WO2016046679A1 - Compositions et procédés de traitement du diabète et du pré-diabète - Google Patents
Compositions et procédés de traitement du diabète et du pré-diabète Download PDFInfo
- Publication number
- WO2016046679A1 WO2016046679A1 PCT/IB2015/056835 IB2015056835W WO2016046679A1 WO 2016046679 A1 WO2016046679 A1 WO 2016046679A1 IB 2015056835 W IB2015056835 W IB 2015056835W WO 2016046679 A1 WO2016046679 A1 WO 2016046679A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- diabetes
- pharmaceutically acceptable
- administration
- compound
- Prior art date
Links
- 0 *CC=CCC=CCCCC(OCC(CO)(CO)N)=O Chemical compound *CC=CCC=CCCCC(OCC(CO)(CO)N)=O 0.000 description 7
- ZSBOMTDTBDDKMP-UHFFFAOYSA-N CN(C(C=C(N1Cc(cccc2)c2C#N)N(CCC2)CC2N)=O)C1=O Chemical compound CN(C(C=C(N1Cc(cccc2)c2C#N)N(CCC2)CC2N)=O)C1=O ZSBOMTDTBDDKMP-UHFFFAOYSA-N 0.000 description 2
- SHEWGSOBTQAYNV-UHFFFAOYSA-N C=COC(C(c(cc1)ccc1N)Oc1cc(C(N)(N)NC(Oc(cccc2)c2C(O)=O)=O)ccc1)=O Chemical compound C=COC(C(c(cc1)ccc1N)Oc1cc(C(N)(N)NC(Oc(cccc2)c2C(O)=O)=O)ccc1)=O SHEWGSOBTQAYNV-UHFFFAOYSA-N 0.000 description 1
- NTTBRRQDSZPGCI-NKUHCKNESA-N CC(C)(C)OC(CCNC1=[O](C)C(C)(CO)[C@H]1O)=O Chemical compound CC(C)(C)OC(CCNC1=[O](C)C(C)(CO)[C@H]1O)=O NTTBRRQDSZPGCI-NKUHCKNESA-N 0.000 description 1
- DOIBTSWADWWEKE-KUBAVDMBSA-N CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC(OCC(CO)(CO)N)=O Chemical compound CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC(OCC(CO)(CO)N)=O DOIBTSWADWWEKE-KUBAVDMBSA-N 0.000 description 1
- HARDIITVFNUBHP-WYVIKCPFSA-N CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCCC(OCC(C)([C@H]1O)[O](C)=C1NCCC(OC(C)(C)C)=O)=O Chemical compound CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCCC(OCC(C)([C@H]1O)[O](C)=C1NCCC(OC(C)(C)C)=O)=O HARDIITVFNUBHP-WYVIKCPFSA-N 0.000 description 1
- CKLZAJXFJWQZOI-AHNJITHFSA-M CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC[NH+]([O-])OCC(C)(C)[C@H](C(NCCC([O-])=O)=O)O Chemical compound CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC[NH+]([O-])OCC(C)(C)[C@H](C(NCCC([O-])=O)=O)O CKLZAJXFJWQZOI-AHNJITHFSA-M 0.000 description 1
- SYOKIDBDQMKNDQ-UHFFFAOYSA-N N#CC(CCC1)N1C(CNC(CC(C1)C2)(CC1C1)CC21O)=O Chemical compound N#CC(CCC1)N1C(CNC(CC(C1)C2)(CC1C1)CC21O)=O SYOKIDBDQMKNDQ-UHFFFAOYSA-N 0.000 description 1
- ZYCZPWOBFUTTSF-UHFFFAOYSA-N NC(CO)(CO)COOCCS(ONCCS(O)(=O)=O)(=O)=O Chemical compound NC(CO)(CO)COOCCS(ONCCS(O)(=O)=O)(=O)=O ZYCZPWOBFUTTSF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C219/00—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C219/02—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C219/04—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C219/08—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/22—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/24—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/34—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
- C07C233/35—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/38—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/45—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
- C07C233/46—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/49—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/04—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C235/12—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/42—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/44—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
- C07C235/58—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring
- C07C235/60—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/28—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
- C07C237/30—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C279/00—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
- C07C279/04—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton
- C07C279/14—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton being further substituted by carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/02—Sulfonic acids having sulfo groups bound to acyclic carbon atoms
- C07C309/03—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C309/07—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
- C07C309/08—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing hydroxy groups bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/02—Sulfonic acids having sulfo groups bound to acyclic carbon atoms
- C07C309/03—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C309/07—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
- C07C309/12—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing esterified hydroxy groups bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/02—Sulfonic acids having sulfo groups bound to acyclic carbon atoms
- C07C309/03—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C309/13—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/26—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C317/28—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/23—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C323/24—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
- C07C323/25—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C327/00—Thiocarboxylic acids
- C07C327/20—Esters of monothiocarboxylic acids
- C07C327/30—Esters of monothiocarboxylic acids having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms, not being part of nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C55/00—Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
- C07C55/02—Dicarboxylic acids
- C07C55/10—Succinic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/40—Unsaturated compounds
- C07C59/58—Unsaturated compounds containing ether groups, groups, groups, or groups
- C07C59/64—Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
- C07C59/66—Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings
- C07C59/68—Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C65/00—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C65/01—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
- C07C65/03—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
- C07C65/05—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring o-Hydroxy carboxylic acids
- C07C65/10—Salicylic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C65/00—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C65/21—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/12—Acetic acid esters
- C07C69/14—Acetic acid esters of monohydroxylic compounds
- C07C69/145—Acetic acid esters of monohydroxylic compounds of unsaturated alcohols
- C07C69/157—Acetic acid esters of monohydroxylic compounds of unsaturated alcohols containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/593—Dicarboxylic acid esters having only one carbon-to-carbon double bond
- C07C69/60—Maleic acid esters; Fumaric acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/62—Halogen-containing esters
- C07C69/63—Halogen-containing esters of saturated acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/73—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
- C07C69/732—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/84—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/65—One oxygen atom attached in position 3 or 5
- C07D213/66—One oxygen atom attached in position 3 or 5 having in position 3 an oxygen atom and in each of the positions 4 and 5 a carbon atom bound to an oxygen, sulphur, or nitrogen atom, e.g. pyridoxal
- C07D213/67—2-Methyl-3-hydroxy-4,5-bis(hydroxy-methyl)pyridine, i.e. pyridoxine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/64—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/14—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D295/145—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
- C07D295/15—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D339/00—Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
- C07D339/02—Five-membered rings
- C07D339/04—Five-membered rings having the hetero atoms in positions 1 and 2, e.g. lipoic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/02—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
- C07D473/04—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
- C07D473/06—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/05—Isotopically modified compounds, e.g. labelled
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- This disclosure generally relates to compounds and compositions for the treatment of diabetes and pre-diabetes. More particularly, this invention relates to treating subjects with a pharmaceutically acceptable dose of compounds, crystals, solvates, enantiomer, stereoisomer, esters, salts, hydrates, prodrugs, or mixtures thereof.
- the multifaceted metabolic syndrome is defined as a number of major metabolic disorders that enhances the risk of cardiovascular disease (CVD) - still the most important cause of death in the Western world - and type 2 diabetes mellitus. It is also known as the insulin resistance syndrome, syndrome X, dysmetabolic syndrome, or the deadly quartet, and is characterized by aberrations in a wide variety of metabolic risk markers such as hyperinsulinemia, impaired glucose metabolism, elevated plasma levels of triglycerides, decreased levels of high-density lipoprotein cholesterol (HDL-C), raised blood pressure, centrally distributed obesity, impaired endothelial and haemostatic function, and a low-grade inflammatory state.
- CVD cardiovascular disease
- Type 2 Diabetes Mellitus is characterized by fasting and postprandial hyperglycemia and relative insulin insufficiency. If left untreated, then hyperglycemia may cause long term microvascular and macrovascular complications, such as nephropathy, neuropathy, retinopathy, and atherosclerosis. This disease causes significant morbidity and mortality at considerable expense to patients, their families and society.
- T2DM is now increasing at more rapid rates in Africa, Asia and South America than in Europe or the U.S. Thus, T2DM is now considered worldwide epidemic.
- Oxidative stress has long been associated with the late complications of diabetes, and has been implicated in their etiology.
- the reactive oxygen intermediates, produced in mitochondria, peroxisomes, and the cytosol are scavenged by cellular defending systems, including enzymatic (ex. superoxide dismutase, glutathione peroxidase GPx, glutathione reductase and catalase) and nonenzymatic antioxidants (ex. glutathione G-SH, thioredoxin, lipoic acid, ubiquinol, albumin, uric acid, flavonoids, vitamins A, C and E, etc.). Some are located in cell membranes, others in the cytosol, and others in the blood plasma.
- oxidative stress may determine the onset and progression of late-diabetes complications controversy exists about whether the increased oxidative stress is merely associative rather than causal in diabetes.
- the present invention provides compounds, compositions containing the dipeptidyl peptidase-4 inhibitor salts or mixtures and methods for using the same to treat, prevent and/or ameliorate the effects of the conditions such as diabetes and pre-diabetes.
- the invention herein provides compositions comprising of formula I or pharmaceutical acceptable salts thereof.
- the invention also provides pharmaceutical compositions comprising one or more compounds of formula I or intermediates thereof and one or more of pharmaceutically acceptable carriers, vehicles or diluents. These compositions may be used in the treatment of diabetes and pre-diabetes and its associated complications.
- the present invention relates to the compounds and compositions of formula I, or pharmaceutically acceptable solvates, hydrates, polymorphs or mixtures thereof,
- RH independently represents
- R 1 represents N0 2 .
- R represents OH or OD.
- compositions of formula I are typically compounds in the forms of salts of alogliptan and at least one represented by RH, in which the alogliptan moiety is protonated and the RH moiety is at least in partially ionic form. In some instances, however, for example depending on the pH of the environment, the composition may be in the form of a mixture of alogliptan in a pharmaceutically acceptable salt form and RH components.
- the invention also provides pharmaceutical compositions comprising compositions of formula I and pharmaceutically acceptable solvates, hydrates, polymorph, enantiomers or stereoisomers.
- the present invention relates to the compounds and compositions of formula II, or pharmaceutically acceptable solvates, hydrates, polymorphs or mixtures thereof,
- RH independently represents
- R 1 represents N0 2 .
- R represents OH or OD.
- compositions of formula II are typically compounds in the forms of salts of gemigliptin and at least one represented by RH, in which the gemigliptin moiety is protonated and the RH moiety is at least in partially ionic form. In some instances, however, for example depending on the pH of the environment, the composition may be in the form of a mixture of gemigliptin in a pharmaceutically acceptable salt form and RH components.
- the invention also provides pharmaceutical compositions comprising compositions of formula II and pharmaceutically acceptable solvates, hydrates, polymorph, enantiomers or stereoisomers.
- the present invention relates to the compounds and compositions of formula III, or pharmaceutically acceptable solvates, hydrates, polymorphs or mixtures thereof,
- RH independently represents
- R 1 represents N0 2
- R 2 represents OH or OD
- compositions of formula III are typically compounds in the forms of salts of linagliptin and at least one represented by RH, in which the linagliptin moiety is protonated and the RH moiety is at least in partially ionic form. In some instances, however, for example depending on the pH of the environment, the composition may be in the form of a mixture of linagliptin in a pharmaceutically acceptable salt form and RH components.
- the invention also provides pharmaceutical compositions comprising compositions of formula III and pharmaceutically acceptable solvates, hydrates, polymorph, enantiomers or stereoisomers.
- the present invention relates to the compounds and compositions of formula IV, or pharmaceutically acceptable solvates, hydrates, polymorphs or mixtures thereof,
- RH independently represents
- R 1 represents N0 2 .
- compositions of formula IV are typically compounds in the forms of salts of saxagliptin and at least one represented by RH, in which the saxagliptin moiety is protonated and the RH moiety is at least in partially ionic form. In some instances, however, for example depending on the pH of the environment, the composition may be in the form of a mixture of saxagliptin in a pharmaceutically acceptable salt form and RH components.
- the invention also provides pharmaceutical compositions comprising compositions of formula IV and pharmaceutically acceptable solvates, hydrates, polymorph, enantiomers or stereoisomers.
- the present invention relates to the compounds and compositions of formula V, or pharmaceutically acceptable solvates, hydrates, polymorphs or mixtures thereof,
- RH independently represents
- R 1 represents N0 2 .
- R represents OH or OD.
- compositions of formula V are typically compounds in the forms of salts of sitagliptin and at least one represented by RH, in which the sitagliptin moiety is protonated and the RH moiety is at least in partially ionic form. In some instances, however, for example depending on the pH of the environment, the composition may be in the form of a mixture of sitagliptin in a pharmaceutically acceptable salt form and RH components.
- the invention also provides pharmaceutical compositions comprising compositions of formula V and pharmaceutically acceptable solvates, hydrates, polymorph, enantiomers or stereoisomers.
- the present invention relates to the compounds and compositions of formula VI, or pharmaceutically acceptable solvates, hydrates, polymorphs or mixtures thereof,
- R 1 represents N0 2 .
- R 2 represents OH or OD.
- compositions of formula VI are typically compounds in the forms of salts of vildagliptan and at least one represented by RH, in which the vildagliptan moiety is protonated and the RH moiety is at least in partially ionic form. In some instances, however, for example depending on the pH of the environment, the composition may be in the form of a mixture of vildagliptan in a pharmaceutically acceptable salt form and RH components.
- the invention also provides pharmaceutical compositions comprising compositions of formula VI and pharmaceutically acceptable solvates, hydrates, polymorph, enantiomers or stereoisomers.
- the invention further provides methods for treating diabetes (especially type 2 diabetes), obesity, cardiac arrhythmia, myocardial infarction and elevated triglycerides.
