WO2015186753A1 - Chemically toughened glass plate with function film, method for producing same, and article - Google Patents

Chemically toughened glass plate with function film, method for producing same, and article Download PDF

Info

Publication number
WO2015186753A1
WO2015186753A1 PCT/JP2015/066087 JP2015066087W WO2015186753A1 WO 2015186753 A1 WO2015186753 A1 WO 2015186753A1 JP 2015066087 W JP2015066087 W JP 2015066087W WO 2015186753 A1 WO2015186753 A1 WO 2015186753A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
functional film
chemically strengthened
film
strengthened glass
Prior art date
Application number
PCT/JP2015/066087
Other languages
French (fr)
Japanese (ja)
Inventor
義美 大谷
敏 本谷
一倫 森
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015186753A1 publication Critical patent/WO2015186753A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal

Definitions

  • the present invention relates to a chemically strengthened glass plate with a functional film, a method for producing a chemically strengthened glass plate with a functional film, a chemically strengthened glass plate with a functional film obtained by the production method, and an article comprising the chemically strengthened glass plate with the functional film. .
  • a functional film such as an antiglare film and a low reflection film have been formed on the surface of a glass plate.
  • a coating solution containing a silica precursor such as alkoxysilane is applied on a glass plate and dried or baked.
  • This method has a simple process, and the performance of the functional film can be controlled by the composition of the coating solution and the coating method. For example, when a material having a low refractive index is blended in the coating solution, a functional film having low reflectivity is formed. Moreover, when a coating liquid is applied so that irregularities are formed on the surface, a functional film having an antiglare property is formed.
  • the glass plate is strengthened by a chemical strengthening method.
  • a glass plate is immersed in a molten salt at a temperature lower than the strain point temperature of the glass, and ions (for example, sodium ions) on the surface of the glass plate are exchanged for ions having a larger ion radius (for example, potassium ions). To do.
  • ions for example, sodium ions
  • ions having a larger ion radius for example, potassium ions
  • ion exchange through the low-reflection film can be performed by using a coating solution containing a specific silicon compound, a hollow silica sol, and a metal chelate compound in a specific weight ratio for forming the low-reflection film. It is possible to perform chemical strengthening treatment effectively.
  • Patent Document 1 is not suitable for forming a functional film other than the low reflection film because the composition of the coating solution is limited. Further, the material for forming the functional film is expensive because it needs to contain a relatively expensive hollow silica sol at a predetermined ratio. Furthermore, the chemical strengthening effect of the glass plate is not sufficient.
  • the present invention has been made in view of the above circumstances, and a method for producing a chemically tempered glass plate with a functional film that can satisfactorily chemically strengthen the glass plate after forming the functional film, and a chemical tempering with a functional film obtained by the production method. It aims at providing the articles
  • the present invention has the following aspects.
  • a chemically strengthened glass plate provided with a functional film containing a silica-based matrix on at least one surface, wherein the portion having the functional film containing the silica-based matrix is before and after the abrasion resistance test.
  • a chemically strengthened glass plate with a functional film having a wear resistance of 20 or less as a difference in 60 ° specular gloss in each.
  • the portion having the functional film has an abrasion resistance of 10 or less as a difference in 60 ° specular gloss before and after the abrasion resistance test, according to [1] or [2]
  • the chemically strengthened glass plate with a functional film as described.
  • the chemically strengthened glass plate is expressed in terms of a molar percentage based on oxide, and includes SiO 2 of 56 to 75%, Al 2 O 3 of 1 to 20%, Na 2 O of 8 to 22%, and K 2 O of The chemically strengthened glass with a functional film according to any one of [1] to [4], containing 0 to 10%, MgO 0 to 14%, ZrO 2 0 to 5%, and CaO 0 to 10%. Board.
  • the chemically strengthened glass plate with a functional film according to any one of [1] to [6], wherein the functional film further includes solid inorganic particles.
  • Coating solution at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium, and the content of the silica precursor However, it is 15 mass% or more with respect to the oxide conversion solid content in the said coating liquid.
  • a method for producing a chemically strengthened glass plate with a functional film in which a functional film is formed on a glass plate, and the glass plate is subjected to a chemical strengthening treatment A functional film is formed from the following coating solution at a temperature of 450 ° C. or lower, and then a glass plate that has not been heat-treated at a temperature higher than 450 ° C.
  • a method for producing a chemically strengthened glass plate with a functional film which is characterized. Coating solution: at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium, and the content of the silica precursor However, it is 15 mass% or more with respect to the oxide conversion solid content in the said coating liquid.
  • the coating liquid further contains solid inorganic particles, and the content of the solid inorganic particles is 10 to 85% by mass with respect to the oxide-converted solid content in the coating liquid.
  • Thru or the manufacturing method of the chemically strengthened glass plate with a functional film as described in any one of [10].
  • a chemically strengthened glass plate with a functional film obtained by the method for producing a chemically strengthened glass plate with a functional film according to any one of [8] to [11].
  • An article comprising the chemically strengthened glass plate with a functional film according to any one of [1] to [7] and [12].
  • the manufacturing method of the chemically strengthened glass plate with a functional film which can chemically strengthen a glass plate, the chemically strengthened glass plate with a functional film obtained by this manufacturing method, and with this functional film An article comprising a chemically strengthened glass plate can be provided.
  • the functional film is cured, and physical deterioration due to contact with an object is suppressed.
  • the “chemically tempered glass plate” is a glass plate tempered (chemically strengthened) by a chemical strengthening method.
  • the chemical strengthening method is one of the methods for forming a compressive stress layer on the surface of the glass plate.
  • the glass plate is immersed in a molten salt at a temperature equal to or lower than the strain point temperature of the glass, and ions on the surface of the glass plate (for example, sodium).
  • ions on the surface of the glass plate for example, sodium
  • This is a method of exchanging ions) for ions having a larger ion radius (for example, potassium ions).
  • compressive stress arises in a glass plate surface layer.
  • the strain point of glass is lower than the softening point.
  • the “compressive stress layer” is a layer (chemical strengthening layer) having a desired surface compressive stress.
  • the surface compressive stress of the chemically strengthened glass plate and the thickness of the compressive stress layer are measured by a surface stress meter (for example, FSM-6000LE manufactured by Orihara Seisakusho).
  • “Silica precursor” means a substance capable of forming a matrix mainly composed of silica.
  • “Containing silica as a main component” means containing 90 mass% or more of SiO 2 .
  • the “hydrolyzable group bonded to a silicon atom” means a group that can be converted into an OH group bonded to a silicon atom by hydrolysis.
  • Oxide conversion solid content means the sum total of the oxide conversion (metal oxide conversion) content of the component containing a metal element among the components contained in a coating liquid. Content shown as a ratio with respect to oxide conversion solid content is content of oxide conversion.
  • the content of the silica precursor is an amount equivalent to SiO 2 . That is, the content when all Si contained in the silica precursor is converted to SiO 2 .
  • FIG. 1 is a cross-sectional view schematically showing an example of a chemically strengthened glass plate with a functional film of the present invention.
  • the chemically strengthened glass plate 1 with a functional film in this example includes a functional film 5 and a chemically strengthened glass plate 3 having the functional film 5 on the surface.
  • a glass plate on which the functional film 5 is formed (a glass plate before chemical strengthening: an unstrengthened glass plate) may be referred to as a glass plate 3.
  • the functional film 5 may be a single layer film or a multilayer film.
  • the thickness of the chemically strengthened glass plate 3 is preferably less than 2 mm, more preferably 0.33 mm to 1.1 mm, and particularly preferably 0.7 mm to 1.1 mm.
  • a glass plate having a thickness of less than 2 mm is difficult to strengthen by the air-cooling strengthening method. Therefore, the usefulness of this invention is high when the thickness of the glass plate to strengthen is less than 2 mm.
  • the mass of the chemically strengthened glass plate 1 with a functional film per unit area becomes light, and an article provided with the chemically strengthened glass plate 1 with a functional film can be reduced in weight.
  • the thickness of the chemically strengthened glass plate 3 is 0.33 mm or more, even when the chemically strengthened glass plate 1 with a functional film is large (for example, the long side is 300 mm or more), the deflection is small and easy to handle.
  • the chemically strengthened glass plate 3 preferably has a surface compressive stress of 400 MPa or more and a compressive stress layer thickness of 5 ⁇ m or more. If the surface compressive stress is 400 MPa or more and the thickness of the compressive stress layer is 5 ⁇ m or more, the chemically strengthened glass plate 3 is excellent in durability against physical impacts such as scratches.
  • the surface compressive stress of the chemically strengthened glass plate 3 is more preferably 500 MPa or more, and further preferably 600 MPa or more, depending on the application. Typically, the surface compressive stress is 800 MPa or less.
  • the thickness of the compressive stress layer is more preferably 10 ⁇ m or more, even more preferably 20 ⁇ m or more, and even more preferably more than 25 ⁇ m. Further, typically, the thickness of the compressive stress layer is 70 ⁇ m or less.
  • the chemically strengthened glass plate 3 includes a functional film 5 on at least one surface.
  • the functional film 5 is provided on at least a part of the glass plate 3.
  • the functional film 5 may be provided on a part of one surface of the glass plate 3 or may be provided so as to cover the entire surface of the one surface.
  • the functional film 5 is applied with a coating solution containing at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium, It is formed by drying.
  • the functional film 5 includes a matrix mainly composed of silica (hereinafter also referred to as a silica-based matrix) formed from a silica precursor.
  • a silica-based matrix is one in which 50% or more of silica is contained in the matrix.
  • the silica-based matrix may contain components other than silica.
  • the components include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, and Sr. , Y, Zr, Nb, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au, Bi and compounds such as one or more ions and / or oxides selected from the group of lanthanoid elements Is mentioned.
  • the functional film 5 may be composed of only a silica-based matrix, or may further include components other than the silica-based matrix. For example, particles dispersed in a silica-based matrix may be included. The type of particles and the like will be described in detail in the section of the coating liquid for producing the functional film.
  • the functional film 5 is not particularly limited as long as it can be formed from a coating solution containing the silica precursor and a liquid medium.
  • an antiglare film, a low reflection film, a glass anti-glare film, an alkali barrier film examples thereof include a flaw prevention film and an antifouling film.
  • an antiglare film or a low reflection film is preferable because it is highly necessary in many applications in which chemically strengthened glass is used.
  • the antiglare film is a film having an antiglare property.
  • the antiglare film may be an antiglare film having low reflectivity (that is, a low reflectivity antiglare film).
  • the low reflection film is a film having low reflectivity (that is, antireflection property).
  • the 60 ° specular gloss on the surface of the functional film 5 is preferably 80% or less, more preferably 70% or less, and even more preferably 60% or less. If the 60 ° specular gloss on the surface of the functional film 5 is 80% or less, the antiglare effect is sufficiently exhibited.
  • the arithmetic average roughness Ra of the surface of the functional film 5 is preferably 0.04 to 1.00 ⁇ m, more preferably 0.06 to 1.00 ⁇ m, and more preferably 0.1 to 0 More preferably, it is 8 ⁇ m. If the arithmetic average roughness Ra of the surface of the functional film 5 is not less than the lower limit of the above range, the antiglare effect is sufficiently exhibited. If the arithmetic average roughness Ra of the surface of the functional film 5 is less than or equal to the upper limit of the above range, when the chemically strengthened glass plate 1 with the functional film is provided on the viewing side of the image display device body as a protective plate or various filters, A decrease in image contrast is sufficiently suppressed.
  • the refractive index of the functional film 5 is preferably 1.23 to 1.47, and more preferably 1.25 to 1.40.
  • the refractive index of the functional film 5 is not more than the upper limit of the above range, reflection on the surface of the functional film 5 is suppressed, and the light transmittance is improved as compared with the case of the chemically strengthened glass plate 3 alone.
  • the refractive index of the functional film 5 is equal to or higher than the lower limit of the above range, the functional film 5 is dense and excellent in mechanical strength such as wear resistance of the functional film 5 and adhesion to the chemically strengthened glass plate 3.
  • the chemically strengthened glass plate 1 with a functional film is provided as a cover crow on the light incident side of the solar cell, the power generation efficiency of the solar cell is good.
  • the thickness of the functional film 5 is preferably 30 to 300 nm, and more preferably 40 to 200 nm. If the film thickness of the functional film 5 is 30 nm or more, light interference occurs and low reflection performance is exhibited. If the film thickness of the functional film 5 is 300 nm or less, the film can be formed without generating cracks. The film thickness of the functional film 5 is measured by the reflectance measured by a spectrophotometer.
  • the reflectance of the functional film 5 is the lowest value (so-called bottom reflectance) in the wavelength range of 300 to 1200 nm, preferably 2.6% or less, and 1.0% The following is more preferable.
  • the portion provided with the functional film 5 (hereinafter also referred to as a functional film surface) has a 60 ° specular gloss difference before and after the abrasion resistance test of 60 or less, more preferably 55 or less, and even more preferably 50 or less.
  • the abrasion resistance test can be performed with an abrasion resistance tester (hereinafter also referred to as a rubbing tester) in which a friction element such as an eraser, steel wool, felt, or the like is attached to the tip, and reciprocation is possible under a constant load.
  • a friction element such as an eraser, steel wool, felt, or the like
  • the 60 ° specular glossiness on the functional film surface side is measured based on JIS Z8741 after being prevented from the influence of reflection from the surface opposite to the functional film surface of the chemically strengthened glass plate 3.
  • the specular reflection component from the surface with respect to the incident light from the predetermined incident angle increases. Therefore, the smaller the change in the 60 ° specular gloss, the better the wear resistance.
  • the functional film 5 has a 60 ° specular gloss difference of 20 or less before and after the abrasion resistance test because physical deterioration due to contact with an object is suppressed and a functional film excellent in long-term durability can be obtained. It is preferable that it has abrasion resistance, More preferably, it is 15 or less, More preferably, it is 10 or less. When there is substantially no change in 60 ° specular gloss, that is, when the difference in 60 ° specular gloss before and after the abrasion resistance test is 0, the abrasion resistance is most preferable.
  • the chemically strengthened glass plate 1 with a functional film is, for example, A step of applying the following coating solution onto a glass plate and drying to form the functional film 5 (hereinafter also referred to as “functional film forming step”);
  • the glass plate on which the functional film 5 is formed can be chemically strengthened to obtain a chemically strengthened glass plate 1 with a functional film (hereinafter also referred to as “chemical strengthening step”).
  • chemical strengthening step You may perform the process of giving a well-known post-process with respect to the chemically strengthened glass plate 1 with a functional film after a chemical strengthening process as needed.
  • the functional film is a chemically strengthened glass plate with a functional film provided in a part of the chemically strengthened glass plate 3, for example, the portion of the surface of the chemically strengthened glass plate 3 that does not form the functional film is masked.
  • a film may be formed.
  • the coating liquid contains at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium.
  • the coating solution may further contain particles, a terpene compound, an additive, and the like as necessary.
  • Silica precursor As the silica precursor, a silane compound having a hydrocarbon group bonded to a silicon atom and a hydrolyzable group (hereinafter also referred to as A1), a hydrolysis condensate thereof, and alkoxysilane (however, a silane compound (A1) is excluded). And its hydrolyzed condensate (sol-gel silica).
  • the hydrocarbon group bonded to the silicon atom may be a monovalent hydrocarbon group bonded to one silicon atom, or a divalent hydrocarbon group bonded to two silicon atoms.
  • the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group.
  • the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group.
  • the hydrocarbon group is selected from the group consisting of —O—, —S—, —CO— and —NR′— (wherein R ′ is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms.
  • R ′ is a hydrogen atom or a monovalent hydrocarbon group
  • Examples of the hydrolyzable group bonded to the silicon atom include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom.
  • an alkoxy group, an isocyanate group, and a halogen atom are preferable from the viewpoint of the balance between the stability of the silane compound (A1) and the ease of hydrolysis.
  • As the alkoxy group an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable.
  • the hydrolyzable groups may be the same group or different groups, and it is easy to obtain that they are the same group. This is preferable.
  • silane compound (A1) examples include a compound represented by the formula (I) described later, an alkoxysilane having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), an alkoxysilane having a vinyl group (vinyltrimethoxysilane).
  • alkoxysilanes having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane) And 3-glycidoxypropyltriethoxysilane) and alkoxysilanes having an acryloyloxy group (such as 3-acryloyloxypropyltrimethoxysilane).
  • silane compound (A1) a compound represented by the following formula (I) is preferable from the viewpoint that even if the film thickness is large, the functional film is not easily cracked or peeled off.
  • Q is a divalent hydrocarbon group (-O—, —S—, —CO— and —NR′— (where R ′ is a hydrogen atom or a monovalent hydrocarbon) And a group obtained by combining one or two or more selected from the group consisting of: What was mentioned above is mentioned as a bivalent hydrocarbon.
  • Q is preferably an alkylene group having 2 to 8 carbon atoms, and is preferably an alkylene group having 2 to 6 carbon atoms from the viewpoint that it is easily available, and even if the film thickness is large, the functional film is less likely to crack or peel off. Further preferred.
  • L is a hydrolyzable group.
  • the hydrolyzable group include those described above, and preferred embodiments are also the same.
  • R is a hydrogen atom or a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon include those described above.
  • p is an integer of 1 to 3. p is preferably 2 or 3, particularly preferably 3, from the viewpoint that the reaction rate does not become too slow.
  • alkoxysilane examples include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), alkoxysilane having a perfluoropolyether group ( Perfluoropolyether triethoxysilane and the like), alkoxysilanes having a perfluoroalkyl group (perfluoroethyltriethoxysilane and the like), and the like.
  • tetraalkoxysilane tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.
  • alkoxysilane having a perfluoropolyether group Perfluoropolyether triethoxysilane and the like
  • alkoxysilanes having a perfluoroalkyl group
  • Hydrolysis and condensation of the silane compound (A1) and alkoxysilane (excluding the silane compound (A1)) can be carried out by a known method.
  • the reaction is carried out using 4 times or more moles of water of tetraalkoxysilane and acid or alkali as a catalyst.
  • the acid include inorganic acids (HNO 3 , H 2 SO 4 , HCl, etc.) and organic acids (formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, etc.).
  • the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like.
  • an acid is preferable from the viewpoint of long-term storage stability of the hydrolysis condensate of the silane compound (A).
  • a silica precursor 1 type may be used independently and 2 or more types may be used in combination. It is preferable that a silica precursor contains either one or both of a silane compound (A1) and its hydrolysis condensate from a viewpoint of preventing the crack of a functional film, and film
  • the silica precursor preferably contains either one or both of tetraalkoxysilane and its hydrolysis condensate from the viewpoint of the wear resistance strength of the functional film. It is particularly preferable that the silica precursor contains one or both of the silane compound (A1) and the hydrolysis condensate thereof, and one or both of the tetraalkoxysilane and the hydrolysis condensate thereof.
  • the liquid medium dissolves or disperses the silica precursor, and is preferably a solvent that dissolves the silica precursor.
  • the liquid medium may also have a function as a dispersion medium for dispersing the particles.
  • the liquid medium include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
  • Examples of alcohols include methanol, ethanol, isopropanol, 1-butanol, 2-butanol, isobutanol, diacetone alcohol, and the like.
  • Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Examples of ethers include tetrahydrofuran and 1,4-dioxane.
  • Examples of cellosolves include methyl cellosolve and ethyl cellosolve.
  • Examples of esters include methyl acetate and ethyl acetate.
  • Examples of glycol ethers include ethylene glycol monoalkyl ether.
  • nitrogen-containing compound examples include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like.
  • sulfur-containing compound examples include dimethyl sulfoxide.
  • a liquid medium may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the liquid medium contains at least water unless the liquid medium is replaced after hydrolysis.
  • the liquid medium may be water alone or a mixed liquid of water and another liquid.
  • other liquids include alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
  • alcohols are preferable, and methanol, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, and isobutanol are particularly preferable.
  • the liquid medium may contain acid or alkali.
  • the acid or alkali may be added as a catalyst for hydrolysis and condensation of raw materials (alkoxysilane, etc.) during the preparation of the silica precursor solution, and is added after the preparation of the silica precursor solution. It may be a thing.
  • the coating liquid contains particles
  • the characteristics of the functional film 5 (refractive index, transmittance, reflectance, color tone, conductivity, wettability, physical durability, chemical durability, etc.) depend on the type and amount of particles. Can be adjusted. Examples of the particles include inorganic particles and organic particles.
  • Examples of the material for the inorganic particles include metal oxides, metals, alloys, and inorganic pigments.
  • the metal oxide include Al 2 O 3 , SiO 2 , SnO 2 , TiO 2 , ZrO 2 , ZnO, CeO 2 , Sb-containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), RuO 2 and the like.
  • the metal include Ag and Ru.
  • Examples of the alloy include AgPd and RuAu.
  • Examples of inorganic pigments include titanium black and carbon black.
  • Examples of the organic particle material include organic pigments and resins.
  • Examples of the resin include polystyrene and melanin resin.
  • the particle shape examples include a spherical shape, an elliptical shape, a needle shape, a plate shape, a rod shape, a cone shape, a columnar shape, a cube shape, a rectangular shape, a diamond shape, a star shape, and an indefinite shape.
  • the particles may be solid particles, hollow particles, or perforated particles such as porous particles. “Solid” indicates that there is no cavity inside. “Hollow” indicates that there is a cavity inside.
  • the solid inorganic particles may exist in a state where each particle is independent, each particle may be linked in a chain shape, or each particle may be aggregated. The particles may be used alone or in combination of two or more.
  • solid inorganic particles are preferable from the viewpoint of cost and availability, and solid metal oxide particles are more preferable from the viewpoint of chemical durability. Solid inorganic particles and other particles may be used in combination.
  • solid silica particles may be included as solid inorganic particles.
  • the solid silica particles chain solid silica particles are preferable.
  • the chain solid silica particles are solid silica particles having a chain shape.
  • the shape of the chain solid silica particles can be confirmed by an electron microscope.
  • the chain solid silica particles can be easily obtained as a commercial product. Moreover, you may use what was manufactured by the well-known manufacturing method. Examples of commercially available products include Snowtex ST-OUP manufactured by Nissan Chemical Industries, Ltd.
  • the average aggregate particle diameter of the particles is preferably 5 to 300 nm, more preferably 5 to 200 nm. If the average agglomerated particle diameter of the particles is equal to or greater than the lower limit value of the above range, the effect of blending the particles is easily exhibited. If the average aggregate particle diameter is equal to or smaller than the upper limit value, the functional film 5 is excellent in mechanical properties such as wear resistance.
  • the average aggregate particle diameter of the particles is measured on a volume basis by a laser diffraction type particle size distribution measuring apparatus.
  • the terpene compound is preferably used when the coating solution contains particles.
  • the terpene means a hydrocarbon having a composition of (C 5 H 8 ) n (where n is an integer of 1 or more) having isoprene (C 5 H 8 ) as a structural unit.
  • the terpene compound means terpenes having a functional group derived from terpene. Terpene compounds also include those with different degrees of unsaturation.
  • terpene compounds function as a liquid medium
  • those having “a hydrocarbon having a composition of (C 5 H 8 ) n having isoprene as a structural unit” fall under the category of terpene derivatives. Shall not apply.
  • terpene compound terpene derivatives described in International Publication No. 2010/018852 can be used.
  • additive various known additives can be used.
  • a surfactant for improving leveling properties a metal compound for improving durability of the functional film 5, an ultraviolet absorber, an infrared reflector, an infrared ray Absorbers, antireflection agents and the like can be mentioned.
  • the surfactant include silicone oil and acrylic.
  • a zirconium chelate compound, a titanium chelate compound, an aluminum chelate compound and the like are preferable.
  • zirconium chelate compound include zirconium tetraacetylacetonate and zirconium tributoxy systemate.
  • the content of the silica precursor in the coating solution (in terms of SiO 2 ) is 15% by mass or more, more preferably 20% by mass or more, and more preferably 25% by mass or more based on the oxide-converted solid content in the coating solution. preferable. Adhesive strength sufficient between the chemically strengthened glass plate 3 and the functional film 5 is obtained when the content of the silica precursor (in terms of SiO 2 ) is 15% by mass or more with respect to the oxide-converted solid content.
  • the upper limit of the silica precursor content (SiO 2 equivalent) relative to the oxide equivalent solid content is not particularly limited, and may be 100% by mass. Content of a silica precursor can be suitably set according to content of the other component mix
  • the content of the liquid medium in the coating solution is an amount corresponding to the solid content concentration of the coating solution.
  • the solid content concentration of the coating solution is preferably 1 to 6% by mass and more preferably 2 to 5% by mass in the total amount (100% by mass) of the coating solution. If the solid content concentration is not less than the lower limit of the above range, the amount of the coating solution used for forming the functional film 5 can be reduced. If solid content concentration is below the upper limit of the said range, the uniformity of the film thickness of the functional film 5 will improve.
  • the solid content concentration of the coating solution is the total content of all components other than the liquid medium in the coating solution. However, content of the component containing a metal element is oxide conversion.
  • the content of the solid inorganic particles in the coating liquid is 10 to 85 mass with respect to the oxide-based solid content (100 mass%) in the coating liquid. %, More preferably 20 to 80% by mass, particularly preferably 30 to 75% by mass. If the content of the solid inorganic particles is not less than the lower limit of the above range, the blending effect of the solid inorganic particles can be sufficiently obtained. For example, in the case of solid silica particles, the refractive index of the functional film 5 is lowered, and a sufficient transmittance improvement effect is obtained. If the content of the solid inorganic particles is not more than the upper limit of the above range, the functional film 5 is excellent in mechanical strength such as wear resistance.
  • the coating liquid may or may not contain hollow silica particles as particles, but the content of the hollow silica particles in the coating liquid (in terms of SiO 2 ) is based on the oxide-converted solid content in the coating liquid. Less than 10% by mass. Preferably it is less than 7 mass%, More preferably, it is less than 5 mass%. If the content of the hollow silica particles is less than 10% by mass with respect to the oxide-converted solid content, unreinforced glass through the functional film 5 in the chemical strengthening step after forming the functional film on the unreinforced glass plate surface.
  • the plate can be sufficiently chemically strengthened, and the chemically strengthened glass plate 1 with a functional film can be produced at low cost.
  • the content (in terms of SiO 2 ) of the hollow silica particles in the coating solution is 0% by mass or more and less than 10% by mass, preferably 0% by mass or more and 7% by mass with respect to the oxide-converted solid content in the coating solution. %, More preferably 0% by mass or more and less than 5% by mass.
