ya que anteriormente se ha demostrado que el aumento de pCREB es un factor que estimula en el giro dentado de cerebro adulto la neurogénesis, un mecanismo de reparación cerebral que se activa tras el daño isquémico (Zhu et al., 2004). In order to establish the most appropriate treatment conditions with the TFL 457 peptide, the primary cultures were then incubated with different concentrations of TMyc or TFL 457 (5, 15 or 25 μΜ) for 30 min prior to their treatment with the NMDAR agonists for 2 (Fig. 5A) or 4 (Fig. 5B) h. He Analysis of TrkB-FL levels in cultures pre-incubated with TMyc showed results similar to those above at all peptide concentrations used. In contrast, TFL 457 was able to interfere with the processing of TrkB-FL induced by NMDA, modestly at the lowest concentration used and very noticeably for 15 and 25 μΜ (Fig. 5A). A very important additional result was that the stabilization of the active isoform of TrkB mediated by pretreatment with TFL 457 resulted in the maintenance under conditions of excitotoxicity of the activity of the pro-survival transcription factor CREB, established by analysis with a phosphorus. specific antibody for its Ser 133 (Fig. 5A). In contrast, NMDA treatment of cultures pre-incubated with the TMyc control peptide resulted in the inactivation of pCREB, as described above (Hardingham et al., 2002). The activation of CREB by phosphorylation in this residue occurs as a consequence of the physiological activation of TrkB receptors and NMDARs in neurons and is an important survival mechanism since pCREB induces the expression, among others, of BDNF (Tao et al., 1998) and TrkB (Deogracias et al., 2004). In contrast, under conditions of excitotoxicity, inactivation of the transcriptional activity of pCREB is a critical factor in the neuronal death process (Hardingham et al., 2002). The effects of TFL 457 observed on the activation status of CREB are relevant to its clinical utility since it has previously been shown that the increase in pCREB is a factor that stimulates neurogenesis in the dentate gyrus of adult brain, a repair mechanism. brain that is activated after ischemic damage (Zhu et al., 2004).
Se investigó seguidamente el efecto de TFL457 sobre la muerte neuronal inducida por el proceso de excitotoxicidad a las distintas concentraciones de péptido utilizadas (Fig. 5B). Los resultados de 6 experimentos independientes de viabilidad neuronal fueron representados como valores relativos respecto a los obtenidos en cultivos control tratados con péptido pero sin NMDA. Como puede observarse, los cultivos pretratados con TFL457 presentaron una viabilidad neuronal significativamente mayor respecto a aquellos incubados con el péptido control a las tres concentraciones de péptido analizadas, encontrándose las diferencias más significativas para la concentración de 25 μΜ. Así por ejemplo, la viabilidad de los cultivos incubados con NMDA en presencia de TMyc fue del 17 ± 2% respecto a las células sin tratar, mientras que estos valores alcanzaron el 50 ± 5% en los cultivos tratados con TFL457 (p<0,001). Los datos anteriores demostraban que el péptido TFL457 tenía un efecto neuroprotector
significativo sobre la excitotoxicidad inducida por tratamiento crónico con NMDA, siendo éste dependiente de la dosis. Este efecto sobre la viabilidad se correspondía con la capacidad de TFL457 para interferir el procesamiento de la proteína TrkB-FL y con el mantenimiento de los niveles de pCREB, forma activa del factor de transcripción pro-supervivencia CREB. The effect of TFL 457 on neuronal death induced by the excitotoxicity process at the different peptide concentrations used was then investigated (Fig. 5B). The results of 6 independent experiments of neuronal viability were represented as relative values with respect to those obtained in control cultures treated with peptide but without NMDA. As can be seen, the cultures pretreated with TFL 457 presented a significantly greater neuronal viability with respect to those incubated with the control peptide at the three peptide concentrations analyzed, the most significant differences being found for the concentration of 25 μΜ. Thus, for example, the viability of cultures incubated with NMDA in the presence of TMyc was 17 ± 2% compared to untreated cells, while these values reached 50 ± 5% in cultures treated with TFL 457 (p <0.001 ). Previous data showed that the TFL 457 peptide had a neuroprotective effect significant on the excitotoxicity induced by chronic treatment with NMDA, this being dose dependent. This effect on viability corresponded with the ability of TFL 457 to interfere with the processing of the TrkB-FL protein and with the maintenance of pCREB levels, an active form of the pro-survival CREB transcription factor.
