WO2016052326A1 - 延伸積層フィルム - Google Patents
延伸積層フィルム Download PDFInfo
- Publication number
- WO2016052326A1 WO2016052326A1 PCT/JP2015/077088 JP2015077088W WO2016052326A1 WO 2016052326 A1 WO2016052326 A1 WO 2016052326A1 JP 2015077088 W JP2015077088 W JP 2015077088W WO 2016052326 A1 WO2016052326 A1 WO 2016052326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- mol
- butene
- mass
- propylene
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/14—Copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/31—Heat sealable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
- C08L2203/162—Applications used for films sealable films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
Definitions
- the present invention relates to a stretched laminated film excellent in heat sealability, and more specifically, a heat seal layer excellent in heat sealability and hot tack property is laminated on a base material layer, particularly for high-speed packaging. It is related with the stretched laminated film used suitably for.
- VFFS vertical bag making and filling machine
- a packaging bag is formed at a high speed with a continuously supplied plastic film, and at the same time as the packaging bag is formed, an article to be packaged is put into the packaging bag in a vertical direction at a high speed.
- Methods of high-speed filling and sealing are gradually penetrating the industry (for example, Patent Documents 1 and 2).
- an article to be packaged falls in a vertical direction onto a lower seal portion that is not sufficiently cooled immediately after heat sealing.
- the lower seal surface may be torn by dropping the object to be packaged, and the bag may be broken.
- the main performance required for the heat seal layer is high heat sealability (that is, high heat seal strength is exhibited at a lower seal temperature than the current temperature, or even at the current temperature, The ability to develop high heat seal strength in a shorter sealing time) and high hot tack (that is, the seal part is strong even if it is in a high temperature state during heat sealing where the temperature of the seal part is not sufficiently cooled) This is two points of performance).
- L-LDPE linear low-density polyethylene
- the present invention has been made with the above situation in mind, and its purpose is to break the seal portion even when high-speed sealing / packaging means such as a vertical bag making and filling machine (VFFS) is used. It is providing the stretched laminated film which can manufacture the package which does not raise
- VFFS vertical bag making and filling machine
- the gist of the present invention is as follows.
- Tm melting point measured by differential scanning calorimetry
- DSC differential scanning calorimetry
- Structural unit derived from 10 to 90 mol% [wherein, the total amount of the structural unit derived from 1-butene and the structural unit derived from an ⁇ -olefin having 3 or 5 to 20 carbon atoms is 100 mol%. 3 to 50 parts by mass of the 1-butene polymer (B) containing the components [wherein the total amount of the component (A) and the component (B) is 100 parts by mass. ]
- Tm melting point measured by differential scanning calorimetry
- the melting point (Tm) measured by differential scanning calorimetry (DSC) is less than 120 ° C.
- the structural unit derived from 1-butene is 10 to 90 mol%
- the ⁇ -olefin having 3 or 5 to 20 carbon atoms.
- the total of structural units derived from the 20 ⁇ -olefins is 100 mol%.
- the propylene polymer (A) has a melting point (Tm) measured by differential scanning calorimetry (DSC) of 120 ° C. or more and less than 150 ° C., and 80 to 100% by mass of the propylene polymer (a1), and 0 to 20% by mass of a propylene polymer (a2) having a melting point (Tm) measured by the same method of 150 ° C. or more and 170 ° C. or less [wherein the total amount of component (a1) and component (a2) is 100% by mass It is. ]
- Tm melting point measured by differential scanning calorimetry
- the propylene polymer (A) has a melting point (Tm) measured by differential scanning calorimetry (DSC) of 120 ° C. or more and less than 150 ° C., and 95 to 99% by mass of the propylene polymer (a1), and 1 to 5% by mass of a propylene polymer (a2) having a melting point (Tm) measured by the same method of 150 ° C. or more and 170 ° C. or less [wherein the total amount of component (a1) and component (a2) is 100% by mass It is. ]
- Tm melting point measured by differential scanning calorimetry
- the 1-butene polymer (B) has a melting point (Tm) measured by differential scanning calorimetry (DSC) of less than 120 ° C., 10 to 90 mol% of structural units derived from 1-butene, and The structural unit derived from propylene is 10 to 90 mol% [wherein, the total amount of the structural unit derived from 1-butene and the structural unit derived from propylene is 100 mol%.
- the 1-butene polymer (B ′) is selected from the group consisting of a 1-butene polymer (b1), a 1-butene polymer (b2), and a 1-butene polymer (b3).
- a package in which an article to be packaged is stored in the packaging bag according to [9].
- the stretched laminated film of the present invention exhibits sufficient heat seal strength even when heat sealed at a lower temperature range of about 70 to 100 ° C. as well as 110 ° C. or higher. And the fall of the hot tack strength in 110 degreeC or more which is a concern with the film which has such a low temperature heat-sealing property is reduced, and sufficient hot tack strength is shown at high temperature. Therefore, for example, it is suitably used in applications such as a packaging film when high-speed filling / sealing of an article to be packaged using a vertical bag making and filling machine (VFFS).
- VFFS vertical bag making and filling machine
- the stretched laminated film of the first embodiment is 50 to 97 parts by mass of a propylene-based polymer (A) having a melting point (Tm) measured by differential scanning calorimetry (DSC) of 120 ° C. or more and 170 ° C. or less and having more than 50 mol% of structural units derived from propylene, and ,
- Tm melting point measured by differential scanning calorimetry
- DSC differential scanning calorimetry
- the melting point (Tm) measured by differential scanning calorimetry (DSC) is less than 120 ° C.
- the structural unit derived from 1-butene is 10 to 90 mol%
- the ⁇ -olefin having 3 or 5 to 20 carbon atoms.
- Structural unit derived from 10 to 90 mol% [wherein, the total amount of the structural unit derived from 1-butene and the structural unit derived from an ⁇ -olefin having 3 or 5 to 20 carbon atoms is 100 mol%. 3 to 50 parts by mass of the 1-butene polymer (B) containing the components [wherein the total amount of the component (A) and the component (B) is 100 parts by mass. ] It is an extending
- the stretched laminated film of the second embodiment is 50 to 97 parts by mass of the component (A), 3 to 50 parts by mass of the component (B), and 50 to 99 mol% of structural units derived from ethylene and 1 to 50 mol% of structural units derived from an ⁇ -olefin having 3 to 20 carbon atoms [wherein the structural units derived from ethylene and 3 to 3 carbon atoms]
- the total of structural units derived from the 20 ⁇ -olefins is 100 mol%.
- multilayer film which has a heat seal layer which consists of a resin composition containing, and a base material layer.
- the stretched laminated film 30 shown in FIG. 1 includes a heat seal layer 10 and a base material layer 20.
- the heat seal layer 10 constituting the stretched laminated film 30 includes the component (A) as a main component.
- component (B) is blended at a specific ratio in the first embodiment
- component (B) and component (C) are blended at a specific ratio in the second embodiment.
- the stretched laminated film a stretched laminated film (costretched laminated film) in which both the heat seal layer 10 and the base material layer 20 are usually stretched at the same stretch ratio is preferable from the viewpoint of ease of production.
- the base material layer 20 may be unstretched, and only the heat seal layer 10 may be stretched. That is, in the present invention, the “stretched laminated film” means a laminated film in a form in which at least the heat seal layer is stretched, and whether or not the substrate is stretched is arbitrary.
- the resin composition constituting the heat seal layer and the resin composition constituting the base material layer are respectively used.
- an unstretched laminate is produced by supplying to an extruder and coextrusion molding.
- the thickness of the unstretched laminate may be set within a range of 50 ⁇ m to 5000 ⁇ m, for example.
- the ratio of the thickness of the unstretched heat seal layer to the base material layer may be set within a range of, for example, 1:99 to 99: 1.
- a co-stretched laminated film is obtained by stretching the unstretched laminate with, for example, a stretching machine.
- the total thickness of the stretched laminated film such as a co-stretched laminated film is preferably 1 ⁇ m to 500 ⁇ m.
- the heat seal layer 10 in the stretched laminated film of the first embodiment is composed of a resin composition in which the component (A) and the component (B) are blended at an appropriate ratio.
- the heat seal layer 10 in the stretched laminated film of the second embodiment is composed of a resin composition in which the component (A), the component (B), and the component (C) are blended at an appropriate ratio.
- the resin composition constituting the heat seal layer 10 in the stretched laminated film of the first embodiment is composed of 50 to 97 parts by mass of the component (A) and 3 to 50 parts by mass of the component (B) [wherein the component (A) and Component (B) total amount includes 100 parts by mass].
- a preferred resin composition contains 60 to 95 parts by mass of component (A) and 5 to 40 parts by mass of component (B).
- a more preferable resin composition contains 70 to 90 parts by mass of component (A) and 10 to 30 parts by mass of component (B).
- the resin composition constituting the heat seal layer 10 in the stretched laminated film of the second embodiment is 3 to 30 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B) in the first embodiment. , Preferably 3 to 20 parts by weight, more preferably 5 to 15 parts by weight of component (C).
- Component (A) is a propylene-based polymer having a melting point (Tm) measured by differential scanning calorimetry (DSC) of 120 ° C. or more and 170 ° C. or less, and a structural unit derived from propylene exceeds 50 mol%.
- This propylene polymer (A) may be a homopolypropylene, a propylene / ⁇ -olefin having 2 to 20 carbon atoms (excluding propylene) random copolymer, or a propylene block copolymer. May be.
- the structural unit derived from propylene in the component (A) is usually more than 50 mol%, preferably 60 mol% or more, more preferably 70 mol% or more.
- homopolypropylene and / or propylene- ⁇ -olefin having 2 to 20 carbon atoms (excluding propylene) random copolymer is preferably used.
- homopolypropylene is particularly preferably used from the viewpoint of imparting heat resistance and rigidity to the heat seal layer 10. From the viewpoint of imparting flexibility and transparency to the heat seal layer 10, it is preferable to use a propylene / ⁇ -olefin having 2 to 20 carbon atoms (excluding propylene) random copolymer. Use of homopolypropylene and propylene / ⁇ -olefin having 2 to 20 carbon atoms (excluding propylene) random copolymer is also one of preferred modes.
- ⁇ -olefin copolymerized with propylene examples include ethylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene and 1-decene. 1-dodecene, 1-tetracene, 1-hexadecene, 1-octadecene, 1-eicosene. Using two or more kinds of ⁇ -olefins is also a preferred form.
- the component (A) is preferably an isotactic propylene polymer.
- the isotactic propylene polymer is a propylene polymer having an isotactic pentad fraction measured by NMR method of 0.9 or more, preferably 0.95 or more.
- This isotactic pentad fraction is expressed as a percentage, it is 90% or more, preferably 95% or more.
- the isotactic pentad fraction indicates the proportion of isotactic chains present in units of the pentad fraction in the molecular chain measured using 13 C-NMR. This is the fraction of propylene monomer units at the center of a chain in which 5 units are meso-bonded in succession. Specifically, it is calculated as the fraction of the mmmm peak occupying in the total absorption peak in the methyl carbon region observed in the 13 C-NMR spectrum.
- the mmmm fraction is P mmmm in 13 C-NMR spectrum (absorption intensity derived from the third methyl group at a site where 5 units of propylene units are continuously isotactically bonded) and P w (total methylation of propylene units). It is calculated
- mmmm fraction P mmmm / P w
- the NMR measurement is performed, for example, as follows using an NMR measurement apparatus. That is, 0.35 g of the sample is dissolved by heating in 2.0 mL of hexachlorobutadiene. After this solution is filtered through a glass filter (G2), 0.5 mL of deuterated benzene is added and charged into an NMR tube having an inner diameter of 10 mm. Then, 13 C-NMR measurement is performed at 120 ° C. The number of integration is 10,000 times or more.
- the melting point (Tm) measured by differential scanning calorimetry (DSC) of the component (A) is 120 ° C. or higher and 170 ° C. or lower, preferably 125 ° C. or higher and 168 ° C. or lower.
- Component (A) is a propylene polymer (a1) having a melting point (Tm) measured by differential scanning calorimetry (DSC) of 120 ° C. or more and less than 150 ° C., preferably 80 to 100% by mass, preferably 85 to 100% by mass, More preferably 90 to 99% by mass, particularly preferably 95 to 99% by mass, and 0 to 20% by mass of the propylene polymer (a2) having a melting point (Tm) measured by the same method of 150 ° C. or higher and 170 ° C. or lower. Preferably, it is 0 to 15% by mass, more preferably 1 to 10% by mass, and particularly preferably 1 to 5% by mass.
- the total amount of the component (a1) and the component (a2) is 100% by mass. ] Is also preferable.
- the melting point (Tm) of component (a1) is 120 ° C. or higher and lower than 150 ° C., preferably 125 ° C. to 145 ° C., more preferably 128 ° C. to 142 ° C.
- the melting point (Tm) of component (a2) is 150 ° C. or higher and 170 ° C. or lower, preferably 155 ° C. to 170 ° C., more preferably 160 ° C. to 170 ° C.
- the heat seal layer 10 is provided with excellent seal strength, hot tack property, moldability, and heat resistance. Furthermore, the heat of fusion ( ⁇ H) obtained simultaneously is preferably 50 mJ / mg or more.
- the melting point (Tm) and heat of fusion ( ⁇ H) of component (A) are measured, for example, as follows.
- a sample of about 5 mg is heated to 200 ° C. and held for 10 minutes, and then cooled to ⁇ 100 ° C. at 10 ° C./minute. After maintaining at ⁇ 100 ° C. for 1 minute, the melting point can be determined from the peak apex of the crystal melting peak when the temperature is raised to 200 ° C. at 10 ° C./min.
- the heat of fusion ( ⁇ H) can also be determined from the peak area.
- the melt flow rate (MFR; ASTM D1238, 230 ° C., 2.16 kg load) of the component (A) is preferably 0.01 to 400 g / 10 minutes, more preferably 0.1 to 100 g / 10 minutes.
- the ⁇ -olefin may be selected from ⁇ -olefins having 2 to 20 carbon atoms (excluding propylene). preferable.
- the ⁇ -olefin content is preferably 0.1 to 8 mol%, more preferably 0.2 to 7.5 mol%, and particularly preferably 0.3 to 7 mol%.
- the molecular weight distribution (Mw / Mn) obtained by gel permeation chromatography (GPC) of the component (A) is preferably 3.0 or less, more preferably 2.0 to 3.0, and particularly preferably 2.0. ⁇ 2.5.
- This molecular weight distribution can be measured as follows using, for example, a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters. As separation columns, two TSKgel (registered trademark) GNH6-HT and two TSKgel (registered trademark) GNH6-HTL manufactured by Tosoh Corporation were used, and the column size was 7.5 mm in diameter and 300 mm in length. The temperature is 140 ° C., o-dichlorobenzene (Wako Pure Chemical Industries, Ltd.) is used as the mobile phase, and 0.025% by mass of BHT (Takeda Pharmaceutical Co., Ltd.) is used as the antioxidant, and the mobile phase is moved at 1.0 ml / min.
- GPC-2000 gel permeation chromatograph Alliance
- the sample concentration is 15 mg / 10 mL
- the sample injection amount is 500 microliters
- a differential refractometer is used as the detector.
- Standard polystyrene is manufactured by Tosoh Corporation for molecular weights Mw ⁇ 1000 and Mw> 4 ⁇ 10 6 , and is used by Pressure Chemical Co. for 1000 ⁇ Mw ⁇ 4 ⁇ 10 6 .
- the tensile elastic modulus of component (A) is preferably 500 MPa or more.
- This tensile elastic modulus is a value measured in accordance with JIS K6301 using a JIS No. 3 dumbbell under conditions of a span interval of 30 mm, a tensile speed of 30 mm / min, and a temperature of 23 ° C.
- Component (A) can be produced by various methods, for example, using a stereoregular catalyst. Specifically, it can be produced using a catalyst formed from a solid titanium catalyst component, an organometallic compound catalyst component, and, if necessary, an electron donor.
- the solid titanium catalyst component include a solid titanium catalyst component supported on a carrier whose titanium trichloride or titanium trichloride composition has a specific surface area of 100 m 2 / g or more, or magnesium, halogen, electron donor ( An aromatic carboxylic acid ester or an alkyl group-containing ether) and titanium are preferably essential components, and a solid titanium catalyst component in which these essential components are supported on a carrier having a specific surface area of 100 m 2 / g or more can be mentioned.
- it can also manufacture using a metallocene catalyst.
- an organoaluminum compound is preferable.
- Specific examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum halide, alkylaluminum sesquihalide, alkylaluminum dihalide, and the like. This organoaluminum compound can be appropriately selected according to the type of titanium catalyst component to be used.
- an organic compound having a nitrogen atom, a phosphorus atom, a sulfur atom, a silicon atom or a boron atom can be used.
- ester compounds and ether compounds having the above atoms are preferred.
- the catalyst may be further activated by a technique such as co-grinding, and ⁇ -olefin may be prepolymerized.
- Component (B) has a melting point (Tm) measured by differential scanning calorimetry (DSC) of less than 120 ° C., a structural unit derived from 1-butene of 10 to 90 mol%, and a carbon atom number of 3 or 5 to 10 to 90 mol% of structural units derived from 20 ⁇ -olefins [wherein the total amount of structural units derived from 1-butene and structural units derived from ⁇ -olefins having 3 or 5 to 20 carbon atoms is 100 Mol%. Is a 1-butene polymer.
- the ⁇ -olefin having 3 or 5 to 20 carbon atoms propylene is preferable from the viewpoint of versatility and availability.
- the 1-butene polymer when propylene is used as the ⁇ -olefin is referred to as component (B ′).
- the melting point (Tm) of the component (B ′) is preferably 40 ° C. to 115 ° C., more preferably 45 ° C. to 110 ° C.
- component (B) are 10 to 80 mol% of structural units derived from 1-butene, and structural units derived from ⁇ -olefins having 3 or 5 to 20 carbon atoms (particularly preferably derived from propylene).
- (Structural unit) 1-butene polymer containing 20 to 90 mol% When such a 1-butene polymer is used, the resin composition easily exhibits excellent heat sealing properties and hot tack properties, and the resin composition has excellent handling properties.
- a more preferable form of the component (B ′) is a propylene / 1-butene copolymer containing 10 to 50 mol% of structural units derived from 1-butene and 50 to 90 mol% of structural units derived from propylene. is there.
- Component (B ′) has a melting point (Tm) measured by differential scanning calorimetry (DSC) of 90 ° C. or higher and 110 ° C. or lower, a 1-butene polymer (b1), and a melting point (Tm) measured by the same method.
- Tm melting point measured by differential scanning calorimetry
- DSC differential scanning calorimetry
- b1 1-butene polymer
- Tm melting point measured by the same method.
- the component (B ′) more preferably contains two or more 1-butene polymers selected from the group consisting of the component (b1), the component (b2) and the component (b3).
- component (b1) and component (b2) combined use of component (b2) and component (b3), combined use of component (b1) and component (b3), component (b1) to component (b3)
- component (b1) to component (b3) component (b1) to component (b3)
- a combined system containing the component (b2) as an essential component for example, a combined use of the component (b1) and the component (b2), and a combined use of the component (b2) and the component (b3) are more preferable.
- the melting point (Tm) of component (B) can be measured by the following method. That is, using a DSC manufactured by Seiko Instruments Inc., a sample of about 5 mg was packed in an aluminum pan for measurement, heated to 200 ° C. at 100 ° C./min, held at 200 ° C. for 5 minutes, and then at 10 ° C./min. The temperature is lowered to ⁇ 100 ° C., then raised to 200 ° C. at 10 ° C./min, and the melting point (Tm) can be determined from the endothermic curve.
- the molecular weight distribution (Mw / Mn) obtained by gel permeation chromatography (GPC) of the component (B) is preferably 3.0 or less, more preferably 2.0 to 3.0, and particularly preferably 2.0. ⁇ 2.5.
- Mw / Mn content of the low molecular weight component in a component (B) can be suppressed.
- the method for measuring Mw / Mn of component (B) is the same as the method for measuring Mw / Mn of component (A) described above.
- the relationship between the melting point (Tm) of component (B) and the 1-butene structural unit content M (mol%) preferably satisfies the following formula. ⁇ 3.2M + 130 ⁇ Tm ⁇ ⁇ 2.3M + 155
- Tm and M satisfy the above formula, a laminated film having excellent low-temperature heat sealability, high heat seal strength, and little reduction in seal strength due to aging after stretching can be obtained.
- the melt flow rate (MFR; ASTM D1238, 230 ° C., 2.16 kg load) of the component (B) is preferably 0.1 to 30 g / 10 minutes, more preferably 0.5 to 20 g / 10 minutes, and particularly preferably Is 1.0 to 10 g / 10 min.
- Component (B ′) which is a preferred form of component (B), can be suitably produced, for example, by copolymerizing 1-butene and propylene in the presence of a catalyst containing a metallocene compound.
- a catalyst containing a metallocene compound for example, the component (b1) having a melting point (Tm) of 90 ° C. or higher and 110 ° C. or lower and the component (b2) having a melting point (Tm) of 65 ° C. or higher and lower than 90 ° C. described above are
- the method for producing the component (b3) having a melting point (Tm) of less than 65 ° C. is not particularly limited, and a metallocene catalyst or a Ziegler-Natta catalyst may be used.
- Component (B) is, for example, 1-butene and an ⁇ -olefin having 3 or 5 to 20 carbon atoms in the presence of a catalyst containing a transition metal compound (1a) represented by the following general formula (1a) (preferably Is preferably a 1-butene polymer obtained by copolymerization with propylene).
- the transition metal compound (1a) is a compound in which a ligand in which a substituted cyclopentadienyl ring and a substituted fluorenyl ring are bridged with carbon is coordinated to a transition metal atom.
- the catalyst containing the transition metal compound (1a) is composed of an organometallic compound (2a), an organoaluminum oxy compound (2b), and a compound (2c) that reacts with the transition metal compound (1a) to form an ion pair. It is preferable to contain at least one compound selected from the above.
- R 1 and R 3 are hydrogen atoms
- R 2 and R 4 are hydrocarbon groups or silicon-containing groups
- R 2 and R 4 may be the same or different
- 5 to R 14 are hydrogen, a hydrocarbon group or a silicon-containing group
- R 5 to R 12 may be the same or different
- substituents bonded to adjacent carbons in R 5 to R 12 are bonded to each other.
- R 13 and R 14 may be the same or different from each other, R 13 and R 14 may be bonded to each other to form a ring
- M is a Group 4 transition metal.
- Y is a carbon atom
- Q is selected from halogen, hydrocarbon group, anionic ligand or neutral ligand capable of coordinating with a lone electron pair in the same or different combination
- j is 1 to 4 Is an integer.
- hydrocarbon group examples include methyl group, ethyl group, n-propyl group, allyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, linear hydrocarbon groups such as n-nonyl and n-decanyl; isopropyl, tert-butyl, amyl, 3-methylpentyl, 1,1-diethylpropyl, 1,1-dimethylbutyl Branched hydrocarbons such as 1-methyl-1-propylbutyl group, 1,1-propylbutyl group, 1,1-dimethyl-2-methylpropyl group, 1-methyl-1-isopropyl-2-methylpropyl group Groups: cyclic saturated hydrocarbon groups such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norborn
- silicon-containing group examples include trimethylsilyl group, triethylsilyl group, dimethylphenylsilyl group, diphenylmethylsilyl group, triphenylsilyl group and the like.
- Substituents bonded to adjacent carbons out of R 5 to R 12 may be bonded to each other to form a ring.
- Specific examples of the substituted fluorenyl group in such a case include benzofluorenyl group, dibenzofluorenyl group, octahydrodibenzofluorenyl group, octamethyloctahydrodibenzofluorenyl group, octamethyltetrahydrodicyclopenta A fluorenyl group etc. can be mentioned.
- R 13 and R 14 are preferably aryl groups.
- the aryl group include the above-mentioned cyclic unsaturated hydrocarbon group, a saturated hydrocarbon group substituted with a cyclic unsaturated hydrocarbon group, a heteroatom-containing cyclic unsaturated hydrocarbon group such as a furyl group, a pyryl group, and a thienyl group. Can be mentioned.
- the aryl groups of R 13 and R 14 may be the same or different and may be bonded to each other to form a ring.
- R 2 and R 4 which are substituents bonded to the cyclopentadienyl ring are preferably hydrocarbon groups having 1 to 20 carbon atoms.
- the hydrocarbon group having 1 to 20 carbon atoms include the hydrocarbon groups described above.
- R 2 is more preferably a bulky substituent such as a tert-butyl group, an adamantyl group, or a triphenylmethyl group.
- R 4 is more preferably a substituent sterically smaller than R 2 such as a methyl group, an ethyl group, or an n-propyl group.
- the term “sterically small” as used herein means that the volume occupied by the substituent is small.
- any two or more of R 6 , R 7 , R 10 and R 11 are hydrocarbon groups having 1 to 20 carbon atoms. Is preferred. Examples of the hydrocarbon group having 1 to 20 carbon atoms include the hydrocarbon groups described above. In particular, from the viewpoint of ease of synthesis of the ligand, it is preferable that R 6 and R 11 and R 7 and R 10 are the same group. Among such preferred forms, R 6 and R 7 form an aliphatic ring (AR-1), and R 10 and R 11 are the same aliphatic ring (AR-1). The case where (AR-2) is formed is also included.
- Y that bridges the cyclopentadienyl ring and the fluorenyl ring is a carbon atom.
- the substituents R 13 and R 14 bonded to Y are preferably aryl groups having 6 to 20 carbon atoms at the same time. Examples of the aryl group having 6 to 20 carbon atoms include the above-mentioned cyclic unsaturated hydrocarbon group, a saturated hydrocarbon group substituted with a cyclic unsaturated hydrocarbon group, and a heteroatom-containing cyclic unsaturated hydrocarbon group. .
- R 13 and R 14 may be the same or different from each other, and may be bonded to each other to form a ring.
- a fluorenylidene group, a 10-hydroanthracenylidene group, a dibenzocycloheptadienylidene group, and the like are preferable.
- M is a Group 4 transition metal, and specific examples include Ti, Zr, Hf and the like.
- Q is selected from the same or different combinations from halogen, hydrocarbon groups, anionic ligands or neutral ligands capable of coordinating with lone pairs.
- j is an integer of 1 to 4. When j is 2 or more, a plurality of Qs may be the same or different.
- halogen include fluorine, chlorine, bromine and iodine
- hydrocarbon group include those described above.
- Specific examples of the anionic ligand include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate.
- Specific examples of neutral ligands that can be coordinated by lone pairs include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine, tetrahydrofuran, diethyl ether, dioxane, and 1,2-dimethoxy.
- ethers such as ethane. It is preferable that at least one Q is a halogen or an alkyl group.
- transition metal compound (1a) examples include dimethylmethylene (3-tert-butyl-5-methylcyclopentadienyl) fluorenylzirconium dichloride, isopropylidene (3-tert-butyl-5-methylcyclopenta).
- the catalyst suitably used in producing the component (B), preferably the component (b1) and the component (b2), includes the above-mentioned transition metal compound (1a), the organometallic compound (2a), and the organoaluminum oxy compound. It is preferable to include at least one compound selected from the group consisting of (2b), a transition metal compound (2c), and a compound (2c) that reacts with the transition metal compound (1a) to form an ion pair.
- These components (2a), (2b) and (2c) are not particularly limited, but preferably compounds described in WO 2004/088775 pamphlet or WO 01/27124 pamphlet can be used. Specific examples thereof include the following.
- organometallic compound (2a) As the organometallic compound (2a), the following Group 1, 2 and Group 12, 13 organometallic compounds are used.
- Specific examples of such compound (2a-1) include trimethylaluminum, triethylaluminum, triisobutylaluminum, diisobutylaluminum hydride and the like.
- M 2 AlR a 4 (Wherein, M 2 represents a Li, Na or K, R a is from 1 to 15 carbon atoms, preferably an. A hydrocarbon group of 1 to 4) and the Group 1 metal and aluminum represented by Complex alkylated product of Specific examples of such compound (2a-2) include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .
- R a and R b may be the same or different from each other and each represent a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms, and M 3 is Mg, Zn or Cd.
- organometallic compounds (2a) organoaluminum compounds are preferred.
- the organometallic compound (2a) may be used alone or in combination of two or more.
- the organoaluminum oxy compound (2b) may be a conventionally known aluminoxane, or may be a benzene-insoluble organoaluminum oxy compound as exemplified in JP-A-2-78687.
- a conventionally well-known aluminoxane can be manufactured, for example with the following methods, and is normally obtained as a solution of a hydrocarbon solvent.
- An organoaluminum compound such as trialkylaluminum is added to a hydrocarbon medium suspension and the adsorbed water or crystal water reacts with the organoaluminum compound.
- the aluminoxane may contain a small amount of an organometallic component other than the aluminoxane. Further, after removing the solvent or the unreacted organoaluminum compound from the recovered aluminoxane solution by distillation, it may be redissolved in a solvent or suspended in a poor aluminoxane solvent.
- Specific examples of the organoaluminum compound used in preparing the aluminoxane include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to the component (2a-1). Specifically, trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum is particularly preferable.
- An organoaluminum compound is used individually by 1 type or in combination of 2 or more types.
- the benzene-insoluble organoaluminum oxy compound (2b) preferably has a solubility in benzene at 60 ° C. of usually 10 mmol or less, preferably 5 mmol or less, particularly preferably 2 mmol or less in terms of aluminum atom, That is, those that are insoluble or hardly soluble in benzene are preferred.
- This dissolved amount is obtained by suspending an organoaluminum oxy compound corresponding to 100 milligrams of aluminum in 100 ml of benzene, mixing for 6 hours with stirring at 60 ° C., and then using a jacketed G5 glass filter at 60 ° C.
- the organoaluminum oxy compound (2b) is used singly or in combination of two or more.
- Examples of the compound (2c) that forms an ion pair by reacting with the transition metal compound (1a) include, for example, JP-A-1-501950, JP-A-1-502036, JP-A-3-179005, and JP-A-3-17905. Examples include Lewis acids, ionic compounds, borane compounds, and carborane compounds described in JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, and US Pat. No. 5,321,106. Can do. Furthermore, heteropoly compounds and isopoly compounds can also be mentioned. A compound (2c) is used individually by 1 type or in combination of 2 or more types.
- component (B) it is preferable to use a catalyst in combination with an organoaluminum oxy compound (2b) such as methylaluminoxane together with the transition metal compound (1a) because a particularly high polymerization activity can be achieved.
- organoaluminum oxy compound (2b) such as methylaluminoxane
- the polymerization catalyst used for the production of component (B) may be one using a carrier as necessary, or may contain other promoter components.
- Such a catalyst may be prepared by mixing each component in advance or by supporting it on a carrier, or may be used by adding each component simultaneously or sequentially to the polymerization system.
- Component (B) is preferably obtained by copolymerizing 1-butene and an ⁇ -olefin such as propylene in the presence of the above-described catalyst.
- each monomer may be used in such an amount that each constituent unit in the component (B) to be produced has a desired ratio.
- the molar ratio of propylene / 1-butene is 50/50. It is used in a ratio of 90 to 90/10, preferably 60/40 to 90/10, more preferably 70/30 to 90/10.
- Copolymerization conditions are not particularly limited.
- the polymerization temperature is usually in the range of ⁇ 50 ° C. to + 200 ° C., preferably 0 ° C. to 170 ° C.
- the polymerization pressure is usually normal pressure to 10 MPa gauge pressure, preferably normal pressure to 5 MPa gauge pressure.
- the polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be carried out in two or more stages having different reaction conditions.
- the molecular weight of component (B) can be adjusted by the presence of hydrogen in the polymerization system or by changing the polymerization temperature, and can be adjusted by the amount of component (2a), (2b) or (2c) in the catalyst. You can also When hydrogen is added, the amount is suitably about 0.001 to 100 NL per kg of monomer.
- Component (C) is composed of 50 to 99 mol% of structural units derived from ethylene and 1 to 50 mol% of structural units derived from an ⁇ -olefin having 3 to 20 carbon atoms [where structural units derived from ethylene And the total of structural units derived from the ⁇ -olefin having 3 to 20 carbon atoms is 100 mol%. ] Containing ethylene / ⁇ -olefin copolymer.
- the type of ⁇ -olefin is appropriately selected according to the use for which the stretched laminated film is used, but ⁇ -olefin having 3 to 10 carbon atoms is preferable.
- Component (C) preferably has the following characteristics.
- Density ASTM 1505 23 ° C.
- ASTM 1505 23 ° C. is from 0.850 to 0.910 g / cm 3 , preferably from 0.860 to 0.905 g / cm 3 , more preferably from 0.865 to 0.895 g / cm 3.
- Melt flow rate MFR; ASTM D1238, 190 ° C., under 2.16 kg load) is 0.1 to 150 g / 10 min, preferably 0.3 to 100 g / 10 min. ) Makes it easy to heat seal even at relatively low temperatures.
- component (C) is not particularly limited. For example, it can be produced by copolymerizing ethylene and ⁇ -olefin using a radical polymerization catalyst, a Phillips catalyst, a Ziegler-Natta catalyst, or a metallocene catalyst. A commercial item may be used as a component (C).
- the component (C) using a metallocene catalyst because the molecular weight distribution (Mw / Mn) of the copolymer is usually 3 or less.
- the metallocene catalyst for example, the catalyst disclosed in WO 2004/029062 is suitable.
- Component (C) has a crystallinity measured by an X-ray diffraction method of usually 40% or less, preferably 0 to 39%, more preferably 0 to 35%.
- ⁇ -olefin having 3 to 20 carbon atoms used for the production of the component (C) include propylene, 1-butene, 1-pentene, 1-hexene, 4-methylpentene, 1-octene, 1-octene, Examples include decene and 1-dodecene. You may use these individually or in combination of 2 or more types. Of these, propylene, 1-butene, 1-hexene and 1-octene are preferable, and 1-butene is particularly preferable.
- Component (C) is composed of 50 to 99 mol% of structural units derived from ethylene and 1 to 50 mol% of structural units derived from an ⁇ -olefin having 3 to 20 carbon atoms [where structural units derived from ethylene And the total of structural units derived from the ⁇ -olefin having 3 to 20 carbon atoms is 100 mol%. ] Is contained.
- a more preferred form of component (C) contains 60 to 95 mol% of structural units derived from ethylene and 5 to 40 mol% of structural units derived from an ⁇ -olefin having 3 to 20 carbon atoms.
- component (C) may be linear or branched having long or short side chains. It is also possible to use a mixture of a plurality of different ethylene / ⁇ -olefin copolymers.
- the stretched laminated film 30 has two types of stretched forms.
- One is a co-stretched laminated film in which both the heat seal layer 10 and the base material layer 20 are stretched, and the other is a stretched laminated film in which the base material layer 10 is unstretched and only the heat seal layer 20 is stretched.
- the former can be manufactured by co-stretching an unstretched heat-seal layer on an unstretched base material layer after lamination, and the latter can be manufactured by laminating a stretched heat-seal layer on an unstretched base material layer Can do.
- a co-stretched laminated film is preferable.
- the base material layer 10 of the stretched laminated film a conventionally known material is appropriately adopted according to the application.
- Specific examples include polyethylene terephthalate, polyester film represented by polyethylene naphthalate, polycarbonate film, polyamide film made of nylon 6, nylon 66, etc., ethylene / vinyl alcohol copolymer film, polyvinyl alcohol film, polychlorinated film.
- examples thereof include a film made of a thermoplastic resin such as a vinyl film, a polyvinylidene chloride film, and a film made of polyolefin such as polypropylene.
- the base material layer 10 may be a single layer or two or more layers according to the purpose. Further, the thermoplastic resin film as the base material layer 10 may be a laminate of an inorganic material such as aluminum, zinc and silica or a different inorganic material on which an oxide thereof is deposited.
- a packaging bag can be produced by heat-sealing the surroundings with the heat-seal layers 10 of the stretched laminated film 30 inside. And a package can be obtained by accommodating the contents (packaged goods) in a packaging bag, and performing further heat seal sealing operation as needed.
- the stretched laminated film 30 constituting the packaging bag and the package containing the package includes a heat seal layer 10 made of a resin composition containing a specific component (A), component (B), and component (C) as necessary. ing.
- This heat seal layer 10 exhibits a sufficient heat seal strength and a hot tack property that surpasses the current strength even when sealing at a heat seal temperature generally employed in the bag manufacturing industry, and usually Sufficient heat seal strength and hot tack properties are exhibited even at temperatures below the heat seal temperature employed in the industry. Therefore, even when a high-speed sealing / packaging means such as a vertical bag making and filling machine (VFFS) is used, a laminate for packaging capable of providing a strong packaging bag and a packaging body that does not cause the sealed portion to break. It is suitably used as a film.
- VFFS vertical bag making and filling machine
- Mw / Mn The molecular weight distribution (Mw / Mn) was measured as follows using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters. As separation columns, two TSKgel (registered trademark) GNH6-HT and two TSKgel (registered trademark) GNH6-HTL manufactured by Tosoh Corporation were used. The column size was 7.5 mm in diameter and 300 mm in length.
- the temperature is 140 ° C.
- o-dichlorobenzene (Wako Pure Chemical Industries, Ltd.) is used as the mobile phase
- BHT Takeda Pharmaceutical Co., Ltd.
- the sample concentration was 15 mg / 10 mL
- the sample injection amount was 500 microliters
- a differential refractometer was used as the detector.
- the standard polystyrene used was manufactured by Tosoh Corporation for molecular weights Mw ⁇ 10 3 and Mw> 4 ⁇ 10 6 , and used by Pressure Chemical Co. for 10 3 ⁇ Mw ⁇ 4 ⁇ 10 6 .
- Tm Melting point (Tm) of component (A)] Using DSCPyris1 or DSC7 manufactured by PerkinElmer, under a nitrogen atmosphere (20 ml / min), a sample of about 5 mg was heated to 200 ° C. and held for 10 minutes, and then cooled to ⁇ 100 ° C. at 10 ° C./minute. After maintaining at ⁇ 100 ° C. for 1 minute, the melting point (Tm) was determined from the peak apex of the crystal melting peak when the temperature was raised to 200 ° C. at 10 ° C./min.
- Tm Melting point (Tm) of component (B)]
- a sample of about 5 mg was packed in an aluminum pan for measurement, heated to 200 ° C. at 100 ° C./min, held at 200 ° C. for 5 minutes, and then ⁇ 100 at 10 ° C./min. Then, the temperature was lowered to 200 ° C. at 10 ° C./min, and the melting point (Tm) was determined from the endothermic curve.
- melt flow rate (MFR) The melt flow rate (MFR) of the components (A) and (B) was measured at 230 ° C. under a 2.16 kg load in accordance with ASTM D1238.
- the component (C) the conditions of 190 ° C. and 2.16 kg load were adopted.
- the Teflon (registered trademark) sheet was removed, and the heat-sealed film part was left at room temperature of about 23 ° C. for 1 day.
- a slit having a width of 15 mm was formed so as to include the heat seal portion of the film, and the unsealed portion was chucked by a tensile tester (“IM-20ST” manufactured by INTERSCO).
- IM-20ST tensile tester
- the 180 ° peel strength of the film was measured at a speed of 300 mm / min. The said operation was performed 5 times and the average value was made into heat seal intensity
- a test specimen was prepared by laminating strip-like films prepared by the method described below so that the heat seal layers overlap each other and sandwiched between PET films having a thickness of 12 ⁇ m.
- the seal area in the hot tack tester (Model HT manufactured by Theller, see US Pat. No. 5,331,858 and US Pat. No. 5,847,284) is 25 mm wide and 12.7 mm deep.
- the film was heat sealed at the same temperature and a pressure of 0.1 MPa for 0.5 seconds, and then 0.05 seconds later, the 180 ° C. peel strength of the film was measured at a speed of 400 mm / min. The above operation was performed 5 times, and the average value of the maximum strengths was defined as the hot tack strength.
- the following are synthesis examples of metallocene-type complexes that are constituents of olefin polymerization catalysts, and preparation examples of propylene / 1-butene copolymers (components (b2) and (b1)) obtained using the metallocene catalyst. .
- Preparation Example 1 Preparation of propylene / 1-butene copolymer (component (b2))- A 2,000 ml polymerization apparatus fully purged with nitrogen was charged with 875 ml of dry hexane, 75 g of 1-butene and 1.0 mmol of triisobutylaluminum at room temperature, the temperature of the polymerization apparatus was raised to 65 ° C, and propylene was added to 0.7 MPa. Pressed.
- PBR (b2) has a 1-butene content (M) of 19.4 mol%, a melt flow rate (MFR) of 6.5 g / 10 min, a molecular weight distribution (Mw / Mn) of 2.11, and a melting point (Tm) of It was 75.3 ° C.
- Preparation Example 2 Preparation of propylene / 1-butene copolymer (component (b1))- Propylene / 1-butene copolymer in the same manner as in Preparation Example 1 except that the amount of 1-butene used in Preparation Example 1 was changed to 45 g and the propylene pressure during polymerization (after catalyst addition) was changed to 0.7 MPa. Got. In the following description, this propylene / 1-butene copolymer is abbreviated as “PBR (b1)”.
- PBR (b1) has a 1-butene content (M) of 14.5 mol%, a melt flow rate (MFR) of 6.7 g / 10 min, a molecular weight distribution (Mw / Mn) of 2.12, and a melting point (Tm) of It was 98.4 ° C.
- Example 1 Manufacture of unstretched laminated film 1 Using two extruders connected to a T-die, the following heat seal layer resin composition and substrate layer resin composition were supplied to each extruder, and the die and resin temperature was 230 ° C. Then, the extrusion amount of each extruder is set so that the ratio of the thickness of the heat seal layer to the base material layer (heat seal layer / base material layer) is 2/23, and the unstretched laminate having a thickness of 1000 ⁇ m is formed by coextrusion molding. Film 1 was obtained.
- the propylene random copolymer (a1) is abbreviated as “r-PP (a1)”.
- Resin composition for substrate layer Propylene homopolymer (Prime Polymer, Prime Polypro (registered trademark) F113G).
- the stretched laminated film 1 is overlapped so that the heat seal layers overlap each other, and both surfaces of the overlapped film are a Teflon (registered trademark) sheet having a thickness of 50 ⁇ m for heat seal measurement, and 12 ⁇ m for hot tack strength measurement.
- a test body sandwiched between PET films was prepared. Then, the peel strength of the test specimen was measured according to the above-described heat seal strength and hot tack strength test methods. Table 1 shows each physical property value.
- Example 2 A stretched laminated film 2 was produced in the same manner as in Example 1 except that the following resin composition was used as the resin composition for the heat seal layer, and the heat seal strength and hot tack strength were measured. Table 1 shows the results.
- Resin composition for heat seal layer R-PP (a1) as component (A), PBR (b2) obtained in Preparation Example 1 and PBR (b1) obtained in Preparation Example 2 as r (PP) (P1)
- a resin composition obtained by blending at a mass ratio of b2) / PBR (b1) 85 / 7.5 / 7.5.
- Example 3 A stretched laminated film 3 was produced in the same manner as in Example 1 except that the following resin composition was used as the resin composition for the heat seal layer, and the heat seal strength and hot tack strength were measured. Table 1 shows the results.
- the propylene homopolymer (a2) is abbreviated as “h-PP (a2)”.
- Example 4 A stretched laminated film 4 was produced in the same manner as in Example 1 except that the following resin composition was used as the resin composition for the heat seal layer, and the heat seal strength and hot tack strength were measured. Table 1 shows the results.
- this resin composition is a resin composition which contains 8.1 mass parts of components (C) with respect to a total of 100 mass parts of a component (A) and a component (B).
- the ethylene / 1-butene copolymer is abbreviated as “EBR”.
- Example 5 A stretched laminated film 5 was produced in the same manner as in Example 1 except that the following resin composition was used as the resin composition for the heat seal layer, and the heat seal strength and hot tack strength were measured. Table 1 shows the results.
- Example 1 A stretched laminated film 1 ′ was produced in the same manner as in Example 1 except that the following resin was used as the resin composition for the heat seal layer, and the heat seal strength and hot tack strength were measured. Table 1 shows the results.
- Resin composition for heat seal layer Resin consisting only of r-PP (a1) as component (A).
- the stretched laminated films of Examples 1 to 5 were excellent in heat seal strength.
- the heat seal strength of the stretched laminated film in which the heat seal layer of Comparative Example 1 is composed only of the component (A) is about 0.1 N / 15 mm, whereas Examples 1 to 5
- the heat seal strength of was about 40 times that. This excellent heat sealability at low temperatures was observed in a wide heat seal temperature range of 70 to 120 ° C. Further, in Examples 1 to 5, the strength higher than that of Comparative Example 1 was exhibited in the low temperature region where the heat seal strength was exhibited even in the hot tack strength, that is, in the range of 80 to 100 ° C.
- Example 1 shows a tendency for the hot tack strength at 110 ° C. or higher to be somewhat reduced.
- Example 3 and 5 high crystallization is achieved.
- the stretched laminated film of the present invention exhibits sufficient heat seal strength and sufficient hot tack strength in a wide temperature range. Therefore, for example, even when a high-speed filling / sealing means such as a vertical bag making and filling machine (VFFS) is used, it is suitably used as a packaging film that can produce a package that does not cause the sealed portion to break. Is done.
- VFFS vertical bag making and filling machine
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満であり、1-ブテンから導かれる構成単位10~90モル%、並びに、炭素原子数3または5~20のα-オレフィンから導かれる構成単位10~90モル%[ここで、1-ブテンから導かれる構成単位と炭素原子数3または5~20のα-オレフィンから導かれる構成単位の合計量は100モル%である。]を含有する1-ブテン系重合体(B)3~50質量部
[ここで、成分(A)と成分(B)の合計量は100質量部である。]
を含む樹脂組成物からなるヒートシール層と、基材層とを有する延伸積層フィルム。
示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満であり、1-ブテンから導かれる構成単位10~90モル%、並びに、炭素原子数3または5~20のα-オレフィンから導かれる構成単位10~90モル%[ここで、1-ブテンから導かれる構成単位と炭素原子数3または5~20のα-オレフィンから導かれる構成単位の合計量は100モル%である。]を含有する1-ブテン系重合体(B)3~50質量部、および、
エチレンから導かれる構成単位50~99モル%、並びに、炭素原子数3~20のα-オレフィンから導かれる構成単位1~50モル%[ここで、エチレンから導かれる構成単位と炭素原子数3~20のα-オレフィンから導かれる構成単位の合計は100モル%である。]を含有するエチレン・α-オレフィン共重合体(C)3~30質量部
[ここで、成分(A)と成分(B)の合計量は100質量部である。]
を含む樹脂組成物からなるヒートシール層と、基材層とを有する延伸積層フィルム。
[4]プロピレン系重合体(A)が、示差走査熱量測定(DSC)により測定した融点(Tm)が120℃以上150℃未満であるプロピレン系重合体(a1)95~99質量%、および、同方法により測定した融点(Tm)が150℃以上170℃以下であるプロピレン系重合体(a2)1~5質量%[ここで、成分(a1)と成分(a2)の合計量は100質量%である。]を含む前記[1]または[2]に記載の延伸積層フィルム。
[5]1-ブテン系重合体(B)が、示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満であり、1-ブテンから導かれる構成単位10~90モル%、並びに、プロピレンから導かれる構成単位10~90モル%[ここで、1-ブテンから導かれる構成単位とプロピレンから導かれる構成単位の合計量は100モル%である。]を含有する1-ブテン系重合体(B’)である前記[1]または[2]に記載の延伸積層フィルム。
[6]1-ブテン系重合体(B’)が、示差走査熱量測定(DSC)により測定した融点(Tm)が90℃以上110℃以下である1-ブテン系重合体(b1)、同方法により測定した融点(Tm)が65℃以上90℃未満である1-ブテン系重合体(b2)、および、同方法により測定した融点(Tm)が65℃未満である1-ブテン系重合体(b3)からなる群より選ばれる一種以上の1-ブテン系重合体を含む前記[5]に記載の延伸積層フィルム。
[7]1-ブテン系重合体(B’)が、1-ブテン系重合体(b1)、1-ブテン系重合体(b2)、および、1-ブテン系重合体(b3)からなる群より選ばれる二種以上の1-ブテン系重合体を含む前記[6]に記載の延伸積層フィルム。
[8]1-ブテン系重合体(b1)および1-ブテン系重合体(b2)がメタロセン触媒によって製造された重合体である前記[6]に記載の延伸積層フィルム。
[9]前記[1]または[2]に記載の延伸積層フィルムの周囲がヒートシール層を内側にしてシールされた包装袋。
[10]前記[9]に記載の包装袋に被包装物が収納されている包装体。
第一の実施形態の延伸積層フィルムは、
示差走査熱量測定(DSC)により測定した融点(Tm)が120℃以上170℃以下であり、プロピレンから導かれる構成単位が50モル%を超えるプロピレン系重合体(A)50~97質量部、および、
示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満であり、1-ブテンから導かれる構成単位10~90モル%、並びに、炭素原子数3または5~20のα-オレフィンから導かれる構成単位10~90モル%[ここで、1-ブテンから導かれる構成単位と炭素原子数3または5~20のα-オレフィンから導かれる構成単位の合計量は100モル%である。]を含有する1-ブテン系重合体(B)3~50質量部
[ここで、成分(A)と成分(B)の合計量は100質量部である。]
を含む樹脂組成物からなるヒートシール層と、基材層とを有する延伸積層フィルムである。
前記成分(A)50~97質量部、
前記成分(B)3~50質量部、および、
エチレンから導かれる構成単位50~99モル%、並びに、炭素原子数3~20のα-オレフィンから導かれる構成単位1~50モル%[ここで、エチレンから導かれる構成単位と炭素原子数3~20のα-オレフィンから導かれる構成単位の合計は100モル%である。]を含有するエチレン・α-オレフィン共重合体(C)3~30質量部
[ここで、成分(A)と成分(B)の合計量は100質量部である。]
を含む樹脂組成物からなるヒートシール層と、基材層とを有する延伸積層フィルムである。
第一の実施形態の延伸積層フィルムにおけるヒートシール層10は、成分(A)および成分(B)が適切な割合で配合された樹脂組成物からなる。また、第二の実施形態の延伸積層フィルムにおけるヒートシール層10は、成分(A)、成分(B)および成分(C)が適切な割合で配合された樹脂組成物からなる。
成分(A)は、示差走査熱量測定(DSC)により測定した融点(Tm)が120℃以上170℃以下であり、プロピレンから導かれる構成単位が50モル%を超えるプロピレン系重合体である。このプロピレン系重合体(A)はホモポリプロピレンであっても、プロピレン・炭素原子数2~20のα-オレフィン(ただしプロピレンを除く)ランダム共重合体であっても、プロピレンブロック共重合体であっても良い。成分(A)に占めるプロピレンから導かれる構成単位は通常50モル%を超え、好ましくは60モル%以上、より好ましくは70モル%以上である。本発明ではホモポリプロピレンおよび/またはプロピレン-炭素原子数2~20のα-オレフィン(ただしプロピレンを除く)ランダム共重合体が好ましく用いられる。
mmmm分率=Pmmmm/Pw
成分(B)は、示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満であり、1-ブテンから導かれる構成単位10~90モル%、並びに、炭素原子数3または5~20のα-オレフィンから導かれる構成単位10~90モル%[ここで、1-ブテンから導かれる構成単位と炭素原子数3または5~20のα-オレフィンから導かれる構成単位の合計量は100モル%である。]を含有する1-ブテン系重合体である。
-3.2M+130≦Tm≦-2.3M+155
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
このような化合物(2a-1)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジイソブチルアルミニウムハイドライドなどが挙げられる。
(式中、M2はLi、NaまたはKを示し、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基を示す。)で表される第1族金属とアルミニウムとの錯アルキル化物。
このような化合物(2a-2)の具体例としては、LiAl(C2H5)4、LiAl(C7H15)4などが挙げられる。
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、M3はMg、ZnまたはCdである)で表される第2族または第12族金属のジアルキル化合物。
1)吸着水を含有する化合物または結晶水を含有する塩類、例えば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
2)ベンゼン、トルエン、ジエチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
成分(C)は、エチレンから導かれる構成単位50~99モル%、並びに、炭素原子数3~20のα-オレフィンから導かれる構成単位1~50モル%[ここで、エチレンから導かれる構成単位と炭素原子数3~20のα-オレフィンから導かれる構成単位の合計は100モル%である。]を含有するエチレン・α-オレフィン共重合体である。α-オレフィンの種類は延伸積層フィルムが用いられる用途に応じ適宜選択されるが、炭素原子数3~10のα-オレフィンが好ましい。
(a)密度(ASTM 1505 23℃)が0.850~0.910g/cm3、好ましくは0.860~0.905g/cm3、より好ましくは0.865~0.895g/cm3
(b)メルトフローレート(MFR;ASTM D1238、190℃、2.16kg荷重下)が0.1~150g/10分、好ましくは0.3~100g/10分
このような特性を満たす成分(C)を用いることで、比較的低温であってもヒートシールが容易となる。
延伸積層フィルム30には、先に述べた通り、延伸の形態が2種類ある。一つはヒートシール層10も基材層20も共に延伸された共延伸積層フィルムであり、もう一つは基材層10が未延伸でありヒートシール層20のみが延伸されている延伸積層フィルムである。前者は未延伸基材層に未延伸ヒートシール層を積層後に共延伸することによって製造することができ、後者は未延伸の基材層に延伸されたヒートシール層を積層することによって製造することができる。例えば製造面の利便性から、共延伸積層法フィルムが好ましい。
延伸積層フィルム30のヒートシール層10同士を内側にして周囲をヒートシールさせることにより、包装袋を作製することができる。そして包装袋の中に内容物(被包装物)を収納し、必要に応じて更なるヒートシール密封操作を行うことによって包装体を得ることができる。
分子量分布(Mw/Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC-2000型を用い、以下のようにして測定した。分離カラムとしては、東ソー社製のTSKgel(登録商標)GNH6-HTを2本およびTSKgel(登録商標)GNH6-HTLを2本用い、カラムサイズはいずれも直径7.5mm、長さ300mmとし、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業社製)および酸化防止剤としてBHT(武田薬品社製)0.025質量%を用い、1.0ml/分で移動させ、試料濃度は15mg/10mLとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量Mw<103およびMw>4×106については東ソー社製を用い、103≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。
エチレン、プロピレン、α-オレフィン含量の定量は、日本電子(株)製JNM GX-500型NMR測定装置を用いて、以下のようにして測定した。試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させた。この溶液をグラスフィルター(G2)で濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入して、120℃で13C-NMR測定を行った。積算回数は、10,000回以上とした。得られた13C-NMRスペクトルにより、エチレン、プロピレン、α-オレフィンの組成を定量化した。
パーキンエルマー社製DSCPyris1またはDSC7を用い、窒素雰囲気下(20ml/min)、約5mgの試料を200℃まで昇温・10分間保持し、その後10℃/分で-100℃まで冷却した。-100℃で1分間保持した後、10℃/分で200℃まで昇温させた時の結晶溶融ピークのピーク頂点から融点(Tm)を求めた。
セイコーインスツル社製DSCを用い、測定用アルミパンに約5mgの試料をつめて、100℃/minで200℃まで昇温し、200℃で5分間保持し、その後10℃/minで-100℃まで降温し、次いで10℃/minで200℃まで昇温し、その吸熱曲線より融点(Tm)を求めた。
成分(A)および(B)のメルトフローレート(MFR)は、ASTM D1238に準拠し、230℃、2.16kg荷重下にて測定を行った。成分(C)については、190℃、2.16kg荷重の条件を採用した。
延伸積層フィルムをヒートシール層同士が重なるようにフィルムを重ね、重ねたフィルムの両面を厚さ50μmのテフロン(登録商標)シートで挟んだ試験体を作製した。次いで、ヒートシールテスター(テスター産業株式会社製TB-701B型)のヒートシールバーを幅5mm×長さ300mmに設置し、上下シールバーを同温度に設定した。ヒートシールバー部分に、該試験体(テフロン(登録商標)シート/フィルム/フィルム/テフロン(登録商標)シート)を挟み、0.1MPaの圧力で0.5秒間ヒートシールを行った。次いで、テフロン(登録商標)シートを外し、ヒートシールされたフィルム部分を約23℃の室温下で1日間放置した。フィルムのヒートシール部分を含むように15mm幅のスリットを入れ、シールされていない部分を引張試験機(「INTESCO社製 IM-20ST」)にチャックした。そして、300mm/分の速度でフィルムの180°剥離強度を測定した。上記操作を5回行い、その平均値をヒートシール強度とした。
後述する方法で調製した延伸積層フィルムをヒートシール層同士が重なるように短冊状フィルムを重ね厚さ12μmのPETフィルムで挟んだ試験体を作製した。ホットタック試験機(Theller社製Model HT、米国特許第5,331,858号および米国特許第第5,847,284号参照)でのシール面積は横幅25mm、奥行き12.7mmとし、上下シールバー同温度、0.1MPaの圧力で0.5秒間ヒートシールし、次いで0.05秒後に400mm/分の速度でフィルムの180℃剥離強度を測定した。上記操作を5回行い、それぞれの最大強度の平均値をホットタック強度とした。
(1)1-tert-ブチル-3-メチルシクロペンタジエンの調製
窒素雰囲気下で、tert-ブチルマグネシウムクロライド0.90mol/ジエチルエーテル450ml溶液(2.0mol/L溶液)に脱水ジエチルエーテル350mlを加え、氷冷下で0℃を保ちながら3-メチルシクロペンテノン43.7g(0.45mol)/脱水ジエチルエーテル150ml溶液を滴下し、その後室温で15時間攪拌した。さらにこの反応溶液に、氷冷下で0℃を保ちながら塩化アンモニウム80.0g(1.50mol)/水350ml溶液を滴下し、その後水2500mlを加えて攪拌した。得られた液の有機相を分離し、水で洗浄した。さらにこの有機相に、氷冷下で0℃を保ちながら10%塩酸水溶液82mlを加え、その後室温で6時間攪拌した。得られた液の有機相をさらに分離し、水、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水をこの順で用いて洗浄した。次いで無水硫酸マグネシウム(乾燥剤)で乾燥し、乾燥剤を濾過し、濾液から溶媒を留去して液体を得た。この液体を減圧蒸留(45~47℃/10mmHg)することにより14.6gの淡黄色の液体を得た。その分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準)δ6.31+6.13+5.94+5.87(s+s+t+d、2H)、3.04+2.95(s+s、2H)、2.17+2.09(s+s、3H)、1.27(d、9H)
窒素雰囲気下で、上記方法(1)で得られた1-tert-ブチル-3-メチルシクロペンタジエン13.0g(95.6mmol)/脱水メタノール130ml溶液に、氷冷下で0℃を保ちながら脱水アセトン55.2g(950.4mmol)を滴下し、次いでピロリジン68.0g(956.1mmol)を滴下し、その後室温で4日間攪拌した。この反応液をジエチルエーテル400mlで希釈し、さらに水400mlを加えた。得られた液の有機相を分離し、0.5Nの塩酸水溶液150mlで4回、水200mlで3回、飽和食塩水150mlで1回洗浄した。次いで無水硫酸マグネシウム(乾燥剤)で乾燥し、乾燥剤を濾過し、濾液から溶媒を留去して液体を得た。この液体を減圧蒸留(70~80℃/0.1mmHg)することにより10.5gの黄色の液体を得た。その分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準)δ6.23(s、1H)、6.05(d、1H)、2.23(s、3H)、2.17(d、6H)、1.17(s、9H)
フルオレン10.1g(60.8mmol)/THF300ml溶液に、氷冷下でn-ブチルリチウム61.6mmol/ヘキサン40ml溶液を窒素雰囲気下で滴下し、その後室温で5時間攪拌した。得られた濃褐色溶液を再度氷冷し、上記方法(2)で得られた3-tert-ブチル-1,6,6-トリメチルフルベン11.7g(66.5mmol)/THF300ml溶液を窒素雰囲気下で滴下し、その後室温で14時間攪拌した。さらにこの褐色溶液を氷冷し、水200mlを加えた。得られた液の有機相を、ジエチルエーテルを用いて抽出、分離した。次いでこの有機相を硫酸マグネシウム(乾燥剤)で乾燥し、乾燥剤を濾過し、濾液から溶媒を減圧下で除去して橙褐色のオイルを得た。このオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製して、3.8gの黄色オイルを得た。その分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準)δ7.70(d、4H)、7.34~7.26(m、6H)、7.18~7.11(m、6H)、6.17(s、1H)、6.01(s、1H)、4.42(s、1H)、4.27(s、1H)、3.01(s、2H)、2.87(s、2H)、2.17(s、3H)、1.99(s、3H)、2.10(s、9H)、1.99(s、9H)、1.10(s、6H)、1.07(s、6H)
氷冷下で、上記方法(3)で得られた2-(3-tert-ブチル-5-メチルシクロペンタジエニル)-2-フルオレニルプロパン1.14g(3.3mmol)/ジエチルエーテル25ml溶液に、n-ブチルリチウム7.7mmol/ヘキサン5.0ml溶液を窒素雰囲気下で滴下し、その後室温で14時間攪拌した。得られた桃色のスラリーに、-78℃でジルコニウムテトラクロライド0.77g(3.3mmol)を加え、-78℃で数時間攪拌し、次いで室温で65時間撹拌した。得られた黒褐色スラリーを濾過し、濾物をジエチルエーテル10mlで洗浄し、ジクロロメタンで抽出して赤色溶液を得た。この溶液の溶媒を減圧留去して、0.53gの赤橙色の固体状のメタロセン触媒であるジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)フルオレニルジルコニウムジクロリド(メタロセン型錯体)を得た。その分析値を以下に示す。
1H-NMR(270MHz、CDCl3中、TMS基準)δ8.11~8.02(m、3H)、7.82(d、1H)、7.56~7.45(m、2H)、7.23~7.17(m、2H)、6.08(d、1H)、5.72(d、1H)、2.59(s、3H)、2.41(s、3H)、2.30(s、3H)、1.08(s、9H)
充分に窒素置換した2000mlの重合装置に、乾燥ヘキサン875ml、1-ブテン75gおよびトリイソブチルアルミニウム1.0mmolを常温で仕込み、重合装置内温を65℃に昇温し、プロピレンで0.7MPaに加圧した。次いで、上記合成例で得られたメタロセン触媒であるジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)フルオレニルジルコニウムジクロリド0.002mmolと、アルミニウム換算で0.6mmolのメチルアルミノキサン(東ソー・ファインケム社製)とを接触させたトルエン溶液を重合器内に添加し、内温65℃、プロピレン圧0.75MPaを保ちながら30分間重合し、20mlのメタノールを添加し重合を停止した。脱圧後、2Lのメタノール中で重合溶液からポリマーを析出し、真空下130℃、12時間乾燥し、15.2gのプロピレン・1-ブテン共重合体を得た。以下の説明では、このプロピレン・1-ブテン共重合体を「PBR(b2)」と略称する。
前記調製例1において、1-ブテンの使用量を45gに、重合時(触媒添加後)のプロピレン圧を0.7MPaに変更した以外は調製例1と同様にしてプロピレン・1-ブテン共重合体を得た。以下の説明では、このプロピレン・1-ブテン共重合体を「PBR(b1)」と略称する。
(未延伸積層フィルム1の製造)
Tダイが接続された二台の押出機を用いて、以下に示すヒートシール層用の樹脂組成物と基材層用の樹脂組成物をそれぞれの押出機に供給し、ダイおよび樹脂温度230℃で、ヒートシール層と基材層の厚みの比(ヒートシール層/基材層)が2/23になるように各押出機の押出し量を設定し、共押出成形により厚み1000μmの未延伸積層フィルム1を得た。
成分(A)としてプロピレンランダム共重合体(a1)(Lyon Dell Basell製、商品名Adsyl5C30F、プロピレン含量=91モル%、エチレン含量=2モル%、ブテン含量=7モル%、MFR=5.5g/10分、Tm=138℃)と、成分(B)として調製例1で得たPBR(b2)を、r-PP(a1)/PBR(b2)=85/15の質量比でブレンドして得た樹脂組成物。上記のプロピレンランダム共重合体(a1)は「r-PP(a1)」と略称する。
プロピレン単独重合体(プライムポリマー社製、プライムポリプロ(登録商標)F113G)。
未延伸積層フィルム1をバッチ式二軸延伸機により、延伸温度158℃、延伸速度238%の条件で、縦×横=5倍×8倍に二軸延伸し(延伸後応力緩和30秒)、延伸積層フィルム1を得た(基材層厚み23μm、ヒートシール層厚み2μm)。
次に、ヒートシール層同士が重なるように延伸積層フィルム1を重ね、重ねたフィルムの両面を、ヒートシール測定用は厚さ50μmのテフロン(登録商標)シート、ホットタック強度測定用は厚さ12μmのPETフィルムで挟んだ試験体を作製した。そして前述のヒートシール強度およびホットタック強度の試験方法に従い、試験体の剥離強度を測定した。表1に各物性値を示す。
ヒートシール層用の樹脂組成物として下記の樹脂組成物を用いた以外は、実施例1と同様にして延伸積層フィルム2を製造し、ヒートシール強度およびホットタック強度を測定した。表1に結果を示す。
成分(A)としてr-PP(a1)と、成分(B)として調製例1で得たPBR(b2)および調製例2で得たPBR(b1)を、r-PP(a1)/PBR(b2)/PBR(b1)=85/7.5/7.5の質量比でブレンドして得た樹脂組成物。
ヒートシール層用の樹脂組成物として下記の樹脂組成物を用いた以外は、実施例1と同様にして延伸積層フィルム3を製造し、ヒートシール強度およびホットタック強度を測定した。表1に結果を示す。
成分(A)としてr-PP(a1)およびプロピレン単独重合体(a2)(プライムポリマー社製、プライムポリプロ(登録商標)F107、MFR=7.2g/10分、Tm=168.2℃)と、成分(B)として調製例1で得たPBR(b2)を、(a1)/h-PP(a2)/PBR(b2)=85/7.5/7.5の質量比でブレンドして得た樹脂組成物。以下の説明では、上記のプロピレン単独重合体(a2)は「h-PP(a2)」と略称する。
ヒートシール層用の樹脂組成物として下記の樹脂組成物を用いた以外は、実施例1と同様にして延伸積層フィルム4を製造し、ヒートシール強度およびホットタック強度を測定した。表1に結果を示す。
成分(A)としてr-PP(a1)と、成分(B)として調製例1で得たPBR(b2)と、成分(C)としてエチレン・1-ブテン共重合体(三井化学社製、エチレン含量90モル%、MFR=3.6g/10分、密度=870kg/m3)を、r-PP(a1)/PBR(b2)/EBR=85/7.5/7.5の質量比でブレンドして得た樹脂組成物。なお本樹脂組成物は、成分(A)と成分(B)の合計100質量部に対して、成分(C)を8.1質量部含む樹脂組成物である。上記のエチレン・1-ブテン共重合体は「EBR」と略称する。
ヒートシール層用の樹脂組成物として下記の樹脂組成物を用いた以外は、実施例1と同様にして延伸積層フィルム5を製造し、ヒートシール強度およびホットタック強度を測定した。表1に結果を示す。
成分(A)としてr-PP(a1)およびh-PP(a2)と、成分(B)として調製例1で得たPBR(b2)を、r-PP(a1)/h-PP(a2)/PBR(b2)=85/1.5/13.5の質量比でブレンドして得た樹脂組成物。
ヒートシール層用の樹脂組成物として下記の樹脂を用いた以外は、実施例1と同様にして延伸積層フィルム1’を製造し、ヒートシール強度およびホットタック強度を測定した。表1に結果を示す。
成分(A)としてのr-PP(a1)のみからなる樹脂。
20 基材層
30 延伸積層フィルム
Claims (10)
- 示差走査熱量測定(DSC)により測定した融点(Tm)が120℃以上170℃以下であり、プロピレンから導かれる構成単位が50モル%を超えるプロピレン系重合体(A)50~97質量部、および、
示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満であり、1-ブテンから導かれる構成単位10~90モル%、並びに、炭素原子数3または5~20のα-オレフィンから導かれる構成単位10~90モル%[ここで、1-ブテンから導かれる構成単位と炭素原子数3または5~20のα-オレフィンから導かれる構成単位の合計量は100モル%である。]を含有する1-ブテン系重合体(B)3~50質量部
[ここで、成分(A)と成分(B)の合計量は100質量部である。]
を含む樹脂組成物からなるヒートシール層と、基材層とを有する延伸積層フィルム。 - 示差走査熱量測定(DSC)により測定した融点(Tm)が120℃以上170℃以下であり、プロピレンから導かれる構成単位が50モル%を超えるプロピレン系重合体(A)50~97質量部、
示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満であり、1-ブテンから導かれる構成単位10~90モル%、並びに、炭素原子数3または5~20のα-オレフィンから導かれる構成単位10~90モル%[ここで、1-ブテンから導かれる構成単位と炭素原子数3または5~20のα-オレフィンから導かれる構成単位の合計量は100モル%である。]を含有する1-ブテン系重合体(B)3~50質量部、および、
エチレンから導かれる構成単位50~99モル%、並びに、炭素原子数3~20のα-オレフィンから導かれる構成単位1~50モル%[ここで、エチレンから導かれる構成単位と炭素原子数3~20のα-オレフィンから導かれる構成単位の合計は100モル%である。]を含有するエチレン・α-オレフィン共重合体(C)3~30質量部
[ここで、成分(A)と成分(B)の合計量は100質量部である。]
を含む樹脂組成物からなるヒートシール層と、基材層とを有する延伸積層フィルム。 - プロピレン系重合体(A)が、示差走査熱量測定(DSC)により測定した融点(Tm)が120℃以上150℃未満であるプロピレン系重合体(a1)80~100質量%、および、同方法により測定した融点(Tm)が150℃以上170℃以下であるプロピレン系重合体(a2)0~20質量%[ここで、成分(a1)と成分(a2)の合計量は100質量%である。]を含む請求項1または2に記載の延伸積層フィルム。
- プロピレン系重合体(A)が、示差走査熱量測定(DSC)により測定した融点(Tm)が120℃以上150℃未満であるプロピレン系重合体(a1)95~99質量%、および、同方法により測定した融点(Tm)が150℃以上170℃以下であるプロピレン系重合体(a2)1~5質量%[ここで、成分(a1)と成分(a2)の合計量は100質量%である。]を含む請求項1または2に記載の延伸積層フィルム。
- 1-ブテン系重合体(B)が、示差走査熱量測定(DSC)により測定した融点(Tm)が120℃未満であり、1-ブテンから導かれる構成単位10~90モル%、並びに、プロピレンから導かれる構成単位10~90モル%[ここで、1-ブテンから導かれる構成単位とプロピレンから導かれる構成単位の合計量は100モル%である。]を含有する1-ブテン系重合体(B’)である請求項1または2に記載の延伸積層フィルム。
- 1-ブテン系重合体(B’)が、示差走査熱量測定(DSC)により測定した融点(Tm)が90℃以上110℃以下である1-ブテン系重合体(b1)、同方法により測定した融点(Tm)が65℃以上90℃未満である1-ブテン系重合体(b2)、および、同方法により測定した融点(Tm)が65℃未満である1-ブテン系重合体(b3)からなる群より選ばれる一種以上の1-ブテン系重合体を含む請求項5に記載の延伸積層フィルム。
- 1-ブテン系重合体(B’)が、1-ブテン系重合体(b1)、1-ブテン系重合体(b2)、および、1-ブテン系重合体(b3)からなる群より選ばれる二種以上の1-ブテン系重合体を含む請求項6に記載の延伸積層フィルム。
- 1-ブテン系重合体(b1)および1-ブテン系重合体(b2)がメタロセン触媒によって製造された重合体である請求項6に記載の延伸積層フィルム。
- 請求項1または2に記載の延伸積層フィルムの周囲がヒートシール層を内側にしてシールされた包装袋。
- 請求項9に記載の包装袋に被包装物が収納されている包装体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15845707.7A EP3202571A4 (en) | 2014-09-30 | 2015-09-25 | Stretched laminated film |
US15/515,554 US10603883B2 (en) | 2014-09-30 | 2015-09-25 | Stretched laminated film |
JP2016551967A JP6600636B2 (ja) | 2014-09-30 | 2015-09-25 | 延伸積層フィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014200805 | 2014-09-30 | ||
JP2014-200805 | 2014-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052326A1 true WO2016052326A1 (ja) | 2016-04-07 |
Family
ID=55630364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077088 WO2016052326A1 (ja) | 2014-09-30 | 2015-09-25 | 延伸積層フィルム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10603883B2 (ja) |
EP (1) | EP3202571A4 (ja) |
JP (1) | JP6600636B2 (ja) |
WO (1) | WO2016052326A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020192696A (ja) * | 2019-05-27 | 2020-12-03 | 三井化学株式会社 | 積層体 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0812828A (ja) * | 1994-04-28 | 1996-01-16 | Sumitomo Chem Co Ltd | 積層延伸フィルム用ポリプロピレン組成物及び積層延伸フィルム |
JPH1128791A (ja) * | 1997-07-10 | 1999-02-02 | Tokuyama Corp | 積層フィルム |
JP2005504161A (ja) * | 2001-09-26 | 2005-02-10 | ベー・ペー・ベルギー・ナムローゼ・フェンノートシャップ | ポリプロピレンベース化合物及びこれを含むヒートシール可能な多層シート |
JP2006212836A (ja) * | 2005-02-01 | 2006-08-17 | Tohcello Co Ltd | オーバーラップ包装用フィルム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4294889A (en) * | 1979-03-28 | 1981-10-13 | Mitsubishi Petrochemical Co., Ltd. | Resin compositions and heat-sealable composite biaxially-stretched films |
DE69503560T2 (de) | 1994-04-28 | 1999-03-18 | Sumitomo Chemical Co., Ltd., Osaka | Polypropylen-Zusammensetzung für laminatete und orientierte Filme sowie daraus bestehender laminateter und orientierter Film |
US7279206B2 (en) | 2005-03-22 | 2007-10-09 | Curwood, Inc. | Packaging laminates and articles made therefrom |
US7504142B2 (en) | 2005-03-22 | 2009-03-17 | Curwood, Inc. | Packaging laminates and articles made therefrom |
EP1911803A4 (en) * | 2005-08-02 | 2009-07-15 | Mitsui Chemicals Inc | POLYPROPLYENE-RESIN COMPOSITION, FOIL, STRIPED SLIP, MULTILAYER BODY, AND SCRAPPED SLIP |
JP5779428B2 (ja) | 2011-07-08 | 2015-09-16 | 旭化成ケミカルズ株式会社 | 多層フィルム、筒状フィルム成形体及び筒状包装体 |
CN104640925B (zh) * | 2012-09-14 | 2018-01-12 | 三井化学株式会社 | 1‑丁烯‑α‑烯烃共聚物组合物 |
-
2015
- 2015-09-25 WO PCT/JP2015/077088 patent/WO2016052326A1/ja active Application Filing
- 2015-09-25 JP JP2016551967A patent/JP6600636B2/ja active Active
- 2015-09-25 EP EP15845707.7A patent/EP3202571A4/en not_active Withdrawn
- 2015-09-25 US US15/515,554 patent/US10603883B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0812828A (ja) * | 1994-04-28 | 1996-01-16 | Sumitomo Chem Co Ltd | 積層延伸フィルム用ポリプロピレン組成物及び積層延伸フィルム |
JPH1128791A (ja) * | 1997-07-10 | 1999-02-02 | Tokuyama Corp | 積層フィルム |
JP2005504161A (ja) * | 2001-09-26 | 2005-02-10 | ベー・ペー・ベルギー・ナムローゼ・フェンノートシャップ | ポリプロピレンベース化合物及びこれを含むヒートシール可能な多層シート |
JP2006212836A (ja) * | 2005-02-01 | 2006-08-17 | Tohcello Co Ltd | オーバーラップ包装用フィルム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3202571A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020192696A (ja) * | 2019-05-27 | 2020-12-03 | 三井化学株式会社 | 積層体 |
JP7491671B2 (ja) | 2019-05-27 | 2024-05-28 | 三井化学株式会社 | 積層体 |
Also Published As
Publication number | Publication date |
---|---|
EP3202571A1 (en) | 2017-08-09 |
JP6600636B2 (ja) | 2019-10-30 |
EP3202571A4 (en) | 2018-06-27 |
US10603883B2 (en) | 2020-03-31 |
US20170217144A1 (en) | 2017-08-03 |
JPWO2016052326A1 (ja) | 2017-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6326457B2 (ja) | 1−ブテン・エチレン共重合体 | |
JP5797249B2 (ja) | 樹脂組成物および溶融袋 | |
JP5094499B2 (ja) | 積層体およびその用途 | |
JP2020196194A (ja) | 積層フィルム | |
JP6310563B2 (ja) | 積層フィルムおよびそれを利用した包装袋、ならびに積層フィルムの製造方法 | |
JP6600636B2 (ja) | 延伸積層フィルム | |
JP7355591B2 (ja) | 延伸フィルムおよびその用途 | |
WO2009099213A1 (ja) | 加熱殺菌包装用フィルム | |
JP6320090B2 (ja) | オレフィン系重合体組成物、それからなるフィルム、およびシュリンクフィルム | |
JP2009185240A (ja) | 熱成形用シート | |
JP5374627B2 (ja) | ポリプロピレン系樹脂組成物を用いた包装体およびその製造方法 | |
JP5764825B2 (ja) | 成形体 | |
JP4574279B2 (ja) | ポリプロピレン組成物およびそれから得られるシーラントフィルム | |
JP2009178970A (ja) | ポリプロピレン系樹脂組成物を用いた包装体およびその製造方法 | |
JP4261437B2 (ja) | プロピレン系重合体およびシーラントフィルムへの応用 | |
JP2009149063A (ja) | 金属蒸着積層体 | |
JP5026319B2 (ja) | 積層フィルム | |
JP4980188B2 (ja) | 医療容器用プロピレン系ランダムブロック共重合体および該共重合体等からなる医療容器用シートまたは医療容器用フィルム | |
JP5221160B2 (ja) | 積層フィルム | |
JP5117807B2 (ja) | 積層フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15845707 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016551967 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15515554 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015845707 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015845707 Country of ref document: EP |