  • the coating liquid can be prepared, for example, by preparing a solution in which a silane precursor is dissolved in a liquid medium, and mixing an additional liquid medium, a dispersion of particles, a terpene compound, and other optional components as necessary.
  • the glass plate that forms a functional film and is chemically strengthened (hereinafter referred to as “unstrengthened glass plate”) is not particularly limited as long as it has a composition that can be chemically strengthened, and has various compositions. be able to.
  • soda lime glass and aluminosilicate glass can be suitably used.
  • aluminosilicate glass is preferable.
  • SiO 2 is 56 to 75%
  • Al 2 O 3 is 1 to 20%
  • Na 2 O is 8 to 22%
  • K 2 O is 0 to 0 in terms of mole percentage based on oxide.
  • a glass plate that is easily chemically strengthened is expressed in terms of a molar percentage based on oxide as a glass composition, SiO 2 is 60 to 75%, Al 2 O 3 is 2 to 25%, Na 2 O is 10 to 20%, K It is preferable to contain 0 to 7% 2 O, 0 to 10% MgO, and 0 to 15% CaO.
  • a glass plate that is easily chemically strengthened is expressed in terms of a molar percentage based on oxide as a glass composition, SiO 2 is 50 to 74%, Al 2 O 3 is 2 to 8%, Na 2 O is 8 to 18%, K 2 O 0 ⁇ 8% MgO 2 to 15% of ZrO 2 0 ⁇ 4% of CaO 0 ⁇ 10% of SrO 0-3%, it is preferable that the BaO containing 0-3%.
  • a glass plate that is easily chemically strengthened is expressed in terms of a molar percentage based on oxide as a glass composition, SiO 2 is 50 to 74%, Al 2 O 3 is 8 to 25%, Na 2 O is 8 to 18%, K 2 O 0 ⁇ 8% MgO 2 to 15% of ZrO 2 0 ⁇ 4% of CaO 0 ⁇ 10% of SrO 0-3%, it is preferable that the BaO containing 0-3%.
  • “containing 0 to 10% of K 2 O” means not necessarily essential but may contain up to 10%. The same applies to MgO, ZrO 2 and CaO.
  • the thickness of the untempered glass plate is the same as the thickness of the chemically strengthened glass plate 3.
  • the unstrengthened glass plate may be a smooth glass plate formed by a float method or the like, or a template glass plate having irregularities on the surface. Moreover, not only a flat glass plate but the glass plate which has a curved surface shape may be sufficient. A commercially available thing may be used for an unstrengthened glass plate, and what was manufactured by the well-known manufacturing method may be used.
  • the unstrengthened glass plate is prepared by, for example, preparing various amounts of various raw materials constituting the glass, heating and melting, and then homogenizing by defoaming or stirring, a well-known float method, down draw method (for example, fusion method), Or it can manufacture by shape
  • a glass ribbon may be used on-line during glass forming by a float method or a downdraw method (for example, a fusion method).
  • the functional film 5 is formed by applying the coating liquid on an unstrengthened glass plate and drying it. Drying may be performed by heating, or may be performed without heating (natural drying, air drying, etc.).
  • the functional film forming step is performed at a temperature of 450 ° C. or lower.
  • the temperature which performs a functional film formation process 400 degrees C or less is more preferable.
  • the unstrengthened glass plate can be sufficiently chemically strengthened through the functional film 5.
  • the minimum of the temperature which performs a functional film formation process will not be specifically limited if it is the temperature which can apply
  • Performing the functional film forming step at a temperature of 450 ° C. or less means that the coating solution (coating film) is applied between the time when the coating solution is applied on the unstrengthened glass plate and the time when chemical strengthening is performed in the next chemical strengthening step.
  • the temperature of the atmosphere in which the coating solution is applied, the temperature of the unstrengthened glass plate to which the coating solution is applied, the temperature of the coating film after application and drying, the drying temperature, and the chemical strengthening after drying The temperature and the like of the functional film 5 until the process is all 450 ° C. or lower.
  • the temperature of a coating film and the drying temperature of a coating film shall mean the temperature of the unstrengthened glass plate in which the coating film was formed, respectively.
  • the temperature of the functional film 5 shall mean the temperature of the non-tempered glass plate in which the functional film 5 was formed.
  • the temperature of the unstrengthened glass plate can be measured with a thermocouple, a radiation thermometer, or the like. For example, it can measure by attaching a thermocouple to the chemically tempered glass surface.
  • Application method As a coating method of the coating liquid, known wet coating methods (spin coating method, spray coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, flow coating method, gravure coating method, bar coating method) Method, flexo coat method, slit coat method, roll coat method, etc.).
  • a spray method is preferable as a coating method of the coating solution from the viewpoint that sufficient unevenness can be easily formed.
  • the nozzle used in the spray method include a two-fluid nozzle and a one-fluid nozzle.
  • the particle size of the coating liquid droplets ejected from the nozzle is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m. If the particle size of the droplets is 1 ⁇ m or more, it is possible to form irregularities that sufficiently exhibit the antiglare effect in a short time. If the particle size of the droplet is 50 ⁇ m or less, it is easy to form moderate unevenness that sufficiently exhibits the antiglare effect.
  • the particle size of the droplet is the Sauter average particle size measured by a laser measuring device.
  • the particle size of the droplets can be adjusted as appropriate according to the type of nozzle, spray pressure, liquid volume, and the like. For example, in a two-fluid nozzle, the higher the spray pressure, the smaller the droplet, and the larger the liquid volume, the larger the droplet.
  • the arithmetic average roughness Ra and 60 ° specular gloss of the surface of the functional film 5 to be formed can be adjusted by the coating time, that is, the number of coated surfaces by spraying (number of overcoating).
  • An electrostatic coating method may be used as an application method of the application liquid when an antiglare film is formed as the functional film 5.
  • an application method by the electrostatic coating method for example, there is a method of charging and spraying the coating liquid using an electrostatic coating gun having a rotary atomizing head.
  • the coating liquid can be applied to a wide unstrengthened glass plate, the transport speed of the unstrengthened glass plate can be made relatively fast, and the required coating liquid
  • the roll coating method is preferable, the functional film 5 having a uniform film thickness can be formed, and the functional film 5 having an arbitrary film thickness that can be optically designed can be easily formed (that is, the film thickness).
  • the reverse roll coating method is more preferable.
  • a die coating method and an ink jet method are preferable.
  • the temperature of the atmosphere when applying the coating solution is preferably room temperature to 50 ° C., more preferably room temperature to 40 ° C.
  • the temperature of the unstrengthened glass plate when applying the coating solution may be the same as or different from the temperature of the atmosphere.
  • a heat insulating plate set in advance at a temperature equal to or higher than the temperature of the unstrengthened glass plate may be disposed under the unstrengthened glass plate to suppress the temperature drop of the unstrengthened glass plate.
  • a plurality of coating liquids having different compositions may be sequentially applied onto the unstrengthened glass plate.
  • a multilayer film can be formed as the functional film 5.
  • a coating solution containing no particles may be applied, and then a coating solution containing particles may be applied.
  • grains may apply
  • the next coating solution may be applied as it is on the formed coating film.
  • the coating film may be dried before coating. The drying at this time may be performed so that the liquid medium in the coating film is completely removed, or may be performed so that the liquid medium remains in the coating film.
  • Drying method As described above, drying when applying the coating liquid on the glass plate surface to form the functional film may be performed by heating or may be performed without heating. The heating may be performed simultaneously with the application by heating the unreinforced glass plate when applying the coating solution to the unreinforced glass plate, and the coating film is heated after the coating solution is applied to the unreinforced glass plate. You may go by.
  • the preferable upper limit of the drying temperature is the same as the preferable upper limit of the temperature at which the functional film forming step is performed. That is, the upper limit temperature is 450 ° C.
  • the lower limit of the drying temperature is not particularly limited. Since the polymerization of the silane precursor proceeds to some extent even in the case of natural drying, it is theoretically possible to set the drying temperature to a temperature around room temperature if there is no restriction on time.
  • the drying temperature is preferably 25 ° C. or higher, more preferably 30 ° C. or higher, from the viewpoint that sufficient drying conditions can be secured. From the viewpoint of chemical strengthening efficiency, the drying temperature is preferably 25 to 400 ° C, particularly preferably 30 to 400 ° C.
  • the drying time varies depending on the drying temperature, but is typically about 0.5 to 30 minutes, and preferably 1 to 5 minutes.
  • the unstrengthened glass plate on which the functional film 5 is formed in the functional film forming step is chemically strengthened. Thereby, the unstrengthened glass plate becomes the chemically strengthened glass plate 3, and the chemically strengthened glass plate 1 with a functional film is obtained.
  • Chemical strengthening can be performed by a known method.
  • a method of immersing the unstrengthened glass plate on which the functional film 5 is formed in a heated potassium nitrate (KNO 3 ) molten salt In this method, Na ions on the surface layer of the unstrengthened glass plate and K ions in the molten salt are exchanged to generate surface compressive stress and form a compressive stress layer.
  • KNO 3 molten salt in addition to KNO 3, for example, NaNO 3 may be one which contained about 5%.
  • the chemical strengthening is preferably performed so that a compressive stress layer having a desired surface compressive stress is formed on the unstrengthened glass plate.
  • the preferable ranges of the surface compressive stress and the thickness of the compressive stress layer are as described above.
  • the chemical strengthening treatment conditions for forming a compressive stress layer having a desired surface compressive stress on the unstrengthened glass plate vary depending on the glass composition of the unstrengthened glass plate, the thickness of the unstrengthened glass plate, etc., but the glass strain point temperature. It is typically immersed in the following 350 to 550 ° C. KNO 3 molten salt for 2 to 20 hours. From an economical point of view, the chemical strengthening treatment conditions are preferably immersed in KNO 3 molten salt at 350 to 500 ° C. for 2 to 16 hours, and immersed in KNO 3 molten salt at 350 to 500 ° C. for 2 to 10 hours. More preferred.
  • the chemically strengthened glass plate 1 with the functional film including the chemically strengthened glass plate 3 and the functional film 5 is obtained.
  • a predetermined amount of hollow silica particles are obtained as in Patent Document 1 by performing the functional film forming step at a temperature of 450 ° C. or lower. Even if it does not contain, the unstrengthened glass plate can be sufficiently chemically strengthened through the functional film 5 in the subsequent chemical strengthening step.
  • a compressive stress layer having a compressive stress of 500 MPa or more can be formed in a thickness of 20 ⁇ m or more on the surface layer of the surface of the unreinforced glass plate in contact with the functional film 5.
  • the functional matrix formation step is performed at a temperature of 450 ° C. or lower, so that the silica matrix constituting the functional membrane 5 can pass ions, and the ion exchange through the functional membrane 5 is performed in the chemical strengthening step. This is considered to be done well.
  • the reason why it is necessary to include the hollow silica sol at a certain ratio or more in the above-mentioned Patent Document 1 is that the matrix is dense because the low-reflection film is baked at a high temperature, and ions are contained therein. It is thought that it cannot pass.
  • a chemically strengthened glass plate with a functional film can be obtained by performing chemical strengthening after the film is formed.
  • the manufacturing method of the chemically strengthened glass plate with a functional film of this invention is a functional film at the temperature of 450 degrees C or less from the said coating liquid.
  • a glass plate that is not heat-treated at a temperature higher than 450 ° C. is used as a starting material, and the method may include a step of chemically strengthening the glass plate.
  • the chemically strengthened glass plate with a functional film obtained by the method for producing a chemically strengthened glass plate with a functional film of the present invention can be used for various applications depending on the type of the functional film.
  • Specific examples include transparent parts for vehicles (headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, instrument panel surfaces, etc.), meters, architectural windows, show windows, displays (notebook type) PC, monitor, LCD, PDP IV, ELD, CRT, PDA, etc.), LCD color filter, touch panel substrate, pickup lens, optical lens, eyeglass lens, camera component, video component, CCD cover substrate, optical fiber end surface, projector component , Copier parts, transparent substrates for solar cells (cover glass, etc.), mobile phone windows, backlight unit parts (light guide plates, cold cathode tubes, etc.), LCD brightness enhancement films, organic EL light-emitting element parts, inorganic EL light emission Element parts, phosphor light emitting element parts, optical filters, end faces of optical parts, lighting A lamp, a
  • the article of the present invention includes the above-described chemically strengthened glass plate with a functional film or the chemically strengthened glass plate with a functional film obtained by the above-described manufacturing method.
  • the article of the present invention may be composed of the chemically strengthened glass plate with the functional film, or may further include other members other than the chemically strengthened glass plate with the functional film. Further, a functional film may be provided on a part of the chemically strengthened glass plate.
  • Examples of the article of the present invention include those mentioned above as the uses of the chemically strengthened glass plate with a functional film, devices provided with any one or more of them. Examples of the device include a solar cell module, a display device, and a lighting device as an example in which the functional film is an antiglare film (may or may not have low reflectivity) or a low reflection film. Is mentioned.
  • the solar cell module includes a solar cell and a transparent substrate (cover glass or the like) disposed on each of the front and back surfaces of the solar cell in order to protect the solar cell, and at least one of the transparent substrates (preferably a transparent substrate) Are preferably those using the above-mentioned chemically strengthened glass plate with a functional film as a transparent substrate on the front side.
  • the display device include a mobile phone, a smartphone, a tablet, and a car navigation.
  • the illumination device include an organic EL (electroluminescence) illumination device and an LED (light emitting diode) illumination device.
  • Example 3 to 11 and Examples 14 and 15 are examples, and Examples 1, 2, 12, 13, and 16 are comparative examples.
  • the measurement / evaluation method and materials (source or preparation method) used in each example are shown below.
  • glossiness As the glossiness of the surface of the antiglare film, 60 ° specular glossiness was measured. The 60 ° specular gloss was measured at a substantially central portion of the antiglare film by using a gloss meter (PG-3D type, manufactured by Nippon Denshoku Industries Co., Ltd.) according to the method defined in JIS Z8741: 1997.
  • the glossiness of the surface of the antiglare film is influenced by the reflection of the back surface of the glass plate by attaching black vinyl tape to the back surface (surface opposite to the antiglare film) of the chemically strengthened glass plate with antiglare film. It measured in the state which lost. It shows that it is excellent in anti-glare property, so that glossiness is small.
  • the arithmetic average roughness Ra of the surface of the antiglare film was measured by a method described in JIS B0601: 2001 using a surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd., Surfcom (registered trademark) 1500DX).
  • the reference length lr (cut-off value ⁇ c) for the roughness curve was 0.08 mm.
  • Td Transmissivity difference
  • T1-T2 T1-T2 (1)
  • T1 is the average transmittance (%) of the chemically strengthened glass plate with a low reflection film
  • T2 is the average transmittance (%) of the glass plate before forming the low reflection film.
  • the film thickness d (nm) of the low-reflection film is a spectrophotometer (Otsuka Electronics Co., Ltd.) with a black vinyl tape attached to the back surface (surface opposite to the low-reflection film) of the chemically tempered glass plate with the low-reflection film.
  • the reflectance of the low-reflection film is measured in the wavelength range of 300 to 780 nm using an instantaneous multi-metering system MCPD-3000), and the lowest reflectance (bottom reflectance R min ) obtained and the low-reflection film
  • the refractive index n is calculated by the following formula (2) from the refractive index n s of the glass plate before forming, and the following formula is calculated from the obtained refractive index n and the wavelength ⁇ (nm) at the bottom reflectance R min . Calculated according to (3).
  • R min (n ⁇ n s ) 2 / (n + n s ) 2 (2)
  • n ⁇ d ⁇ / 4
  • the abrasion resistance of the surface of the anti-glare film was determined by attaching an eraser (Lion Secretariat, GAZA1K, length 18 mm ⁇ width 11 mm) to a rubbing tester (Ohira Rika Kogyo Co., Ltd.) and attaching the eraser to 9.8 ⁇ 10 ⁇ 2. Horizontal reciprocation was performed on the surface of the antiglare film at a pressure of MPa. The difference (absolute value) in 60 ° specular gloss on the surface of the antiglare film before and after reciprocating the eraser 200 times was determined as wear resistance ⁇ G. The smaller the difference in 60 ° specular gloss, the better the wear resistance. The 60 ° specular gloss was measured on an article with an antiglare film in which a black tape was not attached to the surface opposite to the side on which the antiglare film was formed.
  • SiO 2 equivalent solid content concentration 29% by mass
  • SiO 2 equivalent solid content concentration 29% by mass
  • silica precursor solution (a-2) preparation of silica precursor solution (a-2)
  • a mixed solution of 7.9 g of ion exchange water and 0.2 g of 61% by mass nitric acid was added and stirred for 5 minutes.
  • 11.6 g of 1,6-bis (trimethoxysilyl) hexane manufactured by Shin-Etsu Silicone Co., Ltd., trade name “KBM3066”, solid content concentration of SiO 2 : 37 mass%) was added, and the mixture was added at 15 ° C. in a water bath at 60 ° C.
  • a silica precursor solution (a-2) having a solid content concentration in terms of SiO 2 of 4.3% by mass.
  • the solid content concentration in terms of SiO 2 is the solid content concentration when all Si of 1,6-bis (trimethoxysilyl) hexane is converted to SiO 2 .
  • Solid silica particle dispersion (b) A chain SiO 2 fine particle dispersion (trade name: “Snowtex OUP”, manufactured by Nissan Chemical Industries, Ltd., solid content concentration of 15.5% by mass of SiO 2 , average primary particle size of 10 to 20 nm, average aggregated particle size of 40 to 100 nm ).
  • the content of the coating solution (B) chain in solid silica particles in is 70 mass% with respect to SiO 2 in terms the solid content of the coating solution (B).
  • the average aggregate particle diameter of the chain solid silica particles in the coating liquid (B) was 70 nm.
  • Example 1 As a glass plate, a soda-lime glass plate (manufactured by Asahi Glass Co., Ltd., product name: FL1.1, size: 100 mm ⁇ 100 mm, thickness 1.1 mm, glass strain point temperature: 511 ° C.) was prepared. The glass plate was subjected to ultrasonic cleaning treatment in pure water, air-dried, treated in a preheating furnace at 420 ° C. for 120 minutes, and then immersed in a KNO 3 melting bath at 420 ° C. for 150 minutes. After the treatment, the glass plate was taken out and cooled at room temperature for 60 minutes, and a chemically strengthened glass plate was obtained by ultrasonic cleaning treatment and air drying in pure water. Table 1 shows the surface compressive stress of the obtained chemically strengthened glass plate and the thickness of the compressive stress layer.
  • Example 2 Except for changing the glass plate to an aluminosilicate glass plate (manufactured by Asahi Glass Co., Ltd., product name: glass before strengthening of Leoflex. Size: 100 mm ⁇ 100 mm, thickness 0.85 mm, glass strain point temperature: 556 ° C.) In the same manner as in Example 1, a chemically strengthened glass plate was obtained. Table 2 shows the surface compressive stress of the obtained tempered glass sheet and the thickness of the compressive stress layer.
  • aluminosilicate glass plate manufactured by Asahi Glass Co., Ltd., product name: glass before strengthening of Leoflex. Size: 100 mm ⁇ 100 mm, thickness 0.85 mm, glass strain point temperature: 556 ° C.
  • Example 3 Glass plate and its cleaning
  • a soda-lime glass plate manufactured by Asahi Glass Co., Ltd., product name: FL1.1, size: 100 mm ⁇ 100 mm, thickness 1.1 mm, glass strain point temperature: 511 ° C.
  • the surface of the glass plate was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried.
  • a chemically strengthened glass plate with an antiglare film was obtained by performing a chemical strengthening treatment in the same manner as in Example 1 except that the glass plate with an antiglare film was used instead of the glass plate of Example 1.
  • Table 1 shows the surface compressive stress, the thickness of the compressive stress layer, the glossiness, and the arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
  • Example 4 to 6 A chemically strengthened glass plate with an antiglare film in the same manner as in Example 3 except that the coating solution (A) was applied so as to have the arithmetic average roughness Ra shown in Table 1 under the coating conditions and drying conditions shown in Table 1.
  • Table 1 shows the surface compressive stress, the thickness of the compressive stress layer, the glossiness, and the arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
  • Example 7 The glass plate was changed to an aluminosilicate glass plate (manufactured by Asahi Glass Co., Ltd., product name: glass before strengthening of Leoflex. Size: 100 mm ⁇ 100 mm, thickness 0.85 mm, glass strain point temperature: 556 ° C.) A) was changed to the coating solution shown in Table 2, and the coating solution and drying conditions shown in Table 2 were applied in the same manner as in Example 3 except that the coating was applied so that the arithmetic average roughness Ra shown in Table 2 was obtained. A chemically strengthened glass plate with a glare film was obtained. Table 2 shows the surface compressive stress, thickness of the compressive stress layer, glossiness, and arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
  • Table 2 shows the surface compressive stress, thickness of the compressive stress layer, glossiness, and arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
  • Example 8 to 9 A chemically strengthened glass plate with an antiglare film was applied in the same manner as in Example 7 except that the coating solution was applied so as to have the arithmetic average roughness Ra shown in Table 2 under the coating solution, coating conditions, and drying conditions shown in Table 2. Obtained.
  • Table 2 shows the surface compressive stress, thickness of the compressive stress layer, glossiness, and arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
  • Example 10 to 11 A chemically strengthened glass plate with an antiglare film was obtained in the same manner as in Example 3 except that the coating liquid was applied so as to have the arithmetic average roughness Ra shown in Table 1 at the coating liquid and drying temperature shown in Table 1.
  • Table 1 shows the surface compressive stress, the thickness of the compressive stress layer, the glossiness, and the arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
  • Example 12 (Chemically strengthened glass plate and its cleaning)
  • a chemically strengthened aluminosilicate glass plate manufactured by Asahi Glass Co., Ltd., product name: Leoflex, size: 100 mm ⁇ 100 mm, thickness 0.85 mm, glass strain point temperature: 556 ° C.
  • the surface of the glass plate was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried.
  • Example 13 A chemically strengthened glass plate with an antiglare film was applied in the same manner as in Example 12 except that the coating liquid was applied so as to have the arithmetic average roughness Ra shown in Table 3 under the coating liquid, coating conditions, and drying conditions shown in Table 3. Obtained.
  • Table 3 shows the surface compressive stress, the thickness of the compressive stress layer, the glossiness, the arithmetic average roughness Ra, and the wear resistance ⁇ G of the obtained chemically strengthened glass plate with an antiglare film.
  • Example 14 (Production of glass plate with low reflection film)
  • an aluminosilicate glass plate manufactured by Asahi Glass Co., Ltd., product name: glass before strengthening of Leoflex. Size: 100 mm ⁇ 100 mm, thickness 0.85 mm, glass strain point temperature: 556 ° C.
  • the glass plate was preheated in a preheating furnace (manufactured by ISUZU, VTR-115). Coating the reverse roll coater (manufactured by Sanwa Seiki Co., Ltd.) on the glass plate with the coating solution (C) under the following conditions with the glass surface temperature kept at 30 ° C.
  • the coating liquid (C) was applied with a predetermined film thickness using a roll to produce a glass plate with a low reflection film.
  • the other conditions at the time of application are as shown in Table 2.
  • ⁇ Conveying speed of glass plate 8.5 m / min
  • ⁇ Gap between coating roll and conveyor belt 2.9 mm
  • ⁇ Indentation thickness between coating roll and doctor roll 0.6 mm.
  • As the coating roll a rubber lining roll lined with rubber (ethylene propylene diene rubber) having a surface hardness (JIS-A) of 30 was used.
  • As the doctor roll a metal roll having lattice-like grooves formed on the surface thereof was used. Then, it dried at 200 degreeC for 30 minutes, and obtained the glass plate with a low reflection film.
  • Example 2 shows the surface compressive stress, the thickness of the compressive stress layer, the transmittance difference Td, and the film thickness of the low reflective film of the obtained chemically strengthened glass plate with the low reflective film.
  • Example 15 to 16 A chemically strengthened glass plate with a low reflection film was obtained in the same manner as in Example 14 except that the drying temperature was changed to the temperature shown in Table 2.
  • Table 2 shows the surface compressive stress, the thickness of the compressive stress layer, the transmittance difference Td, and the film thickness of the low reflective film of the obtained chemically strengthened glass plate with the low reflective film.
  • Example 1 When Example 1 is compared with Examples 3 to 6 and 10 to 11, the chemically strengthened glass plates with antiglare films of Examples 3 to 6 and 10 to 11 are chemically strengthened after the formation of the functional film (antiglare film).
  • the thickness of the compressive stress layer of the chemically strengthened glass plate was equal to or greater than that of the chemically strengthened glass plate of Example 1 in which chemical strengthening was performed without forming a functional film.
  • the surface compressive stress of the chemically strengthened glass plate was equal to or higher than that of the chemically strengthened glass plate of Example 1.
  • Example 2 When Example 2 is compared with 7 to 9 and 14 to 16, the chemically strengthened glass plate with antiglare film of Examples 7 to 9 and the chemically strengthened glass plate with low reflection film of Examples 14 and 15 are functional films (antiglare).
  • Example 2 in which chemical strengthening was performed after formation of the film, low-reflection film, and the surface compressive stress of the chemically strengthened glass plate and the thickness of the compressive stress layer were chemically strengthened without forming a functional film. It was equal to or better than the chemically strengthened glass plate.
  • the chemically tempered glass plate with a low reflection film of Example 16 in which the coating film was dried at 500 ° C. had the surface compressive stress of the chemically tempered glass plate and the thickness of the compressive stress layer of the chemically tempered glass plate of Example 2.
  • Example 8 that has been chemically strengthened after forming the functional film can only be chemically strengthened at least as much as Example 2. Rather, it had sufficient wear resistance.
  • the process of forming the functional film is not only performed at a temperature of 450 ° C. or lower, but also by performing chemical strengthening after the functional film is formed, for example, densification is performed while maintaining a structure through which ions can pass. Abrasion is considered to improve.
  • the chemical strengthening glass plate with a functional film by which physical deterioration by the contact of an object was suppressed by chemically strengthening can be provided.
  • a method for producing a chemically tempered glass plate with a functional film capable of satisfactorily chemically strengthening the glass plate after forming the functional film, a chemically tempered glass plate with a functional film obtained by the production method, and a chemically tempered glass plate with the functional film can be provided.
  • physical deterioration due to contact with an object was suppressed by chemical strengthening after coating of the functional film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Provided are: a method for producing a chemically toughened glass plate with a function film, which is capable of reliably performing chemical toughening of a glass plate after the formation of a function film; a chemically toughened glass plate with a function film, which is obtained by the production method; and an article which is provided with the chemically toughened glass plate with a function film. A chemically toughened glass plate with a function film, which is a chemically toughened glass plate that is provided with a function film on at least one surface, and wherein a part having the functional film containing a silica matrix has a wear resistance that is expressed as the difference between the specular gloss at 60˚ before a wear resistance test and the specular gloss at 60˚ after the wear resistance test, said difference being 20 or less. A method for producing a chemically toughened glass plate with a function film (1) comprising a chemically toughened glass plate (3) and a function film (5), which comprises: a step wherein a coating liquid that contains a silica precursor and a liquid medium so that the content of the silica precursor is 15% by mass or more relative to the solid content in terms of oxides in the coating liquid and the content of hollow silica particles is less than 10% by mass relative to the solid content in terms of oxides in the coating liquid is applied over a glass plate and dried thereon, thereby forming a function film (5); and a step wherein the glass plate, which has been provided with the function film (5), is subjected to chemical toughening, thereby obtaining a chemically toughened glass plate with a function film (1). In this connection, the step for forming the function film (5) is carried out at a temperature of 450°C or less.

