WO2016047746A1 - Coating liquid, method for manufacturing led device using same, and led device - Google Patents

Coating liquid, method for manufacturing led device using same, and led device Download PDF

Info

Publication number
WO2016047746A1
WO2016047746A1 PCT/JP2015/077077 JP2015077077W WO2016047746A1 WO 2016047746 A1 WO2016047746 A1 WO 2016047746A1 JP 2015077077 W JP2015077077 W JP 2015077077W WO 2016047746 A1 WO2016047746 A1 WO 2016047746A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkoxysilane compound
reflective layer
coating liquid
substrate
coating solution
Prior art date
Application number
PCT/JP2015/077077
Other languages
French (fr)
Japanese (ja)
Inventor
中林 亮
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016047746A1 publication Critical patent/WO2016047746A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a coating solution, a method for manufacturing an LED device using the same, and an LED device.
  • phosphors such as YAG phosphors have been placed in the vicinity of gallium nitride (GaN) -based blue LED (Light Emitting Diode) chips to receive blue light and blue light emitted from the blue LED elements.
  • GaN gallium nitride
  • An LED device that obtains white light by mixing yellow light emitted from a phosphor has been developed.
  • RGB gallium nitride
  • White LED devices have a variety of uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps.
  • Such an illuminating device has a structure in which a plurality of white LED devices are combined. And how to raise the light extraction efficiency of each white LED device is important in realizing cost reduction and long life of the lighting device.
  • the conventional LED device has a problem that the substrate on which the LED element is arranged easily absorbs the emitted light of the LED element and the fluorescence emitted by the phosphor, and the light extraction property is difficult to increase. Therefore, it has been proposed to arrange a reflector having a high light reflectance around the LED element.
  • a reflector is generally formed of metal plating or the like.
  • a reflector made of metal plating cannot be formed on the entire surface of the substrate from the viewpoint of preventing electrical conduction. Therefore, there is a problem that light is absorbed by the substrate in the region where the reflector is not formed.
  • Patent Document 1 a reflector in which the metal plating is protected with a transparent resin layer
  • Patent Document 2 a reflector in which the metal plating is covered with a white resin layer
  • Patent Document 3 A dispersed reflector (reflective layer) has also been proposed (Patent Document 3).
  • the silicone resin when a reflector made of metal plating is coated with a relatively high heat resistant silicone resin, the silicone resin is unlikely to deteriorate.
  • the silicone resin has a property that gas easily permeates. Therefore, when the reflector contains silver or is made of silver plating or the like, silver is discolored due to a small amount of hydrogen sulfide existing in the air, so that the reflectance is easily lowered, and the light extraction efficiency is easily lowered.
  • thermosetting resin in which a white pigment is dispersed
  • thermosetting such as epoxy having an organic substance as a main skeleton.
  • the resin was easily colored at a high temperature, and the reflectance of the reflective layer was likely to decrease.
  • a ceramic binder having high heat resistance is used for forming the reflective layer described in Patent Document 3.
  • the coating liquid for forming a reflective layer described in Patent Document 3 tends to wet and spread on the substrate during coating. And when it was going to form a reflection layer in the vicinity of a LED element, the coating liquid might adhere to the side surface of a LED element. When the coating liquid adheres to the side surface of the LED element, there is a problem that light cannot be extracted from the LED element side surface, and the light extraction efficiency from the LED element decreases.
  • the present invention has been made in view of such a situation. That is, the present invention provides a coating liquid that can be applied to a desired region of an LED device with high accuracy, can be formed with a cured film that is less susceptible to light and heat, and can efficiently reflect light over a long period of time.
  • the purpose is to provide.
  • the first of the present invention relates to the coating solution shown below.
  • a coating liquid containing a white pigment, an alkoxysilane compound, and an organic solvent wherein the ratio of the bifunctional alkoxysilane compound to the total amount of the alkoxysilane compound is R2 (mol%), the trifunctional alkoxysilane compound When the ratio is R3 (mol%) and the ratio of the tetrafunctional alkoxysilane compound is R4 (mol%) (however, the total of R2, R3, and R4 is 100 mol%), both of the following formulas 1 and 2 Meet the requirements, 0 ⁇ R2 ⁇ 40 (Formula 1) 0 ⁇ R4 / R3 ⁇ 3 (Formula 2)
  • the coating solution, wherein the organic solvent contains 45 to 90% by mass of a high surface tension organic solvent having a surface tension of 30 mN / m or more at 25 ° C. with respect to the total amount of the organic solvent.
  • the high surface tension organic solvent is selected from the group consisting of monohydric alcohols, polyhydric alcohols, ketone solvents, ester solvents, amine solvents, amide solvents, and sulfur-containing solvents.
  • the coating liquid as described.
  • a method for manufacturing an LED device comprising: a substrate; an LED element disposed on the substrate; and a reflective layer formed around the LED element, wherein the LED element is disposed on the substrate.
  • a method for manufacturing an LED device comprising a step of applying and curing the coating liquid according to any one of [1] to [7] around the periphery.
  • An LED device comprising a substrate, an LED element disposed on the substrate, and a reflective layer formed on the substrate around the LED element, wherein the reflective layer is [1]
  • the reflective layer is further formed between the substrate and the LED element.
  • the coating liquid of the present invention can be accurately applied to a desired region of the LED device.
  • the reflective layer obtained by curing the coating solution is less deteriorated by heat and light, and can efficiently reflect light over a long period of time.
  • the coating liquid of the present invention is a composition for forming a reflective layer of an LED device, and the coating liquid contains a white pigment, an alkoxysilane compound, and an organic solvent.
  • the coating liquid may contain inorganic particles, clay mineral particles, a silane coupling agent, and the like.
  • the LED device 100 has a structure in which an LED element 2 is electrically connected to a substrate 1. Furthermore, the wavelength conversion layer 11 which converts the light of the specific wavelength which LED element 2 radiate
  • a resin is often used for the binder of the reflection layer of the conventional LED device.
  • the resin may be colored or deteriorated by heat or light, and there has been a problem that the light extraction efficiency tends to decrease. Therefore, it has also been proposed to form a reflective layer by applying a coating liquid in which a polysiloxane precursor and a white pigment are mixed.
  • the conventional coating liquid containing a polysiloxane precursor and a white pigment has a problem that it easily spreads on the substrate surface and it is difficult to form a reflective layer only in a desired region. In particular, when the coating solution is too wet and spreads, it adheres to the side surface of the LED element, making it difficult to extract light from the side surface of the LED element. As a result, the light extraction efficiency of the LED device may decrease.
  • the coating solution of the present invention contains a certain amount of a high surface tension organic solvent having a surface tension of 30 mN / m or more at 25 ° C., so that the coating solution does not spread excessively. That is, the coating liquid can be applied only to a desired region, and for example, the reflective layer can be formed near the outer periphery of the LED element without covering the side surface of the LED element. As a result, the light extraction efficiency from the LED device is increased. Further, since the binder of the reflective layer obtained from the coating solution is polysiloxane, the reflective layer is hardly deteriorated by light or heat. Therefore, in an LED device having a reflective layer made of a cured film of the coating solution, high light extraction efficiency is maintained over a long period.
  • the coating liquid of the present invention contains an alkoxysilane compound.
  • the alkoxysilane compound is a compound that is hydrolyzed and polycondensed into a polysiloxane when the coating solution is cured. And polysiloxane becomes a binder of the above-mentioned reflective layer.
  • the alkoxysilane compound includes at least one of a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound.
  • the ratio of the bifunctional alkoxysilane compound to the total amount of the alkoxysilane compound is R2 (mol%)
  • the ratio of the trifunctional alkoxysilane compound is R3 (mol%)
  • the ratio of the tetrafunctional alkoxysilane compound is R4 (mol%).
  • R2 is 40 or more
  • the polysiloxane contains a relatively large amount of organic groups derived from bifunctional alkoxysilane.
  • the gas barrier property of the reflective layer may be reduced, and the resistance to sulfurization may be reduced. Therefore, R2 is preferably in the above range, more preferably 0 ⁇ R2 ⁇ 30, and further preferably 0 ⁇ R2 ⁇ 25.
  • the value of R4 / R3 is preferably 3 or less, more preferably 0 ⁇ R4 / R3 ⁇ 2, and further preferably 0 ⁇ R4 / R3 ⁇ 1.
  • the ratio of the bifunctional alkoxysilane compound, the trifunctional alkoxysilane compound, and the tetrafunctional alkoxysilane compound with respect to the total amount of the alkoxysilane compound in the coating solution is determined by the solid Si of the sample obtained by drying and solidifying the coating solution at 150 ° C. Each can be determined from the NMR spectrum.
  • the spectrum of solid-state Si-NMR (Nuclear Magnetic Resonance) will be described.
  • the tetrafunctional alkoxysilane compound polymer (polysiloxane) is represented by the SiO 2 ⁇ nH 2 O characteristic formula, but structurally, oxygen atoms O are bonded to the apexes of the silicon atom Si tetrahedron. These silicon atoms have a structure in which silicon atoms Si are further bonded to these oxygen atoms O and spread in a net shape.
  • the schematic diagrams (A) and (B) below show the Si—O net structure, ignoring the tetrahedral structure.
  • the schematic diagram (A) shows a case where all of the oxygen atoms O are bonded to other Si atoms in the Si—O net structure.
  • the schematic diagram (B) shows a case where part of the oxygen atom O is replaced with another member (here, —H) in the Si—O net structure.
  • the Si atoms derived from the tetrafunctional alkoxysilane compound include four atoms (Q 4 ) bonded to —OSi, and three Si atoms as shown in the schematic diagram (B). Atom (Q 3 ) or the like bonded to —OSi.
  • a peak based on the silicon atoms derived from the tetrafunctional alkoxysilane compound are collectively referred to as Q sites, the peak derived from each atom, Q 4 peak, Q 3 peak, called ....
  • Q 0 to Q 4 peaks derived from the Q site are referred to as a Q n peak group.
  • the Q n peak group of the silica film containing no organic substituent is usually observed as a multimodal peak continuous in the region of ⁇ 80 to ⁇ 130 ppm chemical shift.
  • a silicon atom that is, silicon derived from a trifunctional alkoxysilane compound in which three oxygen atoms are bonded and one non-oxygen atom (usually carbon) is bonded is generally referred to as a T site. Is done.
  • the peak derived from the T site is observed as each peak of T 0 to T 3 as in the case of the Q site.
  • each peak derived from the T site is referred to as a Tn peak group.
  • the T n peak group is generally observed as a multimodal peak continuous in a region on the higher magnetic field side (usually chemical shift of ⁇ 80 to ⁇ 40 ppm) than the Q n peak group.
  • a silicon atom that is, silicon derived from a bifunctional alkoxysilane compound in which two oxygen atoms are bonded and two atoms other than oxygen (usually carbon) are bonded is generally referred to as a D site. Is done.
  • the peak derived from the D site is also observed as each peak of D 0 to D n (D n peak group), which is further than the peak group of Q n and T n. It is observed as a multimodal peak in the region on the high magnetic field side (usually the region with a chemical shift of ⁇ 3 to ⁇ 40 ppm).
  • FIG. 3 is an example of the spectrum of solid-state Si-NMR, and the spectrum of the cured product of the alkoxysilane compound contained in the coating solution of the present invention is not limited to this.
  • the horizontal axis indicates the chemical shift
  • the vertical axis indicates “relative strength” depending on the abundance of the compound having each structure.
  • D11 indicates actual measurement data.
  • D12 indicates data modeled by a Gaussian function.
  • D13 shows a difference spectrum.
  • the peak P11 represents the D n peak group, the peak top of the D n peak group is present in the vicinity of chemical shift -20.0Ppm.
  • the peak P12 represents the T n peak group, the peak top of the T n peak group is present in the vicinity of chemical shift -60.0Ppm.
  • the peak P13 represents a Q n peak group, the peak top of the Q n peak group is present in the vicinity of a chemical shift -100.0 ⁇ -110 ppm. That is, the spectrum of FIG. 3 shows that silicon derived from a bifunctional alkoxysilane compound, silicon derived from a trifunctional alkoxysilane compound, and silicon derived from a tetrafunctional alkoxysilane compound are included.
  • the area ratio of the respective peak groups of D n , T n , and Q n is equal to the molar ratio of silicon atoms placed in the environment corresponding to each peak group. Therefore, Q n peak group, T n peak group, and to the total area of the D n peak group, the ratio of the area of each peak group, the total amount of the alkoxysilane compound contained in the coating liquid (the total molar amount of silicon atoms) And the molar ratio of each alkoxysilane compound (tetrafunctional alkoxysilane compound, trifunctional alkoxysilane compound, and bifunctional alkoxysilane compound).
  • the alkoxysilane compound may be in a monomer state; however, at least a part is preferably a polymer (oligomer) of bifunctional alkoxysilane, trifunctional alkoxysilane, or tetrafunctional alkoxysilane. If the alkoxysilane compound is an oligomer in which several to several tens of monomers are polymerized in advance, shrinkage when the coating solution is cured is reduced, and cracks are less likely to occur when the reflective layer is formed.
  • each R 1 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • tetrafunctional alkoxysilane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, and triethoxymono.
  • Trifunctional alkoxysilane compound examples include compounds represented by the following general formula (III).
  • R 2 Si (OR 3 ) 3 (III) In the general formula (III), each R 3 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • R 2 represents a hydrogen atom or an alkyl group.
  • trifunctional alkoxysilane compound examples include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, Dipropoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxy Silane, monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysila Monohydrosilane compounds such as monophenyloxydieth,
  • R 2 represented by the general formula (III) of these trifunctional alkoxysilane compounds is a methyl group
  • the hydrophobicity of the resulting reflective layer surface becomes low.
  • the composition for forming a wavelength conversion layer becomes easy to spread.
  • the adhesion between the reflective layer and the wavelength conversion layer is enhanced.
  • the trifunctional alkoxysilane compound in which R 2 represented by the general formula (III) is a methyl group include methyltrimethoxysilane and methyltriethoxysilane, and is particularly preferably methyltrimethoxysilane. .
  • each R 5 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • R 4 represents a hydrogen atom or an alkyl group.
  • bifunctional alkoxysilane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxy Propoxysilane, ethoxypentyloxysilane, ethoxyphenyloxysilane, methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethyl Methoxypropoxysilane, ethyldipentyloxysilane, ethyldiphenyloxysilane,
  • An oligomer that can be an alkoxysilane compound is obtained by mixing a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound in a desired ratio and reacting them in the presence of a catalyst, water, and a solvent. It is done. The molecular weight of the oligomer is adjusted by the reaction time, temperature, catalyst, water concentration, and the like.
  • the oligomer preferably has a weight average molecular weight of 500 to 20000 as measured by GPC (gel permeation chromatograph), more preferably 1000 to 10,000, and even more preferably 1500 to 6000. If the degree of polymerization of the oligomer is too high, the viscosity of the coating solution may become excessively high, or the alkoxysilane compound may precipitate in the coating solution.
  • GPC gel permeation chromatograph
  • Examples of the catalyst for preparing the oligomer include acids, metal alkoxides, metal chelates and the like.
  • Specific examples of the acid include carboxylic acids such as hydrochloric acid, nitric acid, phosphoric acid, and acetic acid.
  • the metal alkoxide or metal chelate is preferably a metal alkoxide or metal chelate containing a group 4 or group 13 metal element other than Si, and a compound represented by the following general formula (V) is preferable.
  • M m + X n Y mn (V) M represents a group 4 or group 13 metal element (excluding Si), and m represents the valence of M (3 or 4).
  • X represents a hydrolyzable group, and n represents the number of X groups (an integer of 2 or more and 4 or less). However, m ⁇ n. Y represents a monovalent organic group.
  • the group 4 or group 13 metal element represented by M is preferably aluminum, zirconium, or titanium, and particularly preferably zirconium.
  • the hydrolyzable group represented by X may be a group that is hydrolyzed with water to form a hydroxyl group.
  • the hydrolyzable group include a lower alkoxy group having 1 to 5 carbon atoms, an acetoxy group, a butanoxime group, a chloro group and the like.
  • all the groups represented by X may be the same group or different groups.
  • the hydrolyzable group represented by X is hydrolyzed and released. Therefore, the compound produced after hydrolysis from the group represented by X is preferably neutral and light boiling. Therefore, the group represented by X is preferably a lower alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
  • the monovalent organic group represented by Y may be a monovalent organic group contained in a general silane coupling agent. Specifically, the aliphatic group, alicyclic group, aromatic group, fatty acid having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, further preferably 40 or less, and particularly preferably 6 or less. It may be a ring aromatic group.
  • the organic group represented by Y may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group.
  • the linking group may be an atom such as O, N, or S, or an atomic group containing these.
  • the organic group represented by Y may have a substituent.
  • substituents include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
  • metal alkoxide or metal chelate represented by the general formula (V) include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide and the like.
  • metal alkoxide or metal chelate of zirconium represented by the general formula (V) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n- Examples include butoxide, zirconium tetra-i-butoxide, zirconium tetra-t-butoxide, zirconium dimethacrylate dibutoxide, zirconium tetraacetylacetonate, dibutoxyzirconium bis (ethylacetoacetate) and the like.
  • metal alkoxide or metal chelate of the titanium element represented by the general formula (V) include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetra Includes methoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, titanium lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate, titanium ethylacetoacetate, etc. It is.
  • metal alkoxides or metal chelates exemplified above are a part of commercially available organometallic alkoxides or metal chelates.
  • Metal alkoxides or metal chelates shown in the list of coupling agents and related products in Chapter 9 “Optimum Utilization Technology of Coupling Agents” published by the National Institute of Science and Technology are also applicable to the present invention.
  • solvents for preparing oligomers include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene Polyhydric alcohols such as glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, pro Monoethers of polyhydric alcohols such as lenglycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol
  • the total amount of alkoxysilane compound contained in the coating solution is 5 to 40% by mass relative to the total mass of components other than the solvent (organic solvent and water) contained in the coating solution. Preferably, it is 10 to 30% by mass.
  • the total amount of the alkoxysilane compound is less than 5% by mass, the white pigment is not sufficiently bound in the resulting reflective layer. As a result, pigment powder is easily generated on the surface of the reflective layer.
  • the total amount of the alkoxysilane compound exceeds 40% by mass, the amount of the white pigment is relatively reduced, and the light reflectivity of the reflective layer tends to be low.
  • the organic solvent contained in the coating solution is an organic solvent that is compatible with the aforementioned alkoxysilane compound and can uniformly disperse the white pigment and the like.
  • the organic solvent contains 45 to 90% by mass of a high surface tension organic solvent having a surface tension of 30 mN / m or more at 25 ° C. with respect to the total amount of the organic solvent.
  • the surface tension is a value measured by the Wilhelmy method (plate method).
  • the amount of the high surface tension organic solvent is more preferably 50 to 80% by mass, and further preferably 60 to 80% by mass.
  • high surface tension organic solvent examples include monohydric alcohol, polyhydric alcohol, ketone solvent, ester solvent, amine solvent, amide solvent, sulfur-containing solvent and the like.
  • Examples of monohydric alcohols having a surface tension of 30 mN / m or more include ethylene glycol monomethyl ether, benzyl alcohol, diacetone alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, Tripropylene glycol monomethyl ether, 2-phenoxyethanol and the like are included.
  • polyhydric alcohols having a surface tension of 30 mN / m or more include diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol , Glycols and the like.
  • Examples of ketone solvents include cyclohexanone and the like, and examples of ester solvents include ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, ⁇ -butyrolactone, ethyl acetoacetate and the like.
  • Examples of amine solvents include monoethanolamine; examples of amide solvents include 2-pyrrolidone, N-methylpyrrolidone, ⁇ -caprolactam, etc .; examples of sulfur-containing solvents include dimethyl Examples include sulfoxide, tetrahydrothiophene-1,1-dioxide and the like.
  • monohydric alcohols or dihydric alcohols are preferable from the viewpoints of handleability and availability, and ethylene glycol monomethyl ether (surface tension: 31.8), benzyl alcohol (surface tension: 39), diacetone alcohol (surface tension: 31), ethylene glycol (surface tension: 48.4), propylene glycol (surface tension: 35.3), 1,3-butanediol (surface tension: 45.3), Triethylene glycol (surface tension: 45.2).
  • the solvent (low surface tension solvent) having a surface tension of less than 30 mN / m contained in the organic solvent is not particularly limited, and may be a monohydric alcohol, an ether solvent, a ketone solvent, an ester solvent, or the like.
  • the total amount of the organic solvent contained in the coating solution is preferably 20 to 90% by mass, more preferably 30 to 70% by mass with respect to the total amount of the coating solution.
  • the total amount of the organic solvent is too small, the viscosity of the coating solution increases and the coating stability decreases.
  • the total amount of the organic solvent is excessive, the viscosity of the coating solution is lowered, and the white pigment may settle in the coating solution.
  • the white pigment contained in the coating liquid plays a role of reflecting light emitted from the LED element in the reflective layer.
  • the white pigment is a particle having an average primary particle size of more than 100 nm and 20 ⁇ m or less, and a refractive index of light of d-line (wavelength: 587.96 nm) of 1.6 or more.
  • the average primary particle size of the white pigment is preferably larger than 100 nm and not larger than 10 ⁇ m, more preferably 200 nm to 2.5 ⁇ m.
  • the “average primary particle size” refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • white pigments include barium carbonate, barium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, aluminum oxide, zirconium oxide, zinc sulfide, aluminum hydroxide, boron nitride, aluminum nitride, potassium titanate, titanate Barium, aluminum titanate, strontium titanate, calcium titanate, magnesium titanate, hydroxyapatite, and the like are included.
  • the white pigment is particularly preferably titanium oxide, aluminum oxide, barium sulfate, zinc oxide, and boron nitride.
  • the resulting reflective layer has high thermal conductivity. As a result, the heat generated from the LED element can be quickly released from the substrate. Therefore, the temperature of the LED device can be kept low, and the device life can be extended.
  • the amount of the white pigment contained in the coating solution is preferably 50 to 95% by mass, more preferably 60 to 95% by mass, and still more preferably based on the mass of the solid content after heat curing of the coating solution. Is 70 to 90% by mass.
  • the mass of the solid content after heat curing of the coating solution is the mass of a cured product obtained by curing the coating solution at 150 ° C. for 1 hour.
  • the amount of the white pigment is specified by the blending amount at the time of preparing the coating liquid, and EDX and XRD analysis.
  • EDX and XRD analyzes are performed as follows. Specifically, (1) component analysis of the film
  • the coating solution may further contain inorganic particles.
  • the inorganic particles are particles made of an inorganic material other than the white pigment described above.
  • the inorganic particles can be, for example, metal oxide fine particles having an average particle size of 5 nm or more and less than 100 nm.
  • metal oxide fine particles When the metal oxide fine particles are contained in the coating solution, fine irregularities are generated on the surface of the resulting reflective layer, and an anchor effect is easily exhibited between the reflective layer and other layers.
  • metal oxide fine particles are contained in the coating solution, the stress generated in the film during the polycondensation of the alkoxysilane compound is relaxed, and cracks are less likely to occur in the resulting reflective layer.
  • the type of metal oxide fine particles is not particularly limited, but is relatively easy to obtain from the group of aluminum oxide, zirconium oxide, zinc oxide, tin oxide, yttrium oxide, cerium oxide, titanium oxide, copper oxide, and bismuth oxide. One or more selected metal oxide fine particles are preferable.
  • the surface of the metal oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, the compatibility between the metal oxide fine particles and the alkoxysilane compound or the organic solvent is increased.
  • the average particle diameter of the metal oxide fine particles is preferably 5 to 100 nm, more preferably 5 to 80 nm, still more preferably 5 to 50 nm in consideration of the respective effects described above. By setting the average particle diameter in such a range, fine irregularities can be formed on the surface of the reflective layer, and the anchor effect described above can be obtained.
  • the average particle diameter of the metal oxide fine particles is measured, for example, by a Coulter counter method.
  • the metal oxide fine particles may be porous, and the specific surface area is preferably 200 m 2 / g or more. If the metal oxide fine particles are porous, impurities are easily adsorbed in the porous voids.
  • the amount of the metal oxide fine particles contained in the coating solution is preferably 0.1 to 20% by mass with respect to the total mass of components other than the solvent (organic solvent and water) contained in the coating solution. More preferably, it is mass%. If the amount of the metal oxide fine particles is too small, the above-described anchor effect is not sufficient. On the other hand, if the amount is too large, the amount of the alkoxysilane compound is relatively reduced, and the strength of the resulting reflective layer may be reduced.
  • the inorganic particles may include other inorganic particles having an average primary particle size of 100 nm or more and 100 ⁇ m or less.
  • the gaps between the white pigments are filled with the inorganic particles, and the viscosity of the coating liquid is increased.
  • Examples of other inorganic particles include oxide particles such as silicon oxide, fluoride particles such as magnesium fluoride, and mixtures thereof.
  • the other inorganic particles are preferably oxide particles, and particularly preferably silicon oxide.
  • the surface of other inorganic particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, compatibility between the other inorganic particles and the alkoxysilane compound or the organic solvent is increased.
  • the content of other inorganic particles contained in the coating solution is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, based on the total mass of the coating solution. . This is because if the other inorganic particles exceed 10% by mass, cracks are likely to occur during the formation of the reflective layer, and if it is less than 0.1%, the thickening effect of the coating solution is reduced.
  • the average particle diameter of the other inorganic particles is preferably 100 nm or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less from the viewpoint of filling a gap generated at the interface between the white pigments.
  • the average particle diameter of other inorganic particles can be measured by, for example, a Coulter counter method.
  • Clay mineral particles The coating liquid may contain clay mineral particles. When clay mineral particles are contained in the coating solution, the viscosity of the coating solution increases, and sedimentation of the white pigment is suppressed. Examples of clay mineral particles include layered silicate minerals, imogolite, allophane and the like. These particles have a very large surface area and can increase the viscosity of the coating solution in a small amount.
  • the layered silicate mineral is preferably a clay mineral having a mica structure, a kaolinite structure, or a smectite structure.
  • the layered silicate mineral particles tend to form a card house structure when the coating solution is left standing.
  • the viscosity of the coating solution is greatly increased.
  • the card house structure is apt to collapse by applying a certain pressure, thereby reducing the viscosity of the coating solution. That is, when the layered silicate mineral particles are contained in the coating solution, the viscosity of the coating solution increases in a stationary state, and the viscosity of the coating solution decreases when a certain pressure is applied.
  • layered silicate minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, laponite and other smectite clay minerals, and Na-type tetralithic fluoric mica.
  • Non-swelling mica such as swellable mica genus clay minerals such as Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, muscovite, phlogopite, fluorine phlogopite, sericite, potassium tetrasilicon mica Genus clay minerals, vermiculite and kaolinite, or mixtures thereof.
  • swellable mica genus clay minerals such as Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, muscovite, phlogopite, fluorine phlogopite, sericite, potassium tetrasilicon mica Genus clay minerals, vermiculite and kaolinite, or mixtures thereof.
  • Examples of commercial products of clay mineral particles include Laponite XLG (synthetic hectorite analogue manufactured by LaPorte, UK), Laponite RD (Synthetic hectorite analogue produced by LaPorte, UK), Thermabis (Synthetic product, Henkel, Germany) Hectorite-like substance), smecton SA-1 (saponite-like substance manufactured by Kunimine Industry Co., Ltd.), Bengel (natural bentonite sold by Hojun Co., Ltd.), Kunivia F (natural montmorillonite sold by Kunimine Industry Co., Ltd.), bee gum ( Natural hectorite manufactured by Vanderbilt, USA, Daimonite (synthetic swellable mica manufactured by Topy Industries, Ltd.), Micromica (synthetic non-swellable mica, manufactured by Coop Chemical Co., Ltd.), Somasifu (Coop Chemical Co., Ltd.) ) Synthetic swelling mica), SWN (Synthetic s
  • the content of clay mineral particles is preferably from 0.1 to 5% by mass, more preferably from 0.2 to 2% by mass, based on the total mass of the coating solution.
  • the content of clay mineral particles is small, the viscosity of the coating solution is difficult to increase, and the white pigment tends to settle.
  • the content of the clay mineral particles is excessive, the viscosity of the coating solution becomes too high, and the coating solution may not be discharged uniformly from the coating device.
  • the surface of the clay mineral particles may be modified (surface treatment) with an ammonium salt or the like in consideration of compatibility with the solvent in the coating solution.
  • the coating solution may further contain a silane coupling agent.
  • a silane coupling agent When the silane coupling agent is contained in the coating solution, the adhesion between the resulting reflective layer and the substrate is increased, and the durability of the LED device is improved.
  • silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Methyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethy
  • the amount of the silane coupling agent contained in the coating solution is preferably 0.5 to 10% by mass relative to the total mass of components other than the solvent (organic solvent and water) contained in the coating solution. More preferably, it is mass%. If the amount of the silane coupling agent is too small, the adhesion between the resulting reflective layer and the substrate is not sufficiently increased, and if it is too large, the heat resistance may be lowered.
  • the coating solution may contain components other than the white pigment, alkoxysilane compound, organic solvent, inorganic particles, clay mineral particles, silane coupling agent, metal alkoxide, or metal chelate as necessary. Good.
  • the coating liquid may contain water. However, the amount of water is preferably 20% by mass or less, more preferably 10% by mass or less, with respect to the total mass of the coating solution, from the viewpoint of storage stability and the like.
  • the preparation method of the coating solution may be a method of mixing raw materials such as white pigments, alkoxysilane compounds, organic solvents, inorganic particles, clay mineral particles, silane coupling agents, A method of mixing a plurality of raw materials in advance and mixing the mixed liquids later may be used. In order to enhance the thickening effect of inorganic particles and clay mineral particles, it is preferable to disperse one or both of inorganic particles and clay mineral particles in a solvent and then mix with the remaining components. The following method is mentioned as an example of the preparation method of a coating liquid.
  • a composition containing an alkoxysilane compound (oligomer) by mixing a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound in an arbitrary ratio and polymerizing them in the presence of water, an organic solvent, and a catalyst.
  • a composition containing an organic solvent, inorganic particles, clay mineral particles, silane coupling agent and the like is prepared.
  • the composition containing an alkoxysilane compound, the composition containing an inorganic particle etc., and a white pigment are fully mixed, and a coating liquid is obtained.
  • the coating liquid in order to improve the uniformity in the coating liquid, it is preferable to disperse all or part of the raw material of the coating liquid with the following apparatus. Moreover, in order to improve the dispersibility of a white pigment, it is preferable to disperse
  • Mixing / dispersing device Mixing / dispersing of the mixed solution is, for example, a magnetic stirrer, an ultrasonic dispersing device, a homogenizer, a stirring mill, a blade kneading stirring device, a thin-film swirling type dispersing device, a high-pressure impact dispersing device, a rotation / revolution mixer, etc. Can be done.
  • All known devices can be used as the stirring device used for stirring the mixed solution.
  • Ultra Turrax manufactured by IKA Japan
  • TK homomixer manufactured by Primix
  • TK pipeline homomixer manufactured by Primics
  • TK Philmix manufactured by Primix
  • Claremix manufactured by M Technique
  • Medialess stirrers such as Claire SS5 (manufactured by M Technique), Cavitron (manufactured by Eurotech), Fine Flow Mill (manufactured by Taiheiyo Kiko), Viscomill (manufactured by IMEX), Apex Mill (manufactured by Kotobuki Industries), Star mill (Ashizawa, manufactured by Finetech), DMPA / S Superflow (manufactured by Nihon Eirich), MP Mill (manufactured by Inoue Seisakusho), spike mill (manufactured by Inoue Seisakusho), Mighty mill (manufactured by In
  • the viscosity of the coating liquid measured at 25 ° C with a vibration viscometer is preferably more than 5 mPa ⁇ s and not more than 2000 mPa ⁇ s.
  • An example of a vibration viscometer is VISCOMATE MODEL VM-10A (manufactured by Seconic). The above value is a value one minute after the vibrator is immersed in the liquid. If the viscosity of the coating solution exceeds 5 mPa ⁇ s, the white pigment will not easily settle. On the other hand, if it is 2000 mPa ⁇ s or less, the coating stability from various coating devices tends to increase.
  • the application method of the application liquid is not particularly limited, and may be an application method using a general application device such as a dispenser, a jet dispenser, an ink jet device, or a spray device.
  • a general application device such as a dispenser, a jet dispenser, an ink jet device, or a spray device.
  • the coating liquid of the present invention is difficult to spread when wet on the substrate.
  • high surface tension is included in the organic solvent, it is difficult to scoop up the nozzle tip side surface of various coating apparatuses. Therefore, it is possible to stably discharge from a non-contact type discharge device (for example, a jet dispenser or an ink jet device).
  • the coating liquid of the present invention is used after being applied to a desired region and then cured.
  • the heating temperature for curing the coating solution is preferably 20 to 300 ° C., more preferably 25 to 200 ° C. If the heating temperature is less than 20 ° C, the solvent in the coating film may not be sufficiently evaporated. On the other hand, if the temperature exceeds 300 ° C., the LED element may be adversely affected.
  • the drying / curing time is preferably from 0.1 to 120 minutes, more preferably from 5 to 60 minutes from the viewpoint of production efficiency.
  • FIG. 1 is a schematic cross-sectional view of an LED device 100 having a reflective layer made of a cured film of the aforementioned coating solution, and FIG. As described above, the LED device 100 includes the substrate 1, the LED element 2 disposed on the substrate 1, and the reflective layer 21 disposed at least around the LED element 2 on the substrate 1. Moreover, it further has the wavelength conversion layer 11 which covers the LED element 2 and the reflection layer 21 as needed.
  • the LED device 100 of the present invention has a reflective layer 21 that reflects the light emitted from the LED element 2 to the light extraction surface side. Therefore, the light extraction efficiency from the LED device 100 of the present invention is very high. Further, since the binder of the reflective layer 21 is polysiloxane, it is resistant to light and heat, and the reflective layer 21 is unlikely to deteriorate. Therefore, according to the LED device 100 of the present invention, high light extraction efficiency is maintained over a long period of time.
  • the substrate 1 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin.
  • the heat resistant resin include liquid crystal polymer, polyphenylene sulfide, aromatic nylon, epoxy resin, hard silicone resin, polyphthalic acid amide and the like.
  • the substrate 1 may contain an inorganic filler.
  • the inorganic filler can be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber, and the like.
  • the substrate 1 may have a cavity as shown in FIG. 1, but may have a flat plate shape.
  • an electrode 3 made of metal is formed on the substrate 1, and the electrode 3 has a function of supplying electricity to the LED element 2 from a power source (not shown) arranged outside the substrate 1.
  • the shape of the electrode 3 is not particularly limited, and is appropriately selected according to the type and application of the light emitting device 100.
  • the method for producing the substrate 1 having the electrodes 3 is not particularly limited, and is generally obtained by integrally molding a lead frame having a desired shape and a resin.
  • the LED element 2 is an element that is electrically connected to the electrode 3 formed on the substrate 1 and emits light of a specific wavelength. In the LED device 100 shown in FIG. 1, the LED element 2 is disposed on the bottom surface 1 a of the truncated cone-shaped cavity (concave portion) of the substrate 1.
  • the wavelength of light emitted from the LED element 2 is not particularly limited.
  • the LED element 2 may be, for example, an element that emits blue light (light of about 420 nm to 485 nm) or an element that emits ultraviolet light. Furthermore, an element that emits green light, red light, or the like may be used.
  • the configuration of the LED element 2 is not particularly limited.
  • the LED element 2 is an element that emits blue light
  • the LED element 2 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer. It may be a laminate of (clad layer) and a transparent electrode layer.
  • the shape of the LED element 2 is not particularly limited, and may have, for example, a light emitting surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m.
  • the height of the LED element 2 is usually about 50 to 200 ⁇ m.
  • the LED element 2 may be one in which light is extracted not only from the top surface but also from the side surface and the bottom surface. In the light emitting device 100 illustrated in FIG. 1, only one LED element 2 is disposed on the substrate 1, but a plurality of LED elements 2 may be disposed on the substrate 1.
  • connection method between the LED element 2 and the electrode 3 is not particularly limited.
  • the LED element 2 and the electrode 3 may be connected via a metal wire 4 as shown in FIG.
  • the LED element 2 and the electrode 3 may be connected via a protruding electrode (not shown).
  • a mode in which the LED element 2 and the electrode 3 are connected via the metal wire 4 is referred to as a wire bonding type.
  • a mode in which the LED element 2 and the electrode 3 are connected via a protruding electrode is called a flip chip bonding type.
  • the reflective layer 21 is a layer that reflects the emitted light from the LED element 2 and the fluorescence emitted by the phosphor contained in the wavelength conversion layer 11 to the light extraction surface side of the LED device 100. By providing the reflective layer 21, the amount of light extracted from the light extraction surface of the LED device 100 increases.
  • the reflective layer 21 is obtained by applying and curing the above-described coating solution.
  • the reflective layer 21 is disposed on the substrate 1 excluding the region where the LED elements 2 are disposed.
  • the reflective layer 21 is arranged in a mortar shape continuously from the bottom surface 1 a to the side surface 1 b of the truncated cone-shaped cavity (concave portion) of the substrate 1.
  • the reflection layer 21 is formed in a ring shape concentric with the wavelength conversion layer 11 on the outer periphery of the wavelength conversion layer 11 in a top view.
  • the reflective layer 21 is formed on the surface of the substrate 1 at least outside the region where the LED elements 2 are arranged.
  • the arrangement region of the LED element 2 refers to a light emitting surface of the LED element 2 and a connection portion between the LED element 2 and the electrode 3. That is, the reflective layer 21 is formed in a region that does not hinder the emission of light from the LED element 2 and the connection between the LED element 2 and the electrode 3.
  • the reflective layer 21 is also formed on the inner wall surface 1b of the cavity. This is because when the reflective layer 21 is formed on the cavity inner wall surface 1b, the light traveling in the horizontal direction on the surface of the wavelength conversion layer 11 can be reflected by the reflective layer 21 and extracted.
  • the reflective layer 21 may be formed in the gap between the LED element 2 and the substrate 1.
  • the thickness of the reflective layer 21 is preferably 5 to 30 ⁇ m, more preferably 5 to 20 ⁇ m. If the thickness of the reflective layer 21 exceeds 30 ⁇ m, cracks are likely to occur in the reflective layer 21. On the other hand, when the thickness of the reflective layer 21 is less than 5 ⁇ m, the light reflectivity of the reflective layer 21 is not sufficient, and the light extraction efficiency may not be increased.
  • the thickness of the reflective layer 21 means the maximum thickness of the reflective layer 21 formed on the light emitting surface of the LED element 2. The thickness of the reflective layer 21 can be measured with a laser holo gauge.
  • the wavelength conversion layer 11 includes phosphor particles and a binder.
  • the phosphor particles receive light (excitation light) emitted from the LED element 2 and emit fluorescence. By mixing the excitation light and the fluorescence, the color of the light from the LED device 100 becomes a desired color. For example, when the light from the LED element 2 is blue and the fluorescence emitted from the phosphor included in the wavelength conversion layer 11 is yellow, the light from the LED device 100 is white.
  • the wavelength conversion layer 11 may cover the LED element 2.
  • the wavelength conversion layer 11 may cover the reflective layer 21 together with the LED element 2.
  • the phosphor particles contained in the wavelength conversion layer 11 may be anything that is excited by the light emitted from the LED element 2 and emits fluorescence having a wavelength different from that of the emitted light from the LED element 2.
  • examples of phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
  • the YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element, and emits yellow fluorescence (wavelength 550 nm to 650 nm).
  • the phosphor particles are, for example, 1) An appropriate amount of flux (fluoride such as ammonium fluoride) is mixed with a mixed raw material having a predetermined composition, and pressed to form a molded body. 2) The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • flux fluoride such as ammonium fluoride
  • a mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. .
  • the mixed raw material which has a predetermined composition mixes the solution which dissolved 1) the rare earth elements of Y, Gd, Ce, and Sm in the acid in stoichiometric ratio, and oxalic acid, and obtains a coprecipitation oxide. 2) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
  • the kind of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet phosphor that does not contain Ce.
  • the average particle diameter of the phosphor particles is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m or less.
  • the particle diameter of the phosphor particles is too large, a gap generated at the interface between the phosphor particles and the binder becomes large. Thereby, the intensity
  • the average particle diameter of the phosphor particles refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the binder contained in the wavelength conversion layer 11 can be a transparent resin or a translucent ceramic.
  • the transparent resin can be, for example, a silicone resin and an epoxy resin.
  • the thickness of the wavelength conversion layer 11 is preferably about 25 ⁇ m to 5 mm. If the wavelength conversion layer 11 is too thick, the concentration of the phosphor particles becomes excessively low, and the phosphor particles may not be uniformly dispersed.
  • the thickness of the wavelength conversion layer 11 means the maximum thickness of the wavelength conversion layer 11 formed on the light emitting surface of the LED element 2.
  • the thickness of the wavelength conversion layer 11 can be measured with a laser holo gauge.
  • the binder is a transparent resin, the amount of phosphor particles contained in the wavelength conversion layer 11 is generally 5 to 15% by mass.
  • the translucent ceramic may be the same as the polysiloxane contained in the reflective layer.
  • the thickness of the wavelength conversion layer 11 is preferably 5 to 200 ⁇ m.
  • the thickness of the wavelength conversion layer 11 means the maximum thickness of the wavelength conversion layer 11 formed on the light emitting surface of the LED element 2. The thickness of the wavelength conversion layer 11 can be measured with a laser holo gauge.
  • the amount of phosphor particles contained in the wavelength conversion layer 11 is preferably 60 to 95% by mass.
  • the above-described light-emitting device can be manufactured through the following three steps. (1) The process of preparing the board
  • the manufacturing method of the light emitting device may include (4) a step of forming a wavelength conversion layer containing phosphor particles on the reflective layer as necessary.
  • substrate with which the LED element and the electrode were connected is prepared.
  • it may be a step of preparing a substrate having the above-described electrodes, fixing the LED element to the substrate, and connecting the electrode of the substrate to the cathode electrode and the anode electrode of the LED element.
  • the method for connecting the LED element and the electrode and the method for fixing the LED element to the substrate are not particularly limited, and may be the same as a conventionally known method.
  • a coating liquid application process is a process of apply
  • the aforementioned coating solution is difficult to spread when wet on the substrate. Therefore, even if the coating liquid is applied to the vicinity of the outer periphery of the LED element, the coating liquid is difficult to adhere to the side surface of the LED element.
  • the method for applying the coating solution is not particularly limited as long as it is a method capable of applying the coating solution to a desired region, and known coating methods such as blade coating, spin coating coating, dispenser coating, spray coating, and inkjet method coating. It can be.
  • the above-mentioned coating liquid contains high surface tension, it is difficult to scoop up the nozzle tip side surface of various coating apparatuses. Therefore, it is possible to stably discharge from a non-contact type discharge device (for example, a jet dispenser or an ink jet device). In particular, it is preferable to discharge the coating liquid with a jet dispenser from the viewpoint that the coating liquid can be applied to a desired region.
  • a non-contact type discharge device for example, a jet dispenser or an ink jet device.
  • the coating liquid curing process may be a process of heat curing the coating liquid.
  • the solvent in the coating solution is removed and the alkoxysilane compound is hydrolyzed and polycondensed.
  • the temperature at which the coating solution is cured is preferably 20 to 300 ° C., more preferably 25 to 200 ° C. If the heating temperature is less than 20 ° C, the solvent in the coating film may not be sufficiently evaporated. On the other hand, if the temperature exceeds 300 ° C., the LED element may be adversely affected.
  • the drying / curing time is preferably from 0.1 to 120 minutes, more preferably from 5 to 60 minutes from the viewpoint of production efficiency.
  • Wavelength conversion layer formation process may be a process of apply
  • the composition for wavelength conversion layer contains phosphor particles and a binder component.
  • the binder component can be a transparent resin contained in the wavelength conversion layer or a precursor thereof, or a polysiloxane precursor (alkoxysilane compound). Moreover, a solvent is contained in the composition for wavelength conversion layers as needed.
  • the solvent is a hydrocarbon such as toluene or xylene; a ketone such as acetone or methyl ethyl ketone; an ether such as diethyl ether or tetrahydrofuran; propylene glycol monomethyl ether acetate, ethyl It may be an ester such as acetate.
  • the binder component is an alkoxysilane compound
  • the solvent can be the same as the organic solvent contained in the coating solution.
  • the mixing of the composition for wavelength conversion layer can be performed, for example, with a stirring mill, a blade kneading stirring device, a thin-film swirling disperser, or the like.
  • a stirring mill a blade kneading stirring device, a thin-film swirling disperser, or the like.
  • the method for applying the composition for wavelength conversion layer is appropriately selected depending on the type of binder, and can be, for example, dispenser application or spray application. Moreover, this is hardened after application
  • the curing method and curing conditions of the wavelength conversion layer composition are appropriately selected depending on the type of resin. An example of the curing method is heat curing.
  • the catalyst used for the preparation of the alkoxysilane compound solution is as follows.
  • (Acid catalyst) Hydrochloric acid Nitric acid Acetic acid ZC-150: Zirconium chelate (Orgatics ZC-150, manufactured by Matsumoto Fine Chemical)
  • TC-750 Titanium chelate (Orgatechs TC-750, manufactured by Matsumoto Fine Chemical)
  • D-25 Titanium alkoxide (D-25, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • DX-9740 Aluminum chelate (DX-9740, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the organic solvents used for the preparation of the alkoxysilane compound solution are as follows. (High surface tension organic solvent) Ethylene glycol (EG), surface tension 48.4 Propylene glycol (PG), surface tension 35.3 1,3-butanediol (BD), surface tension 45.3 Ethylene glycol monomethyl ether (EGME), surface tension 31.8 Benzyl alcohol, surface tension 39 Triethylene glycol, surface tension 45.2 Diacetone alcohol, surface tension 31
  • alkoxysilane compound solution 1 Tetramethoxysilane 7.8% by mass, methyltrimethoxysilane 2.2% by mass, propylene glycol 35% by mass, methanol 35% by mass, water 9.99% by mass, and nitric acid 0.01% by mass. Mix and stir at 23 ° C. for 3 hours. Then, it was made to react, stirring at 26 degreeC for 3 days, and the alkoxysilane compound solution 1 containing a polysiloxane oligomer was obtained.
  • alkoxysilane compound solutions 2, 3, 5 to 20 Preparation of alkoxysilane compound solutions 2, 3, 5 to 20 Except for changing the types and amounts of the tetrafunctional alkoxysilane compound, trifunctional alkoxysilane compound, bifunctional alkoxysilane compound, solvent, water, and catalyst during preparation of the alkoxysilane compound to those shown in Table 1, alkoxysilane Prepared in the same manner as for Compound Solution 1.
  • alkoxysilane compound solution 4 (Preparation of alkoxysilane compound solution 4) An alkoxysilane compound solution 4 was prepared by mixing 20% by mass of triethoxysilane, 35% by mass of 1,3-butanediol, 35% by mass of methanol, 9.99% by mass of water, and 0.01% by mass of hydrochloric acid. Obtained.
  • alkoxysilane compound solution 21 Water and dilute nitric acid were added to 0.1 mol of ethyltrimethoxysilane, and the molar ratio of alkoxide: water: dilute nitric acid was adjusted to 1: 3: 0.002. This solution was stirred in a sealed container at 20 ° C. for 3 hours, and further aged at 60 ° C. for 48 hours to proceed with a hydrolysis reaction and a polycondensation reaction. The upper phase containing methanol produced
  • Silicia 470 Silica (Silicia 470, manufactured by Fuji Silysia Chemical) average particle size of 14 ⁇ m VM2270: Silica (VM-2270, manufactured by Dow Corning) average particle size of 5 to 15 ⁇ m SP-1: Silica (Microbead SP-1, manufactured by JGC Catalysts & Chemicals) Average particle diameter of 5 ⁇ m SS-50F: Silica (Nip seal SS-50F, manufactured by Tosoh Silica) Average particle size 1.2 ⁇ m Alu-C: Alumina (AEROXIDE Alu-C, Nippon Aerosil) average primary particle size 13 nm A300: Silica (Nippon Aerosil Co., Ltd.) average primary particle size: 7 nm RX300: Silica (manufactured by Nippon Aerosil Co., Ltd.) Average primary particle size: 7 nm F3: Silica (high silica F3, manufactured by Nichetsu) average particle diameter
  • MK-100 Synthetic mica (Micromica MK-100, manufactured by Corp Chemical)
  • ME-100 Synthetic mica (Somasif ME-100, manufactured by Corp Chemical)
  • SWN Smectite (Lucentite SWN, manufactured by Corp Chemical)
  • SPN Smectite (Lucentite SPN, manufactured by Corp Chemical)
  • Kunipia F Montmorillonite (Kunipia F, manufactured by Kunimine Industries)
  • FSE Sericite (Sericite FSE, manufactured by Sanshin Mining Co., Ltd.)
  • SA-1 Saponite-like substance (Smecton SA-1, manufactured by Kunimine Industries)
  • HVP Natural bentonite (Esven NE, manufactured by Hojun Co.)
  • NE Bentonite (Bengel HVP, manufactured by Hojun Co.)
  • Imogolite The one prepared by the method described below was used
  • KBM-403 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Silicone)
  • KBM-903 3-aminopropyltrimethoxysilane (KBM-903, manufactured by Shin-Etsu Silicone)
  • KBM-802 3-mercaptopropylmethyldimethoxysilane (KBM-802, manufactured by Shin-Etsu Silicone)
  • KBE-846 Bis (triethoxysilylpropyl) tetrasulfide (KBE-846, manufactured by Shin-Etsu Silicone)
  • Amberlite IR120B manufactured by Organo
  • the pH of the aqueous orthosilicate solution was measured by the above method using MODEL (F-71S) (Horiba, Ltd.).
  • a 5M NaCl aqueous solution was added to the mixture to cause gelation, followed by centrifugation to obtain a transparent tubular aluminum silicate gel.
  • the salt (NaCl) contained in the obtained gel was removed using a dialysis membrane to obtain an aqueous dispersion of tubular aluminum silicate. Further, the aqueous dispersion was heated at 100 ° C. to evaporate the water, and further heated at 200 ° C. for 1 hour to obtain a powder of tubular aluminum silicate (imogolite).
  • Examples 1 to 54 and Comparative Examples 1 to 4 The white pigment, the silane compound solution, and the adjustment liquid were mixed at the mixing ratios shown in Tables 3 to 6. And the said mixture was stirred with the stirring apparatus, and the coating liquid was prepared. The following white pigments were used.
  • Tables 3 and 4 show the concentration of each component in the coating solution, and show the evaluation results of the viscosity of the coating solution, the coating amount stability, and the fine line reproducibility. Each measuring method is shown below.
  • Tables 5 and 6 show the concentration of each component in the reflective layer obtained by curing the coating liquid, the presence or absence of cracks in the reflective layer obtained by curing the coating liquid, the reflectance of the reflective layer, And the result of a tape peeling test is shown. Each measuring method is shown below.
  • the amount of the high surface tension solvent is the amount of the high surface tension solvent relative to the total amount of the organic solvent contained in the coating solution.
  • (White pigment) CR-93 Titanium oxide, manufactured by Ishihara Sangyo CR-95: Titanium oxide, manufactured by Ishihara Sangyo SX-3103: Titanium oxide, manufactured by Sakai Chemical Industry D-918: Titanium oxide, manufactured by Sakai Chemical Industry JR: Titanium oxide, manufactured by Teika JR-405: Titanium oxide, manufactured by Teika HD-11: Aluminum oxide, manufactured by Nikkato NFJ-3: Barium sulfate (NFJ-3-1999), manufactured by Sansai Bussan AP-100S: Boron nitride, manufactured by MARUKA
  • Viscosity evaluation> The viscosity of the coating solution was measured using a vibration viscometer VISCOMATE MODEL VM-10A (manufactured by Seconic). The measurement temperature was 25 ° C., and the measured value after 1 minute was used after the vibrator was immersed in the liquid.
  • ⁇ Evaluation of coating amount stability For the coating amount stability, a jet dispenser AeroJet (manufactured by Musashi Engineering Co., Ltd.) was used to fill the syringe with the coating liquid, and line drawing was performed 10 times continuously under certain conditions. And the total mass of the dripped liquid was calculated
  • Mass change rate ((BA) / A) ⁇ 100%
  • A is the total mass of the liquid dropped in the first 10 times
  • B is the total mass of the liquid dropped in 10 times after 4 hours.
  • the coating amount stability was evaluated as follows. ⁇ : Mass change rate was less than 3%
  • Mass change rate was 3% or more and less than 6%
  • the fine line reproducibility of the coating liquid was such that a jet dispenser AeroJet (manufactured by Musashi Engineering Co., Ltd.) was used to fill the syringe with the coating liquid, and the coating liquid was applied linearly on a silver plate.
  • the drawn line width was measured and evaluated as follows. A: Line width was less than 300 ⁇ m B: Line width was 300 ⁇ m or more and less than 400 ⁇ m ⁇ : Line width was 400 ⁇ m or more and less than 500 ⁇ m ⁇ : Line width was 500 ⁇ m or more
  • ⁇ Reflectance measurement> The coating solution was applied to a transparent 1 mm glass plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 ⁇ m. Then, the reflectance of each sample was measured with a spectrophotometer V-670 (manufactured by JASCO Corporation). The evaluation results were judged as follows. ⁇ : Reflectance at a wavelength of 500 nm was 95% or more ⁇ : Reflectance at a wavelength of 500 nm was 90% or more and less than 95% ⁇ : Reflectance at a wavelength of 500 nm was less than 90%
  • ⁇ Tape peeling experiment> A coating solution was applied on a silver plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 ⁇ m.
  • the work of attaching Nichiban cello tape (registered trademark) (24 mm) to the formed reflective layer and immediately peeling it off was repeated 20 times. And the state of the reflective layer was observed with the microscope for every operation
  • No separation was observed after 10 times of operation, but after 20 times of operation, it was slightly peeled off.
  • the reflective layer was peeled off at the 10th working time.
  • the inorganic particles contained in the coating liquid are metal oxide fine particles having an average particle size of 5 nm or more and less than 100 nm
  • the adhesion of the resulting reflective layer and the adhesion between the substrate and the substrate due to the anchor effect of the metal oxide fine particles The property (evaluation of the tape test) was likely to increase (Examples 3, 5, 9, 10, 11).
  • the coating solution contained a silane coupling agent adhesion to the substrate (evaluation of the tape test) was likely to increase (Examples 7 to 9, 14, 15, 21, 23, 24).
  • the coating liquid of the present invention can be applied to a desired region with high definition.
  • the reflective layer obtained by curing the coating solution is less deteriorated and can efficiently reflect light over a long period of time. Therefore, it is very useful as a composition for forming a reflective layer of an LED device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing a coating liquid which is able to be applied to a desired region of an LED device with high accuracy, while being less susceptible to deterioration due to light or heat, and which is capable of efficiently forming a cured film for a long period of time, said cured film being able to reflect light. In order to solve the above-described problem, a coating liquid containing a white pigment, an alkoxysilane compound and an organic solvent is configured such that if R2 (mol%) is the ratio of a bifunctional alkoxysilane compound relative to the total amount of the alkoxysilane compound, R3 (mol%) is the ratio of a trifunctional alkoxysilane compound relative to the total amount of the alkoxysilane compound and R4 (mol%) is the ratio of a tetrafunctional alkoxysilane compound relative to the total amount of the alkoxysilane compound (with the total of R2, R3 and R4 being 100 mol%), R2, R3 and R4 satisfy a specific condition. This coating liquid is also configured such that the organic solvent contains a high-surface-tension organic solvent having a surface tension at 25°C of 30 mN/m or more in an amount of 45-90% by mass relative to the total amount of the organic solvent.

Description

塗布液、これを用いたLED装置の製造方法、及びLED装置Coating liquid, LED device manufacturing method using the same, and LED device
 本発明は、塗布液、これを用いたLED装置の製造方法、及びLED装置に関する。 The present invention relates to a coating solution, a method for manufacturing an LED device using the same, and an LED device.
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍に、YAG蛍光体等の蛍光体を配置し、青色LED素子が出射する青色光と、青色光を受けて蛍光体が出射する黄色光とを混色して白色光を得るLED装置が開発されている。また、青色LED素子の近傍に各種蛍光体を配置し、青色LED素子が出射する青色光と、青色光を受けて蛍光体が発する赤色光や緑色光を混色して白色光を得るLED装置も開発されている。 In recent years, phosphors such as YAG phosphors have been placed in the vicinity of gallium nitride (GaN) -based blue LED (Light Emitting Diode) chips to receive blue light and blue light emitted from the blue LED elements. An LED device that obtains white light by mixing yellow light emitted from a phosphor has been developed. There is also an LED device that obtains white light by arranging various phosphors in the vicinity of a blue LED element and mixing blue light emitted from the blue LED element with red light and green light emitted from the phosphor upon receiving blue light. Has been developed.
 白色LED装置には様々な用途があり、例えば、蛍光灯や白熱電灯の代替品としての需要がある。このような照明装置では、白色LED装置を複数個組み合わせた構造になっている。そして、個々の白色LED装置の光取り出し効率をいかに上昇させるかが照明装置のコスト低減、長寿命化を実現させる上で重要である。 White LED devices have a variety of uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps. Such an illuminating device has a structure in which a plurality of white LED devices are combined. And how to raise the light extraction efficiency of each white LED device is important in realizing cost reduction and long life of the lighting device.
 一方で、従来のLED装置では、LED素子を配置する基板等が、LED素子の出射光や、蛍光体が発する蛍光を吸収しやすく、光取り出し性が高まり難い、との問題があった。そこで、LED素子の周囲に、光反射率が高いリフレクタを配置することが提案されている。このようなリフレクタは、一般的に金属メッキ等から形成されている。しかし、金属メッキからなるリフレクタは、電気の導通を防ぐとの観点から、基板全面に形成することができなかった。そのため、リフレクタが形成されていない領域では、基板に光が吸収されてしまう、という問題があった。 On the other hand, the conventional LED device has a problem that the substrate on which the LED element is arranged easily absorbs the emitted light of the LED element and the fluorescence emitted by the phosphor, and the light extraction property is difficult to increase. Therefore, it has been proposed to arrange a reflector having a high light reflectance around the LED element. Such a reflector is generally formed of metal plating or the like. However, a reflector made of metal plating cannot be formed on the entire surface of the substrate from the viewpoint of preventing electrical conduction. Therefore, there is a problem that light is absorbed by the substrate in the region where the reflector is not formed.
 そこで、金属メッキを透明の樹脂層で保護したリフレクタや(特許文献1)、白色の樹脂層で金属メッキを覆ったリフレクタが提案されている(特許文献2)また、セラミックバインダに光拡散粒子を分散させたリフレクタ(反射層)も提案されている(特許文献3)。 Therefore, a reflector in which the metal plating is protected with a transparent resin layer (Patent Document 1) and a reflector in which the metal plating is covered with a white resin layer have been proposed (Patent Document 2). A dispersed reflector (reflective layer) has also been proposed (Patent Document 3).
特開2005-136379号公報JP 2005-136379 A 特開2011-23621号公報JP 2011-23621 A 国際公開第2014/017108号International Publication No. 2014/017108
 前述の特許文献1の技術のように、金属メッキからなるリフレクタ表面を透明樹脂で被覆した場合には、樹脂が熱や光により劣化する。そして、経時で金属メッキが腐食して光反射性が低下したり、電気が導通してしまう、という問題があった。特に、車載用のヘッドライト等、大光量が必要とされる用途において、樹脂が劣化しやすかった。 When the reflector surface made of metal plating is covered with a transparent resin as in the technique of Patent Document 1 described above, the resin deteriorates due to heat or light. And there was a problem that metal plating corrodes with time and the light reflectivity is lowered or electricity is conducted. In particular, in applications where a large amount of light is required, such as in-vehicle headlights, the resin is likely to deteriorate.
 また、比較的耐熱性の高いシリコーン樹脂等によって、金属メッキからなるリフレクタ等を被覆した場合、シリコーン樹脂は劣化し難い。一方で、シリコーン樹脂はガスを透過し易い性質を有する。したがって、リフレクタが銀を含んだり、銀メッキ等からなる場合には、空気中に存在する微量の硫化水素により、銀が変色して反射率が低下しやすく、光取出し効率が低下しやすかった。 Also, when a reflector made of metal plating is coated with a relatively high heat resistant silicone resin, the silicone resin is unlikely to deteriorate. On the other hand, the silicone resin has a property that gas easily permeates. Therefore, when the reflector contains silver or is made of silver plating or the like, silver is discolored due to a small amount of hydrogen sulfide existing in the air, so that the reflectance is easily lowered, and the light extraction efficiency is easily lowered.
 また、特許文献2の技術のように、白色顔料を分散させた熱硬化性樹脂で、基板や金属メッキを被覆して反射層を形成した場合、有機物を主骨格とするエポキシ等の熱硬化性樹脂が、高温で着色しやすく、反射層の反射率が低下しやすかった。 In addition, as in the technique of Patent Document 2, when a reflective layer is formed by coating a substrate or metal plating with a thermosetting resin in which a white pigment is dispersed, thermosetting such as epoxy having an organic substance as a main skeleton. The resin was easily colored at a high temperature, and the reflectance of the reflective layer was likely to decrease.
 一方、特許文献3に記載の反射層の形成には、耐熱性の高いセラミックバインダが使用されている。しかし、特許文献3に記載の反射層形成用の塗布液は、塗布時に基板上で濡れ広がりやすい。そして、LED素子の近傍に反射層を形成しようとすると、LED素子の側面に塗布液が付着してしまうことがあった。LED素子の側面に塗布液が付着すると、LED素子側面から光を取り出すことができず、LED素子からの光取り出し効率が低下してしまう、という課題があった。 On the other hand, a ceramic binder having high heat resistance is used for forming the reflective layer described in Patent Document 3. However, the coating liquid for forming a reflective layer described in Patent Document 3 tends to wet and spread on the substrate during coating. And when it was going to form a reflection layer in the vicinity of a LED element, the coating liquid might adhere to the side surface of a LED element. When the coating liquid adheres to the side surface of the LED element, there is a problem that light cannot be extracted from the LED element side surface, and the light extraction efficiency from the LED element decreases.
 本発明は、このような状況に鑑みてなされたものである。すなわち、本発明はLED装置の所望の領域に、精度よく塗布が可能であって、光や熱による劣化が少なく、長期間に亘り効率よく光を反射可能な硬化膜を形成可能な塗布液を提供することを目的とする。 The present invention has been made in view of such a situation. That is, the present invention provides a coating liquid that can be applied to a desired region of an LED device with high accuracy, can be formed with a cured film that is less susceptible to light and heat, and can efficiently reflect light over a long period of time. The purpose is to provide.
 本発明の第一は、以下に示す塗布液に関する。
 [1]白色顔料と、アルコキシシラン化合物と、有機溶媒と、を含む塗布液であり、前記アルコキシシラン化合物の総量に対する2官能アルコキシシラン化合物の比率をR2(モル%)、3官能アルコキシシラン化合物の比率をR3(モル%)、4官能アルコキシシラン化合物の比率をR4(モル%)、としたとき(ただし、R2、R3、及びR4の合計は100モル%)、下記式1及び式2の両条件を満たし、
 0≦R2<40           (式1)
 0≦R4/R3≦3         (式2)
 前記有機溶媒が、前記有機溶媒の総量に対して、25℃における表面張力が30mN/m以上である高表面張力有機溶媒を45~90質量%含む、塗布液。
The first of the present invention relates to the coating solution shown below.
[1] A coating liquid containing a white pigment, an alkoxysilane compound, and an organic solvent, wherein the ratio of the bifunctional alkoxysilane compound to the total amount of the alkoxysilane compound is R2 (mol%), the trifunctional alkoxysilane compound When the ratio is R3 (mol%) and the ratio of the tetrafunctional alkoxysilane compound is R4 (mol%) (however, the total of R2, R3, and R4 is 100 mol%), both of the following formulas 1 and 2 Meet the requirements,
0 ≦ R2 <40 (Formula 1)
0 ≦ R4 / R3 ≦ 3 (Formula 2)
The coating solution, wherein the organic solvent contains 45 to 90% by mass of a high surface tension organic solvent having a surface tension of 30 mN / m or more at 25 ° C. with respect to the total amount of the organic solvent.
 [2]前記高表面張力有機溶媒が、1価アルコール、多価アルコール、ケトン系溶媒、エステル系溶媒、アミン系溶媒、アミド系溶媒、含硫黄系溶媒からなる群から選ばれる、[1]に記載の塗布液。
 [3]前記アルコキシシラン化合物の少なくとも一部が、2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、または4官能アルコキシシラン化合物の重合体である、[1]または[2]に記載の塗布液。
 [4]無機粒子または粘土鉱物粒子をさらに含む、[1]~[3]のいずれかに記載の塗布液。
[2] The high surface tension organic solvent is selected from the group consisting of monohydric alcohols, polyhydric alcohols, ketone solvents, ester solvents, amine solvents, amide solvents, and sulfur-containing solvents. The coating liquid as described.
[3] The coating liquid according to [1] or [2], wherein at least a part of the alkoxysilane compound is a polymer of a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, or a tetrafunctional alkoxysilane compound.
[4] The coating solution according to any one of [1] to [3], further comprising inorganic particles or clay mineral particles.
 [5]シランカップリング剤をさらに含有する、[1]~[4]のいずれかに記載の塗布液。
 [6]振動式粘度計にて25℃で測定される粘度が5mPa・s超、2000mPa・s以下である、[1]~[5]のいずれかに記載の塗布液。
 [7]加熱硬化後の固形分の全質量に対して、白色顔料を50~95質量%含む、[1]~[6]のいずれかに記載の塗布液。
[5] The coating solution according to any one of [1] to [4], further containing a silane coupling agent.
[6] The coating solution according to any one of [1] to [5], wherein the viscosity measured at 25 ° C. with a vibration viscometer is more than 5 mPa · s and not more than 2000 mPa · s.
[7] The coating solution according to any one of [1] to [6], containing a white pigment in an amount of 50 to 95% by mass with respect to the total mass of the solid content after heat curing.
 本発明の第二は、以下に示すLED装置の製造方法、及びLED装置に関する。
 [8]基板と、前記基板上に配置されたLED素子と、前記LED素子の周囲に形成された反射層とを含むLED装置の製造方法であって、前記LED素子が配置された前記基板の周囲に、[1]~[7]のいずれかに記載の塗布液を塗布し、硬化させる工程を含む、LED装置の製造方法。
 [9]前記塗布液を、非接触式の吐出装置で塗布する、[8]に記載のLED装置の製造方法。
 [10]前記吐出装置が、ジェットディスペンサーである、[9]に記載のLED装置の製造方法。
2nd of this invention is related with the manufacturing method of an LED device shown below, and an LED device.
[8] A method for manufacturing an LED device, comprising: a substrate; an LED element disposed on the substrate; and a reflective layer formed around the LED element, wherein the LED element is disposed on the substrate. A method for manufacturing an LED device, comprising a step of applying and curing the coating liquid according to any one of [1] to [7] around the periphery.
[9] The method for manufacturing an LED device according to [8], wherein the coating liquid is applied by a non-contact type discharge device.
[10] The method for manufacturing an LED device according to [9], wherein the discharge device is a jet dispenser.
 [11]基板と、前記基板上に配置されたLED素子と、前記LED素子の周囲の前記基板上に形成された反射層と、を有するLED装置であって、前記反射層が、[1]~[7]のいずれかに記載の塗布液の硬化膜である、LED装置。
 [12]前記反射層が、前記基板と前記LED素子との間にさらに形成されている、[11]に記載のLED装置。
[11] An LED device comprising a substrate, an LED element disposed on the substrate, and a reflective layer formed on the substrate around the LED element, wherein the reflective layer is [1] An LED device, which is a cured film of the coating liquid according to any one of [7] to [7].
[12] The LED device according to [11], wherein the reflective layer is further formed between the substrate and the LED element.
 本発明の塗布液は、LED装置の所望の領域に、精度よく塗布可能である。また、当該塗布液を硬化させて得られる反射層は、熱や光による劣化が少なく、長期間に亘り効率よく光を反射可能である。 The coating liquid of the present invention can be accurately applied to a desired region of the LED device. In addition, the reflective layer obtained by curing the coating solution is less deteriorated by heat and light, and can efficiently reflect light over a long period of time.
本発明のLED装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the LED apparatus of this invention. 本発明のLED装置の一例を示す上面図である。It is a top view which shows an example of the LED device of this invention. 固体Si-NMRのスペクトルの一例を示すグラフである。2 is a graph showing an example of a solid-state Si-NMR spectrum.
 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist.
 1.塗布液
 本発明の塗布液は、LED装置の反射層を形成するための組成物であり、当該塗布液には、白色顔料と、アルコキシシラン化合物と、有機溶媒とが含まれる。塗布液には、白色顔料の他に、無機粒子や、粘土鉱物粒子、シランカップリング剤等が含まれてもよい。
1. Coating liquid The coating liquid of the present invention is a composition for forming a reflective layer of an LED device, and the coating liquid contains a white pigment, an alkoxysilane compound, and an organic solvent. In addition to the white pigment, the coating liquid may contain inorganic particles, clay mineral particles, a silane coupling agent, and the like.
 本発明の塗布液を塗布して得られる反射層を有するLED装置の一例を図1に示す。図1の概略断面図に示されるように、LED装置100は、基板1にLED素子2が電気的に接続された構造を有する。さらに、当該LED素子2を覆うように、LED素子2が出射する特定の波長の光を、他の特定の波長の光に変換する波長変換層11が配置されてもよい。そして、LED素子2が発する光や、波長変換層11に含まれる蛍光体が発する光を、LED装置100の光取り出し面10Aから効率良く取り出すため、LED素子2が配置された領域以外の基板1表面には、これらの光を反射させるための反射層21が形成される。 An example of an LED device having a reflective layer obtained by applying the coating liquid of the present invention is shown in FIG. As shown in the schematic cross-sectional view of FIG. 1, the LED device 100 has a structure in which an LED element 2 is electrically connected to a substrate 1. Furthermore, the wavelength conversion layer 11 which converts the light of the specific wavelength which LED element 2 radiate | emits into the light of another specific wavelength may be arrange | positioned so that the said LED element 2 may be covered. And in order to take out efficiently the light which LED element 2 emits, and the light which the fluorescent substance contained in wavelength conversion layer 11 emits from light extraction surface 10A of LED device 100, substrate 1 other than the field where LED element 2 is arranged A reflective layer 21 for reflecting these lights is formed on the surface.
 ここで、従来のLED装置の反射層のバインダには、樹脂が用いられることが多かった。しかし、樹脂は熱や光によって着色したり、劣化することがあり、光取り出し効率が低下しやすいという課題があった。そこで、ポリシロキサン前駆体と白色顔料とを混合した塗布液を塗布し、反射層を形成することも提案されている。しかし、従来のポリシロキサン前駆体と白色顔料とを含む塗布液は、基板表面で濡れ広がりやすく、所望の領域のみに反射層を形成し難い、という課題があった。特に、塗布液が濡れ広がり過ぎると、LED素子の側面に付着してしまい、LED素子の側面から、光を取り出すことが困難となる。その結果、LED装置の光取り出し効率が低下することがあった。 Here, a resin is often used for the binder of the reflection layer of the conventional LED device. However, the resin may be colored or deteriorated by heat or light, and there has been a problem that the light extraction efficiency tends to decrease. Therefore, it has also been proposed to form a reflective layer by applying a coating liquid in which a polysiloxane precursor and a white pigment are mixed. However, the conventional coating liquid containing a polysiloxane precursor and a white pigment has a problem that it easily spreads on the substrate surface and it is difficult to form a reflective layer only in a desired region. In particular, when the coating solution is too wet and spreads, it adheres to the side surface of the LED element, making it difficult to extract light from the side surface of the LED element. As a result, the light extraction efficiency of the LED device may decrease.
 これに対し、本発明の塗布液には、25℃において表面張力が30mN/m以上である高表面張力有機溶媒が一定量含まれるため、塗布液が過度に濡れ広がらない。つまり、塗布液を所望の領域にのみ塗布でき、例えばLED素子の側面を覆うことなく、LED素子の外周近傍まで反射層を形成することができる。その結果、LED装置からの光取り出し効率が高まる。また、当該塗布液から得られる反射層のバインダはポリシロキサンであるため、反射層が光や熱によって劣化し難い。したがって、当該塗布液の硬化膜からなる反射層を有するLED装置では、長期間に亘って高い光取り出し効率が維持される。 In contrast, the coating solution of the present invention contains a certain amount of a high surface tension organic solvent having a surface tension of 30 mN / m or more at 25 ° C., so that the coating solution does not spread excessively. That is, the coating liquid can be applied only to a desired region, and for example, the reflective layer can be formed near the outer periphery of the LED element without covering the side surface of the LED element. As a result, the light extraction efficiency from the LED device is increased. Further, since the binder of the reflective layer obtained from the coating solution is polysiloxane, the reflective layer is hardly deteriorated by light or heat. Therefore, in an LED device having a reflective layer made of a cured film of the coating solution, high light extraction efficiency is maintained over a long period.
 1-1.アルコキシシラン化合物
 本発明の塗布液には、アルコキシシラン化合物が含まれる。アルコキシシラン化合物は、塗布液の硬化時に加水分解及び重縮合して、ポリシロキサンとなる化合物である。そして、ポリシロキサンは、前述の反射層のバインダとなる。
1-1. Alkoxysilane Compound The coating liquid of the present invention contains an alkoxysilane compound. The alkoxysilane compound is a compound that is hydrolyzed and polycondensed into a polysiloxane when the coating solution is cured. And polysiloxane becomes a binder of the above-mentioned reflective layer.
 アルコキシシラン化合物には、2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び4官能アルコキシシラン化合物のうち、少なくとも一種が含まれる。そして、アルコキシシラン化合物の総量に対する、2官能アルコキシシラン化合物の比率をR2(モル%)、3官能アルコキシシラン化合物の比率をR3(モル%)、4官能アルコキシシラン化合物の比率をR4(モル%)、としたときに、下記式1及び式2の両条件が満たされる。
 0≦R2<40           (式1)
 0≦R4/R3≦3         (式2)
 なお、R2、R3、及びR4の合計は100モル%である。
The alkoxysilane compound includes at least one of a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound. The ratio of the bifunctional alkoxysilane compound to the total amount of the alkoxysilane compound is R2 (mol%), the ratio of the trifunctional alkoxysilane compound is R3 (mol%), and the ratio of the tetrafunctional alkoxysilane compound is R4 (mol%). , Both conditions of the following formula 1 and formula 2 are satisfied.
0 ≦ R2 <40 (Formula 1)
0 ≦ R4 / R3 ≦ 3 (Formula 2)
In addition, the sum total of R2, R3, and R4 is 100 mol%.
 式1において、R2が40以上であると、ポリシロキサン中に、2官能アルコキシシラン由来の有機基が比較的多く含まれる。その結果、塗布液を硬化して得られる反射層と、基板表面のOH基等との間で十分なシロキサン結合が形成され難く、反射層と基板との密着性が低くなる。また当該反射層のガスバリア性が低下し、硫化耐性が低下するおそれがある。そのため、R2は、上記範囲であることが好ましく、0≦R2<30であることがより好ましく、0≦R2<25であることがさらに好ましい。 In Formula 1, when R2 is 40 or more, the polysiloxane contains a relatively large amount of organic groups derived from bifunctional alkoxysilane. As a result, it is difficult to form a sufficient siloxane bond between the reflective layer obtained by curing the coating solution and the OH group or the like on the substrate surface, and the adhesion between the reflective layer and the substrate is lowered. In addition, the gas barrier property of the reflective layer may be reduced, and the resistance to sulfurization may be reduced. Therefore, R2 is preferably in the above range, more preferably 0 ≦ R2 <30, and further preferably 0 ≦ R2 <25.
 一方、式2においてR4/R3の値が3を超える、つまり4官能アルコキシシラン化合物の量が過剰であると、ポリシロキサン中での架橋密度が過度に高まる。そのため、アルコキシシラン化合物の硬化時にひずみが生じやすくなり、クラックが発生するおそれがある。そのため、R4/R3の値は、3以下であることが好ましく、0≦R4/R3<2であることがより好ましく、0≦R4/R3<1であることがさらに好ましい。 On the other hand, if the value of R4 / R3 exceeds 3 in Formula 2, that is, if the amount of the tetrafunctional alkoxysilane compound is excessive, the crosslink density in the polysiloxane is excessively increased. Therefore, distortion is likely to occur when the alkoxysilane compound is cured, and cracks may occur. Therefore, the value of R4 / R3 is preferably 3 or less, more preferably 0 ≦ R4 / R3 <2, and further preferably 0 ≦ R4 / R3 <1.
 塗布液中におけるアルコキシシラン化合物の総量に対する、2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び4官能アルコキシシラン化合物の比率は、塗布液を150℃で乾燥固化させて得られた試料の固体Si-NMRのスペクトルからそれぞれ求めることができる。 The ratio of the bifunctional alkoxysilane compound, the trifunctional alkoxysilane compound, and the tetrafunctional alkoxysilane compound with respect to the total amount of the alkoxysilane compound in the coating solution is determined by the solid Si of the sample obtained by drying and solidifying the coating solution at 150 ° C. Each can be determined from the NMR spectrum.
 固体Si-NMR(核磁気共鳴(Nuclear Magnetic Resonance))のスペクトルについて説明する。
 4官能アルコキシシラン化合物の重合体(ポリシロキサン)は、SiO・nHOの示性式で表されるが、構造的には、ケイ素原子Siの四面体の各頂点に酸素原子Oが結合され、これらの酸素原子Oに更にケイ素原子Siが結合してネット状に広がった構造を有する。
The spectrum of solid-state Si-NMR (Nuclear Magnetic Resonance) will be described.
The tetrafunctional alkoxysilane compound polymer (polysiloxane) is represented by the SiO 2 · nH 2 O characteristic formula, but structurally, oxygen atoms O are bonded to the apexes of the silicon atom Si tetrahedron. These silicon atoms have a structure in which silicon atoms Si are further bonded to these oxygen atoms O and spread in a net shape.
 以下の模式図(A)及び(B)は、上記の四面体構造を無視し、Si-Oのネット構造を表わしたものである。模式図(A)は、Si-Oのネット構造において、酸素原子Oがいずれも他のSi原子と結合した場合を表す。一方、模式図(B)は、Si-Oのネット構造において、酸素原子Oの一部が他の成員(ここでは-H)で置換された場合を表す。4官能アルコキシシラン化合物由来のSi原子には、模式図(A)に示されるように、4個の-OSiと結合した原子(Q)や、模式図(B)に示されるように3個の-OSiと結合した原子(Q)等がある。固体Si-NMRのスペクトルでは、これらが異なるピークとして観測される。そして、4官能アルコキシシラン化合物由来のケイ素原子に基づくピークは、Qサイトと総称され、上記各原子由来のピークは、Qピーク、Qピーク、・・・と呼ばれる。本明細書においてはQサイトに由来するQ~Qの各ピークをQピーク群と呼ぶこととする。有機置換基を含まないシリカ膜のQピーク群は、通常ケミカルシフト-80~-130ppmの領域に連続した多峰性のピークとして観測される。
Figure JPOXMLDOC01-appb-C000001
The schematic diagrams (A) and (B) below show the Si—O net structure, ignoring the tetrahedral structure. The schematic diagram (A) shows a case where all of the oxygen atoms O are bonded to other Si atoms in the Si—O net structure. On the other hand, the schematic diagram (B) shows a case where part of the oxygen atom O is replaced with another member (here, —H) in the Si—O net structure. As shown in the schematic diagram (A), the Si atoms derived from the tetrafunctional alkoxysilane compound include four atoms (Q 4 ) bonded to —OSi, and three Si atoms as shown in the schematic diagram (B). Atom (Q 3 ) or the like bonded to —OSi. In the solid-state Si-NMR spectrum, these are observed as different peaks. Then, a peak based on the silicon atoms derived from the tetrafunctional alkoxysilane compound, are collectively referred to as Q sites, the peak derived from each atom, Q 4 peak, Q 3 peak, called .... In this specification, Q 0 to Q 4 peaks derived from the Q site are referred to as a Q n peak group. The Q n peak group of the silica film containing no organic substituent is usually observed as a multimodal peak continuous in the region of −80 to −130 ppm chemical shift.
Figure JPOXMLDOC01-appb-C000001
 一方、酸素原子が3つ結合し、酸素以外の原子(通常は炭素である。)が1つ結合しているケイ素原子(つまり、3官能アルコキシシラン化合物由来のケイ素)は、一般にTサイトと総称される。Tサイトに由来するピークはQサイトの場合と同様に、T~Tの各ピークとして観測される。本明細書においてはTサイトに由来する各ピークをTピーク群と呼ぶこととする。Tピーク群は一般にQピーク群より高磁場側(通常ケミカルシフト-80~-40ppm)の領域に連続した多峰性のピークとして観測される。 On the other hand, a silicon atom (that is, silicon derived from a trifunctional alkoxysilane compound) in which three oxygen atoms are bonded and one non-oxygen atom (usually carbon) is bonded is generally referred to as a T site. Is done. The peak derived from the T site is observed as each peak of T 0 to T 3 as in the case of the Q site. In this specification, each peak derived from the T site is referred to as a Tn peak group. The T n peak group is generally observed as a multimodal peak continuous in a region on the higher magnetic field side (usually chemical shift of −80 to −40 ppm) than the Q n peak group.
 さらに、酸素原子が2つ結合するとともに、酸素以外の原子(通常は炭素である)が2つ結合しているケイ素原子(つまり、2官能アルコキシシラン化合物由来のケイ素)は、一般にDサイトと総称される。Dサイトに由来するピークも、QサイトやTサイトに由来するピーク群と同様に、D~Dの各ピーク(Dピーク群)として観測され、QやTのピーク群より更に、高磁場側の領域(通常ケミカルシフト-3~-40ppmの領域)に、多峰性のピークとして観測される。 Furthermore, a silicon atom (that is, silicon derived from a bifunctional alkoxysilane compound) in which two oxygen atoms are bonded and two atoms other than oxygen (usually carbon) are bonded is generally referred to as a D site. Is done. Similarly to the peak group derived from the Q site and the T site, the peak derived from the D site is also observed as each peak of D 0 to D n (D n peak group), which is further than the peak group of Q n and T n. It is observed as a multimodal peak in the region on the high magnetic field side (usually the region with a chemical shift of −3 to −40 ppm).
 ここで、固体Si-NMR測定を行うと、図3に示されるようなスペクトルが得られる。ただし、図3は、固体Si-NMRのスペクトルの一例であり、本発明の塗布液に含まれるアルコキシシラン化合物の硬化物のスペクトルはこれに限定されない。図3中、横軸はケミカルシフトを示しており、縦軸は各構造の化合物の存在量に依存した「相対強度」を示している。 Here, when a solid Si-NMR measurement is performed, a spectrum as shown in FIG. 3 is obtained. However, FIG. 3 is an example of the spectrum of solid-state Si-NMR, and the spectrum of the cured product of the alkoxysilane compound contained in the coating solution of the present invention is not limited to this. In FIG. 3, the horizontal axis indicates the chemical shift, and the vertical axis indicates “relative strength” depending on the abundance of the compound having each structure.
 図3中、D11は実測データを示す。D12はガウス関数にてモデル化したデータを示す。D13は差スペクトルを示す。また、ピークP11は、Dピーク群を示し、当該Dピーク群のピークトップは、ケミカルシフト-20.0ppm近傍に存在する。また、ピークP12は、Tピーク群を示し、当該Tピーク群のピークトップは、ケミカルシフト-60.0ppm近傍に存在する。さらに、ピークP13は、Qピーク群を示し、当該Qピーク群のピークトップは、ケミカルシフト-100.0~-110ppm近傍に存在する。つまり、図3のスペクトルは、2官能アルコキシシラン化合物由来のケイ素、3官能アルコキシシラン化合物由来のケイ素、4官能アルコキシシラン化合物由来のケイ素が含まれることを示している。 In FIG. 3, D11 indicates actual measurement data. D12 indicates data modeled by a Gaussian function. D13 shows a difference spectrum. The peak P11 represents the D n peak group, the peak top of the D n peak group is present in the vicinity of chemical shift -20.0Ppm. The peak P12 represents the T n peak group, the peak top of the T n peak group is present in the vicinity of chemical shift -60.0Ppm. Further, the peak P13 represents a Q n peak group, the peak top of the Q n peak group is present in the vicinity of a chemical shift -100.0 ~ -110 ppm. That is, the spectrum of FIG. 3 shows that silicon derived from a bifunctional alkoxysilane compound, silicon derived from a trifunctional alkoxysilane compound, and silicon derived from a tetrafunctional alkoxysilane compound are included.
 これらのD、T、Qの各ピーク群の互いの面積比は、各ピーク群に対応する環境におかれたケイ素原子のモル比と夫々等しい。そのため、Qピーク群、Tピーク群、及びDピーク群の合計面積に対する、各ピーク群の面積の割合が、塗布液に含まれるアルコキシシラン化合物の総量(ケイ素原子の全モル量)に対する、各アルコキシシラン化合物(4官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び2官能アルコキシシラン化合物)のモル比率と等しくなる。 The area ratio of the respective peak groups of D n , T n , and Q n is equal to the molar ratio of silicon atoms placed in the environment corresponding to each peak group. Therefore, Q n peak group, T n peak group, and to the total area of the D n peak group, the ratio of the area of each peak group, the total amount of the alkoxysilane compound contained in the coating liquid (the total molar amount of silicon atoms) And the molar ratio of each alkoxysilane compound (tetrafunctional alkoxysilane compound, trifunctional alkoxysilane compound, and bifunctional alkoxysilane compound).
 ここで、アルコキシシラン化合物は、モノマーの状態であってもよいが;少なくとも一部が、2官能アルコキシシラン、3官能アルコキシシラン、または4官能アルコキシシランの重合体(オリゴマー)であることが好ましい。アルコキシシラン化合物が、あらかじめ数個~数十個のモノマーが重合したオリゴマーであると、塗布液を硬化させたときの収縮が少なくなり、反射層形成時にクラックが発生しにくくなる。 Here, the alkoxysilane compound may be in a monomer state; however, at least a part is preferably a polymer (oligomer) of bifunctional alkoxysilane, trifunctional alkoxysilane, or tetrafunctional alkoxysilane. If the alkoxysilane compound is an oligomer in which several to several tens of monomers are polymerized in advance, shrinkage when the coating solution is cured is reduced, and cracks are less likely to occur when the reflective layer is formed.
 ・4官能アルコキシシラン化合物
 4官能アルコキシシラン化合物の例には、下記一般式(IV)で表される化合物が含まれる。
  Si(OR   …(IV)
 上記一般式(IV)中、Rはそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。
-Tetrafunctional alkoxysilane compound Examples of the tetrafunctional alkoxysilane compound include compounds represented by the following general formula (IV).
Si (OR 1 ) 4 (IV)
In the general formula (IV), each R 1 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
 4官能アルコキシシラン化合物の具体例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランテトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのアルコキシシラン、またはアリールオキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。 Specific examples of tetrafunctional alkoxysilane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, and triethoxymono. Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane , Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxy Nobutoxysilane, diethoxymonomethoxymonobutoxysilane, diethoxymonopropoxymonobutoxysilane, dipropoxymonomethoxymonoethoxysilane, dipropoxymonomethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dibutoxymonomethoxymonoethoxy Examples thereof include alkoxysilanes such as silane, dibutoxymonoethoxymonopropoxysilane, monomethoxymonoethoxymonopropoxymonobutoxysilane, and aryloxysilane. Among these, tetramethoxysilane and tetraethoxysilane are preferable.
 ・3官能アルコキシシラン化合物
 3官能アルコキシシラン化合物の例には、下記一般式(III)で表される化合物が含まれる。
  RSi(OR       (III)
 上記一般式(III)中、Rは、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、Rは、水素原子またはアルキル基を表す。
Trifunctional alkoxysilane compound Examples of the trifunctional alkoxysilane compound include compounds represented by the following general formula (III).
R 2 Si (OR 3 ) 3 (III)
In the general formula (III), each R 3 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group. R 2 represents a hydrogen atom or an alkyl group.
 3官能アルコキシシラン化合物の具体例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。 Specific examples of the trifunctional alkoxysilane compound include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, Dipropoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxy Silane, monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysila Monohydrosilane compounds such as monophenyloxydiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltripentyloxysilane, methylmonomethoxydiethoxysilane, methylmonomethoxydipropoxysilane, methylmono Monomethylsilane compounds such as methoxydipentyloxysilane, methylmonomethoxydiphenyloxysilane, methylmethoxyethoxypropoxysilane, methylmonomethoxymonoethoxymonobutoxysilane; ethyltrimethoxysilane, ethyltripropoxysilane, ethyltripentyloxysilane, ethyltri Phenyloxysilane, ethylmonomethoxydiethoxysilane, ethylmonomethoxydipropoxysilane, ethylmonomethoxydipe Monoethylsilane compounds such as tiloxysilane, ethylmonomethoxydiphenyloxysilane, ethylmonomethoxymonoethoxymonobutoxysilane; propyltrimethoxysilane, propyltriethoxysilane, propyltripentyloxysilane, propyltriphenyloxysilane, propylmono Monopropylsilane compounds such as methoxydiethoxysilane, propylmonomethoxydipropoxysilane, propylmonomethoxydipentyloxysilane, propylmonomethoxydiphenyloxysilane, propylmethoxyethoxypropoxysilane, propylmonomethoxymonoethoxymonobutoxysilane; butyltrimethoxy Silane, butyltriethoxysilane, butyltripropoxysilane, butyltripentyloxysilane, butyl Mono, such as triphenyloxysilane, butylmonomethoxydiethoxysilane, butylmonomethoxydipropoxysilane, butylmonomethoxydipentyloxysilane, butylmonomethoxydiphenyloxysilane, butylmethoxyethoxypropoxysilane, butylmonomethoxymonoethoxymonobutoxysilane A butylsilane compound is included.
 これらの3官能アルコキシシラン化合物の一般式(III)で表されるRがメチル基であると、得られる反射層表面の疎水性が低くなる。これにより、反射層上に波長変換層を成膜する場合、波長変換層を成膜するための組成物が濡れ広がりやすくなる。その結果、反射層と波長変換層との密着性が高まる。一般式(III)で表されるRがメチル基である3官能アルコキシシラン化合物の例には、メチルトリメトキシシラン、及びメチルトリエトキシシランが含まれ、メチルトリメトキシシランであることが特に好ましい。 When R 2 represented by the general formula (III) of these trifunctional alkoxysilane compounds is a methyl group, the hydrophobicity of the resulting reflective layer surface becomes low. Thereby, when forming a wavelength conversion layer on a reflective layer, the composition for forming a wavelength conversion layer becomes easy to spread. As a result, the adhesion between the reflective layer and the wavelength conversion layer is enhanced. Examples of the trifunctional alkoxysilane compound in which R 2 represented by the general formula (III) is a methyl group include methyltrimethoxysilane and methyltriethoxysilane, and is particularly preferably methyltrimethoxysilane. .
 ・2官能アルコキシシラン化合物
 2官能アルコキシシラン化合物の例には、下記一般式(II)で表される化合物が含まれる。
  R Si(OR     (II)
 上記一般式(II)中、Rはそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、Rは水素原子またはアルキル基を表す。
-Bifunctional alkoxysilane compound Examples of the bifunctional alkoxysilane compound include compounds represented by the following general formula (II).
R 4 2 Si (OR 5 ) 2 (II)
In the general formula (II), each R 5 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group. R 4 represents a hydrogen atom or an alkyl group.
 2官能のアルコキシシラン化合物の具体例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。 Specific examples of the bifunctional alkoxysilane compound include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxy Propoxysilane, ethoxypentyloxysilane, ethoxyphenyloxysilane, methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethyl Methoxypropoxysilane, ethyldipentyloxysilane, ethyldiphenyloxysilane, propyldimethoxysilane , Propylmethoxyethoxysilane, propylethoxypropoxysilane, propyldiethoxysilane, propyldipentyloxysilane, propyldiphenyloxysilane, butyldimethoxysilane, butylmethoxyethoxysilane, butyldiethoxysilane, butylethoxypropoxysilane, butyldipropoxy Silane, butylmethyldipentyloxysilane, butylmethyldiphenyloxysilane, dimethyldimethoxysilane, dimethylmethoxyethoxysilane, dimethyldiethoxysilane, dimethyldipentyloxysilane, dimethyldiphenyloxysilane, dimethylethoxypropoxysilane, dimethyldipropoxysilane, diethyldimethoxy Silane, diethylmethoxypropoxysilane, diethyldiethoxysilane Diethylethoxypropoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldipentyloxysilane, dipropyldiphenyloxysilane, dibutyldimethoxysilane, dibutyldiethoxysilane, dibutyldipropoxysilane, dibutylmethoxypentyloxysilane, dibutylmethoxy Phenyloxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylethyldipropoxysilane, methylethyldipentyloxysilane, methylethyldiphenyloxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, methylbutyldimethoxysilane, methyl Butyldiethoxysilane, methylbutyldipropoxysilane, methylethylethoxypropoxy Run, ethylpropyldimethoxysilane, ethylpropylmethoxyethoxysilane, dipropyldimethoxysilane, dipropylmethoxyethoxysilane, propylbutyldimethoxysilane, propylbutyldiethoxysilane, dibutylmethoxyethoxysilane, dibutylmethoxypropoxysilane, dibutylethoxypropoxysilane, etc. Is included. Of these, dimethoxysilane, diethoxysilane, methyldimethoxysilane, and methyldiethoxysilane are preferable.
 ・オリゴマー
 アルコキシシラン化合物でありうるオリゴマーは、2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び4官能アルコキシシラン化合物を所望の比率で混合し、触媒、水、溶媒の存在下で反応させて得られる。オリゴマーの分子量は、反応時間、温度、触媒、水の濃度等により調整される。
-Oligomer An oligomer that can be an alkoxysilane compound is obtained by mixing a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound in a desired ratio and reacting them in the presence of a catalyst, water, and a solvent. It is done. The molecular weight of the oligomer is adjusted by the reaction time, temperature, catalyst, water concentration, and the like.
 オリゴマーは、GPC(ゲルパーミエーションクロマトグラフ)で測定される重量平均分子量が500~20000であることが好ましく、より好ましくは1000~10000であり、さらに好ましくは1500~6000である。オリゴマーの重合度が高すぎると塗布液の粘度が過度に高くなったり、アルコキシシラン化合物が塗布液中で析出することがある。 The oligomer preferably has a weight average molecular weight of 500 to 20000 as measured by GPC (gel permeation chromatograph), more preferably 1000 to 10,000, and even more preferably 1500 to 6000. If the degree of polymerization of the oligomer is too high, the viscosity of the coating solution may become excessively high, or the alkoxysilane compound may precipitate in the coating solution.
 上記オリゴマー調製用の触媒としては酸、金属アルコキシド、金属キレートなどが挙げられる。酸としては、具体的に塩酸、硝酸、リン酸、または酢酸などのカルボン酸が挙げられる。 Examples of the catalyst for preparing the oligomer include acids, metal alkoxides, metal chelates and the like. Specific examples of the acid include carboxylic acids such as hydrochloric acid, nitric acid, phosphoric acid, and acetic acid.
 金属アルコキシドまたは金属キレートは、Si以外の4族または13族の金属元素を含む金属アルコキシドまたは金属キレートであることが好ましく、以下の一般式(V)で表される化合物が好ましい。
  Mm+m-n   (V)
 一般式(V)中、Mは4族または13族の金属元素(Siを除く)を表し、mはMの価数(3または4)を表す。Xは加水分解性基を表し、nはX基の数(2以上4以下の整数)を表す。ただし、m≧nである。Yは1価の有機基を表す。
The metal alkoxide or metal chelate is preferably a metal alkoxide or metal chelate containing a group 4 or group 13 metal element other than Si, and a compound represented by the following general formula (V) is preferable.
M m + X n Y mn (V)
In the general formula (V), M represents a group 4 or group 13 metal element (excluding Si), and m represents the valence of M (3 or 4). X represents a hydrolyzable group, and n represents the number of X groups (an integer of 2 or more and 4 or less). However, m ≧ n. Y represents a monovalent organic group.
 一般式(V)において、Mで表される4族または13族の金属元素は、アルミニウム、ジルコニウム、チタンであることが好ましく、ジルコニウムであることが特に好ましい。 In the general formula (V), the group 4 or group 13 metal element represented by M is preferably aluminum, zirconium, or titanium, and particularly preferably zirconium.
 一般式(V)において、Xで表される加水分解性基は、水で加水分解され、水酸基を生成する基でありうる。加水分解性基の好ましい例には、炭素数が1~5の低級アルコキシ基、アセトキシ基、ブタノキシム基、クロル基等が含まれる。一般式(V)において、Xで表される基は、全て同一の基であってもよく、異なる基であってもよい。 In the general formula (V), the hydrolyzable group represented by X may be a group that is hydrolyzed with water to form a hydroxyl group. Preferable examples of the hydrolyzable group include a lower alkoxy group having 1 to 5 carbon atoms, an acetoxy group, a butanoxime group, a chloro group and the like. In general formula (V), all the groups represented by X may be the same group or different groups.
 Xで表される加水分解性基は、加水分解されて遊離する。そのためXで表される基から加水分解後に生成する化合物は、中性かつ軽沸であることが好ましい。そこで、Xで表される基は、炭素数1~5の低級アルコキシ基であることが好ましく、より好ましくはメトキシ基、またはエトキシ基である。 The hydrolyzable group represented by X is hydrolyzed and released. Therefore, the compound produced after hydrolysis from the group represented by X is preferably neutral and light boiling. Therefore, the group represented by X is preferably a lower alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
 一般式(V)において、Yで表される1価の有機基は、一般的なシランカップリング剤に含まれる1価の有機基でありうる。具体的には、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは40以下、特に好ましくは6以下である脂肪族基、脂環族基、芳香族基、脂環芳香族基でありうる。Yで表される有機基は、脂肪族基、脂環族基、芳香族基、及び脂環芳香族基が連結基を介して結合した基であってもよい。連結基は、O、N、S等の原子またはこれらを含む原子団であってもよい。 In the general formula (V), the monovalent organic group represented by Y may be a monovalent organic group contained in a general silane coupling agent. Specifically, the aliphatic group, alicyclic group, aromatic group, fatty acid having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, further preferably 40 or less, and particularly preferably 6 or less. It may be a ring aromatic group. The organic group represented by Y may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group. The linking group may be an atom such as O, N, or S, or an atomic group containing these.
 Yで表される有機基は、置換基を有してもよい。置換基の例には、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機基が含まれる。 The organic group represented by Y may have a substituent. Examples of the substituent include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
 一般式(V)で表されるアルミニウムの金属アルコキシドまたは金属キレートの具体例には、アルミニウムトリイソプロポキシド、アルミニウムトリn-ブトキシド、アルミニウムトリt-ブトシキド、アルミニウムトリエトキシド等が含まれる。 Specific examples of the metal alkoxide or metal chelate represented by the general formula (V) include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide and the like.
 一般式(V)で表されるジルコニウムの金属アルコキシドまたは金属キレートの具体例には、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトラi-プロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラi-ブトキシド、ジルコニウムテトラt-ブトキシド、ジルコニウムジメタクリレートジブトキシド、ジルコニウムテトラアセチルアセトネート、ジブトキシジルコニウムビス(エチルアセトアセテート)等が含まれる。 Specific examples of the metal alkoxide or metal chelate of zirconium represented by the general formula (V) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n- Examples include butoxide, zirconium tetra-i-butoxide, zirconium tetra-t-butoxide, zirconium dimethacrylate dibutoxide, zirconium tetraacetylacetonate, dibutoxyzirconium bis (ethylacetoacetate) and the like.
 一般式(V)で表されるチタン元素の金属アルコキシドまたは金属キレートの具体例には、チタンテトライソプロポキシド、チタンテトラn-ブトキシド、チタンテトラi-ブトキシド、チタンメタクリレートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラn-プロポキシド、チタンテトラエトキシド、チタンラクテート、チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、チタンアセチルアセトネート、チタンエチルアセトアセテート等が含まれる。 Specific examples of the metal alkoxide or metal chelate of the titanium element represented by the general formula (V) include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetra Includes methoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, titanium lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate, titanium ethylacetoacetate, etc. It is.
 ただし、上記で例示した金属アルコキシドまたは金属キレートは、入手容易な市販の有機金属アルコキシドまたは金属キレートの一部である。科学技術総合研究所発行の「カップリング剤最適利用技術」9章のカップリング剤及び関連製品一覧表に示される金属アルコキシドまたは金属キレートも、本発明に適用できる。 However, the metal alkoxides or metal chelates exemplified above are a part of commercially available organometallic alkoxides or metal chelates. Metal alkoxides or metal chelates shown in the list of coupling agents and related products in Chapter 9 “Optimum Utilization Technology of Coupling Agents” published by the National Institute of Science and Technology are also applicable to the present invention.
 オリゴマー調製用の溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール等の一価アルコール;メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート等のアルキルカルボン酸エステル;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価アルコールのモノエーテル類、あるいはこれらのモノアセテート類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル等の多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類;等が含まれる。これらは1種単独で添加してもよく、また2種以上を添加してもよい。 Examples of solvents for preparing oligomers include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene Polyhydric alcohols such as glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, pro Monoethers of polyhydric alcohols such as lenglycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, or their monoacetates; esters such as methyl acetate, ethyl acetate, butyl acetate Ketones such as acetone, methyl ethyl ketone, methyl isoamyl ketone; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol Methyl Polyhydric alcohols ethers and polyvalent all alkyl etherifying hydroxyl groups of alcohols such Chirueteru; and the like. These may be added alone or in combination of two or more.
 ・アルコキシシラン化合物の含有量
 塗布液に含まれるアルコキシシラン化合物の総量は、塗布液に含まれる溶媒(有機溶媒及び水)以外の成分の総質量に対して、5~40質量%であることが好ましく、10~30質量%であることがより好ましい。アルコキシシラン化合物の総量が、5質量%未満であると、得られる反射層において、白色顔料が十分に結着され難くなる。その結果、反射層の表面に顔料粉が発生し易い。また、アルコキシシラン化合物の総量が、40質量%を超えると、相対的に白色顔料の量が少なくなり、反射層の光の反射性が低くなりやすい。
-Content of alkoxysilane compound The total amount of alkoxysilane compound contained in the coating solution is 5 to 40% by mass relative to the total mass of components other than the solvent (organic solvent and water) contained in the coating solution. Preferably, it is 10 to 30% by mass. When the total amount of the alkoxysilane compound is less than 5% by mass, the white pigment is not sufficiently bound in the resulting reflective layer. As a result, pigment powder is easily generated on the surface of the reflective layer. On the other hand, when the total amount of the alkoxysilane compound exceeds 40% by mass, the amount of the white pigment is relatively reduced, and the light reflectivity of the reflective layer tends to be low.
 1-2.有機溶媒
 塗布液に含まれる有機溶媒には、前述のアルコキシシラン化合物と相溶性があり、白色顔料等を均一に分散可能な有機溶媒が用いられる。ここで、有機溶媒には、25℃における表面張力が30mN/m以上である高表面張力有機溶媒が、有機溶媒の総量に対して45~90質量%含まれる。当該表面張力は、Wilhelmy法(プレート法)で測定される値である。表面張力が30mN/m以上である有機溶媒が40質量%以上含まれると、本発明の塗布液が基板に付着した際に濡れ広がり難い。つまり、塗布液を所望の領域にのみ塗布することが可能となる。ただし、高表面張力有機溶媒には、沸点の高い溶媒が多く、高表面張力有機溶媒の濃度が高すぎると、反射層の形成時に、有機溶媒が揮発し難くなったり、反射層内に溶媒が残存しやすくなること等がある。そこで、上記濃度が90質量%以下であれば、効率良く有機溶媒を揮発させることができる。高表面張力有機溶媒の量は、より好ましくは50~80質量%であり、さらに好ましくは60~80質量%である。
1-2. Organic Solvent The organic solvent contained in the coating solution is an organic solvent that is compatible with the aforementioned alkoxysilane compound and can uniformly disperse the white pigment and the like. Here, the organic solvent contains 45 to 90% by mass of a high surface tension organic solvent having a surface tension of 30 mN / m or more at 25 ° C. with respect to the total amount of the organic solvent. The surface tension is a value measured by the Wilhelmy method (plate method). When the organic solvent having a surface tension of 30 mN / m or more is contained in an amount of 40% by mass or more, it is difficult for the coating liquid of the present invention to spread when the coating liquid adheres to the substrate. That is, it becomes possible to apply the coating liquid only to a desired region. However, many high surface tension organic solvents have a high boiling point, and if the concentration of the high surface tension organic solvent is too high, the organic solvent will not easily evaporate during the formation of the reflective layer, or there will be no solvent in the reflective layer. It tends to remain. Therefore, when the concentration is 90% by mass or less, the organic solvent can be efficiently volatilized. The amount of the high surface tension organic solvent is more preferably 50 to 80% by mass, and further preferably 60 to 80% by mass.
 高表面張力有機溶媒の例には、1価アルコール、多価アルコール、ケトン系溶媒、エステル系溶媒、アミン系溶媒、アミド系溶媒、含硫黄系溶媒等が含まれる。 Examples of the high surface tension organic solvent include monohydric alcohol, polyhydric alcohol, ketone solvent, ester solvent, amine solvent, amide solvent, sulfur-containing solvent and the like.
 表面張力が30mN/m以上である1価アルコールの例には、エチレングリコールモノメチルエーテル、ベンジルアルコール、ジアセトンアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、2-フェノキシエタノール等が含まれる。 Examples of monohydric alcohols having a surface tension of 30 mN / m or more include ethylene glycol monomethyl ether, benzyl alcohol, diacetone alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, Tripropylene glycol monomethyl ether, 2-phenoxyethanol and the like are included.
 表面張力が30mN/m以上である多価アルコールの例には、ジエチレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、グリコール等が含まれる。 Examples of polyhydric alcohols having a surface tension of 30 mN / m or more include diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol , Glycols and the like.
 ケトン系溶媒の例には、シクロヘキサノン等が含まれ、エステル系溶媒の例には、エチレングリコールジアセテート、ジエチレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン、アセト酢酸エチル等が含まれる。アミン系溶媒の例には、モノエタノールアミンが含まれ;アミド系溶媒の例には、2-ピロリドン、N-メチルピロリドン、ε-カプロラクタム等が含まれ;含硫黄系溶媒の例には、ジメチルスルホキシド、テトラヒドロチオフェン-1,1-ジオキシド等が含まれる。 Examples of ketone solvents include cyclohexanone and the like, and examples of ester solvents include ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, γ-butyrolactone, ethyl acetoacetate and the like. Examples of amine solvents include monoethanolamine; examples of amide solvents include 2-pyrrolidone, N-methylpyrrolidone, ε-caprolactam, etc .; examples of sulfur-containing solvents include dimethyl Examples include sulfoxide, tetrahydrothiophene-1,1-dioxide and the like.
 これらの中でも、1価アルコールまたは2価アルコールであることが、取り扱い性や入手容易性等の面から好ましく、特に好ましくはエチレングリコールモノメチルエーテル(表面張力:31.8)、ベンジルアルコール(表面張力:39)、ジアセトンアルコール(表面張力:31)、エチレングリコール(表面張力:48.4)、プロピレングリコール(表面張力:35.3)、1,3-ブタンジオール(表面張力:45.3)、トリエチレングリコール(表面張力:45.2)である。 Among these, monohydric alcohols or dihydric alcohols are preferable from the viewpoints of handleability and availability, and ethylene glycol monomethyl ether (surface tension: 31.8), benzyl alcohol (surface tension: 39), diacetone alcohol (surface tension: 31), ethylene glycol (surface tension: 48.4), propylene glycol (surface tension: 35.3), 1,3-butanediol (surface tension: 45.3), Triethylene glycol (surface tension: 45.2).
 一方、有機溶媒に含まれる表面張力が30mN/m未満である溶媒(低表面張力溶媒)は特に制限されず、1価アルコール、エーテル系溶媒、ケトン系溶媒、エステル系溶媒等でありうる。具体的には、メタノール、エタノール、2-プロパノール(イソプロパノール)、n-ブタノール、1-プロパノール、2-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル等の1価アルコール;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒;メチル-3-メトキシプロピオネート、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒でありうる。 On the other hand, the solvent (low surface tension solvent) having a surface tension of less than 30 mN / m contained in the organic solvent is not particularly limited, and may be a monohydric alcohol, an ether solvent, a ketone solvent, an ester solvent, or the like. Specifically, methanol, ethanol, 2-propanol (isopropanol), n-butanol, 1-propanol, 2-butanol, pentanol, hexanol, heptanol, octanol, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene Monohydric alcohols such as glycol monobutyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether; ether solvents such as diethylene glycol dimethyl ether and diethylene glycol diethyl ether; ketone solvents such as acetone and methyl ethyl ketone; Methyl-3-methoxypropionate, methyl acetate, acetic acid Chill, propyl acetate, it may be ester solvents such as butyl acetate.
 塗布液に含まれる有機溶媒の総量は、塗布液全量に対して20~90質量%であることが好ましく、より好ましくは30~70質量%である。有機溶媒の総量が少なすぎると、塗布液の粘度が高まり、塗布安定性が低下する。一方、有機溶媒の総量が過剰であると、塗布液の粘度が低くなり、塗布液中で白色顔料が沈降する場合がある。 The total amount of the organic solvent contained in the coating solution is preferably 20 to 90% by mass, more preferably 30 to 70% by mass with respect to the total amount of the coating solution. When the total amount of the organic solvent is too small, the viscosity of the coating solution increases and the coating stability decreases. On the other hand, when the total amount of the organic solvent is excessive, the viscosity of the coating solution is lowered, and the white pigment may settle in the coating solution.
 1-3.白色顔料
 塗布液に含まれる白色顔料は、反射層において、LED素子が発する光等を反射する役割を果たす。本発明において、白色顔料とは、平均一次粒径が100nmより大きく、20μm以下であり、かつd線(波長587.96nm)の光の屈折率が1.6以上である粒子とする。白色顔料の平均一次粒径は、100nmより大きく10μm以下であることが好ましく、さらに好ましくは200nm~2.5μmである。「平均一次粒径」とは、レーザー回折式粒度分布計で測定されるD50の値をいう。レーザー回折式粒度分布測定装置の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。
1-3. White pigment The white pigment contained in the coating liquid plays a role of reflecting light emitted from the LED element in the reflective layer. In the present invention, the white pigment is a particle having an average primary particle size of more than 100 nm and 20 μm or less, and a refractive index of light of d-line (wavelength: 587.96 nm) of 1.6 or more. The average primary particle size of the white pigment is preferably larger than 100 nm and not larger than 10 μm, more preferably 200 nm to 2.5 μm. The “average primary particle size” refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
 白色顔料の例には、炭酸バリウム、硫酸バリウム、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、酸化アルミニウム、酸化ジルコニウム、硫化亜鉛、水酸化アルミニウム、窒化ホウ素、窒化アルミニウム、チタン酸カリウム、チタン酸バリウム、チタン酸アルミニウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ヒドロキシアパタイト、等が含まれる。白色顔料は、酸化チタン、酸化アルミニウム、硫酸バリウム、酸化亜鉛、及び窒化ホウ素であることが特に好ましい。 Examples of white pigments include barium carbonate, barium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, aluminum oxide, zirconium oxide, zinc sulfide, aluminum hydroxide, boron nitride, aluminum nitride, potassium titanate, titanate Barium, aluminum titanate, strontium titanate, calcium titanate, magnesium titanate, hydroxyapatite, and the like are included. The white pigment is particularly preferably titanium oxide, aluminum oxide, barium sulfate, zinc oxide, and boron nitride.
 白色顔料に窒化ホウ素が含まれると、得られる反射層の熱伝導性が高くなる。その結果、LED素子から発生した熱を、速やかに基板から逃がすことができる。したがって、LED装置の温度を低く保つことができ、装置寿命を長くすることができる。 When boron nitride is contained in the white pigment, the resulting reflective layer has high thermal conductivity. As a result, the heat generated from the LED element can be quickly released from the substrate. Therefore, the temperature of the LED device can be kept low, and the device life can be extended.
 塗布液に含まれる白色顔料の量は、塗布液の加熱硬化後の固形分の質量に対して、50~95質量%であることが好ましく、より好ましくは60~95質量%であり、さらに好ましくは70~90質量%である。白色顔料の量が50質量%以上であると、得られる反射層の光反射性が十分に高まりやすい。一方、白色顔料の含有量が95質量%以下であれば、相対的にバインダの量が多くなり、白色顔料が十分に結着されやすい。塗布液の加熱硬化後の固形分の質量は、塗布液を150℃で1時間硬化させて得られる硬化物の質量である。一方、白色顔料の量は、塗布液調製時の配合量、並びにEDX及びXRD分析によって特定される。EDX及びXRD分析は以下のように行う。具体的には、(1)塗布液を150℃で1時間焼成した後の膜をEDXで成分分析し、SEM写真のコンストラスト等から、元素別比率を算出する。そして(2)XRD分析で構造分析し、白色顔料の種類を特定する。これにより、白色顔料の種類及びその含有量が特定される。 The amount of the white pigment contained in the coating solution is preferably 50 to 95% by mass, more preferably 60 to 95% by mass, and still more preferably based on the mass of the solid content after heat curing of the coating solution. Is 70 to 90% by mass. When the amount of the white pigment is 50% by mass or more, the light reflectivity of the resulting reflective layer is likely to be sufficiently increased. On the other hand, when the content of the white pigment is 95% by mass or less, the amount of the binder is relatively increased and the white pigment is easily bound. The mass of the solid content after heat curing of the coating solution is the mass of a cured product obtained by curing the coating solution at 150 ° C. for 1 hour. On the other hand, the amount of the white pigment is specified by the blending amount at the time of preparing the coating liquid, and EDX and XRD analysis. EDX and XRD analyzes are performed as follows. Specifically, (1) component analysis of the film | membrane after baking a coating liquid at 150 degreeC for 1 hour is carried out by EDX, and the ratio according to element is computed from the contrast etc. of a SEM photograph. (2) The structure is analyzed by XRD analysis, and the type of white pigment is specified. Thereby, the kind of white pigment and its content are specified.
 1-4.無機粒子
 塗布液には、無機粒子がさらに含まれてもよい。無機粒子は、前述の白色顔料以外の無機物からなる粒子である。無機粒子は、例えば平均粒径が5nm以上100nm未満の金属酸化物微粒子等でありうる。塗布液中に金属酸化物微粒子が含まれると、得られる反射層表面に細かな凹凸が生じ、反射層と他の層との間にアンカー効果が発現しやすい。また、塗布液に金属酸化物微粒子が含まれると、アルコキシシラン化合物の重縮合時に膜に生じる応力が緩和され、得られる反射層にクラックが生じ難くなる。
1-4. Inorganic particles The coating solution may further contain inorganic particles. The inorganic particles are particles made of an inorganic material other than the white pigment described above. The inorganic particles can be, for example, metal oxide fine particles having an average particle size of 5 nm or more and less than 100 nm. When the metal oxide fine particles are contained in the coating solution, fine irregularities are generated on the surface of the resulting reflective layer, and an anchor effect is easily exhibited between the reflective layer and other layers. Moreover, when metal oxide fine particles are contained in the coating solution, the stress generated in the film during the polycondensation of the alkoxysilane compound is relaxed, and cracks are less likely to occur in the resulting reflective layer.
 金属酸化物微粒子の種類は、特に制限されないが、比較的入手が容易である、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化イットリウム、酸化セリウム、酸化チタン、酸化銅、酸化ビスマスの群から選択される1種以上の金属酸化物微粒子であることが好ましい。 The type of metal oxide fine particles is not particularly limited, but is relatively easy to obtain from the group of aluminum oxide, zirconium oxide, zinc oxide, tin oxide, yttrium oxide, cerium oxide, titanium oxide, copper oxide, and bismuth oxide. One or more selected metal oxide fine particles are preferable.
 金属酸化物微粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、金属酸化物微粒子と、アルコキシシラン化合物や有機溶媒との相溶性が高まる。 The surface of the metal oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, the compatibility between the metal oxide fine particles and the alkoxysilane compound or the organic solvent is increased.
 金属酸化物微粒子の平均粒径は、上述したそれぞれの効果を考慮して5~100nmであることが好ましく、より好ましくは5~80nm、さらに好ましくは5~50nmである。このような範囲の平均粒径とすることで、反射層表面に微細な凹凸を形成でき、前述のアンカー効果が得られる。金属酸化物微粒子の平均粒径は、例えばコールターカウンター法によって測定される。 The average particle diameter of the metal oxide fine particles is preferably 5 to 100 nm, more preferably 5 to 80 nm, still more preferably 5 to 50 nm in consideration of the respective effects described above. By setting the average particle diameter in such a range, fine irregularities can be formed on the surface of the reflective layer, and the anchor effect described above can be obtained. The average particle diameter of the metal oxide fine particles is measured, for example, by a Coulter counter method.
 また、金属酸化物微粒子は、多孔質であってもよく、その比表面積は200m/g以上であることが好ましい。金属酸化物微粒子が多孔質であると、多孔質の空隙部に不純物が吸着されやすい。 The metal oxide fine particles may be porous, and the specific surface area is preferably 200 m 2 / g or more. If the metal oxide fine particles are porous, impurities are easily adsorbed in the porous voids.
 塗布液に含まれる金属酸化物微粒子の量は、塗布液に含まれる溶媒(有機溶媒及び水)以外の成分の総質量に対して0.1~20質量%であることが好ましく、1~10質量%であることがより好ましい。金属酸化物微粒子の量が少なすぎると、前述のアンカー効果が十分とならない。一方で、多すぎると、相対的にアルコキシシラン化合物の量が減少し、得られる反射層の強度が低下するおそれがある。 The amount of the metal oxide fine particles contained in the coating solution is preferably 0.1 to 20% by mass with respect to the total mass of components other than the solvent (organic solvent and water) contained in the coating solution. More preferably, it is mass%. If the amount of the metal oxide fine particles is too small, the above-described anchor effect is not sufficient. On the other hand, if the amount is too large, the amount of the alkoxysilane compound is relatively reduced, and the strength of the resulting reflective layer may be reduced.
 一方、無機粒子には、平均一次粒径が100nm以上100μm以下である、他の無機粒子が含まれてもよい。このような他の無機粒子が含まれると、白色顔料どうしの隙間が当該無機粒子によって埋まり、塗布液の粘度が高まる。 Meanwhile, the inorganic particles may include other inorganic particles having an average primary particle size of 100 nm or more and 100 μm or less. When such other inorganic particles are contained, the gaps between the white pigments are filled with the inorganic particles, and the viscosity of the coating liquid is increased.
 他の無機粒子の例には、酸化ケイ素などの酸化物粒子、フッ化マグネシウムなどのフッ化物粒子や、これらの混合物が含まれる。他の無機粒子は、好ましくは酸化物粒子であり、特に好ましくは酸化ケイ素である。
 他の無機粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、他の無機粒子と、アルコキシシラン化合物や有機溶媒との相溶性が高まる。
Examples of other inorganic particles include oxide particles such as silicon oxide, fluoride particles such as magnesium fluoride, and mixtures thereof. The other inorganic particles are preferably oxide particles, and particularly preferably silicon oxide.
The surface of other inorganic particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, compatibility between the other inorganic particles and the alkoxysilane compound or the organic solvent is increased.
 塗布液に含まれる、他の無機粒子の含有量は、塗布液の全質量に対して0.1~10質量%であることが好ましく、0.2~5質量%であることが、より好ましい。他の無機粒子が10質量%を超えると、反射層の成膜時にクラックが生じ易く、0.1%未満であると塗布液の増粘効果が低くなるからである。 The content of other inorganic particles contained in the coating solution is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, based on the total mass of the coating solution. . This is because if the other inorganic particles exceed 10% by mass, cracks are likely to occur during the formation of the reflective layer, and if it is less than 0.1%, the thickening effect of the coating solution is reduced.
 他の無機粒子の平均粒径は、白色顔料どうしの界面に生じる隙間を埋めるとの観点から、100nm以上50μm以下であることが好ましく、1μm以上30μm以下であることが、より好ましい。他の無機粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。 The average particle diameter of the other inorganic particles is preferably 100 nm or more and 50 μm or less, and more preferably 1 μm or more and 30 μm or less from the viewpoint of filling a gap generated at the interface between the white pigments. The average particle diameter of other inorganic particles can be measured by, for example, a Coulter counter method.
 1-5.粘土鉱物粒子
 塗布液には、粘土鉱物粒子が含まれてもよい。塗布液に粘土鉱物粒子が含まれると、塗布液の粘度が高まり、白色顔料の沈降が抑制される。粘土鉱物粒子の例には、層状ケイ酸塩鉱物、イモゴライト、アロフェン等が含まれる。これらの粒子は、表面積が非常に大きく、少量で塗布液の粘度を高めることができる。
1-5. Clay mineral particles The coating liquid may contain clay mineral particles. When clay mineral particles are contained in the coating solution, the viscosity of the coating solution increases, and sedimentation of the white pigment is suppressed. Examples of clay mineral particles include layered silicate minerals, imogolite, allophane and the like. These particles have a very large surface area and can increase the viscosity of the coating solution in a small amount.
 ここで、層状ケイ酸塩鉱物は、雲母構造、カオリナイト構造、またはスメクタイト構造を有する粘土鉱物が好ましい。層状ケイ酸塩鉱物粒子は、塗布液の静置状態でカードハウス構造を形成しやすい。層状ケイ酸塩鉱物粒子がカードハウス構造を形成すると、塗布液の粘度が大幅に高まる。一方で、カードハウス構造は、一定の圧力を加える崩れやすく、これにより塗布液の粘度が低下する。すなわち、塗布液に層状ケイ酸塩鉱物粒子が含まれると、静置状態では塗布液の粘度が高くなり、一定の圧力をかけた場合には塗布液の粘度が低くなる。 Here, the layered silicate mineral is preferably a clay mineral having a mica structure, a kaolinite structure, or a smectite structure. The layered silicate mineral particles tend to form a card house structure when the coating solution is left standing. When the layered silicate mineral particles form a card house structure, the viscosity of the coating solution is greatly increased. On the other hand, the card house structure is apt to collapse by applying a certain pressure, thereby reducing the viscosity of the coating solution. That is, when the layered silicate mineral particles are contained in the coating solution, the viscosity of the coating solution increases in a stationary state, and the viscosity of the coating solution decreases when a certain pressure is applied.
 このような層状ケイ酸塩鉱物の例には、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト、ラポナイト等のスメクタイト属粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物、白雲母、金雲母、フッ素金雲母、絹雲母、カリウム四ケイ素雲母等の非膨潤性雲母属粘土鉱物、およびバーミキュラライトやカオリナイト、またはこれらの混合物が含まれる。 Examples of such layered silicate minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, laponite and other smectite clay minerals, and Na-type tetralithic fluoric mica. Non-swelling mica such as swellable mica genus clay minerals such as Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, muscovite, phlogopite, fluorine phlogopite, sericite, potassium tetrasilicon mica Genus clay minerals, vermiculite and kaolinite, or mixtures thereof.
 粘土鉱物粒子の市販品の例には、ラポナイトXLG(英国、ラポート社製合成ヘクトライト類似物質)、ラポナイトRD(英国、ラポート社製合成ヘクトライト類似物質)、サーマビス(独国、ヘンケル社製合成ヘクトライト類似物質)、スメクトンSA-1(クニミネ工業(株)製サポナイト類似物質)、ベンゲル(ホージュン(株)販売の天然ベントナイト)、クニビアF(クニミネ工業(株)販売の天然モンモリロナイト)、ビーガム(米国、バンダービルト社製の天然ヘクトライト)、ダイモナイト(トピー工業(株)製の合成膨潤性雲母)、ミクロマイカ(コープケミカル(株)製の合成非膨潤性雲母)、ソマシフ(コープケミカル(株)製の合成膨潤性雲母)、SWN(コープケミカル(株)製の合成スメクタイト)、SWF(コープケミカル(株)製の合成スメクタイト)、M-XF((株)レプコ製の白雲母)、S-XF((株)レプコ製の金雲母)、PDM-800(トピー工業(株)製のフッ素金雲母)、セリサイトOC-100R(オーケム通商(株)製の絹雲母)、PDM-K(G)325(トピー工業(株)製のカリウム四ケイ素雲母)等が含まれる。 Examples of commercial products of clay mineral particles include Laponite XLG (synthetic hectorite analogue manufactured by LaPorte, UK), Laponite RD (Synthetic hectorite analogue produced by LaPorte, UK), Thermabis (Synthetic product, Henkel, Germany) Hectorite-like substance), smecton SA-1 (saponite-like substance manufactured by Kunimine Industry Co., Ltd.), Bengel (natural bentonite sold by Hojun Co., Ltd.), Kunivia F (natural montmorillonite sold by Kunimine Industry Co., Ltd.), bee gum ( Natural hectorite manufactured by Vanderbilt, USA, Daimonite (synthetic swellable mica manufactured by Topy Industries, Ltd.), Micromica (synthetic non-swellable mica, manufactured by Coop Chemical Co., Ltd.), Somasifu (Coop Chemical Co., Ltd.) ) Synthetic swelling mica), SWN (Synthetic smectite manufactured by Coop Chemical Co., Ltd.), SWF Synthetic smectite manufactured by Co-op Chemical Co., Ltd., M-XF (white mica manufactured by Repco Co., Ltd.), S-XF (metal mica manufactured by Repco Co., Ltd.), PDM-800 (manufactured by Topy Industries, Ltd.) Fluorine phlogopite mica), sericite OC-100R (sericite produced by Oakem Tsusho Co., Ltd.), PDM-K (G) 325 (potassium tetrasilicon mica produced by Topy Industries, Ltd.), and the like.
 粘土鉱物粒子の含有量は、塗布液の全質量に対して0.1~5質量%であることが好ましく、0.2~2質量%であることがより好ましい。粘土鉱物粒子の含有量が少ないと、塗布液の粘度が高まりにくく、白色顔料が沈降しやすくなる。一方、粘土鉱物粒子の含有量が過剰であると、塗布液の粘度が高くなり過ぎて、塗布液が塗布装置から均一に吐出されないおそれがある。 The content of clay mineral particles is preferably from 0.1 to 5% by mass, more preferably from 0.2 to 2% by mass, based on the total mass of the coating solution. When the content of clay mineral particles is small, the viscosity of the coating solution is difficult to increase, and the white pigment tends to settle. On the other hand, if the content of the clay mineral particles is excessive, the viscosity of the coating solution becomes too high, and the coating solution may not be discharged uniformly from the coating device.
 粘土鉱物粒子の表面は、塗布液での溶媒との相溶性を考慮して、アンモニウム塩等で修飾(表面処理)されていてもよい。 The surface of the clay mineral particles may be modified (surface treatment) with an ammonium salt or the like in consideration of compatibility with the solvent in the coating solution.
 1-6.シランカップリング剤
 塗布液には、さらにシランカップリング剤が含まれてもよい。塗布液にシランカップリング剤が含まれると、得られる反射層と基板との密着性が高まり、LED装置の耐久性が向上する。
1-6. Silane coupling agent The coating solution may further contain a silane coupling agent. When the silane coupling agent is contained in the coating solution, the adhesion between the resulting reflective layer and the substrate is increased, and the durability of the LED device is improved.
 シランカップリング剤の例には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が含まれる。塗布液には、これらが一種のみで含まれてもよく、二種以上含まれてもよい。 Examples of silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Methyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-A Nopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltriethoxysilane, N- (vinyl) Benzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane Bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane and the like. These coating solutions may contain only one kind or two or more kinds.
 塗布液に含まれるシランカップリング剤の量は、塗布液に含まれる溶媒(有機溶媒及び水)以外の成分の総質量に対して0.5~10質量%であることが好ましく、1~7質量%であることが、より好ましい。シランカップリング剤が少なすぎると、得られる反射層と基板との密着性が十分に高まらず、多すぎると耐熱性が低下する恐れがある。 The amount of the silane coupling agent contained in the coating solution is preferably 0.5 to 10% by mass relative to the total mass of components other than the solvent (organic solvent and water) contained in the coating solution. More preferably, it is mass%. If the amount of the silane coupling agent is too small, the adhesion between the resulting reflective layer and the substrate is not sufficiently increased, and if it is too large, the heat resistance may be lowered.
 1-7.その他の成分
 塗布液には、必要に応じて、上記の白色顔料、アルコキシシラン化合物、有機溶媒、無機粒子、粘土鉱物粒子、シランカップリング剤、金属アルコキシドまたは金属キレート以外の成分が含まれてもよい。例えば、塗布液には水が含まれてもよい。ただし、水の量は、保存安定性等の観点から、塗布液の全質量に対して20質量%以下であることが好ましく、より好ましくは10質量%以下である。
1-7. Other components The coating solution may contain components other than the white pigment, alkoxysilane compound, organic solvent, inorganic particles, clay mineral particles, silane coupling agent, metal alkoxide, or metal chelate as necessary. Good. For example, the coating liquid may contain water. However, the amount of water is preferably 20% by mass or less, more preferably 10% by mass or less, with respect to the total mass of the coating solution, from the viewpoint of storage stability and the like.
 1-8.塗布液の調製方法
 塗布液の調製方法は、白色顔料、アルコキシシラン化合物、有機溶媒、無機粒子、粘土鉱物粒子、シランカップリング剤等の原料を、一括して混合する方法であってもよく、複数の原料を予め混合して、後から混合液同士を混合する方法であってもよい。無機粒子や粘土鉱物粒子の増粘効果を高めるためには、無機粒子及び粘土鉱物粒子のいずれか一方、あるいは両方を、溶媒に分散させてから、残りの成分と混合することが好ましい。塗布液の調製方法の一例として、以下の方法が挙げられる。
1-8. Preparation method of coating solution The preparation method of the coating solution may be a method of mixing raw materials such as white pigments, alkoxysilane compounds, organic solvents, inorganic particles, clay mineral particles, silane coupling agents, A method of mixing a plurality of raw materials in advance and mixing the mixed liquids later may be used. In order to enhance the thickening effect of inorganic particles and clay mineral particles, it is preferable to disperse one or both of inorganic particles and clay mineral particles in a solvent and then mix with the remaining components. The following method is mentioned as an example of the preparation method of a coating liquid.
 2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び4官能アルコキシシラン化合物を任意の比率で混合し、水、有機溶媒、触媒の存在下で重合させて、アルコキシシラン化合物(オリゴマー)を含む組成物を調製する。一方で、有機溶媒、無機粒子、粘土鉱物粒子、シランカップリング剤等を含む組成物を調製する。そして、アルコキシシラン化合物を含む組成物と、無機粒子等を含む組成物と、白色顔料とを十分に混合して、塗布液を得る。 A composition containing an alkoxysilane compound (oligomer) by mixing a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound in an arbitrary ratio and polymerizing them in the presence of water, an organic solvent, and a catalyst. To prepare. On the other hand, a composition containing an organic solvent, inorganic particles, clay mineral particles, silane coupling agent and the like is prepared. And the composition containing an alkoxysilane compound, the composition containing an inorganic particle etc., and a white pigment are fully mixed, and a coating liquid is obtained.
 ここで、塗布液中の均一性を高めるために、塗布液の原料のすべて、または一部を、以下の装置で分散することが好ましい。また、白色顔料の分散性を高めるためには、白色顔料を少なくとも1回、以下の装置で分散することが好ましい。以下の装置で白色顔料を分散すると、白色顔料の凝集が低減され、より緻密で反射率の高い塗膜が得られる。 Here, in order to improve the uniformity in the coating liquid, it is preferable to disperse all or part of the raw material of the coating liquid with the following apparatus. Moreover, in order to improve the dispersibility of a white pigment, it is preferable to disperse | distribute a white pigment at least once with the following apparatuses. When the white pigment is dispersed with the following apparatus, aggregation of the white pigment is reduced, and a denser and highly reflective coating film is obtained.
 ・混合/分散装置
 混合液の撹拌、分散は、例えば、マグネチックスターラー、超音波分散装置、ホモジナイザー、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機、高圧衝撃式分散装置、自転公転ミキサーなどで行うことができる。
・ Mixing / dispersing device Mixing / dispersing of the mixed solution is, for example, a magnetic stirrer, an ultrasonic dispersing device, a homogenizer, a stirring mill, a blade kneading stirring device, a thin-film swirling type dispersing device, a high-pressure impact dispersing device, a rotation / revolution mixer, etc. Can be done.
 混合液の撹拌に用いられる撹拌装置としては公知のものを全て使用できる。例えば、ウルトラタラックス(IKAジャパン社製)、TKホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DMPA・Sスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等やアルティマイザー(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO3000(美粒社製)などの高圧衝撃式分散装置が挙げられる。また、あわとり練太郎(シンキー社製)などの自転公転式ミキサーや超音波分散装置も好適に用いることが可能である。 All known devices can be used as the stirring device used for stirring the mixed solution. For example, Ultra Turrax (manufactured by IKA Japan), TK homomixer (manufactured by Primix), TK pipeline homomixer (manufactured by Primics), TK Philmix (manufactured by Primix), Claremix (manufactured by M Technique), Medialess stirrers such as Claire SS5 (manufactured by M Technique), Cavitron (manufactured by Eurotech), Fine Flow Mill (manufactured by Taiheiyo Kiko), Viscomill (manufactured by IMEX), Apex Mill (manufactured by Kotobuki Industries), Star mill (Ashizawa, manufactured by Finetech), DMPA / S Superflow (manufactured by Nihon Eirich), MP Mill (manufactured by Inoue Seisakusho), spike mill (manufactured by Inoue Seisakusho), Mighty mill (manufactured by Inoue Seisakusho), SC mill Media stirrers such as (Mitsui Mining Co., Ltd.) and Ultimate Chromatography (Sugino Machine Ltd.), Nanomizer (manufactured by Yoshida Kikai), and a high-pressure impact type dispersing device such as NANO 3000 (manufactured by Bitsubusha). In addition, a rotating / revolving mixer such as Awatori Nertaro (manufactured by Shinky Corp.) or an ultrasonic dispersing device can be suitably used.
 ・塗布液の粘度
 塗布液の振動式粘度計にて25℃で測定される粘度は、5mPa・s超、2000mPa・s以下であることが好ましい。振動式粘度計の一例としては、VISCOMATEMODEL VM-10A(セコニック社製)が挙げられる。また上記値は、振動子を液体に浸漬してから、1分後の値とする。塗布液の粘度が5mPa・s超であれば、白色顔料が沈降し難くなる。一方、2000mPa・s以下であると、各種塗布装置からの塗布安定性が高まりやすい。
-Viscosity of coating liquid The viscosity of the coating liquid measured at 25 ° C with a vibration viscometer is preferably more than 5 mPa · s and not more than 2000 mPa · s. An example of a vibration viscometer is VISCOMATE MODEL VM-10A (manufactured by Seconic). The above value is a value one minute after the vibrator is immersed in the liquid. If the viscosity of the coating solution exceeds 5 mPa · s, the white pigment will not easily settle. On the other hand, if it is 2000 mPa · s or less, the coating stability from various coating devices tends to increase.
 1-9.塗布方法及び硬化方法
 塗布液の塗布方法は、特に制限されず、例えばディスペンサ、ジェットディスペンサ、インクジェット装置、スプレー装置等の一般的な塗布装置による塗布方法でありうる。本発明の塗布液は、前述のように、基板に付着した際に濡れ広がり難い。さらに、有機溶媒に高表面張力が含まれるため、各種塗布装置のノズル先端側面を這い上がり難い。したがって、非接触式の吐出装置(例えば、ジェットディスペンサ、インクジェット装置)からも、安定して吐出することが可能である。
1-9. Application Method and Curing Method The application method of the application liquid is not particularly limited, and may be an application method using a general application device such as a dispenser, a jet dispenser, an ink jet device, or a spray device. As described above, the coating liquid of the present invention is difficult to spread when wet on the substrate. Furthermore, since high surface tension is included in the organic solvent, it is difficult to scoop up the nozzle tip side surface of various coating apparatuses. Therefore, it is possible to stably discharge from a non-contact type discharge device (for example, a jet dispenser or an ink jet device).
 ここで、本発明の塗布液は、所望の領域に塗布後、硬化させて用いられる。塗布液を硬化させる際の加熱温度は20~300℃であることが好ましく、より好ましくは25~200℃である。加熱温度が20℃未満であると、塗膜中の溶媒が十分に揮発しない可能性がある。一方、温度が300℃を超えると、LED素子に悪影響を及ぼす可能性がある。また、乾燥・硬化時間は、製造効率の面から、0.1~120分であることが好ましく、より好ましくは5~60分である。 Here, the coating liquid of the present invention is used after being applied to a desired region and then cured. The heating temperature for curing the coating solution is preferably 20 to 300 ° C., more preferably 25 to 200 ° C. If the heating temperature is less than 20 ° C, the solvent in the coating film may not be sufficiently evaporated. On the other hand, if the temperature exceeds 300 ° C., the LED element may be adversely affected. The drying / curing time is preferably from 0.1 to 120 minutes, more preferably from 5 to 60 minutes from the viewpoint of production efficiency.
 2.LED装置
 前述の塗布液の硬化膜からなる反射層を有するLED装置100の概略断面図を図1に、上面図を図2に示す。前述のように、LED装置100は、基板1と、基板1上に配置されたLED素子2と、基板1上のLED素子2の少なくとも周囲に配置された反射層21を有する。また、必要に応じて、LED素子2及び反射層21を覆う波長変換層11をさらに有する。
2. LED Device FIG. 1 is a schematic cross-sectional view of an LED device 100 having a reflective layer made of a cured film of the aforementioned coating solution, and FIG. As described above, the LED device 100 includes the substrate 1, the LED element 2 disposed on the substrate 1, and the reflective layer 21 disposed at least around the LED element 2 on the substrate 1. Moreover, it further has the wavelength conversion layer 11 which covers the LED element 2 and the reflection layer 21 as needed.
 本発明のLED装置100は、LED素子2の出射光等を、光取り出し面側に反射する反射層21を有する。したがって、本発明のLED装置100からの光取り出し効率が非常に高い。また、反射層21のバインダは、ポリシロキサンであるため、光や熱に強く、反射層21が劣化し難い。したがって、本発明のLED装置100によれば、長期間に亘って、高い光取り出し効率が維持される。 The LED device 100 of the present invention has a reflective layer 21 that reflects the light emitted from the LED element 2 to the light extraction surface side. Therefore, the light extraction efficiency from the LED device 100 of the present invention is very high. Further, since the binder of the reflective layer 21 is polysiloxane, it is resistant to light and heat, and the reflective layer 21 is unlikely to deteriorate. Therefore, according to the LED device 100 of the present invention, high light extraction efficiency is maintained over a long period of time.
 2-1.基板について
 基板1は、絶縁性及び耐熱性を有することが好ましく、セラミック樹脂や耐熱性樹脂からなることが好ましい。耐熱性樹脂の例には、液晶ポリマー、ポリフェニレンスルフィド、芳香族ナイロン、エポキシ樹脂、硬質シリコーンレジン、ポリフタル酸アミド等が含まれる。
2-1. Substrate The substrate 1 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin. Examples of the heat resistant resin include liquid crystal polymer, polyphenylene sulfide, aromatic nylon, epoxy resin, hard silicone resin, polyphthalic acid amide and the like.
 基板1には、無機フィラーが含まれていてもよい。無機フィラーは、酸化チタン、酸化亜鉛、アルミナ、シリカ、チタン酸バリウム、リン酸カルシウム、炭酸カルシウム、ホワイトカーボン、タルク、炭酸マグネシウム、窒化ホウ素、グラスファイバー等でありうる。 The substrate 1 may contain an inorganic filler. The inorganic filler can be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber, and the like.
 基板1は、図1に示されるように、キャビティを有していてもよいが、平板状であってもよい。 The substrate 1 may have a cavity as shown in FIG. 1, but may have a flat plate shape.
 また、基板1には、金属からなる電極3が形成されており、当該電極3は、基板1の外部に配置される電源(図示せず)から、LED素子2に電気を供給する機能を有する。電極3の形状は特に制限されず、発光装置100の種類や用途等に合わせて適宜選択される。電極3を有する基板1の作製方法は特に制限されず、一般的には、所望の形状のリードフレームと、樹脂とを一体成型して得られる。 In addition, an electrode 3 made of metal is formed on the substrate 1, and the electrode 3 has a function of supplying electricity to the LED element 2 from a power source (not shown) arranged outside the substrate 1. . The shape of the electrode 3 is not particularly limited, and is appropriately selected according to the type and application of the light emitting device 100. The method for producing the substrate 1 having the electrodes 3 is not particularly limited, and is generally obtained by integrally molding a lead frame having a desired shape and a resin.
 2-2.LED素子について
 LED素子2は、基板1に形成された電極3と電気的に接続されて、特定の波長の光を発する素子である。図1に示されるLED装置100では、LED素子2は、基板1の円錐台状のキャビティ(凹部)の底面1aに配置されている。
2-2. LED Element The LED element 2 is an element that is electrically connected to the electrode 3 formed on the substrate 1 and emits light of a specific wavelength. In the LED device 100 shown in FIG. 1, the LED element 2 is disposed on the bottom surface 1 a of the truncated cone-shaped cavity (concave portion) of the substrate 1.
 LED素子2が出射する光の波長は特に制限されない。LED素子2は、例えば青色光(420nm~485nm程度の光)を発する素子であってもよく、紫外光を発する素子であってもよい。またさらに、緑色光や赤色光等を発する素子であってもよい。 The wavelength of light emitted from the LED element 2 is not particularly limited. The LED element 2 may be, for example, an element that emits blue light (light of about 420 nm to 485 nm) or an element that emits ultraviolet light. Furthermore, an element that emits green light, red light, or the like may be used.
 LED素子2の構成は、特に制限されない。LED素子2が、青色光を発する素子である場合、LED素子2は、n-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体等でありうる。 The configuration of the LED element 2 is not particularly limited. When the LED element 2 is an element that emits blue light, the LED element 2 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer. It may be a laminate of (clad layer) and a transparent electrode layer.
 また、LED素子2の形状は特に制限されず、例えば200~300μm×200~300μmの発光面を有するものでありうる。またLED素子2の高さは、通常50~200μm程度である。LED素子2は、上面だけでなく、側面や底面からも光が取り出されるものであってもよい。なお、図1に示される発光装置100には、基板1に1つのLED素子2のみが配置されているが、基板1に複数のLED素子2が配置されてもよい。 Further, the shape of the LED element 2 is not particularly limited, and may have, for example, a light emitting surface of 200 to 300 μm × 200 to 300 μm. The height of the LED element 2 is usually about 50 to 200 μm. The LED element 2 may be one in which light is extracted not only from the top surface but also from the side surface and the bottom surface. In the light emitting device 100 illustrated in FIG. 1, only one LED element 2 is disposed on the substrate 1, but a plurality of LED elements 2 may be disposed on the substrate 1.
 LED素子2と前述の電極3との接続方法は特に制限されない。例えばLED素子2と電極3とが、図1に示されるように、金属ワイヤ4を介して接続されてもよい。また、LED素子2と電極3とが、突起電極(図示せず)を介して接続されてもよい。LED素子2と電極3とが、金属ワイヤ4を介して接続される態様をワイヤボンディング型という。一方、LED素子2と電極3とが突起電極を介して接続される態様をフリップチップボンディング型という。 The connection method between the LED element 2 and the electrode 3 is not particularly limited. For example, the LED element 2 and the electrode 3 may be connected via a metal wire 4 as shown in FIG. Moreover, the LED element 2 and the electrode 3 may be connected via a protruding electrode (not shown). A mode in which the LED element 2 and the electrode 3 are connected via the metal wire 4 is referred to as a wire bonding type. On the other hand, a mode in which the LED element 2 and the electrode 3 are connected via a protruding electrode is called a flip chip bonding type.
 2-3.反射層について
 反射層21は、LED素子2からの出射光や、波長変換層11に含まれる蛍光体が発する蛍光を、LED装置100の光取り出し面側に反射する層である。反射層21が配設されることで、LED装置100の光取り出し面から取り出される光量が増加する。当該反射層21は、前述の塗布液を塗布し、硬化させて得られる。
2-3. About the Reflective Layer The reflective layer 21 is a layer that reflects the emitted light from the LED element 2 and the fluorescence emitted by the phosphor contained in the wavelength conversion layer 11 to the light extraction surface side of the LED device 100. By providing the reflective layer 21, the amount of light extracted from the light extraction surface of the LED device 100 increases. The reflective layer 21 is obtained by applying and curing the above-described coating solution.
 図1に示されるLED装置100では、反射層21が、LED素子2の配置領域を除く基板1上に配置されている。反射層21は、基板1の円錐台状のキャビティ(凹部)の底面1aから側面1bに連続して、すり鉢状に配置されている。反射層21は、上面視において、波長変換層11の外周に波長変換層11と同心円状のリング状に形成されている。 In the LED device 100 shown in FIG. 1, the reflective layer 21 is disposed on the substrate 1 excluding the region where the LED elements 2 are disposed. The reflective layer 21 is arranged in a mortar shape continuously from the bottom surface 1 a to the side surface 1 b of the truncated cone-shaped cavity (concave portion) of the substrate 1. The reflection layer 21 is formed in a ring shape concentric with the wavelength conversion layer 11 on the outer periphery of the wavelength conversion layer 11 in a top view.
 反射層21は、基板1の表面のうち、少なくともLED素子2の配置領域以外に形成される。LED素子2の配置領域とは、LED素子2の発光面、及びLED素子2と電極3との接続部をいう。つまり、反射層21は、LED素子2からの光の出射、及びLED素子2と電極3との接続を阻害しない領域に形成される。 The reflective layer 21 is formed on the surface of the substrate 1 at least outside the region where the LED elements 2 are arranged. The arrangement region of the LED element 2 refers to a light emitting surface of the LED element 2 and a connection portion between the LED element 2 and the electrode 3. That is, the reflective layer 21 is formed in a region that does not hinder the emission of light from the LED element 2 and the connection between the LED element 2 and the electrode 3.
 図1及び図2に示されるように、基板1がキャビティを有する場合、キャビティ内壁面1bにも、反射層21が形成されることが好ましい。反射層21がキャビティ内壁面1bに形成されると、波長変換層11表面に水平な方向に進む光を、反射層21で反射させて、取り出すことができるからである。 As shown in FIGS. 1 and 2, when the substrate 1 has a cavity, it is preferable that the reflective layer 21 is also formed on the inner wall surface 1b of the cavity. This is because when the reflective layer 21 is formed on the cavity inner wall surface 1b, the light traveling in the horizontal direction on the surface of the wavelength conversion layer 11 can be reflected by the reflective layer 21 and extracted.
 また、フリップチップボンディング型の発光装置100では、LED素子2と基板1との隙間に反射層21が形成されてもよい。 In the flip chip bonding type light emitting device 100, the reflective layer 21 may be formed in the gap between the LED element 2 and the substrate 1.
 反射層21の厚みは、5~30μmであることが好ましく、より好ましくは5~20μmである。反射層21の厚みが、30μmを超えると、反射層21にクラックが発生しやすくなる。一方、反射層21の厚みが5μm未満であると、反射層21の光反射性が十分ではなく、光取り出し効率が高まらない場合がある。反射層21の厚みは、LED素子2の発光面上に成膜された反射層21の最大厚みを意味する。反射層21の厚みは、レーザホロゲージで測定することができる。 The thickness of the reflective layer 21 is preferably 5 to 30 μm, more preferably 5 to 20 μm. If the thickness of the reflective layer 21 exceeds 30 μm, cracks are likely to occur in the reflective layer 21. On the other hand, when the thickness of the reflective layer 21 is less than 5 μm, the light reflectivity of the reflective layer 21 is not sufficient, and the light extraction efficiency may not be increased. The thickness of the reflective layer 21 means the maximum thickness of the reflective layer 21 formed on the light emitting surface of the LED element 2. The thickness of the reflective layer 21 can be measured with a laser holo gauge.
 2-4.波長変換層
 波長変換層11は、蛍光体粒子及びバインダが含まれる。蛍光体粒子はLED素子2が出射する光(励起光)を受けて、蛍光を発する。励起光と蛍光とが混ざることで、LED装置100からの光の色が所望の色となる。例えば、LED素子2からの光が青色であり、波長変換層11に含まれる蛍光体が発する蛍光が黄色であると、LED装置100からの光が白色となる。
2-4. Wavelength Conversion Layer The wavelength conversion layer 11 includes phosphor particles and a binder. The phosphor particles receive light (excitation light) emitted from the LED element 2 and emit fluorescence. By mixing the excitation light and the fluorescence, the color of the light from the LED device 100 becomes a desired color. For example, when the light from the LED element 2 is blue and the fluorescence emitted from the phosphor included in the wavelength conversion layer 11 is yellow, the light from the LED device 100 is white.
 波長変換層11は、LED素子2を被覆すればよく、例えば図1に示されるように、LED素子2とともに、反射層21を被覆してもよい。 The wavelength conversion layer 11 may cover the LED element 2. For example, as shown in FIG. 1, the wavelength conversion layer 11 may cover the reflective layer 21 together with the LED element 2.
 波長変換層11に含まれる蛍光体粒子は、LED素子2から出射する光により励起されて、LED素子2からの出射光と異なる波長の蛍光を発するものであればよい。例えば、黄色の蛍光を発する蛍光体粒子の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体等がある。YAG蛍光体は、青色LED素子から出射される青色光(波長420nm~485nm)を受けて、黄色の蛍光(波長550nm~650nm)を発する。 The phosphor particles contained in the wavelength conversion layer 11 may be anything that is excited by the light emitted from the LED element 2 and emits fluorescence having a wavelength different from that of the emitted light from the LED element 2. For example, examples of phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors. The YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element, and emits yellow fluorescence (wavelength 550 nm to 650 nm).
 蛍光体粒子は、例えば1)所定の組成を有する混合原料に、フラックス(フッ化アンモニウム等のフッ化物)を適量混合して加圧し、これを成形体とする。2)得られた成形体を坩堝に詰め、空気中で1350~1450℃の温度範囲で、2~5時間焼成し、焼結体とすることで得られる。 The phosphor particles are, for example, 1) An appropriate amount of flux (fluoride such as ammonium fluoride) is mixed with a mixed raw material having a predetermined composition, and pressed to form a molded body. 2) The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Ga等の酸化物、または高温で容易に酸化物となる化合物を、化学両論比で十分に混合して得られる。また、所定の組成を有する混合原料は、1)Y、Gd、Ce、Smの希土類元素を化学両論比で酸に溶解した溶液と、シュウ酸とを混合し、共沈酸化物を得る。2)この共沈酸化物と、酸化アルミニウム、または酸化ガリウムとを混合しても得られる。 A mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. . Moreover, the mixed raw material which has a predetermined composition mixes the solution which dissolved 1) the rare earth elements of Y, Gd, Ce, and Sm in the acid in stoichiometric ratio, and oxalic acid, and obtains a coprecipitation oxide. 2) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
 蛍光体の種類は、YAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等、他の蛍光体であってもよい。 The kind of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet phosphor that does not contain Ce.
 蛍光体粒子の平均粒径は1μm~50μmであることが好ましく、10μm以下であることがより好ましい。蛍光体粒子の粒径が大きいほど発光効率(波長変換効率)が高くなる。一方、蛍光体粒子の粒径が大きすぎると、蛍光体粒子とバインダとの界面に生じる隙間が大きくなる。これにより、波長変換層の硬化膜の強度が低下しやすい。蛍光体粒子の平均粒径は、レーザー回折式粒度分布計で測定されるD50の値をいう。レーザー回折式粒度分布測定装置の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。 The average particle diameter of the phosphor particles is preferably 1 μm to 50 μm, and more preferably 10 μm or less. The larger the particle size of the phosphor particles, the higher the light emission efficiency (wavelength conversion efficiency). On the other hand, when the particle diameter of the phosphor particles is too large, a gap generated at the interface between the phosphor particles and the binder becomes large. Thereby, the intensity | strength of the cured film of a wavelength conversion layer tends to fall. The average particle diameter of the phosphor particles refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
 波長変換層11に含まれるバインダは、透明樹脂または透光性セラミックでありうる。透明樹脂は、例えばシリコーン樹脂及びエポキシ樹脂等でありうる。バインダが透明樹脂である場合、波長変換層11の厚みは25μm~5mm程度であることが好ましい。波長変換層11の厚みが厚すぎると、蛍光体粒子の濃度が過剰に低くなり、蛍光体粒子が均一に分散されない場合がある。波長変換層11の厚みは、LED素子2の発光面上に成膜された波長変換層11の最大厚みを意味する。波長変換層11の厚みは、レーザホロゲージで測定することができる。また、バインダが透明樹脂である場合、波長変換層11中に含まれる蛍光体粒子の量は、一般には5~15質量%である。 The binder contained in the wavelength conversion layer 11 can be a transparent resin or a translucent ceramic. The transparent resin can be, for example, a silicone resin and an epoxy resin. When the binder is a transparent resin, the thickness of the wavelength conversion layer 11 is preferably about 25 μm to 5 mm. If the wavelength conversion layer 11 is too thick, the concentration of the phosphor particles becomes excessively low, and the phosphor particles may not be uniformly dispersed. The thickness of the wavelength conversion layer 11 means the maximum thickness of the wavelength conversion layer 11 formed on the light emitting surface of the LED element 2. The thickness of the wavelength conversion layer 11 can be measured with a laser holo gauge. When the binder is a transparent resin, the amount of phosphor particles contained in the wavelength conversion layer 11 is generally 5 to 15% by mass.
 一方、透光性セラミックは、反射層に含まれるポリシロキサンと同様でありうる。バインダがポリシロキサンである場合、波長変換層11の厚みは5~200μmであることが好ましい。バインダがポリシロキサンである場合に、波長変換層11の厚みが過剰に厚いと、波長変化層11にクラック等が生じやすくなる。バインダがポリシロキサンである場合も、波長変換層11の厚みは、LED素子2の発光面上に成膜された波長変換層11の最大厚みを意味する。波長変換層11の厚みは、レーザホロゲージで測定することができる。 On the other hand, the translucent ceramic may be the same as the polysiloxane contained in the reflective layer. When the binder is polysiloxane, the thickness of the wavelength conversion layer 11 is preferably 5 to 200 μm. When the binder is polysiloxane and the wavelength conversion layer 11 is excessively thick, cracks or the like are likely to occur in the wavelength change layer 11. Even when the binder is polysiloxane, the thickness of the wavelength conversion layer 11 means the maximum thickness of the wavelength conversion layer 11 formed on the light emitting surface of the LED element 2. The thickness of the wavelength conversion layer 11 can be measured with a laser holo gauge.
 また、バインダがポリシロキサンである場合、波長変換層11に含まれる蛍光体粒子の量は60~95質量%であることが好ましい。波長変換層11に含まれる蛍光体粒子の濃度は高いほど好ましい。蛍光体粒子の濃度が高いと、波長変換層11の強度が高まりやすい。ただし、透光性セラミックの含有比率が少な過ぎると、蛍光体粒子を十分に保持できない場合がある。 Further, when the binder is polysiloxane, the amount of phosphor particles contained in the wavelength conversion layer 11 is preferably 60 to 95% by mass. The higher the concentration of the phosphor particles contained in the wavelength conversion layer 11, the better. If the concentration of the phosphor particles is high, the strength of the wavelength conversion layer 11 tends to increase. However, if the content ratio of the translucent ceramic is too small, the phosphor particles may not be sufficiently retained.
 3.発光装置の製造方法
 前述の発光装置は、以下の3つ工程を経て製造することができる。
 (1)LED素子が実装された基板を準備する工程
 (2)LED素子が配置された基板の周囲に、前述の塗布液を塗布する工程
 (3)塗布液を硬化させる工程
3. Method for Manufacturing Light-Emitting Device The above-described light-emitting device can be manufactured through the following three steps.
(1) The process of preparing the board | substrate with which the LED element was mounted (2) The process of apply | coating the above-mentioned coating liquid around the board | substrate with which the LED element was arrange | positioned (3) The process of hardening a coating liquid
 発光装置の製造方法には、必要に応じて(4)反射層上に、蛍光体粒子を含む波長変換層を形成する工程が含まれてもよい。 The manufacturing method of the light emitting device may include (4) a step of forming a wavelength conversion layer containing phosphor particles on the reflective layer as necessary.
 (1)LED素子準備工程
 LED素子準備工程では、LED素子と電極とが接続された基板を準備する。例えば前述の電極を有する基板を準備し、当該基板にLED素子を固定し、基板の電極と、LED素子のカソード電極及びアノード電極とを接続する工程でありうる。LED素子と電極との接続方法や、LED素子を基板に固定する方法は特に制限されず、従来公知の方法と同様の方法でありうる。
(1) LED element preparation process In an LED element preparation process, the board | substrate with which the LED element and the electrode were connected is prepared. For example, it may be a step of preparing a substrate having the above-described electrodes, fixing the LED element to the substrate, and connecting the electrode of the substrate to the cathode electrode and the anode electrode of the LED element. The method for connecting the LED element and the electrode and the method for fixing the LED element to the substrate are not particularly limited, and may be the same as a conventionally known method.
 (2)塗布液塗布工程
 塗布液塗布工程は、前述の塗布液を、LED素子の周囲の領域の基板上、つまり反射層を形成する領域に塗布液を塗布する工程である。前述の塗布液は、基板に付着した際に濡れ広がりに難い。したがって、LED素子の外周近傍まで塗布液を塗布しても、LED素子の側面に塗布液が付着し難い。
(2) Coating liquid application process A coating liquid application process is a process of apply | coating a coating liquid to the area | region which forms the above-mentioned coating liquid on the board | substrate of the area | region around an LED element, ie, a reflection layer. The aforementioned coating solution is difficult to spread when wet on the substrate. Therefore, even if the coating liquid is applied to the vicinity of the outer periphery of the LED element, the coating liquid is difficult to adhere to the side surface of the LED element.
 塗布液を塗布する方法は、所望の領域に塗布液を塗布可能な方法であれば特に制限されず、ブレード塗布、スピンコート塗布、ディスペンサー塗布、スプレー塗布、インクジェット法による塗布など、公知の塗布方法でありうる。 The method for applying the coating solution is not particularly limited as long as it is a method capable of applying the coating solution to a desired region, and known coating methods such as blade coating, spin coating coating, dispenser coating, spray coating, and inkjet method coating. It can be.
 ここで、前述の塗布液には高表面張力が含まれるため、各種塗布装置のノズル先端側面を這い上がり難い。したがって、非接触式の吐出装置(例えば、ジェットディスペンサ、インクジェット装置)からも、安定して吐出することが可能である。特に所望の領域に塗布液を塗布できるとの観点から、ジェットディスペンサで塗布液を吐出することが好ましい。 Here, since the above-mentioned coating liquid contains high surface tension, it is difficult to scoop up the nozzle tip side surface of various coating apparatuses. Therefore, it is possible to stably discharge from a non-contact type discharge device (for example, a jet dispenser or an ink jet device). In particular, it is preferable to discharge the coating liquid with a jet dispenser from the viewpoint that the coating liquid can be applied to a desired region.
 (3)塗布液硬化工程
 塗布液硬化工程は、塗布液を加熱硬化させる工程でありうる。塗布液硬化工程では、塗布液中の溶媒を除去すると共に、アルコキシシラン化合物を加水分解させて、重縮合させる。
(3) Coating liquid curing process The coating liquid curing process may be a process of heat curing the coating liquid. In the coating solution curing step, the solvent in the coating solution is removed and the alkoxysilane compound is hydrolyzed and polycondensed.
 塗布液を硬化させる際の温度は、20~300℃であることが好ましく、より好ましくは25~200℃である。加熱温度が20℃未満であると、塗膜中の溶媒が十分に揮発しない可能性がある。一方、温度が300℃を超えると、LED素子に悪影響を及ぼす可能性がある。また、乾燥・硬化時間は、製造効率の面から、0.1~120分であることが好ましく、より好ましくは5~60分である。 The temperature at which the coating solution is cured is preferably 20 to 300 ° C., more preferably 25 to 200 ° C. If the heating temperature is less than 20 ° C, the solvent in the coating film may not be sufficiently evaporated. On the other hand, if the temperature exceeds 300 ° C., the LED element may be adversely affected. The drying / curing time is preferably from 0.1 to 120 minutes, more preferably from 5 to 60 minutes from the viewpoint of production efficiency.
 (4)波長変換層形成工程
 波長変換層形成工程は、蛍光体粒子を含む波長変換層用組成物を、LED素子を覆うように塗布し、硬化させる工程でありうる。波長変換層用組成物には、蛍光体粒子と、バインダ成分が含まれる。
(4) Wavelength conversion layer formation process A wavelength conversion layer formation process may be a process of apply | coating and hardening the composition for wavelength conversion layers containing fluorescent substance particle so that an LED element may be covered. The composition for wavelength conversion layer contains phosphor particles and a binder component.
 バインダ成分は、前述の波長変換層に含まれる透明樹脂またはその前駆体、もしくはポリシロキサン前駆体(アルコキシシラン化合物)でありうる。また、波長変換層用組成物には、必要に応じて溶媒が含まれる。バインダ成分が前述の透明樹脂またはその前駆体である場合、溶媒はトルエン、キシレンなどの炭化水素類;アセトン、メチルエチルケトンなどのケトン類;ジエチルエーテル、テトラヒドロフランなどのエーテル類、プロピレングリコールモノメチルエーテルアセテート、エチルアセテートなどのエステル類等でありうる。一方、バインダ成分がアルコキシシラン化合物である場合、溶媒は前述の塗布液に含まれる有機溶媒と同様でありうる。 The binder component can be a transparent resin contained in the wavelength conversion layer or a precursor thereof, or a polysiloxane precursor (alkoxysilane compound). Moreover, a solvent is contained in the composition for wavelength conversion layers as needed. When the binder component is the aforementioned transparent resin or a precursor thereof, the solvent is a hydrocarbon such as toluene or xylene; a ketone such as acetone or methyl ethyl ketone; an ether such as diethyl ether or tetrahydrofuran; propylene glycol monomethyl ether acetate, ethyl It may be an ester such as acetate. On the other hand, when the binder component is an alkoxysilane compound, the solvent can be the same as the organic solvent contained in the coating solution.
 また、波長変換層用組成物の混合は、例えば、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機等で行うことができる。撹拌条件を調整することで、波長変換層用組成物における蛍光体粒子の沈降が抑制される。 The mixing of the composition for wavelength conversion layer can be performed, for example, with a stirring mill, a blade kneading stirring device, a thin-film swirling disperser, or the like. By adjusting the stirring conditions, the precipitation of the phosphor particles in the wavelength conversion layer composition is suppressed.
 波長変換層用組成物の塗布方法は、バインダの種類等により適宜選択され、例えばディスペンサー塗布やスプレー塗布等でありうる。また、波長変換層用組成物の塗布後、これを硬化させる。波長変換層用組成物の硬化方法や硬化条件は、樹脂の種類により適宜選択される。硬化方法の一例として、加熱硬化が挙げられる。 The method for applying the composition for wavelength conversion layer is appropriately selected depending on the type of binder, and can be, for example, dispenser application or spray application. Moreover, this is hardened after application | coating of the composition for wavelength conversion layers. The curing method and curing conditions of the wavelength conversion layer composition are appropriately selected depending on the type of resin. An example of the curing method is heat curing.
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this.
 <アルコキシシラン化合物溶液の調製>
 アルコキシシラン化合物溶液の調製に用いた触媒は以下の通りである。
 (酸触媒)
 塩酸
 硝酸
 酢酸
 ZC-150:ジルコニウムキレート(オルガチックスZC-150、マツモトファインケミカル製)
 TC-750:チタンキレート(オルガチックスTC-750、マツモトファインケミカル製)
 D-25:チタンアルコキシド(D-25、信越化学工業社製)
 DX-9740:アルミニウムキレート(DX-9740、信越化学工業社製)
<Preparation of alkoxysilane compound solution>
The catalyst used for the preparation of the alkoxysilane compound solution is as follows.
(Acid catalyst)
Hydrochloric acid Nitric acid Acetic acid ZC-150: Zirconium chelate (Orgatics ZC-150, manufactured by Matsumoto Fine Chemical)
TC-750: Titanium chelate (Orgatechs TC-750, manufactured by Matsumoto Fine Chemical)
D-25: Titanium alkoxide (D-25, manufactured by Shin-Etsu Chemical Co., Ltd.)
DX-9740: Aluminum chelate (DX-9740, manufactured by Shin-Etsu Chemical Co., Ltd.)
 アルコキシシラン化合物溶液の調製に用いた有機溶媒は以下の通りである。
 (高表面張力有機溶媒)
 エチレングリコール(EG)、表面張力48.4
 プロピレングリコール(PG)、表面張力35.3
 1,3-ブタンジオール(BD)、表面張力45.3
 エチレングリコールモノメチルエーテル(EGME)、表面張力31.8
 ベンジルアルコール、表面張力39
 トリエチレングリコール、表面張力45.2
 ジアセトンアルコール、表面張力31
The organic solvents used for the preparation of the alkoxysilane compound solution are as follows.
(High surface tension organic solvent)
Ethylene glycol (EG), surface tension 48.4
Propylene glycol (PG), surface tension 35.3
1,3-butanediol (BD), surface tension 45.3
Ethylene glycol monomethyl ether (EGME), surface tension 31.8
Benzyl alcohol, surface tension 39
Triethylene glycol, surface tension 45.2
Diacetone alcohol, surface tension 31
 (低表面張力有機溶媒)
 イソプロピルアルコール(IPA)、表面張力21.7
 n-ブタノール(n-BuOH)、表面張力24.6
 メタノール、表面張力22.6
 エタノール、表面張力22.55
 メチル-3-メトキシプロピオネート(MMP)
(Low surface tension organic solvent)
Isopropyl alcohol (IPA), surface tension 21.7
n-butanol (n-BuOH), surface tension 24.6
Methanol, surface tension 22.6
Ethanol, surface tension 22.55
Methyl-3-methoxypropionate (MMP)
 (アルコキシシラン化合物溶液1の調製)
 テトラメトキシシラン7.8質量%と、メチルトリメトキシシラン2.2質量%と、プロピレングリコール35質量%と、メタノール35質量%と、水9.99質量%と、硝酸0.01質量%とを混合して、23℃で3時間撹拌した。その後、26℃で3日間撹拌しながら反応させて、ポリシロキサンオリゴマーを含有するアルコキシシラン化合物溶液1を得た。
(Preparation of alkoxysilane compound solution 1)
Tetramethoxysilane 7.8% by mass, methyltrimethoxysilane 2.2% by mass, propylene glycol 35% by mass, methanol 35% by mass, water 9.99% by mass, and nitric acid 0.01% by mass. Mix and stir at 23 ° C. for 3 hours. Then, it was made to react, stirring at 26 degreeC for 3 days, and the alkoxysilane compound solution 1 containing a polysiloxane oligomer was obtained.
 (アルコキシシラン化合物溶液2、3、5~20の調製)
 アルコキシシラン化合物の調製時の4官能アルコキシシラン化合物、3官能アルコキシシラン化合物、2官能アルコキシシラン化合物、溶媒、水、及び触媒の種類及び量を、表1に示すものに変更した以外は、アルコキシシラン化合物溶液1と同様の方法で調製した。
(Preparation of alkoxysilane compound solutions 2, 3, 5 to 20)
Except for changing the types and amounts of the tetrafunctional alkoxysilane compound, trifunctional alkoxysilane compound, bifunctional alkoxysilane compound, solvent, water, and catalyst during preparation of the alkoxysilane compound to those shown in Table 1, alkoxysilane Prepared in the same manner as for Compound Solution 1.
 (アルコキシシラン化合物溶液4の調整)
 トリエトキシシラン20質量%と、1,3-ブタンジオール35質量%と、メタノール35質量%と、水9.99質量%と、塩酸0.01質量%とを混合してアルコキシシラン化合物溶液4を得た。
(Preparation of alkoxysilane compound solution 4)
An alkoxysilane compound solution 4 was prepared by mixing 20% by mass of triethoxysilane, 35% by mass of 1,3-butanediol, 35% by mass of methanol, 9.99% by mass of water, and 0.01% by mass of hydrochloric acid. Obtained.
 (アルコキシシラン化合物溶液21の調整)
 エチルトリメトキシシラン0.1molに水、希硝酸を加え、アルコキシド:水:希硝酸のモル比が1:3:0.002となるように調整した。この溶液を密閉容器中にて20℃で3時間撹拌した後、さらに60℃で48時間熟成させ、加水分解反応および重縮合反応を進行させた。反応によって生成したメタノールを含む上相を除去し、60℃で3時間乾燥させることにより、アルコキシシラン化合物を得た。上記アルコキシシラン化合物を1,3-ブタンジオールとn-ブタノール(1/1)で20質量%になるように希釈し、アルコキシシラン化合物溶液21を得た。
(Preparation of alkoxysilane compound solution 21)
Water and dilute nitric acid were added to 0.1 mol of ethyltrimethoxysilane, and the molar ratio of alkoxide: water: dilute nitric acid was adjusted to 1: 3: 0.002. This solution was stirred in a sealed container at 20 ° C. for 3 hours, and further aged at 60 ° C. for 48 hours to proceed with a hydrolysis reaction and a polycondensation reaction. The upper phase containing methanol produced | generated by reaction was removed, and the alkoxysilane compound was obtained by making it dry at 60 degreeC for 3 hours. The alkoxysilane compound was diluted with 1,3-butanediol and n-butanol (1/1) to 20% by mass to obtain an alkoxysilane compound solution 21.
 (評価)
 各アルコキシシラン化合物溶液中のポリシロキサンオリゴマーの分子量をGPCにより測定した。またこの溶液を150℃で1時間硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、Q成分と、T成分に由来するピークがみられ、それぞれの面積比から、Q成分とT成分の比(R4/R3)、及びD成分の量(R2)を算出した。
(Evaluation)
The molecular weight of the polysiloxane oligomer in each alkoxysilane compound solution was measured by GPC. Further, when solid Si-NMR was measured using a solid obtained by curing this solution at 150 ° C. for 1 hour as a sample, peaks derived from the Q component and the T component were observed. And the ratio of T component (R4 / R3) and the amount of D component (R2) were calculated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (調整液1~26の調製)
 表2に示される成分比で各成分を配合し、2成分以上含まれる場合、攪拌装置で攪拌した。調整液の調製に用いた各成分は以下の通りである。
(Preparation of adjustment liquids 1 to 26)
Each component was blended in the component ratio shown in Table 2, and when two or more components were contained, the mixture was stirred with a stirrer. Each component used for preparation of the adjustment liquid is as follows.
 (高表面張力有機溶媒)
 BD:1,3-ブタンジオール、表面張力45.3
 PG:プロピレングリコール、表面張力35.3
(High surface tension organic solvent)
BD: 1,3-butanediol, surface tension 45.3
PG: Propylene glycol, surface tension 35.3
 (低表面張力有機溶媒)
 n-BuOH:n-ブタノール、表面張力24.6
 IPA:イソプロピルアルコール、表面張力21.7
 EtOH:エタノール、表面張力22.55
(Low surface tension organic solvent)
n-BuOH: n-butanol, surface tension 24.6
IPA: isopropyl alcohol, surface tension 21.7
EtOH: ethanol, surface tension 22.55
 (無機粒子)
 サイリシア470:シリカ(サイリシア470、富士シリシア化学製)平均粒径14μm
 VM2270:シリカ(VM-2270、ダウコーニング製)平均粒径5~15μm
 SP-1:シリカ (マイクロビードSP-1、日揮触媒化成製)平均粒径5μm
 SS-50F:シリカ(ニップシールSS-50F、東ソー・シリカ製)平均粒径1.2μm
 Alu-C:アルミナ(AEROXIDE Alu-C、日本アエロジル製)平均一次粒径13nm
 A300:シリカ(日本アエロジル(株)製)平均1次粒子径:7nm
 RX300:シリカ(日本アエロジル(株)製)平均1次粒子径:7nm
 F3:シリカ(ハイシリカF3、ニッチツ社製)平均粒径3μm
 ZR-210:ZrO粒子(TECNADIS-Zr-210、TECNAN社製)平均粒径10~15nm
 Ti-210:TiO粒子(TECNADIS-TI-210、TECNAN社製)平均粒径10~15nm
(Inorganic particles)
Silicia 470: Silica (Silicia 470, manufactured by Fuji Silysia Chemical) average particle size of 14 μm
VM2270: Silica (VM-2270, manufactured by Dow Corning) average particle size of 5 to 15 μm
SP-1: Silica (Microbead SP-1, manufactured by JGC Catalysts & Chemicals) Average particle diameter of 5 μm
SS-50F: Silica (Nip seal SS-50F, manufactured by Tosoh Silica) Average particle size 1.2 μm
Alu-C: Alumina (AEROXIDE Alu-C, Nippon Aerosil) average primary particle size 13 nm
A300: Silica (Nippon Aerosil Co., Ltd.) average primary particle size: 7 nm
RX300: Silica (manufactured by Nippon Aerosil Co., Ltd.) Average primary particle size: 7 nm
F3: Silica (high silica F3, manufactured by Nichetsu) average particle diameter of 3 μm
ZR-210: ZrO 2 particles (TECNADIS-Zr-210, manufactured by TECNAN) average particle diameter of 10 to 15 nm
Ti-210: TiO 2 particles (TECNADIS-TI-210, manufactured by TECNAN) average particle diameter of 10 to 15 nm
 (粘土鉱物粒子)
 MK-100:合成雲母(ミクロマイカMK-100、コープケミカル製)
 ME-100:合成雲母(ソマシフME-100、コープケミカル製)
 SWN:スメクタイト(ルーセンタイトSWN、コープケミカル社製)
 SPN:スメクタイト(ルーセンタイトSPN、コープケミカル社製)
 クニピアF:モンモリロナイト(クニピアF、クニミネ工業製)
 FSE:セリサイト(セリサイトFSE、三信鉱工社製)
 SA-1:サポナイト類似物質(スメクトンSA-1、クニミネ工業社製)
 HVP:天然ベントナイト(エスベンNE、ホージュン社製)
 NE:ベントナイト(ベンゲルHVP、ホージュン社製)
 イモゴライト:後述の方法で調製したものを用いた
(Clay mineral particles)
MK-100: Synthetic mica (Micromica MK-100, manufactured by Corp Chemical)
ME-100: Synthetic mica (Somasif ME-100, manufactured by Corp Chemical)
SWN: Smectite (Lucentite SWN, manufactured by Corp Chemical)
SPN: Smectite (Lucentite SPN, manufactured by Corp Chemical)
Kunipia F: Montmorillonite (Kunipia F, manufactured by Kunimine Industries)
FSE: Sericite (Sericite FSE, manufactured by Sanshin Mining Co., Ltd.)
SA-1: Saponite-like substance (Smecton SA-1, manufactured by Kunimine Industries)
HVP: Natural bentonite (Esven NE, manufactured by Hojun Co.)
NE: Bentonite (Bengel HVP, manufactured by Hojun Co.)
Imogolite: The one prepared by the method described below was used
 (シランカップリング剤)
 KBM-403:3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越シリコーン製)
 KBM-903:3-アミノプロピルトリメトキシシラン(KBM-903、信越シリコーン製)
 KBM-802:3-メルカプトプロピルメチルジメトキシシラン(KBM-802、信越シリコーン製)
 KBE-846:ビス(トリエトキシシリルプロピル)テトラスルフィド(KBE-846、信越シリコーン製)
(Silane coupling agent)
KBM-403: 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Silicone)
KBM-903: 3-aminopropyltrimethoxysilane (KBM-903, manufactured by Shin-Etsu Silicone)
KBM-802: 3-mercaptopropylmethyldimethoxysilane (KBM-802, manufactured by Shin-Etsu Silicone)
KBE-846: Bis (triethoxysilylpropyl) tetrasulfide (KBE-846, manufactured by Shin-Etsu Silicone)
 ・イモゴライトの調製方法
 オルトケイ酸ナトリウムをイオン交換水に溶解し、3.0mMオルトケイ酸ナトリウム水溶液を10L調製した。得られたオルトケイ酸ナトリウム水溶液を、カラムに充填した陽イオン交換樹脂に流入してイオン交換処理し、3.0mMのオルトケイ酸水溶液を得た。カラムの流速は、得られるオルトケイ酸水溶液の電気伝導率が500μS/cm以下になるように設定した。オルトケイ酸水溶液の電気伝導率は、電気伝導率計ES-51(堀場製作所社製)を用いて、25℃で測定した。
 また、陽イオン交換樹脂は、オルトケイ酸水溶液のpHが5.0になるように、強酸性陽イオン交換樹脂であるアンバーライトIR120B(オルガノ社製)を使用した。オルトケイ酸水溶液のpHは、MODEL(F-71S)(株式会社堀場製作所)を用いて上記方法により測定した。
-Preparation method of imogolite Sodium orthosilicate was dissolved in ion-exchanged water to prepare 10 L of a 3.0 mM sodium orthosilicate aqueous solution. The obtained sodium orthosilicate aqueous solution was ion-exchanged by flowing into a cation exchange resin packed in a column to obtain a 3.0 mM orthosilicate aqueous solution. The flow rate of the column was set so that the electrical conductivity of the resulting orthosilicate aqueous solution was 500 μS / cm or less. The electrical conductivity of the orthosilicate aqueous solution was measured at 25 ° C. using an electrical conductivity meter ES-51 (manufactured by Horiba, Ltd.).
As the cation exchange resin, Amberlite IR120B (manufactured by Organo), which is a strongly acidic cation exchange resin, was used so that the pH of the orthosilicate aqueous solution was 5.0. The pH of the aqueous orthosilicate solution was measured by the above method using MODEL (F-71S) (Horiba, Ltd.).
 上述の方法で得られた3.0mMのオルトケイ酸水溶液を2L、30mMの硝酸アルミニウム水溶液を1L、28mMの尿素水溶液を1L、3.8mMのNaOH水溶液を1L、イオン交換水2Lを混合して、SiとAlのモル濃度が1:2の比になるように混合液を調製した。更に、混合液のpHが3.5になるように4MのNaOH水溶液を滴下した。調製した混合液のpHは上記と同様の方法により測定した。調製した混合液を充分に撹拌した後、この混合液をオートクレーブにて100℃で80時間加熱した。
 混合液を室温に戻した後、5MのNaCl水溶液を混合液に対して1/10体積量加えてゲル化させ、遠心分離することで透明なチューブ状アルミニウムケイ酸塩のゲルを得た。得られたゲルに含まれる塩(NaCl)を、透析膜を用いて除去し、チューブ状アルミニウムケイ酸塩の水分散液を得た。更に、水分散液を100℃で加熱して、水が揮発したのち、更に200℃で1時間加熱してチューブ状アルミニウムケイ酸塩(イモゴライト)の粉末を得た。
2 L of 3.0 mM orthosilicate aqueous solution obtained by the above method, 1 L of 30 mM aluminum nitrate aqueous solution, 1 L of 28 mM urea aqueous solution, 1 L of 3.8 mM NaOH aqueous solution, 2 L of ion-exchanged water, The mixed solution was prepared so that the molar concentration of Si and Al was 1: 2. Further, 4M NaOH aqueous solution was added dropwise so that the pH of the mixed solution was 3.5. The pH of the prepared mixed solution was measured by the same method as described above. After sufficiently stirring the prepared mixed solution, the mixed solution was heated at 100 ° C. for 80 hours in an autoclave.
After returning the mixture to room temperature, 1/10 volume of a 5M NaCl aqueous solution was added to the mixture to cause gelation, followed by centrifugation to obtain a transparent tubular aluminum silicate gel. The salt (NaCl) contained in the obtained gel was removed using a dialysis membrane to obtain an aqueous dispersion of tubular aluminum silicate. Further, the aqueous dispersion was heated at 100 ° C. to evaporate the water, and further heated at 200 ° C. for 1 hour to obtain a powder of tubular aluminum silicate (imogolite).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例1~54、および比較例1~4]
 白色顔料と、シラン化合物溶液と、調整液とを、表3~表6に記載の混合比で混合した。そして、当該混合物を攪拌装置で攪拌して塗布液を調製した。なお、白色顔料は、以下のものを用いた。表3及び表4には、塗布液中の各成分の濃度を示し、塗布液の粘度、塗布量安定性、細線再現性評価結果を示す。各測定方法は以下に示す。一方、表5及び表6には、塗布液を硬化させて得られる反射層中の各成分の濃度を示し、塗布液を硬化させて得られる反射層のクラックの有無、反射層の反射率、及びテープ剥離試験の結果を示す。各測定方法は以下に示す。なお、表3~表6における高表面張力溶媒の量とは、塗布液に含まれる有機溶媒の総量に対する、高表面張力溶媒の量である。
[Examples 1 to 54 and Comparative Examples 1 to 4]
The white pigment, the silane compound solution, and the adjustment liquid were mixed at the mixing ratios shown in Tables 3 to 6. And the said mixture was stirred with the stirring apparatus, and the coating liquid was prepared. The following white pigments were used. Tables 3 and 4 show the concentration of each component in the coating solution, and show the evaluation results of the viscosity of the coating solution, the coating amount stability, and the fine line reproducibility. Each measuring method is shown below. On the other hand, Tables 5 and 6 show the concentration of each component in the reflective layer obtained by curing the coating liquid, the presence or absence of cracks in the reflective layer obtained by curing the coating liquid, the reflectance of the reflective layer, And the result of a tape peeling test is shown. Each measuring method is shown below. In Tables 3 to 6, the amount of the high surface tension solvent is the amount of the high surface tension solvent relative to the total amount of the organic solvent contained in the coating solution.
 (白色顔料)
 CR-93:酸化チタン、石原産業製
 CR-95:酸化チタン、石原産業製
 SX-3103:酸化チタン、堺化学工業製
 D-918:酸化チタン、堺化学工業製
 JR:酸化チタン、テイカ社製
 JR-405:酸化チタン、テイカ社製
 HD-11:酸化アルミニウム、ニッカトー製
 NFJ-3:硫酸バリウム(NFJ-3-1999)、山西物産製
 AP-100S:窒化ホウ素、MARUKA製
(White pigment)
CR-93: Titanium oxide, manufactured by Ishihara Sangyo CR-95: Titanium oxide, manufactured by Ishihara Sangyo SX-3103: Titanium oxide, manufactured by Sakai Chemical Industry D-918: Titanium oxide, manufactured by Sakai Chemical Industry JR: Titanium oxide, manufactured by Teika JR-405: Titanium oxide, manufactured by Teika HD-11: Aluminum oxide, manufactured by Nikkato NFJ-3: Barium sulfate (NFJ-3-1999), manufactured by Sansai Bussan AP-100S: Boron nitride, manufactured by MARUKA
 <粘度評価>
 塗布液の粘度は、振動式粘度計VISCOMATE MODEL VM-10A(セコニック社製)を用いて測定した。測定温度は25℃とし、振動子を液体に浸漬してから、1分後の測定値を使用した。
<Viscosity evaluation>
The viscosity of the coating solution was measured using a vibration viscometer VISCOMATE MODEL VM-10A (manufactured by Seconic). The measurement temperature was 25 ° C., and the measured value after 1 minute was used after the vibrator was immersed in the liquid.
 <塗布量安定性評価>
 塗布量安定性は、ジェットディスペンサーAeroJet(武蔵エンジニアリング社製)を用いて、シリンジに塗布液を充填し、一定の条件下において、連続で10回の線描画を行いた。そして、滴下された液の合計質量を求めた。続いて、シリンジをそのまま保持した状態で、10分毎に同様の操作を行い、4時間後に同条件下において、連続で10回の線描画を行い、滴下された液の合計質量を求めた。
 下記式により、質量変化率を算出した。
 質量変化率=((B-A)/A)×100%
 上記式において、Aは、最初の10回で滴下された液の合計質量であり、Bは、4時間後に10回で滴下された液の合計質量である。
 当該質量変化率に基づき、塗布量安定性を以下のように評価した。
 ○:質量変化率が3%未満であった
 △:質量変化率が3%以上6%未満であった
<Evaluation of coating amount stability>
For the coating amount stability, a jet dispenser AeroJet (manufactured by Musashi Engineering Co., Ltd.) was used to fill the syringe with the coating liquid, and line drawing was performed 10 times continuously under certain conditions. And the total mass of the dripped liquid was calculated | required. Subsequently, the same operation was performed every 10 minutes while holding the syringe as it was, and after 4 hours, 10 lines were continuously drawn under the same conditions to obtain the total mass of the dropped liquid.
The mass change rate was calculated by the following formula.
Mass change rate = ((BA) / A) × 100%
In the above formula, A is the total mass of the liquid dropped in the first 10 times, and B is the total mass of the liquid dropped in 10 times after 4 hours.
Based on the mass change rate, the coating amount stability was evaluated as follows.
○: Mass change rate was less than 3% Δ: Mass change rate was 3% or more and less than 6%
 <細線再現性評価>
 塗布液の細線再現性は、ジェットディスペンサーAeroJet(武蔵エンジニアリング社製)を用いて、シリンジに塗布液を充填し、銀板上に塗布液を線状に塗布した。描画された線幅を測定し、以下のように評価した。
 ◎:線幅が300μm未満であった
 ○:線幅が300μm以上400μm未満であった
 △:線幅が400μm以上500μm未満であった
 ×:線幅が500μm以上であった
<Evaluation of fine line reproducibility>
The fine line reproducibility of the coating liquid was such that a jet dispenser AeroJet (manufactured by Musashi Engineering Co., Ltd.) was used to fill the syringe with the coating liquid, and the coating liquid was applied linearly on a silver plate. The drawn line width was measured and evaluated as follows.
A: Line width was less than 300 μm B: Line width was 300 μm or more and less than 400 μm Δ: Line width was 400 μm or more and less than 500 μm ×: Line width was 500 μm or more
 <製膜性評価(成膜時のクラック)>
 銀板上に塗布液を塗布し、150℃、1時間の熱処理により、硬化させて、厚さ20μmの反射層を備えた測定サンプルを作製した。このときの反射層の状態を目視で観察し、以下のように判断した。
 ○:反射層にクラックがみられなかった
 △:反射層に僅かなクラックが発生したが、反射層の欠落はみられなかった
 ×:反射層にクラックが発生し、反射層の一部が基板から欠落した
<Evaluation of film formability (cracks during film formation)>
A coating solution was applied on a silver plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 μm. The state of the reflective layer at this time was visually observed and judged as follows.
○: No crack was observed in the reflective layer. Δ: A slight crack occurred in the reflective layer, but the reflective layer was not missing. ×: A crack occurred in the reflective layer, and a part of the reflective layer was a substrate. Missing from
 <反射率測定>
 透明な1mmのガラス板に塗布液を塗布し、150℃、1時間の熱処理により、硬化させて、厚さ20μmの反射層を備えた測定サンプルを作製した。そして、分光光度計V-670(日本分光株式会社製)により、各サンプルの反射率を測定した。評価結果の判断は、以下のように行った。
 ○:波長500nmにおける反射率が95%以上であった
 △:波長500nmにおける反射率が90%以上、95%未満であった
 ×: 波長500nmにおける反射率が90%未満であった
<Reflectance measurement>
The coating solution was applied to a transparent 1 mm glass plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 μm. Then, the reflectance of each sample was measured with a spectrophotometer V-670 (manufactured by JASCO Corporation). The evaluation results were judged as follows.
○: Reflectance at a wavelength of 500 nm was 95% or more Δ: Reflectance at a wavelength of 500 nm was 90% or more and less than 95% ×: Reflectance at a wavelength of 500 nm was less than 90%
 <テープ剥離実験>
 銀板上に塗布液を塗布し、150℃、1時間の熱処理により、硬化させて、厚さ20μmの反射層を備えた測定サンプルを作製した。形成された反射層にニチバン製セロテープ(登録商標)(24mm)を貼り付け、直ちに剥がす作業を20回繰り返して行った。そして、各回の作業毎に反射層の状態を顕微鏡により観察し、以下のように判断した。
 ◎:20回作業後も反射層の剥離がみられず、テープの表面に何も付着しなかった
 ○:10回作業後は剥離がみられなかったが、20回作業後には、僅かに剥離がみられた
 △:剥離は生じなかったが、1回目の作業後に、テープの表面に、白色顔料の粉が僅かに付着した
 ×:10回作業時点で反射層の剥離が発生していた
<Tape peeling experiment>
A coating solution was applied on a silver plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 μm. The work of attaching Nichiban cello tape (registered trademark) (24 mm) to the formed reflective layer and immediately peeling it off was repeated 20 times. And the state of the reflective layer was observed with the microscope for every operation | work, and it judged as follows.
A: No peeling of reflective layer was observed after 20 times of operation, and nothing adhered to the surface of the tape. ○: No separation was observed after 10 times of operation, but after 20 times of operation, it was slightly peeled off. △: No peeling occurred, but after the first work, a small amount of white pigment powder adhered to the surface of the tape. X: The reflective layer was peeled off at the 10th working time.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3及び表4に示されるように、有機溶媒の総量に対する高表面張力溶媒の量が、45質量%以上である場合には、塗布液の細線再現性評価が良好であった(実施例1~54、及び比較例1、2、4)。高表面張力溶媒によって、塗布液が基板(銀板)上で濡れ広がり難かったと推察される。ただし、表6に示されるように、高表面張力溶媒の量が90質量%を超えると、細線再現性は良好であるものの、硬化膜にクラックが生じた(比較例4)。高表面張力溶媒の量が多く、有機溶媒が揮発し難かったため、塗膜表面のアルコキシシランが重合後に、塗膜内部から溶媒が揮発することとなり、硬化膜にクラックが生じたと推察される。 As shown in Tables 3 and 4, when the amount of the high surface tension solvent relative to the total amount of the organic solvent was 45% by mass or more, the fine line reproducibility evaluation of the coating solution was good (Example 1). To 54 and Comparative Examples 1, 2, 4). It is inferred that the coating liquid was difficult to wet and spread on the substrate (silver plate) due to the high surface tension solvent. However, as shown in Table 6, when the amount of the high surface tension solvent exceeded 90% by mass, fine line reproducibility was good, but cracks occurred in the cured film (Comparative Example 4). Since the amount of the high surface tension solvent was large and the organic solvent was difficult to volatilize, the solvent was volatilized from the inside of the coating film after polymerization of the alkoxysilane on the coating film surface, and it was assumed that cracks occurred in the cured film.
 また、表6に示されるように、高表面張力溶媒の量が、45~90質量%であったとしても、R4/R3が3を超える場合には、硬化膜にクラックが生じた(比較例1)。4官能アルコキシシランの量が多く、ポリシロキサンの架橋密度が過度に高まったため、硬化時にひずみが生じたと推察される。一方、R2が40を超える場合には、硬化膜と基板との密着性が低かった(比較例2)。2官能アルコキシシランの量が多く、硬化膜中のポリシロキサンと、基板表面のOH基等と十分にシロキサン結合し難かったと推察される。 Further, as shown in Table 6, even when the amount of the high surface tension solvent was 45 to 90% by mass, when R4 / R3 exceeded 3, cracks occurred in the cured film (Comparative Example). 1). Since the amount of tetrafunctional alkoxysilane is large and the crosslink density of polysiloxane is excessively increased, it is presumed that distortion occurred during curing. On the other hand, when R2 exceeded 40, the adhesion between the cured film and the substrate was low (Comparative Example 2). It is presumed that the amount of the bifunctional alkoxysilane was large, and it was difficult to sufficiently bond the siloxane to the polysiloxane in the cured film and the OH group or the like on the substrate surface.
 さらに、表3及び表4に示されるように、塗布液の粘度が5mPa・s超であると、塗布量の安定性評価が高まった(実施例2~54、及び比較例1~4)。塗布液中で白色顔料が沈降し難かったと推察される。一方、塗布液の粘度が2000mPa・s以下であると、細線再現性の評価が高まりやすかった(実施例1~10、及び実施例12~54)。 Furthermore, as shown in Tables 3 and 4, when the viscosity of the coating solution was more than 5 mPa · s, the stability evaluation of the coating amount increased (Examples 2 to 54 and Comparative Examples 1 to 4). It is inferred that the white pigment was difficult to settle in the coating solution. On the other hand, when the viscosity of the coating solution was 2000 mPa · s or less, the evaluation of fine line reproducibility was likely to increase (Examples 1 to 10 and Examples 12 to 54).
 また、表5及び表6に示されるように、アルコキシシラン化合物にオリゴマーが含まれる(アルコキシシラン化合物溶液1~3、もしくは5~21)と、得られる反射層にクラックが生じ難かった(実施例1~14、及び実施例16~54)。アルコキシシラン化合物が予め重合されていることで、加水分解・重縮合反応時の体積収縮等が小さく、膜に歪みが生じ難かったと推察される。それに対し、シラン化合物を予め重合させずに使用すると、加水分解・重縮合反応時の体積収縮によって、僅かにクラックが発生した(実施例15)。 Further, as shown in Tables 5 and 6, when an oligomer was included in the alkoxysilane compound (alkoxysilane compound solution 1 to 3, or 5 to 21), the resulting reflective layer was hardly cracked (Examples) 1-14 and Examples 16-54). It is presumed that the alkoxysilane compound is polymerized in advance, so that the volume shrinkage during the hydrolysis / polycondensation reaction is small and the film is hardly distorted. On the other hand, when the silane compound was used without being polymerized in advance, a slight crack was generated due to volume shrinkage during the hydrolysis / polycondensation reaction (Example 15).
 また、白色顔料の含有率が低い場合(50質量%未満である場合)には、白色顔料が50質量%以上である場合と比較して若干反射率が低くなった(実施例10の反射率)。一方、白色顔料の含有率が高すぎる場合(95質量%超である場合)には、バインダが相対的に不足して、表面から僅かに粉が見られた(実施例13のテープ剥離)。 Further, when the white pigment content was low (less than 50% by mass), the reflectance was slightly lower than when the white pigment was 50% by mass or more (the reflectance of Example 10). ). On the other hand, when the white pigment content was too high (over 95% by mass), the binder was relatively insufficient, and a slight amount of powder was seen from the surface (tape peeling in Example 13).
 さらに、塗布液に含まれる無機粒子が、平均粒径が5nm以上100nm未満の金属酸化物微粒子であると、当該金属酸化物微粒子のアンカー効果によって、得られる反射層の密着性と基板との密着性(テープテストの評価)が高まりやすかった(実施例3、5、9、10、11)。
 また、塗布液にシランカップリング剤が含まれる場合にも、基板との密着性(テープテストの評価)が高まりやすかった(実施例7~9、14、15、21、23、24)。
Furthermore, when the inorganic particles contained in the coating liquid are metal oxide fine particles having an average particle size of 5 nm or more and less than 100 nm, the adhesion of the resulting reflective layer and the adhesion between the substrate and the substrate due to the anchor effect of the metal oxide fine particles The property (evaluation of the tape test) was likely to increase (Examples 3, 5, 9, 10, 11).
In addition, when the coating solution contained a silane coupling agent, adhesion to the substrate (evaluation of the tape test) was likely to increase (Examples 7 to 9, 14, 15, 21, 23, 24).
 本出願は、2014年9月26日出願の特願2014-197074号に基づく優先権を主張する。この出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2014-197074 filed on September 26, 2014. The contents described in this application specification and the drawings are all incorporated herein by reference.
 本発明の塗布液は、所望の領域に高精細に塗布することが可能である。また、当該塗布液を硬化して得られる反射層は、劣化が少なく、長期間に亘って効率良く光を反射可能である。したがって、LED装置の反射層を形成するための組成物として、非常に有用である。 The coating liquid of the present invention can be applied to a desired region with high definition. In addition, the reflective layer obtained by curing the coating solution is less deteriorated and can efficiently reflect light over a long period of time. Therefore, it is very useful as a composition for forming a reflective layer of an LED device.
 1 基板
 2 LED素子
 3 電極
 11 波長変換層
 21 反射層
 100 LED装置
DESCRIPTION OF SYMBOLS 1 Substrate 2 LED element 3 Electrode 11 Wavelength conversion layer 21 Reflective layer 100 LED device

Claims (12)

  1.  白色顔料と、アルコキシシラン化合物と、有機溶媒と、を含む塗布液であり、
     前記アルコキシシラン化合物の総量に対する、2官能アルコキシシラン化合物の比率をR2(モル%)、3官能アルコキシシラン化合物の比率をR3(モル%)、4官能アルコキシシラン化合物の比率をR4(モル%)、としたとき(ただし、R2、R3、及びR4の合計は100モル%)、下記式1及び式2の両条件を満たし、
     0≦R2<40           (式1)
     0≦R4/R3≦3         (式2)
     前記有機溶媒が、前記有機溶媒の総量に対して、25℃における表面張力が30mN/m以上である高表面張力有機溶媒を45~90質量%含む、塗布液。
    A coating liquid containing a white pigment, an alkoxysilane compound, and an organic solvent,
    The ratio of the bifunctional alkoxysilane compound to the total amount of the alkoxysilane compound is R2 (mol%), the ratio of the trifunctional alkoxysilane compound is R3 (mol%), the ratio of the tetrafunctional alkoxysilane compound is R4 (mol%), (However, the total of R2, R3, and R4 is 100 mol%), satisfying both conditions of the following formula 1 and formula 2,
    0 ≦ R2 <40 (Formula 1)
    0 ≦ R4 / R3 ≦ 3 (Formula 2)
    The coating solution, wherein the organic solvent contains 45 to 90% by mass of a high surface tension organic solvent having a surface tension of 30 mN / m or more at 25 ° C. with respect to the total amount of the organic solvent.
  2.  前記高表面張力有機溶媒が、1価アルコール、多価アルコール、ケトン系溶媒、エステル系溶媒、アミン系溶媒、アミド系溶媒、含硫黄系溶媒からなる群から選ばれる、請求項1に記載の塗布液。 The coating according to claim 1, wherein the high surface tension organic solvent is selected from the group consisting of monohydric alcohols, polyhydric alcohols, ketone solvents, ester solvents, amine solvents, amide solvents, and sulfur-containing solvents. liquid.
  3.  前記アルコキシシラン化合物の少なくとも一部が、2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、または4官能アルコキシシラン化合物の重合体である、請求項1または2に記載の塗布液。 The coating liquid according to claim 1 or 2, wherein at least a part of the alkoxysilane compound is a polymer of a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, or a tetrafunctional alkoxysilane compound.
  4.  無機粒子または粘土鉱物粒子をさらに含む、請求項1~3のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 3, further comprising inorganic particles or clay mineral particles.
  5.  シランカップリング剤をさらに含む、請求項1~4のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 4, further comprising a silane coupling agent.
  6.  振動式粘度計にて25℃で測定される粘度が、5mPa・s超、2000mPa・s以下である、請求項1~5のいずれか一項に記載の塗布液。 6. The coating liquid according to claim 1, wherein the viscosity measured at 25 ° C. with a vibration viscometer is more than 5 mPa · s and not more than 2000 mPa · s.
  7.  加熱硬化後の固形分の全質量に対して、白色顔料を50~95質量%含む、請求項1~6のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 6, comprising a white pigment in an amount of 50 to 95% by mass based on the total mass of the solid content after heat curing.
  8.  基板と、前記基板上に配置されたLED素子と、前記LED素子の周囲に形成された反射層とを含むLED装置の製造方法であって、
     前記LED素子が配置された前記基板の周囲に、請求項1~7のいずれか一項に記載の塗布液を塗布し、硬化させる工程を含む、LED装置の製造方法。
    A method for manufacturing an LED device, comprising: a substrate; an LED element disposed on the substrate; and a reflective layer formed around the LED element,
    A method for manufacturing an LED device, comprising: applying and curing the coating solution according to any one of claims 1 to 7 around the substrate on which the LED elements are arranged.
  9.  前記塗布液を、非接触式の吐出装置で塗布する、請求項8に記載のLED装置の製造方法。 The method for manufacturing an LED device according to claim 8, wherein the coating liquid is applied by a non-contact type discharge device.
  10.  前記吐出装置が、ジェットディスペンサーである、請求項9に記載のLED装置の製造方法。 The method for manufacturing an LED device according to claim 9, wherein the discharge device is a jet dispenser.
  11.  基板と、前記基板上に配置されたLED素子と、前記LED素子の周囲の前記基板上に形成された反射層と、を有するLED装置であって、
     前記反射層が、請求項1~7のいずれか一項に記載の塗布液の硬化膜である、LED装置。
    An LED device comprising: a substrate; an LED element disposed on the substrate; and a reflective layer formed on the substrate around the LED element,
    An LED device, wherein the reflective layer is a cured film of the coating liquid according to any one of claims 1 to 7.
  12.  前記反射層が、前記基板と前記LED素子との間にさらに形成されている、請求項11に記載のLED装置。 The LED device according to claim 11, wherein the reflective layer is further formed between the substrate and the LED element.
PCT/JP2015/077077 2014-09-26 2015-09-25 Coating liquid, method for manufacturing led device using same, and led device WO2016047746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014197074 2014-09-26
JP2014-197074 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047746A1 true WO2016047746A1 (en) 2016-03-31

Family

ID=55581262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077077 WO2016047746A1 (en) 2014-09-26 2015-09-25 Coating liquid, method for manufacturing led device using same, and led device

Country Status (1)

Country Link
WO (1) WO2016047746A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103326A1 (en) * 2012-12-27 2014-07-03 コニカミノルタ株式会社 Coating liquid, and led device provided with reflective layer that is formed of cured product of said coating liquid
JP2014158011A (en) * 2013-01-16 2014-08-28 Konica Minolta Inc Method for manufacturing led device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103326A1 (en) * 2012-12-27 2014-07-03 コニカミノルタ株式会社 Coating liquid, and led device provided with reflective layer that is formed of cured product of said coating liquid
JP2014158011A (en) * 2013-01-16 2014-08-28 Konica Minolta Inc Method for manufacturing led device

Similar Documents

Publication Publication Date Title
US9708492B2 (en) LED device and coating liquid used for production of same
WO2014103326A1 (en) Coating liquid, and led device provided with reflective layer that is formed of cured product of said coating liquid
JP5541433B1 (en) Method for manufacturing phosphor dispersion liquid and method for manufacturing LED device
JP5843016B2 (en) LED device and manufacturing method thereof
WO2014104295A1 (en) Light emitting device
JP2014158011A (en) Method for manufacturing led device
WO2013099193A1 (en) Sealant for led device, led device, and method for producing led device
JP2014130871A (en) Light emitting device
JP5910340B2 (en) LED device and manufacturing method thereof
JP2014138081A (en) Light emitting device, wavelength conversion-light diffusion element, method for manufacturing the same, and composition for forming light diffusion ceramic layer
JP2014135400A (en) Light emitting device and wavelength conversion element
JP2016154179A (en) Light-emitting device and manufacturing method thereof
JPWO2015011925A1 (en) Manufacturing method of LED device
WO2014103330A1 (en) Phosphor dispersion, led device and method for manufacturing same
JP2014019844A (en) Phosphor dispersion and method for manufacturing led device
JP2014130903A (en) Semiconductor light-emitting device and manufacturing method of the same
JP2014127495A (en) Led device and method for manufacturing the same
JP2016181535A (en) Light-emitting device, and coating liquid for manufacturing light-emitting device
JP5729327B2 (en) Manufacturing method of LED device
JP2014160713A (en) Led device manufacturing method
WO2016047745A1 (en) Coating liquid, production method for led device using same, and led device
WO2016047746A1 (en) Coating liquid, method for manufacturing led device using same, and led device
WO2015049865A1 (en) Sealing agent for light emitting elements and led device
WO2016024604A1 (en) Inorganic-microparticle-containing polysilsesquioxane composition, method for producing same, light-emitting device, and method for producing same
WO2016043159A1 (en) Phosphor dispersion liquid, method for manufacturing led device using same, and led device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP