WO2016013573A1 - Method for producing rubber composition, rubber composition, compound, and method for improving silica yield rate of rubber composition - Google Patents

Method for producing rubber composition, rubber composition, compound, and method for improving silica yield rate of rubber composition Download PDF

Info

Publication number
WO2016013573A1
WO2016013573A1 PCT/JP2015/070819 JP2015070819W WO2016013573A1 WO 2016013573 A1 WO2016013573 A1 WO 2016013573A1 JP 2015070819 W JP2015070819 W JP 2015070819W WO 2016013573 A1 WO2016013573 A1 WO 2016013573A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
weight
rubber
rubber composition
coagulant
Prior art date
Application number
PCT/JP2015/070819
Other languages
French (fr)
Japanese (ja)
Inventor
西岡 利恭
一 富田
皇雄 三崎
亮太 上池
Original Assignee
日本エイアンドエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エイアンドエル株式会社 filed Critical 日本エイアンドエル株式会社
Publication of WO2016013573A1 publication Critical patent/WO2016013573A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a method for producing a rubber composition having a high silica yield ratio.
  • the present invention also relates to a rubber composition obtained by the production method, a composition containing the rubber composition, and a method for improving the yield ratio of silica in the rubber composition.
  • a rubber composition (hereinafter referred to as carbon dry masterbatch and abbreviated as C-DMB) in which solid rubber and carbon black particles are kneaded has been used for a long time. It has been used in various fields. Further, a rubber composition obtained by kneading solid rubber and silica particles (hereinafter referred to as silica dry masterbatch and abbreviated as Si-DMB) has long been widely known as a material having performance similar to that of C-DMB. It was.
  • Si-DMB As a rubber composition with little loss, it has come to be widely used for tire tread rubber and power transmission rubber products that undergo repeated deformation.
  • Si-DMB since silica particles have a lower chemical affinity for solid rubber than carbon black particles, Si-DMB requires a great amount of time and power energy in the process of uniformly dispersing silica particles in the solid rubber, that is, the kneading process. There has been a strong need for a significant reduction.
  • silica wet masterbatch As one means, instead of solid rubber, water-dispersible rubber latex such as synthetic rubber latex or natural rubber latex and water-dispersed slurry of silica particles are uniformly mixed in a liquid state in advance, and then acid or inorganic metal is mixed.
  • a method has been proposed in which a rubber composition is produced by coagulating with a salt or the like and sequentially undergoing precipitation, dehydration, washing, and drying steps.
  • the rubber composition produced by this method (hereinafter referred to as silica wet masterbatch and abbreviated as Si-WMB) is a technical concept well known from many prior arts since the 1970s.
  • Patent Documents 1 to 12 disclose multifaceted technologies for Si-WMB, such as the properties of silica particles, the method of stirring an aqueous dispersion slurry of silica particles, the use of a silane coupling agent, and the type and usage of a salting-out agent. Information is disclosed.
  • the silica particle yield ratio in Si-WMB (ratio of the solid content weight of the silica particles remaining in the Si-WMB to the solid content weight of the blended silica particles is probably because the hydrophilicity of the silica particle surface is very strong. ) Is very low.
  • Patent Document 11 describes that only a yield ratio as low as about 40% can be obtained unless the silica particles are previously treated with a silane coupling agent.
  • silane coupling agents are said to be expensive. For this reason, it is not clear, but to the best of our knowledge, Si-WMB is currently not mass-produced on a commercial basis. .
  • An object of the present invention is to provide a rubber composition having a high silica yield ratio and a method for producing the same. Moreover, the objective of this invention is providing the compound containing the said rubber composition. Furthermore, the objective of this invention is providing the yield ratio improvement method of the silica in a rubber composition.
  • the present invention relates to a method for producing a rubber composition comprising a rubber latex (A) and silica particles (B), wherein the rubber latex (A) and the silica particles (B) are contacted with a coagulant (D) and co-coagulated.
  • a coagulant D
  • co-coagulated a part or all of the water-soluble polymer compound (C)
  • the amount of silica particles (B) used is 20 to 200 with respect to 100 parts by weight (converted to solid content) of the rubber latex (A).
  • Parts by weight in terms of solid content
  • the amount of water-soluble polymer compound (C) used is 0.05 to 10 parts by weight (in terms of solids)
  • the amount of coagulant (D) used is 10 to 50 parts by weight (in terms of solids)
  • the water-soluble polymer compound (C) and the coagulant (D) are mixed in advance before bringing the rubber latex (A) and the silica particles (B) into contact with the coagulant (D).
  • the rubber latex (A) and the silica particles (B) are preferably contacted with the coagulant (D) in the presence of the conductive polymer compound (C).
  • the rubber latex (A) preferably contains an emulsion polymerization conjugated diene rubber latex. It is preferable that the water-soluble polymer compound (C) contains a polyalkylene oxide.
  • the present invention also provides a rubber composition that can be obtained by the above production method, and a compound containing the rubber composition.
  • the present invention is a method for improving the yield ratio of silica in a rubber composition containing a co-coagulated product of rubber latex (A) and silica particles (B), comprising rubber latex (A) and silica particles (B )
  • the raw material system to be co-coagulated has a total amount of rubber latex (A), a total amount of silica particles (B) and a coagulant.
  • a part or all of the water-soluble polymer compound (C) is charged, and 100 parts by weight of rubber latex (A) (in terms of solid content),
  • the amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solids)
  • the amount of water-soluble polymer compound (C) is 0.05 to 10 parts by weight (in terms of solids)
  • a coagulant ( D) is used in an amount of 10 to 50 parts by weight ( And solid content conversion), it provides a yield ratio improving method of the silica in the rubber composition.
  • the present invention it is possible to provide a method for producing a rubber composition capable of obtaining a rubber composition having a high silica yield ratio. Moreover, according to this invention, the rubber composition with a high yield ratio of a silica, and the compound containing the said rubber composition can be provided. Furthermore, according to the present invention, a method for improving the yield ratio of silica in a rubber composition can be provided.
  • the method for producing a rubber composition is a method for producing a rubber composition containing a rubber latex (A) and silica particles (B), wherein the rubber latex (A) and the silica particles (B) are coagulant.
  • the water-soluble polymer compound (C) is added until the total amount of the rubber latex (A) and the silica particles (B) is brought into contact with the coagulant (D).
  • the amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solid content) and 100 parts by weight (in terms of solid content) of rubber latex (A).
  • the rubber latex (A) may be an emulsion in which rubber polymer fine particles are stably dispersed in a solvent, and may further contain an emulsifier as necessary.
  • the rubber latex (A) include emulsion polymerization conjugated diene rubber latex, natural rubber latex and modified latex thereof. Further, a solid rubber such as solution polymerized styrene-butadiene copolymer rubber, solution polymerized polybutadiene rubber, solution polymerized acrylonitrile-butadiene copolymer rubber is dissolved in a good solvent for each rubber, and then it is used with an emulsifier or a surfactant.
  • the rubber latex etc. which were made into the forced emulsion in water are also mentioned, These can be used 1 type (s) or 2 or more types.
  • the rubber latex (A) preferably contains an emulsion polymerization conjugated diene rubber latex.
  • emulsion polymerization conjugated diene rubber latex known polybutadiene emulsion polymer latex, styrene-butadiene emulsion copolymer latex, acrylonitrile-butadiene emulsion copolymer latex, styrene-butadiene-vinylpyridine emulsion copolymer latex. 1 type, or 2 or more types can be used.
  • the emulsion polymerization conjugated diene rubber latex is particularly preferably a styrene-butadiene emulsion copolymer latex.
  • emulsion copolymer latex when obtaining an emulsion copolymer latex, it is possible to copolymerize a known copolymerizable monomer having a functional group in addition to styrene, butadiene, acrylonitrile, and vinylpyridine.
  • monomers include unsaturated carboxylic acid monomers such as acrylic acid, methacrylic acid, itaconic acid, and maleic acid, and unsaturated epoxy monomers such as anhydrides, glycidyl methacrylate, and allyl glycidyl ether.
  • Body, hydroxyl-containing unsaturated monomers such as hydroxyethyl acrylate, hydroxyethyl methacrylate, etc., and one or more of each can be used.
  • the average particle size of the rubber-based polymer contained in the rubber latex (A) by the photon correlation method is preferably 10 nm to 200 nm, and more preferably 20 nm to 100 nm.
  • the average particle diameter of rubber latex by photon correlation method should be adjusted by appropriately adjusting the various emulsifiers used in the polymerization of rubber latex, the type and amount of polymerization initiator used, the method of addition, the ratio of polymerization water used, etc. Is possible.
  • the silica particles (B) may be silica prepared by a wet method.
  • silica particles (B) an aqueous solution of sodium silicate, that is, a wet silica aqueous dispersion slurry produced by depositing silica particles by adding an acid to water glass or blowing carbon dioxide gas, a wet silica Silica water dispersion slurry in which silica powder obtained by drying from water dispersion slurry is dispersed in water again, and silica water dispersion slurry in which dry silica powder produced by a dry method is dispersed in water are mentioned. 1 type (s) or 2 or more types can be used.
  • the water-soluble polymer compound (C) is a compound having a viscosity average molecular weight of 100,000 to 20 million.
  • the viscosity average molecular weight of the water-soluble polymer compound (C) is more preferably 500,000 to 15 million.
  • Examples of the water-soluble polymer compound (C) include polyalkylene oxide, polyacrylamide, acrylamide-unsaturated carboxylate copolymer, alkali-soluble acrylic emulsion, and modified products thereof. Or two or more of them can be used.
  • the water-soluble polymer compound (C) is preferably a polyalkylene oxide, polyacrylamide, or an acrylamide-unsaturated carboxylate copolymer.
  • the water-soluble polymer compound (C) particularly preferably contains a polyalkylene oxide.
  • the water-soluble polymer compound (C) is more preferably polyethylene oxide.
  • acids such as mineral acid and acetic acid, alkali metals, alkaline earth metals, aluminum sulfates, chlorides and hydroxides can be used.
  • acids such as mineral acid and acetic acid, alkali metals, alkaline earth metals, aluminum sulfates, chlorides and hydroxides
  • sodium chloride, calcium chloride, and aluminum sulfate are preferable, and sodium chloride is more preferable.
  • rubber latex (A), silica particles (B), water-soluble polymer compound (C), and coagulant (D) are used, and 100 parts by weight (solid content) of rubber latex (A).
  • the amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solid content), and the amount of water-soluble polymer compound (C) used is 0.05 to 10 parts by weight (in terms of solids).
  • the amount of the coagulant (D) used must be 10 to 50 parts by weight (in terms of solid content).
  • the amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solids) and 30 to 190 parts by weight (in terms of solids) with respect to 100 parts by weight (in terms of solids) of rubber latex (A). It is preferably 50 to 180 parts by weight (in terms of solid content). If the silica particle (B) is less than 20 parts by weight (in terms of solid content), the substantial silica content is small, and if it exceeds 200 parts by weight (in terms of solid content), the yield of silica particles is poor.
  • the amount of the water-soluble polymer compound (C) used is 0.05 to 10 parts by weight (in terms of solid content) with respect to 100 parts by weight (in terms of solid content) of the rubber latex (A). It is preferably part by weight (in terms of solid content), more preferably 0.1 to 5 parts by weight (in terms of solid content). If the water-soluble polymer compound (C) is less than 0.05 parts by weight (in terms of solid content), the yield rate of silica particles is inferior, and even if it exceeds 10 parts by weight (in terms of solid content), the improvement in performance is small and added. It is difficult to obtain an effect commensurate with the amount.
  • the amount of the coagulant (D) used is 10 to 50 parts by weight (in terms of solids) and 100 to 45 parts by weight (in terms of solids) with respect to 100 parts by weight (in terms of solids) of the rubber latex (A). It is preferably 10 to 40 parts by weight (in terms of solid content), and more preferably. If the coagulant (D) is less than 10 parts by weight (in terms of solid content), the yield rate of silica particles is poor, and even if it exceeds 50 parts by weight (in terms of solid content), the improvement in performance is small and the effect commensurate with the amount added. Is difficult to obtain.
  • the water-soluble high concentration is added at the same time or before the end of charging the total amount of rubber latex (A), the total amount of silica particles (B) and the total amount of coagulant (D) into the raw material system to be co-coagulated. It is important to add part or all of the molecular compound (C).
  • the water-soluble polymer compound (at the same time or before the end of contacting the whole amount of the rubber latex (A), the whole amount of the silica particles (B) and the whole amount of the coagulant (D) ( Part or all of C) is brought into contact with at least one of rubber latex (A), silica particles (B) and coagulant (D).
  • the co-coagulation step when the rubber latex (A) and the silica particles (B) are brought into contact with the coagulant (D) and co-coagulated, the total amount of the rubber latex (A) and the silica particles (B) is coagulated. It can be said that the water-soluble polymer compound (C) is added before the contact with (D).
  • the timing of putting in is important. According to the method for producing the rubber composition, it is not necessary to purify during the co-coagulation step, and a rubber composition having an excellent silica yield can be obtained in a short step.
  • Specific embodiments of adding rubber latex (A), silica particles (B), water-soluble polymer compound (C) and coagulant (D) include, for example, (1) When the rubber latex (A) and the silica particles (B) are charged, then the water-soluble polymer compound (C) is charged, and finally the coagulant (D) is charged, (2) When the rubber latex (A) and the silica particles (B) are charged and then the water-soluble polymer compound (C) is started, then the coagulant (D) is charged through another route. (3) When the rubber latex (A) and the water-soluble polymer compound (C) are charged, the silica particles (B) are charged, and finally the coagulant (D) is charged.
  • the rubber latex (A) and the silica particles (B) are brought into contact with the coagulant (D) and co-coagulated, the rubber latex (A) and the silica particles (B It is necessary to add the water-soluble polymer compound (C) until the total amount of) is brought into contact with the coagulant (D).
  • the co-coagulation step is preferably performed in water. By performing the co-coagulation step in water, the water-soluble polymer compound (C) can be dissolved in water and more uniformly mixed with other components.
  • the pH is generally 4 to 10 conditions, but it is preferable to co-coagulate at pH 5 to 9 from the viewpoint of the yield rate of silica particles, More preferably, it is co-coagulated at pH 6-8.
  • the temperature is generally 0 to 99 ° C., but from the viewpoint of the yield rate of silica particles, co-coagulation is preferably performed at 5 to 80 ° C., preferably at 10 to 60 ° C. More preferably, it is co-solidified.
  • mixing can be performed using a known stirrer, mixer or the like.
  • the rubber composition of the present invention can be produced by co-coagulation followed by washing with water, dehydration, drying, etc., but these steps are not particularly limited and are generally used. Can be used. Moreover, it is preferable not to perform washing
  • the rubber composition of the present invention is obtained by the method for producing a rubber composition of the present invention.
  • the rubber composition of the present invention can contain known additives.
  • Known additives include vulcanizing agents, vulcanization accelerators, vulcanization acceleration aids, fillers, silane coupling agents, plasticizers, anti-aging agents, etc., and these may be used alone or as a mixture of two or more. Can be used as
  • vulcanizing agent examples include organic sulfur-containing compounds such as sulfur, trimethylthiourea and N, N′-diethylthiourea.
  • Vulcanization accelerators include, for example, the trade name “Soccinol DM” (MBTS) manufactured by Sumitomo Chemical Co., Ltd., “Soccinol PX” (ZnEPDC) manufactured by the Company, “Soccinol PZ” (ZnMDC) manufactured by the Company, There are “Soccinol EZ” (ZnEDC), “Soccinol BZ” (ZnBDC), “Soccinol MZ” (ZnMBT), “Soccinol TT” (TMTD), etc.
  • Soccinol DM MBTS
  • Soccinol PX ZnEPDC
  • ZnMDC Soccinol PZ
  • ZnMDC Soccinol PZ
  • Soccinol EZ ZnEDC
  • Soccinol BZ ZnBDC
  • Soccinol MZ ZnMBT
  • TMTD Soccinol TT
  • vulcanization acceleration aid examples include fatty acids such as stearic acid, oleic acid, and cottonseed fatty acid, and metal oxides such as zinc white.
  • Examples of the filler include carbon black, kaolin clay, hard clay, calcium carbonate, barium sulfate, and diatomaceous earth.
  • Silane coupling agents include, for example, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxy-ethoxy) silane, ⁇ - (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, ⁇ -glycidoxypropyltri Methoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ - Aminopropyltrimethoxysilane, bis- (3- (triethoxysilyl) propyl) tetrasulfide, bis- (3- (triethoxysilyl) propyl) disulfide, ⁇ -trimethoxysilylprop
  • plasticizer examples include paraffinic oil, ester oil, and olefin oil.
  • Anti-aging agents include, for example, imidazoles such as 2-mercaptobenzimidazole, such as phenyl- ⁇ -naphthylamine, N, N′-di- ⁇ -naphthyl-p-phenylenediamine, N-phenyl-N′-isopropyl- Examples include amines such as p-phenylenediamine, and phenols such as di-tert-butyl-p-cresol and styrenated phenol.
  • imidazoles such as 2-mercaptobenzimidazole, such as phenyl- ⁇ -naphthylamine, N, N′-di- ⁇ -naphthyl-p-phenylenediamine, N-phenyl-N′-isopropyl- Examples include amines such as p-phenylenediamine, and phenols such as di-tert-butyl-p-cresol and styrenated phenol
  • a compound obtained by further adding an additional rubber component to the rubber composition of the present invention is suitable for producing a tread rubber. That is, the present invention can also provide a tread rubber by appropriately molding a compound containing the above rubber composition and an additional rubber component (a compound for tread rubber).
  • the additional rubber component may be the same as or different from the rubber component derived from the rubber latex.
  • the additional rubber component is not particularly limited.
  • natural rubber polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization random styrene-butadiene copolymer rubber, high transstyrene-butadiene copolymer rubber, low Cis polybutadiene rubber, high cis polybutadiene rubber, high trans polybutadiene rubber, styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, solution polymerization random styrene-butadiene-isoprene copolymer rubber, emulsion polymerization styrene-butadiene-isoprene copolymer Various diene rubbers such as block copolymers such as rubber, emulsion polymer
  • an additional filler may be added to the tread rubber compound.
  • the additional filler include carbon black.
  • the tread rubber compound includes various silane coupling agents, softeners, plasticizers, anti-aging agents, zinc white, stearic acid, vulcanizing agents, vulcanization accelerators, and the like that are commonly used in tread rubber compounds. Additives can also be blended.
  • the compound for tread rubber of the present invention is obtained by kneading according to a conventional method using a commonly used Banbury mixer, kneader, roll, or other mixer.
  • yield number of silica particles in the rubber composition silica particle yield ratio
  • the manufactured rubber composition is put in an empty platinum crucible and weighed, and then the platinum crucible is put in an electric furnace set at 800 ° C. and burned for 10 hours. After 10 hours, the platinum crucible is removed from the electric furnace and weighed again.
  • the difference between the weight before combustion and the weight after combustion is the yield of latex in the rubber composition, and the weight after combustion is the yield of silica particles. From the following formula, the silica particles with respect to 100 parts by weight of the latex yield The number of yield parts (in terms of solid content) was calculated.
  • Yield part (parts by weight) of silica particles (silica yield (g) / latex yield (g)) ⁇ 100
  • the yield ratio of the silica particles was calculated from the following formula from the calculated number of parts of the silica particles (converted to solids) and the number of parts of the silica particles (converted to solids) with respect to 100 parts by weight of the rubber latex.
  • Silica particle yield ratio (Yield part of silica particles (parts by weight) / Number of blended parts of silica particles (parts by weight))
  • Silica particles (B) Prepare 79 parts by weight of pure water in a stainless steel container equipped with a stirrer, add 21 parts by weight (containing about 5% by weight of water) of “Nipsil VN3” manufactured by Tosoh Corporation while stirring, and add silica water dispersion slurry (solid content) The concentration was 20.0% by weight).
  • Water-soluble polymer compound (C) 1 part by weight of “PEO-8” manufactured by Sumitomo Seika Co., Ltd. was dissolved in 99 parts by weight of water to obtain a 1% by weight aqueous polyethylene oxide solution.
  • D-1 10% by weight aqueous sodium chloride solution in which 10 parts by weight of sodium chloride was dissolved in 90 parts by weight of pure water.
  • D-2 1% by weight calcium chloride aqueous solution in which 1 part by weight of calcium chloride is dissolved in 99 parts by weight of pure water.
  • Example 5 In the ratio shown in Table 1, the coagulant (D) and the water-soluble polymer compound (C) were mixed with an aqueous dispersion obtained by mixing the rubber latex (A), the silica particles (B), and the anti-aging emulsion water dispersion. The mixed aqueous solution was added, stirred for 15 minutes, and co-coagulated to obtain a rubber composition. Thereafter, it was washed and dried in the same manner as in Examples 1 to 4.
  • Comparative Example 4 An aqueous dispersion obtained by mixing rubber latex (A), silica particles (B) and an anti-aging emulsion emulsified aqueous dispersion at the ratio shown in Table 1 was added to the coagulant (D) and stirred for 15 minutes. Thereafter, the water-soluble polymer compound (C) was added, stirred for 15 minutes, and co-coagulated to obtain a rubber composition. Thereafter, it was washed and dried in the same manner as in Examples 1 to 4.
  • Examples 1 to 5 using the method for producing a rubber composition of the present invention a rubber composition having a high silica yield ratio could be obtained.
  • Comparative Examples 1 to 3 did not contain the water-soluble polymer compound (C) and could not obtain a rubber composition having a high silica yield ratio.
  • the water-soluble polymer compound (C) is added to the aqueous dispersion obtained by mixing the rubber latex (A), the silica particles (B), and the coagulant (D), and silica.
  • a rubber composition with a high yield ratio could not be obtained.
  • the rubber composition having a high silica yield ratio is obtained by the method for producing a rubber composition of the present invention, the workability is greatly improved in the production process of the rubber composition that requires compounding of silica particles. It can also contribute to the improvement and drastic reduction of the required power energy in the kneading process. That is, it is possible to provide a practical production technique of a rubber composition that is excellent in terms of environment and energy saving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided is a method for producing a rubber composition that includes a rubber latex (A) and silica particles (B), said method including a co-coagulation step in which the rubber latex (A) and silica particles (B) are brought into contact with a coagulant (D) to cause co-coagulation, wherein, at the same time as or prior to the time when the total quantity of the rubber latex (A), the total quantity of the silica particles (B), and the total quantity of the coagulant (D) finish being inserted into a starting material system that is made to co-coagulate, a portion or the total quantity of a water-soluble polymer compound (C) is inserted. Therein, in relation to 100 parts by weight (in terms of solid content) of the rubber latex (A), the amount of silica particles (B) used is 20-200 parts by weight (in terms of solid content), the amount of the water-soluble polymer compound (C) used is 0.05-10 parts by weight (in terms of solid content), and the amount of the coagulant (D) used is 10-50 parts by weight (in terms of solid content).

Description

ゴム組成物の製造方法、ゴム組成物、配合物、及び、ゴム組成物におけるシリカの歩留り比率向上方法Method for producing rubber composition, rubber composition, compound, and method for improving silica yield ratio in rubber composition
 本発明は、シリカの歩留り比率が高いゴム組成物の製造方法に関する。また、本発明は、該製造方法により得られるゴム組成物、該ゴム組成物を含有する配合物、及び、該ゴム組成物におけるシリカの歩留り比率向上方法に関する。 The present invention relates to a method for producing a rubber composition having a high silica yield ratio. The present invention also relates to a rubber composition obtained by the production method, a composition containing the rubber composition, and a method for improving the yield ratio of silica in the rubber composition.
 各種ゴム材料の強度や耐摩耗性を向上させる目的で、固形ゴムとカーボンブラック粒子を混練りしたゴム組成物(以下、カーボンドライマスターバッチと呼称し、C-DMBと略称する。)が古くから様々な分野で利用されてきた。また、固形ゴムとシリカ粒子を混練りしたゴム組成物(以下、シリカドライマスターバッチと呼称し、Si-DMBと略称する。)も古くからC-DMBと類似の性能を有する材料として広く知られていた。 For the purpose of improving the strength and wear resistance of various rubber materials, a rubber composition (hereinafter referred to as carbon dry masterbatch and abbreviated as C-DMB) in which solid rubber and carbon black particles are kneaded has been used for a long time. It has been used in various fields. Further, a rubber composition obtained by kneading solid rubber and silica particles (hereinafter referred to as silica dry masterbatch and abbreviated as Si-DMB) has long been widely known as a material having performance similar to that of C-DMB. It was.
 1990年代前半にタイヤメーカーによって、Si-DMBをタイヤトレッドゴムに利用した場合、エネルギーロスが少なく、燃費を節約できる効果を有していることが見出され、それ以来、Si-DMBは、エネルギーロスの少ないゴム組成物として、繰り返し変形を受けるタイヤトレッドゴムや動力伝動系のゴム製品などに広く利用されるようになった。 In the early 1990s, tire manufacturers found that when Si-DMB was used for tire tread rubber, there was less energy loss and fuel savings. Since then, Si-DMB has been As a rubber composition with little loss, it has come to be widely used for tire tread rubber and power transmission rubber products that undergo repeated deformation.
 しかしながら、シリカ粒子はカーボンブラック粒子に比べて固形ゴムに対する化学的親和性が低いため、Si-DMBはシリカ粒子を固形ゴム中に均一に分散させる工程、すなわち混練工程で多大な時間と動力エネルギーを必要とされ、その大幅な低減が強く望まれてきた。 However, since silica particles have a lower chemical affinity for solid rubber than carbon black particles, Si-DMB requires a great amount of time and power energy in the process of uniformly dispersing silica particles in the solid rubber, that is, the kneading process. There has been a strong need for a significant reduction.
 そのひとつの手段として、固形ゴムの替わりに、合成ゴムラテックスや天然ゴムラテックス等の水分散性ゴムラテックスとシリカ粒子の水分散スラリーとをあらかじめ液状状態で均一に混合させ、その後、酸や無機金属塩などで凝固し、沈殿、脱水、洗浄、乾燥工程を順次経て、ゴム組成物を製造させる方法が提案されている。この方法により製造されたゴム組成物(以下、シリカウエットマスターバッチと呼称し、Si-WMBと略称する)は、1970年代以降、多くの先行技術により良く知られた技術概念である。 As one means, instead of solid rubber, water-dispersible rubber latex such as synthetic rubber latex or natural rubber latex and water-dispersed slurry of silica particles are uniformly mixed in a liquid state in advance, and then acid or inorganic metal is mixed. A method has been proposed in which a rubber composition is produced by coagulating with a salt or the like and sequentially undergoing precipitation, dehydration, washing, and drying steps. The rubber composition produced by this method (hereinafter referred to as silica wet masterbatch and abbreviated as Si-WMB) is a technical concept well known from many prior arts since the 1970s.
 例えば、特許文献1~12には、シリカ粒子の性状、シリカ粒子の水分散スラリーの撹拌方法、シランカップリング剤の利用、塩析剤の種類や使用方法など、Si-WMBについて多面的な技術情報が開示されている。 For example, Patent Documents 1 to 12 disclose multifaceted technologies for Si-WMB, such as the properties of silica particles, the method of stirring an aqueous dispersion slurry of silica particles, the use of a silane coupling agent, and the type and usage of a salting-out agent. Information is disclosed.
 しかるに、シリカ粒子表面の親水性が非常に強いためか、Si-WMBにおけるシリカ粒子の歩留まり比率(配合したシリカ粒子の固形分重量に対するSi-WMB中に留まっているシリカ粒子の固形分重量の割合)は非常に低い。特に、特許文献11には、シリカ粒子をあらかじめシランカップリング剤で処理しておかないと、40%程度の低い歩留まり比率しか得られないとの記述がある。一般にシランカップリング剤は高価であると言われており、そのためかは定かではないが、本発明者らの知る範囲において、現在、Si-WMBは商業ベースで量産されていないのが実態である。 However, the silica particle yield ratio in Si-WMB (ratio of the solid content weight of the silica particles remaining in the Si-WMB to the solid content weight of the blended silica particles is probably because the hydrophilicity of the silica particle surface is very strong. ) Is very low. In particular, Patent Document 11 describes that only a yield ratio as low as about 40% can be obtained unless the silica particles are previously treated with a silane coupling agent. In general, silane coupling agents are said to be expensive. For this reason, it is not clear, but to the best of our knowledge, Si-WMB is currently not mass-produced on a commercial basis. .
米国特許第3523096号明細書US Pat. No. 3,523,096 米国特許第3686113号明細書US Pat. No. 3,686,113 米国特許第3686219号明細書US Pat. No. 3,686,219 米国特許第3686220号明細書US Pat. No. 3,686,220 米国特許第3689451号明細書US Pat. No. 3,689,451 米国特許第3689452号明細書US Pat. No. 3,689,452 米国特許第3694398号明細書US Pat. No. 3,694,398 米国特許第3716513号明細書US Pat. No. 3,716,513 米国特許第3840382号明細書U.S. Pat. No. 3,840,382 米国特許第4002594号明細書US Patent No. 4002594 米国特許第5763388号明細書US Pat. No. 5,763,388 特許第5220189号公報Japanese Patent No. 5220189
 本発明の目的は、シリカの歩留り比率が高いゴム組成物、及び、その製造方法を提供することにある。また、本発明の目的は、当該ゴム組成物を含有する配合物を提供することにある。さらに、本発明の目的は、ゴム組成物におけるシリカの歩留り比率向上方法を提供することにある。 An object of the present invention is to provide a rubber composition having a high silica yield ratio and a method for producing the same. Moreover, the objective of this invention is providing the compound containing the said rubber composition. Furthermore, the objective of this invention is providing the yield ratio improvement method of the silica in a rubber composition.
 本発明は、ゴムラテックス(A)とシリカ粒子(B)を含むゴム組成物の製造方法であって、ゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させて共凝固させる共凝固工程を含み、該共凝固工程において、共凝固させる原料系にゴムラテックス(A)の全量、シリカ粒子(B)の全量及び凝固剤(D)の全量を投入し終わる時点と同時又はその前に、水溶性高分子化合物(C)の一部又は全量を投入し、ゴムラテックス(A)100重量部(固形分換算)に対して、シリカ粒子(B)の使用量が20~200重量部(固形分換算)、水溶性高分子化合物(C)の使用量が0.05~10重量部(固形分換算)、凝固剤(D)の使用量が10~50重量部(固形分換算)である、ゴム組成物の製造方法を提供する。 The present invention relates to a method for producing a rubber composition comprising a rubber latex (A) and silica particles (B), wherein the rubber latex (A) and the silica particles (B) are contacted with a coagulant (D) and co-coagulated. At the same time as when the total amount of the rubber latex (A), the total amount of the silica particles (B) and the total amount of the coagulant (D) have been added to the raw material system to be co-coagulated or Before that, a part or all of the water-soluble polymer compound (C) is added, and the amount of silica particles (B) used is 20 to 200 with respect to 100 parts by weight (converted to solid content) of the rubber latex (A). Parts by weight (in terms of solid content), the amount of water-soluble polymer compound (C) used is 0.05 to 10 parts by weight (in terms of solids), and the amount of coagulant (D) used is 10 to 50 parts by weight (in terms of solids) A method for producing a rubber composition is provided.
 上記共凝固工程では、ゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させる前に、水溶性高分子化合物(C)と凝固剤(D)とを予め混合し、水溶性高分子化合物(C)の存在下でゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させることが好ましい。 In the co-coagulation step, the water-soluble polymer compound (C) and the coagulant (D) are mixed in advance before bringing the rubber latex (A) and the silica particles (B) into contact with the coagulant (D). The rubber latex (A) and the silica particles (B) are preferably contacted with the coagulant (D) in the presence of the conductive polymer compound (C).
 ゴムラテックス(A)が、乳化重合共役ジエン系ゴムラテックスを含むことが好ましい。水溶性高分子化合物(C)が、ポリアルキレンオキサイドを含むことが好ましい。 The rubber latex (A) preferably contains an emulsion polymerization conjugated diene rubber latex. It is preferable that the water-soluble polymer compound (C) contains a polyalkylene oxide.
 また、本発明は、上記製造方法により得ることができるゴム組成物、及び、当該ゴム組成物を含有する配合物も提供する。 The present invention also provides a rubber composition that can be obtained by the above production method, and a compound containing the rubber composition.
 さらに、本発明は、ゴムラテックス(A)とシリカ粒子(B)との共凝固物を含むゴム組成物におけるシリカの歩留り比率を向上する方法であって、ゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させて共凝固させる共凝固工程を含み、前記共凝固工程において、共凝固させる原料系にゴムラテックス(A)の全量、シリカ粒子(B)の全量及び凝固剤(D)の全量を投入し終わる時点と同時又はその前に、水溶性高分子化合物(C)を一部又は全量投入し、ゴムラテックス(A)100重量部(固形分換算)に対して、シリカ粒子(B)の使用量を20~200重量部(固形分換算)とし、水溶性高分子化合物(C)の使用量を0.05~10重量部(固形分換算)とし、凝固剤(D)の使用量を10~50重量部(固形分換算)とする、ゴム組成物におけるシリカの歩留り比率向上方法を提供する。 Furthermore, the present invention is a method for improving the yield ratio of silica in a rubber composition containing a co-coagulated product of rubber latex (A) and silica particles (B), comprising rubber latex (A) and silica particles (B ) In contact with the coagulant (D) for co-coagulation, and in the co-coagulation step, the raw material system to be co-coagulated has a total amount of rubber latex (A), a total amount of silica particles (B) and a coagulant. At the same time or before the end of charging the total amount of (D), a part or all of the water-soluble polymer compound (C) is charged, and 100 parts by weight of rubber latex (A) (in terms of solid content), The amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solids), the amount of water-soluble polymer compound (C) is 0.05 to 10 parts by weight (in terms of solids), and a coagulant ( D) is used in an amount of 10 to 50 parts by weight ( And solid content conversion), it provides a yield ratio improving method of the silica in the rubber composition.
 本発明によれば、シリカの歩留り比率が高いゴム組成物を得ることができるゴム組成物の製造方法を提供することができる。また、本発明によれば、シリカの歩留り比率が高いゴム組成物、及び、当該ゴム組成物を含有する配合物を提供することができる。さらに、本発明によれば、ゴム組成物におけるシリカの歩留り比率向上方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a rubber composition capable of obtaining a rubber composition having a high silica yield ratio. Moreover, according to this invention, the rubber composition with a high yield ratio of a silica, and the compound containing the said rubber composition can be provided. Furthermore, according to the present invention, a method for improving the yield ratio of silica in a rubber composition can be provided.
 本実施形態に係るゴム組成物の製造方法は、ゴムラテックス(A)、シリカ粒子(B)を含むゴム組成物の製造方法であって、ゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させ共凝固させる際に、ゴムラテックス(A)及びシリカ粒子(B)の全量を凝固剤(D)に接触させ終わるまでに、水溶性高分子化合物(C)を添加することを特徴とし、かつ、ゴムラテックス(A)100重量部(固形分換算)に対して、シリカ粒子(B)の使用量が20~200重量部(固形分換算)、水溶性高分子化合物(C)の使用量が0.05~10重量部(固形分換算)、凝固剤(D)の使用量が10~50重量部(固形分換算)であることを特徴とする。 The method for producing a rubber composition according to this embodiment is a method for producing a rubber composition containing a rubber latex (A) and silica particles (B), wherein the rubber latex (A) and the silica particles (B) are coagulant. When contacting and co-coagulating with (D), the water-soluble polymer compound (C) is added until the total amount of the rubber latex (A) and the silica particles (B) is brought into contact with the coagulant (D). The amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solid content) and 100 parts by weight (in terms of solid content) of rubber latex (A). ) Is used in an amount of 0.05 to 10 parts by weight (in terms of solid content) and the coagulant (D) is used in an amount of 10 to 50 parts by weight (in terms of solid content).
 ゴムラテックス(A)は、溶媒中にゴム系ポリマーの微粒子を安定に分散したエマルジョンであればよく、必要に応じて乳化剤をさらに含有するものであってもよい。ゴムラテックス(A)としては、乳化重合共役ジエン系ゴムラテックス、天然ゴムラテックスやその変性ラテックスが挙げられる。更に、溶液重合スチレン-ブタジエン共重合体ゴム、溶液重合ポリブタジエンゴム、溶液重合アクリロニトリル-ブタジエン共重合体ゴムなどの固形ゴムを各ゴムの良溶媒で溶解し、それを乳化剤や界面活性剤を用いて水中で強制乳化物としたゴムラテックス等も挙げられ、これらを1種または2種以上使用することができる。中でも、ゴムラテックス(A)は、乳化重合共役ジエン系ゴムラテックスを含むことが好ましい。 The rubber latex (A) may be an emulsion in which rubber polymer fine particles are stably dispersed in a solvent, and may further contain an emulsifier as necessary. Examples of the rubber latex (A) include emulsion polymerization conjugated diene rubber latex, natural rubber latex and modified latex thereof. Further, a solid rubber such as solution polymerized styrene-butadiene copolymer rubber, solution polymerized polybutadiene rubber, solution polymerized acrylonitrile-butadiene copolymer rubber is dissolved in a good solvent for each rubber, and then it is used with an emulsifier or a surfactant. The rubber latex etc. which were made into the forced emulsion in water are also mentioned, These can be used 1 type (s) or 2 or more types. Among these, the rubber latex (A) preferably contains an emulsion polymerization conjugated diene rubber latex.
 乳化重合共役ジエン系ゴムラテックスとしては、公知のポリブタジエン乳化重合体ラテックス、スチレン-ブタジエン系乳化共重合体ラテックス、アクリロニトリル-ブタジエン系乳化共重合体ラテックス、スチレン-ブタジエン-ビニルピリジン系乳化共重合体ラテックスなどを1種または2種以上使用することができる。乳化重合共役ジエン系ゴムラテックスは、スチレン-ブタジエン系乳化共重合体ラテックスが特に好ましい。 As emulsion polymerization conjugated diene rubber latex, known polybutadiene emulsion polymer latex, styrene-butadiene emulsion copolymer latex, acrylonitrile-butadiene emulsion copolymer latex, styrene-butadiene-vinylpyridine emulsion copolymer latex. 1 type, or 2 or more types can be used. The emulsion polymerization conjugated diene rubber latex is particularly preferably a styrene-butadiene emulsion copolymer latex.
 また、乳化共重合体ラテックスを得るに際し、スチレン、ブタジエン、アクリロニトリル、ビニルピリジンに加え、官能基を有する公知の共重合可能なモノマーを共重合させることも可能である。そのようなモノマーとして具体的には、アクリル酸、メタクリル酸、イタコン酸、マレイン酸等の不飽和カルボン酸単量体並びにこれらの無水物、グリシジルメタクリレート、アリルグリシジルエーテル等の不飽和エポキシ系単量体、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート等の水酸基含有不飽和単量体等を挙げることができ、それぞれ1種または2種以上使用することができる。 In addition, when obtaining an emulsion copolymer latex, it is possible to copolymerize a known copolymerizable monomer having a functional group in addition to styrene, butadiene, acrylonitrile, and vinylpyridine. Specific examples of such monomers include unsaturated carboxylic acid monomers such as acrylic acid, methacrylic acid, itaconic acid, and maleic acid, and unsaturated epoxy monomers such as anhydrides, glycidyl methacrylate, and allyl glycidyl ether. Body, hydroxyl-containing unsaturated monomers such as hydroxyethyl acrylate, hydroxyethyl methacrylate, etc., and one or more of each can be used.
 ゴムラテックス(A)に含まれるゴム系ポリマーの光子相関法による平均粒子径は、10nm~200nmであることが好ましく、20nm~100nmであることがより好ましい。ゴムラテックスの光子相関法による平均粒子径は、ゴムラテックスの重合において使用する各種乳化剤、重合開始剤の種類及びその使用量や添加方法、重合水の使用割合等を適宜調整することにより調製することが可能である。 The average particle size of the rubber-based polymer contained in the rubber latex (A) by the photon correlation method is preferably 10 nm to 200 nm, and more preferably 20 nm to 100 nm. The average particle diameter of rubber latex by photon correlation method should be adjusted by appropriately adjusting the various emulsifiers used in the polymerization of rubber latex, the type and amount of polymerization initiator used, the method of addition, the ratio of polymerization water used, etc. Is possible.
 シリカ粒子(B)は、湿式法で調製されたシリカであればよい。シリカ粒子(B)としては、珪酸ナトリウム水溶液、すなわち水ガラスに酸を添加することや、炭酸ガスを吹き込むことで、シリカ粒子を析出させて製造した湿式法のシリカ水分散スラリー、湿式法のシリカ水分散スラリーから乾燥して得られたシリカ粉体を再度水に分散したシリカ水分散スラリー、乾式法で製造された乾式シリカ粉体を水に分散させたシリカ水分散スラリーが挙げられ、これらを1種または2種以上使用することができる。 The silica particles (B) may be silica prepared by a wet method. As silica particles (B), an aqueous solution of sodium silicate, that is, a wet silica aqueous dispersion slurry produced by depositing silica particles by adding an acid to water glass or blowing carbon dioxide gas, a wet silica Silica water dispersion slurry in which silica powder obtained by drying from water dispersion slurry is dispersed in water again, and silica water dispersion slurry in which dry silica powder produced by a dry method is dispersed in water are mentioned. 1 type (s) or 2 or more types can be used.
 水溶性高分子化合物(C)は、粘度平均分子量が10万~2000万である化合物である。水溶性高分子化合物(C)の粘度平均分子量は、50万~1500万であることがより好ましい。水溶性高分子化合物(C)としては、ポリアルキレンオキサイド、ポリアクリルアミド、アクリルアミド-不飽和カルボン酸塩共重合体、アルカリ可溶型アクリル系エマルジョン、およびそれらの変性物が挙げられ、これらを1種、または2種以上使用することができる。水溶性高分子化合物(C)は、好ましくはポリアルキレンオキサイド、ポリアクリルアミド、アクリルアミド-不飽和カルボン酸塩共重合体である。水溶性高分子化合物(C)は、特にポリアルキレンオキサイドを含むことが好ましい。水溶性高分子化合物(C)は、さらに好ましくは、ポリエチレンオキサイドである。 The water-soluble polymer compound (C) is a compound having a viscosity average molecular weight of 100,000 to 20 million. The viscosity average molecular weight of the water-soluble polymer compound (C) is more preferably 500,000 to 15 million. Examples of the water-soluble polymer compound (C) include polyalkylene oxide, polyacrylamide, acrylamide-unsaturated carboxylate copolymer, alkali-soluble acrylic emulsion, and modified products thereof. Or two or more of them can be used. The water-soluble polymer compound (C) is preferably a polyalkylene oxide, polyacrylamide, or an acrylamide-unsaturated carboxylate copolymer. The water-soluble polymer compound (C) particularly preferably contains a polyalkylene oxide. The water-soluble polymer compound (C) is more preferably polyethylene oxide.
 凝固剤(D)は、鉱酸、酢酸等の酸や、アルカリ金属、アルカリ土類金属、アルミの硫酸塩、塩化物、水酸化物などが使用できる。中でも、塩化ナトリウム、塩化カルシウム、硫酸アルミニウムが好ましく、塩化ナトリウムがより好ましい。 As the coagulant (D), acids such as mineral acid and acetic acid, alkali metals, alkaline earth metals, aluminum sulfates, chlorides and hydroxides can be used. Among these, sodium chloride, calcium chloride, and aluminum sulfate are preferable, and sodium chloride is more preferable.
 本発明の製造方法においては、ゴムラテックス(A)、シリカ粒子(B)、水溶性高分子化合物(C)、凝固剤(D)を使用し、ゴムラテックス(A)の100重量部(固形分換算)に対して、シリカ粒子(B)の使用量が20~200重量部(固形分換算)、水溶性高分子化合物(C)の使用量が0.05~10重量部(固形分換算)、凝固剤(D)の使用量が10~50重量部(固形分換算)であることが必要である。 In the production method of the present invention, rubber latex (A), silica particles (B), water-soluble polymer compound (C), and coagulant (D) are used, and 100 parts by weight (solid content) of rubber latex (A). The amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solid content), and the amount of water-soluble polymer compound (C) used is 0.05 to 10 parts by weight (in terms of solids). The amount of the coagulant (D) used must be 10 to 50 parts by weight (in terms of solid content).
 シリカ粒子(B)の使用量は、ゴムラテックス(A)100重量部(固形分換算)に対して、20~200重量部(固形分換算)であり、30~190重量部(固形分換算)であることが好ましく、50~180重量部(固形分換算)であることがより好ましい。シリカ粒子(B)が20重量部(固形分換算)未満では実質的なシリカ含有量が少なく、また、200重量部(固形分換算)を超えるとシリカ粒子の歩留まり率が劣る。 The amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solids) and 30 to 190 parts by weight (in terms of solids) with respect to 100 parts by weight (in terms of solids) of rubber latex (A). It is preferably 50 to 180 parts by weight (in terms of solid content). If the silica particle (B) is less than 20 parts by weight (in terms of solid content), the substantial silica content is small, and if it exceeds 200 parts by weight (in terms of solid content), the yield of silica particles is poor.
 水溶性高分子化合物(C)の使用量は、ゴムラテックス(A)100重量部(固形分換算)に対して、0.05~10重量部(固形分換算)であり、0.1~8重量部(固形分換算)であることが好ましく、0.1~5重量部(固形分換算)であることがより好ましい。水溶性高分子化合物(C)が0.05重量部(固形分換算)未満ではシリカ粒子の歩留まり率が劣り、10重量部(固形分換算)を超えても、性能の向上幅が小さく、添加量に見合った効果が得られにくい。 The amount of the water-soluble polymer compound (C) used is 0.05 to 10 parts by weight (in terms of solid content) with respect to 100 parts by weight (in terms of solid content) of the rubber latex (A). It is preferably part by weight (in terms of solid content), more preferably 0.1 to 5 parts by weight (in terms of solid content). If the water-soluble polymer compound (C) is less than 0.05 parts by weight (in terms of solid content), the yield rate of silica particles is inferior, and even if it exceeds 10 parts by weight (in terms of solid content), the improvement in performance is small and added. It is difficult to obtain an effect commensurate with the amount.
 凝固剤(D)の使用量は、ゴムラテックス(A)100重量部(固形分換算)に対して、10~50重量部(固形分換算)であり、10~45重量部(固形分換算)であることが好ましく、10~40重量部(固形分換算)であることがより好ましい。凝固剤(D)が10重量部(固形分換算)未満ではシリカ粒子の歩留まり率が劣り、50重量部(固形分換算)を超えても、性能の向上幅が小さく、添加量に見合った効果が得られにくい。 The amount of the coagulant (D) used is 10 to 50 parts by weight (in terms of solids) and 100 to 45 parts by weight (in terms of solids) with respect to 100 parts by weight (in terms of solids) of the rubber latex (A). It is preferably 10 to 40 parts by weight (in terms of solid content), and more preferably. If the coagulant (D) is less than 10 parts by weight (in terms of solid content), the yield rate of silica particles is poor, and even if it exceeds 50 parts by weight (in terms of solid content), the improvement in performance is small and the effect commensurate with the amount added. Is difficult to obtain.
 共凝固工程においては、共凝固させる原料系にゴムラテックス(A)の全量、シリカ粒子(B)の全量及び凝固剤(D)の全量を投入し終わる時点と同時又はその前に、水溶性高分子化合物(C)の一部又は全量を投入することが重要である。 In the co-coagulation step, the water-soluble high concentration is added at the same time or before the end of charging the total amount of rubber latex (A), the total amount of silica particles (B) and the total amount of coagulant (D) into the raw material system to be co-coagulated. It is important to add part or all of the molecular compound (C).
 言い換えると、共凝固工程においては、ゴムラテックス(A)の全量、シリカ粒子(B)の全量及び凝固剤(D)の全量を接触させ終わる時点と同時又はその前に、水溶性高分子化合物(C)の一部又は全量を、ゴムラテックス(A)、シリカ粒子(B)及び凝固剤(D)のうちの少なくとも一種と接触させる。 In other words, in the co-coagulation step, the water-soluble polymer compound (at the same time or before the end of contacting the whole amount of the rubber latex (A), the whole amount of the silica particles (B) and the whole amount of the coagulant (D) ( Part or all of C) is brought into contact with at least one of rubber latex (A), silica particles (B) and coagulant (D).
 また、共凝固工程においては、ゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させ共凝固させる際に、ゴムラテックス(A)及びシリカ粒子(B)の全量を凝固剤(D)に接触させ終わるまでに、水溶性高分子化合物(C)を添加する、ともいえる。 In the co-coagulation step, when the rubber latex (A) and the silica particles (B) are brought into contact with the coagulant (D) and co-coagulated, the total amount of the rubber latex (A) and the silica particles (B) is coagulated. It can be said that the water-soluble polymer compound (C) is added before the contact with (D).
 すなわち、本発明の製造方法においては、ゴムラテックス(A)、シリカ粒子(B)、水溶性高分子化合物(C)及び凝固剤(D)を添加する順番、特に水溶性高分子化合物(C)を投入するタイミングが重要である。当該ゴム組成物の製造方法によれば、共凝固工程の途中で精製する必要がなく、短工程でシリカの歩留り率に優れるゴム組成物を得ることができる。 That is, in the production method of the present invention, the order of adding the rubber latex (A), the silica particles (B), the water-soluble polymer compound (C) and the coagulant (D), particularly the water-soluble polymer compound (C). The timing of putting in is important. According to the method for producing the rubber composition, it is not necessary to purify during the co-coagulation step, and a rubber composition having an excellent silica yield can be obtained in a short step.
 ゴムラテックス(A)、シリカ粒子(B)、水溶性高分子化合物(C)及び凝固剤(D)を添加する具体的な態様としては、例えば、
(1)ゴムラテックス(A)及びシリカ粒子(B)を投入した後に、水溶性高分子化合物(C)を投入し、最後に凝固剤(D)を投入する場合、
(2)ゴムラテックス(A)及びシリカ粒子(B)を投入した後に、水溶性高分子化合物(C)を投入し始めてから、凝固剤(D)を別の経路から投入する場合、
(3)ゴムラテックス(A)及び水溶性高分子化合物(C)を投入した後に、シリカ粒子(B)を投入し、最後に凝固剤(D)を投入する場合、
(4)ゴムラテックス(A)及び水溶性高分子化合物(C)を投入した後に、シリカ粒子(B)を投入し始めてから、凝固剤(D)を別の経路から投入する場合、
(5)シリカ粒子(B)及び水溶性高分子化合物(C)を投入した後に、ゴムラテックス(A)を投入し、最後に凝固剤(D)を投入する場合、
(6)シリカ粒子(B)及び水溶性高分子化合物(C)を投入した後に、ゴムラテックス(A)を投入し始めてから、凝固剤(D)を別の経路から投入する場合、
(7)水溶性高分子化合物(C)を投入した後に、ゴムラテックス(A)及びシリカ粒子(B)を投入し、最後に凝固剤(D)を投入する場合、
(8)水溶性高分子化合物(C)を投入した後に、ゴムラテックス(A)及びシリカ粒子(B)を投入し始めてから、凝固剤(D)を別の経路から投入する場合、
(9)シリカ粒子(B)を投入した後に、ゴムラテックス(A)及び水溶性高分子化合物(C)を投入し、最後に凝固剤(D)を投入する場合、
(10)シリカ粒子(B)を投入した後に、ゴムラテックス(A)及び水溶性高分子化合物(C)を投入し始めてから、凝固剤(D)を別の経路から投入する場合、
(11)ゴムラテックス(A)を投入した後に、シリカ粒子(B)及び水溶性高分子化合物(C)を投入し、最後に凝固剤(D)を投入する場合、
(12)ゴムラテックス(A)を投入した後に、シリカ粒子(B)及び水溶性高分子化合物(C)を投入し始めてから、凝固剤(D)を別の経路から投入する場合、
(13)ゴムラテックス(A)及び水溶性高分子化合物(C)を投入した後に、シリカ粒子(B)及び凝固剤(D)の混合物を投入する場合、
(14)ゴムラテックス(A)及び水溶性高分子化合物(C)を投入した後に、シリカ粒子(B)を投入するのと同時に、凝固剤(D)を別の経路から投入する場合、
(15)シリカ粒子(B)及び水溶性高分子化合物(C)を投入した後に、ゴムラテックス(A)及び凝固剤(D)の混合物を投入する場合、
(16)シリカ粒子(B)及び水溶性高分子化合物(C)を投入した後に、ゴムラテックス(A)を投入するのと同時に、凝固剤(D)を別の経路から投入する場合、
(17)ゴムラテックス(A)及びシリカ粒子(B)を投入した後に、水溶性高分子化合物(C)及び凝固剤(D)の混合物を投入する場合、
(18)ゴムラテックス(A)及びシリカ粒子(B)を投入した後に、水溶性高分子化合物(C)を投入するのと同時に、凝固剤(D)を別の経路から投入する場合、などが挙げられる。
Specific embodiments of adding rubber latex (A), silica particles (B), water-soluble polymer compound (C) and coagulant (D) include, for example,
(1) When the rubber latex (A) and the silica particles (B) are charged, then the water-soluble polymer compound (C) is charged, and finally the coagulant (D) is charged,
(2) When the rubber latex (A) and the silica particles (B) are charged and then the water-soluble polymer compound (C) is started, then the coagulant (D) is charged through another route.
(3) When the rubber latex (A) and the water-soluble polymer compound (C) are charged, the silica particles (B) are charged, and finally the coagulant (D) is charged.
(4) After adding the rubber latex (A) and the water-soluble polymer compound (C), and then starting to add the silica particles (B), when adding the coagulant (D) from another route,
(5) After introducing the silica particles (B) and the water-soluble polymer compound (C), the rubber latex (A) is added, and finally the coagulant (D) is added.
(6) After adding the silica latex (B) and the water-soluble polymer compound (C) and then starting to add the rubber latex (A), when adding the coagulant (D) from another route,
(7) After adding the water-soluble polymer compound (C), when the rubber latex (A) and silica particles (B) are added, and finally the coagulant (D) is added,
(8) After adding the water-soluble polymer compound (C) and then starting to add the rubber latex (A) and the silica particles (B), when adding the coagulant (D) from another route,
(9) After adding the silica particles (B), when adding the rubber latex (A) and the water-soluble polymer compound (C), and finally adding the coagulant (D),
(10) After adding the silica latex (B) and then starting to add the rubber latex (A) and the water-soluble polymer compound (C), then adding the coagulant (D) from another route,
(11) After introducing the rubber latex (A), when adding the silica particles (B) and the water-soluble polymer compound (C), and finally adding the coagulant (D),
(12) After adding the rubber latex (A) and then starting to add the silica particles (B) and the water-soluble polymer compound (C), when adding the coagulant (D) from another route,
(13) After charging the rubber latex (A) and the water-soluble polymer compound (C), the mixture of silica particles (B) and the coagulant (D) is charged.
(14) When the rubber latex (A) and the water-soluble polymer compound (C) are charged, and then the silica particles (B) are charged, the coagulant (D) is charged through another route.
(15) When the mixture of the rubber latex (A) and the coagulant (D) is charged after the silica particles (B) and the water-soluble polymer compound (C) are charged,
(16) When the silica particles (B) and the water-soluble polymer compound (C) are charged, and then the rubber latex (A) is charged at the same time, the coagulant (D) is charged through another route,
(17) When the mixture of the water-soluble polymer compound (C) and the coagulant (D) is charged after the rubber latex (A) and the silica particles (B) are charged,
(18) When the rubber latex (A) and the silica particles (B) are charged, and then the water-soluble polymer compound (C) is charged at the same time, the coagulant (D) is charged through another route, etc. Can be mentioned.
 本発明においては、シリカ粒子の歩留まり率の観点から、ゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させ共凝固させる際に、ゴムラテックス(A)及びシリカ粒子(B)の全量を凝固剤(D)に接触させ終わるまでに、水溶性高分子化合物(C)を添加することが必要である。中でもゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させる前に、水溶性高分子化合物(C)を凝固剤(D)に添加することがより好ましい。共凝固工程は、水中で行うことが好ましい。水中で共凝固工程を行うことにより、水溶性高分子化合物(C)が水に溶解し、他の成分とより均一に混和させることができる。 In the present invention, from the viewpoint of the yield rate of silica particles, when the rubber latex (A) and the silica particles (B) are brought into contact with the coagulant (D) and co-coagulated, the rubber latex (A) and the silica particles (B It is necessary to add the water-soluble polymer compound (C) until the total amount of) is brought into contact with the coagulant (D). Among these, it is more preferable to add the water-soluble polymer compound (C) to the coagulant (D) before bringing the rubber latex (A) and the silica particles (B) into contact with the coagulant (D). The co-coagulation step is preferably performed in water. By performing the co-coagulation step in water, the water-soluble polymer compound (C) can be dissolved in water and more uniformly mixed with other components.
 本発明において共凝固させる際の条件に特に制限はなく、pHは一般的に4~10の条件で実施されるが、シリカ粒子の歩留まり率の観点からpH5~9で共凝固させることが好ましく、pH6~8で共凝固させることがより好ましい。また、温度は一般的に0~99℃の条件で実施されるが、シリカ粒子の歩留まり率の観点から5℃~80℃の条件で共凝固させることが好ましく、10℃~60℃の条件で共凝固させることがより好ましい。 In the present invention, there are no particular limitations on the conditions for co-coagulation, and the pH is generally 4 to 10 conditions, but it is preferable to co-coagulate at pH 5 to 9 from the viewpoint of the yield rate of silica particles, More preferably, it is co-coagulated at pH 6-8. The temperature is generally 0 to 99 ° C., but from the viewpoint of the yield rate of silica particles, co-coagulation is preferably performed at 5 to 80 ° C., preferably at 10 to 60 ° C. More preferably, it is co-solidified.
 本発明においては、公知の攪拌機、ミキサーなどを用いて混合することができる。 In the present invention, mixing can be performed using a known stirrer, mixer or the like.
 本発明のゴム組成物は、共凝固させた後に、水洗、脱水、乾燥等を行うことにより製造することができるが、これらの工程については特に制限されるものではなく、一般的に用いられている方法を用いることが可能である。また、シリカの歩留り率をさらに高めることができる点から、本発明の製造方法では、洗浄を行わないことが好ましい。 The rubber composition of the present invention can be produced by co-coagulation followed by washing with water, dehydration, drying, etc., but these steps are not particularly limited and are generally used. Can be used. Moreover, it is preferable not to perform washing | cleaning in the manufacturing method of this invention from the point which can raise the yield rate of a silica further.
 本発明のゴム組成物は、本発明のゴム組成物の製造方法により得られる。 The rubber composition of the present invention is obtained by the method for producing a rubber composition of the present invention.
 本発明のゴム組成物は、公知の添加剤を配合することができる。公知の添加剤としては、加硫剤、加硫促進剤、加硫促進助剤、充填剤、シランカップリング剤、可塑剤、老化防止剤などが挙げられ、これらを単独または2種以上の混合物として使用することができる。 The rubber composition of the present invention can contain known additives. Known additives include vulcanizing agents, vulcanization accelerators, vulcanization acceleration aids, fillers, silane coupling agents, plasticizers, anti-aging agents, etc., and these may be used alone or as a mixture of two or more. Can be used as
 加硫剤は、例えば、硫黄、トリメチルチオ尿素、N,N’-ジエチルチオ尿素などの有機含硫黄化合物などがある。 Examples of the vulcanizing agent include organic sulfur-containing compounds such as sulfur, trimethylthiourea and N, N′-diethylthiourea.
 加硫促進剤は、例えば、住友化学(株)製の商品名「ソクシノールDM」(MBTS)、同社製の「ソクシノールPX」(ZnEPDC)、同社製の「ソクシノールPZ」(ZnMDC)、同社製の「ソクシノールEZ」(ZnEDC)、同社製の「ソクシノールBZ」(ZnBDC)、同社製の「ソクシノールMZ」(ZnMBT)、同社製の「ソクシノールTT」(TMTD)等がある。 Vulcanization accelerators include, for example, the trade name “Soccinol DM” (MBTS) manufactured by Sumitomo Chemical Co., Ltd., “Soccinol PX” (ZnEPDC) manufactured by the Company, “Soccinol PZ” (ZnMDC) manufactured by the Company, There are “Soccinol EZ” (ZnEDC), “Soccinol BZ” (ZnBDC), “Soccinol MZ” (ZnMBT), “Soccinol TT” (TMTD), etc.
 加硫促進助剤は、例えば、ステアリン酸、オレイン酸、綿実脂肪酸等の脂肪酸、亜鉛華等の金属酸化物などがある。 Examples of the vulcanization acceleration aid include fatty acids such as stearic acid, oleic acid, and cottonseed fatty acid, and metal oxides such as zinc white.
 充填剤としては、例えば、カーボンブラック、カオリンクレー、ハードクレー、炭酸カルシウム、硫酸バリウム、ケイ藻土などが挙げられる。 Examples of the filler include carbon black, kaolin clay, hard clay, calcium carbonate, barium sulfate, and diatomaceous earth.
 シランカップリング剤は、たとえば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、ビス-(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビス-(3-(トリエトキシシリル)プロピル)ジスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、γ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィド等がある。 Silane coupling agents include, for example, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, γ-glycidoxypropyltri Methoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ- Aminopropyltrimethoxysilane, bis- (3- (triethoxysilyl) propyl) tetrasulfide, bis- (3- (triethoxysilyl) propyl) disulfide, γ-trimethoxysilylpropyldimethylthiocarbamyltetrasulfide, γ- Examples include trimethoxysilylpropylbenzothiazyl tetrasulfide.
 可塑剤は、例えば、パラフィン系オイル、エステル系オイル、オレフィン系オイルなどが挙げられる。 Examples of the plasticizer include paraffinic oil, ester oil, and olefin oil.
 老化防止剤は、例えば、2-メルカプトベンゾイミダゾールなどのイミダゾール類、例えば、フェニル-α-ナフチルアミン、N,N’-ジ-β-ナフチル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミンなどのアミン類、例えば、ジ-tert-ブチル-p-クレゾール、スチレン化フェノールなどのフェノール類などがある。 Anti-aging agents include, for example, imidazoles such as 2-mercaptobenzimidazole, such as phenyl-α-naphthylamine, N, N′-di-β-naphthyl-p-phenylenediamine, N-phenyl-N′-isopropyl- Examples include amines such as p-phenylenediamine, and phenols such as di-tert-butyl-p-cresol and styrenated phenol.
 本発明のゴム組成物に追加のゴム成分を更に加えた配合物は、トレッドゴムを製造するのに適している。すなわち、本発明は、上記ゴム組成物と追加のゴム成分を含有する配合物(トレッドゴム用配合物)を適宜成形することにより、トレッドゴムを提供することもできる。 A compound obtained by further adding an additional rubber component to the rubber composition of the present invention is suitable for producing a tread rubber. That is, the present invention can also provide a tread rubber by appropriately molding a compound containing the above rubber composition and an additional rubber component (a compound for tread rubber).
 追加のゴム成分は、上記ゴムラテックスに由来するゴム成分と同じものであってもよく、異なるものであってもよい。追加のゴム成分としては、特に限定されず、例えば、天然ゴム、ポリイソプレンゴム、乳化重合スチレン-ブタジエン共重合ゴム、溶液重合ランダムスチレン-ブタジエン共重合ゴム、高トランススチレン-ブタジエン共重合ゴム、低シスポリブタジエンゴム、高シスポリブタジエンゴム、高トランスポリブタジエンゴム、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合体ゴム、溶液重合ランダムスチレン-ブタジエン-イソプレン共重合ゴム、乳化重合スチレン-ブタジエン-イソプレン共重合ゴム、乳化重合スチレン-アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体などのブロック共重合体等の各種ジエン系ゴム等が挙げられる。これらはそれぞれ単独で又は2種以上組み合わせて用いることができる。 The additional rubber component may be the same as or different from the rubber component derived from the rubber latex. The additional rubber component is not particularly limited. For example, natural rubber, polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization random styrene-butadiene copolymer rubber, high transstyrene-butadiene copolymer rubber, low Cis polybutadiene rubber, high cis polybutadiene rubber, high trans polybutadiene rubber, styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, solution polymerization random styrene-butadiene-isoprene copolymer rubber, emulsion polymerization styrene-butadiene-isoprene copolymer Various diene rubbers such as block copolymers such as rubber, emulsion polymerization styrene-acrylonitrile-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, polystyrene-polybutadiene-polystyrene block copolymer Etc. The. These can be used alone or in combination of two or more.
 トレッドゴム用配合物には、シリカ粒子(B)の他に、追加のフィラーを配合してもよい。追加のフィラーとしては、例えば、カーボンブラックが挙げられる。 In addition to the silica particles (B), an additional filler may be added to the tread rubber compound. Examples of the additional filler include carbon black.
 トレッドゴム用配合物には、シランカップリング剤、軟化剤、可塑剤、老化防止剤、亜鉛華、ステアリン酸、加硫剤、加硫促進剤など、トレッドゴム用配合物において一般に使用される各種添加剤を配合することもできる。 The tread rubber compound includes various silane coupling agents, softeners, plasticizers, anti-aging agents, zinc white, stearic acid, vulcanizing agents, vulcanization accelerators, and the like that are commonly used in tread rubber compounds. Additives can also be blended.
 本発明のトレッドゴム用配合物は、通常に用いられるバンバリーミキサーやニーダー、ロール等の混合機を用いて、常法に従い混練することにより得られる。 The compound for tread rubber of the present invention is obtained by kneading according to a conventional method using a commonly used Banbury mixer, kneader, roll, or other mixer.
 以下、実施例により、本発明を更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。また、特段の断りが無い限り、%や部は重量を基準とする。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. Unless otherwise specified,% and parts are based on weight.
(ゴムラテックス(A)の重合転化率の測定)
 反応槽内より採取した反応液を秤量し、150℃で1時間乾燥後、再度秤量して固形分量を測定して、次式より算出することができる。
 重合転化率(%)=[(固形分量(g)-反応液に含まれる単量体以外の固形分量(g))/反応系に添加した単量体成分量(g)]×100
(Measurement of polymerization conversion rate of rubber latex (A))
The reaction solution collected from the reaction vessel is weighed, dried at 150 ° C. for 1 hour, weighed again to measure the solid content, and can be calculated from the following equation.
Polymerization conversion rate (%) = [(solid content (g) −solid content other than monomer contained in reaction solution (g)) / amount of monomer component added to reaction system (g)] × 100
(ゴムラテックス(A)の光子相関法による平均粒子径の測定)
 得られたゴムラテックス(A)の光子相関法による平均粒子径を測定した。尚、測定に際しては、FPAR-1000(大塚電子製)を使用した(JIS Z8826)。
(Measurement of average particle diameter of rubber latex (A) by photon correlation method)
The average particle diameter of the obtained rubber latex (A) by the photon correlation method was measured. In the measurement, FPAR-1000 (manufactured by Otsuka Electronics) was used (JIS Z8826).
(ゴム組成物中のシリカ粒子の歩留まり部数、シリカ粒子の歩留まり比率)
 製造したゴム組成物を空の白金るつぼに入れて秤量した後、白金るつぼを800℃に設定された電気炉に入れて10時間燃焼させる。10時間後に白金るつぼを電気炉から取り出して再度秤量する。そして、燃焼前の重量と燃焼後の重量の差をゴム組成物中のラテックスの歩留まり量、燃焼後の重量をシリカ粒子の歩留まり量とし、次式より、ラテックスの歩留まり部数100重量部に対するシリカ粒子の歩留まり部数(固形分換算)を算出した。
 シリカ粒子の歩留まり部数(重量部)=(シリカの歩留まり量(g)/ラテックスの歩留まり量(g))×100
 次に、算出したシリカ粒子の歩留まり部数(固形分換算)とゴムラテックスの配合部数100重量部に対するシリカ粒子の配合部数(固形分換算)から、次式より、シリカ粒子の歩留まり比率を算出した。
 シリカ粒子の歩留まり比率=(シリカ粒子の歩留まり部数(重量部)/シリカ粒子の配合部数(重量部))
(Yield number of silica particles in the rubber composition, silica particle yield ratio)
The manufactured rubber composition is put in an empty platinum crucible and weighed, and then the platinum crucible is put in an electric furnace set at 800 ° C. and burned for 10 hours. After 10 hours, the platinum crucible is removed from the electric furnace and weighed again. The difference between the weight before combustion and the weight after combustion is the yield of latex in the rubber composition, and the weight after combustion is the yield of silica particles. From the following formula, the silica particles with respect to 100 parts by weight of the latex yield The number of yield parts (in terms of solid content) was calculated.
Yield part (parts by weight) of silica particles = (silica yield (g) / latex yield (g)) × 100
Next, the yield ratio of the silica particles was calculated from the following formula from the calculated number of parts of the silica particles (converted to solids) and the number of parts of the silica particles (converted to solids) with respect to 100 parts by weight of the rubber latex.
Silica particle yield ratio = (Yield part of silica particles (parts by weight) / Number of blended parts of silica particles (parts by weight))
(ゴムラテックス(A)の製造)
 ステンレス製耐圧重合反応機にて、減圧下で純水200重量部、不均化ロジン酸カリウム4.5重量部、ナフタレンスルホン酸ホルマリン縮合物0.45重量部、ブタジエン74重量部、スチレン26部、t-ドデシルメルカプタン0.2重量部、第三リン酸ナトリウム0.65重量部、エチレンジアミン四酢酸0.07重量部、ナトリウムホルムアルデヒドスルホキシレート0.15重量部、パラメンタンハイドロパーオキサイド0.10重量部、硫酸第一鉄7水和物0.05重量部を混合し、5℃で重合反応を開始した。重合開始から6時間後に重合転化率が0.57に達したことを確認し、重合開始から7時間後にジエチルヒドロキシアミン0.5重量部を添加して重合反応を停止させた。反応停止時の重合転化率は0.62であった。水蒸気蒸留によって未反応単量体を除去した後、純水で固形分濃度を20.0重量%に調整し、ゴムラテックス(A)を得た。
 ゴムラテックス(A)の光子相関法のよる平均粒子径は60nmであった。
(Manufacture of rubber latex (A))
In a pressure resistant polymerization reactor made of stainless steel, 200 parts by weight of pure water, 4.5 parts by weight of disproportionated potassium rosinate, 0.45 parts by weight of naphthalene sulfonic acid formalin condensate, 74 parts by weight of butadiene, 26 parts of styrene T-dodecyl mercaptan 0.2 part by weight, sodium triphosphate 0.65 part by weight, ethylenediaminetetraacetic acid 0.07 part by weight, sodium formaldehyde sulfoxylate 0.15 part by weight, paramentane hydroperoxide 0.10 Part by weight and 0.05 part by weight of ferrous sulfate heptahydrate were mixed and the polymerization reaction was started at 5 ° C. After confirming that the polymerization conversion reached 0.57 6 hours after the start of the polymerization, 0.5 parts by weight of diethylhydroxyamine was added 7 hours after the start of the polymerization to stop the polymerization reaction. The polymerization conversion rate when the reaction was stopped was 0.62. After removing the unreacted monomer by steam distillation, the solid content concentration was adjusted to 20.0% by weight with pure water to obtain a rubber latex (A).
The average particle diameter of the rubber latex (A) according to the photon correlation method was 60 nm.
(シリカ粒子(B))
 撹拌機付きステンレス容器に純水79重量部を用意し、撹拌しながら東ソー社製「ニプシールVN3」21重量部(約5重量%の水分を含む)を添加して、シリカ水分散スラリー(固形分濃度は20.0重量%)を得た。
(Silica particles (B))
Prepare 79 parts by weight of pure water in a stainless steel container equipped with a stirrer, add 21 parts by weight (containing about 5% by weight of water) of “Nipsil VN3” manufactured by Tosoh Corporation while stirring, and add silica water dispersion slurry (solid content) The concentration was 20.0% by weight).
(水溶性高分子化合物(C))
 水99重量部に住友精化社製「PEO-8」1重量部を溶解して、1重量%ポリエチレンオキサイド水溶液を得た。
(Water-soluble polymer compound (C))
1 part by weight of “PEO-8” manufactured by Sumitomo Seika Co., Ltd. was dissolved in 99 parts by weight of water to obtain a 1% by weight aqueous polyethylene oxide solution.
(凝固剤(D))
D-1:純水90重量部に塩化ナトリウム10重量部を溶解した10重量%塩化ナトリウム水溶液。
D-2:純水99重量部に塩化カルシウム1重量部を溶解した1重量%塩化カルシウム水溶液。
(Coagulant (D))
D-1: 10% by weight aqueous sodium chloride solution in which 10 parts by weight of sodium chloride was dissolved in 90 parts by weight of pure water.
D-2: 1% by weight calcium chloride aqueous solution in which 1 part by weight of calcium chloride is dissolved in 99 parts by weight of pure water.
(老化防止剤乳化水分散液の製造)
 撹拌機をセットしたジャケット付きステンレス容器に、スチレン化フェノール76.3重量部、ドデシルベンゼンスルホン酸ナトリウム23.7重量部、純水160重量部を入れてジャケットに温水を流して60℃まで加温し、30分間撹拌して乳化させたのち室温まで冷却し、固形分濃度が38.5重量%の老化防止剤水分散液を製造した。
(Manufacture of anti-aging emulsion water dispersion)
In a stainless steel container with a jacket set with a stirrer, put 76.3 parts by weight of styrenated phenol, 23.7 parts by weight of sodium dodecylbenzenesulfonate, and 160 parts by weight of pure water. The mixture was stirred for 30 minutes to emulsify and then cooled to room temperature to produce an aqueous dispersion of an antioxidant with a solid content concentration of 38.5% by weight.
(ゴム組成物の製造)
 実施例1~4、比較例1~3
 表1に示す割合にて、25℃に調整した凝固剤(D)を攪拌機付きステンレス容器に準備し、水溶性高分子化合物(C)を添加し撹拌した。そこへ、ゴムラテックス(A)、シリカ粒子(B)、及び老化防止剤乳化水分散液を混合した水分散溶液を添加して15分間撹拌し、共凝固させてゴム組成物を得た。その後、得られたゴム組成物を100メッシュのステンレス金網でろ過し、ゴム組成物100重量部に対して2500重量部の60℃温水で3回洗浄した。メッシュに残った洗浄済みの残渣を110℃、6時間乾燥させた。得られたゴム組成物中のシリカ歩留り部数、シリカ歩留り比率を表1にまとめて示した。
(Manufacture of rubber composition)
Examples 1 to 4 and Comparative Examples 1 to 3
In the ratio shown in Table 1, the coagulant (D) adjusted to 25 ° C. was prepared in a stainless steel container with a stirrer, and the water-soluble polymer compound (C) was added and stirred. Thereto, an aqueous dispersion obtained by mixing rubber latex (A), silica particles (B), and an anti-aging emulsion water dispersion was added, stirred for 15 minutes, and co-coagulated to obtain a rubber composition. Thereafter, the obtained rubber composition was filtered through a 100-mesh stainless steel wire mesh and washed three times with 2500 parts by weight of 60 ° C. warm water with respect to 100 parts by weight of the rubber composition. The washed residue remaining on the mesh was dried at 110 ° C. for 6 hours. The number of silica yield parts and the silica yield ratio in the obtained rubber composition are shown together in Table 1.
 実施例5
 表1に示す割合にて、ゴムラテックス(A)とシリカ粒子(B)及び老化防止剤乳化水分散液を混合した水分散溶液に、凝固剤(D)と水溶性高分子化合物(C)の混合水溶液を添加して15分間撹拌し、共凝固させてゴム組成物を得た。その後、実施例1~4と同様に洗浄、乾燥させた。
Example 5
In the ratio shown in Table 1, the coagulant (D) and the water-soluble polymer compound (C) were mixed with an aqueous dispersion obtained by mixing the rubber latex (A), the silica particles (B), and the anti-aging emulsion water dispersion. The mixed aqueous solution was added, stirred for 15 minutes, and co-coagulated to obtain a rubber composition. Thereafter, it was washed and dried in the same manner as in Examples 1 to 4.
 比較例4
 表1に示す割合にて、ゴムラテックス(A)とシリカ粒子(B)及び老化防止剤乳化水分散液を混合した水分散溶液を、凝固剤(D)に添加して、15分間撹拌した。その後、水溶性高分子化合物(C)を添加して15分間撹拌し、共凝固させてゴム組成物を得た。その後、実施例1~4と同様に洗浄、乾燥させた。
Comparative Example 4
An aqueous dispersion obtained by mixing rubber latex (A), silica particles (B) and an anti-aging emulsion emulsified aqueous dispersion at the ratio shown in Table 1 was added to the coagulant (D) and stirred for 15 minutes. Thereafter, the water-soluble polymer compound (C) was added, stirred for 15 minutes, and co-coagulated to obtain a rubber composition. Thereafter, it was washed and dried in the same manner as in Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明のゴム組成物の製造方法を使用した実施例1~5は、いずれもシリカの歩留り比率が高いゴム組成物を得ることができた。
 比較例1~3は、水溶性高分子化合物(C)を含んでおらず、シリカの歩留り比率の高いゴム組成物を得ることができなかった。また、比較例4では、ゴムラテックス(A)、シリカ粒子(B)及び凝固剤(D)を混合して得られる水分散液に、水溶性高分子化合物(C)を添加しており、シリカの歩留り比率が高いゴム組成物を得ることができなかった。
As is apparent from Table 1, in Examples 1 to 5 using the method for producing a rubber composition of the present invention, a rubber composition having a high silica yield ratio could be obtained.
Comparative Examples 1 to 3 did not contain the water-soluble polymer compound (C) and could not obtain a rubber composition having a high silica yield ratio. In Comparative Example 4, the water-soluble polymer compound (C) is added to the aqueous dispersion obtained by mixing the rubber latex (A), the silica particles (B), and the coagulant (D), and silica. A rubber composition with a high yield ratio could not be obtained.
 上記のとおり、本発明のゴム組成物の製造方法によって、シリカの歩留り比率が高いゴム組成物が得られることから、シリカ粒子の配合が必要なゴム組成物の製造工程において、作業性の大幅な改善と混練工程での必要動力エネルギーの大幅な低減にも寄与できる。すなわち、環境側面、省エネルギー側面において優れたゴム組成物の実用製造技術を提供することができる。 As described above, since the rubber composition having a high silica yield ratio is obtained by the method for producing a rubber composition of the present invention, the workability is greatly improved in the production process of the rubber composition that requires compounding of silica particles. It can also contribute to the improvement and drastic reduction of the required power energy in the kneading process. That is, it is possible to provide a practical production technique of a rubber composition that is excellent in terms of environment and energy saving.

Claims (7)

  1.  ゴムラテックス(A)とシリカ粒子(B)とを含むゴム組成物の製造方法であって、
     ゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させて共凝固させる共凝固工程を含み、
     前記共凝固工程において、共凝固させる原料系にゴムラテックス(A)の全量、シリカ粒子(B)の全量及び凝固剤(D)の全量を投入し終わる時点と同時又はその前に、水溶性高分子化合物(C)の一部又は全量を投入し、
     ゴムラテックス(A)100重量部(固形分換算)に対して、シリカ粒子(B)の使用量が20~200重量部(固形分換算)であり、水溶性高分子化合物(C)の使用量が0.05~10重量部(固形分換算)であり、凝固剤(D)の使用量が10~50重量部(固形分換算)である、ゴム組成物の製造方法。
    A method for producing a rubber composition comprising rubber latex (A) and silica particles (B),
    A co-coagulation step of co-coagulating the rubber latex (A) and the silica particles (B) with the coagulant (D),
    In the co-coagulation step, the water-soluble high concentration is obtained at the same time or before the end of charging the total amount of rubber latex (A), the total amount of silica particles (B) and the total amount of coagulant (D) into the raw material system to be co-coagulated. A part or all of the molecular compound (C) is charged,
    The amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solid content) and 100 parts by weight (in terms of solid content) of rubber latex (A), and the amount of water-soluble polymer compound (C) used. Is 0.05 to 10 parts by weight (in terms of solid content), and a method for producing a rubber composition, wherein the amount of the coagulant (D) used is from 10 to 50 parts by weight (in terms of solid content).
  2.  ゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させる前に、水溶性高分子化合物(C)と凝固剤(D)とを予め混合し、水溶性高分子化合物(C)の存在下でゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させる、請求項1に記載のゴム組成物の製造方法。 Before bringing the rubber latex (A) and the silica particles (B) into contact with the coagulant (D), the water-soluble polymer compound (C) and the coagulant (D) are mixed in advance, and the water-soluble polymer compound (C The method for producing a rubber composition according to claim 1, wherein the rubber latex (A) and the silica particles (B) are contacted with the coagulant (D) in the presence of.
  3.  ゴムラテックス(A)が、乳化重合共役ジエン系ゴムラテックスを含む請求項1又は2に記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 1 or 2, wherein the rubber latex (A) comprises an emulsion polymerization conjugated diene rubber latex.
  4.  水溶性高分子化合物(C)がポリアルキレンオキサイドを含む、請求項1~3のいずれか一項に記載のゴム組成物の製造方法。 The method for producing a rubber composition according to any one of claims 1 to 3, wherein the water-soluble polymer compound (C) contains a polyalkylene oxide.
  5.  請求項1~4のいずれか一項に記載の製造方法により得ることができるゴム組成物。 A rubber composition obtainable by the production method according to any one of claims 1 to 4.
  6.  請求項5に記載のゴム組成物を含有する、トレッドゴム用配合物。 A compound for tread rubber containing the rubber composition according to claim 5.
  7.  ゴムラテックス(A)とシリカ粒子(B)とを含むゴム組成物におけるシリカの歩留り比率を向上する方法であって、
     ゴムラテックス(A)及びシリカ粒子(B)を凝固剤(D)に接触させて共凝固させる共凝固工程を含み、
     前記共凝固工程において、共凝固させる原料系にゴムラテックス(A)の全量、シリカ粒子(B)の全量及び凝固剤(D)の全量を投入し終わる時点と同時又はその前に、水溶性高分子化合物(C)の一部又は全量を投入し、
     ゴムラテックス(A)100重量部(固形分換算)に対して、シリカ粒子(B)の使用量を20~200重量部(固形分換算)とし、水溶性高分子化合物(C)の使用量を0.05~10重量部(固形分換算)とし、凝固剤(D)の使用量を10~50重量部(固形分換算)とする、ゴム組成物におけるシリカの歩留り比率向上方法。
     
    A method for improving the yield ratio of silica in a rubber composition comprising rubber latex (A) and silica particles (B),
    A co-coagulation step of co-coagulating the rubber latex (A) and the silica particles (B) with the coagulant (D),
    In the co-coagulation step, the water-soluble high concentration is obtained at the same time or before the end of charging the total amount of rubber latex (A), the total amount of silica particles (B) and the total amount of coagulant (D) into the raw material system to be co-coagulated. A part or all of the molecular compound (C) is charged,
    The amount of silica particles (B) used is 20 to 200 parts by weight (in terms of solid content) with respect to 100 parts by weight (in terms of solid content) of rubber latex (A), and the amount of water-soluble polymer compound (C) used is A method for improving the yield ratio of silica in a rubber composition, wherein 0.05 to 10 parts by weight (in terms of solid content) and the amount of coagulant (D) used is 10 to 50 parts by weight (in terms of solid content).
PCT/JP2015/070819 2014-07-25 2015-07-22 Method for producing rubber composition, rubber composition, compound, and method for improving silica yield rate of rubber composition WO2016013573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-151304 2014-07-25
JP2014151304A JP2017160278A (en) 2014-07-25 2014-07-25 Method for producing rubber composition, rubber composition, and compound

Publications (1)

Publication Number Publication Date
WO2016013573A1 true WO2016013573A1 (en) 2016-01-28

Family

ID=55163097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070819 WO2016013573A1 (en) 2014-07-25 2015-07-22 Method for producing rubber composition, rubber composition, compound, and method for improving silica yield rate of rubber composition

Country Status (3)

Country Link
JP (1) JP2017160278A (en)
TW (1) TW201609983A (en)
WO (1) WO2016013573A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6821451B2 (en) * 2016-01-25 2021-01-27 日本エイアンドエル株式会社 A rubber composition, a method for producing the same, a formulation, and a method for improving the yield ratio of silica in the rubber composition.
JP2021001253A (en) * 2019-06-20 2021-01-07 住友ゴム工業株式会社 Method for producing rubber-filler composite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366285A (en) * 1979-02-17 1982-12-28 Chemische Werke Huls, A.G. Process for the production of an elastomer-filler mixture optionally containing extender oils
WO2004067625A1 (en) * 2003-01-31 2004-08-12 Tokuyama Corporation Diene rubber composition and process for producing the same
JP2012162584A (en) * 2011-02-03 2012-08-30 Yokohama Rubber Co Ltd:The Rubber composition and pneumatic tire using the same
WO2014038650A1 (en) * 2012-09-07 2014-03-13 住友ゴム工業株式会社 Silica/styrene butadiene rubber composite body, method for producing same, rubber composition and pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366285A (en) * 1979-02-17 1982-12-28 Chemische Werke Huls, A.G. Process for the production of an elastomer-filler mixture optionally containing extender oils
WO2004067625A1 (en) * 2003-01-31 2004-08-12 Tokuyama Corporation Diene rubber composition and process for producing the same
JP2012162584A (en) * 2011-02-03 2012-08-30 Yokohama Rubber Co Ltd:The Rubber composition and pneumatic tire using the same
WO2014038650A1 (en) * 2012-09-07 2014-03-13 住友ゴム工業株式会社 Silica/styrene butadiene rubber composite body, method for producing same, rubber composition and pneumatic tire

Also Published As

Publication number Publication date
TW201609983A (en) 2016-03-16
JP2017160278A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
US9328176B2 (en) Functional styrene-butadiene copolymer
JPWO2002020655A1 (en) Diene rubber / inorganic compound composite, method for producing the same, and rubber composition
JP2012219237A (en) Diene polymer and manufacturing method thereof
JP5233440B2 (en) Process for producing conjugated diene polymer, conjugated diene polymer and polymer composition
JP2005112918A (en) Rubber composition
JPH11286524A (en) Diene-based rubber, its production and rubber composition
JP6741874B2 (en) Conjugated diene copolymer composition, method for producing the same, and rubber composition containing the same
WO2016013573A1 (en) Method for producing rubber composition, rubber composition, compound, and method for improving silica yield rate of rubber composition
JP2005105154A (en) Rubber composition
JP7079829B2 (en) A method for producing a rubber composition and a method for improving the yield ratio of silica in the rubber composition.
KR101152672B1 (en) Hydrophilic thioether Functionalized Styrene-Butadiene Copolymer and its silica composites
JP2002145965A (en) Conjugated diene-based rubber, oil-extended rubber and rubber composition containing the same
JP2004143323A (en) Nitrile group-containing conjugated diene rubber and method for producing the same
JP6831923B2 (en) A method for producing a conjugated diene-based copolymer, a conjugated diene-based copolymer produced from the method, and a rubber composition containing the same.
JP2005232261A (en) Modified natural rubber latex, modified natural rubber and manufacturing method of these
JP2014098132A (en) Rubber composition
JP2005526893A (en) Rubber mixture containing quaterpolymer and polar plasticizer
JP2012040767A (en) Laminate
JP7299908B2 (en) Rubber composition for tire, tire and molding
WO2014077236A1 (en) Xanthogen-modified chloroprene rubber and production method therefor
JP5549856B2 (en) Method for producing highly elastic sulfur-modified chloroprene rubber
JP4774654B2 (en) Oil-extended rubber and rubber composition
JP7160473B2 (en) Conjugated diene-based copolymer composition, method for producing the same, and rubber composition containing the same
JP5719876B2 (en) Sidewall rubber composition and pneumatic tire
JP2014234441A (en) Rubber composition for tread and pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15824533

Country of ref document: EP

Kind code of ref document: A1