- the compounds and compositions of this invention may provide high blood levels of the compositions of formula I, formula II, formula III, formula IV, formula V or formula VI , when administered to patients, preferably by oral administration.
- kits comprising any of the pharmaceutical compositions disclosed herein.
- the kit may comprise instructions for use in the treatment of diabetes and pre-diabetes or its related complications.
- the application also discloses a pharmaceutical composition
- a pharmaceutical composition comprising a pharmaceutically acceptable carrier and any of the compositions herein.
- the pharmaceutical composition is formulated for systemic administration, oral administration, sustained release, parenteral administration, injection, subdermal administration, or transdermal administration.
- kits comprising the pharmaceutical compositions described herein.
- the kits may further comprise instructions for use in the treatment of diabetes and pre-diabetes or its related complications.
- compositions described herein have several uses.
- the present application provides, for example, methods of treating a patient suffering from diabetes and pre-diabetes or its related complications manifested from metabolic or genetic conditions or disorders, metabolic diseases, chronic diseases or disorders; neurodegenerative disorders, metabolic condition, Hepatology, Cancer, Respiratory, Hematological, Orthopedic, Cardiovascular, Renal, Skin, Vascular or Ocular complications.
- Figure - 1 compound 7 of Example - 1, 1H NMR (CDCL 3 ) data.
- Figure - 2 compound 7 of Example - 1, 13C NMR data.
- Figure - 3 compound 4 of Example - 2, 1H NMR (CDCL 3 ) data.
- Figure - 4 compound 4 of Example - 2, 13C NMR data.
- the compounds of the present invention can be present in the form of pharmaceutically acceptable dipeptidyl peptidase-4 inhibitor salts.
- the compounds of the present invention can also be present in the form of pharmaceutically acceptable esters (i.e., the methyl and ethyl esters of the acids (RH) of formula I, formula II, formula III, formula IV, formula V and formula VI to be used as prodrugs).
- RH of formula I, formula II, formula III, formula IV, formula V and formula VI represents an omega-3 polyunsaturated fatty acid molecular conjugate in a prodrug form.
- the compounds of the present invention can also be solvated, i.e. hydrated.
- the solvation can be affected in the course of the manufacturing process or can take place i.e. as a consequence of hygroscopic properties of an initially anhydrous compound of formula I, formula II, formula III, formula IV, formula V and formula VI (hydration).
- isomers Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed “isomers.” Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers.” Diastereomers are stereoisomers with opposite configuration at one or more chiral centers which are not enantiomers. Stereoisomers bearing one or more asymmetric centers that are non- superimposable mirror images of each other are termed "enantiomers.” When a compound has an asymmetric center, for example, if a carbon atom is bonded to four different groups, a pair of enantiomers is possible.
- An enantiomer can be characterized by the absolute configuration of its asymmetric center or centers and is described by the R- and S-sequencing rules of Cahn, lngold and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (-)-isomers respectively).
- a chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a "racemic mixture".
- Pantothenic acid also called pantothenate or vitamin B5 (a B vitamin)
- pantothenate a B vitamin
- vitamin B5 a B vitamin
- D dextrorotatory
- L levorotatory
- the compounds of formula I can exist in isomers form, either in R-isomer or S- isomer or in a racemic mixture form
- the compounds of formula III can exist in isomers form, either in R-isomer or S- isomer or in a racemic mixture form
- the compounds of formula IV can exist in isomers form, either in R-isomer or S- isomer or in a racemic mixture form
- the compounds of formula V can exist in isomers form, either in R-isomer or S- isomer or in a racemic mixture form
- the compounds of formula VI can exist in isomers form, either in R-isomer or S- isomer or in a racemic mixture form
- metabolic condition refers to an Inborn errors of metabolism (or genetic metabolic conditions) are genetic disorders that result from a defect in one or more metabolic pathways; specifically, the function of an enzyme is affected and is either deficient or completely absent.
- parenteral administration and “administered parenterally” as used herein refer to modes of administration other than enteral and topical administration, such as injections, and include without limitation intravenous, intramuscular, intrapleural, intravascular, intrapericardial, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradennal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrastemal injection and infusion.
- a "patient,” “subject,” or “host” to be treated by the subject method may mean either a human or non-human animal, such as primates, mammals, and vertebrates.
- compositions, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of mammals, human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- phrases "pharmaceutically acceptable carrier” is art-recognized, and includes, for example, pharmaceutically acceptable materials, compositions or vehicles, such as a liquid or solid filler, diluent, solvent or encapsulating material involved in carrying or transporting any subject composition, from one organ, or portion of the body, to another organ, or portion of the body.
- a pharmaceutically acceptable carrier is non-pyrogenic.
- materials which may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16)
- prodrug is intended to encompass compounds that, under physiological conditions, are converted into the therapeutically active agents of the present invention.
- a common method for making a prodrug is to include selected moieties that are hydrolyzed under physiological conditions to reveal the desired molecule.
- the prodrug is converted by an enzymatic activity of the host animal.
- prophylactic or therapeutic treatment is art-recognized and includes administration to the host of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if it is administered after manifestation of the unwanted condition, the treatment is therapeutic, (i.e., it is intended to diminish, ameliorate, or stabilize the existing unwanted condition or side effects thereof).
- the unwanted condition e.g., disease or other unwanted state of the host animal
- the term "predicting" as used herein refers to assessing the probability related diseases patient will suffer from abnormalities or complication and/or terminal platelet aggregation or failure and/or death (i.e. mortality) within a defined time window (predictive window) in the future.
- the mortality may be caused by the central nervous system or complication.
- the predictive window is an interval in which the subject will develop one or more of the said complications according to the predicted probability.
- the predictive window may be the entire remaining lifespan of the subject upon analysis by the method of the present invention.
- treating includes preventing a disease, disorder or condition from occurring in an animal which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it; inhibiting the disease, disorder or condition, e.g., impeding its progress; and relieving the disease, disorder, or condition, e.g., causing regression of the disease, disorder and/or condition.
- Treating the disease or condition includes ameliorating at least one symptom of the particular disease or condition, even if the underlying pathophysiology is not affected, such as treating the metabolic syndrome and diabetes related disorders includes such as diabetes, insulin resistance, hyperglycemia, pre-diabates, neuropathic pain, liver disorders, neurological diseases such as alzheimers disease, parkinson's disease, huntington's disease, hepatitis, lipid disorders such as hypertriglyceridemia, arthritis, autoimmune diseases, pain, chronic pain, acute inflammation, chronic aneurysm, low hdl, lipid diseases, angina, atherosclerosis, cerebrovascular accident (stroke), cerebrovascular disease, congestive heart failure, coronary artery disease, myocardial infarction (heart attack), peripheral vascular disease, aortic dissection, aortic stenosis, arrhythmia (irregular heartbeat), atrial fibrillation, cardiomyopathy, chest pain, claudication, congenital heart disease, congestive
- terapéuticaally effective amount is an art-recognized term.
- the term refers to an amount of a salt or composition disclosed herein that produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment.
- the term refers to that amount necessary or sufficient to eliminate or reduce medical symptoms for a period of time.
- the effective amount may vary depending on such factors as the disease or condition being treated, the particular targeted constructs being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art may empirically determine the effective amount of a particular composition without necessitating undue experimentation.
- the pharmaceutical compositions described herein are formulated in a manner such that said compositions will be delivered to a patient in a therapeutically effective amount, as part of a prophylactic or therapeutic treatment.
- the desired amount of the composition to be administered to a patient will depend on absorption, inactivation, and excretion rates of the drug as well as the delivery rate of the salts and compositions from the subject compositions. It is to be noted that dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions. Typically, dosing will be determined using techniques known to one skilled in the art.
- the optimal concentration and/or quantities or amounts of any particular salt or composition may be adjusted to accommodate variations in the treatment parameters.
- treatment parameters include the clinical use to which the preparation is put, e.g., the site treated, the type of patient, e.g., human or non-human, adult or child, and the nature of the disease or condition.
- the dosage of the subject compositions provided herein may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials.
- the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from time 0 to infinity may be used.
- sustained release When used with respect to a pharmaceutical composition or other material, the term "sustained release" is art-recognized.
- a subject composition which releases a substance over time may exhibit sustained release characteristics, in contrast to a bolus type administration in which the entire amount of the substance is made biologically available at one time.
- one or more of the pharmaceutically acceptable excipients may undergo gradual or delayed degradation (e.g., through hydrolysis) with concomitant release of any material incorporated therein, e.g., an therapeutic and/or biologically active salt and/or composition, for a sustained or extended period (as compared to the release from a bolus).
- This release may result in prolonged delivery of therapeutically effective amounts of any of the therapeutic agents disclosed herein.
- systemic administration means administration of a subject composition, therapeutic or other material at a site remote from the disease being treated.
- Administration of an agent for the disease being treated may be termed “local” or “topical” or “regional” administration, other than directly into the central nervous system, e.g., by subcutaneous administration, such that it enters the patient's system and, thus, is subject to metabolism and other like processes.
- the phrase "therapeutically effective amount" is an art-recognized term.
- the term refers to an amount of a salt or composition disclosed herein that produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment.
- the term refers to that amount necessary or sufficient to eliminate or reduce medical symptoms for a period of time.
- the effective amount may vary depending on such factors as the disease or condition being treated, the particular targeted constructs being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art may empirically determine the effective amount of a particular composition without necessitating undue experimentation.
- the present disclosure also contemplates prodrugs of the compositions disclosed herein, as well as pharmaceutically acceptable dipeptidyl peptidase-4 inhibitor salts of said prodrugs.
- This application also discloses a pharmaceutical composition
- a pharmaceutical composition comprising a pharmaceutically acceptable carrier and the composition of a compound of Formula I, formula II, formula III, formula IV, formula V and formula VI may be formulated for systemic or topical or oral administration.
- the pharmaceutical composition may be also formulated for oral administration, oral solution, injection, subdermal administration, or transdermal administration.
- the pharmaceutical composition may further comprise at least one of a pharmaceutically acceptable stabilizer, diluent, surfactant, filler, binder, and lubricant.
- the pharmaceutical compositions described herein will incorporate the disclosed compounds and compositions (Formula I, formula II, formula III, formula IV, formula V and formula VI ) to be delivered in an amount sufficient to deliver to a patient a therapeutically effective amount of a compound of formula I, formula II, formula III, formula IV, formula V or formula VI or composition as part of a prophylactic or therapeutic treatment.
- the desired concentration of formula I, formula II, formula III, formula IV, formula V or formula VI or its pharmaceutical acceptable solvate, hydrate or polymorphs will depend on absorption, inactivation, and excretion rates of the drug as well as the delivery rate of the salts and compositions from the subject compositions.
- dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions. Typically, dosing will be determined using techniques known to one skilled in the art.
- the optimal concentration and/or quantities or amounts of any particular compound of formula I, formula II, formula III, formula IV, formula V or formula VI may be adjusted to accommodate variations in the treatment parameters.
- treatment parameters include the clinical use to which the preparation is put, e.g., the site treated, the type of patient, e.g., human or non-human, adult or child, and the nature of the disease or condition.
- concentration and/or amount of any compound of formula I, formula II, formula III, formula IV, formula V or formula VI may be readily identified by routine screening in animals, e.g., rats, by screening a range of concentration and/or amounts of the material in question using appropriate assays.
- Known methods are also available to assay local tissue concentrations, diffusion rates of the salts or compositions, and local blood flow before and after administration of therapeutic formulations disclosed herein.
- One such method is microdialysis, as reviewed by T. E. Robinson et al, 1991, microdialysis in the neurosciences, Techniques, volume 7, Chapter 1. The methods reviewed by Robinson may be applied, in brief, as follows. A microdialysis loop is placed in situ in a test animal.
- Dialysis fluid is pumped through the loop.
- compounds with formula I, formula II, formula III, formula IV, formula V or formula VI such as those disclosed herein are injected adjacent to the loop, released drugs are collected in the dialysate in proportion to their local tissue concentrations.
- the progress of diffusion of the salts or compositions may be determined thereby with suitable calibration procedures using known concentrations of salts or compositions.
- the dosage of the subject compounds of formula I, formula II, formula III, formula IV, formula V or formula VI provided herein may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials.
- the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from time 0 to infinity may be used.
- an effective dosage for the compounds of Formulas I is in the range of about 0.01 mg/kg/day to about 100 mg/kg/day in single or divided doses, for instance 0.01 mg/kg/day to about 50 mg/kg/day in single or divided doses.
- the compounds of Formulas I may be administered at a dose of, for example, less than 0.2 mg/kg/day, 0.5 mg/kg/day, 1.0 mg/kg/day, 5 mg/kg/day, 10 mg/kg/day, 20 mg/kg/day, 30 mg/kg/day, or 40 mg/kg/day.
- Compounds of Formula I, formula II, formula III, formula IV, formula V or formula VI may also be administered to a human patient at a dose of, for example, between 0.1 mg and 1000 mg, between 5 mg and 80 mg, or less than 1.0, 9.0, 12.0, 20.0, 50.0, 75.0, 100, 300, 400, 500, 800, 1000, 2000, 5000 mg per day.
- the compositions herein are administered at an amount that is less than 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 10% of the compound of formula I, formula II, formula III, formula IV, formula V or formula VI required for the same therapeutic benefit.
- An effective amount of the compounds of formula I, formula II, formula III, formula IV, formula V or formula VI described herein refers to the amount of one of said salts or compositions which is capable of inhibiting or preventing a disease.
- An effective amount may be sufficient to prohibit, treat, alleviate, ameliorate, halt, restrain, slow or reverse the progression, or reduce the severity of a complication resulting from insulin resistance or type 2 diabetes or dyslipidemia or lipid disorders and/or elevated reactive oxidative-nitrosative species and/or abnormalities in glucose or lipid homeostasis 's, in patients who are at risk for such complications.
- these methods include both medical therapeutic (acute) and/or prophylactic (prevention) administration as appropriate.
- the amount and timing of compositions administered will, of course, be dependent on the subject being treated, on the severity of the affliction, on the manner of administration and on the judgment of the prescribing physician.
- the dosages given above are a guideline and the physician may titrate doses of the drug to achieve the treatment that the physician considers appropriate for the patient.
- the physician must balance a variety of factors such as age of the patient, presence of preexisting disease, as well as presence of other diseases.
- compositions provided by this application may be administered to a subject in need of treatment by a variety of conventional routes of administration, including orally, topically, parenterally, e.g., intravenously, subcutaneously or intramedullary. Further, the compositions may be administered intranasally, as a rectal suppository, or using a "flash" formulation, i.e., allowing the medication to dissolve in the mouth without the need to use water. Furthermore, the compositions may be administered to a subject in need of treatment by controlled release dosage forms, site specific drug delivery, transdermal drug delivery, patch (active/passive) mediated drug delivery, by stereotactic injection, or in nanoparticles.
- compositions may be administered alone or in combination with pharmaceutically acceptable carriers, vehicles or diluents, in either single or multiple doses.
- suitable pharmaceutical carriers, vehicles and diluents include inert solid diluents or fillers, sterile aqueous solutions and various organic solvents.
- the pharmaceutical compositions formed by combining the compositions and the pharmaceutically acceptable carriers, vehicles or diluents are then readily administered in a variety of dosage forms such as tablets, powders, lozenges, syrups, injectable solutions and the like.
- These pharmaceutical compositions can, if desired, contain additional ingredients such as flavorings, binders, excipients and the like.
- tablets containing various excipients such as L-arginine, sodium citrate, calcium carbonate and calcium phosphate may be employed along with various disintegrates such as starch, alginic acid and certain complex silicates, together with binding agents such as polyvinylpyrrolidone, sucrose, gelatin and acacia.
- binding agents such as polyvinylpyrrolidone, sucrose, gelatin and acacia.
- lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often useful for tabletting purposes.
- Solid compositions of a similar type may also be employed as fillers in soft and hard filled gelatin capsules. Appropriate materials for this include lactose or milk sugar and high molecular weight polyethylene glycols.
- the essential active ingredient therein may be combined with various sweetening or flavoring agents, coloring matter or dyes and, if desired, emulsifying or suspending agents, together with diluents such as water, ethanol, propylene glycol, glycerin and combinations thereof.
- diluents such as water, ethanol, propylene glycol, glycerin and combinations thereof.
- the compounds of formula I, formula II, formula III, formula IV, formula V or formula VI may also comprise enterically coated comprising of various excipients, as is well known in the pharmaceutical art.
- solutions of the compositions may be prepared in (for example) sesame or peanut oil, aqueous propylene glycol, or in sterile aqueous solutions may be employed.
- aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
- aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
- the sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.
- the formulations for instance tablets, may contain e.g. 10 to 100, 50 to 250, 150 to 500 mg, or 350 to 800 mg e.g. 10, 50, 100, 300, 500, 700, 800 mg of the compounds of formula I, formula II, formula III, formula IV, formula V or formula VI disclosed herein, for instance, compounds of formula I, formula II, formula III, formula IV, formula V or formula VI or pharmaceutical acceptable salts of a compounds of Formula I, formula II, formula III, formula IV, formula V or formula VI .
- a composition as described herein may be administered orally, or parenterally (e.g., intravenous, intramuscular, subcutaneous or intramedullary). Topical administration may also be indicated, for example, where the patient is suffering from gastrointestinal disorder that prevent oral administration, or whenever the medication is best applied to the surface of a tissue or organ as determined by the attending physician. Localized administration may also be indicated, for example, when a high dose is desired at the target tissue or organ.
- the active composition may take the form of tablets or lozenges formulated in a conventional manner.
- dosage administered will be dependent upon the identity of the metabolic syndrome, diabetes, insulin resistance, pre-diabetes, lipid disorders or metabolic disease; the type of host involved, including its age, health and weight; the kind of concurrent treatment, if any; the frequency of treatment and therapeutic ratio.
- dosage levels of the administered active ingredients are: intravenous, 0.1 to about 200 mg/kg; intramuscular, 1 to about 500 mg/kg; orally, 5 to about 1000 mg/kg; intranasal instillation, 5 to about 1000 mg/kg; and aerosol, 5 to about 1000 mg/kg of host body weight.
- an active ingredient can be present in the compositions of the present invention for localized use about the cutis, intranasally, pharyngolaryngeally, bronchially, intravaginally, rectally, or ocularly in a concentration of from about 0.01 to about 50% w/w of the composition; preferably about 1 to about 20% w/w of the composition; and for parenteral use in a concentration of from about 0.05 to about 50% w/v of the composition and preferably from about 5 to about 20% w/v.
- compositions of the present invention are preferably presented for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, granules, suppositories, sterile parenteral solutions or suspensions, sterile non- parenteral solutions of suspensions, and oral solutions or suspensions and the like, containing suitable quantities of an active ingredient.
- unit dosage forms such as tablets, capsules, pills, powders, granules, suppositories, sterile parenteral solutions or suspensions, sterile non- parenteral solutions of suspensions, and oral solutions or suspensions and the like, containing suitable quantities of an active ingredient.
- unit dosage forms such as tablets, capsules, pills, powders, granules, suppositories, sterile parenteral solutions or suspensions, sterile non- parenteral solutions of suspensions, and oral solutions or suspensions and the like, containing suitable quantities of an active ingredient.
- the tablet core contains one or more hydrophilic polymers.
- Suitable hydrophilic polymers include, but are not limited to, water swellable cellulose derivatives, polyalkylene glycols, thermoplastic polyalkylene oxides, acrylic polymers, hydrocolloids, clays, gelling starches, swelling cross-linked polymers, and mixtures thereof.
- suitable water swellable cellulose derivatives include, but are not limited to, sodium carboxymethylcellulose, cross-linked hydroxypropylcellulose, hydroxypropyl cellulose (HPC), hydroxypropylmethylcellulose (HPMC), hydroxyisopropylcellulose, hydroxybutylcellulose, hydroxyphenylcellulose, hydroxyethylcellulose (HEC), hydroxypentylcellulose, hydroxypropylethylcellulose, hydroxypropylbutylcellulose, and hydroxypropylethylcellulose, and mixtures thereof.
- suitable polyalkylene glycols include, but are not limited to, polyethylene glycol.
- suitable thermoplastic polyalkylene oxides include, but are not limited to, poly(ethylene oxide).
- acrylic polymers include, but are not limited to, potassium methacrylatedivinylbenzene copolymer, polymethylmethacrylate, high-molecular weight crosslinked acrylic acid homopolymers and copolymers such as those commercially available from Noveon Chemicals under the tradename CARBOPOLTM
- suitable hydrocolloids include, but are not limited to, alginates, agar, guar gum, locust bean gum, kappa carrageenan, iota carrageenan, tara, gum arabic, tragacanth, pectin, xanthan gum, gellan gum, maltodextrin, galactomannan, pusstulan, laminarin, scleroglucan, gum arabic, inulin, pectin, gelatin, whelan, rhamsan, zooglan, methylan, chitin, cyclodextrin, chitosan, and mixtures thereof.
- Suitable clays include, but are not limited to, smectites such as bentonite, kaolin, and laponite; magnesium trisilicate; magnesium aluminum silicate; and mixtures thereof.
- suitable gelling starches include, but are not limited to, acid hydrolyzed starches, swelling starches such as sodium starch glycolate and derivatives thereof, and mixtures thereof.
- suitable swelling cross- linked polymers include, but are not limited to, cross-linked polyvinyl pyrrolidone, cross- linked agar, and cross-linked carboxymethylcellulose sodium, and mixtures thereof.
- the carrier may contain one or more suitable excipients for the formulation of tablets.
- suitable excipients include, but are not limited to, fillers, adsorbents, binders, disintegrants, lubricants, glidants, release-modifying excipients, superdisintegrants, antioxidants, and mixtures thereof.
- Suitable binders include, but are not limited to, dry binders such as polyvinyl pyrrolidone and hydroxypropylmethylcellulose; wet binders such as water-soluble polymers, including hydrocolloids such as acacia, alginates, agar, guar gum, locust bean, carrageenan, carboxymethylcellulose, tara, gum arabic, tragacanth, pectin, xanthan, gellan, gelatin, maltodextrin, galactomannan, pusstulan, laminarin, scleroglucan, inulin, whelan, rhamsan, zooglan, methylan, chitin, cyclodextrin, chitosan, polyvinyl pyrrolidone, cellulosics, sucrose, and starches; and mixtures thereof.
- dry binders such as polyvinyl pyrrolidone and hydroxypropylmethylcellulose
- Suitable disintegrants include, but are not limited to, sodium starch glycolate, cross-linked polyvinylpyrrolidone, cross-linked carboxymethylcellulose, starches, microcrystalline cellulose, and mixtures thereof.
- Suitable lubricants include, but are not limited to, long chain fatty acids and their salts, such as magnesium stearate and stearic acid, talc, glycerides waxes, and mixtures thereof.
- Suitable glidants include, but are not limited to, colloidal silicon dioxide.
- Suitable release-modifying excipients include, but are not limited to, insoluble edible materials, pH- dependent polymers, and mixtures thereof.
- Suitable insoluble edible materials for use as release-modifying excipients include, but are not limited to, water-insoluble polymers and low-melting hydrophobic materials, copolymers thereof, and mixtures thereof.
- suitable water-insoluble polymers include, but are not limited to, ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers, copolymers thereof, and mixtures thereof.
- Suitable low-melting hydrophobic materials include, but are not limited to, fats, fatty acid esters, phospholipids, waxes, and mixtures thereof.
- suitable fats include, but are not limited to, hydrogenated vegetable oils such as for example cocoa butter, hydrogenated palm kernel oil, hydrogenated cottonseed oil, hydrogenated sunflower oil, and hydrogenated soybean oil, free fatty acids and their salts, and mixtures thereof.
- suitable fatty acid esters include, but are not limited to, sucrose fatty acid esters, mono-, di-, and triglycerides, glyceryl behenate, glyceryl palmitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl trilaurylate, glyceryl myristate, GlycoWax-932, lauroyl macrogol-32 glycerides, stearoyl macrogol-32 glycerides, and mixtures thereof.
- Suitable phospholipids include phosphotidyl choline, phosphotidyl serene, phosphotidyl enositol, phosphotidic acid, and mixtures thereof.
- suitable waxes include, but are not limited to, carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax; fat- containing mixtures such as chocolate, and mixtures thereof.
- super disintegrants include, but are not limited to, croscarmellose sodium, sodium starch glycolate and cross-linked povidone (crospovidone). In one embodiment the tablet core contains up to about 5 percent by weight of such super disintegrant.
- antioxidants include, but are not limited to, tocopherols, ascorbic acid, sodium pyrosulfite, butylhydroxytoluene, butylated hydroxyanisole, edetic acid, and edetate salts, and mixtures thereof.
- preservatives include, but are not limited to, citric acid, tartaric acid, lactic acid, malic acid, acetic acid, benzoic acid, and sorbic acid, and mixtures thereof.
- the immediate release coating has an average thickness of at least 50 microns, such as from about 50 microns to about 2500 microns; e.g., from about 250 microns to about 1000 microns.
- the immediate release coating is typically compressed at a density of more than about 0.9 g/cc, as measured by the weight and volume of that specific layer.
- the immediate release coating contains a first portion and a second portion, wherein at least one of the portions contains the second pharmaceutically active agent.
- the portions contact each other at a center axis of the tablet.
- the first portion includes the first pharmaceutically active agent and the second portion includes the second pharmaceutically active agent.
- the first portion contains the first pharmaceutically active agent and the second portion contains the second pharmaceutically active agent. In one embodiment, one of the portions contains a third pharmaceutically active agent. In one embodiment one of the portions contains a second immediate release portion of the same pharmaceutically active agent as that contained in the tablet core.
- the outer coating portion is prepared as a dry blend of materials prior to addition to the coated tablet core. In another embodiment the outer coating portion is included of a dried granulation including the pharmaceutically active agent.
- Formulations with different drug release mechanisms described above could be combined in a final dosage form containing single or multiple units.
- multiple units include multilayer tablets, capsules containing tablets, beads, or granules in a solid or liquid form.
- Typical, immediate release formulations include compressed tablets, gels, films, coatings, liquids and particles that can be encapsulated, for example, in a gelatin capsule. Many methods for preparing coatings, covering or incorporating drugs, are known in the art.
- the immediate release dosage, unit of the dosage form i.e., a tablet, a plurality of drug-containing beads, granules or particles, or an outer layer of a coated core dosage form, contains a therapeutically effective quantity of the active agent with conventional pharmaceutical excipients.
- the immediate release dosage unit may or may not be coated, and may or may not be admixed with the delayed release dosage unit or units (as in an encapsulated mixture of immediate release drug- containing granules, particles or beads and delayed release drug- containing granules or beads).
- Extended release formulations are generally prepared as diffusion or osmotic systems, for example, as described in "Remington— The Science and Practice of Pharmacy", 20th. Ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000).
- a diffusion system typically consists of one of two types of devices, reservoir and matrix, which are well known and described in die art.
- the matrix devices are generally prepared by compressing the drug with a slowly dissolving polymer carrier into a tablet form.
- An immediate release portion can be added to the extended release system by means of either applying an immediate release layer on top of the extended release core; using coating or compression processes or in a multiple unit system such as a capsule containing extended and immediate release beads.
- Delayed release dosage formulations are created by coating a solid dosage form with a film of a polymer which is insoluble in the acid environment of the stomach, but soluble in the neutral environment of small intestines.
- the delayed release dosage units can be prepared, for example, by coating a drug or a drug-containing composition with a selected coating material.
- the drug- containing composition may be a tablet for incorporation into a capsule, a tablet for use as an inner core in a "coated core" dosage form, or a plurality of drug-containing beads, particles or granules, for incorporation into either a tablet or capsule.
- a pulsed release dosage form is one that mimics a multiple dosing profile without repeated dosing and typically allows at least a twofold reduction in dosing frequency as compared to the drug presented as a conventional dosage form (e.g., as a solution or prompt drug-releasing, conventional solid dosage form).
- a pulsed release profile is characterized by a time period of no release (lag time) or reduced release followed by rapid drug release.
- Each dosage form contains a therapeutically effective amount of active agent.
- approximately 30 wt. % to 70 wt. %, preferably 40 wt. % to 60 wt. %, of the total amount of active agent in the dosage form is released in the initial pulse, and, correspondingly approximately 70 wt. % to 3.0 wt. %, preferably 60 wt. % to 40 wt. %, of the total amount of active agent in the dosage form is released in the second pulse.
- the second pulse is preferably released approximately 3 hours to less than 14 hours, and more preferably approximately 5 hours to 12 hours, following administration.
- Another dosage form contains a compressed tablet or a capsule having a drug- containing immediate release dosage unit, a delayed release dosage unit and an optional second delayed release dosage unit.
- the immediate release dosage unit contains a plurality of beads, granules particles that release drug substantially immediately following oral administration to provide an initial dose.
- the delayed release dosage unit contains a plurality of coated beads or granules, which release drug approximately 3 hours to 14 hours following oral administration to provide a second dose.
- subject compositions of the present application maybe lyophilized or subjected to another appropriate drying technique such as spray drying.
- the subject compositions may be administered once, or may be divided into a number of smaller doses to be administered at varying intervals of time, depending in part on the release rate of the compositions and the desired dosage.
- Formulations useful in the methods provided herein include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration.
- the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
- the amount of a subject composition which may be combined with a carrier material to produce a single dose may vary depending upon the subject being treated, and the particular mode of administration.
- Methods of preparing these formulations or compositions include the step of bringing into association subject compositions with the carrier and, optionally, one or more accessory ingredients.
- the formulations are prepared by uniformly and intimately bringing into association a subject composition with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
- the compounds of formula I, formula II, formula III, formula IV, formula V or formula VI described herein may be administered in inhalant or aerosol formulations.
- the inhalant or aerosol formulations may comprise one or more agents, such as adjuvants, diagnostic agents, imaging agents, or therapeutic agents useful in inhalation therapy.
- the final aerosol formulation may for example contain 0.005-90% w/w, for instance 0.005-50%, 0.005-5% w/w, or 0.01-1.0% w/w, of medicament relative to the total weight of the formulation.
- the subject composition is mixed with one or more pharmaceutically acceptable carriers and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostea
- compositions may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, corn, peanut, sunflower, soybean, olive, castor, and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emuls
- Suspensions in addition to the subject compositions, may contain suspending agents such as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- suspending agents such as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing a subject composition with one or more suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated compound(s) and composition(s).
- suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated compound(s) and composition(s).
- Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams, or spray formulations containing such carriers as are known in the art to be appropriate.
- Dosage forms for transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, and inhalants.
- a subject composition may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants that may be required.
- the complexes may include lipophilic and hydrophilic groups to achieve the desired water solubility and transport properties.
- the ointments, pastes, creams and gels may contain, in addition to subject compositions, other carriers, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays may contain, in addition to a subject composition, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of such substances.
- Sprays may additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- customary propellants such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- a transdermal patch may comprise: a substrate sheet comprising a composite film formed of a resin composition comprising 100 parts by weight of a polyvinyl chloride-polyurethane composite and 2-10 parts by weight of a styrene- ethylene-butylene-styrene copolymer, a first adhesive layer on the one side of the composite film, and a polyalkylene terephthalate film adhered to the one side of the composite film by means of the first adhesive layer, a primer layer which comprises a saturated polyester resin and is formed on the surface of the polyalkylene terephthalate film; and a second adhesive layer comprising a styrene-diene-styrene block copolymer containing a pharmaceutical agent layered on the primer layer.
- a method for the manufacture of the above-mentioned substrate sheet comprises preparing the above resin composition molding the resin composition into a composite film by a calendar process, and then adhering a polyalkylene terephthalate film on one side of the composite film by means of an adhesive layer thereby forming the substrate sheet, and forming a primer layer comprising a saturated polyester resin on the outer surface of the polyalkylene terephthalate film.
- Another type of patch comprises incorporating the drug directly in a pharmaceutically acceptable adhesive and laminating the drug-containing adhesive onto a suitable backing member, e.g. a polyester backing membrane.
- the drug should be present at a concentration which will not affect the adhesive properties, and at the same time deliver the required clinical dose.
- Transdermal patches may be passive or active. Passive transdermal drug delivery systems currently available, such as the nicotine, estrogen and nitroglycerine patches, deliver small-molecule drugs. Many of the newly developed proteins and peptide drugs are too large to be delivered through passive transdermal patches and may be delivered using technology such as electrical assist (iontophoresis) for large-molecule drugs.
- Iontophoresis is a technique employed for enhancing the flux of ionized substances through membranes by application of electric current.
- An iontophoretic membrane is given in U.S. Pat. No. 5,080,646 to Theeuwes.
- the principal mechanisms by which iontophoresis enhances molecular transport across the skin are (a) repelling a charged ion from an electrode of the same charge, (b) electroosmosis, the convective movement of solvent that occurs through a charged pore in response the preferential passage of counter- ions when an electric field is applied or (c) increase skin permeability due to application of electrical current.
- kits may comprise a container for containing the separate compositions such as a divided bottle or a divided foil packet.
- the kit comprises directions for the administration of the separate components.
- the kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.
- Blister packs are well known in the packaging industry and are widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a plastic material that may be transparent.
- RH independently represents
- R 1 represents N0 2 .
- R 2 represents OH or OD.
- Methods and compositions for the treatment of diabetes and pre-diabetes comprising administering to a patient in need thereof a therapeutically effective amount of compound of Formula II:
- Formula II with at least one compound or a molecular conjugate of polyunsaturated fatty acid represented by RH, or a mixture thereof
- RH independently represents
- R 1 represents NO 2
- R represents OH or OD.
- RH independently represents
- R 1 represents N0 2 .
- R 2 represents OH or OD.
- Methods and compositions for the treatment of diabetes and pre-diabetes comprising administering to a patient in need thereof a therapeutically effective amount of compound of Formula IV:
- RH independently represents
- R 1 represents N0 2 .
- R 2 represents OH or OD.
- Methods and compositions for the treatment of diabetes and pre-diabetes comprising administering to a patient in need thereof a therapeutically effective amount of compound of Formula V:
- RH independently represents
- R 1 represents N0 2 .
- R 2 represents OH or OD.
- Methods and compositions for the treatment of diabetes and pre-diabetes comprising administering to a patient in need thereof a therapeutically effective amount of compound of Formula VI:
- RH independently represents
- R 1 represents N0 2 .
- R 2 represents OH or OD.
- compositions and methods for treating diabetes and pre-diabetes and their complications are provided among other things compositions and methods for treating diabetes and pre-diabetes and their complications. While specific embodiments of the subject disclosure have been discussed, the above specification is illustrative and not restrictive. Many variations of the systems and methods herein will become apparent to those skilled in the art upon review of this specification. The full scope of the claimed systems and methods should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
L'invention concerne des composés et des compositions représentés par les formules (I), (II), (III), (IV), (V) et (VI) ou leurs polymorphes, solvates, énantiomères, stéréo-isomères et hydrates pharmaceutiquement acceptables. Les compositions pharmaceutiques comprennent un sel d'inhibiteur de dipeptidyl protéase-4 et les procédés de traitement ou de prévention du syndrome métabolique, du pré-diabète et du diabète peuvent être formulés pour l'administration par voie orale, buccale, rectale, topique, transdermique, transmucosique, intraveineuse, parentérale, ou sous forme de sirop ou d'injection. De telles composés et compositions peuvent être utilisés pour le traitement du diabète sucré, de l'obésité, de troubles du métabolisme lipidique, de l'hypertriglycéridémie, de l'hyperglycémie, de l'hyperinsulinémie et de la résistance à l'insuline.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/938,131 US20170073345A1 (en) | 2015-09-04 | 2015-11-11 | Compositions and methods for the treatment of diabetes and pre-diabetes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN4821/CHE/2014 | 2014-09-28 | ||
IN4821CH2014 | 2014-09-28 | ||
IN4692CH2015 | 2015-09-04 | ||
IN4692/CHE/2015 | 2015-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016046679A1 true WO2016046679A1 (fr) | 2016-03-31 |
Family
ID=55580382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2015/056835 WO2016046679A1 (fr) | 2014-09-28 | 2015-09-07 | Compositions et procédés de traitement du diabète et du pré-diabète |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016046679A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2690866A1 (es) * | 2016-12-08 | 2018-11-22 | Alparis, S.A. De C.V. | Nuevas formas sólidas de sitagliptina |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003004498A1 (fr) * | 2001-07-06 | 2003-01-16 | Merck & Co., Inc. | Pyrazines beta-amino tetrahydroimidazo (1, 2-a) et pyrazines tetrahydrotrioazolo (4, 3-a) utilisees en tant qu'inhibiteurs de la dipeptidyl peptidase dans le traitement ou la prevention du diabete |
WO2005072530A1 (fr) * | 2004-01-16 | 2005-08-11 | Merck & Co., Inc. | Nouveau sel cristallin d'un inhibiteur de dipeptidyle peptidase-iv |
WO2010000469A2 (fr) * | 2008-07-03 | 2010-01-07 | Ratiopharm Gmbh | Sels cristallins de sitagliptine |
WO2010092090A2 (fr) * | 2009-02-11 | 2010-08-19 | Lek Pharmaceuticals D.D. | Nouveaux sels de la sitagliptine |
-
2015
- 2015-09-07 WO PCT/IB2015/056835 patent/WO2016046679A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003004498A1 (fr) * | 2001-07-06 | 2003-01-16 | Merck & Co., Inc. | Pyrazines beta-amino tetrahydroimidazo (1, 2-a) et pyrazines tetrahydrotrioazolo (4, 3-a) utilisees en tant qu'inhibiteurs de la dipeptidyl peptidase dans le traitement ou la prevention du diabete |
WO2005072530A1 (fr) * | 2004-01-16 | 2005-08-11 | Merck & Co., Inc. | Nouveau sel cristallin d'un inhibiteur de dipeptidyle peptidase-iv |
WO2010000469A2 (fr) * | 2008-07-03 | 2010-01-07 | Ratiopharm Gmbh | Sels cristallins de sitagliptine |
WO2010092090A2 (fr) * | 2009-02-11 | 2010-08-19 | Lek Pharmaceuticals D.D. | Nouveaux sels de la sitagliptine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2690866A1 (es) * | 2016-12-08 | 2018-11-22 | Alparis, S.A. De C.V. | Nuevas formas sólidas de sitagliptina |
US10301316B2 (en) | 2016-12-08 | 2019-05-28 | Alparis, S.A. De C.V. | Solid forms of sitagliptin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9434704B2 (en) | Compositions and methods for the treatment of neurological degenerative disorders | |
US8952068B2 (en) | Compositions for the treatment of diabetes and pre-diabetes | |
WO2014087307A2 (fr) | Compositions et procédés pour le traitement du syndrome métabolique et du diabète | |
WO2014068463A2 (fr) | Compositions et procédés de traitement d'une inflammation et de troubles métaboliques | |
WO2015033279A1 (fr) | Compositions et méthodes pour le traitement de l'homocystinurie | |
WO2014080307A2 (fr) | Compositions et procédés pour le traitement du diabète et du pré-diabète | |
WO2014087323A2 (fr) | Compositions et procédés pour le traitement de maladies auto-immunes et métaboliques chroniques | |
WO2017033119A1 (fr) | Compositions et procédés pour le traitement de maladies métaboliques hépatiques | |
WO2014106804A2 (fr) | Compositions et procédés de traitement du syndrome métabolique et du diabète | |
WO2014195810A2 (fr) | Compositions et méthodes pour le traitement du diabète et du prédiabète | |
US9403857B2 (en) | Compositions and methods for the treatment of metabolic syndrome | |
WO2016046679A1 (fr) | Compositions et procédés de traitement du diabète et du pré-diabète | |
US20170073345A1 (en) | Compositions and methods for the treatment of diabetes and pre-diabetes | |
WO2014053962A2 (fr) | Compositions et méthodes de traitement du diabète et du prédiabète | |
WO2015028976A2 (fr) | Composés et méthodes de traitement de maladies inflammatoires | |
WO2014068461A2 (fr) | Compositions et méthodes de traitement d'une inflammation aiguë | |
WO2015022613A1 (fr) | Compositions et méthodes pour le traitement du diabète et du pré-diabète | |
WO2015028956A1 (fr) | Compositions et méthodes de traitement de troubles de l'oxydation des acides gras | |
US9321716B1 (en) | Compositions and methods for the treatment of metabolic syndrome | |
US9266823B2 (en) | Compositions and methods for the treatment of parkinson's disease | |
WO2014122575A2 (fr) | Conjugués d'acide gras pour le traitement d'inflammations et de maladies métaboliques | |
US9150557B1 (en) | Compositions and methods for the treatment of hyperglycemia | |
US20150141384A1 (en) | Compositions and methods for the treatment of neurological degenerative disorders | |
US9187427B2 (en) | N-substituted nicotinamide compounds and compositions for the treatment migraine and neurologic diseases | |
US20150141513A1 (en) | Compositions and methods for the treatment of neurological degenerative disorders and neurological diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15844918 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15844918 Country of ref document: EP Kind code of ref document: A1 |