Con objeto de ahondar en la correlación encontrada en los distintos efectos de TFL457, analizamos el curso temporal del procesamiento de TrkB-FL y la inactivación de CREB inducidos por sobreactivación del NMDAR (Fig. 6) y los comparamos con los obtenidos previamente para la viabilidad neuronal (Fig. 4A). Para ello, los cultivos primarios fueron incubados con TMyc o TFL457 (25 μΜ) durante 30 min previamente a su tratamiento con NMDA durante 0, 2, 4 ó 6 h. El análisis de los niveles de TrkB mostró, en ambos casos, la reducción de TrkB-FL y el aumento progresivo de las formas truncadas tTrkB desde tiempos tempranos de tratamiento con NMDA (Fig. 6A) (Vidaurre et al., 2012). Se observó sin embargo que en los cultivos pretratados con el péptido TFL457 la reducción de los niveles de TrkB-FL tras el tratamiento con NMDA era notablemente inferior que la obtenida en presencia de TMyc. La cuantificación de los resultados correspondientes a 5 experimentos independientes mostró que las diferencias observadas entre los cultivos pretratados con TFL457 y TMyc eran estadísticamente significativas a las 2 y 4 h de tratamiento con NMDA (Fig. 6B). El efecto de TFL457 era específico para la proteína TrkB-FL y no se encontraron diferencias en el procesamiento de otros sustratos de calpaína como la espectrina, que dio lugar a la aparición de fragmentos de 150 y 145 kDa en los cultivos pretratados con TFL457 o TMyc con cinética similar. Como un control adicional se analizó NSE, proteína que ya vimos no es sustrato de calpaína ni se regula en condiciones de excitotoxicidad. La estabilización de TrkB-FL en los cultivos pretratados con TFL457 tuvo como consecuencia muy importante el mantenimiento en condiciones de excitotoxicidad de la actividad de pCREB (Fig. 6C), una proteína por debajo de TrkB en las cascadas de señalización y fundamental para la función de la vía pro- supervivencia BDNF/TrkB. En los cultivos preincubados con el péptido control, el tratamiento con NMDA produjo sin embargo la inactivación de pCREB desde tiempos muy tempranos tal como se describió (Hardingham et al., 2002). Los efectos ejercidos por TFL457 sobre TrkB-FL y pCREB presentaron una cinética muy similar a la observada previamente para la viabilidad neuronal (Fig. 4A), reforzando la correlación existente entre ambos fenómenos.
En conjunto, los datos anteriores demostraban que el péptido TFL457 tenía un efecto neuroprotector específico y significativo sobre la excitotoxicidad inducida por tratamiento crónico con NMDA que se correspondía con su capacidad para interferir el procesamiento de la proteína TrkB-FL y el mantenimiento de los niveles de activación del factor de transcripción CREB. In order to delve into the correlation found in the different effects of TFL 457, we analyzed the time course of TrkB-FL processing and CREB inactivation induced by NMDAR overactivation (Fig. 6) and compared them with those previously obtained for neuronal viability (Fig. 4A). For this, the primary cultures were incubated with TMyc or TFL 457 (25 μΜ) for 30 min prior to their treatment with NMDA for 0, 2, 4 or 6 h. The analysis of TrkB levels showed, in both cases, the reduction of TrkB-FL and the progressive increase of truncated tTrkB forms from early times of treatment with NMDA (Fig. 6A) (Vidaurre et al., 2012). However, it was observed that in cultures pretreated with the TFL 457 peptide, the reduction in TrkB-FL levels after treatment with NMDA was markedly lower than that obtained in the presence of TMyc. The quantification of the results corresponding to 5 independent experiments showed that the differences observed between cultures pretreated with TFL 457 and TMyc were statistically significant at 2 and 4 h of treatment with NMDA (Fig. 6B). The effect of TFL 457 was specific for the TrkB-FL protein and no differences were found in the processing of other calpain substrates such as spectrin, which resulted in the appearance of 150 and 145 kDa fragments in cultures pretreated with TFL 457 or TMyc with similar kinetics. As an additional control, NSE was analyzed, a protein that we already saw is not a calpain substrate nor is it regulated under conditions of excitotoxicity. The stabilization of TrkB-FL in cultures pretreated with TFL 457 had as a very important consequence the maintenance under conditions of excitotoxicity of the activity of pCREB (Fig. 6C), a protein below TrkB in the signaling cascades and fundamental for the BDNF / TrkB pro-survival pathway function. In cultures pre-incubated with the control peptide, treatment with NMDA, however, caused the inactivation of pCREB from very early times as described (Hardingham et al., 2002). The effects exerted by TFL 457 on TrkB-FL and pCREB showed a kinetics very similar to that previously observed for neuronal viability (Fig. 4A), reinforcing the correlation between both phenomena. Together, the previous data demonstrated that the TFL 457 peptide had a specific and significant neuroprotective effect on the excitotoxicity induced by chronic NMDA treatment that corresponded with its ability to interfere with the processing of the TrkB-FL protein and the maintenance of levels of activation of the CREB transcription factor.
Ejemplo 4. El péptido TFL457 también es capaz de reducir la muerte neuronal inducida por un daño neuronal agudo. Example 4. The TFL 457 peptide is also capable of reducing neuronal death induced by acute neuronal damage.
El modelo celular utilizado en los experimentos anteriores, en el que neuronas previamente expuestas al péptido neuroprotector son enfrentadas a un estímulo excitotóxico crónico, intenta reproducir una situación clínica en la que tratásemos de reducir la muerte neuronal secundaria de un paciente que ha sufrido un ictus mediante la administración post-isquemia de un péptido neuroprotector para proteger a las neuronas de la penumbra isquémica. Sin embargo, cara a evaluar de una manera más global el potencial neuroprotector del péptido TFL457 para su uso en clínica, también nos pareció interesante investigar su eficacia cuando se utiliza inmediatamente tras la inducción de un daño neuronal agudo, condiciones que simularían algunos otros procesos de isquemia producidos in vivo como consecuencia de cirugías endovasculares y cardiacas. The cellular model used in the previous experiments, in which neurons previously exposed to the neuroprotective peptide are faced with a chronic excitotoxic stimulus, tries to reproduce a clinical situation in which we try to reduce the secondary neuronal death of a patient who has suffered a stroke by Post-ischemia administration of a neuroprotective peptide to protect neurons from ischemic penumbra. However, in order to evaluate in a more global way the neuroprotective potential of the TFL 457 peptide for clinical use, we also found it interesting to investigate its effectiveness when used immediately after induction of acute neuronal damage, conditions that would simulate some other processes of ischemia produced in vivo as a result of endovascular and cardiac surgeries.
Se realizaron experimentos en los que las neuronas fueron sometidas sólo transitoriamente a las condiciones excitotóxicas y los péptidos se administraron posteriormente a la inducción del daño neuronal agudo (Fig. 7). Para ello, los cultivos primarios fueron tratados con NMDA (50 μΜ) y glicina (10 μΜ) durante 1 h, sustituyéndose este medio a continuación por un medio libre de los agonistas y conteniendo el antagonista genérico del NMDAR, DL-AP-5 (200 μΜ), lo que permite limitar la sobreactivación del NMDAR a un corto periodo de tiempo. Los péptidos TFL457 o TMyc (15 μΜ) fueron añadidos en el medio fresco junto con el DL-AP-5. La viabilidad neuronal se estableció como anteriormente 20 h después de realizado el cambio de medio y los valores medios de 5 experimentos se representaron como valores relativos a los obtenidos en los cultivos correspondientes no tratados con NMDA. La viabilidad neuronal relativa para los cultivos tratados con TMyc fue del 36 ± 9%, valor significativamente inferior al obtenido en las neuronas tratadas con TFL457, que alcanzaron un 85 ± 13% (p<0,05).
En conjunto, los resultados anteriores demuestran que el péptido TFL457 ejerce un efecto neuroprotector significativo tanto cuando se encuentra presente en neuronas sometidas posteriormente a un daño excitotóxico crónico como si se administra inmediatamente después de un daño agudo. Experiments were performed in which the neurons were subjected only temporarily to the excitotoxic conditions and the peptides were subsequently administered to the induction of acute neuronal damage (Fig. 7). For this, the primary cultures were treated with NMDA (50 μΜ) and glycine (10 μΜ) for 1 h, then replacing this medium with a medium free from the agonists and containing the generic NMDAR antagonist, DL-AP-5 ( 200 μΜ), which allows limiting the over-activation of NMDAR to a short period of time. TFL 457 or TMyc (15 μ () peptides were added in the fresh medium together with the DL-AP-5. Neural viability was established as before 20 h after the change of medium and the average values of 5 experiments were represented as relative values to those obtained in the corresponding cultures not treated with NMDA. The relative neuronal viability for cultures treated with TMyc was 36 ± 9%, significantly lower than that obtained in neurons treated with TFL 457 , which reached 85 ± 13% (p <0.05). Together, the previous results demonstrate that the TFL 457 peptide exerts a significant neuroprotective effect both when it is present in neurons subsequently subjected to chronic excitotoxic damage and if it is administered immediately after acute damage.
Ejemplo 5. La inhibición de calpaína no bloquea el efecto neuroprotector del péptido TFL457 en neuronas sometidas a excitotoxicidad. Example 5. Inhibition of calpain does not block the neuroprotective effect of the TFL457 peptide in neurons subjected to excitotoxicity.
Hemos puesto a prueba la hipótesis de que el mecanismo de acción del péptido TFL457 sobre TrkB-FL depende de su inhibición de la actividad de calpaína específicamente sobre este sustrato mediante ensayos de neuroprotección realizados en presencia de inhibidores genéricos de esta proteasa (Fig. 8). Para ello, los cultivos primarios fueron preincubados con los inhibidores de calpaína, calpeptina (Calp, 10 μΜ) e inhibidor III (Cilll; 10 μΜ) y, 30 min después, con los péptidos TMyc o TFL457 (25 μΜ). Tras 30 min adicionales, las células se trataron de forma crónica con NMDA (4 h). En los cultivos control preincubados con TMyc observamos un efecto modesto pero significativo de los inhibidores de calpaína sobre la viabilidad neuronal (28 ±3% versus 21 ±2%, p<0,05). Sin embargo, el efecto neuroprotector de TFL457 fue muy similar independientemente del tratamiento o no con los inhibidores de la proteasa (48 ±5% versus 47 ±3%). Por tanto, contrariamente a la hipótesis de partida, el efecto de TFL457 sobre el procesamiento de TrkB-FL inducido en condiciones de excitotoxicidad podría deberse mayoritariamente a la interferencia de un sistema proteolítico alternativo a la calpaína que también se activaría en estas situaciones y participaría en la regulación del receptor de neurotrofinas TrkB en respuesta al daño neuronal. We have tested the hypothesis that the mechanism of action of the TFL 457 peptide on TrkB-FL depends on its inhibition of calpain activity specifically on this substrate by neuroprotection tests performed in the presence of generic inhibitors of this protease (Fig. 8 ). To do this, the primary cultures were pre-incubated with the calpain inhibitors, calpeptin (Calp, 10 μΜ) and inhibitor III (Cilll; 10 μΜ) and, 30 min later, with the TMyc or TFL 457 (25 μΜ) peptides. After an additional 30 min, the cells were treated chronically with NMDA (4 h). In control cultures pre-incubated with TMyc we observed a modest but significant effect of calpain inhibitors on neuronal viability (28 ± 3% versus 21 ± 2%, p <0.05). However, the neuroprotective effect of TFL 457 was very similar regardless of whether or not treatment with protease inhibitors (48 ± 5% versus 47 ± 3%). Therefore, contrary to the initial hypothesis, the effect of TFL 457 on the processing of TrkB-FL induced under conditions of excitotoxicity could be mainly due to the interference of an alternative proteolytic system to calpain that would also be activated in these situations and would participate in the regulation of the TrkB neurotrophin receptor in response to neuronal damage.
Referencias References
Aarts, M., Liu, Y., Liu, L, Besshoh, S., Arundine, M., Gurd, J.W., Wang, Y.T., Salter, M.W., and Tymianski, M. (2002). Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298, 846-850. Aarts, M., Liu, Y., Liu, L, Besshoh, S., Arundine, M., Gurd, J.W., Wang, Y.T., Salter, M.W., and Tymianski, M. (2002). Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298, 846-850.
Bodanzsky, M. and Bodanzsky, A. (1994). "The practice of Peptide Synthesis". Bodanzsky, M. and Bodanzsky, A. (1994). "The practice of Peptide Synthesis".
Springer Verlag, Berlín.
Brigman, J.L., Wright, T., Talani, G., Prasad-Mulcare, S., Jinde, S., Seabold, G.K., Mathur, P., Davis, M.I., Bock, R., Gustin, R.M., et al. (2010). Loss of GluN2B- containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci 30, 4590-4600. Springer Verlag, Berlin. Brigman, JL, Wright, T., Talani, G., Prasad-Mulcare, S., Jinde, S., Seabold, GK, Mathur, P., Davis, MI, Bock, R., Gustin, RM, et al . (2010). Loss of GluN2B- containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduce dendritic spine density, and disrupts learning. J Neurosci 30, 4590-4600.
Carim-Todd, L, Bath, K.G., Fulgenzi, G., Yanpallewar, S., Jing, D., Barrick, C.A., Becker, J., Buckley, H., Dorsey, S.G., Lee, F.S., et al. (2009). Endogenous truncated TrkB.TI receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J Neurosci 29, 678-685. Carim-Todd, L, Bath, K.G., Fulgenzi, G., Yanpallewar, S., Jing, D., Barrick, C.A., Becker, J., Buckley, H., Dorsey, S.G., Lee, F.S., et al. (2009). Endogenous truncated TrkB.TI receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J Neurosci 29, 678-685.
Chen, H.S., and Lipton, S.A. (2006). The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 97, 161 1-1626. Choi, D.W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Chen, H.S., and Lipton, S.A. (2006). The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 97, 161 1-1626. Choi, D.W. (1988). Glutamate neurotoxicity and diseases of the nervous system.
Neuron 1 , 623-634. Neuron 1, 623-634.
Cook, D.J., Teves, L., and Tymianski, M. (2012a). A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Science translational medicine 4, 154ra133. Cook, D.J., Teves, L., and Tymianski, M. (2012a). A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Science translational medicine 4, 154ra133.
Cook, D.J., Teves, L., and Tymianski, M. (2012b). Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483, 213-217. Cook, D.J., Teves, L., and Tymianski, M. (2012b). Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483, 213-217.
Dawbarn, D., and Alien, S.J. (2003). Neurotrophins and neurodegeneration. Dawbarn, D., and Alien, S.J. (2003). Neurotrophins and neurodegeneration.
Neuropathology and applied neurobiology 29, 21 1-230. Neuropathology and applied neurobiology 29, 21 1-230.
Deogracias, R., Espliguero, G., Iglesias, T., and Rodriguez-Pena, A. (2004). Deogracias, R., Espliguero, G., Iglesias, T., and Rodriguez-Pena, A. (2004).
Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci 26, 470-480. Expression of the neurotrophin trkB receptor is regulated by the cAMP / CREB pathway in neurons. Mol Cell Neurosci 26, 470-480.
Dietz, G.P., and Bahr, M. (2004). Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 27, 85-131. Dietz, G.P., and Bahr, M. (2004). Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 27, 85-131.
Dolgin, E. (2012). To serve and neuroprotect. Nat Med 18, 1003-1006.
Faulí i Trillo, C. (1993). "Tratado de Farmacia Galénica", Luzán 5, S.A. Ediciones, Madrid. Dolgin, E. (2012). To serve and neuroprotect. Nat Med 18, 1003-1006. Faulí i Trillo, C. (1993). "Treaty of Farmacia Galenica", Luzán 5, SA Ediciones, Madrid.
Hardingham, G.E., Fukunaga, Y., and Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways.Hardingham, G.E., Fukunaga, Y., and Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways.
Nature neuroscience 5, 405-414. Nature neuroscience 5, 405-414.
Hill, M.D., Martin, R.H., Mikulis, D., Wong, J.H., Silver, F.L., Terbrugge, K.G., Milot, G., Clark, W.M., Macdonald, R.L., Kelly, M.E., et al. (2012). Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repairHill, M.D., Martin, R.H., Mikulis, D., Wong, J.H., Silver, F.L., Terbrugge, K.G., Milot, G., Clark, W.M., Macdonald, R.L., Kelly, M.E., et al. (2012). Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair
(ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet neurology 1 1 , 942-950. (ENACT): a phase 2, randomized, double-blind, placebo-controlled trial. Lancet neurology 1 1, 942-950.
Ikonomidou, C, and Turski, L. (2002). Why did NMDA receptor antagonists fail clinical triáis for stroke and traumatic brain injury? Lancet neurology 1 , 383-386. Ikonomidou, C, and Turski, L. (2002). Why did NMDA receptor antagonists fail clinical triáis for stroke and traumatic brain injury? Lancet neurology 1, 383-386.
Kullmann, W. (1980). Proteases as catalysts for enzymic syntheses of opioid peptides. Kullmann, W. (1980). Proteases as catalysts for enzymic syntheses of opioid peptides.
J Biol Chem 255, 8234-8238. J Biol Chem 255, 8234-8238.
Lloyd-Williams, P., Albericio, F., and Giralt, E. (1997). "Chemical Approaches to the Synthesis of Peptides and Proteins". CRC, Boca Ratón, FL, USA. Lloyd-Williams, P., Albericio, F., and Giralt, E. (1997). "Chemical Approaches to the Synthesis of Peptides and Proteins". CRC, Boca Raton, FL, USA.
Milletti, F. (2012). Cell-penetrating peptides: classes, origin, and current landscape. Milletti, F. (2012). Cell-penetrating peptides: classes, origin, and current landscape.
Drug discovery today 17, 850-860. Olney, J.W. (1986). Inciting excitotoxic cytocide among central neurons. Adv Exp Med Biol 203, 631-645. Drug discovery today 17, 850-860. Olney, J.W. (1986). Inciting excitotoxic cytocide among central neurons. Adv Exp Med Biol 203, 631-645.
Regberg, J., Eriksson, J.N., and Langel, U. (2013). Cell-penetrating peptides: from cell cultures to in vivo applications. Frontiers in bioscience (Elite edition) 5, 509-516. Regberg, J., Eriksson, J.N., and Langel, U. (2013). Cell-penetrating peptides: from cell cultures to in vivo applications. Frontiers in bioscience (Elite edition) 5, 509-516.
Stewart, J.M. and Young, J.D. (1984). "Solid Phase Peptide Synthesis", 2nd edition. Stewart, J.M. and Young, J.D. (1984). "Solid Phase Peptide Synthesis", 2nd edition.
Pierce Chemical Company, Rockford, Illinois.
Tao, X., Finkbeiner, S., Arnold, D.B., Shaywitz, A.J., and Greenberg, M.E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor- dependent mechanism. Neuron 20, 709-726. Tompa, P., Buzder-Lantos, P., Tantos, A., Farkas, A., Szilagyi, A., Banoczi, Z., Hudecz, F., and Friedrich, P. (2004). On the sequential determinants of calpain cleavage. J Biol Chem 279, 20775-20785. Pierce Chemical Company, Rockford, Illinois. Tao, X., Finkbeiner, S., Arnold, DB, Shaywitz, AJ, and Greenberg, ME (1998). Ca2 + influex regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709-726. Tompa, P., Buzder-Lantos, P., Tantos, A., Farkas, A., Szilagyi, A., Banoczi, Z., Hudecz, F., and Friedrich, P. (2004). On the sequential determinants of calpain cleavage. J Biol Chem 279, 20775-20785.
Vidaurre, O.G., Gascón, S., Deogracias, R., Sobrado, M., Cuadrado, E., Montaner, J., Rodriguez-Pena, A., and Diaz-Guerra, M. (2012). Imbalance of neurotrophin receptor isoforms TrkB-FI_/TrkB-T1 induces neuronal death in excitotoxicity. Cell death & disease 3, e256. Vidaurre, O.G., Gascón, S., Deogracias, R., Sobrado, M., Cuadrado, E., Montaner, J., Rodriguez-Pena, A., and Diaz-Guerra, M. (2012). Imbalance of neurotrophin receptor isoforms TrkB-FI_ / TrkB-T1 induces neuronal death in excitotoxicity. Cell death & disease 3, e256.
Zhu, D.Y., Lau, L, Liu, S.H., Wei, J.S., and Lu, Y.M. (2004). Activation of cAMP- response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Nati Acad Sci U S A 101 , 9453-Zhu, D.Y., Lau, L, Liu, S.H., Wei, J.S., and Lu, Y.M. (2004). Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Nati Acad Sci U S A 101, 9453-
9457.
9457.
Claims
1. Péptido con efecto neuroprotector frente a la muerte inducida por excitotoxicidad caracterizado por consistir en la secuencia SEQ ID NO: 1. 1. Peptide with neuroprotective effect against death induced by excitotoxicity characterized by consisting of the sequence SEQ ID NO: 1.
2. Péptido según la reivindicación 1 unido a un agente de internalización. 2. Peptide according to claim 1 attached to an internalizing agent.
3. Péptido según la reivindicación 2 caracterizado por que el agente de internalización es un péptido penetrante celular, y donde dicho péptido penetrante celular se encuentra covalentemente unido al péptido que consiste en la SEQ ID NO: 1. 3. Peptide according to claim 2 characterized in that the internalizing agent is a cellular penetrating peptide, and wherein said cellular penetrating peptide is covalently bound to the peptide consisting of SEQ ID NO: 1.
4. Péptido según la reivindicación 3 caracterizado por que la secuencia del péptido penetrante celular es TAT47-57 (SEQ ID NO: 17) o TAT48-60 (SEQ ID NO: 16). 4. Peptide according to claim 3 characterized in that the sequence of the cell penetrating peptide is TAT47-57 (SEQ ID NO: 17) or TAT48-60 (SEQ ID NO: 16).
5. Péptido según la reivindicación 4 que consiste en la secuencia SEQ ID NO: 6, donde la secuencia SEQ ID NO: 6 consiste en el péptido penetrante TAT47-57 (SEQ ID NO: 17) en el que la arginina C-terminal de la secuencia SEQ ID NO: 17 es también el primer aminoácido de la secuencia SEQ ID NO: 1. 5. Peptide according to claim 4 consisting of the sequence SEQ ID NO: 6, wherein the sequence SEQ ID NO: 6 consists of the penetrating peptide TAT47-57 (SEQ ID NO: 17) in which the C-terminal arginine of the sequence SEQ ID NO: 17 is also the first amino acid of the sequence SEQ ID NO: 1.
6. Polinucleótido que codifica para el péptido según cualquiera de las reivindicaciones 1 a 5. 6. Polynucleotide encoding the peptide according to any one of claims 1 to 5.
7. Polinucleótido según la reivindicación 6 caracterizado por consistir en la secuencia SEQ ID NO: 26 ó SEQ ID NO: 27. 7. Polynucleotide according to claim 6 characterized in that it consists of the sequence SEQ ID NO: 26 or SEQ ID NO: 27.
8. Vector que comprende el polinucleótido según cualquiera de las reivindicaciones 6 ó 7. 8. Vector comprising the polynucleotide according to any of claims 6 or 7.
9. Célula que comprende el polinucleótido según las reivindicaciones 6 ó 7. 9. Cell comprising the polynucleotide according to claims 6 or 7.
10. Uso de la célula según la reivindicación 9 para la obtención del péptido según cualquiera de las reivindicaciones 1 a 5.
10. Use of the cell according to claim 9 for obtaining the peptide according to any of claims 1 to 5.
1 1. Composición farmacéutica caracterizada por comprender el péptido neuroprotector según cualquiera de las reivindicaciones 1 a 5, o el polinucleótido según cualquiera de las reivindicaciones 6 a 7, o el vector según la reivindicación 8. 1 1. Pharmaceutical composition characterized by comprising the neuroprotective peptide according to any one of claims 1 to 5, or the polynucleotide according to any one of claims 6 to 7, or the vector according to claim 8.
12. Composición farmacéutica según la reivindicación 11 caracterizada por comprender el péptido que consiste en la secuencia SEQ ID NO: 1 y/o SEQ ID NO: 6. 12. Pharmaceutical composition according to claim 11 characterized in that it comprises the peptide consisting of the sequence SEQ ID NO: 1 and / or SEQ ID NO: 6.
13. Composición farmacéutica según la reivindicación 12 caracterizada por comprender el péptido que consiste en la secuencia SEQ ID NO: 1. 13. Pharmaceutical composition according to claim 12 characterized in that it comprises the peptide consisting of the sequence SEQ ID NO: 1.
14. Composición farmacéutica según la reivindicación 12 caracterizada por comprender el péptido que consiste en la secuencia SEQ ID NO: 6. 14. Pharmaceutical composition according to claim 12 characterized in that it comprises the peptide consisting of the sequence SEQ ID NO: 6.
15. Composición farmacéutica según la reivindicación 11 caracterizada por comprender el vector de la invención según la reivindicación 8. 15. Pharmaceutical composition according to claim 11 characterized by comprising the vector of the invention according to claim 8.
16. Uso del péptido descrito en las reivindicaciones 1 a 5 en la fabricación de una composición farmacéutica o medicamento según las reivindicaciones 1 1 a 14. 16. Use of the peptide described in claims 1 to 5 in the manufacture of a pharmaceutical composition or medicament according to claims 1 1 to 14.
17. Uso del vector descrito en la reivindicación 8 en la fabricación de una composición farmacéutica o medicamento según la reivindicación 15. 17. Use of the vector described in claim 8 in the manufacture of a pharmaceutical composition or medicament according to claim 15.
18. Uso según cualquiera de las reivindicaciones 16 ó 17 donde la composición farmacéutica o el medicamento son para la prevención y/o tratamiento de la muerte celular inducida por excitotoxicidad. 18. Use according to any of claims 16 or 17 wherein the pharmaceutical composition or medicament is for the prevention and / or treatment of excitotoxicity induced cell death.
19. Uso según la reivindicación 18 donde la composición farmacéutica es para la prevención y/o tratamiento de un accidente cerebrovascular. 19. Use according to claim 18 wherein the pharmaceutical composition is for the prevention and / or treatment of a stroke.
20. Uso según la reivindicación 19 donde la composición farmacéutica es para la prevención y/o tratamiento de un ictus isquémico. 20. Use according to claim 19 wherein the pharmaceutical composition is for the prevention and / or treatment of an ischemic stroke.
21. Uso según la reivindicación 18 donde la composición farmacéutica es para la prevención y/o tratamiento de una lesión cerebral traumática.
21. Use according to claim 18 wherein the pharmaceutical composition is for the prevention and / or treatment of a traumatic brain injury.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP201431507 | 2014-10-14 | ||
ES201431507 | 2014-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016059277A1 true WO2016059277A1 (en) | 2016-04-21 |
Family
ID=55746172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2015/070744 WO2016059277A1 (en) | 2014-10-14 | 2015-10-14 | Peptide derived from trkb-fl and use thereof as a neuroprotector |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016059277A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021201710A1 (en) * | 2020-04-01 | 2021-10-07 | Instituto de Medicina Molecular João Lobo Antunes | Therapeutic agents, pharmaceutical compositions, and associated biomarkers based on trk-b |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100137224A1 (en) * | 1999-06-02 | 2010-06-03 | Michael Tymianski | Method of reducing injury to mammalian cells |
WO2014102426A1 (en) * | 2012-12-24 | 2014-07-03 | Consejo Superior De Investigaciones Científicas (Csic) | Neuroprotective peptide and the use thereof in the treatment of cerebrovasuclar diseases and other pathological conditions of the cns |
-
2015
- 2015-10-14 WO PCT/ES2015/070744 patent/WO2016059277A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100137224A1 (en) * | 1999-06-02 | 2010-06-03 | Michael Tymianski | Method of reducing injury to mammalian cells |
WO2014102426A1 (en) * | 2012-12-24 | 2014-07-03 | Consejo Superior De Investigaciones Científicas (Csic) | Neuroprotective peptide and the use thereof in the treatment of cerebrovasuclar diseases and other pathological conditions of the cns |
Non-Patent Citations (1)
Title |
---|
VIDAURRE, O.G. ET AL.: "Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1induces neuronal death in excitotoxicity''.", CELL DEATH AND DISEASE., vol. 3, 19 January 2012 (2012-01-19) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021201710A1 (en) * | 2020-04-01 | 2021-10-07 | Instituto de Medicina Molecular João Lobo Antunes | Therapeutic agents, pharmaceutical compositions, and associated biomarkers based on trk-b |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2532083T3 (en) | Use of Hsp70 as a regulator of enzymatic activity | |
JP6625071B2 (en) | Non-drug CRMP2 peptides targeting sodium channels for chronic pain | |
ES2699658T3 (en) | Compositions for use in the treatment of neural injury by inhibiting the activity of phosphatases of the LAR family | |
CN106170491B (en) | Neuroprotective peptides | |
US10350265B2 (en) | Therapeutic applications of Smad7 | |
Milani et al. | The R18 polyarginine peptide is more effective than the TAT‐NR2B9c (NA‐1) peptide when administered 60 minutes after permanent middle cerebral artery occlusion in the rat | |
US10059742B2 (en) | Peptides and methods and uses thereof for preventing retinal disorders | |
AU2011210825A1 (en) | Pro-angiogenic fragments of prominin-1 and uses thereof | |
ES2479815B1 (en) | NEUROPROTECTOR PEPTIDE ASI AS ITS USE IN THE TREATMENT OF CEREBROVASCULAR DISEASES AND OTHER CNS PATHOLOGIES | |
Zhao et al. | TAT-Ngn2 enhances cognitive function recovery and regulates caspase-dependent and mitochondrial apoptotic pathways after experimental stroke | |
TW201927825A (en) | CDKL5 expression variants and CDKL5 fusion proteins | |
JP2022532092A (en) | BNIP3 peptide for the treatment of reperfusion injury | |
WO2016059277A1 (en) | Peptide derived from trkb-fl and use thereof as a neuroprotector | |
ES2390763T3 (en) | Peptide fragments of the HARP factor that inhibit angiogenesis | |
US20210379144A1 (en) | Homeoproteins for use in the treatment of neurodegenerative disorders | |
US20220033450A1 (en) | Virally expressed inhibitors of pdz domains, such as pick1 and uses thereof | |
CA3190597A1 (en) | Compositions and methods for the treatment of ocular neuroinflammation | |
ES2281278B1 (en) | USE OF A POLYPEPTIDE THAT INCLUDES THE C-TERMINAL DOMAIN OF THE HEAVY CHAIN OF THE TETANIC TOXIN IN THE TREATMENT OF PARKINSONISM. | |
WO2014015338A1 (en) | Acetylated crystallin polypeptides and mimetics thereof as therapeutics agents | |
WO2011004054A1 (en) | Use of carbonic anhydrase ii for producing a drug | |
US20050256040A1 (en) | Artificially designed pore-forming proteins with anti-tumor effects | |
ES2800073T3 (en) | Use of the peptide qbp1 for the prevention or treatment of post-traumatic stress disorder, acute stress syndrome and / or general adjustment syndrome | |
JP2020026397A (en) | PHARMACEUTICAL COMPOSITION COMPRISING TrkB ANTAGONIST | |
Lo | The development of a method to deliver neuroprotective peptides specifically into stroke-affected neurons | |
Marcelli | A novel selective cell-permeable peptide disrupts presynaptic JNK2-STX1a interaction, providing neuroprotection and preventing glutamate-mediated excitotoxicity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15851021 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15851021 Country of ref document: EP Kind code of ref document: A1 |