Description

機能膜付き化学強化ガラス板、その製造方法および物品Chemically tempered glass plate with functional film, manufacturing method thereof and article
 本発明は、機能膜付き化学強化ガラス板、機能膜付き化学強化ガラス板の製造方法、該製造方法により得られる機能膜付き化学強化ガラス板、および該機能膜付き化学強化ガラス板を備える物品に関する。 The present invention relates to a chemically strengthened glass plate with a functional film, a method for producing a chemically strengthened glass plate with a functional film, a chemically strengthened glass plate with a functional film obtained by the production method, and an article comprising the chemically strengthened glass plate with the functional film. .
 従来、ガラス板の表面に、防眩膜、低反射膜等の機能膜を形成することが行われている。機能膜の形成方法の一つとして、アルコキシシラン等のシリカ前駆体を含む塗布液をガラス板上に塗布し乾燥または焼成する方法がある。該方法は、プロセスが簡便で、塗布液の組成や塗布方法によって機能膜の性能を制御できる。例えば塗布液に低屈折率の材料を配合すると、低反射性を有する機能膜が形成される。また、表面に凹凸が形成されるように塗布液を塗布すると、防眩性を有する機能膜が形成される。 Conventionally, functional films such as an antiglare film and a low reflection film have been formed on the surface of a glass plate. As one method for forming a functional film, there is a method in which a coating solution containing a silica precursor such as alkoxysilane is applied on a glass plate and dried or baked. This method has a simple process, and the performance of the functional film can be controlled by the composition of the coating solution and the coating method. For example, when a material having a low refractive index is blended in the coating solution, a functional film having low reflectivity is formed. Moreover, when a coating liquid is applied so that irregularities are formed on the surface, a functional film having an antiglare property is formed.
 一方、化学強化法によりガラス板を強化することが行われている。化学強化法では、ガラスの歪点温度以下の温度でガラス板を溶融塩に浸漬して、ガラス板表層のイオン(例えばナトリウムイオン)を、より大きなイオン半径のイオン(例えばカリウムイオン)へと交換する。これにより、ガラス板表層に圧縮応力が生じ、傷や衝撃に対する耐性が向上する。 On the other hand, the glass plate is strengthened by a chemical strengthening method. In the chemical strengthening method, a glass plate is immersed in a molten salt at a temperature lower than the strain point temperature of the glass, and ions (for example, sodium ions) on the surface of the glass plate are exchanged for ions having a larger ion radius (for example, potassium ions). To do. Thereby, compressive stress arises in a glass plate surface layer, and the tolerance with respect to a crack and an impact improves.
 機能膜の形成後に化学強化を行う場合、機能膜によってイオン交換が阻害され、ガラス板を充分に強化できない懸念がある。そのため、化学強化され、かつ機能膜が形成されたガラス板を製造する場合、ガラス板を化学強化し、その後に機能膜を形成する方法が適していると考えられる。しかし、化学強化の後に機能膜を形成することは、強化応力が低下しないよう機能膜の焼成条件の最適化するのに煩雑であったり、加温が必要な工程が複数回必要であったりするため、生産性の点で望ましくない。
 そこで、ガラス板の表面に低反射膜を形成した後、化学強化処理を行って低反射膜付き強化ガラス板を製造する方法が提案されている(特許文献1参照)。特許文献1に記載の方法では、低反射膜の形成に、特定のケイ素化合物と中空シリカゾルと金属キレート化合物とを特定の重量比で含む塗布液を用いることで、低反射膜を通してのイオン交換が可能で、化学強化処理を効果的に行うことができるとされている。
When chemical strengthening is performed after the formation of the functional film, there is a concern that ion exchange is inhibited by the functional film and the glass plate cannot be sufficiently strengthened. Therefore, when manufacturing the glass plate chemically strengthened and the functional film was formed, the method of chemically strengthening a glass plate and forming a functional film after that is considered suitable. However, forming a functional film after chemical strengthening is troublesome in optimizing the firing conditions of the functional film so that the strengthening stress does not decrease, or a process requiring heating is required multiple times. Therefore, it is not desirable in terms of productivity.
Then, after forming a low reflection film on the surface of a glass plate, the method of performing a chemical strengthening process and manufacturing the tempered glass plate with a low reflection film is proposed (refer patent document 1). In the method described in Patent Document 1, ion exchange through the low-reflection film can be performed by using a coating solution containing a specific silicon compound, a hollow silica sol, and a metal chelate compound in a specific weight ratio for forming the low-reflection film. It is possible to perform chemical strengthening treatment effectively.
特開2011-88765号公報JP 2011-88765 A
 しかし、特許文献1に記載の方法は、塗布液の組成が限定されているため、低反射膜以外の機能膜の形成には適さない。また、機能膜形成用の材料としては、比較的高価な中空シリカゾルを所定の割合で含む必要があるためコストがかかる。さらに、ガラス板の化学強化効果も充分とはいえない。 However, the method described in Patent Document 1 is not suitable for forming a functional film other than the low reflection film because the composition of the coating solution is limited. Further, the material for forming the functional film is expensive because it needs to contain a relatively expensive hollow silica sol at a predetermined ratio. Furthermore, the chemical strengthening effect of the glass plate is not sufficient.
 本発明は、上記事情に鑑みなされたものであり、機能膜を形成した後にガラス板を良好に化学強化できる機能膜付き化学強化ガラス板の製造方法、該製造方法により得られる機能膜付き化学強化ガラス板、および該機能膜付き化学強化ガラス板を備える物品を提供することを目的とする。
 また、機能膜を形成した後に化学強化することで物体の接触による物理的劣化が抑えられた機能膜付き化学強化ガラス板を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a method for producing a chemically tempered glass plate with a functional film that can satisfactorily chemically strengthen the glass plate after forming the functional film, and a chemical tempering with a functional film obtained by the production method. It aims at providing the articles | goods provided with a glass plate and this chemically strengthened glass plate with a functional film.
It is another object of the present invention to provide a chemically strengthened glass plate with a functional film in which physical deterioration due to contact with an object is suppressed by chemical strengthening after forming the functional film.
 本発明は、以下の態様を有する。 The present invention has the following aspects.
 [1]少なくとも一方の面にシリカ系マトリクスを含む機能膜を備える化学強化ガラス板であって、前記シリカ系マトリクスを含む機能膜を有する部分が、耐摩耗性試験前と耐摩耗性試験後のそれぞれにおける60°鏡面光沢度の差として20以下の耐摩耗性を有する、機能膜付き化学強化ガラス板。
 [2]前記シリカ系マトリクスは、シリカがマトリクス中に50%以上含まれる、[1]に記載の機能膜付き化学強化ガラス板。
 [3]前記機能膜を有する部分が、耐摩耗性試験前と耐摩耗性試験後のそれぞれにおける60°鏡面光沢度の差として10以下の耐摩耗性を有する、[1]または[2]に記載の機能膜付き化学強化ガラス板。
 [4]表面圧縮応力が、400MPa以上、圧縮応力厚みが5μm以上である、[1]乃至[3]のいずれか一項に記載の機能膜付き化学強化ガラス板。
 [5]前記化学強化ガラス板が、酸化物基準のモル百分率表示で、SiOを56~75%、Alを1~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~10%含有する、[1]乃至[4]のいずれか一項に記載の機能膜付き化学強化ガラス板。
 [6]前記機能膜が、防眩膜である、[1]乃至[5]のいずれか一項に記載の機能膜付き化学強化ガラス板。
 [7]前記機能膜が、中実無機粒子をさらに含む、[1]乃至[6]のいずれか一項に記載の機能膜付き化学強化ガラス板。
 [8]ガラス板上に機能膜が形成され、当該ガラス板に化学強化処理が施される機能膜付き化学強化ガラス板の製造方法であって、
 ガラス板上に、下記の塗布液を塗布し、乾燥して機能膜を形成する工程と、
 前記機能膜が形成されたガラス板を化学強化して機能膜付き化学強化ガラス板を得る工程と、を有し、
 前記機能膜を形成する工程を、450℃以下の温度で行うことを特徴とする、機能膜付き化学強化ガラス板の製造方法。
 塗布液:ケイ素原子に結合した加水分解性基を有するシラン化合物およびその加水分解縮合物からなる群から選ばれる少なくとも1種のシリカ前駆体と、液状媒体とを含み、前記シリカ前駆体の含有量が、前記塗布液中の酸化物換算固形分に対して15質量%以上である。
 [9]ガラス板上に機能膜が形成され、当該ガラス板に化学強化処理が施される機能膜付き化学強化ガラス板の製造方法であって、
 下記の塗布液から450℃以下の温度で機能膜が形成され、その後、450℃超の温度で熱処理されていないガラス板を化学強化して機能膜付き化学強化ガラス板を得る工程を有することを特徴とする、機能膜付き化学強化ガラス板の製造方法。
 塗布液:ケイ素原子に結合した加水分解性基を有するシラン化合物およびその加水分解縮合物からなる群から選ばれる少なくとも1種のシリカ前駆体と、液状媒体とを含み、前記シリカ前駆体の含有量が、前記塗布液中の酸化物換算固形分に対して15質量%以上である。
 [10]前記ガラス板が以下の組成を有する、[8]または[9]に記載の機能膜付き化学強化ガラス板の製造方法。
 ガラス組成:酸化物基準のモル百分率表示で、SiOを56~75%、Alを1~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~10%含有する。
 [11]前記塗布液が、中実無機粒子をさらに含み、前記中実無機粒子の含有量が、前記塗布液中の酸化物換算固形分に対して10~85質量%である、[8]乃至[10]のいずれか一項に記載の機能膜付き化学強化ガラス板の製造方法。
 [12][8]乃至[11]のいずれか一項に記載の機能膜付き化学強化ガラス板の製造方法により得られる機能膜付き化学強化ガラス板。
 [13][1]乃至[7]、[12]のいずれか一項に記載の機能膜付き化学強化ガラス板を備える物品。
[1] A chemically strengthened glass plate provided with a functional film containing a silica-based matrix on at least one surface, wherein the portion having the functional film containing the silica-based matrix is before and after the abrasion resistance test. A chemically strengthened glass plate with a functional film, having a wear resistance of 20 or less as a difference in 60 ° specular gloss in each.
[2] The chemically strengthened glass plate with a functional film according to [1], wherein the silica-based matrix contains 50% or more of silica in the matrix.
[3] The portion having the functional film has an abrasion resistance of 10 or less as a difference in 60 ° specular gloss before and after the abrasion resistance test, according to [1] or [2] The chemically strengthened glass plate with a functional film as described.
[4] The chemically strengthened glass plate with a functional film according to any one of [1] to [3], wherein the surface compressive stress is 400 MPa or more and the compressive stress thickness is 5 μm or more.
[5] The chemically strengthened glass plate is expressed in terms of a molar percentage based on oxide, and includes SiO 2 of 56 to 75%, Al 2 O 3 of 1 to 20%, Na 2 O of 8 to 22%, and K 2 O of The chemically strengthened glass with a functional film according to any one of [1] to [4], containing 0 to 10%, MgO 0 to 14%, ZrO 2 0 to 5%, and CaO 0 to 10%. Board.
[6] The chemically strengthened glass plate with a functional film according to any one of [1] to [5], wherein the functional film is an antiglare film.
[7] The chemically strengthened glass plate with a functional film according to any one of [1] to [6], wherein the functional film further includes solid inorganic particles.
[8] A method for producing a chemically strengthened glass plate with a functional film in which a functional film is formed on a glass plate, and the glass plate is subjected to a chemical strengthening treatment,
Applying the following coating solution on a glass plate and drying to form a functional film;
Chemically strengthening the glass plate on which the functional film is formed to obtain a chemically strengthened glass plate with a functional film, and
A method for producing a chemically strengthened glass plate with a functional film, wherein the step of forming the functional film is performed at a temperature of 450 ° C. or lower.
Coating solution: at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium, and the content of the silica precursor However, it is 15 mass% or more with respect to the oxide conversion solid content in the said coating liquid.
[9] A method for producing a chemically strengthened glass plate with a functional film in which a functional film is formed on a glass plate, and the glass plate is subjected to a chemical strengthening treatment,
A functional film is formed from the following coating solution at a temperature of 450 ° C. or lower, and then a glass plate that has not been heat-treated at a temperature higher than 450 ° C. is chemically strengthened to obtain a chemically strengthened glass plate with a functional film. A method for producing a chemically strengthened glass plate with a functional film, which is characterized.
Coating solution: at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium, and the content of the silica precursor However, it is 15 mass% or more with respect to the oxide conversion solid content in the said coating liquid.
[10] The method for producing a chemically strengthened glass plate with a functional film according to [8] or [9], wherein the glass plate has the following composition.
Glass composition: expressed in terms of mole percentage on oxide basis, SiO 2 56-75%, Al 2 O 3 1-20%, Na 2 O 8-22%, K 2 O 0-10%, MgO 0-14%, ZrO 2 0-5% and CaO 0-10%.
[11] The coating liquid further contains solid inorganic particles, and the content of the solid inorganic particles is 10 to 85% by mass with respect to the oxide-converted solid content in the coating liquid. [8] Thru | or the manufacturing method of the chemically strengthened glass plate with a functional film as described in any one of [10].
[12] A chemically strengthened glass plate with a functional film obtained by the method for producing a chemically strengthened glass plate with a functional film according to any one of [8] to [11].
[13] An article comprising the chemically strengthened glass plate with a functional film according to any one of [1] to [7] and [12].
 本発明によれば、機能膜を形成した後にガラス板を良好に化学強化できる機能膜付き化学強化ガラス板の製造方法、該製造方法により得られる機能膜付き化学強化ガラス板、および該機能膜付き化学強化ガラス板を備える物品を提供できる。特に、機能膜を形成した後に化学強化することにより、機能膜の硬化が進行し、物体の接触による物理的劣化が抑えられる。 ADVANTAGE OF THE INVENTION According to this invention, after forming a functional film, the manufacturing method of the chemically strengthened glass plate with a functional film which can chemically strengthen a glass plate, the chemically strengthened glass plate with a functional film obtained by this manufacturing method, and with this functional film An article comprising a chemically strengthened glass plate can be provided. In particular, by chemically strengthening after the functional film is formed, the functional film is cured, and physical deterioration due to contact with an object is suppressed.
本発明の機能膜付き化学強化ガラス板の製造方法により製造される機能膜付き化学強化ガラス板の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the chemically strengthened glass plate with a functional film manufactured by the manufacturing method of the chemically strengthened glass plate with a functional film of this invention.
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「化学強化ガラス板」は、化学強化法により強化(化学強化)されたガラス板である。
 化学強化法は、ガラス板の表層に圧縮応力層を形成する方法の一つであり、ガラスの歪点温度以下の温度でガラス板を溶融塩に浸漬して、ガラス板表層のイオン(例えばナトリウムイオン)を、より大きなイオン半径のイオン(例えばカリウムイオン)へと交換する方法である。これにより、ガラス板表層に圧縮応力が生じる。なお、ガラスの歪点は、軟化点よりも低い。
 「圧縮応力層」は、所望の表面圧縮応力を有する層(化学強化層)である。
 化学強化ガラス板の表面圧縮応力および圧縮応力層の厚さは、表面応力計(例えば折原製作所製:FSM-6000LE)により測定される。
The following definitions of terms apply throughout this specification and the claims.
The “chemically tempered glass plate” is a glass plate tempered (chemically strengthened) by a chemical strengthening method.
The chemical strengthening method is one of the methods for forming a compressive stress layer on the surface of the glass plate. The glass plate is immersed in a molten salt at a temperature equal to or lower than the strain point temperature of the glass, and ions on the surface of the glass plate (for example, sodium). This is a method of exchanging ions) for ions having a larger ion radius (for example, potassium ions). Thereby, compressive stress arises in a glass plate surface layer. The strain point of glass is lower than the softening point.
The “compressive stress layer” is a layer (chemical strengthening layer) having a desired surface compressive stress.
The surface compressive stress of the chemically strengthened glass plate and the thickness of the compressive stress layer are measured by a surface stress meter (for example, FSM-6000LE manufactured by Orihara Seisakusho).
 「シリカ前駆体」とは、シリカを主成分とするマトリックスを形成し得る物質を意味する。
 「シリカを主成分とする」とは、SiOを90質量%以上含むことを意味する。
 「ケイ素原子に結合した加水分解性基」とは、加水分解によって、ケイ素原子に結合したOH基に変換し得る基を意味する。
 酸化物換算固形分とは、塗布液に含まれる成分のうち、金属元素を含む成分の酸化物換算(金属酸化物換算)の含有量の合計を意味する。
 酸化物換算固形分に対する割合として示される含有量は、酸化物換算の含有量である。例えばシリカ前駆体の含有量は、SiO換算量である。すなわち、シリカ前駆体に含まれる全てのSiがSiOに転化したときの含有量である。
“Silica precursor” means a substance capable of forming a matrix mainly composed of silica.
“Containing silica as a main component” means containing 90 mass% or more of SiO 2 .
The “hydrolyzable group bonded to a silicon atom” means a group that can be converted into an OH group bonded to a silicon atom by hydrolysis.
Oxide conversion solid content means the sum total of the oxide conversion (metal oxide conversion) content of the component containing a metal element among the components contained in a coating liquid.
Content shown as a ratio with respect to oxide conversion solid content is content of oxide conversion. For example, the content of the silica precursor is an amount equivalent to SiO 2 . That is, the content when all Si contained in the silica precursor is converted to SiO 2 .
<機能膜付き化学強化ガラス板>
 図1は、本発明の機能膜付き化学強化ガラス板の一例を模式的に示す断面図である。
 この例の機能膜付き化学強化ガラス板1は、機能膜5と該機能膜5を表面に備えた化学強化ガラス板3とからなる。なお、機能膜5が形成されるガラス板(化学強化される前のガラス板:未強化ガラス板)を、ガラス板3と称することもある。
 機能膜5は、単層の膜であってもよく、複層の膜であってもよい。
<Chemical tempered glass plate with functional film>
FIG. 1 is a cross-sectional view schematically showing an example of a chemically strengthened glass plate with a functional film of the present invention.
The chemically strengthened glass plate 1 with a functional film in this example includes a functional film 5 and a chemically strengthened glass plate 3 having the functional film 5 on the surface. A glass plate on which the functional film 5 is formed (a glass plate before chemical strengthening: an unstrengthened glass plate) may be referred to as a glass plate 3.
The functional film 5 may be a single layer film or a multilayer film.
(化学強化ガラス板)
 化学強化ガラス板3の厚さは、2mm未満が好ましく、0.33mm以上1.1mm以下がより好ましく、0.7mm以上1.1mm以下が特に好ましい。
 厚さが2mm未満であるガラス板は、風冷強化法での強化が難しい。そのため、強化するガラス板の厚さが2mm未満の場合に本発明の有用性が高い。また、化学強化ガラス板3の厚さが薄いほど、光の吸収が低く抑えられ、透過率向上を目的とする用途にとって好ましい。また、単位面積当たりの機能膜付き化学強化ガラス板1の質量が軽くなり、機能膜付き化学強化ガラス板1を備える物品を軽量化できる。
 化学強化ガラス板3の厚さが0.33mm以上であると、機能膜付き化学強化ガラス板1が大きい場合(例えば長辺が300mm以上)でもたわみが小さく扱いやすい。
(Chemical tempered glass plate)
The thickness of the chemically strengthened glass plate 3 is preferably less than 2 mm, more preferably 0.33 mm to 1.1 mm, and particularly preferably 0.7 mm to 1.1 mm.
A glass plate having a thickness of less than 2 mm is difficult to strengthen by the air-cooling strengthening method. Therefore, the usefulness of this invention is high when the thickness of the glass plate to strengthen is less than 2 mm. Further, the thinner the chemically strengthened glass plate 3 is, the lower the light absorption is, and it is preferable for the purpose of improving the transmittance. Moreover, the mass of the chemically strengthened glass plate 1 with a functional film per unit area becomes light, and an article provided with the chemically strengthened glass plate 1 with a functional film can be reduced in weight.
When the thickness of the chemically strengthened glass plate 3 is 0.33 mm or more, even when the chemically strengthened glass plate 1 with a functional film is large (for example, the long side is 300 mm or more), the deflection is small and easy to handle.
 化学強化ガラス板3は、表面圧縮応力が400MPa以上、圧縮応力層の厚さが5μm以上であることが好ましい。表面圧縮応力が400MPa以上、且つ圧縮応力層の厚さが5μm以上であれば、化学強化ガラス板3が傷など物理的衝撃への耐久性に優れる。
 化学強化ガラス板3の表面圧縮応力は、用途によっては、500MPa以上がより好ましく、600MPa以上がさらに好ましい。また、典型的には、表面圧縮応力は、800MPa以下である。
 圧縮応力層の厚さは、10μm以上であることがより好ましく、20μm以上であることがより一層好ましく、25μm超であることがさらに好ましい。また、典型的には、圧縮応力層の厚さは70μm以下である。
 化学強化される前のガラス板(未強化ガラス板)については後で詳しく説明する。
The chemically strengthened glass plate 3 preferably has a surface compressive stress of 400 MPa or more and a compressive stress layer thickness of 5 μm or more. If the surface compressive stress is 400 MPa or more and the thickness of the compressive stress layer is 5 μm or more, the chemically strengthened glass plate 3 is excellent in durability against physical impacts such as scratches.
The surface compressive stress of the chemically strengthened glass plate 3 is more preferably 500 MPa or more, and further preferably 600 MPa or more, depending on the application. Typically, the surface compressive stress is 800 MPa or less.
The thickness of the compressive stress layer is more preferably 10 μm or more, even more preferably 20 μm or more, and even more preferably more than 25 μm. Further, typically, the thickness of the compressive stress layer is 70 μm or less.
The glass plate before chemical strengthening (unstrengthened glass plate) will be described in detail later.
(機能膜)
 化学強化ガラス板3は、少なくとも一方の面に機能膜5を備える。機能膜5は、ガラス板3の少なくとも一部に備えられる。機能膜5は、ガラス板3の一方の面の一部に備えられてもよいし、一方の面の全面を覆うように備えられてもよい。
 機能膜5は、ケイ素原子に結合した加水分解性基を有するシラン化合物およびその加水分解縮合物からなる群から選ばれる少なくとも1種のシリカ前駆体と、液状媒体とを含む塗布液を塗布し、乾燥することによって形成されるものである。したがって機能膜5は、シリカ前駆体から形成された、シリカを主成分とするマトリックス(以下、シリカ系マトリクスともいう。)を含む。シリカ系マトリクスとは、シリカがマトリクス中に50%以上含まれるものである。
(Functional membrane)
The chemically strengthened glass plate 3 includes a functional film 5 on at least one surface. The functional film 5 is provided on at least a part of the glass plate 3. The functional film 5 may be provided on a part of one surface of the glass plate 3 or may be provided so as to cover the entire surface of the one surface.
The functional film 5 is applied with a coating solution containing at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium, It is formed by drying. Therefore, the functional film 5 includes a matrix mainly composed of silica (hereinafter also referred to as a silica-based matrix) formed from a silica precursor. A silica-based matrix is one in which 50% or more of silica is contained in the matrix.
 シリカ系マトリクスは、シリカ以外の成分を含んでもよい。該成分としては、Li,B,C,N,F,Na,Mg,Al,P,S,K,Ca,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Sr,Y,Zr,Nb,Ru,Pd,Ag,In,Sn,Hf,Ta,W,Pt,Au,Biおよびランタノイド元素の群より選ばれる1つもしくは複数のイオンおよび/または酸化物等の化合物が挙げられる。 The silica-based matrix may contain components other than silica. The components include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, and Sr. , Y, Zr, Nb, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au, Bi and compounds such as one or more ions and / or oxides selected from the group of lanthanoid elements Is mentioned.
 機能膜5は、シリカ系マトリクスのみからなるものでもよく、シリカ系マトリクス以外の他の成分をさらに含むものでもよい。例えばシリカ系マトリクス中に分散した粒子を含んでいてもよい。粒子の種類等については、機能膜を製造するための塗布液の項で詳述する。 The functional film 5 may be composed of only a silica-based matrix, or may further include components other than the silica-based matrix. For example, particles dispersed in a silica-based matrix may be included. The type of particles and the like will be described in detail in the section of the coating liquid for producing the functional film.
 機能膜5としては、前記シリカ前駆体と液状媒体とを含む塗布液から形成し得るものであれば特に限定されず、例えば防眩膜、低反射膜、ガラスのヤケ防止膜、アルカリバリア膜、傷防止膜、防汚膜等が挙げられる。これらの中では、化学強化ガラスが使用される多くの用途において必要性が高い点では、防眩膜または低反射膜が好ましい。
 防眩膜は、防眩性を有する膜である。防眩膜は、低反射性を有する防眩膜(すなわち、低反射性防眩膜)であってもよい。
 低反射膜は、低反射性(すなわち、反射防止性)を有する膜である。
The functional film 5 is not particularly limited as long as it can be formed from a coating solution containing the silica precursor and a liquid medium. For example, an antiglare film, a low reflection film, a glass anti-glare film, an alkali barrier film, Examples thereof include a flaw prevention film and an antifouling film. Among these, an antiglare film or a low reflection film is preferable because it is highly necessary in many applications in which chemically strengthened glass is used.
The antiglare film is a film having an antiglare property. The antiglare film may be an antiglare film having low reflectivity (that is, a low reflectivity antiglare film).
The low reflection film is a film having low reflectivity (that is, antireflection property).
 機能膜5が防眩膜である場合、機能膜5の表面における60゜鏡面光沢度は、80%以下が好ましく、70%以下がより好ましく、60%以下がさらに好ましい。機能膜5の表面における60゜鏡面光沢度が80%以下であれば、防眩効果が充分に発揮される。 When the functional film 5 is an antiglare film, the 60 ° specular gloss on the surface of the functional film 5 is preferably 80% or less, more preferably 70% or less, and even more preferably 60% or less. If the 60 ° specular gloss on the surface of the functional film 5 is 80% or less, the antiglare effect is sufficiently exhibited.
 機能膜5が防眩膜である場合、機能膜5の表面の算術平均粗さRaは、0.04~1.00μmが好ましく、0.06~1.00μmがより好ましく、0.1~0.8μmがさらに好ましい。機能膜5の表面の算術平均粗さRaが前記範囲の下限値以上であれば、防眩効果が充分に発揮される。機能膜5の表面の算術平均粗さRaが前記範囲の上限値以下であれば、機能膜付き化学強化ガラス板1を保護板や各種フィルタとして画像表示装置本体の視認側に設けた場合に、画像のコントラストの低下が充分に抑えられる。 When the functional film 5 is an antiglare film, the arithmetic average roughness Ra of the surface of the functional film 5 is preferably 0.04 to 1.00 μm, more preferably 0.06 to 1.00 μm, and more preferably 0.1 to 0 More preferably, it is 8 μm. If the arithmetic average roughness Ra of the surface of the functional film 5 is not less than the lower limit of the above range, the antiglare effect is sufficiently exhibited. If the arithmetic average roughness Ra of the surface of the functional film 5 is less than or equal to the upper limit of the above range, when the chemically strengthened glass plate 1 with the functional film is provided on the viewing side of the image display device body as a protective plate or various filters, A decrease in image contrast is sufficiently suppressed.
 機能膜5が低反射性を有する防眩膜である場合、機能膜5の屈折率は、1.23~1.47が好ましく、1.25~1.40がより好ましい。機能膜5の屈折率が前記範囲の上限値以下であると、機能膜5の表面での反射が抑えられ、化学強化ガラス板3単独の場合よりも光の透過率が向上する。機能膜5の屈折率が前記範囲の下限値以上であると、機能膜5が緻密で、機能膜5の耐摩耗性等の機械的強度、化学強化ガラス板3との密着性等に優れる。また、機能膜付き化学強化ガラス板1をカバーカラスとして太陽電池の光入射側に設けた場合に、太陽電池の発電効率が良好である。 When the functional film 5 is an antiglare film having low reflectivity, the refractive index of the functional film 5 is preferably 1.23 to 1.47, and more preferably 1.25 to 1.40. When the refractive index of the functional film 5 is not more than the upper limit of the above range, reflection on the surface of the functional film 5 is suppressed, and the light transmittance is improved as compared with the case of the chemically strengthened glass plate 3 alone. When the refractive index of the functional film 5 is equal to or higher than the lower limit of the above range, the functional film 5 is dense and excellent in mechanical strength such as wear resistance of the functional film 5 and adhesion to the chemically strengthened glass plate 3. Moreover, when the chemically strengthened glass plate 1 with a functional film is provided as a cover crow on the light incident side of the solar cell, the power generation efficiency of the solar cell is good.
 機能膜5が低反射膜である場合、機能膜5の膜厚は、30~300nmが好ましく、40~200nmがより好ましい。機能膜5の膜厚が30nm以上であれば、光の干渉が起こり、低反射性能が発現する。機能膜5の膜厚が300nm以下であれば、クラックが発生せずに成膜できる。
 機能膜5の膜厚は、分光光度計により測定された反射率により測定される。
When the functional film 5 is a low reflection film, the thickness of the functional film 5 is preferably 30 to 300 nm, and more preferably 40 to 200 nm. If the film thickness of the functional film 5 is 30 nm or more, light interference occurs and low reflection performance is exhibited. If the film thickness of the functional film 5 is 300 nm or less, the film can be formed without generating cracks.
The film thickness of the functional film 5 is measured by the reflectance measured by a spectrophotometer.
 機能膜5が低反射膜である場合、機能膜5の反射率は、波長300~1200nmの範囲内における最も低い値(いわゆるボトム反射率)で、2.6%以下が好ましく、1.0%以下がより好ましい。
 機能膜5を備える部分(以下、機能膜面ともいう)は、耐摩耗性試験前後での60°鏡面光沢度の差が60以下、より好ましくは55以下、さらに好ましくは50以下の耐摩耗性を有する。該耐摩耗性試験は、先端に消しゴム、スチールウール、フェルトなどの摩擦子を取り付け、一定荷重下で往復運動が可能な耐摩耗性試験機(以下、ラビングテスターともいう)によって可能である。機能膜面側の60°鏡面光沢度は、化学強化ガラス板3の機能膜面とは反対側の面からの反射の影響を受けないようにした上で、JIS Z8741に基づいて測定する。表面の摩耗が進むと、所定入射角からの入射光に対する該表面からの鏡面反射成分は増加するので、60°鏡面光沢度の変化が小さいほど、耐摩耗性に優れることを示す。
 特に、物体の接触による物理的劣化が抑えられ、長期耐久性に優れた機能膜を得られる点から、機能膜5は、耐摩耗性試験前後での60°鏡面光沢度の差が20以下の耐摩耗性を有していることが好ましく、より好ましくは15以下、さらに好ましくは10以下である。60°鏡面光沢度の変化が実質的にない場合、すなわち耐摩耗性試験前後での60°鏡面光沢度の差が0の場合、耐摩耗性が最も好ましい。
When the functional film 5 is a low reflection film, the reflectance of the functional film 5 is the lowest value (so-called bottom reflectance) in the wavelength range of 300 to 1200 nm, preferably 2.6% or less, and 1.0% The following is more preferable.
The portion provided with the functional film 5 (hereinafter also referred to as a functional film surface) has a 60 ° specular gloss difference before and after the abrasion resistance test of 60 or less, more preferably 55 or less, and even more preferably 50 or less. Have The abrasion resistance test can be performed with an abrasion resistance tester (hereinafter also referred to as a rubbing tester) in which a friction element such as an eraser, steel wool, felt, or the like is attached to the tip, and reciprocation is possible under a constant load. The 60 ° specular glossiness on the functional film surface side is measured based on JIS Z8741 after being prevented from the influence of reflection from the surface opposite to the functional film surface of the chemically strengthened glass plate 3. As the surface wear progresses, the specular reflection component from the surface with respect to the incident light from the predetermined incident angle increases. Therefore, the smaller the change in the 60 ° specular gloss, the better the wear resistance.
In particular, the functional film 5 has a 60 ° specular gloss difference of 20 or less before and after the abrasion resistance test because physical deterioration due to contact with an object is suppressed and a functional film excellent in long-term durability can be obtained. It is preferable that it has abrasion resistance, More preferably, it is 15 or less, More preferably, it is 10 or less. When there is substantially no change in 60 ° specular gloss, that is, when the difference in 60 ° specular gloss before and after the abrasion resistance test is 0, the abrasion resistance is most preferable.
<機能膜付き化学強化ガラス板の製造方法>
 機能膜付き化学強化ガラス板1は、例えば、
 ガラス板上に、下記の塗布液を塗布し、乾燥して機能膜5を形成する工程(以下、「機能膜形成工程」ともいう。)と、
 前記機能膜5が形成されたガラス板を化学強化して機能膜付き化学強化ガラス板1を得る工程(以下、「化学強化工程」ともいう。)と、を経て製造できる。
 必要に応じて、化学強化工程の後に、機能膜付き化学強化ガラス板1に対して公知の後加工を施す工程を行ってもよい。
 機能膜が化学強化ガラス板3の一部に備えられる機能膜付き化学強化ガラス板とする場合には、たとえば化学強化ガラス板3の表面のうち、機能膜を形成しない部分をマスキングしてから機能膜を形成すればよい。
<Method for producing chemically strengthened glass plate with functional film>
The chemically strengthened glass plate 1 with a functional film is, for example,
A step of applying the following coating solution onto a glass plate and drying to form the functional film 5 (hereinafter also referred to as “functional film forming step”);
The glass plate on which the functional film 5 is formed can be chemically strengthened to obtain a chemically strengthened glass plate 1 with a functional film (hereinafter also referred to as “chemical strengthening step”).
You may perform the process of giving a well-known post-process with respect to the chemically strengthened glass plate 1 with a functional film after a chemical strengthening process as needed.
When the functional film is a chemically strengthened glass plate with a functional film provided in a part of the chemically strengthened glass plate 3, for example, the portion of the surface of the chemically strengthened glass plate 3 that does not form the functional film is masked. A film may be formed.
(塗布液)
 塗布液は、ケイ素原子に結合した加水分解性基を有するシラン化合物およびその加水分解縮合物からなる群から選ばれる少なくとも1種のシリカ前駆体と、液状媒体とを含む。塗布液は、必要に応じて、粒子、テルペン化合物、添加剤等をさらに含んでもよい。
(Coating solution)
The coating liquid contains at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium. The coating solution may further contain particles, a terpene compound, an additive, and the like as necessary.
 シリカ前駆体:
 シリカ前駆体としては、ケイ素原子に結合した炭化水素基および加水分解性基を有するシラン化合物(以下、A1とも称する。)およびその加水分解縮合物、アルコキシシラン(ただしシラン化合物(A1)を除く。)およびその加水分解縮合物(ゾルゲルシリカ)等が挙げられる。
Silica precursor:
As the silica precursor, a silane compound having a hydrocarbon group bonded to a silicon atom and a hydrolyzable group (hereinafter also referred to as A1), a hydrolysis condensate thereof, and alkoxysilane (however, a silane compound (A1) is excluded). And its hydrolyzed condensate (sol-gel silica).
 シラン化合物(A1)において、ケイ素原子に結合した炭化水素基は、1つのケイ素原子に結合した1価の炭化水素基であってもよく、2つのケイ素原子に結合した2価の炭化水素基であってもよい。1価の炭化水素基としては、アルキル基、アルケニル基、アリール基等が挙げられる。2価の炭化水素基としては、アルキレン基、アルケニレン基、アリーレン基等が挙げられる。
 炭化水素基は、炭素原子間に-O-、-S-、-CO-および-NR’-(ただしR’は水素原子または1価の炭化水素基である。)からなる群から選ばれる1つまたは2つ以上を組み合わせた基を有していてもよい。
In the silane compound (A1), the hydrocarbon group bonded to the silicon atom may be a monovalent hydrocarbon group bonded to one silicon atom, or a divalent hydrocarbon group bonded to two silicon atoms. There may be. Examples of the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group. Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group.
The hydrocarbon group is selected from the group consisting of —O—, —S—, —CO— and —NR′— (wherein R ′ is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms. One or a combination of two or more may be included.
 ケイ素原子に結合した加水分解性基としては、アルコキシ基、アシロキシ基、ケトオキシム基、アルケニルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、ハロゲン原子等が挙げられる。これらの中では、シラン化合物(A1)の安定性と加水分解のしやすさとのバランスの点から、アルコキシ基、イソシアネート基およびハロゲン原子(特に塩素原子)が好ましい。
 アルコキシ基としては、炭素数1~3のアルコキシ基が好ましく、メトキシ基またはエトキシ基がより好ましい。
 シラン化合物(A1)中に加水分解性基が複数存在する場合には、加水分解性基は、同じ基であっても異なる基であってもよく、同じ基であることが入手しやすさの点で好ましい。
Examples of the hydrolyzable group bonded to the silicon atom include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom. Among these, an alkoxy group, an isocyanate group, and a halogen atom (particularly a chlorine atom) are preferable from the viewpoint of the balance between the stability of the silane compound (A1) and the ease of hydrolysis.
As the alkoxy group, an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable.
When a plurality of hydrolyzable groups are present in the silane compound (A1), the hydrolyzable groups may be the same group or different groups, and it is easy to obtain that they are the same group. This is preferable.
 シラン化合物(A1)としては、後述する式(I)で表される化合物、アルキル基を有するアルコキシシラン(メチルトリメトキシシラン、エチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。 Examples of the silane compound (A1) include a compound represented by the formula (I) described later, an alkoxysilane having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), an alkoxysilane having a vinyl group (vinyltrimethoxysilane). , Vinyltriethoxysilane, etc.), alkoxysilanes having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane) And 3-glycidoxypropyltriethoxysilane) and alkoxysilanes having an acryloyloxy group (such as 3-acryloyloxypropyltrimethoxysilane).
 シラン化合物(A1)としては、膜厚が厚くても機能膜のクラックや膜剥がれが生じにくい点から、下式(I)で表される化合物が好ましい。
   R3-pSi-Q-SiL3-p ・・・(I)
As the silane compound (A1), a compound represented by the following formula (I) is preferable from the viewpoint that even if the film thickness is large, the functional film is not easily cracked or peeled off.
R 3-p L p Si-Q-SiL p R 3-p (I)
 式(I)中、Qは、2価の炭化水素基(炭素原子間に-O-、-S-、-CO-および-NR’-(ただし、R’は水素原子または1価の炭化水素基である。)からなる群から選ばれる1つまたは2つ以上を組み合わせた基を有していてもよい。)である。2価の炭化水素としては、上述したものが挙げられる。
 Qとしては、入手が容易であり、かつ膜厚が厚くても機能膜のクラックや膜剥がれが生じにくい点から、炭素数2~8のアルキレン基が好ましく、炭素数2~6のアルキレン基がさらに好ましい。
In the formula (I), Q is a divalent hydrocarbon group (-O—, —S—, —CO— and —NR′— (where R ′ is a hydrogen atom or a monovalent hydrocarbon) And a group obtained by combining one or two or more selected from the group consisting of: What was mentioned above is mentioned as a bivalent hydrocarbon.
Q is preferably an alkylene group having 2 to 8 carbon atoms, and is preferably an alkylene group having 2 to 6 carbon atoms from the viewpoint that it is easily available, and even if the film thickness is large, the functional film is less likely to crack or peel off. Further preferred.
 式(I)中、Lは、加水分解性基である。加水分解性基としては、上述したものが挙げられ、好ましい態様も同様である。
 Rは、水素原子または1価の炭化水素基である。1価の炭化水素としては、上述したものが挙げられる。
 pは、1~3の整数である。pは、反応速度が遅くなりすぎない点から、2または3が好ましく、3が特に好ましい。
In formula (I), L is a hydrolyzable group. Examples of the hydrolyzable group include those described above, and preferred embodiments are also the same.
R is a hydrogen atom or a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon include those described above.
p is an integer of 1 to 3. p is preferably 2 or 3, particularly preferably 3, from the viewpoint that the reaction rate does not become too slow.
 アルコキシシラン(ただし、前記シラン化合物(A1)を除く。)としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等)、パーフルオロポリエーテル基を有するアルコキシシラン(パーフルオロポリエーテルトリエトキシシラン等)、パーフルオロアルキル基を有するアルコキシシラン(パーフルオロエチルトリエトキシシラン等)等が挙げられる。 Examples of the alkoxysilane (excluding the silane compound (A1)) include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), alkoxysilane having a perfluoropolyether group ( Perfluoropolyether triethoxysilane and the like), alkoxysilanes having a perfluoroalkyl group (perfluoroethyltriethoxysilane and the like), and the like.
 シラン化合物(A1)およびアルコキシシラン(ただしシラン化合物(A1)を除く。)の加水分解および縮合は、公知の方法により行うことができる。
 例えばテトラアルコキシシランの場合、テトラアルコキシシランの4倍モル以上の水、および触媒として酸またはアルカリを用いて行う。
 酸としては、無機酸(HNO、HSO、HCl等。)、有機酸(ギ酸、シュウ酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸等。)が挙げられる。アルカリとしては、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。触媒としては、シラン化合物(A)の加水分解縮合物の長期保存性の点では、酸が好ましい。
Hydrolysis and condensation of the silane compound (A1) and alkoxysilane (excluding the silane compound (A1)) can be carried out by a known method.
For example, in the case of tetraalkoxysilane, the reaction is carried out using 4 times or more moles of water of tetraalkoxysilane and acid or alkali as a catalyst.
Examples of the acid include inorganic acids (HNO 3 , H 2 SO 4 , HCl, etc.) and organic acids (formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, etc.). Examples of the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like. As the catalyst, an acid is preferable from the viewpoint of long-term storage stability of the hydrolysis condensate of the silane compound (A).
 シリカ前駆体としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シリカ前駆体は、機能膜のクラックや膜剥がれを防止する観点から、シラン化合物(A1)およびその加水分解縮合物のいずれか一方または両方を含むことが好ましい。
 シリカ前駆体は、機能膜の耐摩耗強度の観点から、テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方を含むことが好ましい。
 シリカ前駆体は、シラン化合物(A1)およびその加水分解縮合物のいずれか一方または両方と、テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方と、を含むことが特に好ましい。
As a silica precursor, 1 type may be used independently and 2 or more types may be used in combination.
It is preferable that a silica precursor contains either one or both of a silane compound (A1) and its hydrolysis condensate from a viewpoint of preventing the crack of a functional film, and film | membrane peeling.
The silica precursor preferably contains either one or both of tetraalkoxysilane and its hydrolysis condensate from the viewpoint of the wear resistance strength of the functional film.
It is particularly preferable that the silica precursor contains one or both of the silane compound (A1) and the hydrolysis condensate thereof, and one or both of the tetraalkoxysilane and the hydrolysis condensate thereof.
 液状媒体:
 液状媒体は、シリカ前駆体を溶解または分散するものであり、シリカ前駆体を溶解する溶媒であることが好ましい。塗布液が粒子を含む場合、液状媒体は、粒子を分散する分散媒としての機能も有するものであってよい。
 液状媒体としては、例えば、水、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。
Liquid medium:
The liquid medium dissolves or disperses the silica precursor, and is preferably a solvent that dissolves the silica precursor. When the coating liquid contains particles, the liquid medium may also have a function as a dispersion medium for dispersing the particles.
Examples of the liquid medium include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
 アルコール類としては、メタノール、エタノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、ジアセトンアルコール等が挙げられる。
 ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。
 エーテル類としては、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 セロソルブ類としては、メチルセロソルブ、エチルセロソルブ等が挙げられる。
 エステル類としては、酢酸メチル、酢酸エチル等が挙げられる。
 グリコールエーテル類としては、エチレングリコールモノアルキルエーテル等が挙げられる。
 含窒素化合物としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドン等が挙げられる。
 含硫黄化合物としては、ジメチルスルホキシド等が挙げられる。
 液状媒体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of alcohols include methanol, ethanol, isopropanol, 1-butanol, 2-butanol, isobutanol, diacetone alcohol, and the like.
Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
Examples of ethers include tetrahydrofuran and 1,4-dioxane.
Examples of cellosolves include methyl cellosolve and ethyl cellosolve.
Examples of esters include methyl acetate and ethyl acetate.
Examples of glycol ethers include ethylene glycol monoalkyl ether.
Examples of the nitrogen-containing compound include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like.
Examples of the sulfur-containing compound include dimethyl sulfoxide.
A liquid medium may be used individually by 1 type, and may be used in combination of 2 or more type.
 シリカ前駆体におけるアルコキシシラン等の加水分解に水が必要となるため、加水分解後に液状媒体の置換を行わない限り、液状媒体には少なくとも水が含まれる。
 この場合、液状媒体は、水のみであってもよく、水と他の液体との混合液であってもよい。他の液体としては、例えば、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。他の液体のうち、シリカ系マトリックス前駆体の溶媒としては、アルコール類が好ましく、メタノール、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブタノールが特に好ましい。
Since water is required for hydrolysis of alkoxysilane or the like in the silica precursor, the liquid medium contains at least water unless the liquid medium is replaced after hydrolysis.
In this case, the liquid medium may be water alone or a mixed liquid of water and another liquid. Examples of other liquids include alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds. Among the other liquids, as the solvent for the silica-based matrix precursor, alcohols are preferable, and methanol, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, and isobutanol are particularly preferable.
 液状媒体には、酸またはアルカリが含まれてもよい。酸またはアルカリは、シリカ前駆体の溶液の調製の際に、原料(アルコキシシラン等)の加水分解、縮合のために触媒として添加されたものでもよく、シリカ前駆体の溶液の調製後に添加されたものでもよい。 The liquid medium may contain acid or alkali. The acid or alkali may be added as a catalyst for hydrolysis and condensation of raw materials (alkoxysilane, etc.) during the preparation of the silica precursor solution, and is added after the preparation of the silica precursor solution. It may be a thing.
 粒子:
 塗布液が粒子を含む場合、粒子の種類や配合量によって、機能膜5の特性(屈折率、透過率、反射率、色調、導電性、濡れ性、物理的耐久性、化学的耐久性等)を調整できる。
 粒子としては、無機粒子、有機粒子等が挙げられる。
particle:
When the coating liquid contains particles, the characteristics of the functional film 5 (refractive index, transmittance, reflectance, color tone, conductivity, wettability, physical durability, chemical durability, etc.) depend on the type and amount of particles. Can be adjusted.
Examples of the particles include inorganic particles and organic particles.
 無機粒子の材料としては、金属酸化物、金属、合金、無機顔料等が挙げられる。
 金属酸化物としては、Al、SiO、SnO、TiO、ZrO、ZnO、CeO、Sb含有SnO(ATO)、Sn含有In(ITO)、RuO等が挙げられる。
 金属としては、Ag、Ru等が挙げられる。
 合金としては、AgPd、RuAu等が挙げられる。
 無機顔料としては、チタンブラック、カーボンブラック等が挙げられる。
Examples of the material for the inorganic particles include metal oxides, metals, alloys, and inorganic pigments.
Examples of the metal oxide include Al 2 O 3 , SiO 2 , SnO 2 , TiO 2 , ZrO 2 , ZnO, CeO 2 , Sb-containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), RuO 2 and the like. Can be mentioned.
Examples of the metal include Ag and Ru.
Examples of the alloy include AgPd and RuAu.
Examples of inorganic pigments include titanium black and carbon black.
 有機粒子の材料としては、有機顔料、樹脂等が挙げられる。
 樹脂としては、ポリスチレン、メラニン樹脂等が挙げられる。
Examples of the organic particle material include organic pigments and resins.
Examples of the resin include polystyrene and melanin resin.
 粒子の形状としては、球状、楕円状、針状、板状、棒状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状、不定形状等が挙げられる。
 粒子は、中実粒子でもよく、中空粒子でもよく、多孔質粒子等の穴あき粒子でもよい。「中実」は、内部に空洞を有しないことを示す。「中空」は、内部に空洞を有することを示す。中実無機粒子は、各粒子が独立した状態で存在していてもよく、各粒子が鎖状に連結していてもよく、各粒子が凝集していてもよい。
 粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the particle shape include a spherical shape, an elliptical shape, a needle shape, a plate shape, a rod shape, a cone shape, a columnar shape, a cube shape, a rectangular shape, a diamond shape, a star shape, and an indefinite shape.
The particles may be solid particles, hollow particles, or perforated particles such as porous particles. “Solid” indicates that there is no cavity inside. “Hollow” indicates that there is a cavity inside. The solid inorganic particles may exist in a state where each particle is independent, each particle may be linked in a chain shape, or each particle may be aggregated.
The particles may be used alone or in combination of two or more.
 粒子としては、コスト、入手容易性等の点で、中実無機粒子が好ましく、化学的耐久性の点で、中実金属酸化物粒子がより好ましい。
 中実無機粒子と他の粒子とを併用してもよい。
As the particles, solid inorganic particles are preferable from the viewpoint of cost and availability, and solid metal oxide particles are more preferable from the viewpoint of chemical durability.
Solid inorganic particles and other particles may be used in combination.
 機能膜5として低反射性(反射防止性)を有する機能膜(低反射性防眩膜、低反射膜等)を形成する場合には、中実無機粒子として、中実シリカ粒子を含むことが好ましい。
 中実シリカ粒子としては、鎖状中実シリカ粒子が好ましい。鎖状中実シリカ粒子は、鎖状の形状を有する中実シリカ粒子である。例えば複数の球状楕円状、針状等の形状を有する中実シリカ粒子が鎖状に連結した形状のものが挙げられる。鎖状中実シリカ粒子の形状は、電子顕微鏡により確認できる。
 鎖状中実シリカ粒子は、市販品として容易に入手することができる。また、公知の製造方法により製造したものを使用してもよい。市販品としては、例えば、日産化学工業(株)製のスノーテックスST-OUP等が挙げられる。
In the case of forming a functional film (low-reflective antiglare film, low-reflective film, etc.) having low reflectivity (antireflection property) as the functional film 5, solid silica particles may be included as solid inorganic particles. preferable.
As the solid silica particles, chain solid silica particles are preferable. The chain solid silica particles are solid silica particles having a chain shape. For example, the thing of the shape which the solid silica particle which has a shape of a some spherical ellipse shape, a needle shape, etc. connected in the shape of a chain | strand is mentioned. The shape of the chain solid silica particles can be confirmed by an electron microscope.
The chain solid silica particles can be easily obtained as a commercial product. Moreover, you may use what was manufactured by the well-known manufacturing method. Examples of commercially available products include Snowtex ST-OUP manufactured by Nissan Chemical Industries, Ltd.
 粒子の平均凝集粒子径は、5~300nmであることが好ましく、5~200nmがより好ましい。粒子の平均凝集粒子径が前記範囲の下限値以上であれば、粒子の配合効果が発揮されやすく、上限値以下であれば、機能膜5が耐摩耗性等の機械的特性に優れる。
 粒子の平均凝集粒子径は、レーザ回折式の粒度分布測定装置により体積基準で測定される。
The average aggregate particle diameter of the particles is preferably 5 to 300 nm, more preferably 5 to 200 nm. If the average agglomerated particle diameter of the particles is equal to or greater than the lower limit value of the above range, the effect of blending the particles is easily exhibited. If the average aggregate particle diameter is equal to or smaller than the upper limit value, the functional film 5 is excellent in mechanical properties such as wear resistance.
The average aggregate particle diameter of the particles is measured on a volume basis by a laser diffraction type particle size distribution measuring apparatus.
 テルペン化合物:
 テルペン化合物は、塗布液が粒子を含む場合に好ましく用いられる。塗布液が粒子とともにテルペン化合物を含む場合、機能膜5中の粒子の周囲に空隙が形成され、機能膜5の屈折率が、テルペン化合物を含まない場合に比べて低くなる傾向がある。
 テルペンとは、イソプレン(C)を構成単位とする(C(ただし、nは1以上の整数である。)の組成の炭化水素を意味する。テルペン化合物とは、テルペンから誘導される官能基を有するテルペン類を意味する。テルペン化合物は、不飽和度を異にするものも包含する。
 なお、テルペン化合物には液状媒体として機能するものもあるが、「イソプレンを構成単位とする(Cの組成の炭化水素」であるものは、テルペン誘導体に該当し、液状媒体には該当しないものとする。
 テルペン化合物としては、国際公開第2010/018852号に記載のテルペン誘導体等を用いることができる。
Terpene compounds:
The terpene compound is preferably used when the coating solution contains particles. When the coating liquid contains the terpene compound together with the particles, voids are formed around the particles in the functional film 5, and the refractive index of the functional film 5 tends to be lower than when the terpene compound is not included.
The terpene means a hydrocarbon having a composition of (C 5 H 8 ) n (where n is an integer of 1 or more) having isoprene (C 5 H 8 ) as a structural unit. The terpene compound means terpenes having a functional group derived from terpene. Terpene compounds also include those with different degrees of unsaturation.
Although some terpene compounds function as a liquid medium, those having “a hydrocarbon having a composition of (C 5 H 8 ) n having isoprene as a structural unit” fall under the category of terpene derivatives. Shall not apply.
As the terpene compound, terpene derivatives described in International Publication No. 2010/018852 can be used.
 添加剤:
 添加剤としては、公知の各種添加剤を用いることができ、例えば、レベリング性向上のための界面活性剤、機能膜5の耐久性向上のための金属化合物、紫外線吸収剤、赤外線反射剤、赤外線吸収剤、反射防止剤等が挙げられる。
 界面活性剤としては、シリコーンオイル系、アクリル系等が挙げられる。
 金属化合物としては、ジルコニウムキレート化合物、チタンキレート化合物、アルミニウムキレート化合物等が好ましい。ジルコニウムキレート化合物としては、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシステアレート等が挙げられる。
Additive:
As the additive, various known additives can be used. For example, a surfactant for improving leveling properties, a metal compound for improving durability of the functional film 5, an ultraviolet absorber, an infrared reflector, an infrared ray Absorbers, antireflection agents and the like can be mentioned.
Examples of the surfactant include silicone oil and acrylic.
As the metal compound, a zirconium chelate compound, a titanium chelate compound, an aluminum chelate compound and the like are preferable. Examples of the zirconium chelate compound include zirconium tetraacetylacetonate and zirconium tributoxy systemate.
 組成:
 塗布液中のシリカ前駆体の含有量(SiO換算)は、塗布液中の酸化物換算固形分に対して15質量%以上であり、20質量%以上がより好ましく、25質量%以上がさらに好ましい。
 シリカ前駆体の含有量(SiO換算)が酸化物換算固形分に対して15質量%以上であると、化学強化ガラス板3と機能膜5との間で充分な密着強度が得られる。
 酸化物換算固形分に対するシリカ前駆体の含有量(SiO換算)の上限は、特に限定されず、100質量%であってもよい。シリカ前駆体の含有量は、塗布液に必要に応じて配合される他の成分の含有量に応じて適宜設定できる。
composition:
The content of the silica precursor in the coating solution (in terms of SiO 2 ) is 15% by mass or more, more preferably 20% by mass or more, and more preferably 25% by mass or more based on the oxide-converted solid content in the coating solution. preferable.
Adhesive strength sufficient between the chemically strengthened glass plate 3 and the functional film 5 is obtained when the content of the silica precursor (in terms of SiO 2 ) is 15% by mass or more with respect to the oxide-converted solid content.
The upper limit of the silica precursor content (SiO 2 equivalent) relative to the oxide equivalent solid content is not particularly limited, and may be 100% by mass. Content of a silica precursor can be suitably set according to content of the other component mix | blended as needed with a coating liquid.
 塗布液中の液状媒体の含有量は、塗布液の固形分濃度に応じた量とされる。
 塗布液の固形分濃度は、塗布液の全量(100質量%)のうち、1~6質量%が好ましく、2~5質量%がより好ましい。固形分濃度が前記範囲の下限値以上であれば、機能膜5の形成に用いる塗布液の液量を少なくできる。固形分濃度が前記範囲の上限値以下であれば、機能膜5の膜厚の均一性が向上する。
 塗布液の固形分濃度は、塗布液中の、液状媒体以外の全成分の含有量の合計である。ただし、金属元素を含む成分の含有量は、酸化物換算である。
The content of the liquid medium in the coating solution is an amount corresponding to the solid content concentration of the coating solution.
The solid content concentration of the coating solution is preferably 1 to 6% by mass and more preferably 2 to 5% by mass in the total amount (100% by mass) of the coating solution. If the solid content concentration is not less than the lower limit of the above range, the amount of the coating solution used for forming the functional film 5 can be reduced. If solid content concentration is below the upper limit of the said range, the uniformity of the film thickness of the functional film 5 will improve.
The solid content concentration of the coating solution is the total content of all components other than the liquid medium in the coating solution. However, content of the component containing a metal element is oxide conversion.
 塗布液が中実無機粒子を含む場合、塗布液中の中実無機粒子の含有量(酸化物換算)は、塗布液中の酸化物換算固形分(100質量%)に対して10~85質量%であることが好ましく、20~80質量%がより好ましく、30~75質量%が特に好ましい。中実無機粒子の含有量が前記範囲の下限値以上であれば、中実無機粒子の配合効果が充分に得られる。例えば中実シリカ粒子である場合、機能膜5の屈折率が低くなり、充分な透過率向上効果が得られる。中実無機粒子の含有量が前記範囲の上限値以下であれば、機能膜5が耐摩耗性等の機械的強度に優れる。 When the coating liquid contains solid inorganic particles, the content of the solid inorganic particles in the coating liquid (as oxide) is 10 to 85 mass with respect to the oxide-based solid content (100 mass%) in the coating liquid. %, More preferably 20 to 80% by mass, particularly preferably 30 to 75% by mass. If the content of the solid inorganic particles is not less than the lower limit of the above range, the blending effect of the solid inorganic particles can be sufficiently obtained. For example, in the case of solid silica particles, the refractive index of the functional film 5 is lowered, and a sufficient transmittance improvement effect is obtained. If the content of the solid inorganic particles is not more than the upper limit of the above range, the functional film 5 is excellent in mechanical strength such as wear resistance.
 塗布液は、粒子として中空シリカ粒子を含んでもよく、含まなくてもよいが、塗布液中の中空シリカ粒子の含有量(SiO換算)は、塗布液中の酸化物換算固形分に対して10質量%未満とする。好ましくは7質量%未満であり、より好ましくは5質量%未満である。中空シリカ粒子の含有量が酸化物換算固形分に対して10質量%未満であれば、未強化ガラス板面に機能膜を形成した後の化学強化工程で、機能膜5を介して未強化ガラス板を充分に化学強化でき、機能膜付き化学強化ガラス板1を低コストに製造できる。
 すなわち、塗布液中の中空シリカ粒子の含有量(SiO換算)は、塗布液中の酸化物換算固形分に対して0質量%以上、10質量%未満、好ましくは0質量%以上、7質量%未満であり、より好ましくは0質量%以上、5質量%未満である。
The coating liquid may or may not contain hollow silica particles as particles, but the content of the hollow silica particles in the coating liquid (in terms of SiO 2 ) is based on the oxide-converted solid content in the coating liquid. Less than 10% by mass. Preferably it is less than 7 mass%, More preferably, it is less than 5 mass%. If the content of the hollow silica particles is less than 10% by mass with respect to the oxide-converted solid content, unreinforced glass through the functional film 5 in the chemical strengthening step after forming the functional film on the unreinforced glass plate surface. The plate can be sufficiently chemically strengthened, and the chemically strengthened glass plate 1 with a functional film can be produced at low cost.
That is, the content (in terms of SiO 2 ) of the hollow silica particles in the coating solution is 0% by mass or more and less than 10% by mass, preferably 0% by mass or more and 7% by mass with respect to the oxide-converted solid content in the coating solution. %, More preferably 0% by mass or more and less than 5% by mass.
 塗布液は、例えば、シラン前駆体が液体媒体に溶解した溶液を調製し、必要に応じて追加の液状媒体、粒子の分散液、テルペン化合物、他の任意成分等を混合することによって調製できる。 The coating liquid can be prepared, for example, by preparing a solution in which a silane precursor is dissolved in a liquid medium, and mixing an additional liquid medium, a dispersion of particles, a terpene compound, and other optional components as necessary.
(ガラス板)
 機能膜を形成し、化学強化するガラス板(以下、「未強化ガラス板」という。)としては、化学強化可能な組成を有するものである限り特に限定されず、種々の組成のものを使用することができる。例えば、ソーダライムガラス、アルミノシリケートガラス等が好適に使用できる。化学強化しやすい点では、アルミノシリケートガラスが好ましい。
 化学強化しやすいガラス組成として、酸化物基準のモル百分率表示で、SiOを56~75%、Alを1~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~10%含有することが好ましい。
 また、化学強化しやすいガラス板は、ガラス組成として酸化物基準のモル百分率表示で、SiOを60~75%、Alを2~25%、NaOを10~20%、KOを0~7%、MgOを0~10%、CaOを0~15%含有することが好ましい。
 また、化学強化しやすいガラス板は、ガラス組成として酸化物基準のモル百分率表示で、SiOを50~74%、Alを2~8%、NaOを8~18%、KOを0~8%、MgOを2~15%、ZrOを0~4%、CaOを0~10%、SrOを0~3%、BaOを0~3%含有することが好ましい。
 また、化学強化しやすいガラス板は、ガラス組成として酸化物基準のモル百分率表示で、SiOを50~74%、Alを8~25%、NaOを8~18%、KOを0~8%、MgOを2~15%、ZrOを0~4%、CaOを0~10%、SrOを0~3%、BaOを0~3%含有することが好ましい。
 なお、例えば「KOを0~10%含む」とは、必須ではないが10%まで含んでもよい、の意味である。MgO、ZrO、CaOについても同様である。
(Glass plate)
The glass plate that forms a functional film and is chemically strengthened (hereinafter referred to as “unstrengthened glass plate”) is not particularly limited as long as it has a composition that can be chemically strengthened, and has various compositions. be able to. For example, soda lime glass and aluminosilicate glass can be suitably used. In view of easy chemical strengthening, aluminosilicate glass is preferable.
As a glass composition that is easy to chemically strengthen, SiO 2 is 56 to 75%, Al 2 O 3 is 1 to 20%, Na 2 O is 8 to 22%, and K 2 O is 0 to 0 in terms of mole percentage based on oxide. It is preferable to contain 10%, MgO 0 to 14%, ZrO 2 0 to 5%, and CaO 0 to 10%.
In addition, a glass plate that is easily chemically strengthened is expressed in terms of a molar percentage based on oxide as a glass composition, SiO 2 is 60 to 75%, Al 2 O 3 is 2 to 25%, Na 2 O is 10 to 20%, K It is preferable to contain 0 to 7% 2 O, 0 to 10% MgO, and 0 to 15% CaO.
Further, a glass plate that is easily chemically strengthened is expressed in terms of a molar percentage based on oxide as a glass composition, SiO 2 is 50 to 74%, Al 2 O 3 is 2 to 8%, Na 2 O is 8 to 18%, K 2 O 0 ~ 8% MgO 2 to 15% of ZrO 2 0 ~ 4% of CaO 0 ~ 10% of SrO 0-3%, it is preferable that the BaO containing 0-3%.
Further, a glass plate that is easily chemically strengthened is expressed in terms of a molar percentage based on oxide as a glass composition, SiO 2 is 50 to 74%, Al 2 O 3 is 8 to 25%, Na 2 O is 8 to 18%, K 2 O 0 ~ 8% MgO 2 to 15% of ZrO 2 0 ~ 4% of CaO 0 ~ 10% of SrO 0-3%, it is preferable that the BaO containing 0-3%.
For example, “containing 0 to 10% of K 2 O” means not necessarily essential but may contain up to 10%. The same applies to MgO, ZrO 2 and CaO.
 未強化ガラス板の厚みは、化学強化ガラス板3の厚さと同じである。
 未強化ガラス板は、フロート法等により成形された平滑なガラス板であってもよく、表面に凹凸を有する型板ガラス板であってもよい。また、平坦なガラス板のみでなく曲面形状を有するガラス板でもよい。
 未強化ガラス板は、市販のものを使用してもよく、公知の製造方法により製造したものを用いてもよい。
 未強化ガラス板は、例えば、ガラスを構成する種々の原料を適量調合し、加熱溶融した後、脱泡または撹拌などにより均質化し、周知のフロート法、ダウンドロー法(例えば、フュージョン法など)、またはプレス法などによって板状に成形し、徐冷後、所望のサイズに切断することによって製造できる。また、フロート法、ダウンドロー法(例えば、フュージョン法など)によるガラス成形中にオンライン上でガラスリボンを用いてもよい。 
The thickness of the untempered glass plate is the same as the thickness of the chemically strengthened glass plate 3.
The unstrengthened glass plate may be a smooth glass plate formed by a float method or the like, or a template glass plate having irregularities on the surface. Moreover, not only a flat glass plate but the glass plate which has a curved surface shape may be sufficient.
A commercially available thing may be used for an unstrengthened glass plate, and what was manufactured by the well-known manufacturing method may be used.
The unstrengthened glass plate is prepared by, for example, preparing various amounts of various raw materials constituting the glass, heating and melting, and then homogenizing by defoaming or stirring, a well-known float method, down draw method (for example, fusion method), Or it can manufacture by shape | molding in plate shape by the press method etc., and cutting | disconnecting to a desired size after slow cooling. Further, a glass ribbon may be used on-line during glass forming by a float method or a downdraw method (for example, a fusion method).
(機能膜形成工程)
 機能膜形成工程では、未強化ガラス板上に、前記の塗布液を塗布し、乾燥して機能膜5を形成する。乾燥は、加熱により行ってもよく、加熱せずに(自然乾燥、風乾等)により行ってもよい。
(Functional film formation process)
In the functional film formation step, the functional film 5 is formed by applying the coating liquid on an unstrengthened glass plate and drying it. Drying may be performed by heating, or may be performed without heating (natural drying, air drying, etc.).
 本発明においては、機能膜形成工程を、450℃以下の温度で行う。機能膜形成工程を行う温度は、400℃以下がより好ましい。
 機能膜形成工程を450℃以下の温度で行うことにより、塗布液中の中空シリカ粒子の含有量が酸化物換算固形分に対して10質量%未満であっても、その後の化学強化工程で、機能膜5を介して未強化ガラス板を充分に化学強化できる。
 機能膜形成工程を行う温度の下限は、塗布液の塗布および塗膜の乾燥が可能な温度であれば特に限定されない。
In the present invention, the functional film forming step is performed at a temperature of 450 ° C. or lower. As for the temperature which performs a functional film formation process, 400 degrees C or less is more preferable.
By performing the functional film forming step at a temperature of 450 ° C. or less, even if the content of the hollow silica particles in the coating liquid is less than 10% by mass with respect to the oxide-converted solid content, in the subsequent chemical strengthening step, The unstrengthened glass plate can be sufficiently chemically strengthened through the functional film 5.
The minimum of the temperature which performs a functional film formation process will not be specifically limited if it is the temperature which can apply | coat a coating liquid and dry a coating film.
 機能膜形成工程を450℃以下の温度で行うとは、塗布液を未強化ガラス板上に塗布する時点から、次の化学強化工程で化学強化を行うまでの間に、塗布液(塗膜)および機能膜5が450℃超の温度に曝されないことを意味する。
 具体的には、塗布液が塗布される雰囲気の温度、塗布液が塗布される未強化ガラス板の温度、塗布後、乾燥を行うまでの塗膜の温度、乾燥温度、また乾燥後、化学強化を行うまでの間の機能膜5の温度等が全て450℃以下である。
Performing the functional film forming step at a temperature of 450 ° C. or less means that the coating solution (coating film) is applied between the time when the coating solution is applied on the unstrengthened glass plate and the time when chemical strengthening is performed in the next chemical strengthening step. This means that the functional film 5 is not exposed to a temperature higher than 450 ° C.
Specifically, the temperature of the atmosphere in which the coating solution is applied, the temperature of the unstrengthened glass plate to which the coating solution is applied, the temperature of the coating film after application and drying, the drying temperature, and the chemical strengthening after drying The temperature and the like of the functional film 5 until the process is all 450 ° C. or lower.
 塗膜の温度および塗膜の乾燥温度は、それぞれ、塗膜が形成された未強化ガラス板の温度を意味するものとする。また、機能膜5の温度は、機能膜5が形成された未強化ガラス板の温度を意味するものとする。
 未強化ガラス板の温度は、熱電対、放射温度計等で測定できる。例えば化学強化ガラス表面に熱電対を取りつけて計測することができる。
The temperature of a coating film and the drying temperature of a coating film shall mean the temperature of the unstrengthened glass plate in which the coating film was formed, respectively. Moreover, the temperature of the functional film 5 shall mean the temperature of the non-tempered glass plate in which the functional film 5 was formed.
The temperature of the unstrengthened glass plate can be measured with a thermocouple, a radiation thermometer, or the like. For example, it can measure by attaching a thermocouple to the chemically tempered glass surface.
 塗布方法:
 塗布液の塗布方法としては、公知のウェットコート法(スピンコート法、スプレーコート法、ディップコート法、ダイコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法、グラビアコート法、バーコート法、フレキソコート法、スリットコート法、ロールコート法等)等が挙げられる。
Application method:
As a coating method of the coating liquid, known wet coating methods (spin coating method, spray coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, flow coating method, gravure coating method, bar coating method) Method, flexo coat method, slit coat method, roll coat method, etc.).
 機能膜5として防眩膜を形成する場合、塗布液の塗布方法としては、充分な凹凸を形成しやすい点から、スプレー法が好ましい。
 スプレー法に用いるノズルとしては、2流体ノズル、1流体ノズル等が挙げられる。
 ノズルから吐出される塗布液の液滴の粒径は、通常、0.1~100μmであり、1~50μmが好ましい。液滴の粒径が1μm以上であれば、防眩効果が充分に発揮される凹凸を短時間で形成できる。液滴の粒径が50μm以下であれば、防眩効果が充分に発揮される適度な凹凸を形成しやすい。
 液滴の粒径は、レーザ測定器によって測定されるザウター平均粒子径である。液滴の粒径は、ノズルの種類、スプレー圧力、液量等により適宜調整できる。例えば、2流体ノズルでは、スプレー圧力が高くなるほど液滴は小さくなり、また、液量が多くなるほど液滴は大きくなる。
 一定の塗布条件下では、塗布時間、すなわちスプレー法によるコート面数(重ね塗り回数)によって、形成される機能膜5の表面の算術平均粗さRaおよび60゜鏡面光沢度を調整できる。例えば、コート面数が多くなるほど、機能膜5の表面の算術平均粗さRaが大きくなり、60゜鏡面光沢度が低下する(すなわち、防眩効果が高くなる)傾向がある。
 機能膜5として防眩膜を形成する場合の塗布液の塗布方法として、静電塗装法を用いてもよい。静電塗装法による塗布方法として、例えば、回転霧化頭を備える静電塗装ガンを用いて塗布液を帯電させ噴霧する方法が挙げられる。
In the case of forming an antiglare film as the functional film 5, a spray method is preferable as a coating method of the coating solution from the viewpoint that sufficient unevenness can be easily formed.
Examples of the nozzle used in the spray method include a two-fluid nozzle and a one-fluid nozzle.
The particle size of the coating liquid droplets ejected from the nozzle is usually 0.1 to 100 μm, preferably 1 to 50 μm. If the particle size of the droplets is 1 μm or more, it is possible to form irregularities that sufficiently exhibit the antiglare effect in a short time. If the particle size of the droplet is 50 μm or less, it is easy to form moderate unevenness that sufficiently exhibits the antiglare effect.
The particle size of the droplet is the Sauter average particle size measured by a laser measuring device. The particle size of the droplets can be adjusted as appropriate according to the type of nozzle, spray pressure, liquid volume, and the like. For example, in a two-fluid nozzle, the higher the spray pressure, the smaller the droplet, and the larger the liquid volume, the larger the droplet.
Under a certain coating condition, the arithmetic average roughness Ra and 60 ° specular gloss of the surface of the functional film 5 to be formed can be adjusted by the coating time, that is, the number of coated surfaces by spraying (number of overcoating). For example, as the number of coated surfaces increases, the arithmetic average roughness Ra of the surface of the functional film 5 increases and the 60 ° specular gloss tends to decrease (that is, the antiglare effect increases).
An electrostatic coating method may be used as an application method of the application liquid when an antiglare film is formed as the functional film 5. As an application method by the electrostatic coating method, for example, there is a method of charging and spraying the coating liquid using an electrostatic coating gun having a rotary atomizing head.
 機能膜5として低反射膜を形成する場合、塗布液の塗布方法としては、幅の広い未強化ガラス板に対応でき、未強化ガラス板の搬送速度を比較的速くでき、必要とされる塗布液の量が比較的少ない点においては、ロールコート法が好ましく、均一な膜厚の機能膜5を形成でき、かつ光学設計可能な任意の膜厚の機能膜5を形成しやすい(すなわち、膜厚制御性に優れる)点から、リバースロールコート法がより好ましい。一方、製品の外観の点からは、ダイコート法、インクジェット法が好ましい。 In the case of forming a low reflection film as the functional film 5, the coating liquid can be applied to a wide unstrengthened glass plate, the transport speed of the unstrengthened glass plate can be made relatively fast, and the required coating liquid In terms of a relatively small amount, the roll coating method is preferable, the functional film 5 having a uniform film thickness can be formed, and the functional film 5 having an arbitrary film thickness that can be optically designed can be easily formed (that is, the film thickness). From the viewpoint of excellent controllability, the reverse roll coating method is more preferable. On the other hand, from the viewpoint of the appearance of the product, a die coating method and an ink jet method are preferable.
 塗布液を塗布する際の雰囲気の温度は、室温~50℃が好ましく、室温~40℃がより好ましい。
 塗布液を塗布する際の未強化ガラス板の温度は、雰囲気の温度と同じでも異なってもよい。
 機能膜5として防眩膜を形成する場合、未強化ガラス板をあらかじめ30~90℃に加熱してから塗布液を塗布することが好ましい。未強化ガラス板の温度が30℃以上であれば、液状媒体がすばやく蒸発するため、充分な凸凹を形成しやすい。未強化ガラス板の温度が90℃以下であれば、未強化ガラス板と機能膜5との密着性が良好となる。未強化ガラス板が厚さ5mm以下の場合、あらかじめ未強化ガラス板の温度以上の温度に設定した保温板を未強化ガラス板の下に配置し、未強化ガラス板の温度低下を抑えてもよい。
The temperature of the atmosphere when applying the coating solution is preferably room temperature to 50 ° C., more preferably room temperature to 40 ° C.
The temperature of the unstrengthened glass plate when applying the coating solution may be the same as or different from the temperature of the atmosphere.
When an antiglare film is formed as the functional film 5, it is preferable to apply the coating liquid after heating the unreinforced glass plate to 30 to 90 ° C. in advance. If the temperature of the unstrengthened glass plate is 30 ° C. or higher, the liquid medium evaporates quickly, so that sufficient unevenness can be easily formed. If the temperature of an unstrengthened glass plate is 90 degrees C or less, the adhesiveness of an unstrengthened glass plate and the functional film 5 will become favorable. When the unstrengthened glass plate is 5 mm or less in thickness, a heat insulating plate set in advance at a temperature equal to or higher than the temperature of the unstrengthened glass plate may be disposed under the unstrengthened glass plate to suppress the temperature drop of the unstrengthened glass plate. .
 機能膜形成工程において、未強化ガラス板上に、組成の異なる複数の塗布液を順次塗布してもよい。これにより機能膜5として複層の膜を形成できる。
 例えば、最初に、粒子を含まない塗布液を塗布し、その後、粒子を含む塗布液を塗布してもよい。また、粒子を含む塗布液を塗布し、その後、粒子を含み、かつ先に塗布した塗布液とは含有する粒子の種類や含有量が異なる塗布液を塗布してもよい。
 複数の塗布液を順次塗布する場合、複数の塗布液のうちの1つの塗布液を塗布した後、形成された塗膜の上に次の塗布液をそのまま塗布してもよく、次の塗布液を塗布する前に、該塗膜の乾燥を行ってもよい。このときの乾燥は、塗膜中の液状媒体が完全に除去されるように行ってもよく、塗膜中に液状媒体が残存するように行ってもよい。
In the functional film forming step, a plurality of coating liquids having different compositions may be sequentially applied onto the unstrengthened glass plate. Thereby, a multilayer film can be formed as the functional film 5.
For example, first, a coating solution containing no particles may be applied, and then a coating solution containing particles may be applied. Moreover, you may apply | coat the coating liquid containing particle | grains, and may apply | coat the coating liquid which is different in the kind and content of the particle | grains which contain particle | grains and contain previously after that.
When applying a plurality of coating solutions sequentially, after applying one of the plurality of coating solutions, the next coating solution may be applied as it is on the formed coating film. The coating film may be dried before coating. The drying at this time may be performed so that the liquid medium in the coating film is completely removed, or may be performed so that the liquid medium remains in the coating film.
 乾燥方法:
 ガラス板面に塗布液を塗布し、機能膜を形成する際の乾燥は、前記のとおり、加熱により行ってもよく、加熱せずに行ってもよい。
 加熱は、塗布液を未強化ガラス板に塗布する際に未強化ガラス板を加熱することによって塗布と同時に行ってもよく、塗布液を未強化ガラス板に塗布した後、塗膜を加熱することによって行ってもよい。
Drying method:
As described above, drying when applying the coating liquid on the glass plate surface to form the functional film may be performed by heating or may be performed without heating.
The heating may be performed simultaneously with the application by heating the unreinforced glass plate when applying the coating solution to the unreinforced glass plate, and the coating film is heated after the coating solution is applied to the unreinforced glass plate. You may go by.
 乾燥温度の好ましい上限は、機能膜形成工程を行う温度の好ましい上限と同様である。すなわち、上限温度は、450℃である。
 乾燥温度の下限は、特に限定されない。自然乾燥であってもシラン前駆体の重合は、ある程度進むため、時間に何らの制約もないのであれば、乾燥温度を室温付近の温度設定とすることも理論上は可能である。
 充分な乾燥条件が確保できる点から、乾燥温度は、25℃以上が好ましく、30℃以上がより好ましい。
 化学強化の効率の点では、乾燥温度は、25~400℃が好ましく、30~400℃が特に好ましい。
 乾燥時間は、乾燥温度によっても異なるが、典型的には0.5~30分間程度であり、1~5分間が好ましい。
The preferable upper limit of the drying temperature is the same as the preferable upper limit of the temperature at which the functional film forming step is performed. That is, the upper limit temperature is 450 ° C.
The lower limit of the drying temperature is not particularly limited. Since the polymerization of the silane precursor proceeds to some extent even in the case of natural drying, it is theoretically possible to set the drying temperature to a temperature around room temperature if there is no restriction on time.
The drying temperature is preferably 25 ° C. or higher, more preferably 30 ° C. or higher, from the viewpoint that sufficient drying conditions can be secured.
From the viewpoint of chemical strengthening efficiency, the drying temperature is preferably 25 to 400 ° C, particularly preferably 30 to 400 ° C.
The drying time varies depending on the drying temperature, but is typically about 0.5 to 30 minutes, and preferably 1 to 5 minutes.
(化学強化工程)
 化学強化工程では、機能膜形成工程で機能膜5が形成された未強化ガラス板を化学強化する。これにより、未強化ガラス板が化学強化ガラス板3となって機能膜付き化学強化ガラス板1が得られる。
(Chemical strengthening process)
In the chemical strengthening step, the unstrengthened glass plate on which the functional film 5 is formed in the functional film forming step is chemically strengthened. Thereby, the unstrengthened glass plate becomes the chemically strengthened glass plate 3, and the chemically strengthened glass plate 1 with a functional film is obtained.
 化学強化は、公知の方法により実施できる。
 例えば未強化ガラス板がNaOを含有するものである場合の例として、加熱された硝酸カリウム(KNO)溶融塩に、機能膜5が形成された未強化ガラス板を浸漬する方法が挙げられる。該方法では、未強化ガラス板表層のNaイオンと、溶融塩中のKイオンとが交換され、表面圧縮応力が生じるとともに圧縮応力層が形成される。KNO溶融塩は、KNO以外に、例えばNaNOを5%程度含有するものであってもよい。
Chemical strengthening can be performed by a known method.
For example, as an example in a case where the unstrengthened glass plate contains Na 2 O, there is a method of immersing the unstrengthened glass plate on which the functional film 5 is formed in a heated potassium nitrate (KNO 3 ) molten salt. . In this method, Na ions on the surface layer of the unstrengthened glass plate and K ions in the molten salt are exchanged to generate surface compressive stress and form a compressive stress layer. KNO 3 molten salt, in addition to KNO 3, for example, NaNO 3 may be one which contained about 5%.
 化学強化は、未強化ガラス板に所望の表面圧縮応力を有する圧縮応力層が形成されるように行うことが好ましい。表面圧縮応力および圧縮応力層の厚さの好ましい範囲は、前記の通りである。
 未強化ガラス板に所望の表面圧縮応力を有する圧縮応力層を形成するための化学強化処理条件は、未強化ガラス板のガラス組成、未強化ガラス板の厚み等によっても異なるが、ガラス歪点温度以下の350~550℃のKNO溶融塩に2~20時間浸漬させることが典型的である。経済的な観点から、化学強化処理条件は、350~500℃のKNO溶融塩に2~16時間浸漬させることが好ましく、350~500℃のKNO溶融塩に2~10時間浸漬させることがより好ましい。
The chemical strengthening is preferably performed so that a compressive stress layer having a desired surface compressive stress is formed on the unstrengthened glass plate. The preferable ranges of the surface compressive stress and the thickness of the compressive stress layer are as described above.
The chemical strengthening treatment conditions for forming a compressive stress layer having a desired surface compressive stress on the unstrengthened glass plate vary depending on the glass composition of the unstrengthened glass plate, the thickness of the unstrengthened glass plate, etc., but the glass strain point temperature. It is typically immersed in the following 350 to 550 ° C. KNO 3 molten salt for 2 to 20 hours. From an economical point of view, the chemical strengthening treatment conditions are preferably immersed in KNO 3 molten salt at 350 to 500 ° C. for 2 to 16 hours, and immersed in KNO 3 molten salt at 350 to 500 ° C. for 2 to 10 hours. More preferred.
 上記のようにして、化学強化ガラス板3と機能膜5とを備える機能膜付き化学強化ガラス板1が得られる。 As described above, the chemically strengthened glass plate 1 with the functional film including the chemically strengthened glass plate 3 and the functional film 5 is obtained.
(作用効果)
 以上説明した本発明の機能膜付き化学強化ガラス板1の製造方法にあっては、機能膜形成工程を450℃以下の温度で行うことにより、特許文献1のように、所定量の中空シリカ粒子を含有させなくても、その後の化学強化工程で、機能膜5を介して未強化ガラス板を充分に化学強化できる。例えばアルミノシリケートガラスの場合は、未強化ガラス板の機能膜5と接する面の表層に、圧縮応力が500MPa以上の圧縮応力層を20μm以上の厚さで形成できる。
 これは、機能膜形成工程を450℃以下の温度で行うことにより、機能膜5を構成するシリカ系マトリクスが、イオンが通過可能なものとなり、化学強化工程で機能膜5を介したイオン交換が良好に行われるためと考えられる。前述の特許文献1で一定以上の割合で中空シリカゾルを含むことが必要とされたのは、低反射膜を形成する際に高温で焼成しているため、マトリクスが緻密で、その中をイオンが通過できないためと考えられる。
 したがって、本発明の製造方法にあっては、機能膜用の材料としては比較的高価な中空シリカ粒子を用いなくても、例えばシリカ前駆体と液状媒体とからなる塗布液を用いる場合でも、機能膜の形成後に化学強化を行って機能膜付き化学強化ガラス板を得ることができる。
(Function and effect)
In the manufacturing method of the chemically strengthened glass plate 1 with a functional film of the present invention described above, a predetermined amount of hollow silica particles are obtained as in Patent Document 1 by performing the functional film forming step at a temperature of 450 ° C. or lower. Even if it does not contain, the unstrengthened glass plate can be sufficiently chemically strengthened through the functional film 5 in the subsequent chemical strengthening step. For example, in the case of an aluminosilicate glass, a compressive stress layer having a compressive stress of 500 MPa or more can be formed in a thickness of 20 μm or more on the surface layer of the surface of the unreinforced glass plate in contact with the functional film 5.
This is because the functional matrix formation step is performed at a temperature of 450 ° C. or lower, so that the silica matrix constituting the functional membrane 5 can pass ions, and the ion exchange through the functional membrane 5 is performed in the chemical strengthening step. This is considered to be done well. The reason why it is necessary to include the hollow silica sol at a certain ratio or more in the above-mentioned Patent Document 1 is that the matrix is dense because the low-reflection film is baked at a high temperature, and ions are contained therein. It is thought that it cannot pass.
Therefore, in the production method of the present invention, even if a relatively expensive hollow silica particle is not used as a material for the functional membrane, for example, even when a coating liquid composed of a silica precursor and a liquid medium is used, the function is achieved. A chemically strengthened glass plate with a functional film can be obtained by performing chemical strengthening after the film is formed.
 なお、ここでは機能膜形成工程と化学強化工程とを順次行う例を示したが、本発明の機能膜付き化学強化ガラス板の製造方法は、前記の塗布液から450℃以下の温度で機能膜が形成され、その後、450℃超の温度で熱処理されていないガラス板を出発材料とし、これを化学強化する工程を有する方法であってもよい。 In addition, although the example which performs a functional film formation process and a chemical strengthening process one by one was shown here, the manufacturing method of the chemically strengthened glass plate with a functional film of this invention is a functional film at the temperature of 450 degrees C or less from the said coating liquid. After that, a glass plate that is not heat-treated at a temperature higher than 450 ° C. is used as a starting material, and the method may include a step of chemically strengthening the glass plate.
 本発明の機能膜付き化学強化ガラス板の製造方法により得られる機能膜付き化学強化ガラス板は、機能膜の種類に応じて種々の用途に用いることができる。具体例としては、車両用透明部品(ヘッドライトカバー、サイドミラー、フロント透明基板、サイド透明基板、リア透明基板、インスツルメントパネル表面等。) 、メータ、建築窓、ショーウインドウ、ディスプレイ(ノート型パソコン、モニタ、LCD、PDP 、ELD、CRT、PDA等)、LCDカラーフィルタ、タッチパネル用基板、ピックアップレンズ、光学レンズ、眼鏡レンズ、カメラ部品、ビデオ部品、CCD用カバー基板、光ファイバ端面、プロジェクタ部品、複写機部品、太陽電池用透明基板(カバーガラス等。)、携帯電話窓、バックライトユニット部品(導光板、冷陰極管等。)、液晶輝度向上フィルム、有機EL発光素子部品、無機EL発光素子部品、蛍光体発光素子部品、光学フィルタ、光学部品の端面、照明ランプ、照明器具のカバー、増幅レーザ光源等が挙げられる。 The chemically strengthened glass plate with a functional film obtained by the method for producing a chemically strengthened glass plate with a functional film of the present invention can be used for various applications depending on the type of the functional film. Specific examples include transparent parts for vehicles (headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, instrument panel surfaces, etc.), meters, architectural windows, show windows, displays (notebook type) PC, monitor, LCD, PDP IV, ELD, CRT, PDA, etc.), LCD color filter, touch panel substrate, pickup lens, optical lens, eyeglass lens, camera component, video component, CCD cover substrate, optical fiber end surface, projector component , Copier parts, transparent substrates for solar cells (cover glass, etc.), mobile phone windows, backlight unit parts (light guide plates, cold cathode tubes, etc.), LCD brightness enhancement films, organic EL light-emitting element parts, inorganic EL light emission Element parts, phosphor light emitting element parts, optical filters, end faces of optical parts, lighting A lamp, a cover of a lighting fixture, an amplified laser light source, and the like can be given.
<物品>
 本発明の物品は、前述の機能膜付き化学強化ガラス板、または前述の製造方法により得られる機能膜付き化学強化ガラス板を備える。
 本発明の物品は、前記機能膜付き化学強化ガラス板からなるものでもよく、前記機能膜付き化学強化ガラス板以外の他の部材をさらに備えるものでもよい。また、化学強化ガラス板の一部に機能膜を備えるものでもよい。
 本発明の物品の例としては、前記で機能膜付き化学強化ガラス板の用途として挙げたもの、それらのいずれか1種以上を備える装置、等が挙げられる。
 装置としては、例えば機能膜が防眩膜(低反射性を有してもよく有しなくてもよい。)または低反射膜である場合の例として、太陽電池モジュール、表示装置、照明装置等が挙げられる。
<Article>
The article of the present invention includes the above-described chemically strengthened glass plate with a functional film or the chemically strengthened glass plate with a functional film obtained by the above-described manufacturing method.
The article of the present invention may be composed of the chemically strengthened glass plate with the functional film, or may further include other members other than the chemically strengthened glass plate with the functional film. Further, a functional film may be provided on a part of the chemically strengthened glass plate.
Examples of the article of the present invention include those mentioned above as the uses of the chemically strengthened glass plate with a functional film, devices provided with any one or more of them.
Examples of the device include a solar cell module, a display device, and a lighting device as an example in which the functional film is an antiglare film (may or may not have low reflectivity) or a low reflection film. Is mentioned.
 太陽電池モジュールとしては、太陽電池と、太陽電池を保護するために太陽電池の前面および背面にそれぞれ配置された透明基板(カバーガラス等)とを備え、前記透明基板の少なくとも一方の透明基板(好ましくは少なくとも前面側の透明基板)として前記機能膜付き化学強化ガラス板を用いたものが好ましい。
 表示装置の例としては、携帯電話、スマートフォン、タブレット、カーナビゲーション等が挙げられる。
 照明装置の例としては、有機EL(エレクトロルミネッセンス)照明装置、LED(発光ダイオード)照明装置等が挙げられる。
The solar cell module includes a solar cell and a transparent substrate (cover glass or the like) disposed on each of the front and back surfaces of the solar cell in order to protect the solar cell, and at least one of the transparent substrates (preferably a transparent substrate) Are preferably those using the above-mentioned chemically strengthened glass plate with a functional film as a transparent substrate on the front side.
Examples of the display device include a mobile phone, a smartphone, a tablet, and a car navigation.
Examples of the illumination device include an organic EL (electroluminescence) illumination device and an LED (light emitting diode) illumination device.
 以下、実施例によって本発明を詳細に説明するが、本発明は、以下の記載によっては限定されない。
 以下の各例のうち、例3~11、および例14、15は、実施例であり、例1、2、12、13、16は、比較例である。
 各例で用いた測定・評価方法および材料(入手先または調製方法)を以下に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
Of the following examples, Examples 3 to 11 and Examples 14 and 15 are examples, and Examples 1, 2, 12, 13, and 16 are comparative examples.
The measurement / evaluation method and materials (source or preparation method) used in each example are shown below.
<測定・評価方法>
(表面圧縮応力、圧縮応力層の厚さ)
 化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さは、表面応力計(折原製作所製:FSM-6000LE)で測定した。
 機能膜(防眩膜、低反射膜)付き化学強化ガラス板とした後の化学強化ガラス板については、機能膜が形成されている側の表面圧縮応力、圧縮応力層の厚さを前記と同様にして測定した。
<Measurement and evaluation method>
(Surface compressive stress, compressive stress layer thickness)
The surface compressive stress of the chemically strengthened glass plate and the thickness of the compressive stress layer were measured with a surface stress meter (manufactured by Orihara Seisakusho: FSM-6000LE).
For chemically tempered glass plate after functional tempered glass plate with functional film (antiglare film, low reflection film), the surface compressive stress on the side where the functional film is formed, the thickness of the compressive stress layer are the same as above And measured.
(光沢度)
 防眩膜の表面の光沢度として、60゜鏡面光沢度を測定した。60゜鏡面光沢度は、光沢度計(日本電色工業社製、PG-3D型)を用いて、JIS Z8741:1997に規定されている方法により、防眩膜のほぼ中央部で測定した。また、防眩膜の表面の光沢度は、防眩膜付き化学強化ガラス板の裏面(防眩膜と反対側の面)に黒のビニールテープを貼り付けることにより、ガラス板の裏面反射の影響を無くした状態で測定した。光沢度が小さいほど、防眩性に優れることを示す。
(Glossiness)
As the glossiness of the surface of the antiglare film, 60 ° specular glossiness was measured. The 60 ° specular gloss was measured at a substantially central portion of the antiglare film by using a gloss meter (PG-3D type, manufactured by Nippon Denshoku Industries Co., Ltd.) according to the method defined in JIS Z8741: 1997. In addition, the glossiness of the surface of the antiglare film is influenced by the reflection of the back surface of the glass plate by attaching black vinyl tape to the back surface (surface opposite to the antiglare film) of the chemically strengthened glass plate with antiglare film. It measured in the state which lost. It shows that it is excellent in anti-glare property, so that glossiness is small.
(算術平均粗さRa)
 防眩膜の表面の算術平均粗さRaは、表面粗さ計(東京精密社製、サーフコム(登録商標)1500DX)を用い、JIS B0601:2001に記載された方法によって測定した。粗さ曲線用の基準長さlr(カットオフ値λc)は、0.08mmとした。
(Arithmetic mean roughness Ra)
The arithmetic average roughness Ra of the surface of the antiglare film was measured by a method described in JIS B0601: 2001 using a surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd., Surfcom (registered trademark) 1500DX). The reference length lr (cut-off value λc) for the roughness curve was 0.08 mm.
(透過率差Td)
 低反射膜を形成する前のガラス板、各例で得た低反射膜付き化学強化ガラス板それぞれについて、分光光度計(日本分光社製、V670)を用いて、波長400nm~1100nmにおける光の透過率(%)を測定し、平均透過率(%)を求めた。その結果から、下式(1)により透過率差Td(%)を算出した。光の入射角度は、0°(ガラス板に対して垂直に入射)とした。透過率差Tdが大きいほど、透過率向上効果が高いことを示す。
  Td=T1-T2 …(1)
 ただし、T1は、低反射膜付き化学強化ガラス板の平均透過率(%)であり、T2は、低反射膜を形成する前のガラス板の平均透過率(%)である。
(Transmissivity difference Td)
Transmission of light at a wavelength of 400 nm to 1100 nm using a spectrophotometer (manufactured by JASCO Corporation, V670) for each of the glass plate before forming the low reflection film and each chemically strengthened glass plate with the low reflection film obtained in each example The rate (%) was measured and the average transmittance (%) was determined. From the result, the transmittance difference Td (%) was calculated by the following formula (1). The incident angle of light was 0 ° (incident perpendicular to the glass plate). It shows that the transmittance | permeability improvement effect is so high that the transmittance | permeability difference Td is large.
Td = T1-T2 (1)
However, T1 is the average transmittance (%) of the chemically strengthened glass plate with a low reflection film, and T2 is the average transmittance (%) of the glass plate before forming the low reflection film.
(膜厚)
 低反射膜の膜厚d(nm)は、低反射膜付き化学強化ガラス板の裏面(低反射膜と反対側の面)に黒のビニールテープを貼り付けた状態で、分光光度計(大塚電子社製、瞬間マルチ測光システムMCPD-3000)により、波長300~780nmの範囲で前記低反射膜の反射率を測定し、得られた最も低い反射率(ボトム反射率Rmin)と、低反射膜を形成する前のガラス板の屈折率nとから、下式(2)により屈折率nを算出し、次いで得られた屈折率nとボトム反射率Rminにおける波長λ(nm)から下式(3)によって算出した。
  Rmin=(n-n/(n+n ・・・(2)
  n×d=λ/4 ・・・(3)
(Film thickness)
The film thickness d (nm) of the low-reflection film is a spectrophotometer (Otsuka Electronics Co., Ltd.) with a black vinyl tape attached to the back surface (surface opposite to the low-reflection film) of the chemically tempered glass plate with the low-reflection film. The reflectance of the low-reflection film is measured in the wavelength range of 300 to 780 nm using an instantaneous multi-metering system MCPD-3000), and the lowest reflectance (bottom reflectance R min ) obtained and the low-reflection film The refractive index n is calculated by the following formula (2) from the refractive index n s of the glass plate before forming, and the following formula is calculated from the obtained refractive index n and the wavelength λ (nm) at the bottom reflectance R min . Calculated according to (3).
R min = (n−n s ) 2 / (n + n s ) 2 (2)
n × d = λ / 4 (3)
(表面圧縮応力、圧縮応力層の厚さ)
 機能膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さは、表面応力計(折原製作所製:FSM-6000LE)で測定した。
(Surface compressive stress, compressive stress layer thickness)
The surface compressive stress of the chemically strengthened glass plate with a functional film and the thickness of the compressive stress layer were measured with a surface stress meter (manufactured by Orihara Seisakusho: FSM-6000LE).
(耐摩耗性)
 防眩膜の表面の耐摩耗性は、消しゴム(ライオン事務器社製、GAZA1K、縦18mm×横11mm)をラビングテスター(大平理化工業社製)に取り付け、該消しゴムを9.8×10-2MPaの圧力にて防眩膜の表面で水平往復運動させた。消しゴムを200往復させる前後の防眩膜の表面の60゜鏡面光沢度の差(絶対値)を耐摩耗性△Gとして求めた。60゜鏡面光沢度の差が小さいほど、耐摩耗性に優れる。なお、60゜鏡面光沢度は、防眩膜が形成された側とは反対側の面に黒色テープを貼り付けていない防眩膜付き物品について測定した。
(Abrasion resistance)
The abrasion resistance of the surface of the anti-glare film was determined by attaching an eraser (Lion Secretariat, GAZA1K, length 18 mm × width 11 mm) to a rubbing tester (Ohira Rika Kogyo Co., Ltd.) and attaching the eraser to 9.8 × 10 −2. Horizontal reciprocation was performed on the surface of the antiglare film at a pressure of MPa. The difference (absolute value) in 60 ° specular gloss on the surface of the antiglare film before and after reciprocating the eraser 200 times was determined as wear resistance ΔG. The smaller the difference in 60 ° specular gloss, the better the wear resistance. The 60 ° specular gloss was measured on an article with an antiglare film in which a black tape was not attached to the surface opposite to the side on which the antiglare film was formed.
〔使用材料〕
(シリカ前駆体溶液(a-1)の調製)
 変性エタノール(日本アルコール販売社製、商品名「ソルミックスAP-11」。エタノールを主剤とした混合溶媒。以下同様。)の75.8gを撹拌しながら、イオン交換水の11.9gと61質量%硝酸の0.1gとの混合液を加え、5分間撹拌した。これに、テトラエトキシシラン(SiO換算固形分濃度:29質量%)の12.2gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.5質量%のシリカ前駆体溶液(a-1)を調製した。
 なお、ここでのSiO換算固形分濃度は、テトラエトキシシランのすべてのSiがSiOに転化したときの固形分濃度である。
[Materials used]
(Preparation of silica precursor solution (a-1))
While stirring 75.8 g of denatured ethanol (trade name “SOLMIX AP-11”, manufactured by Nippon Alcohol Sales Co., Ltd., a mixed solvent containing ethanol as a main ingredient, the same shall apply hereinafter), 11.9 g and 61 mass of ion-exchanged water are stirred. A mixed solution with 0.1 g of% nitric acid was added and stirred for 5 minutes. To this, 12.2 g of tetraethoxysilane (SiO 2 equivalent solid content concentration: 29% by mass) was added and stirred at room temperature for 30 minutes to obtain a silica precursor solution having a SiO 2 equivalent solid content concentration of 3.5% by mass ( a-1) was prepared.
Incidentally, SiO 2 in terms of solids concentration here is solid concentration when all Si of tetraethoxysilane was converted to SiO 2.
(シリカ前駆体溶液(a-2)の調製)
 変性エタノールの80.3gを撹拌しながら、イオン交換水の7.9gと61質量%硝酸の0.2gとの混合液を加え、5分間撹拌した。次いで、1,6-ビス(トリメトキシシリル)ヘキサン(信越シリコーン社製、商品名「KBM3066」、SiO換算固形分濃度:37質量%)の11.6gを加え、ウォーターバス中60℃で15分間撹拌し、SiO換算固形分濃度が4.3質量%のシリカ前駆体溶液(a-2)を調製した。
 なお、ここでのSiO換算固形分濃度は、1,6-ビス(トリメトキシシリル)ヘキサンのすべてのSiがSiOに転化したときの固形分濃度である。
(Preparation of silica precursor solution (a-2))
While stirring 80.3 g of denatured ethanol, a mixed solution of 7.9 g of ion exchange water and 0.2 g of 61% by mass nitric acid was added and stirred for 5 minutes. Subsequently, 11.6 g of 1,6-bis (trimethoxysilyl) hexane (manufactured by Shin-Etsu Silicone Co., Ltd., trade name “KBM3066”, solid content concentration of SiO 2 : 37 mass%) was added, and the mixture was added at 15 ° C. in a water bath at 60 ° C. The mixture was stirred for 5 minutes to prepare a silica precursor solution (a-2) having a solid content concentration in terms of SiO 2 of 4.3% by mass.
Here, the solid content concentration in terms of SiO 2 is the solid content concentration when all Si of 1,6-bis (trimethoxysilyl) hexane is converted to SiO 2 .
(中実シリカ粒子分散液(b))
 日産化学工業社製の鎖状SiO微粒子分散液(商品名:「スノーテックス OUP」、SiO換算固形分濃度15.5質量%、平均一次粒子径10~20nm、平均凝集粒子径40~100nm)。
(Solid silica particle dispersion (b))
A chain SiO 2 fine particle dispersion (trade name: “Snowtex OUP”, manufactured by Nissan Chemical Industries, Ltd., solid content concentration of 15.5% by mass of SiO 2 , average primary particle size of 10 to 20 nm, average aggregated particle size of 40 to 100 nm ).
(塗布液(A)の調製)
 シリカ前駆体溶液(a-1)の77.1gを撹拌しながらシリカ前駆体溶液(a-2)の7.0gを加え、30分間撹拌した。次いで、変性エタノール15.9gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.0質量%の塗布液(A)を得た。
(Preparation of coating solution (A))
While stirring 77.1 g of the silica precursor solution (a-1), 7.0 g of the silica precursor solution (a-2) was added and stirred for 30 minutes. Subsequently, 15.9 g of denatured ethanol was added, and the mixture was stirred at room temperature for 30 minutes to obtain a coating solution (A) having a solid content concentration of SiO 2 of 3.0% by mass.
(塗布液(B)の調製)
 変性エタノールの56.5gを撹拌しながら塗布液(A)の30.0gを加え、次いで、鎖状中実シリカゾル(日産化学工業社製、商品名「スノーテックスST-OUP」)13.5gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.0質量%の塗布液(B)を得た。なお、ここでのSiO換算固形分濃度は、塗布液(A)のSiO換算固形分と、鎖状中実シリカゾルのSiO換算固形分(鎖状中実シリカ粒子)との合計である。
 塗布液(B)中の鎖状中実シリカ粒子の含有量は、塗布液(B)のSiO換算固形分に対して70質量%である。塗布液(B)中の鎖状中実シリカ粒子の平均凝集粒子径は、70nmであった。
(Preparation of coating solution (B))
30.0 g of the coating solution (A) was added while stirring 56.5 g of denatured ethanol, and then 13.5 g of a chain solid silica sol (manufactured by Nissan Chemical Industries, Ltd., trade name “Snowtex ST-OUP”) In addition, the mixture was stirred at room temperature for 30 minutes to obtain a coating solution (B) having a solid content concentration in terms of SiO 2 of 3.0% by mass. Incidentally, in terms of SiO 2 solid content concentration herein is the sum of the terms of SiO 2 solids, calculated as SiO 2 solid content in the chain solid silica sol (solid silica particles chain) of the coating solution (A) .
The content of the coating solution (B) chain in solid silica particles in is 70 mass% with respect to SiO 2 in terms the solid content of the coating solution (B). The average aggregate particle diameter of the chain solid silica particles in the coating liquid (B) was 70 nm.
(塗布液(C)の調製)
 変性エタノールの0.3gを撹拌しながら、これにイソブチルアルコールの24.0g、ジアセトンアルコール(DAA)の15.0g、塗布液(A)の30.0g、中実シリカ粒子分散液(b)の9.7gを加え、固形分濃度が3.0質量%の塗布液(C)を調製した。
(Preparation of coating solution (C))
While stirring 0.3 g of denatured ethanol, 24.0 g of isobutyl alcohol, 15.0 g of diacetone alcohol (DAA), 30.0 g of coating solution (A), solid silica particle dispersion (b) Was added to prepare a coating solution (C) having a solid content concentration of 3.0% by mass.
〔例1〕
 ガラス板として、ソーダライムガラス板(旭硝子社製、製品名:FL1.1。サイズ:100mm×100mm、厚さ1.1mm。ガラス歪点の温度:511℃)を用意した。
 前記ガラス板を、純水中で超音波洗浄処理し、風乾し、予熱炉にて420℃で120分間処理し、その後、KNO溶融浴中に420℃で150分間浸漬した。処理後、ガラス板を取り出して室温下で60分間冷却し、純水中で超音波洗浄処理、風乾することで化学強化ガラス板を得た。
 得られた化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さを表1に示す。
[Example 1]
As a glass plate, a soda-lime glass plate (manufactured by Asahi Glass Co., Ltd., product name: FL1.1, size: 100 mm × 100 mm, thickness 1.1 mm, glass strain point temperature: 511 ° C.) was prepared.
The glass plate was subjected to ultrasonic cleaning treatment in pure water, air-dried, treated in a preheating furnace at 420 ° C. for 120 minutes, and then immersed in a KNO 3 melting bath at 420 ° C. for 150 minutes. After the treatment, the glass plate was taken out and cooled at room temperature for 60 minutes, and a chemically strengthened glass plate was obtained by ultrasonic cleaning treatment and air drying in pure water.
Table 1 shows the surface compressive stress of the obtained chemically strengthened glass plate and the thickness of the compressive stress layer.
〔例2〕
 ガラス板を、アルミノシリケートガラス板(旭硝子社製、製品名:Leoflexの強化前のガラス。サイズ:100mm×100mm、厚さ0.85mm。ガラス歪点の温度:556℃)に変更した以外は、例1と同様にして、化学強化ガラス板を得た。
 得られた強化ガラス板の表面圧縮応力、圧縮応力層の厚さを表2に示す。
[Example 2]
Except for changing the glass plate to an aluminosilicate glass plate (manufactured by Asahi Glass Co., Ltd., product name: glass before strengthening of Leoflex. Size: 100 mm × 100 mm, thickness 0.85 mm, glass strain point temperature: 556 ° C.) In the same manner as in Example 1, a chemically strengthened glass plate was obtained.
Table 2 shows the surface compressive stress of the obtained tempered glass sheet and the thickness of the compressive stress layer.
〔例3〕
(ガラス板およびその洗浄)
 ガラス板として、ソーダライムガラス板(旭硝子社製、製品名:FL1.1。サイズ:100mm×100mm、厚さ1.1mm。ガラス歪点の温度:511℃)を用意した。該ガラス板の表面を炭酸水素ナトリウム水で洗浄後、イオン交換水でリンスし、乾燥させた。
[Example 3]
(Glass plate and its cleaning)
As a glass plate, a soda-lime glass plate (manufactured by Asahi Glass Co., Ltd., product name: FL1.1, size: 100 mm × 100 mm, thickness 1.1 mm, glass strain point temperature: 511 ° C.) was prepared. The surface of the glass plate was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried.
(防眩膜付きガラス板の作製)
 前記ガラス板を、予熱炉(ISUZU社製、VTR-115)にて予熱した。次いで、該ガラス板の表面温度を89℃に保温した状態で、該ガラス板上に、下記の条件で、表1に示す算術平均粗さRaとなるように塗布液(A)を塗布した。なお、塗布時のその他の条件は、表1に記載の通りである。
 ・スプレー圧力:0.2MPa、
 ・ノズル移動速度:750mm/分、
 ・スプレーピッチ:22mm。
 その後、30℃で30分間乾燥し、防眩膜付きガラス板を得た。
 スプレー法による塗布には、6軸塗装用ロボット(川崎ロボティックス社製、JF-5)を用いた。また、ノズルとしては、VAUノズル(スプレーイングシステムジャパン社製)を用いた。
(Preparation of glass plate with antiglare film)
The glass plate was preheated in a preheating furnace (manufactured by ISUZU, VTR-115). Next, in a state where the surface temperature of the glass plate was kept at 89 ° C., the coating solution (A) was applied on the glass plate under the following conditions so that the arithmetic average roughness Ra shown in Table 1 was obtained. Other conditions at the time of application are as shown in Table 1.
・ Spray pressure: 0.2 MPa
・ Nozzle moving speed: 750 mm / min,
-Spray pitch: 22 mm.
Then, it dried for 30 minutes at 30 degreeC, and obtained the glass plate with an anti-glare film.
For application by the spray method, a 6-axis coating robot (manufactured by Kawasaki Robotics, JF-5) was used. As the nozzle, a VAU nozzle (manufactured by Spraying System Japan) was used.
(防眩膜付きガラス板の化学強化処理)
 例1のガラス板の代わりに前記防眩膜付きガラス板を用いた以外は、例1と同様に化学強化処理を行って防眩膜付き化学強化ガラス板を得た。
 得られた防眩膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さ、光沢度、算術平均粗さRaを表1に示す。
(Chemical strengthening treatment of glass plate with antiglare film)
A chemically strengthened glass plate with an antiglare film was obtained by performing a chemical strengthening treatment in the same manner as in Example 1 except that the glass plate with an antiglare film was used instead of the glass plate of Example 1.
Table 1 shows the surface compressive stress, the thickness of the compressive stress layer, the glossiness, and the arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
〔例4~6〕
 表1に示す塗布条件、乾燥条件にて、塗布液(A)を表1に示す算術平均粗さRaとなるように塗布した以外は、例3と同様にして防眩膜付き化学強化ガラス板を得た。
 得られた防眩膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さ、光沢度、算術平均粗さRaを表1に示す。
[Examples 4 to 6]
A chemically strengthened glass plate with an antiglare film in the same manner as in Example 3 except that the coating solution (A) was applied so as to have the arithmetic average roughness Ra shown in Table 1 under the coating conditions and drying conditions shown in Table 1. Got.
Table 1 shows the surface compressive stress, the thickness of the compressive stress layer, the glossiness, and the arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
〔例7〕
 ガラス板をアルミノシリケートガラス板(旭硝子社製、製品名:Leoflexの強化前のガラス。サイズ:100mm×100mm、厚さ0.85mm。ガラス歪点の温度:556℃)に変更し、塗布液(A)を表2に示す塗布液に変更して、表2に示す塗布条件、乾燥条件にて、表2に示す算術平均粗さRaとなるように塗布した以外は例3と同様にして防眩膜付き化学強化ガラス板を得た。
 得られた防眩膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さ、光沢度、算術平均粗さRaを表2に示す。
[Example 7]
The glass plate was changed to an aluminosilicate glass plate (manufactured by Asahi Glass Co., Ltd., product name: glass before strengthening of Leoflex. Size: 100 mm × 100 mm, thickness 0.85 mm, glass strain point temperature: 556 ° C.) A) was changed to the coating solution shown in Table 2, and the coating solution and drying conditions shown in Table 2 were applied in the same manner as in Example 3 except that the coating was applied so that the arithmetic average roughness Ra shown in Table 2 was obtained. A chemically strengthened glass plate with a glare film was obtained.
Table 2 shows the surface compressive stress, thickness of the compressive stress layer, glossiness, and arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
〔例8~9〕
 表2に示す塗布液、塗布条件、乾燥条件にて、表2に示す算術平均粗さRaとなるように塗布液を塗布した以外は例7と同様にして防眩膜付き化学強化ガラス板を得た。
 得られた防眩膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さ、光沢度、算術平均粗さRaを表2に示す。
[Examples 8 to 9]
A chemically strengthened glass plate with an antiglare film was applied in the same manner as in Example 7 except that the coating solution was applied so as to have the arithmetic average roughness Ra shown in Table 2 under the coating solution, coating conditions, and drying conditions shown in Table 2. Obtained.
Table 2 shows the surface compressive stress, thickness of the compressive stress layer, glossiness, and arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
〔例10~11〕
 表1に示す塗布液、乾燥温度にて、表1に示す算術平均粗さRaとなるように塗布液を塗布した以外は例3と同様にして防眩膜付き化学強化ガラス板を得た。
 得られた防眩膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さ、光沢度、算術平均粗さRaを表1に示す。
[Examples 10 to 11]
A chemically strengthened glass plate with an antiglare film was obtained in the same manner as in Example 3 except that the coating liquid was applied so as to have the arithmetic average roughness Ra shown in Table 1 at the coating liquid and drying temperature shown in Table 1.
Table 1 shows the surface compressive stress, the thickness of the compressive stress layer, the glossiness, and the arithmetic average roughness Ra of the obtained chemically strengthened glass plate with an antiglare film.
〔例12〕
(化学強化ガラス板およびその洗浄)
 例2と同様に、ガラス板として、化学強化アルミノシリケートガラス板(旭硝子社製、製品名:Leoflex。サイズ:100mm×100mm、厚さ0.85mm。ガラス歪点の温度:556℃)を用意した。該ガラス板の表面を炭酸水素ナトリウム水で洗浄後、イオン交換水でリンスし、乾燥させた。
[Example 12]
(Chemically strengthened glass plate and its cleaning)
As in Example 2, a chemically strengthened aluminosilicate glass plate (manufactured by Asahi Glass Co., Ltd., product name: Leoflex, size: 100 mm × 100 mm, thickness 0.85 mm, glass strain point temperature: 556 ° C.) was prepared in the same manner as in Example 2. . The surface of the glass plate was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried.
(防眩膜付き化学強化ガラス板の作製)
 次いで、前記ガラス板を、予熱炉(ISUZU社製、VTR-115)にて95℃に予熱した。次いで、該ガラス板の表面温度を90℃に保温した状態で、該ガラス板上に、塗布液(A)を用いて、スプレー法により、下記の条件で、表3に示す算術平均粗さRaとなるように塗布液(A)を塗布し、防眩膜付き化学強化ガラス板を作製した。なお、塗布時のその他の条件は、表3に記載の通りである。
 ・スプレー圧力:0.2MPa、
 ・ノズル移動速度:750mm/分、
 ・スプレーピッチ:22mm。
 その後、200℃で3分間乾燥し、防眩膜付き化学強化ガラス板を得た。
 スプレー法による塗布には、6軸塗装用ロボット(川崎ロボティックス社製、JF-5)を用いた。また、ノズルとしては、VAUノズル(スプレーイングシステムジャパン社製)を用いた。
得られた防眩膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さ、光沢度、算術平均粗さRa、耐摩耗性△Gを表3に示す。
(Production of chemically strengthened glass plate with antiglare film)
Next, the glass plate was preheated to 95 ° C. in a preheating furnace (manufactured by ISUZU, VTR-115). Next, with the surface temperature of the glass plate kept at 90 ° C., the arithmetic average roughness Ra shown in Table 3 is applied on the glass plate using the coating solution (A) by the spray method under the following conditions. The coating liquid (A) was applied so that a chemically strengthened glass plate with an antiglare film was produced. Other conditions at the time of application are as shown in Table 3.
・ Spray pressure: 0.2 MPa
・ Nozzle moving speed: 750 mm / min,
-Spray pitch: 22 mm.
Then, it dried at 200 degreeC for 3 minute (s), and obtained the chemically strengthened glass plate with a glare-proof film.
For application by the spray method, a 6-axis coating robot (manufactured by Kawasaki Robotics, JF-5) was used. As the nozzle, a VAU nozzle (manufactured by Spraying System Japan) was used.
Table 3 shows the surface compressive stress, the thickness of the compressive stress layer, the glossiness, the arithmetic average roughness Ra, and the wear resistance ΔG of the obtained chemically strengthened glass plate with an antiglare film.
〔例13〕
 表3に示す塗布液、塗布条件、乾燥条件にて、表3に示す算術平均粗さRaとなるように塗布液を塗布した以外は例12と同様にして防眩膜付き化学強化ガラス板を得た。
 得られた防眩膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さ、光沢度、算術平均粗さRa、耐摩耗性△Gを表3に示す。
[Example 13]
A chemically strengthened glass plate with an antiglare film was applied in the same manner as in Example 12 except that the coating liquid was applied so as to have the arithmetic average roughness Ra shown in Table 3 under the coating liquid, coating conditions, and drying conditions shown in Table 3. Obtained.
Table 3 shows the surface compressive stress, the thickness of the compressive stress layer, the glossiness, the arithmetic average roughness Ra, and the wear resistance ΔG of the obtained chemically strengthened glass plate with an antiglare film.
〔例14〕
(低反射膜付きガラス板の作製)
 ガラス板としてアルミノシリケートガラス板(旭硝子社製、製品名:Leoflexの強化前のガラス。サイズ:100mm×100mm、厚さ0.85mm。ガラス歪点の温度:556℃)を用意した。
 前記ガラス板を予熱炉(ISUZU社製、VTR-115)にて予熱した。ガラス面温が30℃に保温された状態にて、前記ガラス板上に、塗布液(C)を用いて、スプレー法により、下記の条件で、リバースロールコータ(三和精機社製)のコーティングロールによって塗布液(C)を所定の膜厚で塗布し、低反射膜付きガラス板を作製した。なお、塗布時のその他の条件は、表2に記載の通りである。
 ・ガラス板の搬送速度:8.5m/分、
 ・コーティングロールと搬送ベルトとのギャップ:2.9mm、
 ・コーティングロールとドクターロールとの押込み厚:0.6mm。
 コーティングロールとしては、表面の硬度(JIS-A)が30のゴム(エチレンプロピレンジエンゴム)がライニングされたゴムライニングロールを用いた。ドクターロールとしては、格子状の溝が表面に形成されたメタルロールを用いた。
 その後、200℃で30分間乾燥し、低反射膜付きガラス板を得た。
[Example 14]
(Production of glass plate with low reflection film)
As the glass plate, an aluminosilicate glass plate (manufactured by Asahi Glass Co., Ltd., product name: glass before strengthening of Leoflex. Size: 100 mm × 100 mm, thickness 0.85 mm, glass strain point temperature: 556 ° C.) was prepared.
The glass plate was preheated in a preheating furnace (manufactured by ISUZU, VTR-115). Coating the reverse roll coater (manufactured by Sanwa Seiki Co., Ltd.) on the glass plate with the coating solution (C) under the following conditions with the glass surface temperature kept at 30 ° C. The coating liquid (C) was applied with a predetermined film thickness using a roll to produce a glass plate with a low reflection film. The other conditions at the time of application are as shown in Table 2.
・ Conveying speed of glass plate: 8.5 m / min,
・ Gap between coating roll and conveyor belt: 2.9 mm,
・ Indentation thickness between coating roll and doctor roll: 0.6 mm.
As the coating roll, a rubber lining roll lined with rubber (ethylene propylene diene rubber) having a surface hardness (JIS-A) of 30 was used. As the doctor roll, a metal roll having lattice-like grooves formed on the surface thereof was used.
Then, it dried at 200 degreeC for 30 minutes, and obtained the glass plate with a low reflection film.
(低反射膜付きガラス板の化学強化処理)
 次いで、ガラス板として前記低反射膜付きガラス板を用いた以外は例1と同様に化学強化処理を行って低反射膜付き化学強化ガラス板を得た。
 得られた低反射膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さ、透過率差Td、低反射膜の膜厚を表2に示す。
(Chemical strengthening treatment of glass plate with low reflection film)
Subsequently, the chemical strengthening process was performed like Example 1 except having used the said glass plate with a low reflection film as a glass plate, and the chemically strengthened glass plate with a low reflection film was obtained.
Table 2 shows the surface compressive stress, the thickness of the compressive stress layer, the transmittance difference Td, and the film thickness of the low reflective film of the obtained chemically strengthened glass plate with the low reflective film.
〔例15~16〕
 乾燥温度を表2に示す温度に変更した以外は、例14と同様にして低反射膜付き化学強化ガラス板を得た。
 得られた低反射膜付き化学強化ガラス板の表面圧縮応力、圧縮応力層の厚さ、透過率差Td、低反射膜の膜厚を表2に示す。
[Examples 15 to 16]
A chemically strengthened glass plate with a low reflection film was obtained in the same manner as in Example 14 except that the drying temperature was changed to the temperature shown in Table 2.
Table 2 shows the surface compressive stress, the thickness of the compressive stress layer, the transmittance difference Td, and the film thickness of the low reflective film of the obtained chemically strengthened glass plate with the low reflective film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 例1と、例3~6および10~11とを対比すると、例3~6、10~11の防眩膜付き化学強化ガラス板は、機能膜(防眩膜)の形成後に化学強化を行ったものであるが、化学強化ガラス板の圧縮応力層の厚さが、機能膜を形成せずに化学強化を行った例1の化学強化ガラス板と同等以上であった。特に塗膜の乾燥を300~400℃で行った例10~11では、化学強化ガラス板の表面圧縮応力も例1の化学強化ガラス板と同等以上であった。 When Example 1 is compared with Examples 3 to 6 and 10 to 11, the chemically strengthened glass plates with antiglare films of Examples 3 to 6 and 10 to 11 are chemically strengthened after the formation of the functional film (antiglare film). However, the thickness of the compressive stress layer of the chemically strengthened glass plate was equal to or greater than that of the chemically strengthened glass plate of Example 1 in which chemical strengthening was performed without forming a functional film. In particular, in Examples 10 to 11 where the coating film was dried at 300 to 400 ° C., the surface compressive stress of the chemically strengthened glass plate was equal to or higher than that of the chemically strengthened glass plate of Example 1.
 例2と、7~9および14~16とを対比すると、例7~9の防眩膜付き化学強化ガラス板および例14、15の低反射膜付き化学強化ガラス板は、機能膜(防眩膜、低反射膜)の形成後に化学強化を行ったものであるが、化学強化ガラス板の表面圧縮応力および圧縮応力層の厚さが、機能膜を形成せずに化学強化を行った例2の化学強化ガラス板と同等以上であった。
 対して、塗膜の乾燥を500℃で行った例16の低反射膜付き化学強化ガラス板は、化学強化ガラス板の表面圧縮応力および圧縮応力層の厚さが、例2の化学強化ガラス板よりも劣っていた。
 また化学強化アルミノシリケートガラス板に機能膜を形成した例12~13に比べ、機能膜を形成してから化学強化した例8のガラス板は、例2と同等以上の化学強化が可能であるだけではなく、十分な耐摩耗性を有していた。機能膜を形成する工程が450℃以下の温度で行われるだけでなく、機能膜形成後に化学強化を行うことで、イオン通過可能な構造を維持しつつ緻密化が行われる等の理由により、耐摩耗性が向上すると考えられる。
When Example 2 is compared with 7 to 9 and 14 to 16, the chemically strengthened glass plate with antiglare film of Examples 7 to 9 and the chemically strengthened glass plate with low reflection film of Examples 14 and 15 are functional films (antiglare). Example 2 in which chemical strengthening was performed after formation of the film, low-reflection film, and the surface compressive stress of the chemically strengthened glass plate and the thickness of the compressive stress layer were chemically strengthened without forming a functional film. It was equal to or better than the chemically strengthened glass plate.
On the other hand, the chemically tempered glass plate with a low reflection film of Example 16 in which the coating film was dried at 500 ° C. had the surface compressive stress of the chemically tempered glass plate and the thickness of the compressive stress layer of the chemically tempered glass plate of Example 2. Was inferior.
Further, compared to Examples 12 to 13 in which a functional film is formed on a chemically strengthened aluminosilicate glass plate, the glass plate of Example 8 that has been chemically strengthened after forming the functional film can only be chemically strengthened at least as much as Example 2. Rather, it had sufficient wear resistance. The process of forming the functional film is not only performed at a temperature of 450 ° C. or lower, but also by performing chemical strengthening after the functional film is formed, for example, densification is performed while maintaining a structure through which ions can pass. Abrasion is considered to improve.
 本発明によれば、機能膜を形成した後、化学強化することにより物体の接触による物理的劣化が抑えられた機能膜付き化学強化ガラス板を提供することができる。また、機能膜を形成した後にガラス板を良好に化学強化できる機能膜付き化学強化ガラス板の製造方法、該製造方法により得られる機能膜付き化学強化ガラス板、および該機能膜付き化学強化ガラス板を備える物品を提供できる。また、機能膜のコート後化学強化することにより物体の接触による物理的劣化が抑えられた
 なお、2014年6月6日に出願された日本特許出願2014-117988号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
ADVANTAGE OF THE INVENTION According to this invention, after forming a functional film, the chemical strengthening glass plate with a functional film by which physical deterioration by the contact of an object was suppressed by chemically strengthening can be provided. Further, a method for producing a chemically tempered glass plate with a functional film capable of satisfactorily chemically strengthening the glass plate after forming the functional film, a chemically tempered glass plate with a functional film obtained by the production method, and a chemically tempered glass plate with the functional film Can be provided. In addition, physical deterioration due to contact with an object was suppressed by chemical strengthening after coating of the functional film. Note that the specification and claims of Japanese Patent Application No. 2014-117788 filed on June 6, 2014 The entire contents of the drawings and abstract are hereby incorporated by reference into the present disclosure.
 1 機能膜付き化学強化ガラス板
 3 化学強化ガラス板
 5 機能膜
1 Chemically strengthened glass plate with functional membrane 3 Chemically strengthened glass plate 5 Functional membrane

Claims (13)

  1.  少なくとも一方の面にシリカ系マトリクスを含む機能膜を備える化学強化ガラス板であって、前記シリカ系マトリクスを含む機能膜を有する部分が、耐摩耗性試験前の60°鏡面光沢度と耐摩耗性試験後の60°鏡面光沢度との差として20以下の耐摩耗性を有する、機能膜付き化学強化ガラス板。 A chemically tempered glass plate having a functional film containing a silica-based matrix on at least one surface, wherein the portion having the functional film containing a silica-based matrix has a 60 ° specular gloss and abrasion resistance before an abrasion resistance test. A chemically strengthened glass plate with a functional film having a wear resistance of 20 or less as a difference from the 60 ° specular gloss after the test.
  2.  前記シリカ系マトリクスは、シリカがマトリクス中に50%以上含まれる、請求項1に記載の機能膜付き化学強化ガラス板。 The chemically strengthened glass plate with a functional film according to claim 1, wherein the silica-based matrix contains 50% or more of silica in the matrix.
  3.  前記機能膜を有する部分が、耐摩耗性試験前と耐摩耗性試験後のそれぞれにおける60°鏡面光沢度の差として10以下の耐摩耗性を有する、請求項1または2に記載の機能膜付き化学強化ガラス板。 The functional film-attached portion according to claim 1 or 2, wherein the portion having the functional film has an abrasion resistance of 10 or less as a difference in 60 ° specular gloss before and after the abrasion resistance test. Chemically strengthened glass plate.
  4.  表面圧縮応力が400MPa以上であり、圧縮応力厚みが5μm以上である、請求項1乃至3のいずれか一項に記載の機能膜付き化学強化ガラス板。 The chemically strengthened glass plate with a functional film according to any one of claims 1 to 3, wherein the surface compressive stress is 400 MPa or more and the compressive stress thickness is 5 µm or more.
  5.  前記化学強化ガラス板が、酸化物基準のモル百分率表示で、SiOを56~75%、Alを1~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~10%含有する、請求項1乃至4のいずれか一項に記載の機能膜付き化学強化ガラス板。 The chemically tempered glass plate is expressed in terms of mole percentage based on oxide, SiO 2 is 56 to 75%, Al 2 O 3 is 1 to 20%, Na 2 O is 8 to 22%, and K 2 O is 0 to 10%. 5. The chemically strengthened glass plate with a functional film according to claim 1, comprising: 1%, MgO 0 to 14%, ZrO 2 0 to 5%, and CaO 0 to 10%.
  6.  前記機能膜が防眩膜である、請求項1乃至5のいずれか一項に記載の機能膜付き化学強化ガラス板。 The chemically strengthened glass plate with a functional film according to any one of claims 1 to 5, wherein the functional film is an antiglare film.
  7.  前記機能膜が、中実無機粒子をさらに含む、請求項1乃至6のいずれか一項に記載の機能膜付き化学強化ガラス板。 The chemically strengthened glass plate with a functional film according to any one of claims 1 to 6, wherein the functional film further contains solid inorganic particles.
  8.  ガラス板上に機能膜が形成され、当該ガラス板に化学強化処理が施される機能膜付き化学強化ガラス板の製造方法であって、
     ガラス板上に、下記の塗布液を塗布し、乾燥して機能膜を形成する工程と、
     前記機能膜が形成されたガラス板を化学強化して機能膜付き化学強化ガラス板を得る工程と、を有し、
     前記機能膜を形成する工程を、450℃以下の温度で行うことを特徴とする、機能膜付き化学強化ガラス板の製造方法。
     塗布液:ケイ素原子に結合した加水分解性基を有するシラン化合物およびその加水分解縮合物からなる群から選ばれる少なくとも1種のシリカ前駆体と、液状媒体とを含み、前記シリカ前駆体の含有量が、前記塗布液中の酸化物換算固形分に対して15質量%以上である。
    A functional film is formed on the glass plate, and a chemical tempered glass plate with a functional film is produced by the chemical tempering treatment on the glass plate,
    Applying the following coating solution on a glass plate and drying to form a functional film;
    Chemically strengthening the glass plate on which the functional film is formed to obtain a chemically strengthened glass plate with a functional film, and
    A method for producing a chemically strengthened glass plate with a functional film, wherein the step of forming the functional film is performed at a temperature of 450 ° C. or lower.
    Coating solution: at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium, and the content of the silica precursor However, it is 15 mass% or more with respect to the oxide conversion solid content in the said coating liquid.
  9.  ガラス板上に機能膜が形成され、当該ガラス板に化学強化処理が施される機能膜付き化学強化ガラス板の製造方法であって、
     下記の塗布液から450℃以下の温度で機能膜が形成され、その後、450℃超の温度で熱処理されていないガラス板を化学強化して機能膜付き化学強化ガラス板を得る工程を有することを特徴とする、機能膜付き化学強化ガラス板の製造方法。
     塗布液:ケイ素原子に結合した加水分解性基を有するシラン化合物およびその加水分解縮合物からなる群から選ばれる少なくとも1種のシリカ前駆体と、液状媒体とを含み、前記シリカ前駆体の含有量が、前記塗布液中の酸化物換算固形分に対して15質量%以上である。
    A functional film is formed on the glass plate, and a chemical tempered glass plate with a functional film is produced by the chemical tempering treatment on the glass plate,
    A functional film is formed from the following coating solution at a temperature of 450 ° C. or lower, and then a glass plate that has not been heat-treated at a temperature higher than 450 ° C. is chemically strengthened to obtain a chemically strengthened glass plate with a functional film. A method for producing a chemically strengthened glass plate with a functional film, which is characterized.
    Coating solution: at least one silica precursor selected from the group consisting of a silane compound having a hydrolyzable group bonded to a silicon atom and a hydrolysis condensate thereof, and a liquid medium, and the content of the silica precursor However, it is 15 mass% or more with respect to the oxide conversion solid content in the said coating liquid.
  10.  前記ガラス板が以下の組成を有する、請求項8または9に記載の機能膜付き化学強化ガラス板の製造方法。
     ガラス組成:酸化物基準のモル百分率表示で、SiOを56~75%、Alを1~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~10%含有する。
    The manufacturing method of the chemically strengthened glass plate with a functional film of Claim 8 or 9 with which the said glass plate has the following compositions.
    Glass composition: expressed in terms of mole percentage on oxide basis, SiO 2 56-75%, Al 2 O 3 1-20%, Na 2 O 8-22%, K 2 O 0-10%, MgO 0-14%, ZrO 2 0-5% and CaO 0-10%.
  11.  前記塗布液が、中実無機粒子をさらに含み、前記中実無機粒子の含有量が、前記塗布液中の酸化物換算固形分に対して10~85質量%である、請求項8乃至10のいずれか一項に記載の機能膜付き化学強化ガラス板の製造方法。 11. The coating liquid according to claim 8, wherein the coating liquid further contains solid inorganic particles, and the content of the solid inorganic particles is 10 to 85% by mass with respect to the oxide-converted solid content in the coating liquid. The manufacturing method of the chemically strengthened glass plate with a functional film as described in any one of Claims.
  12.  請求項8乃至11のいずれか一項に記載の機能膜付き化学強化ガラス板の製造方法により得られる機能膜付き化学強化ガラス板。 A chemically strengthened glass plate with a functional film obtained by the method for producing a chemically strengthened glass plate with a functional film according to any one of claims 8 to 11.
  13.  請求項1乃至7、12のいずれか一項に記載の機能膜付き化学強化ガラス板を備える物品。 An article comprising the chemically strengthened glass plate with a functional film according to any one of claims 1 to 7 and 12.
PCT/JP2015/066087 2014-06-06 2015-06-03 Chemically toughened glass plate with function film, method for producing same, and article WO2015186753A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-117988 2014-06-06
JP2014117988A JP2017132644A (en) 2014-06-06 2014-06-06 Chemically strengthened glass sheet with functional film, manufacturing method, and article thereof

Publications (1)

Publication Number Publication Date
WO2015186753A1 true WO2015186753A1 (en) 2015-12-10

Family

ID=54766821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066087 WO2015186753A1 (en) 2014-06-06 2015-06-03 Chemically toughened glass plate with function film, method for producing same, and article

Country Status (3)

Country Link
JP (1) JP2017132644A (en)
TW (1) TW201604002A (en)
WO (1) WO2015186753A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178634A (en) * 2016-03-28 2017-10-05 フクビ化学工業株式会社 Method for manufacturing high-level antireflection reinforced glass
WO2017179360A1 (en) * 2016-04-12 2017-10-19 日本電気硝子株式会社 Method for manufacturing tempered glass and device for manufacturing tempered glass
KR20180119087A (en) * 2017-04-24 2018-11-01 엘지전자 주식회사 Curved glass and method for producing the same
WO2018199431A1 (en) * 2017-04-24 2018-11-01 엘지전자 주식회사 Curved glass and manufacturing method thereof
CN108831851A (en) * 2018-06-26 2018-11-16 通威太阳能(成都)有限公司 A kind of method for separating improving the bad classification effectiveness of solar battery EL
DE112018002226T5 (en) 2017-04-28 2020-01-23 AGC Inc. GLASS SUBSTRATE WITH APPLIED FILM, OBJECT AND METHOD FOR PRODUCING A GLASS SUBSTRATE WITH APPLIED FILM
WO2022014650A1 (en) 2020-07-17 2022-01-20 Agc株式会社 Glass substrate with silica film
CN117075261A (en) * 2023-09-28 2023-11-17 中建材光芯科技有限公司 Low-magnification high-strength optical fiber cone and preparation method and application thereof
US11885998B2 (en) 2020-02-07 2024-01-30 Corning Incorporated Method of treating a glass surface and treated glass articles
JP7486726B2 (en) 2020-07-17 2024-05-20 国立大学法人信州大学 Silica film substrate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102490522B1 (en) * 2017-11-14 2023-01-19 삼성전자주식회사 Cover glass and electronic device with the same, and manufacturing method of cover glass
KR102230270B1 (en) * 2018-04-23 2021-03-22 한국항공대학교산학협력단 Ion exchange of glass via non-dipping process
WO2019209012A1 (en) * 2018-04-23 2019-10-31 한국항공대학교산학협력단 Method of ion exchange of glass through non-immersion technique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234754A (en) * 2001-02-02 2002-08-23 Nippon Sheet Glass Co Ltd Method for producing toughened functional film-coated glass article
JP2006083045A (en) * 2004-09-17 2006-03-30 Hitachi Ltd Glass member
US20110293928A1 (en) * 2010-05-28 2011-12-01 Wintek Corporation Method for Strengthening Glass and Glass Using the Same
WO2013099620A1 (en) * 2011-12-26 2013-07-04 旭硝子株式会社 Method for reducing warping of glass substrate caused by chemically toughening treatment, and method for producing chemically toughened glass substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234754A (en) * 2001-02-02 2002-08-23 Nippon Sheet Glass Co Ltd Method for producing toughened functional film-coated glass article
JP2006083045A (en) * 2004-09-17 2006-03-30 Hitachi Ltd Glass member
US20110293928A1 (en) * 2010-05-28 2011-12-01 Wintek Corporation Method for Strengthening Glass and Glass Using the Same
WO2013099620A1 (en) * 2011-12-26 2013-07-04 旭硝子株式会社 Method for reducing warping of glass substrate caused by chemically toughening treatment, and method for producing chemically toughened glass substrate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178634A (en) * 2016-03-28 2017-10-05 フクビ化学工業株式会社 Method for manufacturing high-level antireflection reinforced glass
CN108463443B (en) * 2016-04-12 2021-07-13 日本电气硝子株式会社 Method for producing tempered glass and device for producing tempered glass
WO2017179360A1 (en) * 2016-04-12 2017-10-19 日本電気硝子株式会社 Method for manufacturing tempered glass and device for manufacturing tempered glass
CN108463443A (en) * 2016-04-12 2018-08-28 日本电气硝子株式会社 The manufacturing method and strengthened glass manufacturing device of strengthened glass
KR20180119087A (en) * 2017-04-24 2018-11-01 엘지전자 주식회사 Curved glass and method for producing the same
WO2018199431A1 (en) * 2017-04-24 2018-11-01 엘지전자 주식회사 Curved glass and manufacturing method thereof
US11584674B2 (en) 2017-04-24 2023-02-21 Lg Electronics Inc. Curved glass manufacturing method
KR102048993B1 (en) * 2017-04-24 2019-11-27 엘지전자 주식회사 Curved glass and method for producing the same
DE112018002226T5 (en) 2017-04-28 2020-01-23 AGC Inc. GLASS SUBSTRATE WITH APPLIED FILM, OBJECT AND METHOD FOR PRODUCING A GLASS SUBSTRATE WITH APPLIED FILM
CN108831851B (en) * 2018-06-26 2021-03-09 通威太阳能(成都)有限公司 Sorting method for improving poor sorting efficiency of solar cell EL
CN108831851A (en) * 2018-06-26 2018-11-16 通威太阳能(成都)有限公司 A kind of method for separating improving the bad classification effectiveness of solar battery EL
US11885998B2 (en) 2020-02-07 2024-01-30 Corning Incorporated Method of treating a glass surface and treated glass articles
WO2022014650A1 (en) 2020-07-17 2022-01-20 Agc株式会社 Glass substrate with silica film
JP7486726B2 (en) 2020-07-17 2024-05-20 国立大学法人信州大学 Silica film substrate
CN117075261A (en) * 2023-09-28 2023-11-17 中建材光芯科技有限公司 Low-magnification high-strength optical fiber cone and preparation method and application thereof
CN117075261B (en) * 2023-09-28 2024-04-05 中建材光芯科技有限公司 Low-magnification high-strength optical fiber cone and preparation method and application thereof

Also Published As

Publication number Publication date
JP2017132644A (en) 2017-08-03
TW201604002A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
WO2015186753A1 (en) Chemically toughened glass plate with function film, method for producing same, and article
WO2015041257A1 (en) Tempered glass plate with low reflective coating and production method therfor
US10948633B2 (en) Translucent structure, method for manufacturing same, and article
JP6458804B2 (en) Translucent structure
JP2016018068A (en) Substrate with anti-glare film, and articles having the same
WO2017086316A1 (en) Curved substrate provided with film, method for manufacturing same, and image display device
WO2011027827A1 (en) Article having low-reflection film on surface of base material
WO2015163330A1 (en) Anti-glare-layer substrate and article
JP6696486B2 (en) Substrate with antiglare film, liquid composition for forming antiglare film, and method for producing substrate with antiglare film
JP6586897B2 (en) Base material with antiglare film, coating liquid for film formation and method for producing the same
JP2016041481A (en) Transparent base material with antiglare antireflection film, and article
WO2013051620A1 (en) Method of manufacturing object with low reflection film
WO2015115492A1 (en) Glass plate with anti-glare function for solar cells
JP2015049319A (en) Article having transparent base material and antifouling-antireflection film and manufacturing method thereof
US20200055771A1 (en) Film-attached glass substrate, article, and method for producing film-attached glass substrate
JP2013160799A (en) Manufacturing method of article with low reflection film
JP6164120B2 (en) Base material and article with antireflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP