WO2016038744A1 - Method for manufacturing semiconductor device, substrate processing apparatus and recording medium - Google Patents

Method for manufacturing semiconductor device, substrate processing apparatus and recording medium Download PDF

Info

Publication number
WO2016038744A1
WO2016038744A1 PCT/JP2014/074314 JP2014074314W WO2016038744A1 WO 2016038744 A1 WO2016038744 A1 WO 2016038744A1 JP 2014074314 W JP2014074314 W JP 2014074314W WO 2016038744 A1 WO2016038744 A1 WO 2016038744A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boron
supplying
containing gas
film
Prior art date
Application number
PCT/JP2014/074314
Other languages
French (fr)
Japanese (ja)
Inventor
敦 佐野
義朗 ▲ひろせ▼
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2014/074314 priority Critical patent/WO2016038744A1/en
Publication of WO2016038744A1 publication Critical patent/WO2016038744A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a recording medium.
  • a film having a borazine ring skeleton on a substrate and containing a predetermined element such as silicon (Si), boron (B), and nitrogen (N) (hereinafter referred to as borazine)
  • a step of forming a boron nitride film including a ring skeleton may be performed.
  • An object of the present invention is to provide a technique capable of improving the controllability of the composition ratio of a boron nitride film containing a borazine ring skeleton.
  • a method for manufacturing a semiconductor device which includes a step of forming a film including the same.
  • FIG. 2 is a schematic configuration diagram of a part of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a diagram showing a part of the processing furnace as a cross-sectional view taken along line AA of FIG.
  • the controller of the substrate processing apparatus used suitably by embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. It is a figure which shows the timing of the gas supply in the film-forming sequence of one Embodiment of this invention.
  • (A) is a chemical structural formula of TCDMDS
  • (b) is a chemical structural formula of DCTMDS
  • (c) is a figure which shows a chemical structural formula of MCPMDS.
  • (A) is the chemical structural formula of borazine
  • (b) is the chemical structural formula of the borazine compound
  • (c) is the chemical structural formula of n, n ′, n ′′ -trimethylborazine
  • (d) is the n, n
  • FIG. 2 is a diagram showing a chemical structural formula of ', n ′′ -tri-n-propylborazine.
  • (A) is a schematic block diagram of the processing furnace of the substrate processing apparatus used suitably by other embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view
  • (b) is other of this invention It is a schematic block diagram of the processing furnace of the substrate processing apparatus used suitably by this embodiment, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view.
  • the processing furnace 202 has a heater 207 as heating means (heating mechanism).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
  • a reaction tube 203 constituting a reaction vessel (processing vessel) concentrically with the heater 207 is disposed.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a processing chamber 201 is formed in the cylindrical hollow portion of the reaction tube 203.
  • the processing chamber 201 is configured to be able to accommodate wafers 200 as substrates in a state where they are aligned in multiple stages in a vertical posture in a horizontal posture by a boat 217 described later.
  • nozzles 249 a and 249 b are provided so as to penetrate the lower side wall of the reaction tube 203.
  • the nozzles 249a and 249b are made of a heat resistant material such as quartz or SiC.
  • Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively.
  • the reaction tube 203 is provided with the two nozzles 249a and 249b and the two gas supply tubes 232a and 232b, and can supply a plurality of types of gases into the processing chamber 201. It has become.
  • the processing furnace 202 of this embodiment is not limited to the above-mentioned form.
  • a metal manifold that supports the reaction tube 203 may be provided below the reaction tube 203, and each nozzle may be provided so as to penetrate the side wall of the manifold.
  • an exhaust pipe 231 described later may be further provided in the manifold. Even in this case, the exhaust pipe 231 may be provided below the reaction pipe 203 instead of the manifold.
  • the furnace port of the processing furnace 202 may be made of metal, and a nozzle or the like may be attached to the metal furnace port.
  • the gas supply pipes 232a and 232b are provided with mass flow controllers (MFC) 241a and 241b as flow rate controllers (flow rate control units) and valves 243a and 243b as opening / closing valves, respectively, in order from the upstream direction.
  • MFC mass flow controllers
  • Gas supply pipes 232c and 232d for supplying an inert gas are connected to the gas supply pipes 232a and 232b on the downstream side of the valves 243a and 243b, respectively.
  • the gas supply pipes 232c and 232d are provided with MFCs 241c and 241d as flow rate controllers (flow rate control units) and valves 243c and 243d as opening / closing valves, respectively, in order from the upstream direction.
  • a nozzle 249a is connected to the tip of the gas supply pipe 232a. As shown in FIG. 2, the nozzle 249 a is arranged in an annular space between the inner wall of the reaction tube 203 and the wafer 200, and extends upward from the lower portion of the inner wall of the reaction tube 203 in the arrangement direction of the wafer 200. To stand up. That is, the nozzle 249a is provided on the side of the wafer arrangement area where the wafers 200 are arranged, in an area that horizontally surrounds the wafer arrangement area, along the wafer arrangement area.
  • the nozzle 249 a is provided on the side of the end portion (peripheral portion) of the wafer 200 carried into the processing chamber 201 and perpendicular to the surface (flat surface) of the wafer 200.
  • the nozzle 249a is configured as an L-shaped long nozzle, and a horizontal portion thereof is provided so as to penetrate the lower side wall of the reaction tube 203, and a vertical portion thereof is at least from one end side to the other end of the wafer arrangement region. It is provided to stand up to the side.
  • a gas supply hole 250a for supplying gas is provided on the side surface of the nozzle 249a.
  • the gas supply hole 250 a is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
  • a plurality of gas supply holes 250a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • a nozzle 249b is connected to the tip of the gas supply pipe 232b.
  • the nozzle 249 b is provided in the buffer chamber 237.
  • the buffer chamber 237 also functions as a gas dispersion space.
  • the buffer chamber 237 is provided in an annular space between the inner wall of the reaction tube 203 and the wafer 200 and in a portion extending from the lower portion to the upper portion of the inner wall of the reaction tube 203 along the arrangement direction of the wafers 200. That is, the buffer chamber 237 is provided on the side of the wafer arrangement area, in a region that horizontally surrounds the wafer arrangement area, along the wafer arrangement area. That is, the buffer chamber 237 is provided on the side of the end portion of the wafer 200 loaded into the processing chamber 201.
  • a gas supply hole 250 c for supplying a gas is provided at the end of the wall of the buffer chamber 237 adjacent to the wafer 200.
  • the gas supply hole 250 c is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
  • a plurality of gas supply holes 250c are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • the nozzle 249 b rises upward from the lower end of the inner wall of the reaction tube 203 toward the upper side in the arrangement direction of the wafer 200 at the end opposite to the end where the gas supply hole 250 c of the buffer chamber 237 is provided. Is provided. That is, the nozzle 249b is provided along the wafer arrangement region in a region that horizontally surrounds the wafer arrangement region on the side of the wafer arrangement region where the wafers 200 are arranged. That is, the nozzle 249 b is provided on the side of the end of the wafer 200 carried into the processing chamber 201 and perpendicular to the surface of the wafer 200.
  • the nozzle 249b is configured as an L-shaped long nozzle, and its horizontal portion is provided so as to penetrate the lower side wall of the reaction tube 203, and its vertical portion is at least from one end side to the other end side of the wafer arrangement region. It is provided to stand up toward.
  • a gas supply hole 250b for supplying gas is provided on the side surface of the nozzle 249b.
  • the gas supply hole 250 b is opened to face the center of the buffer chamber 237. Similar to the gas supply hole 250c, a plurality of gas supply holes 250b are provided from the lower part to the upper part of the reaction tube 203.
  • the opening area and the opening pitch of the plurality of gas supply holes 250b may be the same from the upstream side (lower part) to the downstream side (upper part). Further, when the differential pressure between the buffer chamber 237 and the processing chamber 201 is large, the opening area of the gas supply holes 250b is gradually increased from the upstream side to the downstream side, or the opening pitch of the gas supply holes 250b is increased upstream. It is good to make it gradually smaller from the side toward the downstream side.
  • each gas supply hole 250b By adjusting the opening area and the opening pitch of each gas supply hole 250b from the upstream side to the downstream side as described above, the flow rate is almost the same from each of the gas supply holes 250b, although there is a difference in flow velocity.
  • a certain gas can be ejected.
  • the difference in gas flow velocity can be made uniform in the buffer chamber 237.
  • the gas ejected into the buffer chamber 237 from each of the plurality of gas supply holes 250b is ejected into the processing chamber 201 from the plurality of gas supply holes 250c after the particle velocity of each gas is reduced in the buffer chamber 237.
  • the gas ejected into the buffer chamber 237 from each of the plurality of gas supply holes 250b becomes a gas having a uniform flow rate and flow velocity when ejected into the processing chamber 201 from each of the gas supply holes 250c.
  • an annular vertically long space defined by the inner wall of the side wall of the reaction tube 203 and the ends (peripheries) of the plurality of wafers 200 arranged in the reaction tube 203.
  • the gas is conveyed through the nozzles 249a and 249b and the buffer chamber 237 disposed in the inner space, that is, in the cylindrical space.
  • gas is first ejected into the reaction tube 203 from the gas supply holes 250 a to 250 c opened in the nozzles 249 a and 249 b and the buffer chamber 237, respectively, in the vicinity of the wafer 200.
  • the main flow of gas in the reaction tube 203 is a direction parallel to the surface of the wafer 200, that is, a horizontal direction.
  • the gas flowing on the surface of the wafer 200 that is, the residual gas after the reaction, flows toward the exhaust port, that is, the direction of the exhaust pipe 231 described later.
  • the direction of the remaining gas flow is appropriately specified depending on the position of the exhaust port, and is not limited to the vertical direction.
  • a halosilane source gas containing Si and a halogen element as a predetermined element is supplied into the processing chamber 201 through the MFC 241a, a valve 243a, and a nozzle 249a as a source gas having the predetermined element. .
  • the halosilane raw material gas is a halosilane raw material in a gaseous state, for example, a gas obtained by vaporizing a halosilane raw material in a liquid state at normal temperature and normal pressure, a halosilane raw material in a gaseous state at normal temperature and normal pressure, or the like.
  • the halosilane raw material is a silane raw material having a halogen group.
  • the halogen group includes chloro group, fluoro group, bromo group, iodo group and the like. That is, the halogen group includes halogen elements such as chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like.
  • the halosilane raw material is a kind of halide.
  • raw material when used, it means “a liquid raw material in a liquid state”, “a raw material gas in a gaseous state”, or both. is there.
  • a source gas containing Si and Cl and not containing C that is, an inorganic chlorosilane source gas
  • an inorganic chlorosilane source gas for example, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas, or the like can be used.
  • FIG. 8A shows the chemical structural formula of HCDS
  • FIG. 8B shows the chemical structural formula of OCTS. It can be said that these gases are source gases containing at least two Si in one molecule, further containing Cl, and having a Si—Si bond. These gases act as Si sources in the substrate processing step described later.
  • halosilane source gas for example, a source gas containing Si, Cl and an alkylene group and having a Si—C bond, that is, an alkylene chlorosilane source gas which is an organic chlorosilane source gas can be used.
  • the alkylene group includes a methylene group, an ethylene group, a propylene group, a butylene group and the like.
  • the alkylene chlorosilane source gas can also be referred to as an alkylene halosilane source gas.
  • alkylene chlorosilane source gas examples include bis (trichlorosilyl) methane ((SiCl 3 ) 2 CH 2 , abbreviation: BTCSM) gas, ethylene bis (trichlorosilane) gas, that is, 1,2-bis (trichlorosilyl) ethane. ((SiCl 3 ) 2 C 2 H 4 , abbreviation: BTCSE) gas or the like can be used.
  • BTCSM bis (trichlorosilyl) methane
  • ethylene bis (trichlorosilane) gas that is, 1,2-bis (trichlorosilyl) ethane.
  • BTCSE ((SiCl 3 ) 2 C 2 H 4 , abbreviation: BTCSE) gas or the like
  • 9A shows the chemical structural formula of BTCSM gas
  • FIG. 9B shows the chemical structural formula of BTCSE. It can be said that these gases are source gases containing at least two Si in one molecule
  • halosilane source gas for example, a source gas containing Si, Cl and an alkyl group and having a Si—C bond, that is, an alkylchlorosilane source gas which is an organic chlorosilane source gas can be used.
  • Alkyl groups include methyl, ethyl, propyl, butyl and the like.
  • the alkylchlorosilane source gas can also be referred to as an alkylhalosilane source gas.
  • alkylchlorosilane source gas examples include 1,1,2,2-tetrachloro-1,2-dimethyldisilane ((CH 3 ) 2 Si 2 Cl 4 , abbreviation: TCMDDS) gas, 1,2-dichloro-1 , 1,2,2-tetramethyldisilane ((CH 3 ) 4 Si 2 Cl 2 , abbreviation: DCTMDS) gas, 1-monochloro-1,1,2,2,2-pentamethyldisilane ((CH 3 ) 5 Si 2 Cl (abbreviation: MCPMDS) gas or the like can be used.
  • FIG. 10A shows a chemical structural formula of TCDMDS
  • FIG. 10B shows a chemical structural formula of DCTMDS
  • 10C shows a chemical structural formula of MCPMDS. It can be said that these gases are source gases containing at least two Si in one molecule, further containing C and Cl, and having a Si—C bond. These gases act as a Si source and also as a C source in a substrate processing step to be described later.
  • the raw material in the liquid state is vaporized by a vaporization system such as a vaporizer or bubbler, and the raw material gas (HCDS gas, BTCSM gas) , TCDMDS gas).
  • a vaporization system such as a vaporizer or bubbler
  • a reaction gas having a chemical structure (molecular structure) different from that of the source gas for example, a gas containing a borazine ring skeleton as the first boron (B) -containing gas is used as the MFC 241b and the valve 243b.
  • a gas containing a borazine ring skeleton for example, a gas containing a borazine ring skeleton and an organic ligand, that is, an organic borazine-based gas can be used.
  • organic borazine-based gas for example, a gas obtained by vaporizing an alkyl borazine compound that is an organic borazine compound can be used.
  • the organic borazine-based gas can also be referred to as a borazine compound gas or a borazine-based gas.
  • borazine is a heterocyclic compound composed of three elements of B, N and H, and the composition formula can be represented by B 3 H 6 N 3 , and the chemical structure shown in FIG. It can be expressed by a formula.
  • a borazine compound is a compound containing a borazine ring skeleton (also referred to as a borazine skeleton) that constitutes a borazine ring composed of three Bs and three Ns.
  • the organic borazine compound is a borazine compound containing C, and can be said to be a ligand containing C, that is, a borazine compound containing an organic ligand.
  • the alkyl borazine compound is a borazine compound containing an alkyl group, and can be said to be a borazine compound containing an alkyl group as an organic ligand.
  • the alkyl borazine compound is obtained by substituting at least one of six H contained in borazine with a hydrocarbon containing one or more C, and can be represented by a chemical structural formula shown in FIG. .
  • R 1 to R 6 in the chemical structural formula shown in FIG. 11B are H or an alkyl group containing 1 to 4 C.
  • R 1 to R 6 may be the same type of alkyl group or different types of alkyl groups. However, the case where R 1 to R 6 are all H is excluded.
  • the alkyl borazine compound has a borazine ring skeleton constituting a borazine ring and can be said to be a substance containing B, N, H and C.
  • An alkyl borazine compound can also be said to be a substance having a borazine ring skeleton and containing an alkyl ligand.
  • R 1 to R 6 may be H, or an alkenyl group or alkynyl group containing 1 to 4 C atoms.
  • R 1 to R 6 may be the same type of alkenyl group or alkynyl group, or may be a different type of alkenyl group or alkynyl group. However, the case where R 1 to R 6 are all H is excluded.
  • the borazine-based gas acts as a B source, an N source, and a C source in a substrate processing step described later.
  • borazine-based gas examples include n, n ′, n ′′ -trimethylborazine (abbreviation: TMB) gas, n, n ′, n ′′ -triethylborazine (abbreviation: TEB) gas, n, n ′, n ′′ — Tri-n-propylborazine (abbreviation: TPB) gas, n, n ′, n ′′ -triisopropylborazine (abbreviation: TIPB) gas, n, n ′, n ′′ -tri-n-butylborazine (abbreviation: TBB) Gas, n, n ′, n ′′ -triisobutylborazine (abbreviation: TIBB) gas, or the like can be used.
  • TMB trimethylborazine
  • TEB triethylborazine
  • TPB Tri-n-
  • R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are methyl groups, and the chemistry shown in FIG. It is a borazine compound that can be represented by a structural formula.
  • TEB is a borazine compound in which R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are ethyl groups.
  • R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are propyl groups, and the chemistry shown in FIG.
  • TIPB is a borazine compound in which R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are isopropyl groups.
  • TBB is a borazine compound in which R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are butyl groups.
  • TIBB is a borazine compound in which R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are isobutyl groups.
  • the borazine compound in a liquid state is vaporized by a vaporization system such as a vaporizer or bubbler and supplied as a borazine-based gas (TMB gas or the like). It will be.
  • a B-containing gas not containing a borazine ring skeleton as the second boron (B) -containing gas is used as a reactive gas having a chemical structure different from that of the source gas, such as an MFC 241b, a valve 243b, It is supplied into the processing chamber 201 through the nozzle 249 b and the buffer chamber 237.
  • the B-containing gas not containing a borazine ring skeleton for example, a borane-based gas can be used.
  • the borane-based gas is a gas obtained by vaporizing a borane compound in a gaseous state, for example, a borane compound in a liquid state at normal temperature and normal pressure, a borane compound in a gas state at normal temperature and normal pressure, or the like.
  • the borane compound includes a haloborane compound containing B and a halogen element, for example, a chloroborane compound containing B and Cl.
  • borane compounds include boranes (borohydrides) such as monoborane (BH 3 ) and diborane (B 2 H 6 ), and borane compounds in which borane H is substituted with other elements (borane derivatives). Is included.
  • the borane-based gas acts as a B source in the substrate processing step described later.
  • the borane-based gas for example, trichloroborane (BCl 3 ) gas can be used.
  • the BCl 3 gas is a B-containing gas that does not contain a borazine compound described later, that is, a non-borazine-based B-containing gas.
  • a nitrogen (N) -containing gas as a reactive gas having a chemical structure different from that of the raw material gas enters the processing chamber 201 through the MFC 241b, the valve 243b, the nozzle 249b, and the buffer chamber 237.
  • N-containing gas for example, a hydrogen nitride-based gas can be used.
  • the hydrogen nitride-based gas can be said to be a substance composed of only two elements of N and H, and acts as a nitriding gas, that is, an N source, in a substrate processing step described later.
  • ammonia (NH 3 ) gas can be used as the hydrogen nitride-based gas.
  • a carbon (C) -containing gas as a reaction gas having a chemical structure different from that of the raw material gas enters the processing chamber 201 through the MFC 241b, the valve 243b, the nozzle 249b, and the buffer chamber 237.
  • a carbon (C) -containing gas as a reaction gas having a chemical structure different from that of the raw material gas enters the processing chamber 201 through the MFC 241b, the valve 243b, the nozzle 249b, and the buffer chamber 237.
  • the C-containing gas for example, a hydrocarbon-based gas can be used.
  • the hydrocarbon-based gas can be said to be a substance composed of only two elements of C and H, and acts as a C source in the substrate processing step described later.
  • the hydrocarbon-based gas for example, propylene (C 3 H 6 ) gas can be used.
  • gas supply pipes 232c and 232d From the gas supply pipes 232c and 232d, as an inert gas, for example, nitrogen (N 2 ) gas passes through MFCs 241c and 241d, valves 243c and 243d, gas supply pipes 232a and 232b, nozzles 249a and 249b, and a buffer chamber 237, respectively. And supplied into the processing chamber 201.
  • nitrogen (N 2 ) gas passes through MFCs 241c and 241d, valves 243c and 243d, gas supply pipes 232a and 232b, nozzles 249a and 249b, and a buffer chamber 237, respectively. And supplied into the processing chamber 201.
  • nitrogen (N 2 ) gas passes through MFCs 241c and 241d, valves 243c and 243d, gas supply pipes 232a and 232b, nozzles 249a and 249b, and a buffer chamber 237, respectively. And supplied into the processing chamber 201.
  • the source gas supply system When supplying the source gas from the gas supply pipe 232a, the source gas supply system is mainly configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • the nozzle 249a may be included in the source gas supply system.
  • the source gas supply system can also be referred to as a source supply system.
  • the source gas supply system When the halosilane source gas is supplied from the gas supply pipe 232a, the source gas supply system may be referred to as a halosilane source gas supply system or a halosilane source supply system.
  • the first B-containing gas supply system When supplying the first B-containing gas from the gas supply pipe 232b, the first B-containing gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. The nozzle 249b and the buffer chamber 237 may be included in the first B-containing gas supply system.
  • the first B-containing gas supply system When supplying a borazine-based gas as the first B-containing gas from the gas supply pipe 232b, the first B-containing gas supply system may be a borazine-based gas supply system, an organic borazine-based gas supply system, or a borazine compound supply system. It can also be called.
  • the borazine-based gas is a gas containing N and C, is also an N-containing gas, and is a C-containing gas
  • the borazine-based gas supply system is changed to an N-containing gas supply system and a C-containing gas supply system, which will be described later. It can also be considered.
  • the second B-containing gas supply system When supplying the second B-containing gas from the gas supply pipe 232b, the second B-containing gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. The nozzle 249b and the buffer chamber 237 may be included in the second B-containing gas supply system.
  • the second B-containing gas supply system When the borane-based gas is supplied as the second B-containing gas from the gas supply pipe 232b, the second B-containing gas supply system may be referred to as a borane-based gas supply system or a borane compound supply system.
  • an N-containing gas supply system When supplying N-containing gas from the gas supply pipe 232b, an N-containing gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b.
  • the nozzle 249b and the buffer chamber 237 may be included in the N-containing gas supply system.
  • the N-containing gas supply system can also be referred to as a nitriding gas supply system or a nitriding agent supply system.
  • the N-containing gas supply system When supplying a hydrogen nitride-based gas from the gas supply pipe 232b, the N-containing gas supply system may be referred to as a hydrogen nitride-based gas supply system or a hydrogen nitride supply system.
  • the C-containing gas supply system When supplying the C-containing gas from the gas supply system 232b, the C-containing gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. The nozzle 249b and the buffer chamber 237 may be included in the C-containing gas supply system.
  • the C-containing gas supply system can also be referred to as a hydrocarbon-based gas supply system or a hydrocarbon supply system.
  • any one or both of the first B-containing gas supply system and the second B-containing gas supply system described above may be referred to as a B-containing gas supply system.
  • any or all of the above-described B-containing gas supply system, N-containing gas supply system, and C-containing gas supply system may be referred to as a reaction gas supply system or a reactant supply system. it can.
  • an inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d.
  • the inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
  • two rod-shaped electrodes 269 and 270 made of a conductor and having an elongated structure are arranged along the stacking direction of the wafer 200 from the lower part to the upper part of the reaction tube 203. It is installed. Each of the rod-shaped electrodes 269 and 270 is provided in parallel with the nozzle 249b. Each of the rod-shaped electrodes 269 and 270 is protected by being covered with an electrode protection tube 275 from the upper part to the lower part.
  • One of the rod-shaped electrodes 269 and 270 is connected to the high-frequency power source 273 via the matching unit 272, and the other is connected to the ground that is the reference potential.
  • the rod-shaped electrodes 269 and 270 and the electrode protection tube 275 mainly constitute a plasma source as a plasma generator (plasma generator).
  • the matching device 272 and the high-frequency power source 273 may be included in the plasma source.
  • the plasma source functions as an excitation unit (activation mechanism) that excites (or activates) a gas into a plasma state, that is, a plasma state.
  • the electrode protection tube 275 has a structure in which each of the rod-shaped electrodes 269 and 270 can be inserted into the buffer chamber 237 while being isolated from the atmosphere in the buffer chamber 237. If the O concentration inside the electrode protection tube 275 is about the same as the O concentration in the outside air (atmosphere), the rod-shaped electrodes 269 and 270 inserted into the electrode protection tube 275 are oxidized by heat from the heater 207. .
  • the electrode protection tube 275 is filled with an inert gas such as N 2 gas into the electrode protection tube 275, by the interior of the electrode protection tube 275 is purged with an inert gas such as N 2 gas using an inert gas purge mechanism, It is possible to reduce the O concentration inside the electrode protection tube 275 and prevent the rod-shaped electrodes 269 and 270 from being oxidized.
  • an inert gas such as N 2 gas
  • the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated,
  • the valve is configured such that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the reaction tube 203.
  • the seal cap 219 is configured to contact the lower end of the reaction tube 203 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • an O-ring 220 is provided as a seal member that comes into contact with the lower end of the reaction tube 203.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed on the opposite side of the seal cap 219 from the processing chamber 201. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down. That is, the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201.
  • the boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages in a horizontal posture. With this configuration, heat from the heater 207 is not easily transmitted to the seal cap 219 side.
  • this embodiment is not limited to the above-mentioned form.
  • a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 is installed as a temperature detector. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is configured in an L shape similarly to the nozzles 249a and 249b, and is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of the controller 121 that allows the controller 121 to execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • program When the term “program” is used in this specification, it may include only a process recipe alone, only a control program alone, or both.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the above-described MFCs 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor 263, high frequency power supply 273, matching device 272, rotation mechanism 267, boat It is connected to the elevator 115 and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 241a to 241d, the opening and closing operations of the valves 243a to 243d, the opening and closing operations of the APC valve 244, and the pressure by the APC valve 244 based on the pressure sensor 245 so as to match the contents of the read process recipe.
  • the controller 121 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer.
  • an external storage device storing the above-described program for example, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card
  • the controller 121 of this embodiment can be configured by installing a program in a general-purpose computer using the external storage device 123.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 123.
  • the program may be supplied without using the external storage device 123 by using communication means such as the Internet or a dedicated line.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
  • the step of supplying the HCDS gas, the step of supplying the TMB gas, and the step of supplying the BCl 3 gas are performed non-simultaneously, that is, in this order without being synchronized. That is, the step of supplying the HCDS gas and the step of supplying the TMB gas are performed non-simultaneously in this order, and the step of supplying the TMB gas and the step of supplying BCl 3 gas are performed non-simultaneously in this order.
  • wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface”. In other words, it may be called a wafer including a predetermined layer or film formed on the surface.
  • wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
  • the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface (exposed surface) of the wafer itself”. , It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) directly on the surface (exposed surface) of the wafer itself”. This means that a predetermined layer (or film) is formed on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate. There is a case.
  • a plurality of wafers 200 are loaded into the boat 217 (wafer charge). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the reaction tube 203 via the O-ring 220.
  • Vacuum exhaust (reduced pressure) is performed by the vacuum pump 246 so that the processing chamber 201, that is, the space where the wafer 200 exists, has a desired pressure (degree of vacuum).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the vacuum pump 246 maintains a state in which it is always operated until at least the processing on the wafer 200 is completed. Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature.
  • the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed. Further, the rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is started. The rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
  • Step 1 (HCDS gas supply)
  • HCDS gas is supplied to the wafer 200 in the processing chamber 201.
  • valve 243a is opened, and HCDS gas is caused to flow into the gas supply pipe 232a.
  • the flow rate of the HCDS gas is adjusted by the MFC 241a, supplied into the processing chamber 201 through the nozzle 249a, and exhausted from the exhaust pipe 231.
  • the HCDS gas is supplied to the wafer 200.
  • the valve 243c is opened and N 2 gas is allowed to flow into the gas supply pipe 232c.
  • the flow rate of the N 2 gas is adjusted by the MFC 241c, supplied into the processing chamber 201 together with the HCDS gas, and exhausted from the exhaust pipe 231.
  • the valve 243d is opened, and N 2 gas is allowed to flow into the gas supply pipe 232d.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 232b and the nozzle 249b, and is exhausted from the exhaust pipe 231.
  • the supply flow rate of the HCDS gas controlled by the MFC 241a is, for example, 1 to 2000 sccm, preferably 10 to 1000 sccm.
  • the supply flow rate of N 2 gas controlled by the MFCs 241c and 241d is set to a flow rate in the range of 100 to 10,000 sccm, for example.
  • the pressure in the processing chamber 201 is, for example, 1 to 2666 Pa, preferably 67 to 1333 Pa.
  • the time for supplying the HCDS gas to the wafer 200 that is, the gas supply time (irradiation time) is, for example, 1 to 120 seconds, preferably 1 to 60 seconds.
  • the temperature of the heater 207 is set such that the temperature of the wafer 200 becomes, for example, a temperature in the range of 250 to 700 ° C., preferably 300 to 650 ° C., more preferably 350 to 600 ° C.
  • HCDS When the temperature of the wafer 200 is less than 250 ° C., it is difficult for HCDS to be chemically adsorbed on the wafer 200 and a practical film formation rate may not be obtained. This can be eliminated by setting the temperature of the wafer 200 to 250 ° C. or higher. By setting the temperature of the wafer 200 to 300 ° C. or higher, further 350 ° C. or higher, HCDS can be more sufficiently adsorbed on the wafer 200 and a more sufficient film formation rate can be obtained.
  • the CVD reaction becomes too strong (excess gas phase reaction occurs), so that the film thickness uniformity tends to be deteriorated and the control becomes difficult.
  • the temperature of the wafer 200 is set to 700 ° C. or lower, an appropriate gas phase reaction can be caused, so that deterioration in film thickness uniformity can be suppressed and control thereof is possible.
  • the temperature of the wafer 200 is set to 650 ° C. or lower, and further to 600 ° C. or lower, the surface reaction becomes dominant over the gas phase reaction, the film thickness uniformity is easily ensured, and the control thereof is facilitated.
  • the temperature of the wafer 200 is set to 250 to 700 ° C., preferably 300 to 650 ° C., more preferably 350 to 600 ° C.
  • the first layer includes Si containing, for example, Cl having a thickness of less than one atomic layer to several atomic layers on the outermost surface of the wafer 200.
  • a layer is formed.
  • the Si-containing layer containing Cl may be a Si layer containing Cl, an adsorption layer of HCDS, or both of them.
  • the Si layer containing Cl is a generic name including a continuous layer made of Si and containing Cl, as well as a discontinuous layer and a Si thin film containing Cl formed by overlapping these layers.
  • a continuous layer made of Si and containing Cl may be referred to as a Si thin film containing Cl.
  • Si constituting the Si layer containing Cl includes not only those that are not completely disconnected from Cl but also those that are completely disconnected from Cl.
  • the adsorption layer of HCDS includes a discontinuous adsorption layer as well as a continuous adsorption layer composed of HCDS molecules. That is, the adsorption layer of HCDS includes an adsorption layer having a thickness of less than one molecular layer composed of HCDS molecules or less than one molecular layer.
  • the HCDS molecules constituting the HCDS adsorption layer include those in which the bond between Si and Cl is partially broken. That is, the HCDS adsorption layer may be an HCDS physical adsorption layer, an HCDS chemical adsorption layer, or both of them.
  • a layer having a thickness of less than one atomic layer means an atomic layer formed discontinuously, and a layer having a thickness of one atomic layer means an atomic layer formed continuously.
  • a layer having a thickness of less than one molecular layer means a molecular layer formed discontinuously, and a layer having a thickness of one molecular layer means a molecular layer formed continuously.
  • the Si-containing layer containing Cl can include both a Si layer containing Cl and an adsorption layer of HCDS. However, as described above, the Si-containing layer containing Cl is expressed using expressions such as “one atomic layer” and “several atomic layer”.
  • the HCDS gas undergoes self-decomposition (thermal decomposition), that is, under conditions where a thermal decomposition reaction of the HCDS gas occurs, Si is deposited on the wafer 200 to form a Si layer containing Cl.
  • the adsorption layer of HCDS is formed by adsorbing HCDS on the wafer 200. It is more preferable to form a Si layer containing Cl on the wafer 200 than to form an HCDS adsorption layer on the wafer 200 in that the film formation rate can be increased.
  • the thickness of the first layer exceeds several atomic layers, the modification effect in Steps 2 and 3 described later does not reach the entire first layer.
  • the minimum value of the thickness of the first layer is less than one atomic layer. Therefore, the thickness of the first layer is preferably less than one atomic layer to several atomic layers.
  • the HCDS gas is supplied by being thermally activated by non-plasma because the above-described reaction can be progressed softly and the first layer can be easily formed. That is, when the HCDS gas is supplied after being thermally activated by non-plasma, it is possible to prevent an excessive gas phase reaction in the processing chamber 201 than when the HCDS gas is supplied after being excited by plasma. It is preferable in that the generation of particles in can be suppressed. Further, it is preferable in that the step coverage and film thickness controllability of the first layer, that is, the finally formed SiBCN film can be improved.
  • the valve 243a is closed and the supply of HCDS gas is stopped.
  • the APC valve 244 is kept open, the processing chamber 201 is evacuated by the vacuum pump 246, and the HCDS gas remaining in the processing chamber 201 or contributing to the formation of the first layer is processed. Exclude from the chamber 201.
  • the valves 243c and 243d remain open, and the supply of N 2 gas into the processing chamber 201 is maintained.
  • the N 2 gas acts as a purge gas, which can enhance the effect of removing the gas remaining in the processing chamber 201 from the processing chamber 201.
  • the gas remaining in the processing chamber 201 may not be completely removed, and the inside of the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, there will be no adverse effect in the subsequent step 2.
  • the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. For example, by supplying an amount of N 2 gas equivalent to the volume of the reaction tube 203 (processing chamber 201), step 2 is performed. Purging can be performed to such an extent that no adverse effect is caused. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. The consumption of N 2 gas can be suppressed to the minimum necessary.
  • HCDS gas in addition to HCDS gas, for example, OCTS gas, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas, monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, tetrachlorosilane, that is, silicon tetrachloride (SiCl) 4 , an abbreviated name: STC) gas, an inorganic halosilane source gas such as trichlorosilane (SiHCl 3 , abbreviated name: TCS) gas can be used, and as the source gas, BTCSE gas, BTCSM gas, TCDMDS gas, DCTMDS An organic halosilane source gas such as gas or MCPMDS gas can be used.
  • DCS dichlorosilane
  • MCS monochlorosilane
  • MCS monochlorosilane
  • tetrachlorosilane that is, silicon tetrachlor
  • the inert gas for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • Step 2 TMB gas supply
  • TMB gas is supplied to the wafer 200 in the processing chamber 201.
  • the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in Step 1.
  • the supply flow rate of the TMB gas controlled by the MFC 241b is set, for example, within a range of 1 to 1000 sccm.
  • the pressure in the processing chamber 201 is, for example, 1 to 2666 Pa, preferably 67 to 1333 Pa.
  • the partial pressure of the TMB gas in the processing chamber 201 is, for example, a pressure in the range of 0.0001 to 2424 Pa.
  • the time for supplying the TMB gas to the wafer 200 is, for example, 1 to 120 seconds, preferably 1 to 60 seconds.
  • Other processing procedures and processing conditions are the same as, for example, the processing procedures and processing conditions in step 1.
  • the first layer formed in Step 1 reacts with TMB gas. That is, Cl (chloro group) contained in the first layer reacts with a ligand (methyl group, hereinafter also referred to as “organic ligand” or “methyl ligand”) contained in TMB. Thereby, Cl of the first layer reacted with methyl ligand of TMB is separated (pulled out) from the first layer, and methyl ligand of TMB reacted with Cl of the first layer is separated from TMB. Can be made. And N which comprises the borazine ring of TMB which the methyl ligand isolate
  • the methyl ligand is removed and N has a dangling bond, and it is included in the first layer and has a dangling bond.
  • Si-N bonds can be formed by bonding Si or Si having dangling bonds.
  • the borazine ring skeleton constituting the borazine ring of TMB is retained without being broken.
  • the bond between the borazine ring and the methyl ligand, that is, the N—C bond of TMB is also retained without being broken.
  • the methyl group is one of alkyl groups, and the methyl ligand can also be referred to as an alkyl ligand.
  • the first layer and TMB can be appropriately reacted while maintaining the borazine ring skeleton and part of the N—C bond in TMB without breaking them. And the above-described series of reactions can be caused.
  • the most important factors (conditions) for causing this series of reactions in a state where the borazine ring skeleton of TMB is held are considered to be the temperature of the wafer 200 and the pressure in the processing chamber 201, particularly the temperature of the wafer 200. By properly controlling these, it becomes possible to cause an appropriate reaction.
  • the first layer changes to a second layer having a borazine ring skeleton and containing Si, B, C and N, that is, a silicon borocarbonitride layer (SiBCN layer) containing a borazine ring skeleton ( Modified).
  • the second layer is a layer having a thickness of less than one atomic layer to several atomic layers. It can be said that the SiBCN layer containing a borazine ring skeleton is a layer containing Si, C, and a borazine ring skeleton.
  • the B component and N component constituting the borazine ring are newly taken into the first layer.
  • the C component contained in the TMB ligand is also taken into the first layer. In this way, by reacting the first layer with TMB and incorporating the C component contained in the borazine ring or methyl ligand into the first layer, the B component, C component and N component can be newly added.
  • Cl contained in the first layer constitutes a gaseous substance containing at least Cl in the process of the reforming reaction of the first layer with TMB gas. It is discharged from the inside. That is, impurities such as Cl in the first layer are separated from the first layer by being extracted or desorbed from the first layer. Accordingly, the second layer is a layer having less impurities such as Cl than the first layer.
  • the center space of the borazine ring can be maintained (held), It becomes possible to form a porous SiBCN layer.
  • the TMB gas is supplied by being thermally activated by non-plasma because the above-described reaction can be performed softly and the second layer can be easily formed.
  • the TMB gas is maintained without being destroyed by destroying the borazine ring skeleton and some of the N—C bonds in the TMB when supplied by being thermally activated with non-plasma rather than being supplied with plasma excitation.
  • it is preferable in that it can be easily incorporated into the second layer.
  • TEB gas TPB gas, TIPB gas, TBB gas, TIBB gas and the like
  • TMB gas TMB gas
  • inert gas for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • Step 3 BCl 3 gas supply
  • BCl 3 gas is supplied to the wafer 200 in the processing chamber 201.
  • the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in Step 1.
  • the supply flow rate of the BCl 3 gas controlled by the MFC 241b is set to a flow rate in the range of 100 to 10,000 sccm, for example.
  • the pressure in the processing chamber 201 is, for example, 1 to 2666 Pa, preferably 67 to 1333 Pa.
  • the partial pressure of the BCl 3 gas in the processing chamber 201 is, for example, a pressure in the range of 0.01 to 2640 Pa.
  • the time for supplying the BCl 3 gas to the wafer 200 is, for example, 1 to 120 seconds, preferably 1 to 60 seconds.
  • Other processing procedures and processing conditions are the same as, for example, the processing procedures and processing conditions in step 1.
  • the second layer formed in Step 2 reacts with BCl 3 gas. That is, a ligand (methyl group) bonded to N constituting the borazine ring skeleton contained in the second layer reacts with Cl (chloro group) contained in BCl 3 . Thereby, the methyl ligand of the second layer reacted with Cl of BCl 3 is separated (pulled out) from the second layer, and the Cl of BCl 3 reacted with the methyl ligand of the second layer is converted to BCl 3. 3 can be separated.
  • B of BCl 3 from which Cl has been separated and N constituting the borazine ring contained in the second layer from which the methyl ligand has been separated can be bonded. That is, among B of BCl 3 that has had a dangling bond due to Cl being released, and B and N that constitute the borazine ring skeleton included in the second layer, the methyl ligand has come off and has a dangling bond. It becomes possible to form a BN bond by combining N which has become to be N or N having an unbonded hand.
  • the borazine ring skeleton and some N—C bonds contained in the second layer are maintained without being broken, and the second layer and the BCl 3 Can be appropriately reacted, and the above-described series of reactions can be caused.
  • the most important factors (conditions) for causing this series of reactions while holding the borazine ring skeleton and the like contained in the second layer are the temperature of the wafer 200 and the pressure in the processing chamber 201, particularly the wafer 200. It is possible to cause an appropriate reaction by appropriately controlling these temperatures.
  • B is further incorporated into the second layer, and the second layer is a B-rich third layer having a borazine ring skeleton and containing Si, B, C, and N, that is, borazine. It is changed (modified) into a B-rich SiBCN layer containing a ring skeleton.
  • the third layer is, for example, a layer having a thickness of less than one atomic layer to several atomic layers.
  • a B-rich SiBCN layer containing a borazine ring skeleton can be said to be a layer containing Si, B, C, and a borazine ring skeleton.
  • the third layer has a higher B concentration in the layer than the second layer, that is, a B-rich layer and Become. Further, when forming the third layer, a part of the methyl ligand contained in the second layer is separated from the second layer, and the rest is held in the second layer. . Thereby, the third layer is a layer having a lower C concentration in the layer than the second layer, that is, a carbon poor layer.
  • the third layer it is possible to form a porous SiBCN layer by maintaining (holding) the borazine ring skeleton constituting the borazine ring contained in the second layer without destroying it. Is the same as step 2.
  • the BCl 3 gas is preferably supplied by being thermally activated by non-plasma from the viewpoint that the above-described reaction can be performed softly and the formation of the third layer is facilitated. That, BCl 3 gas, who was fed thermally activated in a non-plasma, rather than supplied by plasma excitation, it is possible to prevent the BCl 3 gas is excessively activated, the The borazine ring skeleton and a part of N—C bonds in the second layer are preferably maintained without being destroyed.
  • step 1 (Residual gas removal) After the third layer is formed, the valve 243b is closed and the supply of BCl 3 gas is stopped. Then, BCl 3 gas and reaction by-products remaining in the processing chamber 201 and contributed to the formation of the third layer are removed from the processing chamber 201 by the same processing procedure as in step 1. At this time, it is the same as in step 1 that the gas remaining in the processing chamber 201 does not have to be completely removed.
  • a bromoborane-based gas such as a fluoroborane-based gas or a tribromoborane (BBr 3 ) gas can be used.
  • BBr 3 tribromoborane
  • a Cl-free borane-based gas such as B 2 H 6 gas can also be used.
  • organic borane-based gases can also be used.
  • the inert gas for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • a SiBCN film including a borazine ring skeleton having a predetermined composition and a predetermined film thickness can be formed on the wafer 200 by performing the above-described steps 1 to 3 non-simultaneously at least once (a predetermined number of times).
  • the above cycle is preferably repeated multiple times. That is, it is preferable that the thickness of the SiBCN layer formed per cycle is made smaller than the desired film thickness, and the above-described cycle is repeated a plurality of times until the desired film thickness is obtained.
  • N 2 gas acts as a purge gas.
  • the inside of the processing chamber 201 is purged, and the gas and reaction by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (purge).
  • the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • step 1 By performing a predetermined number of cycles including step 1 for supplying HCDS gas, step 2 for supplying TMB gas, and step 3 for supplying BCl 3 gas, the SiBCN film finally formed
  • the controllability of the composition ratio can be improved. That is, the composition of the SiBCN film finally formed by performing the film forming process using not only the TMB gas containing B and N but also the BCl 3 gas containing B and not containing N as the B-containing gas.
  • the ratio can be precisely controlled.
  • the ratio of B component and N component contained in the film (hereinafter also referred to as B / N ratio)
  • the ratio is determined by the ratio of the number of B and the number of N contained in one molecule of the TMB gas (1/1 in the case of TMB gas), that is, the type of gas containing the borazine ring skeleton. That is, it is difficult to set the B / N ratio described above to a value far from 1/1 in a SiBCN film formed using HCDS gas and TMB gas without using BCl 3 gas.
  • the B-containing gas two types of gases (double B source) including TMB gas containing B and N and BCl 3 gas containing B and not containing N are used.
  • double B source gases including TMB gas containing B and N and BCl 3 gas containing B and not containing N.
  • step 3 by increasing the ratio of “the supply flow rate of BCl 3 gas in step 3” to “the supply flow rate of TMB gas in step 2” (hereinafter also referred to as “BCl 3 gas supply flow rate / TMB gas supply flow rate”), In step 3, the amount of the B component added to the third layer is increased, and the B / N ratio of the finally formed SiBCN film can be increased (larger than 1/1). Further, by reducing the above-mentioned “BCl 3 gas supply flow rate / TMB gas supply flow rate”, the amount of B component added to the third layer in Step 3 is appropriately suppressed, and finally formed SiBCN. It is possible to reduce the B / N ratio of the film (close to 1/1).
  • the ratio of "BCl 3 gas supply time in Step 3" to "supply time of the TMB gas in Step 2" (hereinafter also referred to as "BCl 3 gas supply time / TMB gas supply time") to increase the In Step 3
  • BCl 3 gas supply time / TMB gas supply time it is possible to increase the amount of the B component added to the third layer and increase the B / N ratio of the SiBCN film to be finally formed (greater than 1/1).
  • the amount of B component added to the third layer in Step 3 is appropriately suppressed, and finally formed SiBCN. It is possible to reduce the B / N ratio of the film (close to 1/1).
  • a ratio of “pressure in the processing chamber 201 in step 3” to “pressure in the processing chamber 201 in step 2” (hereinafter also referred to as “processing pressure in step 3 / processing pressure in step 2”).
  • processing pressure in step 3 / processing pressure in step 2 By increasing the size, the amount of the B component added to the third layer in Step 3 is increased, and the B / N ratio of the SiBCN film finally formed is increased (made larger than 1/1). It becomes possible. Further, by reducing the above-mentioned “processing pressure in step 3 / processing pressure in step 2”, the amount of the B component added to the third layer in step 3 is appropriately suppressed and finally formed. It is possible to reduce the B / N ratio of the SiBCN film to be close (close to 1/1).
  • a ratio of “partial pressure of BCl 3 gas in the processing chamber 201 in step 3” to “partial pressure of TMB gas in the processing chamber 201 in step 2” (hereinafter referred to as “BCl 3 gas partial pressure / TMB”).
  • BCl 3 gas partial pressure / TMB a ratio of “partial pressure of BCl 3 gas in the processing chamber 201 in step 3” to “partial pressure of TMB gas in the processing chamber 201 in step 2”
  • the film is formed by using two types of gas, that is, a TMB gas containing C and a BCl 3 gas containing no C as the B-containing gas. It becomes possible to finely adjust the C concentration in the SiBCN film. That is, in addition to Steps 1 and 2, Step 3 for supplying C-free BCl 3 gas is further performed, so that Steps 1 and 2 are alternately performed with respect to the C concentration in the finally formed SiBCN film. It is possible to control the concentration so as to be an arbitrary concentration lower than the C concentration in the SiBCN film formed in (1).
  • a film is formed using two types of gases, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, and finally formed. It becomes possible to improve the oxidation resistance of the SiBCN film.
  • the SiBCN film containing a borazine ring skeleton contains B as one component of the borazine ring skeleton constituting the film.
  • the BN bond constituting the borazine ring skeleton has a small bond (small polarity) and has a strong bond. Therefore, a SiBCN film containing a borazine ring skeleton has a lower probability of desorption of B from the film due to oxidation than a SiBCN film not containing a borazine ring skeleton, and a film having high resistance to oxidation resistance, for example, oxygen plasma, That is, the film has high ashing resistance.
  • the final film formation process is performed by using two types of gases, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, as the B-containing gas.
  • the oxidation resistance of the SiBCN film formed on the silicon nitride film can be made higher than that of the SiBCN film not containing a borazine ring skeleton.
  • Step 2 for supplying a TMB gas containing a borazine ring skeleton is performed between Steps 1 and 3 and the borazine ring skeleton is included in the finally formed SiBCN film, for example, HCDS gas, BCl 3
  • the borazine ring skeleton is included in the finally formed SiBCN film, for example, HCDS gas, BCl 3
  • gas, C 3 H 6 gas, NH 3 gas, or the like it is possible to reduce the probability of B desorption from the film due to oxidation. That is, the oxidation resistance of the film, that is, the ashing resistance can be improved.
  • the inventors have added B in the third layer by performing Step 3, that is, the borazine ring skeleton contained in the film. It has also been confirmed that the probability of desorption from the film can be reduced even for B which is not a constituent element. This is because the borazine ring skeleton contained in the SiBCN film is added to the third layer by performing step 3 on the oxygen plasma or the like supplied to the film, for example, One reason is considered to act as a protective (guard) element that suppresses the elimination of B, which is bound to N or the like constituting the borazine ring.
  • a film containing a borazine ring skeleton has a lower atomic density and a lower dielectric constant than a film not containing a borazine ring skeleton (non-porous film).
  • the B-containing gas film formation is performed using two kinds of gases, ie, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, and in the SiBCN film finally formed
  • a borazine ring skeleton By including a borazine ring skeleton in the film, it is possible to appropriately reduce the film density of the film and increase the dielectric constant.
  • the processing conditions in Steps 2 and 3 are controlled as described above, and the amount of borazine ring skeleton contained in this film is adjusted, so that the dielectric constant of this film can be changed to, for example, HCDS gas or BCl 3 gas.
  • the dielectric constant of a borazine ring skeleton-free SiBCN film formed using C 3 H 6 gas, NH 3 gas, etc., and the dielectric constant of a SiBCN film including a borazine ring skeleton formed using HCDS gas and TMB gas It is possible to control to be an arbitrary value between.
  • the dielectric constant of the finally formed SiBCN film can be made higher than that of the borazine ring skeleton-free SiBCN film. Furthermore, the dielectric constant of the SiBCN film to be finally formed is set such that when a SiBCN film containing no borazine ring skeleton is formed, or when a SiBCN film containing a borazine ring skeleton is formed using HCDS gas or TMB gas, etc. The value can not be realized. That is, it is possible to widen the window for controlling the dielectric constant. Further, by controlling the TMB gas and BCl 3 gas supply conditions in steps 2 and 3 as described above, for example, the dielectric constant of the finally formed SiBCN film can be finely adjusted.
  • a film is formed using two types of gases, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, and finally formed. It becomes possible to improve the surface roughness of the SiBCN film.
  • surface roughness means a height difference in the wafer surface or in an arbitrary target surface, and has the same meaning as the surface roughness.
  • the improvement in surface roughness (good) means that this height difference becomes small (small), that is, the surface becomes smooth (smooth).
  • Deteriorating (poor) surface roughness means that this height difference becomes large (large), that is, the surface becomes rough (coarse).
  • a film containing no borazine ring skeleton tends to have better surface roughness than a film containing a borazine ring skeleton. Therefore, it is possible to improve the surface roughness of the finally formed SiBCN film by further performing Step 3 of supplying a C-free B-containing gas in addition to Steps 1 and 2.
  • a film forming process is performed using two kinds of gases, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, and the SiBCN film finally formed
  • a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton the SiBCN film finally formed
  • the surface roughness of this film can be made higher than that of the SiBCN film containing a borazine ring skeleton formed using HCDS gas and TMB gas without using BCl 3 gas. It becomes possible to improve.
  • step 2 By using the TMB gas obtained by vaporizing the organic borazine compound in Step 2, an appropriate amount of C can be contained in the finally formed film. That is, in step 2, a step of supplying a C-containing gas such as C 3 H 6 gas by using a B-containing gas that contains an organic ligand in one molecule such as TMB gas and also acts as a C source is newly added. It is possible to form a SiBN film containing C, that is, a SiBCN film on the wafer 200 without adding to the above. Thus, by including an appropriate amount of C in the film, it is possible to increase the resistance of this film to hydrogen fluoride (HF), that is, the etching resistance.
  • HF hydrogen fluoride
  • Step 1 a halosilane source gas (silane source gas containing a halogen element) is used, in Step 2, an organic borazine gas (borazine compound gas containing an organic ligand) is used, and in Step 3, a haloborane gas (borane containing a halogen element) is used.
  • a compound gas By using a compound gas) and performing a cycle of performing steps 1 to 3 non-simultaneously in this order a predetermined number of times, it is possible to efficiently perform the formation process of the first to third layers, that is, the formation of the SiBCN film. It becomes.
  • the HCDS gas containing Cl that is, the halosilane source gas having a high adsorptivity to the base, is supplied to the wafer 200 in Step 1, thereby efficiently forming the first layer on the wafer 200. It is possible to make progress.
  • the second layer is formed by supplying TMB gas containing an organic ligand to the first layer in Step 2. It becomes possible to carry out efficiently. That is, in step 2, the reaction efficiency between the first layer and the TMB gas can be increased by utilizing the reaction between Cl contained in the first layer and the organic ligand contained in the TMB gas. Become. As a result, the formation process of the second layer can be efficiently advanced.
  • a third layer is formed by supplying BCl 3 gas containing Cl to the second layer in Step 3. It becomes possible to carry out efficiently. That is, in step 3, and the organic ligands included in the second layer, by using a Cl contained in the BCl 3 gas, a reaction, to increase the reaction efficiency between the second layer and the BCl 3 gas It becomes possible. As a result, it is possible to efficiently proceed with the formation process of the third layer.
  • a gas containing an organic ligand is supplied, and after supplying a gas containing an organic ligand, a gas containing a halogen element is supplied.
  • the layer formed on the wafer 200 and the gas supplied to this layer can be reacted efficiently.
  • the formation rate of the first to third layers can be increased, and the film formation rate of the SiBCN film to be finally formed can be improved.
  • a film containing a borazine ring skeleton may be formed on the wafer 200 by the following film formation sequence (in order of Modifications 1 to 3). Also by this modification, the same effect as the film-forming sequence shown in FIG. 4 can be acquired.
  • FIG. 5 is a diagram illustrating the gas supply timing in the fourth modification.
  • the same effect as the film forming sequence shown in FIG. 4 can be obtained.
  • the N component contained in the NH 3 gas can be added to the layers formed so far (SiBCN layer), the layer, N concentration Can be modified (nitrided) into a high layer (N-rich SiBCN layer).
  • N-rich SiBCN layer As a result, it is possible to increase the N concentration in the finally formed SiBCN film.
  • most of C contained in the SiBCN layer can be eliminated to an impurity level, or C contained in the SiBCN layer can be substantially eliminated.
  • It can also be modified to a layer (SiBN layer). In this case, a C-free silicon boronitride film (SiBN film) containing a borazine ring skeleton can also be formed on the wafer 200.
  • the step of supplying NH 3 gas can be performed simultaneously with the steps of supplying other gases. Further, the NH 3 gas can be supplied by being activated by heat, or can be supplied after being excited by plasma.
  • Modifications 8 and 9 Further, for example, as in the following film forming sequence (in order of Modifications 8 and 9), when performing the above-described cycle, the step of supplying TMB gas and the step of supplying BCl 3 gas are performed simultaneously. It may be.
  • FIG. 6 is a diagram illustrating the gas supply timing in the modification 8.
  • FIG. 7 is a diagram illustrating the gas supply timing in the modification 9. Also by these modified examples, the same effect as the film forming sequence shown in FIG. 4 can be obtained.
  • the film forming sequence shown in FIG. 4 and each of the above-described modifications may further include a step of supplying a C-containing gas such as a C 3 H 6 gas to the wafer 200.
  • the step of supplying the C 3 H 6 gas can be performed non-simultaneously with the step of supplying the HCDS gas, the step of supplying the TMB gas, the step of supplying the BCl 3 gas, or at least one of these steps. It can be performed simultaneously with the steps.
  • the step of supplying the C 3 H 6 gas may be performed simultaneously with the step of supplying the TMB gas.
  • the supply flow rate of the NH 3 gas controlled by the MFC 241b is set to a flow rate in the range of, for example, 100 to 10,000 sccm.
  • the pressure in the processing chamber 201 is, for example, 1 to 4000 Pa, preferably 1 to 3000 Pa.
  • the partial pressure of the NH 3 gas in the processing chamber 201 is set to a pressure in the range of 0.01 to 3960 Pa, for example.
  • the time for supplying the NH 3 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, 1 to 120 seconds, preferably 1 to 60 seconds.
  • N-containing gas examples include NH 3 gas, hydrogen nitride-based gases such as diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas, and compounds thereof. Gas or the like can be used.
  • the supply flow rate of the NH 3 gas controlled by the MFC 241b is set to a flow rate in the range of 100 to 10,000 sccm, for example.
  • the RF power applied between the rod-shaped electrodes 269 and 270 is, for example, power in the range of 50 to 1000 W.
  • the pressure in the processing chamber 201 is, for example, 1 to 500 Pa, preferably 1 to 100 Pa.
  • the partial pressure of NH 3 gas in the processing chamber 201 is, for example, 0.01 to 495 Pa, preferably 0.01 to 99 Pa.
  • processing conditions are, for example, the same processing conditions as those in step 2 of the film forming sequence shown in FIG.
  • N-containing gas in addition to NH 3 gas, the above-mentioned various hydrogen nitride-based gases, gases containing these compounds, and the like can be used.
  • the supply flow rate of the C 3 H 6 gas controlled by the MFC 241b is set to a flow rate in the range of 100 to 10,000 sccm, for example.
  • the pressure in the processing chamber 201 is, for example, 1 to 5000 Pa, preferably 1 to 4000 Pa.
  • the partial pressure of the C 3 H 6 gas in the processing chamber 201 is set to a pressure in the range of 0.01 to 4950 Pa, for example.
  • the time for supplying the C 3 H 6 gas to the wafer 200 that is, the gas supply time (irradiation time) is, for example, in the range of 1 to 200 seconds, preferably 1 to 120 seconds, more preferably 1 to 60 seconds. Time.
  • C-containing gas in addition to C 3 H 6 gas, for example, hydrocarbon gas such as acetylene (C 2 H 2 ) gas, ethylene (C 2 H 4 ) gas and the like can be used.
  • C 3 H 6 gas for example, hydrocarbon gas such as acetylene (C 2 H 2 ) gas, ethylene (C 2 H 4 ) gas and the like can be used.
  • processing procedures and processing conditions in other steps can be the same as the processing procedures and processing conditions of each step in the film forming sequence shown in FIG.
  • the reaction gas (B-containing gas, N-containing gas gas, C-containing gas) is supplied after the source gas is supplied.
  • the present invention is not limited to such a form, and the supply order of the source gas and the reaction gas may be reversed. That is, the source gas may be supplied after the reaction gas is supplied.
  • the supply sequence By changing the supply sequence, the film quality and composition ratio of the thin film to be formed can be changed. Further, the supply order of the plural kinds of reaction gases can be arbitrarily changed. By changing the supply sequence of the reaction gas, the film quality and composition ratio of the formed thin film can be changed.
  • TMB gas that is an organic borazine-based gas is used as the first B-containing gas.
  • the present invention is not limited to such a form, and a C-free borazine-based gas such as borazine (B 3 H 6 N 3 ) gas, for example, an inorganic borazine-based gas is used as the first B-containing gas. You may do it.
  • a C-free borazine-based gas such as borazine (B 3 H 6 N 3 ) gas
  • an inorganic borazine-based gas is used as the first B-containing gas. You may do it.
  • the silicon-based insulating film formed by the film forming sequence shown in FIG. 4 and the method of each modification as a side wall spacer, it is possible to provide a device forming technique with low leakage current and excellent workability. It becomes.
  • the above-described silicon-based insulating film as an etch stopper, it is possible to provide a device forming technique with excellent workability.
  • the present invention can also be suitably applied to the case of forming a boronitride film having a borazine ring skeleton and a metal element, that is, a metal boronitride film including a borazine ring skeleton.
  • the present invention includes, for example, a TiBN film, a TiBCN film, a ZrBN film, a ZrBCN film, an HfBN film, an HfBCN film, a TaBN film, a TaBCN film, an NbBN film, an NbBCN film, an AlBN film, an AlBCN film, an MoBN film, an MoBCN film,
  • the present invention can also be suitably applied when forming a metal-based boronitride film including a borazine ring skeleton such as a WBN film or a WBCN film.
  • a source gas containing a metal element can be used as the source gas instead of the source gas containing a semiconductor element such as Si in the above-described embodiment.
  • the reaction gas the same gas as in the above-described embodiment can be used.
  • the processing procedure and processing conditions at this time can be the same processing procedure and processing conditions as in the above-described embodiment, for example.
  • the present invention can be suitably applied when forming a boronitride film having a borazine ring skeleton and containing a predetermined element such as a semiconductor element or a metal element.
  • the process recipes programs describing the processing procedures and processing conditions for substrate processing
  • the process recipes are the contents of the substrate processing (film type, composition ratio, film quality, film thickness, processing of the thin film to be formed) According to the procedure, processing conditions, etc.), it is preferable to prepare each separately (preparing a plurality). And when starting a substrate processing, it is preferable to select a suitable recipe suitably from several recipes according to the content of a substrate processing.
  • a storage device included in the substrate processing apparatus stores a plurality of recipes individually prepared according to the contents of the substrate processing via an electric communication line or a recording medium (external storage device 123) that records the recipe. It is preferable to store (install) in 121c in advance.
  • the CPU 121a included in the substrate processing apparatus When starting the substrate processing, it is preferable that the CPU 121a included in the substrate processing apparatus appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the content of the substrate processing. .
  • the CPU 121a included in the substrate processing apparatus With such a configuration, thin films having various film types, composition ratios, film qualities, and film thicknesses can be formed for general use with good reproducibility using a single substrate processing apparatus.
  • the above-described process recipe is not limited to a case of newly creating, and may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • the present invention is not limited to the above-described embodiment, and can be suitably applied to the case where a thin film is formed using, for example, a single-wafer type substrate processing apparatus that processes one or several substrates at a time.
  • a thin film is formed using a substrate processing apparatus having a hot wall type processing furnace.
  • the present invention is not limited to the above-described embodiment, and can also be suitably applied to the case where a thin film is formed using a substrate processing apparatus having a cold wall type processing furnace.
  • the processing procedure and processing conditions can be the same processing procedure and processing conditions as in the above-described embodiment, for example.
  • the present invention can also be suitably applied when a film is formed using a substrate processing apparatus including the processing furnace 302 shown in FIG.
  • the processing furnace 302 includes a processing container 303 that forms the processing chamber 301, a shower head 303s as a gas supply unit that supplies gas into the processing chamber 301 in a shower shape, and one or several wafers 200 in a horizontal posture.
  • a support base 317 for supporting, a rotating shaft 355 for supporting the support base 317 from below, and a heater 307 provided on the support base 317 are provided.
  • a gas supply port 332a for supplying the above-described source gas and a gas supply port 332b for supplying the above-described reaction gas are connected to an inlet (gas introduction port) of the shower head 303s.
  • a gas supply system similar to the source gas supply system of the above-described embodiment is connected to the gas supply port 332a.
  • a remote plasma unit (plasma generator) 339b serving as an excitation unit that supplies the above-described reaction gas by plasma excitation, and a gas supply system similar to the reaction gas supply system of the above-described embodiment.
  • a gas supply system similar to the reaction gas supply system of the above-described embodiment.
  • a gas dispersion plate that supplies gas into the processing chamber 301 in a shower shape is provided.
  • the shower head 303 s is provided at a position facing (facing) the surface of the wafer 200 carried into the processing chamber 301.
  • the processing vessel 303 is provided with an exhaust port 331 for exhausting the inside of the processing chamber 301.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 331.
  • the present invention can also be suitably applied to the case where a film is formed using a substrate processing apparatus including the processing furnace 402 shown in FIG.
  • the processing furnace 402 includes a processing container 403 that forms a processing chamber 401, a support base 417 that supports one or several wafers 200 in a horizontal position, a rotating shaft 455 that supports the support base 417 from below, and a processing container.
  • a lamp heater 407 that irradiates light toward the wafer 200 in the 403 and a quartz window 403w that transmits light from the lamp heater 407 are provided.
  • the processing container 403 is connected to a gas supply port 432a for supplying the above-described source gas and a gas supply port 432b as a gas supply unit for supplying the above-described reaction gas.
  • a gas supply system similar to the source gas supply system of the above-described embodiment is connected to the gas supply port 432a.
  • the gas supply port 432b is connected to the remote plasma unit 339b described above and a gas supply system similar to the reaction gas supply system of the above-described embodiment.
  • the gas supply ports 432a and 432b are respectively provided on the side of the end portion of the wafer 200 loaded into the processing chamber 401, that is, at a position not facing the surface of the wafer 200 loaded into the processing chamber 401.
  • the processing container 403 is provided with an exhaust port 431 for exhausting the inside of the processing chamber 401.
  • An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 431.
  • film formation can be performed with the same sequence and processing conditions as those of the above-described embodiments and modifications.
  • processing conditions at this time can be the same processing conditions as in the above-described embodiment, for example.
  • (Appendix 1) Supplying a source gas containing a predetermined element and a halogen element to the substrate; Supplying a first boron-containing gas containing a borazine ring skeleton to the substrate; Supplying a second boron-containing gas not containing a borazine ring skeleton to the substrate; Is performed a predetermined number of times under the condition that the borazine ring skeleton in the first boron-containing gas is retained, so that the substrate has the borazine ring skeleton, and the predetermined element, boron, and nitrogen
  • a method for manufacturing a semiconductor device or a substrate processing method including a step of forming a film including the substrate is provided.
  • Appendix 2 The method according to appendix 1, preferably, The step of supplying the first boron-containing gas and the step of supplying the second boron-containing gas are performed non-simultaneously.
  • Appendix 3 The method according to appendix 1, preferably, The step of supplying the source gas, the step of supplying the first boron-containing gas, and the step of supplying the second boron-containing gas are performed non-simultaneously.
  • Appendix 4 The method according to appendix 1, preferably, The step of supplying the first boron-containing gas and the step of supplying the second boron-containing gas are performed simultaneously.
  • Appendix 5 The method according to appendix 1, preferably, Performing the step of supplying the source gas and the step of supplying the first boron-containing gas non-simultaneously; The step of supplying the first boron-containing gas and the step of supplying the second boron-containing gas are performed simultaneously.
  • an organic borazine compound carbon can be contained in the film.
  • the first boron-containing gas contains a borazine compound containing an organic ligand
  • the second boron-containing gas contains a borane compound containing a halogen element. That is, the second boron-containing gas contains a halogenated borane compound.
  • the film can contain carbon.
  • the reaction efficiency can be increased by using a borazine compound containing an organic ligand and a borane compound containing a halogen element.
  • the cycle further includes supplying a nitrogen-containing gas to the substrate.
  • the step of supplying the nitrogen-containing gas can be performed non-simultaneously with the steps described above.
  • the cycle further includes supplying a carbon-containing gas to the substrate.
  • the step of supplying the carbon-containing gas can be performed non-simultaneously with the respective steps, or can be performed simultaneously with at least one of the steps.
  • the step of supplying the carbon-containing gas and the step of supplying the first boron-containing gas can be performed simultaneously.
  • a processing chamber for accommodating the substrate;
  • a source gas supply system for supplying a source gas containing a predetermined element and a halogen element to the substrate in the processing chamber;
  • a first boron-containing gas supply system for supplying a first boron-containing gas containing a borazine ring skeleton to the substrate in the processing chamber;
  • a second boron-containing gas supply system that supplies a second boron-containing gas not containing a borazine ring skeleton to the substrate in the processing chamber;
  • a heater for heating the substrate in the processing chamber;
  • a pressure adjusting unit for adjusting the pressure in the processing chamber;
  • a process including supplying a boron-containing gas of 2 under a condition that the borazine ring skeleton in the first boron-containing gas is maintained a predetermined number of times, whereby the borazine ring skeleton is formed on the substrate.
  • the source gas supply system, the first boron-containing gas supply system, the second boron-containing gas supply system, and the heater so as to perform a process of forming a film containing the predetermined element, boron, and nitrogen.
  • a controller configured to control the pressure regulator;
  • a substrate processing apparatus is provided.
  • Controller 200 wafer (substrate) 201 processing chamber 202 processing furnace 203 reaction pipe 207 heater 231 exhaust pipe 232a to 232d gas supply pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

This method for manufacturing a semiconductor device comprises a step for forming a film, which has a borazine ring skeleton and contains a specific element, boron and nitrogen, on a substrate by performing a cycle, which comprises a step for supplying a starting material gas containing the specific element and a halogen element to the substrate, a step for supplying a first boron-containing gas that contains a borazine ring skeleton to the substrate and a step for supplying a second boron-containing gas that does not contain a borazine ring skeleton to the substrate, several times under such conditions where the borazine ring skeleton in the first boron-containing gas is maintained.

Description

半導体装置の製造方法、基板処理装置および記録媒体Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
 本発明は、半導体装置の製造方法、基板処理装置および記録媒体に関する。 The present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a recording medium.
 半導体装置(デバイス)の製造工程の一工程として、基板上に、ボラジン環骨格を有し、シリコン(Si)等の所定元素、硼素(B)、および窒素(N)を含む膜(以下、ボラジン環骨格を含む硼窒化膜ともいう)を形成する工程が行われることがある。 As a process of manufacturing a semiconductor device (device), a film having a borazine ring skeleton on a substrate and containing a predetermined element such as silicon (Si), boron (B), and nitrogen (N) (hereinafter referred to as borazine) A step of forming a boron nitride film including a ring skeleton may be performed.
 本発明の目的は、ボラジン環骨格を含む硼窒化膜の組成比の制御性を向上させることが可能な技術を提供することにある。 An object of the present invention is to provide a technique capable of improving the controllability of the composition ratio of a boron nitride film containing a borazine ring skeleton.
 本発明の一態様によれば、
 基板に対して所定元素およびハロゲン元素を含む原料ガスを供給する工程と、
 前記基板に対してボラジン環骨格を含む第1の硼素含有ガスを供給する工程と、
 前記基板に対してボラジン環骨格非含有の第2の硼素含有ガスを供給する工程と、
 を含むサイクルを、前記第1の硼素含有ガスにおけるボラジン環骨格が保持される条件下で、所定回数行うことで、前記基板上に、ボラジン環骨格を有し、前記所定元素、硼素、および窒素を含む膜を形成する工程を有する半導体装置の製造方法が提供される。
According to one aspect of the invention,
Supplying a source gas containing a predetermined element and a halogen element to the substrate;
Supplying a first boron-containing gas containing a borazine ring skeleton to the substrate;
Supplying a second boron-containing gas not containing a borazine ring skeleton to the substrate;
Is performed a predetermined number of times under the condition that the borazine ring skeleton in the first boron-containing gas is retained, so that the substrate has the borazine ring skeleton, and the predetermined element, boron, and nitrogen There is provided a method for manufacturing a semiconductor device, which includes a step of forming a film including the same.
 本発明によれば、ボラジン環骨格を含む硼窒化膜の組成比の制御性を向上させることが可能となる。 According to the present invention, it is possible to improve the controllability of the composition ratio of a boronitride film containing a borazine ring skeleton.
本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus used suitably by embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view. 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の一部の概略構成図であり、処理炉の一部を図1のA-A線断面図で示す図である。FIG. 2 is a schematic configuration diagram of a part of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a diagram showing a part of the processing furnace as a cross-sectional view taken along line AA of FIG. 本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of the substrate processing apparatus used suitably by embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. 本発明の一実施形態の成膜シーケンスにおけるガス供給のタイミングを示す図である。It is a figure which shows the timing of the gas supply in the film-forming sequence of one Embodiment of this invention. 本発明の一実施形態の成膜シーケンスの変形例4におけるガス供給のタイミングを示す図である。It is a figure which shows the timing of the gas supply in the modification 4 of the film-forming sequence of one Embodiment of this invention. 本発明の一実施形態の成膜シーケンスの変形例8におけるガス供給のタイミングを示す図である。It is a figure which shows the timing of the gas supply in the modification 8 of the film-forming sequence of one Embodiment of this invention. 本発明の一実施形態の成膜シーケンスの変形例9におけるガス供給のタイミングを示す図である。It is a figure which shows the timing of the gas supply in the modification 9 of the film-forming sequence of one Embodiment of this invention. (a)はHCDSの化学構造式を、(b)はOCTSの化学構造式を示す図である。(A) is a chemical structural formula of HCDS, (b) is a diagram showing a chemical structural formula of OCTS. (a)はBTCSMの化学構造式を、(b)はBTCSEの化学構造式を示す図である。(A) is a chemical structural formula of BTCSM, (b) is a figure which shows the chemical structural formula of BTCSE. (a)はTCDMDSの化学構造式を、(b)はDCTMDSの化学構造式を、(c)はMCPMDSの化学構造式を示す図である。(A) is a chemical structural formula of TCDMDS, (b) is a chemical structural formula of DCTMDS, (c) is a figure which shows a chemical structural formula of MCPMDS. (a)はボラジンの化学構造式を、(b)はボラジン化合物の化学構造式を、(c)はn,n’,n”-トリメチルボラジンの化学構造式を、(d)はn,n’,n”-トリ-n-プロピルボラジンの化学構造式を示す図である。(A) is the chemical structural formula of borazine, (b) is the chemical structural formula of the borazine compound, (c) is the chemical structural formula of n, n ′, n ″ -trimethylborazine, and (d) is the n, n FIG. 2 is a diagram showing a chemical structural formula of ', n ″ -tri-n-propylborazine. (a)は本発明の他の実施形態で好適に用いられる基板処理装置の処理炉の概略構成図であり、処理炉部分を縦断面図で示す図であり、(b)は本発明の他の実施形態で好適に用いられる基板処理装置の処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。(A) is a schematic block diagram of the processing furnace of the substrate processing apparatus used suitably by other embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view, (b) is other of this invention It is a schematic block diagram of the processing furnace of the substrate processing apparatus used suitably by this embodiment, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view.
<本発明の一実施形態>
 以下、本発明の一実施形態について、図1~図3を用いて説明する。
<One Embodiment of the Present Invention>
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
(1)基板処理装置の構成
 図1に示すように、処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(1) Configuration of Substrate Processing Apparatus As shown in FIG. 1, the processing furnace 202 has a heater 207 as heating means (heating mechanism). The heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate. As will be described later, the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の筒中空部には、処理室201が形成されている。処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。 Inside the heater 207, a reaction tube 203 constituting a reaction vessel (processing vessel) concentrically with the heater 207 is disposed. The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened. A processing chamber 201 is formed in the cylindrical hollow portion of the reaction tube 203. The processing chamber 201 is configured to be able to accommodate wafers 200 as substrates in a state where they are aligned in multiple stages in a vertical posture in a horizontal posture by a boat 217 described later.
 処理室201内には、ノズル249a,249bが、反応管203の下部側壁を貫通するように設けられている。ノズル249a,249bは、例えば石英またはSiC等の耐熱性材料からなる。ノズル249a,249bには、ガス供給管232a,232bがそれぞれ接続されている。このように、反応管203には、2本のノズル249a,249bと、2本のガス供給管232a,232bとが設けられており、処理室201内へ複数種類のガスを供給することが可能となっている。 In the processing chamber 201, nozzles 249 a and 249 b are provided so as to penetrate the lower side wall of the reaction tube 203. The nozzles 249a and 249b are made of a heat resistant material such as quartz or SiC. Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively. As described above, the reaction tube 203 is provided with the two nozzles 249a and 249b and the two gas supply tubes 232a and 232b, and can supply a plurality of types of gases into the processing chamber 201. It has become.
 但し、本実施形態の処理炉202は上述の形態に限定されない。例えば、反応管203の下方に、反応管203を支持する金属製のマニホールドを設け、各ノズルを、マニホールドの側壁を貫通するように設けてもよい。この場合、マニホールドに、後述する排気管231をさらに設けてもよい。この場合であっても、排気管231を、マニホールドではなく、反応管203の下部に設けてもよい。このように、処理炉202の炉口部を金属製とし、この金属製の炉口部にノズル等を取り付けてもよい。 However, the processing furnace 202 of this embodiment is not limited to the above-mentioned form. For example, a metal manifold that supports the reaction tube 203 may be provided below the reaction tube 203, and each nozzle may be provided so as to penetrate the side wall of the manifold. In this case, an exhaust pipe 231 described later may be further provided in the manifold. Even in this case, the exhaust pipe 231 may be provided below the reaction pipe 203 instead of the manifold. As described above, the furnace port of the processing furnace 202 may be made of metal, and a nozzle or the like may be attached to the metal furnace port.
 ガス供給管232a,232bには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、上流方向から順に、流量制御器(流量制御部)であるMFC241c,241dおよび開閉弁であるバルブ243c,243dがそれぞれ設けられている。 The gas supply pipes 232a and 232b are provided with mass flow controllers (MFC) 241a and 241b as flow rate controllers (flow rate control units) and valves 243a and 243b as opening / closing valves, respectively, in order from the upstream direction. Gas supply pipes 232c and 232d for supplying an inert gas are connected to the gas supply pipes 232a and 232b on the downstream side of the valves 243a and 243b, respectively. The gas supply pipes 232c and 232d are provided with MFCs 241c and 241d as flow rate controllers (flow rate control units) and valves 243c and 243d as opening / closing valves, respectively, in order from the upstream direction.
 ガス供給管232aの先端部には、ノズル249aが接続されている。ノズル249aは、図2に示すように、反応管203の内壁とウエハ200との間における円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249aは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、ノズル249aは、処理室201内に搬入されたウエハ200の端部(周縁部)の側方にウエハ200の表面(平坦面)と垂直に設けられている。ノズル249aは、L字型のロングノズルとして構成されており、その水平部は反応管203の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。ノズル249aの側面には、ガスを供給するガス供給孔250aが設けられている。ガス供給孔250aは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。 A nozzle 249a is connected to the tip of the gas supply pipe 232a. As shown in FIG. 2, the nozzle 249 a is arranged in an annular space between the inner wall of the reaction tube 203 and the wafer 200, and extends upward from the lower portion of the inner wall of the reaction tube 203 in the arrangement direction of the wafer 200. To stand up. That is, the nozzle 249a is provided on the side of the wafer arrangement area where the wafers 200 are arranged, in an area that horizontally surrounds the wafer arrangement area, along the wafer arrangement area. That is, the nozzle 249 a is provided on the side of the end portion (peripheral portion) of the wafer 200 carried into the processing chamber 201 and perpendicular to the surface (flat surface) of the wafer 200. The nozzle 249a is configured as an L-shaped long nozzle, and a horizontal portion thereof is provided so as to penetrate the lower side wall of the reaction tube 203, and a vertical portion thereof is at least from one end side to the other end of the wafer arrangement region. It is provided to stand up to the side. A gas supply hole 250a for supplying gas is provided on the side surface of the nozzle 249a. The gas supply hole 250 a is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 250a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
 ガス供給管232bの先端部には、ノズル249bが接続されている。ノズル249bは、バッファ室237内に設けられている。バッファ室237は、ガス分散空間としても機能する。バッファ室237は、反応管203の内壁とウエハ200との間における円環状の空間に、また、反応管203内壁の下部より上部にわたる部分に、ウエハ200の配列方向に沿って設けられている。すなわち、バッファ室237は、ウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、バッファ室237は、処理室201内に搬入されたウエハ200の端部の側方に設けられている。バッファ室237のウエハ200と隣接する壁の端部には、ガスを供給するガス供給孔250cが設けられている。ガス供給孔250cは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250cは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。 A nozzle 249b is connected to the tip of the gas supply pipe 232b. The nozzle 249 b is provided in the buffer chamber 237. The buffer chamber 237 also functions as a gas dispersion space. The buffer chamber 237 is provided in an annular space between the inner wall of the reaction tube 203 and the wafer 200 and in a portion extending from the lower portion to the upper portion of the inner wall of the reaction tube 203 along the arrangement direction of the wafers 200. That is, the buffer chamber 237 is provided on the side of the wafer arrangement area, in a region that horizontally surrounds the wafer arrangement area, along the wafer arrangement area. That is, the buffer chamber 237 is provided on the side of the end portion of the wafer 200 loaded into the processing chamber 201. A gas supply hole 250 c for supplying a gas is provided at the end of the wall of the buffer chamber 237 adjacent to the wafer 200. The gas supply hole 250 c is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 250c are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
 ノズル249bは、バッファ室237のガス供給孔250cが設けられた端部と反対側の端部に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、ノズル249bは、処理室201内に搬入されたウエハ200の端部の側方にウエハ200の表面と垂直に設けられている。ノズル249bはL字型のロングノズルとして構成されており、その水平部は反応管203の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。ノズル249bの側面には、ガスを供給するガス供給孔250bが設けられている。ガス供給孔250bは、バッファ室237の中心を向くように開口している。ガス供給孔250bは、ガス供給孔250cと同様に、反応管203の下部から上部にわたって複数設けられている。バッファ室237内と処理室201内との差圧が小さい場合、複数のガス供給孔250bの開口面積および開口ピッチを、上流側(下部)から下流側(上部)にわたりそれぞれ同一にするとよい。また、バッファ室237内と処理室201内との差圧が大きい場合、ガス供給孔250bの開口面積を上流側から下流側に向かって徐々に大きくしたり、ガス供給孔250bの開口ピッチを上流側から下流側に向かって徐々に小さくしたりするとよい。 The nozzle 249 b rises upward from the lower end of the inner wall of the reaction tube 203 toward the upper side in the arrangement direction of the wafer 200 at the end opposite to the end where the gas supply hole 250 c of the buffer chamber 237 is provided. Is provided. That is, the nozzle 249b is provided along the wafer arrangement region in a region that horizontally surrounds the wafer arrangement region on the side of the wafer arrangement region where the wafers 200 are arranged. That is, the nozzle 249 b is provided on the side of the end of the wafer 200 carried into the processing chamber 201 and perpendicular to the surface of the wafer 200. The nozzle 249b is configured as an L-shaped long nozzle, and its horizontal portion is provided so as to penetrate the lower side wall of the reaction tube 203, and its vertical portion is at least from one end side to the other end side of the wafer arrangement region. It is provided to stand up toward. A gas supply hole 250b for supplying gas is provided on the side surface of the nozzle 249b. The gas supply hole 250 b is opened to face the center of the buffer chamber 237. Similar to the gas supply hole 250c, a plurality of gas supply holes 250b are provided from the lower part to the upper part of the reaction tube 203. When the differential pressure between the buffer chamber 237 and the processing chamber 201 is small, the opening area and the opening pitch of the plurality of gas supply holes 250b may be the same from the upstream side (lower part) to the downstream side (upper part). Further, when the differential pressure between the buffer chamber 237 and the processing chamber 201 is large, the opening area of the gas supply holes 250b is gradually increased from the upstream side to the downstream side, or the opening pitch of the gas supply holes 250b is increased upstream. It is good to make it gradually smaller from the side toward the downstream side.
 ガス供給孔250bのそれぞれの開口面積や開口ピッチを、上流側から下流側にかけて上述のように調節することで、ガス供給孔250bのそれぞれから、流速の差はあるものの、流量がほぼ同量であるガスを噴出させることが可能となる。そして、これら複数のガス供給孔250bのそれぞれから噴出するガスを、一旦、バッファ室237内に導入することで、バッファ室237内においてガスの流速差の均一化を行うことが可能となる。複数のガス供給孔250bのそれぞれよりバッファ室237内に噴出したガスは、バッファ室237内で各ガスの粒子速度が緩和された後、複数のガス供給孔250cより処理室201内に噴出する。複数のガス供給孔250bのそれぞれよりバッファ室237内に噴出したガスは、ガス供給孔250cのそれぞれより処理室201内に噴出する際には、均一な流量と流速とを有するガスとなる。 By adjusting the opening area and the opening pitch of each gas supply hole 250b from the upstream side to the downstream side as described above, the flow rate is almost the same from each of the gas supply holes 250b, although there is a difference in flow velocity. A certain gas can be ejected. Then, once the gas ejected from each of the plurality of gas supply holes 250b is introduced into the buffer chamber 237, the difference in gas flow velocity can be made uniform in the buffer chamber 237. The gas ejected into the buffer chamber 237 from each of the plurality of gas supply holes 250b is ejected into the processing chamber 201 from the plurality of gas supply holes 250c after the particle velocity of each gas is reduced in the buffer chamber 237. The gas ejected into the buffer chamber 237 from each of the plurality of gas supply holes 250b becomes a gas having a uniform flow rate and flow velocity when ejected into the processing chamber 201 from each of the gas supply holes 250c.
 このように、本実施形態では、反応管203の側壁の内壁と、反応管203内に配列された複数枚のウエハ200の端部(周縁部)と、で定義される円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル249a,249bおよびバッファ室237を経由してガスを搬送している。そして、ノズル249a,249bおよびバッファ室237にそれぞれ開口されたガス供給孔250a~250cから、ウエハ200の近傍で初めて反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される薄膜の膜厚均一性を向上させることが可能となる。ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れる。但し、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。 As described above, in the present embodiment, an annular vertically long space defined by the inner wall of the side wall of the reaction tube 203 and the ends (peripheries) of the plurality of wafers 200 arranged in the reaction tube 203. The gas is conveyed through the nozzles 249a and 249b and the buffer chamber 237 disposed in the inner space, that is, in the cylindrical space. Then, gas is first ejected into the reaction tube 203 from the gas supply holes 250 a to 250 c opened in the nozzles 249 a and 249 b and the buffer chamber 237, respectively, in the vicinity of the wafer 200. The main flow of gas in the reaction tube 203 is a direction parallel to the surface of the wafer 200, that is, a horizontal direction. With such a configuration, it is possible to supply gas uniformly to each wafer 200 and improve the film thickness uniformity of the thin film formed on each wafer 200. The gas flowing on the surface of the wafer 200, that is, the residual gas after the reaction, flows toward the exhaust port, that is, the direction of the exhaust pipe 231 described later. However, the direction of the remaining gas flow is appropriately specified depending on the position of the exhaust port, and is not limited to the vertical direction.
 ガス供給管232aからは、所定元素を有する原料ガスとして、例えば、所定元素としてのSiおよびハロゲン元素を含むハロシラン原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。 From the gas supply pipe 232a, for example, a halosilane source gas containing Si and a halogen element as a predetermined element is supplied into the processing chamber 201 through the MFC 241a, a valve 243a, and a nozzle 249a as a source gas having the predetermined element. .
 ハロシラン原料ガスとは、気体状態のハロシラン原料、例えば、常温常圧下で液体状態であるハロシラン原料を気化することで得られるガスや、常温常圧下で気体状態であるハロシラン原料等のことである。ハロシラン原料とは、ハロゲン基を有するシラン原料のことである。ハロゲン基には、クロロ基、フルオロ基、ブロモ基、ヨード基等が含まれる。すなわち、ハロゲン基には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素が含まれる。ハロシラン原料は、ハロゲン化物の一種ともいえる。本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、または、その両方を意味する場合がある。 The halosilane raw material gas is a halosilane raw material in a gaseous state, for example, a gas obtained by vaporizing a halosilane raw material in a liquid state at normal temperature and normal pressure, a halosilane raw material in a gaseous state at normal temperature and normal pressure, or the like. The halosilane raw material is a silane raw material having a halogen group. The halogen group includes chloro group, fluoro group, bromo group, iodo group and the like. That is, the halogen group includes halogen elements such as chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like. It can be said that the halosilane raw material is a kind of halide. In the present specification, when the term “raw material” is used, it means “a liquid raw material in a liquid state”, “a raw material gas in a gaseous state”, or both. is there.
 ハロシラン原料ガスとしては、例えば、SiおよびClを含みC非含有の原料ガス、すなわち、無機系のクロロシラン原料ガスを用いることができる。無機系のクロロシラン原料ガスとしては、例えば、ヘキサクロロジシラン(SiCl、略称:HCDS)ガスや、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等を用いることができる。図8(a)にHCDSの化学構造式を、図8(b)にOCTSの化学構造式をそれぞれ示す。これらのガスは、1分子中に少なくとも2つのSiを含み、さらにClを含み、Si-Si結合を有する原料ガスであるともいえる。これらのガスは、後述する基板処理工程において、Siソースとして作用する。 As the halosilane source gas, for example, a source gas containing Si and Cl and not containing C, that is, an inorganic chlorosilane source gas can be used. As the inorganic chlorosilane source gas, for example, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas, or the like can be used. FIG. 8A shows the chemical structural formula of HCDS, and FIG. 8B shows the chemical structural formula of OCTS. It can be said that these gases are source gases containing at least two Si in one molecule, further containing Cl, and having a Si—Si bond. These gases act as Si sources in the substrate processing step described later.
 また、ハロシラン原料ガスとしては、例えば、Si、Clおよびアルキレン基を含み、Si-C結合を有する原料ガス、すなわち、有機系のクロロシラン原料ガスであるアルキレンクロロシラン原料ガスを用いることもできる。アルキレン基には、メチレン基、エチレン基、プロピレン基、ブチレン基等が含まれる。アルキレンクロロシラン原料ガスを、アルキレンハロシラン原料ガスと称することもできる。アルキレンクロロシラン原料ガスとしては、例えば、ビス(トリクロロシリル)メタン((SiClCH、略称:BTCSM)ガス、エチレンビス(トリクロロシラン)ガス、すなわち、1,2-ビス(トリクロロシリル)エタン((SiCl、略称:BTCSE)ガス等を用いることができる。図9(a)にBTCSMガスの化学構造式を、図9(b)にBTCSEの化学構造式をそれぞれ示す。これらのガスは、1分子中に少なくとも2つのSiを含み、さらにCおよびClを含み、Si-C結合を有する原料ガスであるともいえる。これらのガスは、後述する基板処理工程において、Siソースとしても作用し、Cソースとしても作用する。 As the halosilane source gas, for example, a source gas containing Si, Cl and an alkylene group and having a Si—C bond, that is, an alkylene chlorosilane source gas which is an organic chlorosilane source gas can be used. The alkylene group includes a methylene group, an ethylene group, a propylene group, a butylene group and the like. The alkylene chlorosilane source gas can also be referred to as an alkylene halosilane source gas. Examples of the alkylene chlorosilane source gas include bis (trichlorosilyl) methane ((SiCl 3 ) 2 CH 2 , abbreviation: BTCSM) gas, ethylene bis (trichlorosilane) gas, that is, 1,2-bis (trichlorosilyl) ethane. ((SiCl 3 ) 2 C 2 H 4 , abbreviation: BTCSE) gas or the like can be used. 9A shows the chemical structural formula of BTCSM gas, and FIG. 9B shows the chemical structural formula of BTCSE. It can be said that these gases are source gases containing at least two Si in one molecule, further containing C and Cl, and having a Si—C bond. These gases act as a Si source and also as a C source in a substrate processing step to be described later.
 また、ハロシラン原料ガスとしては、例えば、Si、Clおよびアルキル基を含み、Si-C結合を有する原料ガス、すなわち、有機系のクロロシラン原料ガスであるアルキルクロロシラン原料ガスを用いることもできる。アルキル基には、メチル基、エチル基、プロピル基、ブチル基等が含まれる。アルキルクロロシラン原料ガスを、アルキルハロシラン原料ガスと称することもできる。アルキルクロロシラン原料ガスとしては、例えば、1,1,2,2-テトラクロロ-1,2-ジメチルジシラン((CHSiCl、略称:TCDMDS)ガス、1,2-ジクロロ-1,1,2,2-テトラメチルジシラン((CHSiCl、略称:DCTMDS)ガス、1-モノクロロ-1,1,2,2,2-ペンタメチルジシラン((CHSiCl、略称:MCPMDS)ガス等を用いることができる。図10(a)にTCDMDSの化学構造式を、図10(b)にDCTMDSの化学構造式を、図10(c)にMCPMDSの化学構造式をそれぞれ示す。これらのガスは、1分子中に少なくとも2つのSiを含み、さらにCおよびClを含み、Si-C結合を有する原料ガスであるともいえる。これらのガスは、後述する基板処理工程において、Siソースとしても作用し、Cソースとしても作用する。 As the halosilane source gas, for example, a source gas containing Si, Cl and an alkyl group and having a Si—C bond, that is, an alkylchlorosilane source gas which is an organic chlorosilane source gas can be used. Alkyl groups include methyl, ethyl, propyl, butyl and the like. The alkylchlorosilane source gas can also be referred to as an alkylhalosilane source gas. Examples of the alkylchlorosilane source gas include 1,1,2,2-tetrachloro-1,2-dimethyldisilane ((CH 3 ) 2 Si 2 Cl 4 , abbreviation: TCMDDS) gas, 1,2-dichloro-1 , 1,2,2-tetramethyldisilane ((CH 3 ) 4 Si 2 Cl 2 , abbreviation: DCTMDS) gas, 1-monochloro-1,1,2,2,2-pentamethyldisilane ((CH 3 ) 5 Si 2 Cl (abbreviation: MCPMDS) gas or the like can be used. FIG. 10A shows a chemical structural formula of TCDMDS, FIG. 10B shows a chemical structural formula of DCTMDS, and FIG. 10C shows a chemical structural formula of MCPMDS. It can be said that these gases are source gases containing at least two Si in one molecule, further containing C and Cl, and having a Si—C bond. These gases act as a Si source and also as a C source in a substrate processing step to be described later.
 HCDSやBTCSMやTCDMDS等のように常温常圧下で液体状態である液体原料を用いる場合は、液体状態の原料を気化器やバブラなどの気化システムにより気化して、原料ガス(HCDSガス、BTCSMガス、TCDMDSガス)として供給することとなる。 When using a liquid material that is in a liquid state at normal temperature and pressure, such as HCDS, BTCSM, or TCDMDS, the raw material in the liquid state is vaporized by a vaporization system such as a vaporizer or bubbler, and the raw material gas (HCDS gas, BTCSM gas) , TCDMDS gas).
 また、ガス供給管232bからは、原料ガスとは化学構造(分子構造)が異なる反応ガスとして、例えば、第1の硼素(B)含有ガスとしてのボラジン環骨格を含むガスが、MFC241b、バルブ243b、ノズル249b、バッファ室237を介して処理室201内へ供給される。ボラジン環骨格を含むガスとしては、例えば、ボラジン環骨格および有機リガンドを含むガス、すなわち、有機ボラジン系ガスを用いることができる。 Further, from the gas supply pipe 232b, as a reaction gas having a chemical structure (molecular structure) different from that of the source gas, for example, a gas containing a borazine ring skeleton as the first boron (B) -containing gas is used as the MFC 241b and the valve 243b. , And supplied into the processing chamber 201 through the nozzle 249 b and the buffer chamber 237. As the gas containing a borazine ring skeleton, for example, a gas containing a borazine ring skeleton and an organic ligand, that is, an organic borazine-based gas can be used.
 有機ボラジン系ガスとしては、例えば、有機ボラジン化合物であるアルキルボラジン化合物を気化したガスを用いることができる。有機ボラジン系ガスを、ボラジン化合物ガス、或いは、ボラジン系ガスと称することもできる。 As the organic borazine-based gas, for example, a gas obtained by vaporizing an alkyl borazine compound that is an organic borazine compound can be used. The organic borazine-based gas can also be referred to as a borazine compound gas or a borazine-based gas.
 ここで、ボラジンとは、B、NおよびHの3元素で構成される複素環式化合物であり、組成式はBで表すことができ、図11(a)に示す化学構造式で表すことができる。ボラジン化合物は、3つのBと3つのNとで構成されるボラジン環を構成するボラジン環骨格(ボラジン骨格ともいう)を含む化合物である。有機ボラジン化合物は、Cを含むボラジン化合物であり、Cを含むリガンド、すなわち、有機リガンドを含むボラジン化合物ともいえる。アルキルボラジン化合物は、アルキル基を含むボラジン化合物であり、アルキル基を有機リガンドとして含むボラジン化合物ともいえる。アルキルボラジン化合物は、ボラジンに含まれる6つのHのうち少なくともいずれかを、1つ以上のCを含む炭化水素で置換したものであり、図11(b)に示す化学構造式で表すことができる。ここで、図11(b)に示す化学構造式中のR~Rは、Hであるか、あるいは1~4つのCを含むアルキル基である。R~Rは同じ種類のアルキル基であってもよいし、異なる種類のアルキル基であってもよい。但し、R~Rは、その全てがHである場合を除く。アルキルボラジン化合物は、ボラジン環を構成するボラジン環骨格を有し、B、N、HおよびCを含む物質ともいえる。また、アルキルボラジン化合物は、ボラジン環骨格を有しアルキルリガンドを含む物質ともいえる。なお、R~Rは、Hであるか、あるいは1~4つのCを含むアルケニル基、アルキニル基であってもよい。R~Rは同じ種類のアルケニル基、アルキニル基であってもよいし、異なる種類のアルケニル基、アルキニル基であってもよい。但し、R~Rは、その全てがHである場合を除く。 Here, borazine is a heterocyclic compound composed of three elements of B, N and H, and the composition formula can be represented by B 3 H 6 N 3 , and the chemical structure shown in FIG. It can be expressed by a formula. A borazine compound is a compound containing a borazine ring skeleton (also referred to as a borazine skeleton) that constitutes a borazine ring composed of three Bs and three Ns. The organic borazine compound is a borazine compound containing C, and can be said to be a ligand containing C, that is, a borazine compound containing an organic ligand. The alkyl borazine compound is a borazine compound containing an alkyl group, and can be said to be a borazine compound containing an alkyl group as an organic ligand. The alkyl borazine compound is obtained by substituting at least one of six H contained in borazine with a hydrocarbon containing one or more C, and can be represented by a chemical structural formula shown in FIG. . Here, R 1 to R 6 in the chemical structural formula shown in FIG. 11B are H or an alkyl group containing 1 to 4 C. R 1 to R 6 may be the same type of alkyl group or different types of alkyl groups. However, the case where R 1 to R 6 are all H is excluded. The alkyl borazine compound has a borazine ring skeleton constituting a borazine ring and can be said to be a substance containing B, N, H and C. An alkyl borazine compound can also be said to be a substance having a borazine ring skeleton and containing an alkyl ligand. R 1 to R 6 may be H, or an alkenyl group or alkynyl group containing 1 to 4 C atoms. R 1 to R 6 may be the same type of alkenyl group or alkynyl group, or may be a different type of alkenyl group or alkynyl group. However, the case where R 1 to R 6 are all H is excluded.
 ボラジン系ガスは、後述する基板処理工程において、Bソースとしても作用し、Nソースとしても作用し、Cソースとしても作用する。 The borazine-based gas acts as a B source, an N source, and a C source in a substrate processing step described later.
 ボラジン系ガスとしては、例えば、n,n’,n”-トリメチルボラジン(略称:TMB)ガス、n,n’,n”-トリエチルボラジン(略称:TEB)ガス、n,n’,n”-トリ-n-プロピルボラジン(略称:TPB)ガス、n,n’,n”-トリイソプロピルボラジン(略称:TIPB)ガス、n,n’,n”-トリ-n-ブチルボラジン(略称:TBB)ガス、n,n’,n”-トリイソブチルボラジン(略称:TIBB)ガス等を用いることができる。TMBは、図11(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがメチル基であり、図11(c)に示す化学構造式で表すことができるボラジン化合物である。TEBは、図11(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがエチル基であるボラジン化合物である。TPBは、図11(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがプロピル基であり、図11(d)に示す化学構造式で表すことができるボラジン化合物である。TIPBは、図11(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがイソプロピル基であるボラジン化合物である。TBBは、図11(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがブチル基であるボラジン化合物である。TIBBは、図11(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがイソブチル基であるボラジン化合物である。 Examples of the borazine-based gas include n, n ′, n ″ -trimethylborazine (abbreviation: TMB) gas, n, n ′, n ″ -triethylborazine (abbreviation: TEB) gas, n, n ′, n ″ — Tri-n-propylborazine (abbreviation: TPB) gas, n, n ′, n ″ -triisopropylborazine (abbreviation: TIPB) gas, n, n ′, n ″ -tri-n-butylborazine (abbreviation: TBB) Gas, n, n ′, n ″ -triisobutylborazine (abbreviation: TIBB) gas, or the like can be used. In TMB, R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are methyl groups, and the chemistry shown in FIG. It is a borazine compound that can be represented by a structural formula. TEB is a borazine compound in which R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are ethyl groups. In TPB, R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are propyl groups, and the chemistry shown in FIG. It is a borazine compound that can be represented by a structural formula. TIPB is a borazine compound in which R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are isopropyl groups. TBB is a borazine compound in which R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are butyl groups. TIBB is a borazine compound in which R 1 , R 3 , and R 5 in the chemical structural formula shown in FIG. 11B are H, and R 2 , R 4 , and R 6 are isobutyl groups.
 TMB等のように常温常圧下で液体状態であるボラジン化合物を用いる場合は、液体状態のボラジン化合物を気化器やバブラ等の気化システムにより気化して、ボラジン系ガス(TMBガス等)として供給することとなる。 When using a borazine compound that is in a liquid state at normal temperature and pressure, such as TMB, the borazine compound in a liquid state is vaporized by a vaporization system such as a vaporizer or bubbler and supplied as a borazine-based gas (TMB gas or the like). It will be.
 また、ガス供給管232bからは、原料ガスとは化学構造が異なる反応ガスとして、例えば、第2の硼素(B)含有ガスとしてのボラジン環骨格非含有のB含有ガスが、MFC241b、バルブ243b、ノズル249b、バッファ室237を介して処理室201内へ供給される。ボラジン環骨格非含有のB含有ガスとしては、例えば、ボラン系ガスを用いることができる。 Further, from the gas supply pipe 232b, for example, a B-containing gas not containing a borazine ring skeleton as the second boron (B) -containing gas is used as a reactive gas having a chemical structure different from that of the source gas, such as an MFC 241b, a valve 243b, It is supplied into the processing chamber 201 through the nozzle 249 b and the buffer chamber 237. As the B-containing gas not containing a borazine ring skeleton, for example, a borane-based gas can be used.
 ボラン系ガスとは、気体状態のボラン化合物、例えば、常温常圧下で液体状態であるボラン化合物を気化することで得られるガスや、常温常圧下で気体状態であるボラン化合物等のことである。ボラン化合物には、Bとハロゲン元素とを含むハロボラン化合物、例えば、BおよびClを含むクロロボラン化合物が含まれる。また、ボラン化合物には、モノボラン(BH)やジボラン(B)のようなボラン(硼化水素)や、ボランのHを他の元素等で置換した形のボラン化合物(ボラン誘導体)が含まれる。ボラン系ガスは、後述する基板処理工程においてBソースとして作用する。ボラン系ガスとしては、例えば、トリクロロボラン(BCl)ガスを用いることができる。BClガスは、後述するボラジン化合物を含まないB含有ガス、すなわち、非ボラジン系のB含有ガスである。 The borane-based gas is a gas obtained by vaporizing a borane compound in a gaseous state, for example, a borane compound in a liquid state at normal temperature and normal pressure, a borane compound in a gas state at normal temperature and normal pressure, or the like. The borane compound includes a haloborane compound containing B and a halogen element, for example, a chloroborane compound containing B and Cl. In addition, borane compounds include boranes (borohydrides) such as monoborane (BH 3 ) and diborane (B 2 H 6 ), and borane compounds in which borane H is substituted with other elements (borane derivatives). Is included. The borane-based gas acts as a B source in the substrate processing step described later. As the borane-based gas, for example, trichloroborane (BCl 3 ) gas can be used. The BCl 3 gas is a B-containing gas that does not contain a borazine compound described later, that is, a non-borazine-based B-containing gas.
 また、ガス供給管232bからは、原料ガスとは化学構造が異なる反応ガスとして、例えば、窒素(N)含有ガスが、MFC241b、バルブ243b、ノズル249b、バッファ室237を介して処理室201内へ供給される。N含有ガスとしては、例えば、窒化水素系ガスを用いることができる。窒化水素系ガスは、NおよびHの2元素のみで構成される物質ともいえ、後述する基板処理工程において、窒化ガス、すなわち、Nソースとして作用する。窒化水素系ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。 Further, from the gas supply pipe 232b, for example, a nitrogen (N) -containing gas as a reactive gas having a chemical structure different from that of the raw material gas enters the processing chamber 201 through the MFC 241b, the valve 243b, the nozzle 249b, and the buffer chamber 237. Supplied. As the N-containing gas, for example, a hydrogen nitride-based gas can be used. The hydrogen nitride-based gas can be said to be a substance composed of only two elements of N and H, and acts as a nitriding gas, that is, an N source, in a substrate processing step described later. As the hydrogen nitride-based gas, for example, ammonia (NH 3 ) gas can be used.
 また、ガス供給管232bからは、原料ガスとは化学構造が異なる反応ガスとして、例えば、炭素(C)含有ガスが、MFC241b、バルブ243b、ノズル249b、バッファ室237を介して処理室201内へ供給される。C含有ガスとしては、例えば、炭化水素系ガスを用いることができる。炭化水素系ガスは、CおよびHの2元素のみで構成される物質ともいえ、後述する基板処理工程においてCソースとして作用する。炭化水素系ガスとしては、例えば、プロピレン(C)ガスを用いることができる。 Further, from the gas supply pipe 232b, for example, a carbon (C) -containing gas as a reaction gas having a chemical structure different from that of the raw material gas enters the processing chamber 201 through the MFC 241b, the valve 243b, the nozzle 249b, and the buffer chamber 237. Supplied. As the C-containing gas, for example, a hydrocarbon-based gas can be used. The hydrocarbon-based gas can be said to be a substance composed of only two elements of C and H, and acts as a C source in the substrate processing step described later. As the hydrocarbon-based gas, for example, propylene (C 3 H 6 ) gas can be used.
 ガス供給管232c,232dからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC241c,241d、バルブ243c,243d、ガス供給管232a,232b、ノズル249a,249b、バッファ室237を介して処理室201内へ供給される。 From the gas supply pipes 232c and 232d, as an inert gas, for example, nitrogen (N 2 ) gas passes through MFCs 241c and 241d, valves 243c and 243d, gas supply pipes 232a and 232b, nozzles 249a and 249b, and a buffer chamber 237, respectively. And supplied into the processing chamber 201.
 ガス供給管232aから原料ガスを供給する場合、主に、ガス供給管232a、MFC241a、バルブ243aにより、原料ガス供給系が構成される。ノズル249aを原料ガス供給系に含めて考えてもよい。原料ガス供給系を原料供給系と称することもできる。ガス供給管232aからハロシラン原料ガスを供給する場合、原料ガス供給系を、ハロシラン原料ガス供給系、或いは、ハロシラン原料供給系と称することもできる。 When supplying the source gas from the gas supply pipe 232a, the source gas supply system is mainly configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a. The nozzle 249a may be included in the source gas supply system. The source gas supply system can also be referred to as a source supply system. When the halosilane source gas is supplied from the gas supply pipe 232a, the source gas supply system may be referred to as a halosilane source gas supply system or a halosilane source supply system.
 ガス供給管232bから第1のB含有ガスを供給する場合、主に、ガス供給管232b、MFC241b、バルブ243bにより、第1のB含有ガス供給系が構成される。ノズル249b、バッファ室237を第1のB含有ガス供給系に含めて考えてもよい。ガス供給管232bから第1のB含有ガスとしてボラジン系ガスを供給する場合、第1のB含有ガス供給系を、ボラジン系ガス供給系、有機ボラジン系ガス供給系、或いは、ボラジン化合物供給系と称することもできる。ボラジン系ガスは、NおよびCを含むガスでもあり、N含有ガスでもあり、C含有ガスでもあることから、ボラジン系ガス供給系を、後述するN含有ガス供給系およびC含有ガス供給系にそれぞれ含めて考えることもできる。 When supplying the first B-containing gas from the gas supply pipe 232b, the first B-containing gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. The nozzle 249b and the buffer chamber 237 may be included in the first B-containing gas supply system. When supplying a borazine-based gas as the first B-containing gas from the gas supply pipe 232b, the first B-containing gas supply system may be a borazine-based gas supply system, an organic borazine-based gas supply system, or a borazine compound supply system. It can also be called. Since the borazine-based gas is a gas containing N and C, is also an N-containing gas, and is a C-containing gas, the borazine-based gas supply system is changed to an N-containing gas supply system and a C-containing gas supply system, which will be described later. It can also be considered.
 ガス供給管232bから第2のB含有ガスを供給する場合、主に、ガス供給管232b、MFC241b、バルブ243bにより、第2のB含有ガス供給系が構成される。ノズル249b、バッファ室237を第2のB含有ガス供給系に含めて考えてもよい。ガス供給管232bから第2のB含有ガスとしてボラン系ガスを供給する場合、第2のB含有ガス供給系を、ボラン系ガス供給系、或いは、ボラン化合物供給系と称することもできる。 When supplying the second B-containing gas from the gas supply pipe 232b, the second B-containing gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. The nozzle 249b and the buffer chamber 237 may be included in the second B-containing gas supply system. When the borane-based gas is supplied as the second B-containing gas from the gas supply pipe 232b, the second B-containing gas supply system may be referred to as a borane-based gas supply system or a borane compound supply system.
 ガス供給管232bからN含有ガスを供給する場合、主に、ガス供給管232b、MFC241b、バルブ243bにより、N含有ガス供給系が構成される。ノズル249b、バッファ室237をN含有ガス供給系に含めて考えてもよい。N含有ガス供給系を、窒化ガス供給系、或いは、窒化剤供給系と称することもできる。ガス供給管232bから窒化水素系ガスを供給する場合、N含有ガス供給系を、窒化水素系ガス供給系、或いは、窒化水素供給系と称することもできる。 When supplying N-containing gas from the gas supply pipe 232b, an N-containing gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. The nozzle 249b and the buffer chamber 237 may be included in the N-containing gas supply system. The N-containing gas supply system can also be referred to as a nitriding gas supply system or a nitriding agent supply system. When supplying a hydrogen nitride-based gas from the gas supply pipe 232b, the N-containing gas supply system may be referred to as a hydrogen nitride-based gas supply system or a hydrogen nitride supply system.
 ガス供給系232bからC含有ガスを供給する場合、主に、ガス供給管232b、MFC241b、バルブ243bにより、C含有ガス供給系が構成される。ノズル249b、バッファ室237をC含有ガス供給系に含めて考えてもよい。ガス供給管232bから炭化水素系ガスを供給する場合、C含有ガス供給系を、炭化水素系ガス供給系、或いは、炭化水素供給系と称することもできる。 When supplying the C-containing gas from the gas supply system 232b, the C-containing gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. The nozzle 249b and the buffer chamber 237 may be included in the C-containing gas supply system. When the hydrocarbon-based gas is supplied from the gas supply pipe 232b, the C-containing gas supply system can also be referred to as a hydrocarbon-based gas supply system or a hydrocarbon supply system.
 上述の第1のB含有ガス供給系、第2のB含有ガス供給系のうち、いずれか、或いは、両方のガス供給系を、B含有ガス供給系と称することもできる。また、上述のB含有ガス供給系、N含有ガス供給系、C含有ガス供給系のうち、いずれか、或いは、全てのガス供給系を、反応ガス供給系、或いは、リアクタント供給系と称することもできる。 Any one or both of the first B-containing gas supply system and the second B-containing gas supply system described above may be referred to as a B-containing gas supply system. In addition, any or all of the above-described B-containing gas supply system, N-containing gas supply system, and C-containing gas supply system may be referred to as a reaction gas supply system or a reactant supply system. it can.
 また、主に、ガス供給管232c,232d、MFC241c,241d、バルブ243c,243dにより、不活性ガス供給系が構成される。不活性ガス供給系を、パージガス供給系、希釈ガス供給系、或いは、キャリアガス供給系と称することもできる。 Further, an inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d. The inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
 バッファ室237内には、図2に示すように、導電体からなり、細長い構造を有する2本の棒状電極269,270が、反応管203の下部より上部にわたりウエハ200の積層方向に沿って配設されている。棒状電極269,270のそれぞれは、ノズル249bと平行に設けられている。棒状電極269,270のそれぞれは、上部より下部にわたって電極保護管275により覆われることで保護されている。棒状電極269,270のいずれか一方は、整合器272を介して高周波電源273に接続され、他方は、基準電位であるアースに接続されている。整合器272を介して高周波電源273から棒状電極269,270間に高周波(RF)電力を印加することで、棒状電極269,270間のプラズマ生成領域224にプラズマが生成される。主に、棒状電極269,270、電極保護管275によりプラズマ発生器(プラズマ発生部)としてのプラズマ源が構成される。整合器272、高周波電源273をプラズマ源に含めて考えてもよい。プラズマ源は、後述するように、ガスをプラズマ励起、すなわち、プラズマ状態に励起(活性化)させる励起部(活性化機構)として機能する。 In the buffer chamber 237, as shown in FIG. 2, two rod-shaped electrodes 269 and 270 made of a conductor and having an elongated structure are arranged along the stacking direction of the wafer 200 from the lower part to the upper part of the reaction tube 203. It is installed. Each of the rod-shaped electrodes 269 and 270 is provided in parallel with the nozzle 249b. Each of the rod-shaped electrodes 269 and 270 is protected by being covered with an electrode protection tube 275 from the upper part to the lower part. One of the rod-shaped electrodes 269 and 270 is connected to the high-frequency power source 273 via the matching unit 272, and the other is connected to the ground that is the reference potential. By applying radio frequency (RF) power between the rod-shaped electrodes 269 and 270 from the high-frequency power source 273 via the matching device 272, plasma is generated in the plasma generation region 224 between the rod-shaped electrodes 269 and 270. The rod-shaped electrodes 269 and 270 and the electrode protection tube 275 mainly constitute a plasma source as a plasma generator (plasma generator). The matching device 272 and the high-frequency power source 273 may be included in the plasma source. As will be described later, the plasma source functions as an excitation unit (activation mechanism) that excites (or activates) a gas into a plasma state, that is, a plasma state.
 電極保護管275は、棒状電極269,270のそれぞれをバッファ室237内の雰囲気と隔離した状態でバッファ室237内に挿入できる構造となっている。電極保護管275の内部のO濃度が外気(大気)のO濃度と同程度であると、電極保護管275内にそれぞれ挿入された棒状電極269,270は、ヒータ207による熱で酸化されてしまう。電極保護管275の内部にNガス等の不活性ガスを充填しておくか、不活性ガスパージ機構を用いて電極保護管275の内部をNガス等の不活性ガスでパージすることで、電極保護管275の内部のO濃度を低減させ、棒状電極269,270の酸化を防止することができる。 The electrode protection tube 275 has a structure in which each of the rod-shaped electrodes 269 and 270 can be inserted into the buffer chamber 237 while being isolated from the atmosphere in the buffer chamber 237. If the O concentration inside the electrode protection tube 275 is about the same as the O concentration in the outside air (atmosphere), the rod-shaped electrodes 269 and 270 inserted into the electrode protection tube 275 are oxidized by heat from the heater 207. . Or it is filled with an inert gas such as N 2 gas into the electrode protection tube 275, by the interior of the electrode protection tube 275 is purged with an inert gas such as N 2 gas using an inert gas purge mechanism, It is possible to reduce the O concentration inside the electrode protection tube 275 and prevent the rod-shaped electrodes 269 and 270 from being oxidized.
 反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。 The reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201. The exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit). A vacuum pump 246 as a vacuum exhaust device is connected. The APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated, The valve is configured such that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245. An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245. The vacuum pump 246 may be included in the exhaust system.
 反応管203の下方には、反応管203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、反応管203の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、反応管203の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。すなわち、ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。 Below the reaction tube 203, a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the reaction tube 203. The seal cap 219 is configured to contact the lower end of the reaction tube 203 from the lower side in the vertical direction. The seal cap 219 is made of a metal such as SUS and is formed in a disk shape. On the upper surface of the seal cap 219, an O-ring 220 is provided as a seal member that comes into contact with the lower end of the reaction tube 203. On the opposite side of the seal cap 219 from the processing chamber 201, a rotation mechanism 267 for rotating a boat 217 described later is installed. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203. The boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down. That is, the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201.
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が水平姿勢で多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。但し、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料からなる筒状の部材として構成された断熱筒を設けてもよい。 The boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals. The boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages in a horizontal posture. With this configuration, heat from the heater 207 is not easily transmitted to the seal cap 219 side. However, this embodiment is not limited to the above-mentioned form. For example, instead of providing the heat insulating plate 218 in the lower portion of the boat 217, a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、ノズル249a,249bと同様にL字型に構成されており、反応管203の内壁に沿って設けられている。 In the reaction tube 203, a temperature sensor 263 is installed as a temperature detector. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution. The temperature sensor 263 is configured in an L shape similarly to the nozzles 249a and 249b, and is provided along the inner wall of the reaction tube 203.
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 3, the controller 121, which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Has been. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. For example, an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like. In the storage device 121c, a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner. The process recipe is a combination of the controller 121 that allows the controller 121 to execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program. Hereinafter, the process recipe, the control program, and the like are collectively referred to simply as a program. When the term “program” is used in this specification, it may include only a process recipe alone, only a control program alone, or both. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
 I/Oポート121dは、上述のMFC241a~241d、バルブ243a~243d、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、高周波電源273、整合器272、回転機構267、ボートエレベータ115等に接続されている。 The I / O port 121d includes the above-described MFCs 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor 263, high frequency power supply 273, matching device 272, rotation mechanism 267, boat It is connected to the elevator 115 and the like.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。CPU121aは、読み出したプロセスレシピの内容に沿うように、MFC241a~241dによる各種ガスの流量調整動作、バルブ243a~243dの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、高周波電源273による電力供給、整合器272によるインピーダンス調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。 The CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. The CPU 121a adjusts the flow rates of various gases by the MFCs 241a to 241d, the opening and closing operations of the valves 243a to 243d, the opening and closing operations of the APC valve 244, and the pressure by the APC valve 244 based on the pressure sensor 245 so as to match the contents of the read process recipe. Adjustment operation, start and stop of vacuum pump 246, temperature adjustment operation of heater 207 based on temperature sensor 263, power supply by high frequency power supply 273, impedance adjustment operation by matching unit 272, rotation and rotation speed adjustment of boat 217 by rotation mechanism 267 It is configured to control the operation, the raising / lowering operation of the boat 217 by the boat elevator 115 and the like.
 コントローラ121は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123を用意し、この外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態のコントローラ121を構成することができる。但し、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしてもよい。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。 The controller 121 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer. For example, an external storage device storing the above-described program (for example, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123 is prepared, and the controller 121 of this embodiment can be configured by installing a program in a general-purpose computer using the external storage device 123. However, the means for supplying the program to the computer is not limited to supplying the program via the external storage device 123. For example, the program may be supplied without using the external storage device 123 by using communication means such as the Internet or a dedicated line. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
(2)基板処理工程
 上述の基板処理装置を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成するシーケンス例について、図4を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
(2) Substrate Processing Step A sequence example in which a film is formed on a substrate as one step of a semiconductor device (device) manufacturing process using the above-described substrate processing apparatus will be described with reference to FIG. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
 図4に示す成膜シーケンスでは、
 基板としてのウエハ200に対して所定元素およびハロゲン元素を含む原料ガスとしてHCDSガスを供給するステップと、
 ウエハ200に対してボラジン環骨格を含む第1のB含有ガスとしてTMBガスを供給するステップと、
 ウエハ200に対してボラジン環骨格非含有の第2のB含有ガスとしてBClガスを供給するステップと、
 を含むサイクルを、TMBガスにおけるボラジン環骨格が保持(維持)される条件下で、所定回数行うことで、ウエハ200上に、ボラジン環骨格を有し、Si、B、CおよびNを含む膜として、ボラジン環骨格を含むシリコン硼炭窒化膜(SiBCN膜)を形成する。
In the film forming sequence shown in FIG.
Supplying an HCDS gas as a source gas containing a predetermined element and a halogen element to a wafer 200 as a substrate;
Supplying a TMB gas as a first B-containing gas containing a borazine ring skeleton to the wafer 200;
Supplying a BCl 3 gas as a second B-containing gas not containing a borazine ring skeleton to the wafer 200;
Is performed a predetermined number of times under the condition that the borazine ring skeleton in the TMB gas is maintained (maintained), so that a film having a borazine ring skeleton on the wafer 200 and containing Si, B, C, and N As a result, a silicon boron carbonitride film (SiBCN film) containing a borazine ring skeleton is formed.
 なお、上述のサイクルでは、HCDSガスを供給するステップ、TMBガスを供給するステップ、BClガスを供給するステップを、非同時に、すなわち、同期させることなくこの順に行う。すなわち、HCDSガスを供給するステップとTMBガスを供給するステップとを非同時にこの順に行い、TMBガスを供給するステップとBClガスを供給するステップとを非同時にこの順に行う。 In the above-described cycle, the step of supplying the HCDS gas, the step of supplying the TMB gas, and the step of supplying the BCl 3 gas are performed non-simultaneously, that is, in this order without being synchronized. That is, the step of supplying the HCDS gas and the step of supplying the TMB gas are performed non-simultaneously in this order, and the step of supplying the TMB gas and the step of supplying BCl 3 gas are performed non-simultaneously in this order.
 本明細書では、上述の成膜シーケンスを、便宜上、以下のように示すこともある。 In this specification, the above-described film forming sequence may be shown as follows for convenience.
 (HCDS→TMB→BCl)×n ⇒ SiBCN膜 (HCDS → TMB → BCl 3 ) × n => SiBCN film
 本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合、すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。 In this specification, when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface”. In other words, it may be called a wafer including a predetermined layer or film formed on the surface. In addition, when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
 従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを直接供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(または膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(または膜)を直接形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(または膜)を形成する」ことを意味する場合がある。 Therefore, in the present specification, the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface (exposed surface) of the wafer itself”. , It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) directly on the surface (exposed surface) of the wafer itself”. This means that a predetermined layer (or film) is formed on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate. There is a case.
 また、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同様であり、その場合、上記説明において、「ウエハ」を「基板」に置き換えて考えればよい。 In addition, when the term “substrate” is used in this specification, it is the same as the case where the term “wafer” is used. In that case, in the above description, “wafer” is replaced with “substrate”. Good.
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)される。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220を介して反応管203の下端をシールした状態となる。
(Wafer charge and boat load)
A plurality of wafers 200 are loaded into the boat 217 (wafer charge). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the reaction tube 203 via the O-ring 220.
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。真空ポンプ246は、少なくともウエハ200に対する処理が終了するまでの間は常時作動させた状態を維持する。また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。また、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が終了するまでの間は継続して行われる。
(Pressure adjustment and temperature adjustment)
Vacuum exhaust (reduced pressure) is performed by the vacuum pump 246 so that the processing chamber 201, that is, the space where the wafer 200 exists, has a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information. The vacuum pump 246 maintains a state in which it is always operated until at least the processing on the wafer 200 is completed. Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. At this time, the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed. Further, the rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is started. The rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
(SiBCN膜形成工程)
 その後、次の3つのステップ、すなわち、ステップ1~3を順次実行する。
(SiBCN film formation process)
Thereafter, the next three steps, that is, steps 1 to 3 are sequentially executed.
 [ステップ1]
(HCDSガス供給)
 このステップでは、処理室201内のウエハ200に対し、HCDSガスを供給する。
[Step 1]
(HCDS gas supply)
In this step, HCDS gas is supplied to the wafer 200 in the processing chamber 201.
 ここでは、バルブ243aを開き、ガス供給管232a内にHCDSガスを流す。HCDSガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気管231から排気される。このとき、ウエハ200に対してHCDSガスが供給されることとなる。このとき同時にバルブ243cを開き、ガス供給管232c内へNガスを流す。Nガスは、MFC241cにより流量調整され、HCDSガスと一緒に処理室201内へ供給され、排気管231から排気される。 Here, the valve 243a is opened, and HCDS gas is caused to flow into the gas supply pipe 232a. The flow rate of the HCDS gas is adjusted by the MFC 241a, supplied into the processing chamber 201 through the nozzle 249a, and exhausted from the exhaust pipe 231. At this time, the HCDS gas is supplied to the wafer 200. At the same time, the valve 243c is opened and N 2 gas is allowed to flow into the gas supply pipe 232c. The flow rate of the N 2 gas is adjusted by the MFC 241c, supplied into the processing chamber 201 together with the HCDS gas, and exhausted from the exhaust pipe 231.
 また、ノズル249b内へのHCDSガスの侵入を防止するため、バルブ243dを開き、ガス供給管232d内へNガスを流す。Nガスは、ガス供給管232b、ノズル249bを介して処理室201内へ供給され、排気管231から排気される。 Further, in order to prevent the HCDS gas from entering the nozzle 249b, the valve 243d is opened, and N 2 gas is allowed to flow into the gas supply pipe 232d. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 232b and the nozzle 249b, and is exhausted from the exhaust pipe 231.
 MFC241aで制御するHCDSガスの供給流量は、例えば1~2000sccm、好ましくは10~1000sccmの範囲内の流量とする。MFC241c,241dで制御するNガスの供給流量は、それぞれ例えば100~10000sccmの範囲内の流量とする。処理室201内の圧力は、例えば1~2666Pa、好ましくは67~1333Paの範囲内の圧力とする。HCDSガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1~120秒、好ましくは1~60秒の範囲内の時間とする。ヒータ207の温度は、ウエハ200の温度が、例えば250~700℃、好ましくは300~650℃、より好ましくは350~600℃の範囲内の温度となるような温度に設定する。 The supply flow rate of the HCDS gas controlled by the MFC 241a is, for example, 1 to 2000 sccm, preferably 10 to 1000 sccm. The supply flow rate of N 2 gas controlled by the MFCs 241c and 241d is set to a flow rate in the range of 100 to 10,000 sccm, for example. The pressure in the processing chamber 201 is, for example, 1 to 2666 Pa, preferably 67 to 1333 Pa. The time for supplying the HCDS gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, 1 to 120 seconds, preferably 1 to 60 seconds. The temperature of the heater 207 is set such that the temperature of the wafer 200 becomes, for example, a temperature in the range of 250 to 700 ° C., preferably 300 to 650 ° C., more preferably 350 to 600 ° C.
 ウエハ200の温度が250℃未満となると、ウエハ200上にHCDSが化学吸着しにくくなり、実用的な成膜速度が得られなくなることがある。ウエハ200の温度を250℃以上とすることで、これを解消することが可能となる。ウエハ200の温度を300℃以上、さらには350℃以上とすることで、ウエハ200上にHCDSをより十分に吸着させることが可能となり、より十分な成膜速度が得られるようになる。 When the temperature of the wafer 200 is less than 250 ° C., it is difficult for HCDS to be chemically adsorbed on the wafer 200 and a practical film formation rate may not be obtained. This can be eliminated by setting the temperature of the wafer 200 to 250 ° C. or higher. By setting the temperature of the wafer 200 to 300 ° C. or higher, further 350 ° C. or higher, HCDS can be more sufficiently adsorbed on the wafer 200 and a more sufficient film formation rate can be obtained.
 ウエハ200の温度が700℃を超えると、CVD反応が強くなり過ぎる(過剰な気相反応が生じる)ことで、膜厚均一性が悪化しやすくなり、その制御が困難となってしまう。ウエハ200の温度を700℃以下とすることで、適正な気相反応を生じさせることができることにより、膜厚均一性の悪化を抑制でき、その制御が可能となる。特に、ウエハ200の温度を650℃以下、さらには600℃以下とすることで、気相反応よりも表面反応が優勢になり、膜厚均一性を確保しやすくなり、その制御が容易となる。 When the temperature of the wafer 200 exceeds 700 ° C., the CVD reaction becomes too strong (excess gas phase reaction occurs), so that the film thickness uniformity tends to be deteriorated and the control becomes difficult. When the temperature of the wafer 200 is set to 700 ° C. or lower, an appropriate gas phase reaction can be caused, so that deterioration in film thickness uniformity can be suppressed and control thereof is possible. In particular, when the temperature of the wafer 200 is set to 650 ° C. or lower, and further to 600 ° C. or lower, the surface reaction becomes dominant over the gas phase reaction, the film thickness uniformity is easily ensured, and the control thereof is facilitated.
 よって、ウエハ200の温度は250~700℃、好ましくは300~650℃、より好ましくは350~600℃の範囲内の温度とするのがよい。 Therefore, the temperature of the wafer 200 is set to 250 to 700 ° C., preferably 300 to 650 ° C., more preferably 350 to 600 ° C.
 上述の条件下でウエハ200に対してHCDSガスを供給することにより、ウエハ200の最表面上に、第1の層として、例えば1原子層未満から数原子層の厚さのClを含むSi含有層が形成される。Clを含むSi含有層は、Clを含むSi層であってもよいし、HCDSの吸着層であってもよいし、その両方を含んでいてもよい。 By supplying HCDS gas to the wafer 200 under the above-described conditions, the first layer includes Si containing, for example, Cl having a thickness of less than one atomic layer to several atomic layers on the outermost surface of the wafer 200. A layer is formed. The Si-containing layer containing Cl may be a Si layer containing Cl, an adsorption layer of HCDS, or both of them.
 Clを含むSi層とは、Siにより構成されClを含む連続的な層の他、不連続な層や、これらが重なってできるClを含むSi薄膜をも含む総称である。Siにより構成されClを含む連続的な層を、Clを含むSi薄膜という場合もある。Clを含むSi層を構成するSiは、Clとの結合が完全に切れていないものの他、Clとの結合が完全に切れているものも含む。 The Si layer containing Cl is a generic name including a continuous layer made of Si and containing Cl, as well as a discontinuous layer and a Si thin film containing Cl formed by overlapping these layers. A continuous layer made of Si and containing Cl may be referred to as a Si thin film containing Cl. Si constituting the Si layer containing Cl includes not only those that are not completely disconnected from Cl but also those that are completely disconnected from Cl.
 HCDSの吸着層は、HCDS分子で構成される連続的な吸着層の他、不連続な吸着層をも含む。すなわち、HCDSの吸着層は、HCDS分子で構成される1分子層もしくは1分子層未満の厚さの吸着層を含む。HCDSの吸着層を構成するHCDS分子は、SiとClとの結合が一部切れたものも含む。すなわち、HCDSの吸着層は、HCDSの物理吸着層であってもよいし、HCDSの化学吸着層であってもよいし、その両方を含んでいてもよい。 The adsorption layer of HCDS includes a discontinuous adsorption layer as well as a continuous adsorption layer composed of HCDS molecules. That is, the adsorption layer of HCDS includes an adsorption layer having a thickness of less than one molecular layer composed of HCDS molecules or less than one molecular layer. The HCDS molecules constituting the HCDS adsorption layer include those in which the bond between Si and Cl is partially broken. That is, the HCDS adsorption layer may be an HCDS physical adsorption layer, an HCDS chemical adsorption layer, or both of them.
 ここで、1原子層未満の厚さの層とは不連続に形成される原子層のことを意味しており、1原子層の厚さの層とは連続的に形成される原子層のことを意味している。1分子層未満の厚さの層とは不連続に形成される分子層のことを意味しており、1分子層の厚さの層とは連続的に形成される分子層のことを意味している。Clを含むSi含有層は、Clを含むSi層とHCDSの吸着層との両方を含み得る。但し、上述の通り、Clを含むSi含有層については「1原子層」、「数原子層」等の表現を用いて表すこととする。 Here, a layer having a thickness of less than one atomic layer means an atomic layer formed discontinuously, and a layer having a thickness of one atomic layer means an atomic layer formed continuously. Means. A layer having a thickness of less than one molecular layer means a molecular layer formed discontinuously, and a layer having a thickness of one molecular layer means a molecular layer formed continuously. ing. The Si-containing layer containing Cl can include both a Si layer containing Cl and an adsorption layer of HCDS. However, as described above, the Si-containing layer containing Cl is expressed using expressions such as “one atomic layer” and “several atomic layer”.
 HCDSガスが自己分解(熱分解)する条件下、すなわち、HCDSガスの熱分解反応が生じる条件下では、ウエハ200上にSiが堆積することでClを含むSi層が形成される。HCDSガスが自己分解(熱分解)しない条件下、すなわち、HCDSガスの熱分解反応が生じない条件下では、ウエハ200上にHCDSが吸着することでHCDSの吸着層が形成される。ウエハ200上にHCDSの吸着層を形成するよりも、ウエハ200上にClを含むSi層を形成する方が、成膜レートを高くすることができる点では、好ましい。 Under conditions where the HCDS gas undergoes self-decomposition (thermal decomposition), that is, under conditions where a thermal decomposition reaction of the HCDS gas occurs, Si is deposited on the wafer 200 to form a Si layer containing Cl. Under the condition that the HCDS gas does not self-decompose (thermally decompose), that is, under the condition that the thermal decomposition reaction of the HCDS gas does not occur, the adsorption layer of HCDS is formed by adsorbing HCDS on the wafer 200. It is more preferable to form a Si layer containing Cl on the wafer 200 than to form an HCDS adsorption layer on the wafer 200 in that the film formation rate can be increased.
 第1の層の厚さが数原子層を超えると、後述するステップ2,3での改質の作用が第1の層の全体に届かなくなる。また、第1の層の厚さの最小値は1原子層未満である。よって、第1の層の厚さは1原子層未満から数原子層とするのが好ましい。第1の層の厚さを1原子層以下、すなわち、1原子層または1原子層未満とすることで、後述するステップ2,3での改質反応の作用を相対的に高めることができ、ステップ2,3での改質反応に要する時間を短縮することができる。ステップ1での第1の層の形成に要する時間を短縮することもできる。結果として、1サイクルあたりの処理時間を短縮することができ、トータルでの処理時間を短縮することも可能となる。すなわち、成膜レートを高くすることも可能となる。また、第1の層の厚さを1原子層以下とすることで、膜厚均一性の制御性を高めることも可能となる。 When the thickness of the first layer exceeds several atomic layers, the modification effect in Steps 2 and 3 described later does not reach the entire first layer. Moreover, the minimum value of the thickness of the first layer is less than one atomic layer. Therefore, the thickness of the first layer is preferably less than one atomic layer to several atomic layers. By setting the thickness of the first layer to 1 atomic layer or less, that is, 1 atomic layer or less than 1 atomic layer, the action of the reforming reaction in Steps 2 and 3 described later can be relatively increased, The time required for the reforming reaction in steps 2 and 3 can be shortened. The time required for forming the first layer in Step 1 can also be shortened. As a result, the processing time per cycle can be shortened, and the total processing time can be shortened. That is, the film forming rate can be increased. Further, by controlling the thickness of the first layer to 1 atomic layer or less, it becomes possible to improve the controllability of film thickness uniformity.
 なお、HCDSガスは、ノンプラズマで熱的に活性化させて供給した方が、上述の反応をソフトに進行させることができ、第1の層の形成が容易となる点で、好ましい。すなわち、HCDSガスは、ノンプラズマで熱的に活性化させて供給した方が、プラズマ励起させて供給するよりも、処理室201内における過剰な気相反応を防ぐことができ、処理室201内におけるパーティクルの発生を抑制することが可能となる点で、好ましい。また、第1の層、すなわち、最終的に形成されるSiBCN膜の段差被覆性、膜厚制御性をそれぞれ向上させることが可能となる点で、好ましい。 In addition, it is preferable that the HCDS gas is supplied by being thermally activated by non-plasma because the above-described reaction can be progressed softly and the first layer can be easily formed. That is, when the HCDS gas is supplied after being thermally activated by non-plasma, it is possible to prevent an excessive gas phase reaction in the processing chamber 201 than when the HCDS gas is supplied after being excited by plasma. It is preferable in that the generation of particles in can be suppressed. Further, it is preferable in that the step coverage and film thickness controllability of the first layer, that is, the finally formed SiBCN film can be improved.
(残留ガス除去)
 第1の層が形成された後、バルブ243aを閉じ、HCDSガスの供給を停止する。このとき、APCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1の層の形成に寄与した後のHCDSガスを処理室201内から排除する。このとき、バルブ243c,243dは開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留するガスを処理室201内から排除する効果を高めることができる。
(Residual gas removal)
After the first layer is formed, the valve 243a is closed and the supply of HCDS gas is stopped. At this time, the APC valve 244 is kept open, the processing chamber 201 is evacuated by the vacuum pump 246, and the HCDS gas remaining in the processing chamber 201 or contributing to the formation of the first layer is processed. Exclude from the chamber 201. At this time, the valves 243c and 243d remain open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, which can enhance the effect of removing the gas remaining in the processing chamber 201 from the processing chamber 201.
 このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ2において悪影響が生じることはない。処理室201内へ供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量のNガスを供給することで、ステップ2において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。Nガスの消費も必要最小限に抑えることが可能となる。 At this time, the gas remaining in the processing chamber 201 may not be completely removed, and the inside of the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, there will be no adverse effect in the subsequent step 2. The flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. For example, by supplying an amount of N 2 gas equivalent to the volume of the reaction tube 203 (processing chamber 201), step 2 is performed. Purging can be performed to such an extent that no adverse effect is caused. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. The consumption of N 2 gas can be suppressed to the minimum necessary.
 原料ガスとしては、HCDSガスの他、例えば、OCTSガス、ジクロロシラン(SiHCl、略称:DCS)ガス、モノクロロシラン(SiHCl、略称:MCS)ガス、テトラクロロシランすなわちシリコンテトラクロライド(SiCl、略称:STC)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス等の無機系のハロシラン原料ガスを用いることができる、また、原料ガスとしては、BTCSEガス、BTCSMガス、TCDMDSガス、DCTMDSガス、MCPMDSガス等の有機系のハロシラン原料ガスを用いることができる。原料ガスとしてCソースとしても作用する有機系のハロシラン原料ガスを用いる場合、第1の層として、CおよびClを含むSi含有層が形成されることとなり、結果として、最終的に形成されるSiBCN膜中のC濃度を、原料ガスとして無機系のハロシラン原料ガスを用いる場合よりも高めることが可能となる。 As source gases, in addition to HCDS gas, for example, OCTS gas, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas, monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, tetrachlorosilane, that is, silicon tetrachloride (SiCl) 4 , an abbreviated name: STC) gas, an inorganic halosilane source gas such as trichlorosilane (SiHCl 3 , abbreviated name: TCS) gas can be used, and as the source gas, BTCSE gas, BTCSM gas, TCDMDS gas, DCTMDS An organic halosilane source gas such as gas or MCPMDS gas can be used. When an organic halosilane source gas that also acts as a C source is used as the source gas, a Si-containing layer containing C and Cl is formed as the first layer, and as a result, the SiBCN finally formed The C concentration in the film can be increased as compared with the case where an inorganic halosilane source gas is used as the source gas.
 不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。 As the inert gas, for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
 [ステップ2]
(TMBガス供給)
 ステップ1が終了した後、処理室201内のウエハ200に対してTMBガスを供給する。
[Step 2]
(TMB gas supply)
After step 1 is completed, TMB gas is supplied to the wafer 200 in the processing chamber 201.
 このステップでは、バルブ243b~243dの開閉制御を、ステップ1におけるバルブ243a,243c,243dの開閉制御と同様の手順で行う。MFC241bで制御するTMBガスの供給流量は、例えば1~1000sccmの範囲内の流量とする。処理室201内の圧力は、例えば1~2666Pa、好ましくは67~1333Paの範囲内の圧力とする。処理室201内におけるTMBガスの分圧は、例えば0.0001~2424Paの範囲内の圧力とする。TMBガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1~120秒、好ましくは1~60秒の範囲内の時間とする。その他の処理手順、処理条件は、例えば、ステップ1の処理手順、処理条件と同様とする。 In this step, the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in Step 1. The supply flow rate of the TMB gas controlled by the MFC 241b is set, for example, within a range of 1 to 1000 sccm. The pressure in the processing chamber 201 is, for example, 1 to 2666 Pa, preferably 67 to 1333 Pa. The partial pressure of the TMB gas in the processing chamber 201 is, for example, a pressure in the range of 0.0001 to 2424 Pa. The time for supplying the TMB gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, 1 to 120 seconds, preferably 1 to 60 seconds. Other processing procedures and processing conditions are the same as, for example, the processing procedures and processing conditions in step 1.
 上述の条件下でウエハ200に対してTMBガスを供給することにより、ステップ1で形成された第1の層とTMBガスとが反応する。すなわち、第1の層に含まれるCl(クロロ基)と、TMBに含まれるリガンド(メチル基。以下、「有機リガンド」、或いは、「メチルリガンド」ともいう)と、が反応する。それにより、TMBのメチルリガンドと反応させた第1の層のClを、第1の層から分離させる(引き抜く)と共に、第1の層のClと反応させたTMBのメチルリガンドを、TMBから分離させることができる。そして、メチルリガンドが分離したTMBのボラジン環を構成するNと、第1の層のSiと、を結合させることができる。すなわち、TMBのボラジン環を構成するB、Nのうちメチルリガンドが外れ未結合手(ダングリングボンド)を有することとなったNと、第1の層に含まれ未結合手を有することとなったSi、もしくは、未結合手を有していたSiと、を結合させて、Si-N結合を形成することが可能となる。このとき、TMBのボラジン環を構成するボラジン環骨格は、壊れることなく保持されることとなる。また、ボラジン環とメチルリガンドとの結合、すなわち、TMBが有するN-C結合も、一部は切断されることなく保持されることとなる。なお、メチル基はアルキル基の1つであり、メチルリガンドをアルキルリガンドと称することもできる。 By supplying TMB gas to the wafer 200 under the above-described conditions, the first layer formed in Step 1 reacts with TMB gas. That is, Cl (chloro group) contained in the first layer reacts with a ligand (methyl group, hereinafter also referred to as “organic ligand” or “methyl ligand”) contained in TMB. Thereby, Cl of the first layer reacted with methyl ligand of TMB is separated (pulled out) from the first layer, and methyl ligand of TMB reacted with Cl of the first layer is separated from TMB. Can be made. And N which comprises the borazine ring of TMB which the methyl ligand isolate | separated, and Si of a 1st layer can be combined. That is, among the B and N constituting the borazine ring of TMB, the methyl ligand is removed and N has a dangling bond, and it is included in the first layer and has a dangling bond. Si-N bonds can be formed by bonding Si or Si having dangling bonds. At this time, the borazine ring skeleton constituting the borazine ring of TMB is retained without being broken. In addition, the bond between the borazine ring and the methyl ligand, that is, the N—C bond of TMB is also retained without being broken. Note that the methyl group is one of alkyl groups, and the methyl ligand can also be referred to as an alkyl ligand.
 TMBガスを上述の条件下で供給することで、TMBにおけるボラジン環骨格や一部のN-C結合を破壊等することなく保持しつつ、第1の層とTMBとを適正に反応させることができ、上述の一連の反応を生じさせることが可能となる。TMBのボラジン環骨格等を保持した状態で、この一連の反応を生じさせるための最も重要なファクター(条件)は、ウエハ200の温度と処理室201内の圧力、特にウエハ200の温度と考えられ、これらを適正に制御することで、適正な反応を生じさせることが可能となる。 By supplying TMB gas under the above-described conditions, the first layer and TMB can be appropriately reacted while maintaining the borazine ring skeleton and part of the N—C bond in TMB without breaking them. And the above-described series of reactions can be caused. The most important factors (conditions) for causing this series of reactions in a state where the borazine ring skeleton of TMB is held are considered to be the temperature of the wafer 200 and the pressure in the processing chamber 201, particularly the temperature of the wafer 200. By properly controlling these, it becomes possible to cause an appropriate reaction.
 この一連の反応により、第1の層中にボラジン環が新たに取り込まれることとなる。また、TMBの一部のメチルリガンド、すなわち、TMBが有する一部のN-C結合も、第1の層中に新たに取り込まれることとなる。これにより、第1の層は、ボラジン環骨格を有しSi、B、CおよびNを含む第2の層、すなわち、ボラジン環骨格を含むシリコン硼炭窒化層(SiBCN層)へと変化する(改質される)。第2の層は、例えば1原子層未満から数原子層程度の厚さの層となる。ボラジン環骨格を含むSiBCN層は、Si、Cおよびボラジン環骨格を含む層ともいえる。 </ RTI> By this series of reactions, a borazine ring is newly incorporated into the first layer. In addition, some methyl ligands of TMB, that is, some N—C bonds of TMB are newly incorporated into the first layer. Thereby, the first layer changes to a second layer having a borazine ring skeleton and containing Si, B, C and N, that is, a silicon borocarbonitride layer (SiBCN layer) containing a borazine ring skeleton ( Modified). For example, the second layer is a layer having a thickness of less than one atomic layer to several atomic layers. It can be said that the SiBCN layer containing a borazine ring skeleton is a layer containing Si, C, and a borazine ring skeleton.
 第1の層中にボラジン環が新たに取り込まれることにより、第1の層中に、ボラジン環を構成するB成分、N成分が新たに取り込まれることとなる。さらにこのとき、第1の層中に、TMBのリガンドに含まれていたC成分も取り込まれることとなる。このように、第1の層とTMBとを反応させて、第1の層中に、ボラジン環やメチルリガンドに含まれていたC成分を取り込むことにより、第1の層中に、B成分、C成分およびN成分を新たに添加することができる。 When the borazine ring is newly taken into the first layer, the B component and N component constituting the borazine ring are newly taken into the first layer. At this time, the C component contained in the TMB ligand is also taken into the first layer. In this way, by reacting the first layer with TMB and incorporating the C component contained in the borazine ring or methyl ligand into the first layer, the B component, C component and N component can be newly added.
 第2の層を形成する際、第1の層に含まれていたClは、TMBガスによる第1の層の改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。すなわち、第1の層中のCl等の不純物は、第1の層中から引き抜かれたり、脱離したりすることで、第1の層から分離することとなる。これにより、第2の層は、第1の層に比べてCl等の不純物が少ない層となる。 When forming the second layer, Cl contained in the first layer constitutes a gaseous substance containing at least Cl in the process of the reforming reaction of the first layer with TMB gas. It is discharged from the inside. That is, impurities such as Cl in the first layer are separated from the first layer by being extracted or desorbed from the first layer. Accordingly, the second layer is a layer having less impurities such as Cl than the first layer.
 第2の層を形成する際、TMBに含まれるボラジン環を構成するボラジン環骨格を破壊することなく維持(保持)することにより、ボラジン環の中央の空間を維持(保持)することができ、ポーラス状のSiBCN層を形成することが可能となる。 When forming the second layer, by maintaining (holding) the borazine ring skeleton constituting the borazine ring contained in TMB without destroying it, the center space of the borazine ring can be maintained (held), It becomes possible to form a porous SiBCN layer.
 なお、TMBガスは、ノンプラズマで熱的に活性化させて供給した方が、上述の反応をソフトに進行させることができ、第2の層の形成が容易となる点で、好ましい。すなわち、TMBガスは、ノンプラズマで熱的に活性化させて供給した方が、プラズマ励起させて供給するよりも、TMBにおけるボラジン環骨格や一部のN-C結合を破壊等することなく保持し、第2の層中に取り込ませることが容易となる点で、好ましい。 In addition, it is preferable that the TMB gas is supplied by being thermally activated by non-plasma because the above-described reaction can be performed softly and the second layer can be easily formed. In other words, the TMB gas is maintained without being destroyed by destroying the borazine ring skeleton and some of the N—C bonds in the TMB when supplied by being thermally activated with non-plasma rather than being supplied with plasma excitation. However, it is preferable in that it can be easily incorporated into the second layer.
(残留ガス除去)
 第2の層が形成された後、バルブ243bを閉じ、TMBガスの供給を停止する。そして、ステップ1と同様の処理手順により、処理室201内に残留する未反応もしくは第2の層の形成に寄与した後のTMBガスや反応副生成物を処理室201内から排除する。このとき、処理室201内に残留するガス等を完全に排除しなくてもよい点は、ステップ1と同様である。
(Residual gas removal)
After the second layer is formed, the valve 243b is closed and the supply of TMB gas is stopped. Then, TMB gas and reaction byproducts remaining in the processing chamber 201 or contributed to the formation of the second layer are removed from the processing chamber 201 by the same processing procedure as that in Step 1. At this time, it is the same as in step 1 that the gas remaining in the processing chamber 201 does not have to be completely removed.
 ボラジン環骨格を含むガスとしては、TMBガスの他、例えば、TEBガス、TPBガス、TIPBガス、TBBガス、TIBBガス等を用いることができる。不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。 As a gas containing a borazine ring skeleton, for example, TEB gas, TPB gas, TIPB gas, TBB gas, TIBB gas and the like can be used in addition to TMB gas. As the inert gas, for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
 [ステップ3]
(BClガス供給)
 ステップ1が終了した後、処理室201内のウエハ200に対してBClガスを供給する。
[Step 3]
(BCl 3 gas supply)
After step 1 is completed, BCl 3 gas is supplied to the wafer 200 in the processing chamber 201.
 このステップでは、バルブ243b~243dの開閉制御を、ステップ1におけるバルブ243a,243c,243dの開閉制御と同様の手順で行う。MFC241bで制御するBClガスの供給流量は、例えば100~10000sccmの範囲内の流量とする。処理室201内の圧力は、例えば1~2666Pa、好ましくは67~1333Paの範囲内の圧力とする。処理室201内におけるBClガスの分圧は、例えば0.01~2640Paの範囲内の圧力とする。BClガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1~120秒、好ましくは1~60秒の範囲内の時間とする。その他の処理手順、処理条件は、例えば、ステップ1の処理手順、処理条件と同様とする。 In this step, the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in Step 1. The supply flow rate of the BCl 3 gas controlled by the MFC 241b is set to a flow rate in the range of 100 to 10,000 sccm, for example. The pressure in the processing chamber 201 is, for example, 1 to 2666 Pa, preferably 67 to 1333 Pa. The partial pressure of the BCl 3 gas in the processing chamber 201 is, for example, a pressure in the range of 0.01 to 2640 Pa. The time for supplying the BCl 3 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, 1 to 120 seconds, preferably 1 to 60 seconds. Other processing procedures and processing conditions are the same as, for example, the processing procedures and processing conditions in step 1.
 上述の条件下でウエハ200に対してBClガスを供給することにより、ステップ2で形成された第2の層とBClガスとが反応する。すなわち、第2の層に含まれるボラジン環骨格を構成するNに結合しているリガンド(メチル基)と、BClに含まれるCl(クロロ基)と、が反応する。それにより、BClのClと反応させた第2の層のメチルリガンドを、第2の層から分離させる(引き抜く)と共に、第2の層のメチルリガンドと反応させたBClのClを、BClから分離させることができる。そして、Clが分離したBClのBと、メチルリガンドが分離した第2の層に含まれるボラジン環を構成するNと、を結合させることができる。すなわち、Clが外れることで未結合手を有することとなったBClのBと、第2の層に含まれるボラジン環骨格を構成するB,Nのうち、メチルリガンドが外れ未結合手を有することとなったNや、未結合手を有していたNと、を結合させて、B-N結合を形成することが可能となる。また、Clが外れることで未結合手を有することとなったBClのBと、第2の層に含まれるSi、B、Cのうち、未結合手を有していた、或いは、未結合手を有することとなったSi、B、Cと、を結合させて、Si-B結合、B-B結合、B-C結合を形成することも可能となる。このとき、第2の層に含まれるボラジン環を構成するボラジン環骨格は、壊れることなく保持されることとなる。また、第2の層に含まれる一部のメチルリガンドも、第2の層から脱離することなく層中に保持されることとなる。すなわち、第2の層中に含まれるN-C結合も、一部は切断されることなく保持されることとなる。 By supplying BCl 3 gas to the wafer 200 under the above-described conditions, the second layer formed in Step 2 reacts with BCl 3 gas. That is, a ligand (methyl group) bonded to N constituting the borazine ring skeleton contained in the second layer reacts with Cl (chloro group) contained in BCl 3 . Thereby, the methyl ligand of the second layer reacted with Cl of BCl 3 is separated (pulled out) from the second layer, and the Cl of BCl 3 reacted with the methyl ligand of the second layer is converted to BCl 3. 3 can be separated. Then, B of BCl 3 from which Cl has been separated and N constituting the borazine ring contained in the second layer from which the methyl ligand has been separated can be bonded. That is, among B of BCl 3 that has had a dangling bond due to Cl being released, and B and N that constitute the borazine ring skeleton included in the second layer, the methyl ligand has come off and has a dangling bond. It becomes possible to form a BN bond by combining N which has become to be N or N having an unbonded hand. In addition, B in BCl 3 that has had a dangling bond due to the release of Cl, and Si, B, or C contained in the second layer had a dangling bond or was not bonded It becomes possible to form Si—B bonds, BB bonds, and BC bonds by bonding Si, B, and C that have had hands. At this time, the borazine ring skeleton constituting the borazine ring contained in the second layer is held without breaking. In addition, a part of the methyl ligand contained in the second layer is also retained in the layer without desorbing from the second layer. That is, some of the N—C bonds contained in the second layer are retained without being broken.
 BClガスを上述の条件下で供給することで、第2の層に含まれるボラジン環骨格や一部のN-C結合を破壊等することなく保持しつつ、第2の層とBClとを適正に反応させることができ、上述の一連の反応を生じさせることが可能となる。第2の層に含まれるボラジン環骨格等を保持した状態で、この一連の反応を生じさせるための最も重要なファクター(条件)は、ウエハ200の温度と処理室201内の圧力、特にウエハ200の温度と考えられ、これらを適正に制御することで、適正な反応を生じさせることが可能となる。 By supplying the BCl 3 gas under the above-described conditions, the borazine ring skeleton and some N—C bonds contained in the second layer are maintained without being broken, and the second layer and the BCl 3 Can be appropriately reacted, and the above-described series of reactions can be caused. The most important factors (conditions) for causing this series of reactions while holding the borazine ring skeleton and the like contained in the second layer are the temperature of the wafer 200 and the pressure in the processing chamber 201, particularly the wafer 200. It is possible to cause an appropriate reaction by appropriately controlling these temperatures.
 この一連の反応により、第2の層中にBがさらに取り込まれ、第2の層は、ボラジン環骨格を有しSi、B、CおよびNを含むBリッチな第3の層、すなわち、ボラジン環骨格を含むBリッチなSiBCN層へと変化する(改質される)。第3の層は、例えば1原子層未満から数原子層程度の厚さの層となる。ボラジン環骨格を含むBリッチなSiBCN層は、Si、B、Cおよびボラジン環骨格を含む層ともいえる。 By this series of reactions, B is further incorporated into the second layer, and the second layer is a B-rich third layer having a borazine ring skeleton and containing Si, B, C, and N, that is, borazine. It is changed (modified) into a B-rich SiBCN layer containing a ring skeleton. The third layer is, for example, a layer having a thickness of less than one atomic layer to several atomic layers. A B-rich SiBCN layer containing a borazine ring skeleton can be said to be a layer containing Si, B, C, and a borazine ring skeleton.
 第3の層中に、BClに含まれていたB成分が取り込まれることにより、第3の層は、第2の層よりも層中のB濃度の高い層、すなわち、Bリッチな層となる。また、第3の層を形成する際、第2の層に含まれるメチルリガンドの一部は第2の層から分離し、残りは第2の層中に取り込まれたまま保持されることとなる。これにより、第3の層は、第2の層よりも層中のC濃度が低い層、すなわち、カーボンプアな層となる。なお、第3の層を形成する際、第2の層に含まれるボラジン環を構成するボラジン環骨格を破壊することなく維持(保持)することにより、ポーラス状のSiBCN層を形成することが可能となる点は、ステップ2と同様である。 By incorporating the B component contained in BCl 3 into the third layer, the third layer has a higher B concentration in the layer than the second layer, that is, a B-rich layer and Become. Further, when forming the third layer, a part of the methyl ligand contained in the second layer is separated from the second layer, and the rest is held in the second layer. . Thereby, the third layer is a layer having a lower C concentration in the layer than the second layer, that is, a carbon poor layer. When forming the third layer, it is possible to form a porous SiBCN layer by maintaining (holding) the borazine ring skeleton constituting the borazine ring contained in the second layer without destroying it. Is the same as step 2.
 なお、BClガスは、ノンプラズマで熱的に活性化させて供給した方が、上述の反応をソフトに進行させることができ、第3の層の形成が容易となる点で、好ましい。すなわち、BClガスは、ノンプラズマで熱的に活性化させて供給した方が、プラズマ励起させて供給するよりも、BClガスが過剰に活性化されてしまうことを防ぐことができ、第2の層におけるボラジン環骨格や一部のN-C結合を破壊等することなく維持することが容易となる点で、好ましい。 Note that the BCl 3 gas is preferably supplied by being thermally activated by non-plasma from the viewpoint that the above-described reaction can be performed softly and the formation of the third layer is facilitated. That, BCl 3 gas, who was fed thermally activated in a non-plasma, rather than supplied by plasma excitation, it is possible to prevent the BCl 3 gas is excessively activated, the The borazine ring skeleton and a part of N—C bonds in the second layer are preferably maintained without being destroyed.
(残留ガス除去)
 第3の層が形成された後、バルブ243bを閉じ、BClガスの供給を停止する。そして、ステップ1と同様の処理手順により、処理室201内に残留する未反応もしくは第3の層の形成に寄与した後のBClガスや反応副生成物を処理室201内から排除する。このとき、処理室201内に残留するガス等を完全に排除しなくてもよい点は、ステップ1と同様である。
(Residual gas removal)
After the third layer is formed, the valve 243b is closed and the supply of BCl 3 gas is stopped. Then, BCl 3 gas and reaction by-products remaining in the processing chamber 201 and contributed to the formation of the third layer are removed from the processing chamber 201 by the same processing procedure as in step 1. At this time, it is the same as in step 1 that the gas remaining in the processing chamber 201 does not have to be completely removed.
 ボラジン環骨格非含有のB含有ガスとしては、BClガス以外のハロゲン化ボロン系ガス(ハロボラン系ガス)、例えば、BClガス以外のクロロボラン系ガスや、トリフルオロボラン(BF)ガス等のフルオロボラン系ガスや、トリブロモボラン(BBr)ガス等のブロモボラン系ガスを用いることができる。また、Bガス等のCl非含有のボラン系ガスを用いることもできる。また、これらの無機ボラン系ガスの他、有機ボラン系ガスを用いることもできる。不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。 The borazine ring skeleton-free B-containing gas, BCl 3 gas other than halogenated boron-based gas (Haroboran based gas), for example, BCl 3 and chloroborane based gas other than the gas, trifluoroborane (BF 3) such as a gas A bromoborane-based gas such as a fluoroborane-based gas or a tribromoborane (BBr 3 ) gas can be used. Further, a Cl-free borane-based gas such as B 2 H 6 gas can also be used. In addition to these inorganic borane-based gases, organic borane-based gases can also be used. As the inert gas, for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
(所定回数実施)
 上述したステップ1~3を非同時に行うサイクルを1回以上(所定回数)行うことにより、ウエハ200上に、所定組成および所定膜厚のボラジン環骨格を含むSiBCN膜を形成することができる。上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成されるSiBCN層の厚さを所望の膜厚よりも小さくし、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい。
(Performed times)
A SiBCN film including a borazine ring skeleton having a predetermined composition and a predetermined film thickness can be formed on the wafer 200 by performing the above-described steps 1 to 3 non-simultaneously at least once (a predetermined number of times). The above cycle is preferably repeated multiple times. That is, it is preferable that the thickness of the SiBCN layer formed per cycle is made smaller than the desired film thickness, and the above-described cycle is repeated a plurality of times until the desired film thickness is obtained.
(パージおよび大気圧復帰)
 バルブ243c,243dを開き、ガス供給管232c,232dのそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(Purge and return to atmospheric pressure)
The valves 243c and 243d are opened, N 2 gas is supplied into the processing chamber 201 from the gas supply pipes 232c and 232d, and exhausted from the exhaust pipe 231. N 2 gas acts as a purge gas. Thereby, the inside of the processing chamber 201 is purged, and the gas and reaction by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
(ボートアンロードおよびウエハディスチャージ)
 ボートエレベータ115によりシールキャップ219が下降され、反応管203の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態で、反応管203の下端から反応管203の外部に搬出される(ボートアンロード)。処理済のウエハ200は、ボート217より取出される(ウエハディスチャージ)。
(Boat unload and wafer discharge)
The seal cap 219 is lowered by the boat elevator 115 and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is carried out from the lower end of the reaction tube 203 to the outside of the reaction tube 203 (boat unloading) while being supported by the boat 217. The processed wafer 200 is taken out from the boat 217 (wafer discharge).
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(3) Effects According to the Present Embodiment According to the present embodiment, one or more effects shown below can be obtained.
(a)HCDSガスを供給するステップ1と、TMBガスを供給するステップ2と、BClガスを供給するステップ3と、を含むサイクルを所定回数行うことで、最終的に形成されるSiBCN膜の組成比の制御性を向上させることが可能となる。すなわち、B含有ガスとして、BおよびNを含むTMBガスだけでなく、Bを含みN非含有のBClガスを更に用いて成膜処理を行うことで、最終的に形成されるSiBCN膜の組成比を緻密に制御することが可能となる。 (A) By performing a predetermined number of cycles including step 1 for supplying HCDS gas, step 2 for supplying TMB gas, and step 3 for supplying BCl 3 gas, the SiBCN film finally formed The controllability of the composition ratio can be improved. That is, the composition of the SiBCN film finally formed by performing the film forming process using not only the TMB gas containing B and N but also the BCl 3 gas containing B and not containing N as the B-containing gas. The ratio can be precisely controlled.
 というのも、BClガスを用いず、HCDSガス、TMBガスを用いて形成したSiBCN膜では、膜中に含まれるB成分とN成分との比率(以下、B/N比とも呼ぶ)が、TMBガスの1分子中に含まれるBの数とNの数との比率(TMBガスでは1/1)、すなわち、ボラジン環骨格を含むガスの種類により決定されることとなる。つまり、BClガスを用いず、HCDSガス、TMBガスを用いて形成したSiBCN膜では、上述のB/N比を1/1から大きく離れた値とすることは困難である。 This is because, in the SiBCN film formed using HCDS gas and TMB gas without using BCl 3 gas, the ratio of B component and N component contained in the film (hereinafter also referred to as B / N ratio) The ratio is determined by the ratio of the number of B and the number of N contained in one molecule of the TMB gas (1/1 in the case of TMB gas), that is, the type of gas containing the borazine ring skeleton. That is, it is difficult to set the B / N ratio described above to a value far from 1/1 in a SiBCN film formed using HCDS gas and TMB gas without using BCl 3 gas.
 これに対し、本実施形態のように、B含有ガスとして、BおよびNを含むTMBガスと、Bを含みN非含有のBClガスと、の2種類のガス(ダブルBソース)を用いて成膜処理を行う場合、これらのガスの供給条件をそれぞれ適正に調整することで、最終的に形成するSiBCN膜のB/N比を自在に制御することが可能となる。 On the other hand, as in the present embodiment, as the B-containing gas, two types of gases (double B source) including TMB gas containing B and N and BCl 3 gas containing B and not containing N are used. When the film forming process is performed, the B / N ratio of the SiBCN film to be finally formed can be freely controlled by appropriately adjusting the supply conditions of these gases.
 例えば、「ステップ2におけるTMBガスの供給流量」に対する「ステップ3におけるBClガスの供給流量」の比率(以下、「BClガス供給流量/TMBガス供給流量」ともいう)を大きくすることで、ステップ3において第3の層中に添加するB成分の量を増加させ、最終的に形成されるSiBCN膜のB/N比を高める(1/1よりも大きくする)ことが可能となる。また、上述の「BClガス供給流量/TMBガス供給流量」を小さくすることで、ステップ3において第3の層中に添加するB成分の量を適正に抑制し、最終的に形成されるSiBCN膜のB/N比を低下させる(1/1に近づける)ことが可能となる。 For example, by increasing the ratio of “the supply flow rate of BCl 3 gas in step 3” to “the supply flow rate of TMB gas in step 2” (hereinafter also referred to as “BCl 3 gas supply flow rate / TMB gas supply flow rate”), In step 3, the amount of the B component added to the third layer is increased, and the B / N ratio of the finally formed SiBCN film can be increased (larger than 1/1). Further, by reducing the above-mentioned “BCl 3 gas supply flow rate / TMB gas supply flow rate”, the amount of B component added to the third layer in Step 3 is appropriately suppressed, and finally formed SiBCN. It is possible to reduce the B / N ratio of the film (close to 1/1).
 また例えば、「ステップ2におけるTMBガスの供給時間」に対する「ステップ3におけるBClガスの供給時間」の比率(以下、「BClガス供給時間/TMBガス供給時間」ともいう)を大きくすることで、ステップ3において第3の層中に添加するB成分の量を増加させ、最終的に形成されるSiBCN膜のB/N比を高める(1/1よりも大きくする)ことが可能となる。また、上述の「BClガス供給時間/TMBガス供給時間」を小さくすることで、ステップ3において第3の層中に添加するB成分の量を適正に抑制し、最終的に形成されるSiBCN膜のB/N比を低下させる(1/1に近づける)ことが可能となる。 In addition, for example, the ratio of "BCl 3 gas supply time in Step 3" to "supply time of the TMB gas in Step 2" (hereinafter also referred to as "BCl 3 gas supply time / TMB gas supply time") to increase the In Step 3, it is possible to increase the amount of the B component added to the third layer and increase the B / N ratio of the SiBCN film to be finally formed (greater than 1/1). Further, by reducing the above-mentioned “BCl 3 gas supply time / TMB gas supply time”, the amount of B component added to the third layer in Step 3 is appropriately suppressed, and finally formed SiBCN. It is possible to reduce the B / N ratio of the film (close to 1/1).
 また例えば、「ステップ2における処理室201内の圧力」に対する「ステップ3における処理室201内の圧力」の比率(以下、「ステップ3での処理圧力/ステップ2での処理圧力」ともいう)を大きくすることで、ステップ3において第3の層中に添加するB成分の量を増加させ、最終的に形成されるSiBCN膜のB/N比を高める(1/1よりも大きくする)ことが可能となる。また、上述の「ステップ3での処理圧力/ステップ2での処理圧力」を小さくすることで、ステップ3において第3の層中に添加するB成分の量を適正に抑制し、最終的に形成されるSiBCN膜のB/N比を低下させる(1/1に近づける)ことが可能となる。 Further, for example, a ratio of “pressure in the processing chamber 201 in step 3” to “pressure in the processing chamber 201 in step 2” (hereinafter also referred to as “processing pressure in step 3 / processing pressure in step 2”). By increasing the size, the amount of the B component added to the third layer in Step 3 is increased, and the B / N ratio of the SiBCN film finally formed is increased (made larger than 1/1). It becomes possible. Further, by reducing the above-mentioned “processing pressure in step 3 / processing pressure in step 2”, the amount of the B component added to the third layer in step 3 is appropriately suppressed and finally formed. It is possible to reduce the B / N ratio of the SiBCN film to be close (close to 1/1).
 また例えば、「ステップ2における処理室201内でのTMBガスの分圧」に対する「ステップ3における処理室201内でのBClガスの分圧」の比率(以下、「BClガス分圧/TMBガス分圧」ともいう)を大きくすることで、ステップ3において第3の層中に添加するB成分の量を増加させ、最終的に形成されるSiBCN膜のB/N比を高める(1/1よりも大きくする)ことが可能となる。また、上述の「BClガス分圧/TMBガス分圧」を小さくすることで、ステップ3において第3の層中に添加するB成分の量を適正に抑制し、最終的に形成されるSiBCN膜のB/N比を低下させる(1/1に近づける)ことが可能となる。 Further, for example, a ratio of “partial pressure of BCl 3 gas in the processing chamber 201 in step 3” to “partial pressure of TMB gas in the processing chamber 201 in step 2” (hereinafter referred to as “BCl 3 gas partial pressure / TMB”). By increasing the gas partial pressure ”, the amount of B component added to the third layer in step 3 is increased, and the B / N ratio of the SiBCN film finally formed is increased (1 / Greater than 1). Further, by reducing the above-mentioned “BCl 3 gas partial pressure / TMB gas partial pressure”, the amount of B component added to the third layer in Step 3 is appropriately suppressed, and finally formed SiBCN. It is possible to reduce the B / N ratio of the film (close to 1/1).
 また、本実施形態のように、B含有ガスとして、Cを含むTMBガスと、C非含有のBClガスと、の2種類のガスを用いて成膜処理を行うことで、最終的に形成されるSiBCN膜中のC濃度を微調整することが可能となる。すなわち、ステップ1,2に加えてC非含有のBClガスを供給するステップ3を更に行うことで、最終的に形成されるSiBCN膜中のC濃度を、ステップ1,2を交互に行うことで形成されるSiBCN膜中のC濃度よりも低い任意の濃度とするように制御することが可能となる。 Further, as in the present embodiment, the film is formed by using two types of gas, that is, a TMB gas containing C and a BCl 3 gas containing no C as the B-containing gas. It becomes possible to finely adjust the C concentration in the SiBCN film. That is, in addition to Steps 1 and 2, Step 3 for supplying C-free BCl 3 gas is further performed, so that Steps 1 and 2 are alternately performed with respect to the C concentration in the finally formed SiBCN film. It is possible to control the concentration so as to be an arbitrary concentration lower than the C concentration in the SiBCN film formed in (1).
(b)B含有ガスとして、ボラジン環骨格を含むTMBガスと、ボラジン環骨格非含有のBClガスと、の2種類のガスを用いて成膜処理を行うことで、最終的に形成されるSiBCN膜の酸化耐性を向上させることが可能となる。 (B) As a B-containing gas, a film is formed using two types of gases, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, and finally formed. It becomes possible to improve the oxidation resistance of the SiBCN film.
 というのも、ボラジン環骨格を含むSiBCN膜は、Bを、膜を構成するボラジン環骨格の一構成要素として含むこととなる。ボラジン環骨格を構成するB-N結合は、共有電子の偏りが少なく(極性が小さく)、強固な結合を有している。そのため、ボラジン環骨格を含むSiBCN膜は、ボラジン環骨格非含有のSiBCN膜よりも、酸化による膜中からのBの脱離確率が少なく、酸化耐性、例えば、酸素プラズマ等に対する耐性の高い膜、すなわち、アッシング耐性の高い膜となる。 This is because the SiBCN film containing a borazine ring skeleton contains B as one component of the borazine ring skeleton constituting the film. The BN bond constituting the borazine ring skeleton has a small bond (small polarity) and has a strong bond. Therefore, a SiBCN film containing a borazine ring skeleton has a lower probability of desorption of B from the film due to oxidation than a SiBCN film not containing a borazine ring skeleton, and a film having high resistance to oxidation resistance, for example, oxygen plasma, That is, the film has high ashing resistance.
 本実施形態のように、B含有ガスとして、ボラジン環骨格を含むTMBガスと、ボラジン環骨格非含有のBClガスと、の2種類のガスを用いて成膜処理を行うことで、最終的に形成されるSiBCN膜の酸化耐性を、ボラジン環骨格非含有のSiBCN膜の酸化耐性よりも高くすることができる。すなわち、ステップ1,3の間に、ボラジン環骨格を含むTMBガスを供給するステップ2を行い、最終的に形成するSiBCN膜中にボラジン環骨格を含ませることにより、例えば、HCDSガス、BClガス、Cガス、NHガス等を用いて形成したボラジン環骨格非含有のSiBCN膜よりも、酸化による膜中からのBの脱離確率を低減させることが可能となる。つまり、膜の酸化耐性、すなわち、アッシング耐性を向上させることが可能となる。 As in the present embodiment, the final film formation process is performed by using two types of gases, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, as the B-containing gas. The oxidation resistance of the SiBCN film formed on the silicon nitride film can be made higher than that of the SiBCN film not containing a borazine ring skeleton. That is, Step 2 for supplying a TMB gas containing a borazine ring skeleton is performed between Steps 1 and 3 and the borazine ring skeleton is included in the finally formed SiBCN film, for example, HCDS gas, BCl 3 Compared to a SiBCN film not containing a borazine ring skeleton formed by using gas, C 3 H 6 gas, NH 3 gas, or the like, it is possible to reduce the probability of B desorption from the film due to oxidation. That is, the oxidation resistance of the film, that is, the ashing resistance can be improved.
 なお、発明者等は、ボラジン環骨格を構成するBだけでなく、ステップ3を行うことで第3の層中に添加されることとなったB、すなわち、膜中に含まれるもののボラジン環骨格の構成要素とはなっていないBについても、膜中からの脱離確率を小さくすることができることを確認している。これは、SiBCN膜中に含まれるボラジン環骨格が、膜に対して供給された酸素プラズマ等に対し、ステップ3を行うことで第3の層中に添加されることとなったB、例えば、ボラジン環を構成するN等と結合することとなったBの脱離を抑制する保護(ガード)要素として作用することが、1つの理由と考えられる。なお、発明者等は、ボラジン環骨格非含有のSiBCN膜に対して酸素プラズマ等を供給すると、膜中からの脱離が、B、C、Nの順に生じやすいこと、すなわち、B、C、NのうちBが最も脱離しやすく、次いでCが脱離しやすいことを確認している。 In addition to the B constituting the borazine ring skeleton, the inventors have added B in the third layer by performing Step 3, that is, the borazine ring skeleton contained in the film. It has also been confirmed that the probability of desorption from the film can be reduced even for B which is not a constituent element. This is because the borazine ring skeleton contained in the SiBCN film is added to the third layer by performing step 3 on the oxygen plasma or the like supplied to the film, for example, One reason is considered to act as a protective (guard) element that suppresses the elimination of B, which is bound to N or the like constituting the borazine ring. When the inventors supply oxygen plasma or the like to the borazine ring skeleton-free SiBCN film, desorption from the film tends to occur in the order of B, C, N, that is, B, C, It has been confirmed that among N, B is most easily desorbed and then C is easily desorbed.
(c)B含有ガスとして、ボラジン環骨格を含むTMBガスと、ボラジン環骨格非含有のBClガスと、の2種類のガスを用いて成膜処理を行うことで、最終的に形成されるSiBCN膜の膜密度、すなわち、膜の原子密度を適正に低下させることが可能となる。結果として、最終的に形成されるSiBCN膜の誘電率を適正に高めることが可能となる。 (C) As a B-containing gas, a film is formed using two types of gases, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, and finally formed. It is possible to appropriately reduce the film density of the SiBCN film, that is, the atomic density of the film. As a result, it is possible to appropriately increase the dielectric constant of the finally formed SiBCN film.
 というのも、ボラジン環骨格を含む膜(ポーラス状の膜)は、ボラジン環骨格非含有の膜(非ポーラス状の膜)よりも、膜中の原子密度が低く、誘電率の低い膜となる。そのため、B含有ガスとして、ボラジン環骨格を含むTMBガスと、ボラジン環骨格非含有のBClガスと、の2種類のガスを用いて成膜処理を行い、最終的に形成されるSiBCN膜中にボラジン環骨格を含ませることで、この膜の膜密度を適正に低下させ、誘電率を高めることが可能となる。さらには、ステップ2,3における処理条件を上述のように制御し、この膜中に含ませるボラジン環骨格の量を調整することで、この膜の誘電率を、例えば、HCDSガス、BClガス、Cガス、NHガス等を用いて形成したボラジン環骨格非含有のSiBCN膜の誘電率と、HCDSガス、TMBガスを用いて形成したボラジン環骨格を含むSiBCN膜の誘電率と、の間の任意の値とするように制御することが可能となる。 This is because a film containing a borazine ring skeleton (porous film) has a lower atomic density and a lower dielectric constant than a film not containing a borazine ring skeleton (non-porous film). . Therefore, as the B-containing gas, film formation is performed using two kinds of gases, ie, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, and in the SiBCN film finally formed By including a borazine ring skeleton in the film, it is possible to appropriately reduce the film density of the film and increase the dielectric constant. Furthermore, the processing conditions in Steps 2 and 3 are controlled as described above, and the amount of borazine ring skeleton contained in this film is adjusted, so that the dielectric constant of this film can be changed to, for example, HCDS gas or BCl 3 gas. The dielectric constant of a borazine ring skeleton-free SiBCN film formed using C 3 H 6 gas, NH 3 gas, etc., and the dielectric constant of a SiBCN film including a borazine ring skeleton formed using HCDS gas and TMB gas It is possible to control to be an arbitrary value between.
 すなわち、本実施形態によれば、最終的に形成されるSiBCN膜の誘電率を、ボラジン環骨格非含有のSiBCN膜の誘電率よりも高めることが可能となる。さらには、最終的に形成されるSiBCN膜の誘電率を、ボラジン環骨格非含有のSiBCN膜を形成する場合や、HCDSガス、TMBガスを用いてボラジン環骨格を含むSiBCN膜を形成する場合等には実現不可能な値とすることができる。すなわち、誘電率制御のウインドウを広げることが可能となる。また、ステップ2,3におけるTMBガス、BClガスの供給条件を例えば上述のように制御することで、最終的に形成されるSiBCN膜の誘電率を微調整することが可能となる。 That is, according to the present embodiment, the dielectric constant of the finally formed SiBCN film can be made higher than that of the borazine ring skeleton-free SiBCN film. Furthermore, the dielectric constant of the SiBCN film to be finally formed is set such that when a SiBCN film containing no borazine ring skeleton is formed, or when a SiBCN film containing a borazine ring skeleton is formed using HCDS gas or TMB gas, etc. The value can not be realized. That is, it is possible to widen the window for controlling the dielectric constant. Further, by controlling the TMB gas and BCl 3 gas supply conditions in steps 2 and 3 as described above, for example, the dielectric constant of the finally formed SiBCN film can be finely adjusted.
(d)B含有ガスとして、ボラジン環骨格を含むTMBガスと、ボラジン環骨格非含有のBClガスと、の2種類のガスを用いて成膜処理を行うことで、最終的に形成されるSiBCN膜の表面ラフネスを向上させることが可能となる。 (D) As a B-containing gas, a film is formed using two types of gases, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, and finally formed. It becomes possible to improve the surface roughness of the SiBCN film.
 ここで、「表面ラフネス」とは、ウエハ面内あるいは任意の対象面内の高低差を意味しており、表面粗さと同様の意味を有している。表面ラフネスが向上する(良好)とは、この高低差が小さくなる(小さい)こと、すなわち、表面が平滑となる(平滑である)ことを意味している。表面ラフネスが悪化する(悪い)とは、この高低差が大きくなる(大きい)こと、すなわち、表面が粗くなる(粗い)ことを意味している。 Here, “surface roughness” means a height difference in the wafer surface or in an arbitrary target surface, and has the same meaning as the surface roughness. The improvement in surface roughness (good) means that this height difference becomes small (small), that is, the surface becomes smooth (smooth). Deteriorating (poor) surface roughness means that this height difference becomes large (large), that is, the surface becomes rough (coarse).
 ボラジン環骨格非含有の膜は、ボラジン環骨格を含む膜よりも、表面ラフネスが良好となる傾向がある。そのため、ステップ1,2に加えてC非含有のB含有ガスを供給するステップ3を更に行うことで、最終的に形成されるSiBCN膜の表面ラフネスを向上させることが可能となる。すなわち、B含有ガスとして、ボラジン環骨格を含むTMBガスと、ボラジン環骨格非含有のBClガスと、の2種類のガスを用いて成膜処理を行い、最終的に形成されるSiBCN膜中に含まれるボラジン環骨格の量を適正に調整することで、この膜の表面ラフネスを、BClガスを用いず、HCDSガス、TMBガスを用いて形成したボラジン環骨格を含むSiBCN膜よりも、向上させることが可能となる。 A film containing no borazine ring skeleton tends to have better surface roughness than a film containing a borazine ring skeleton. Therefore, it is possible to improve the surface roughness of the finally formed SiBCN film by further performing Step 3 of supplying a C-free B-containing gas in addition to Steps 1 and 2. That is, as a B-containing gas, a film forming process is performed using two kinds of gases, a TMB gas containing a borazine ring skeleton and a BCl 3 gas not containing a borazine ring skeleton, and the SiBCN film finally formed By appropriately adjusting the amount of the borazine ring skeleton contained in the film, the surface roughness of this film can be made higher than that of the SiBCN film containing a borazine ring skeleton formed using HCDS gas and TMB gas without using BCl 3 gas. It becomes possible to improve.
(e)ステップ2において有機ボラジン化合物を気化したTMBガスを用いることで、最終的に形成する膜中に適量のCを含有させることが可能となる。すなわち、ステップ2において、TMBガスのような1分子中に有機リガンドを含みCソースとしても作用するB含有ガスを用いることで、例えばCガス等のC含有ガスを供給するステップを新たに追加することなく、ウエハ200上に、Cを含むSiBN膜、すなわち、SiBCN膜を形成することが可能となる。このように、膜中に適正な量のCを含有させることにより、この膜のフッ化水素(HF)に対する耐性、すなわち、エッチング耐性等を高めることが可能となる。 (E) By using the TMB gas obtained by vaporizing the organic borazine compound in Step 2, an appropriate amount of C can be contained in the finally formed film. That is, in step 2, a step of supplying a C-containing gas such as C 3 H 6 gas by using a B-containing gas that contains an organic ligand in one molecule such as TMB gas and also acts as a C source is newly added. It is possible to form a SiBN film containing C, that is, a SiBCN film on the wafer 200 without adding to the above. Thus, by including an appropriate amount of C in the film, it is possible to increase the resistance of this film to hydrogen fluoride (HF), that is, the etching resistance.
(f)ステップ1ではハロシラン原料ガス(ハロゲン元素を含むシラン原料ガス)を、ステップ2では有機ボラジン系ガス(有機リガンドを含むボラジン化合物ガス)を、ステップ3ではハロボラン系ガス(ハロゲン元素を含むボラン化合物ガス)をそれぞれ用い、ステップ1~3をこの順に非同時に行うサイクルを所定回数行うことで、第1~第3の層の形成処理、すなわち、SiBCN膜の形成を効率的に行うことが可能となる。 (F) In Step 1, a halosilane source gas (silane source gas containing a halogen element) is used, in Step 2, an organic borazine gas (borazine compound gas containing an organic ligand) is used, and in Step 3, a haloborane gas (borane containing a halogen element) is used. By using a compound gas) and performing a cycle of performing steps 1 to 3 non-simultaneously in this order a predetermined number of times, it is possible to efficiently perform the formation process of the first to third layers, that is, the formation of the SiBCN film. It becomes.
 というのも、ステップ1においてウエハ200に対してClを含むHCDSガス、すなわち、下地への吸着性の高いハロシラン原料ガスを供給することで、ウエハ200上への第1の層の形成処理を効率的に進行させることが可能となる。 This is because the HCDS gas containing Cl, that is, the halosilane source gas having a high adsorptivity to the base, is supplied to the wafer 200 in Step 1, thereby efficiently forming the first layer on the wafer 200. It is possible to make progress.
 また、ステップ1において第1の層としてClを含むSi含有層を形成した後、ステップ2において第1の層に対して有機リガンドを含むTMBガスを供給することで、第2の層の形成を効率的に行うことが可能となる。すなわち、ステップ2において、第1の層に含まれるClと、TMBガスに含まれる有機リガンドと、の反応を利用することで、第1の層とTMBガスとの反応効率を高めることが可能となる。結果として、第2の層の形成処理を効率的に進行させることが可能となる。 In addition, after forming the Si-containing layer containing Cl as the first layer in Step 1, the second layer is formed by supplying TMB gas containing an organic ligand to the first layer in Step 2. It becomes possible to carry out efficiently. That is, in step 2, the reaction efficiency between the first layer and the TMB gas can be increased by utilizing the reaction between Cl contained in the first layer and the organic ligand contained in the TMB gas. Become. As a result, the formation process of the second layer can be efficiently advanced.
 また、ステップ2において第2の層として有機リガンドを含むSiBCN層を形成した後、ステップ3において第2の層に対してClを含むBClガスを供給することで、第3の層の形成を効率的に行うことが可能となる。すなわち、ステップ3において、第2の層に含まれる有機リガンドと、BClガスに含まれるClと、の反応を利用することで、第2の層とBClガスとの反応効率を高めることが可能となる。結果として、第3の層の形成処理を効率的に進行させることが可能となる。 Further, after forming a SiBCN layer containing an organic ligand as the second layer in Step 2, a third layer is formed by supplying BCl 3 gas containing Cl to the second layer in Step 3. It becomes possible to carry out efficiently. That is, in step 3, and the organic ligands included in the second layer, by using a Cl contained in the BCl 3 gas, a reaction, to increase the reaction efficiency between the second layer and the BCl 3 gas It becomes possible. As a result, it is possible to efficiently proceed with the formation process of the third layer.
 このように、上述のサイクルを行う際、ハロゲン元素を含むガスを供給した後は有機リガンドを含むガスを供給し、有機リガンドを含むガスを供給した後はハロゲン元素を含むガスを供給することで、ウエハ200上に形成された層と、この層に供給されるガスと、を効率的に反応させることが可能となる。結果として、第1~第3の層の形成レートを高め、最終的に形成するSiBCN膜の成膜レートを向上させることが可能となる。また、成膜処理に寄与することなく処理室201内から排出されてしまうガス(原料ガス、反応ガス)の量を減少させ、成膜コストを低減させることも可能となる。 Thus, when performing the above-described cycle, after supplying a gas containing a halogen element, a gas containing an organic ligand is supplied, and after supplying a gas containing an organic ligand, a gas containing a halogen element is supplied. The layer formed on the wafer 200 and the gas supplied to this layer can be reacted efficiently. As a result, the formation rate of the first to third layers can be increased, and the film formation rate of the SiBCN film to be finally formed can be improved. In addition, it is possible to reduce the amount of gas (raw material gas, reaction gas) that is exhausted from the processing chamber 201 without contributing to the film formation process, thereby reducing the film formation cost.
(g)ステップ1~3を非同時に行うことで、すなわち、原料ガスおよび反応ガス(第1のB含有ガス、第2のB含有ガス)の供給を同期させることなく非同時に行うことで、これらのガスを、気相反応や表面反応が適正に生じる条件下で、適正に反応に寄与させることができる。結果として、最終的に形成されるSiBCN膜の段差被覆性、膜厚制御性をそれぞれ向上させることが可能となる。また、処理室201内における過剰な気相反応を回避することができ、パーティクルの発生を抑制することも可能となる。 (G) By performing steps 1 to 3 non-simultaneously, that is, by performing non-simultaneous operations without synchronizing the supply of the source gas and the reaction gas (first B-containing gas, second B-containing gas), This gas can be properly contributed to the reaction under conditions where a gas phase reaction and a surface reaction occur appropriately. As a result, the step coverage and film thickness controllability of the finally formed SiBCN film can be improved. In addition, excessive gas phase reaction in the processing chamber 201 can be avoided, and generation of particles can be suppressed.
(h)上述の効果は、原料ガスとしてHCDSガス以外の原料ガスを用いる場合や、第1のB含有ガスとしてTMBガス以外のボラジン環骨格を含むB含有ガスを用いる場合や、第2のB含有ガスとしてBClガス以外のボラジン環骨格非含有のB含有ガスを用いる場合にも、同様に得ることができる。 (H) The above-described effects are obtained when a source gas other than the HCDS gas is used as the source gas, when a B-containing gas containing a borazine ring skeleton other than the TMB gas is used as the first B-containing gas, or when the second B The same can be obtained when a B-containing gas not containing a borazine ring skeleton other than BCl 3 gas is used as the containing gas.
(4)変形例
 本実施形態における成膜シーケンスは、図4に示す態様に限定されず、以下に示す変形例のように変更することができる。
(4) Modified Example The film forming sequence in the present embodiment is not limited to the mode shown in FIG. 4 and can be changed as in the following modified example.
(変形例1~3)
 例えば、以下に示す成膜シーケンス(順に変形例1~3)により、ウエハ200上に、ボラジン環骨格を含む膜を形成するようにしてもよい。本変形例によっても、図4に示す成膜シーケンスと同様の効果を得ることができる。
(Modifications 1 to 3)
For example, a film containing a borazine ring skeleton may be formed on the wafer 200 by the following film formation sequence (in order of Modifications 1 to 3). Also by this modification, the same effect as the film-forming sequence shown in FIG. 4 can be acquired.
 (HCDS→BCl→TMB)×n ⇒ SiBCN膜 (HCDS → BCl 3 → TMB) × n ⇒ SiBCN film
 (BCl→HCDS→TMB)×n ⇒ SiBCN膜 (BCl 3 → HCDS → TMB) × n ⇒ SiBCN film
 (BCl→TMB→HCDS)×n ⇒ SiBCN膜 (BCl 3 → TMB → HCDS) × n ⇒ SiBCN film
(変形例4~7)
 また例えば、以下に示す成膜シーケンス(順に変形例4~7)のように、上述のサイクルを行う際に、ウエハ200に対してNHガスを供給するステップをさらに行うようにしてもよい。図5は、変形例4におけるガス供給のタイミングを示す図である。
(Modifications 4 to 7)
Further, for example, a step of supplying NH 3 gas to the wafer 200 may be further performed during the above-described cycle, as in the following film forming sequence (in order of Modifications 4 to 7). FIG. 5 is a diagram illustrating the gas supply timing in the fourth modification.
 (HCDS→TMB→BCl→NH)×n ⇒ SiBCN膜 or SiBN膜 (HCDS → TMB → BCl 3 → NH 3 ) × n ⇒ SiBCN film or SiBN film
 (HCDS→BCl→TMB→NH)×n ⇒ SiBCN膜 or SiBN膜 (HCDS → BCl 3 → TMB → NH 3 ) × n => SiBCN film or SiBN film
 (BCl→HCDS→TMB→NH)×n ⇒ SiBCN膜 or SiBN膜 (BCl 3 → HCDS → TMB → NH 3 ) × n => SiBCN film or SiBN film
 (BCl→TMB→HCDS→NH)×n ⇒ SiBCN膜 or SiBN膜 (BCl 3 → TMB → HCDS → NH 3 ) × n ⇒ SiBCN film or SiBN film
 これらの変形例によっても、図4に示す成膜シーケンスと同様の効果を得ることができる。また、NHガスを供給するステップを行うことで、NHガスに含まれていたN成分を、それまでに形成された層(SiBCN層)に付加することができ、この層を、N濃度の高い層(NリッチなSiBCN層)に改質(窒化)させることができる。結果として、最終的に形成されるSiBCN膜中のN濃度を高めることが可能となる。また、SiBCN層に含まれるCの大部分を脱離させて不純物レベルとしたり、SiBCN層に含まれるCを実質的に消滅させたりすることもでき、この層を、C非含有のシリコン硼窒化層(SiBN層)に改質することもできる。この場合、ウエハ200上に、ボラジン環骨格を含むC非含有のシリコン硼窒化膜(SiBN膜)を形成することもできる。 Also by these modified examples, the same effect as the film forming sequence shown in FIG. 4 can be obtained. Further, by performing the step of supplying NH 3 gas, the N component contained in the NH 3 gas can be added to the layers formed so far (SiBCN layer), the layer, N concentration Can be modified (nitrided) into a high layer (N-rich SiBCN layer). As a result, it is possible to increase the N concentration in the finally formed SiBCN film. Further, most of C contained in the SiBCN layer can be eliminated to an impurity level, or C contained in the SiBCN layer can be substantially eliminated. It can also be modified to a layer (SiBN layer). In this case, a C-free silicon boronitride film (SiBN film) containing a borazine ring skeleton can also be formed on the wafer 200.
 なお、NHガスを供給するステップは、他のガスを供給する各ステップと非同時に行うことができる。また、NHガスは、熱で活性化させて供給することもでき、プラズマ励起させて供給することもできる。 Note that the step of supplying NH 3 gas can be performed simultaneously with the steps of supplying other gases. Further, the NH 3 gas can be supplied by being activated by heat, or can be supplied after being excited by plasma.
(変形例8,9)
 また例えば、以下に示す成膜シーケンス(順に変形例8,9)のように、上述のサイクルを行う際に、TMBガスを供給するステップと、BClガスを供給するステップと、を同時に行うようにしてもよい。図6は、変形例8におけるガス供給のタイミングを示す図であり、図7は、変形例9におけるガス供給のタイミングを示す図である。これらの変形例によっても、図4に示す成膜シーケンスと同様の効果を得ることができる。
(Modifications 8 and 9)
Further, for example, as in the following film forming sequence (in order of Modifications 8 and 9), when performing the above-described cycle, the step of supplying TMB gas and the step of supplying BCl 3 gas are performed simultaneously. It may be. FIG. 6 is a diagram illustrating the gas supply timing in the modification 8. FIG. 7 is a diagram illustrating the gas supply timing in the modification 9. Also by these modified examples, the same effect as the film forming sequence shown in FIG. 4 can be obtained.
 (HCDS→[TMB+BCl])×n ⇒ SiBCN膜 (HCDS → [TMB + BCl 3 ]) × n => SiBCN film
 (HCDS→[TMB+BCl]→NH)×n ⇒ SiBCN膜 or SiBN膜 (HCDS → [TMB + BCl 3 ] → NH 3 ) × n => SiBCN film or SiBN film
(変形例10)
 図4に示す成膜シーケンスや上述の各変形例では、ウエハ200に対してCガス等のC含有ガスを供給するステップをさらに含んでいてもよい。Cガスを供給するステップは、HCDSガスを供給するステップ、TMBガスを供給するステップ、BClガスを供給するステップと、非同時に行うこともできるし、これらのステップのうち少なくともいずれかのステップと同時に行うこともできる。例えば、Cガスを供給するステップを、TMBガスを供給するステップと同時に行うようにしてもよい。
(Modification 10)
The film forming sequence shown in FIG. 4 and each of the above-described modifications may further include a step of supplying a C-containing gas such as a C 3 H 6 gas to the wafer 200. The step of supplying the C 3 H 6 gas can be performed non-simultaneously with the step of supplying the HCDS gas, the step of supplying the TMB gas, the step of supplying the BCl 3 gas, or at least one of these steps. It can be performed simultaneously with the steps. For example, the step of supplying the C 3 H 6 gas may be performed simultaneously with the step of supplying the TMB gas.
 本変形例によっても、図4に示す成膜シーケンスや上述の各変形例と同様の効果を得ることができる。また、本変形例によれば、最終的に形成される膜中に、Cガスに含まれていたC成分を添加することが可能となり、最終的に形成される膜中のC濃度をさらに高めることが可能となる。但し、Cガスを、原料ガスと同時に供給するのではなく、反応ガスと同時に供給する方が、処理室201内における過剰な気相反応を回避することができ、処理室201内でのパーティクルの発生を抑制することが可能となる点で、好ましい。 Also according to this modification, the same effects as those of the film forming sequence shown in FIG. 4 and each of the modifications described above can be obtained. Moreover, according to this modification, it becomes possible to add the C component contained in the C 3 H 6 gas to the finally formed film, and the C concentration in the finally formed film Can be further increased. However, excessive gas phase reaction in the processing chamber 201 can be avoided by supplying the C 3 H 6 gas at the same time as the reaction gas rather than at the same time as the source gas. It is preferable in that generation of particles can be suppressed.
(処理条件)
 上述の変形例において、ウエハ200に対してNHガスを熱で活性化させて供給するステップでは、MFC241bで制御するNHガスの供給流量を、例えば100~10000sccmの範囲内の流量とする。処理室201内の圧力を、例えば1~4000Pa、好ましくは1~3000Paの範囲内の圧力とする。また、処理室201内におけるNHガスの分圧は、例えば0.01~3960Paの範囲内の圧力とする。NHガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1~120秒、好ましくは1~60秒の範囲内の時間とする。その他の処理条件は、例えば、図4に示す成膜シーケンスのステップ2と同様の処理条件とする。N含有ガスとしては、NHガスの他、例えば、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等の窒化水素系ガスや、これらの化合物を含むガス等を用いることができる。
(Processing conditions)
In the above-described modification, in the step of supplying the NH 3 gas to the wafer 200 after being activated by heat, the supply flow rate of the NH 3 gas controlled by the MFC 241b is set to a flow rate in the range of, for example, 100 to 10,000 sccm. The pressure in the processing chamber 201 is, for example, 1 to 4000 Pa, preferably 1 to 3000 Pa. In addition, the partial pressure of the NH 3 gas in the processing chamber 201 is set to a pressure in the range of 0.01 to 3960 Pa, for example. The time for supplying the NH 3 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, 1 to 120 seconds, preferably 1 to 60 seconds. Other processing conditions are, for example, the same processing conditions as those in step 2 of the film forming sequence shown in FIG. Examples of the N-containing gas include NH 3 gas, hydrogen nitride-based gases such as diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas, and compounds thereof. Gas or the like can be used.
 また、ウエハ200に対してNHガスをプラズマ励起させて供給するステップでは、MFC241bで制御するNHガスの供給流量を、例えば100~10000sccmの範囲内の流量とする。棒状電極269,270間に印加するRF電力は、例えば50~1000Wの範囲内の電力とする。処理室201内の圧力は、例えば1~500Pa、好ましくは1~100Paの範囲内の圧力とする。処理室201内におけるNHガスの分圧は、例えば0.01~495Pa、好ましくは0.01~99Paの範囲内の圧力とする。プラズマを用いることで、処理室201内の圧力をこのような比較的低い圧力帯としても、NHガスを活性化させることが可能となる。その他の処理条件は、例えば、図4に示す成膜シーケンスのステップ2と同様の処理条件とする。N含有ガスとしては、NHガスの他、上述の各種窒化水素系ガスや、これらの化合物を含むガス等を用いることができる。 In the step of supplying NH 3 gas to the wafer 200 by plasma excitation, the supply flow rate of the NH 3 gas controlled by the MFC 241b is set to a flow rate in the range of 100 to 10,000 sccm, for example. The RF power applied between the rod-shaped electrodes 269 and 270 is, for example, power in the range of 50 to 1000 W. The pressure in the processing chamber 201 is, for example, 1 to 500 Pa, preferably 1 to 100 Pa. The partial pressure of NH 3 gas in the processing chamber 201 is, for example, 0.01 to 495 Pa, preferably 0.01 to 99 Pa. By using plasma, the NH 3 gas can be activated even when the pressure in the processing chamber 201 is set to such a relatively low pressure zone. Other processing conditions are, for example, the same processing conditions as those in step 2 of the film forming sequence shown in FIG. As the N-containing gas, in addition to NH 3 gas, the above-mentioned various hydrogen nitride-based gases, gases containing these compounds, and the like can be used.
 また、ウエハ200に対してCガスを供給するステップでは、MFC241bで制御するCガスの供給流量を、例えば100~10000sccmの範囲内の流量とする。処理室201内の圧力を、例えば1~5000Pa、好ましくは1~4000Paの範囲内の圧力とする。また、処理室201内におけるCガスの分圧は、例えば0.01~4950Paの範囲内の圧力とする。Cガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1~200秒、好ましくは1~120秒、より好ましくは1~60秒の範囲内の時間とする。その他の処理条件は、例えば、図4に示す成膜シーケンスのステップ2と同様の処理条件とする。C含有ガスとしては、Cガスの他、例えば、アセチレン(C)ガス、エチレン(C)ガス等の炭化水素系ガスを用いることができる。 Further, in the step of supplying the C 3 H 6 gas to the wafer 200, the supply flow rate of the C 3 H 6 gas controlled by the MFC 241b is set to a flow rate in the range of 100 to 10,000 sccm, for example. The pressure in the processing chamber 201 is, for example, 1 to 5000 Pa, preferably 1 to 4000 Pa. In addition, the partial pressure of the C 3 H 6 gas in the processing chamber 201 is set to a pressure in the range of 0.01 to 4950 Pa, for example. The time for supplying the C 3 H 6 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, in the range of 1 to 200 seconds, preferably 1 to 120 seconds, more preferably 1 to 60 seconds. Time. Other processing conditions are, for example, the same processing conditions as those in step 2 of the film forming sequence shown in FIG. As the C-containing gas, in addition to C 3 H 6 gas, for example, hydrocarbon gas such as acetylene (C 2 H 2 ) gas, ethylene (C 2 H 4 ) gas and the like can be used.
 その他のステップにおける処理手順、処理条件は、例えば、図4に示す成膜シーケンスにおける各ステップの処理手順、処理条件と同様とすることができる。 The processing procedures and processing conditions in other steps can be the same as the processing procedures and processing conditions of each step in the film forming sequence shown in FIG.
<本発明の他の実施形態>
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
The embodiment of the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
 例えば、上述の実施形態では、原料ガスを供給した後、反応ガス(B含有ガス、N含有ガスガス、C含有ガス)を供給する例について説明した。本発明はこのような形態に限定されず、原料ガス、反応ガスの供給順序は逆でもよい。すなわち、反応ガスを供給した後、原料ガスを供給するようにしてもよい。供給順序を変えることにより、形成される薄膜の膜質や組成比を変化させることが可能となる。また、複数種の反応ガスの供給順序は任意に変更することが可能である。反応ガスの供給順序を変えることにより、形成される薄膜の膜質や組成比を変化させることが可能となる。 For example, in the above-described embodiment, the example in which the reaction gas (B-containing gas, N-containing gas gas, C-containing gas) is supplied after the source gas is supplied has been described. The present invention is not limited to such a form, and the supply order of the source gas and the reaction gas may be reversed. That is, the source gas may be supplied after the reaction gas is supplied. By changing the supply sequence, the film quality and composition ratio of the thin film to be formed can be changed. Further, the supply order of the plural kinds of reaction gases can be arbitrarily changed. By changing the supply sequence of the reaction gas, the film quality and composition ratio of the formed thin film can be changed.
 また例えば、上述の実施形態では、第1のB含有ガスとして有機ボラジン系ガスであるTMBガスを用いる例について説明した。本発明はこのような形態に限定されず、第1のB含有ガスとして、例えばボラジン(B)ガスのようなC非含有のボラジン系ガス、すなわち、無機ボラジン系ガスを用いるようにしてもよい。図4に示す成膜シーケンスにおいて、第2のB含有ガスとして無機ボラジン系ガスを用いた場合、ウエハ200上には、ボラジン環骨格を有しSi、BおよびNを含むC非含有の膜、すなわち、ボラジン環骨格を含むC非含有のSiBN膜が形成されることとなる。 For example, in the above-described embodiment, an example in which TMB gas that is an organic borazine-based gas is used as the first B-containing gas has been described. The present invention is not limited to such a form, and a C-free borazine-based gas such as borazine (B 3 H 6 N 3 ) gas, for example, an inorganic borazine-based gas is used as the first B-containing gas. You may do it. In the film forming sequence shown in FIG. 4, when an inorganic borazine-based gas is used as the second B-containing gas, a C-free film having a borazine ring skeleton and containing Si, B, and N on the wafer 200, That is, a C-free SiBN film containing a borazine ring skeleton is formed.
 図4に示す成膜シーケンスや各変形例の手法により形成したシリコン系絶縁膜を、サイドウォールスペーサとして使用することにより、リーク電流が少なく、加工性に優れたデバイス形成技術を提供することが可能となる。また、上述のシリコン系絶縁膜を、エッチストッパーとして使用することにより、加工性に優れたデバイス形成技術を提供することが可能となる。また、図4に示す成膜シーケンスや各変形例によれば、プラズマを用いず、理想的量論比のシリコン系絶縁膜を形成することができる。プラズマを用いずシリコン系絶縁膜を形成できることから、例えばDPTのSADP膜等、プラズマダメージを懸念する工程への適応も可能となる。 By using the silicon-based insulating film formed by the film forming sequence shown in FIG. 4 and the method of each modification as a side wall spacer, it is possible to provide a device forming technique with low leakage current and excellent workability. It becomes. In addition, by using the above-described silicon-based insulating film as an etch stopper, it is possible to provide a device forming technique with excellent workability. Further, according to the film forming sequence shown in FIG. 4 and each modification, it is possible to form a silicon-based insulating film having an ideal stoichiometric ratio without using plasma. Since a silicon-based insulating film can be formed without using plasma, it is possible to adapt to a process that is concerned about plasma damage, such as a DPT SADP film.
 上述の成膜シーケンスは、ウエハ200上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等のボラジン環骨格を有し金属元素を含む硼窒化膜、すなわち、ボラジン環骨格を含む金属系の硼窒化膜を形成する場合においても、好適に適用可能である。 In the above-described film formation sequence, titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), and tungsten (W The present invention can also be suitably applied to the case of forming a boronitride film having a borazine ring skeleton and a metal element, that is, a metal boronitride film including a borazine ring skeleton.
 すなわち、本発明は、例えば、TiBN膜、TiBCN膜、ZrBN膜、ZrBCN膜、HfBN膜、HfBCN膜、TaBN膜、TaBCN膜、NbBN膜、NbBCN膜、AlBN膜、AlBCN膜、MoBN膜、MoBCN膜、WBN膜、WBCN膜等のボラジン環骨格を含む金属系の硼窒化膜を形成する場合にも、好適に適用することができる。 That is, the present invention includes, for example, a TiBN film, a TiBCN film, a ZrBN film, a ZrBCN film, an HfBN film, an HfBCN film, a TaBN film, a TaBCN film, an NbBN film, an NbBCN film, an AlBN film, an AlBCN film, an MoBN film, an MoBCN film, The present invention can also be suitably applied when forming a metal-based boronitride film including a borazine ring skeleton such as a WBN film or a WBCN film.
 これらの場合、原料ガスとして、上述の実施形態におけるSi等の半導体元素を含む原料ガスの代わりに、金属元素を含む原料ガスを用いることができる。反応ガスとしては、上述の実施形態と同様のガスを用いることができる。このときの処理手順、処理条件は、例えば上述の実施形態と同様な処理手順、処理条件とすることができる。 In these cases, a source gas containing a metal element can be used as the source gas instead of the source gas containing a semiconductor element such as Si in the above-described embodiment. As the reaction gas, the same gas as in the above-described embodiment can be used. The processing procedure and processing conditions at this time can be the same processing procedure and processing conditions as in the above-described embodiment, for example.
 すなわち、本発明は、ボラジン環骨格を有し半導体元素や金属元素等の所定元素を含む硼窒化膜を形成する場合に好適に適用することができる。 That is, the present invention can be suitably applied when forming a boronitride film having a borazine ring skeleton and containing a predetermined element such as a semiconductor element or a metal element.
 これらの各種薄膜の形成に用いられるプロセスレシピ(基板処理の処理手順や処理条件等が記載されたプログラム)は、基板処理の内容(形成する薄膜の膜種、組成比、膜質、膜厚、処理手順、処理条件等)に応じて、それぞれ個別に用意する(複数用意する)ことが好ましい。そして、基板処理を開始する際、基板処理の内容に応じて、複数のレシピの中から、適正なレシピを適宜選択することが好ましい。具体的には、基板処理の内容に応じて個別に用意された複数のレシピを、電気通信回線や当該レシピを記録した記録媒体(外部記憶装置123)を介して、基板処理装置が備える記憶装置121c内に予め格納(インストール)しておくことが好ましい。そして、基板処理を開始する際、基板処理装置が備えるCPU121aが、記憶装置121c内に格納された複数のレシピの中から、基板処理の内容に応じて、適正なレシピを適宜選択することが好ましい。このように構成することで、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成することができるようになる。また、オペレータの操作負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。 The process recipes (programs describing the processing procedures and processing conditions for substrate processing) used to form these various thin films are the contents of the substrate processing (film type, composition ratio, film quality, film thickness, processing of the thin film to be formed) According to the procedure, processing conditions, etc.), it is preferable to prepare each separately (preparing a plurality). And when starting a substrate processing, it is preferable to select a suitable recipe suitably from several recipes according to the content of a substrate processing. Specifically, a storage device included in the substrate processing apparatus stores a plurality of recipes individually prepared according to the contents of the substrate processing via an electric communication line or a recording medium (external storage device 123) that records the recipe. It is preferable to store (install) in 121c in advance. When starting the substrate processing, it is preferable that the CPU 121a included in the substrate processing apparatus appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the content of the substrate processing. . With such a configuration, thin films having various film types, composition ratios, film qualities, and film thicknesses can be formed for general use with good reproducibility using a single substrate processing apparatus. In addition, it is possible to reduce the operation burden on the operator (such as an input burden on the processing procedure and processing conditions), and to quickly start the substrate processing while avoiding an operation error.
 上述のプロセスレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。 The above-described process recipe is not limited to a case of newly creating, and may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example. When changing the recipe, the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded. Further, an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
 上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて薄膜を形成する例について説明した。本発明は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて薄膜を形成する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて薄膜を形成する例について説明した。本発明は上述の実施形態に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて薄膜を形成する場合にも、好適に適用できる。これらの場合においても、処理手順、処理条件は、例えば上述の実施形態と同様な処理手順、処理条件とすることができる。 In the above-described embodiment, an example in which a thin film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at a time has been described. The present invention is not limited to the above-described embodiment, and can be suitably applied to the case where a thin film is formed using, for example, a single-wafer type substrate processing apparatus that processes one or several substrates at a time. In the above-described embodiment, an example in which a thin film is formed using a substrate processing apparatus having a hot wall type processing furnace has been described. The present invention is not limited to the above-described embodiment, and can also be suitably applied to the case where a thin film is formed using a substrate processing apparatus having a cold wall type processing furnace. Also in these cases, the processing procedure and processing conditions can be the same processing procedure and processing conditions as in the above-described embodiment, for example.
 例えば、図12(a)に示す処理炉302を備えた基板処理装置を用いて膜を形成する場合にも、本発明は好適に適用できる。処理炉302は、処理室301を形成する処理容器303と、処理室301内にガスをシャワー状に供給するガス供給部としてのシャワーヘッド303sと、1枚または数枚のウエハ200を水平姿勢で支持する支持台317と、支持台317を下方から支持する回転軸355と、支持台317に設けられたヒータ307と、を備えている。シャワーヘッド303sのインレット(ガス導入口)には、上述の原料ガスを供給するガス供給ポート332aと、上述の反応ガスを供給するガス供給ポート332bと、が接続されている。ガス供給ポート332aには、上述の実施形態の原料ガス供給系と同様のガス供給系が接続されている。ガス供給ポート332bには、上述の反応ガスをプラズマ励起させて供給する励起部としてのリモートプラズマユニット(プラズマ生成装置)339bと、上述の実施形態の反応ガス供給系と同様のガス供給系が接続されている。シャワーヘッド303sのアウトレット(ガス排出口)には、処理室301内にガスをシャワー状に供給するガス分散板が設けられている。シャワーヘッド303sは、処理室301内に搬入されたウエハ200の表面と対向(対面)する位置に設けられている。処理容器303には、処理室301内を排気する排気ポート331が設けられている。排気ポート331には、上述の実施形態の排気系と同様の排気系が接続されている。 For example, the present invention can also be suitably applied when a film is formed using a substrate processing apparatus including the processing furnace 302 shown in FIG. The processing furnace 302 includes a processing container 303 that forms the processing chamber 301, a shower head 303s as a gas supply unit that supplies gas into the processing chamber 301 in a shower shape, and one or several wafers 200 in a horizontal posture. A support base 317 for supporting, a rotating shaft 355 for supporting the support base 317 from below, and a heater 307 provided on the support base 317 are provided. A gas supply port 332a for supplying the above-described source gas and a gas supply port 332b for supplying the above-described reaction gas are connected to an inlet (gas introduction port) of the shower head 303s. A gas supply system similar to the source gas supply system of the above-described embodiment is connected to the gas supply port 332a. Connected to the gas supply port 332b is a remote plasma unit (plasma generator) 339b serving as an excitation unit that supplies the above-described reaction gas by plasma excitation, and a gas supply system similar to the reaction gas supply system of the above-described embodiment. Has been. At the outlet (gas outlet) of the shower head 303s, a gas dispersion plate that supplies gas into the processing chamber 301 in a shower shape is provided. The shower head 303 s is provided at a position facing (facing) the surface of the wafer 200 carried into the processing chamber 301. The processing vessel 303 is provided with an exhaust port 331 for exhausting the inside of the processing chamber 301. An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 331.
 また例えば、図12(b)に示す処理炉402を備えた基板処理装置を用いて膜を形成する場合にも、本発明は好適に適用できる。処理炉402は、処理室401を形成する処理容器403と、1枚または数枚のウエハ200を水平姿勢で支持する支持台417と、支持台417を下方から支持する回転軸455と、処理容器403内のウエハ200に向けて光照射を行うランプヒータ407と、ランプヒータ407の光を透過させる石英窓403wと、を備えている。処理容器403には、上述の原料ガスを供給するガス供給ポート432aと、上述の反応ガスを供給するガス供給部としてのガス供給ポート432bと、が接続されている。ガス供給ポート432aには、上述の実施形態の原料ガス供給系と同様のガス供給系が接続されている。ガス供給ポート432bには、上述のリモートプラズマユニット339bと、上述の実施形態の反応ガス供給系と同様のガス供給系が接続されている。ガス供給ポート432a,432bは、処理室401内に搬入されたウエハ200の端部の側方、すなわち、処理室401内に搬入されたウエハ200の表面と対向しない位置にそれぞれ設けられている。処理容器403には、処理室401内を排気する排気ポート431が設けられている。排気ポート431には、上述の実施形態の排気系と同様の排気系が接続されている。 For example, the present invention can also be suitably applied to the case where a film is formed using a substrate processing apparatus including the processing furnace 402 shown in FIG. The processing furnace 402 includes a processing container 403 that forms a processing chamber 401, a support base 417 that supports one or several wafers 200 in a horizontal position, a rotating shaft 455 that supports the support base 417 from below, and a processing container. A lamp heater 407 that irradiates light toward the wafer 200 in the 403 and a quartz window 403w that transmits light from the lamp heater 407 are provided. The processing container 403 is connected to a gas supply port 432a for supplying the above-described source gas and a gas supply port 432b as a gas supply unit for supplying the above-described reaction gas. A gas supply system similar to the source gas supply system of the above-described embodiment is connected to the gas supply port 432a. The gas supply port 432b is connected to the remote plasma unit 339b described above and a gas supply system similar to the reaction gas supply system of the above-described embodiment. The gas supply ports 432a and 432b are respectively provided on the side of the end portion of the wafer 200 loaded into the processing chamber 401, that is, at a position not facing the surface of the wafer 200 loaded into the processing chamber 401. The processing container 403 is provided with an exhaust port 431 for exhausting the inside of the processing chamber 401. An exhaust system similar to the exhaust system of the above-described embodiment is connected to the exhaust port 431.
 これらの基板処理装置を用いる場合においても、上述の実施形態や変形例と同様なシーケンス、処理条件にて成膜を行うことができる。 Even when these substrate processing apparatuses are used, film formation can be performed with the same sequence and processing conditions as those of the above-described embodiments and modifications.
 また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。また、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。 Also, the above-described embodiments and modifications can be used in appropriate combination. Further, the processing conditions at this time can be the same processing conditions as in the above-described embodiment, for example.
<本発明の好ましい態様>
 以下、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.
(付記1)
 本発明の一態様によれば、
 基板に対して所定元素およびハロゲン元素を含む原料ガスを供給する工程と、
 前記基板に対してボラジン環骨格を含む第1の硼素含有ガスを供給する工程と、
 前記基板に対してボラジン環骨格非含有の第2の硼素含有ガスを供給する工程と、
 を含むサイクルを、前記第1の硼素含有ガスにおけるボラジン環骨格が保持される条件下で、所定回数行うことで、前記基板上に、ボラジン環骨格を有し、前記所定元素、硼素、および窒素を含む膜を形成する工程を有する半導体装置の製造方法、または、基板処理方法が提供される。
(Appendix 1)
According to one aspect of the invention,
Supplying a source gas containing a predetermined element and a halogen element to the substrate;
Supplying a first boron-containing gas containing a borazine ring skeleton to the substrate;
Supplying a second boron-containing gas not containing a borazine ring skeleton to the substrate;
Is performed a predetermined number of times under the condition that the borazine ring skeleton in the first boron-containing gas is retained, so that the substrate has the borazine ring skeleton, and the predetermined element, boron, and nitrogen A method for manufacturing a semiconductor device or a substrate processing method including a step of forming a film including the substrate is provided.
(付記2)
 付記1に記載の方法であって、好ましくは、
 前記第1の硼素含有ガスを供給する工程と、前記第2の硼素含有ガスを供給する工程と、を非同時に行う。
(Appendix 2)
The method according to appendix 1, preferably,
The step of supplying the first boron-containing gas and the step of supplying the second boron-containing gas are performed non-simultaneously.
(付記3)
 付記1に記載の方法であって、好ましくは、
 前記原料ガスを供給する工程と、前記第1の硼素含有ガスを供給する工程と、前記第2の硼素含有ガスを供給する工程と、を非同時に行う。
(Appendix 3)
The method according to appendix 1, preferably,
The step of supplying the source gas, the step of supplying the first boron-containing gas, and the step of supplying the second boron-containing gas are performed non-simultaneously.
(付記4)
 付記1に記載の方法であって、好ましくは、
 前記第1の硼素含有ガスを供給する工程と、前記第2の硼素含有ガスを供給する工程と、を同時に行う。
(Appendix 4)
The method according to appendix 1, preferably,
The step of supplying the first boron-containing gas and the step of supplying the second boron-containing gas are performed simultaneously.
(付記5)
 付記1に記載の方法であって、好ましくは、
 前記原料ガスを供給する工程と、前記第1の硼素含有ガスを供給する工程と、を非同時に行い、
 前記第1の硼素含有ガスを供給する工程と、前記第2の硼素含有ガスを供給する工程と、を同時に行う。
(Appendix 5)
The method according to appendix 1, preferably,
Performing the step of supplying the source gas and the step of supplying the first boron-containing gas non-simultaneously;
The step of supplying the first boron-containing gas and the step of supplying the second boron-containing gas are performed simultaneously.
(付記6)
 付記1乃至5のいずれかに記載の方法であって、好ましくは、
 前記第1の硼素含有ガスはボラジン化合物を含み、前記第2の硼素含有ガスはボラン化合物を含む。
(Appendix 6)
The method according to any one of appendices 1 to 5, preferably,
The first boron-containing gas contains a borazine compound, and the second boron-containing gas contains a borane compound.
(付記7)
 付記1乃至6のいずれかに記載の方法であって、好ましくは、
 前記第1の硼素含有ガスは有機ボラジン化合物を含み、前記第2の硼素含有ガスは無機ボラン化合物を含む。すなわち、前記第1の硼素含有ガスは有機リガンドを含むボラジン化合物を含み、前記第2の硼素含有ガスは有機リガンド非含有のボラン化合物を含む。有機ボラジン化合物を用いることで、前記膜に炭素を含ませることが可能となる。
(Appendix 7)
The method according to any one of appendices 1 to 6, preferably,
The first boron-containing gas contains an organic borazine compound, and the second boron-containing gas contains an inorganic borane compound. That is, the first boron-containing gas contains a borazine compound containing an organic ligand, and the second boron-containing gas contains a borane compound containing no organic ligand. By using an organic borazine compound, carbon can be contained in the film.
(付記8)
 付記1乃至7のいずれかに記載の方法であって、好ましくは、
 前記第1の硼素含有ガスは有機リガンドを含むボラジン化合物を含み、前記第2の硼素含有ガスはハロゲン元素を含むボラン化合物を含む。すなわち、前記第2の硼素含有ガスは、ハロゲン化ボラン化合物を含む。有機リガンドを含むボラジン化合物を用いることで、前記膜に炭素を含ませることが可能となる。有機リガンドを含むボラジン化合物と、ハロゲン元素を含むボラン化合物と、を用いることで、反応効率を高めることが可能となる。
(Appendix 8)
The method according to any one of appendices 1 to 7, preferably,
The first boron-containing gas contains a borazine compound containing an organic ligand, and the second boron-containing gas contains a borane compound containing a halogen element. That is, the second boron-containing gas contains a halogenated borane compound. By using a borazine compound containing an organic ligand, the film can contain carbon. The reaction efficiency can be increased by using a borazine compound containing an organic ligand and a borane compound containing a halogen element.
(付記9)
 付記1乃至8のいずれかに記載の方法であって、好ましくは、
 前記サイクルは、さらに、前記基板に対して窒素含有ガスを供給する工程を含む。前記窒素含有ガスを供給する工程は、前記各工程と、非同時に行うことができる。
(Appendix 9)
The method according to any one of appendices 1 to 8, preferably,
The cycle further includes supplying a nitrogen-containing gas to the substrate. The step of supplying the nitrogen-containing gas can be performed non-simultaneously with the steps described above.
(付記10)
 付記1乃至9のいずれかに記載の方法であって、好ましくは、
 前記サイクルは、さらに、前記基板に対して炭素含有ガスを供給する工程を含む。前記炭素含有ガスを供給する工程は、前記各工程と、非同時に行うこともできるし、各工程のうち少なくともいずれかの工程と同時に行うこともできる。例えば、前記炭素含有ガスを供給する工程と、前記第1の硼素含有ガスを供給する工程と、を同時に行うことができる。
(Appendix 10)
The method according to any one of appendices 1 to 9, preferably,
The cycle further includes supplying a carbon-containing gas to the substrate. The step of supplying the carbon-containing gas can be performed non-simultaneously with the respective steps, or can be performed simultaneously with at least one of the steps. For example, the step of supplying the carbon-containing gas and the step of supplying the first boron-containing gas can be performed simultaneously.
(付記11)
 本発明の他の態様によれば、
 基板を収容する処理室と、
 前記処理室内の基板に対して所定元素およびハロゲン元素を含む原料ガスを供給する原料ガス供給系と、
 前記処理室内の基板に対してボラジン環骨格を含む第1の硼素含有ガスを供給する第1硼素含有ガス供給系と、
 前記処理室内の基板に対してボラジン環骨格非含有の第2の硼素含有ガスを供給する第2硼素含有ガス供給系と、
 前記処理室内の基板を加熱するヒータと、
 前記処理室内の圧力を調整する圧力調整部と、
 前記処理室内の基板に対して前記原料ガスを供給する処理と、前記処理室内の前記基板に対して前記第1の硼素含有ガスを供給する処理と、前記処理室内の前記基板に対して前記第2の硼素含有ガスを供給する処理と、を含むサイクルを、前記第1の硼素含有ガスにおけるボラジン環骨格が保持される条件下で、所定回数行うことで、前記基板上に、ボラジン環骨格を有し、前記所定元素、硼素、および窒素を含む膜を形成する処理を行わせるように、前記原料ガス供給系、前記第1硼素含有ガス供給系、前記第2硼素含有ガス供給系、前記ヒータ、および前記圧力調整部を制御するよう構成される制御部と、
 を有する基板処理装置が提供される。
(Appendix 11)
According to another aspect of the invention,
A processing chamber for accommodating the substrate;
A source gas supply system for supplying a source gas containing a predetermined element and a halogen element to the substrate in the processing chamber;
A first boron-containing gas supply system for supplying a first boron-containing gas containing a borazine ring skeleton to the substrate in the processing chamber;
A second boron-containing gas supply system that supplies a second boron-containing gas not containing a borazine ring skeleton to the substrate in the processing chamber;
A heater for heating the substrate in the processing chamber;
A pressure adjusting unit for adjusting the pressure in the processing chamber;
A process of supplying the source gas to the substrate in the processing chamber; a process of supplying the first boron-containing gas to the substrate in the processing chamber; and the first of the substrate in the processing chamber. A process including supplying a boron-containing gas of 2 under a condition that the borazine ring skeleton in the first boron-containing gas is maintained a predetermined number of times, whereby the borazine ring skeleton is formed on the substrate. The source gas supply system, the first boron-containing gas supply system, the second boron-containing gas supply system, and the heater so as to perform a process of forming a film containing the predetermined element, boron, and nitrogen. And a controller configured to control the pressure regulator;
A substrate processing apparatus is provided.
(付記12)
 本発明のさらに他の態様によれば、
 基板に対して所定元素およびハロゲン元素を含む原料ガスを供給する手順と、
 前記基板に対してボラジン環骨格を含む第1の硼素含有ガスを供給する手順と、
 前記基板に対してボラジン環骨格非含有の第2の硼素含有ガスを供給する手順と、
 を含むサイクルを、前記第1の硼素含有ガスにおけるボラジン環骨格が保持される条件下で、所定回数行うことで、前記基板上に、ボラジン環骨格を有し、前記所定元素、硼素、および窒素を含む膜を形成する手順をコンピュータに実行させるプログラム、または、該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
(Appendix 12)
According to yet another aspect of the invention,
A procedure for supplying a source gas containing a predetermined element and a halogen element to the substrate;
Supplying a first boron-containing gas containing a borazine ring skeleton to the substrate;
Supplying a second boron-containing gas containing no borazine ring skeleton to the substrate;
Is performed a predetermined number of times under the condition that the borazine ring skeleton in the first boron-containing gas is retained, so that the substrate has the borazine ring skeleton, and the predetermined element, boron, and nitrogen There is provided a program for causing a computer to execute a procedure for forming a film including the above, or a computer-readable recording medium on which the program is recorded.
121  コントローラ(制御部)
200  ウエハ(基板)
201  処理室
202  処理炉
203  反応管
207  ヒータ
231  排気管
232a~232d ガス供給管
121 Controller (control unit)
200 wafer (substrate)
201 processing chamber 202 processing furnace 203 reaction pipe 207 heater 231 exhaust pipe 232a to 232d gas supply pipe

Claims (12)

  1.  基板に対して所定元素およびハロゲン元素を含む原料ガスを供給する工程と、
     前記基板に対してボラジン環骨格を含む第1の硼素含有ガスを供給する工程と、
     前記基板に対してボラジン環骨格非含有の第2の硼素含有ガスを供給する工程と、
     を含むサイクルを、前記第1の硼素含有ガスにおけるボラジン環骨格が保持される条件下で、所定回数行うことで、前記基板上に、ボラジン環骨格を有し、前記所定元素、硼素、および窒素を含む膜を形成する工程を有する半導体装置の製造方法。
    Supplying a source gas containing a predetermined element and a halogen element to the substrate;
    Supplying a first boron-containing gas containing a borazine ring skeleton to the substrate;
    Supplying a second boron-containing gas not containing a borazine ring skeleton to the substrate;
    Is performed a predetermined number of times under the condition that the borazine ring skeleton in the first boron-containing gas is retained, so that the substrate has the borazine ring skeleton, and the predetermined element, boron, and nitrogen A method for manufacturing a semiconductor device, comprising the step of forming a film including the same.
  2.  前記第1の硼素含有ガスを供給する工程と、前記第2の硼素含有ガスを供給する工程と、を非同時に行う請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the step of supplying the first boron-containing gas and the step of supplying the second boron-containing gas are performed simultaneously.
  3.  前記原料ガスを供給する工程と、前記第1の硼素含有ガスを供給する工程と、前記第2の硼素含有ガスを供給する工程と、を非同時に行う請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the step of supplying the source gas, the step of supplying the first boron-containing gas, and the step of supplying the second boron-containing gas are performed simultaneously. .
  4.  前記第1の硼素含有ガスを供給する工程と、前記第2の硼素含有ガスを供給する工程と、を同時に行う請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the step of supplying the first boron-containing gas and the step of supplying the second boron-containing gas are performed simultaneously.
  5.  前記原料ガスを供給する工程と、前記第1の硼素含有ガスを供給する工程と、を非同時に行い、
     前記第1の硼素含有ガスを供給する工程と、前記第2の硼素含有ガスを供給する工程と、を同時に行う請求項1に記載の半導体装置の製造方法。
    Performing the step of supplying the source gas and the step of supplying the first boron-containing gas non-simultaneously;
    The method for manufacturing a semiconductor device according to claim 1, wherein the step of supplying the first boron-containing gas and the step of supplying the second boron-containing gas are performed simultaneously.
  6.  前記第1の硼素含有ガスはボラジン化合物を含み、前記第2の硼素含有ガスはボラン化合物を含む請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first boron-containing gas contains a borazine compound, and the second boron-containing gas contains a borane compound.
  7.  前記第1の硼素含有ガスは有機ボラジン化合物を含み、前記第2の硼素含有ガスは無機ボラン化合物を含む請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first boron-containing gas contains an organic borazine compound, and the second boron-containing gas contains an inorganic borane compound.
  8.  前記第1の硼素含有ガスは有機リガンドを含むボラジン化合物を含み、前記第2の硼素含有ガスはハロゲン元素を含むボラン化合物を含む請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first boron-containing gas contains a borazine compound containing an organic ligand, and the second boron-containing gas contains a borane compound containing a halogen element.
  9.  前記サイクルは、さらに、前記基板に対して窒素含有ガスを供給する工程を含む請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the cycle further includes a step of supplying a nitrogen-containing gas to the substrate.
  10.  前記サイクルは、さらに、前記基板に対して炭素含有ガスを供給する工程を含む請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the cycle further includes a step of supplying a carbon-containing gas to the substrate.
  11.  基板を収容する処理室と、
     前記処理室内の基板に対して所定元素およびハロゲン元素を含む原料ガスを供給する原料ガス供給系と、
     前記処理室内の基板に対してボラジン環骨格を含む第1の硼素含有ガスを供給する第1硼素含有ガス供給系と、
     前記処理室内の基板に対してボラジン環骨格非含有の第2の硼素含有ガスを供給する第2硼素含有ガス供給系と、
     前記処理室内の基板を加熱するヒータと、
     前記処理室内の圧力を調整する圧力調整部と、
     前記処理室内の基板に対して前記原料ガスを供給する処理と、前記処理室内の前記基板に対して前記第1の硼素含有ガスを供給する処理と、前記処理室内の前記基板に対して前記第2の硼素含有ガスを供給する処理と、を含むサイクルを、前記第1の硼素含有ガスにおけるボラジン環骨格が保持される条件下で、所定回数行うことで、前記基板上に、ボラジン環骨格を有し、前記所定元素、硼素、および窒素を含む膜を形成する処理を行わせるように、前記原料ガス供給系、前記第1硼素含有ガス供給系、前記第2硼素含有ガス供給系、前記ヒータ、および前記圧力調整部を制御するよう構成される制御部と、
     を有する基板処理装置。
    A processing chamber for accommodating the substrate;
    A source gas supply system for supplying a source gas containing a predetermined element and a halogen element to the substrate in the processing chamber;
    A first boron-containing gas supply system for supplying a first boron-containing gas containing a borazine ring skeleton to the substrate in the processing chamber;
    A second boron-containing gas supply system that supplies a second boron-containing gas not containing a borazine ring skeleton to the substrate in the processing chamber;
    A heater for heating the substrate in the processing chamber;
    A pressure adjusting unit for adjusting the pressure in the processing chamber;
    A process of supplying the source gas to the substrate in the processing chamber; a process of supplying the first boron-containing gas to the substrate in the processing chamber; and the first of the substrate in the processing chamber. And a step of supplying a boron-containing gas in a predetermined number of times under the condition that the borazine ring skeleton in the first boron-containing gas is retained, thereby forming a borazine ring skeleton on the substrate. The source gas supply system, the first boron-containing gas supply system, the second boron-containing gas supply system, and the heater so as to perform a process of forming a film containing the predetermined element, boron, and nitrogen. And a controller configured to control the pressure regulator;
    A substrate processing apparatus.
  12.  基板に対して所定元素およびハロゲン元素を含む原料ガスを供給する手順と、
     前記基板に対してボラジン環骨格を含む第1の硼素含有ガスを供給する手順と、
     前記基板に対してボラジン環骨格非含有の第2の硼素含有ガスを供給する手順と、
     を含むサイクルを、前記第1の硼素含有ガスにおけるボラジン環骨格が保持される条件下で、所定回数行うことで、前記基板上に、ボラジン環骨格を有し、前記所定元素、硼素、および窒素を含む膜を形成する手順をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A procedure for supplying a source gas containing a predetermined element and a halogen element to the substrate;
    Supplying a first boron-containing gas containing a borazine ring skeleton to the substrate;
    Supplying a second boron-containing gas containing no borazine ring skeleton to the substrate;
    Is performed a predetermined number of times under the condition that the borazine ring skeleton in the first boron-containing gas is retained, so that the substrate has the borazine ring skeleton, and the predetermined element, boron, and nitrogen A computer-readable recording medium storing a program for causing a computer to execute a procedure for forming a film including
PCT/JP2014/074314 2014-09-12 2014-09-12 Method for manufacturing semiconductor device, substrate processing apparatus and recording medium WO2016038744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074314 WO2016038744A1 (en) 2014-09-12 2014-09-12 Method for manufacturing semiconductor device, substrate processing apparatus and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074314 WO2016038744A1 (en) 2014-09-12 2014-09-12 Method for manufacturing semiconductor device, substrate processing apparatus and recording medium

Publications (1)

Publication Number Publication Date
WO2016038744A1 true WO2016038744A1 (en) 2016-03-17

Family

ID=55458528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074314 WO2016038744A1 (en) 2014-09-12 2014-09-12 Method for manufacturing semiconductor device, substrate processing apparatus and recording medium

Country Status (1)

Country Link
WO (1) WO2016038744A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462472A (en) * 1987-08-31 1989-03-08 Hitachi Ltd Formation of boron nitride film
JPH0582474B2 (en) * 1985-01-28 1993-11-19 Toshiba Tungaloy Co Ltd
JP2920203B2 (en) * 1996-06-25 1999-07-19 科学技術庁無機材質研究所長 Method for producing sp3-bonded boron nitride
JP2011171730A (en) * 2010-02-04 2011-09-01 Air Products & Chemicals Inc Method for preparing silicon-containing film
US20120248617A1 (en) * 2011-04-01 2012-10-04 Applied Materials, Inc. MULTILAYERED LOW k CAP WITH CONFORMAL GAP FILL AND UV STABLE COMPRESSIVE STRESS PROPERTIES
WO2013027549A1 (en) * 2011-08-25 2013-02-28 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and recording medium
JP2014135475A (en) * 2012-12-13 2014-07-24 Hitachi Kokusai Electric Inc Semiconductor device manufacturing method, substrate processing device and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582474B2 (en) * 1985-01-28 1993-11-19 Toshiba Tungaloy Co Ltd
JPS6462472A (en) * 1987-08-31 1989-03-08 Hitachi Ltd Formation of boron nitride film
JP2920203B2 (en) * 1996-06-25 1999-07-19 科学技術庁無機材質研究所長 Method for producing sp3-bonded boron nitride
JP2011171730A (en) * 2010-02-04 2011-09-01 Air Products & Chemicals Inc Method for preparing silicon-containing film
US20120248617A1 (en) * 2011-04-01 2012-10-04 Applied Materials, Inc. MULTILAYERED LOW k CAP WITH CONFORMAL GAP FILL AND UV STABLE COMPRESSIVE STRESS PROPERTIES
WO2013027549A1 (en) * 2011-08-25 2013-02-28 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and recording medium
JP2014135475A (en) * 2012-12-13 2014-07-24 Hitachi Kokusai Electric Inc Semiconductor device manufacturing method, substrate processing device and program

Similar Documents

Publication Publication Date Title
KR101977522B1 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JP6247095B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP5852147B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium
JP5886381B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium
JP5852151B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium
JP5883049B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium
JP6192147B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6086942B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6086934B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6490374B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP5855691B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium
JP5886366B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium
JP6529348B2 (en) Semiconductor device manufacturing method, substrate processing apparatus and program
JP6254848B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6339236B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6224258B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2017056155A1 (en) Semiconductor device manufacturing method, substrate processing device, and recording medium
WO2016038744A1 (en) Method for manufacturing semiconductor device, substrate processing apparatus and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14901594

Country of ref document: EP

Kind code of ref document: A1