WO2015178731A1 - An organic electroluminescent compound and an organic electroluminescent device comprising the same - Google Patents

An organic electroluminescent compound and an organic electroluminescent device comprising the same Download PDF

Info

Publication number
WO2015178731A1
WO2015178731A1 PCT/KR2015/005193 KR2015005193W WO2015178731A1 WO 2015178731 A1 WO2015178731 A1 WO 2015178731A1 KR 2015005193 W KR2015005193 W KR 2015005193W WO 2015178731 A1 WO2015178731 A1 WO 2015178731A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
organic electroluminescent
aryl
Prior art date
Application number
PCT/KR2015/005193
Other languages
French (fr)
Inventor
Hee-Ryong Kang
Hyun-Ju Kang
Jin-Ri HONG
Doo-Hyeon Moon
Young-Mook Lim
Bitnari Kim
Nam-Kyun Kim
Original Assignee
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150069705A external-priority patent/KR101884173B1/en
Application filed by Rohm And Haas Electronic Materials Korea Ltd. filed Critical Rohm And Haas Electronic Materials Korea Ltd.
Priority to EP15796442.0A priority Critical patent/EP3145924B1/en
Priority to CN201580026406.XA priority patent/CN106414428B/en
Priority to JP2016567077A priority patent/JP6666853B2/en
Priority to US15/311,534 priority patent/US9997723B2/en
Publication of WO2015178731A1 publication Critical patent/WO2015178731A1/en
Priority to US15/953,940 priority patent/US10186669B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to organic electroluminescent compounds and organic electroluminescent device comprising the same.
  • An electroluminescent device is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time.
  • the first organic EL device was developed by Eastman Kodak, by using small aromatic diamine molecules, and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
  • Iridium(III) complexes have been widely known as phosphorescent materials, including bis(2-(2’-benzothienyl)-pyridinato-N,C3’)iridium(acetylacetonate) ((acac)Ir(btp) 2 ), tris(2-phenylpyridine)iridium (Ir(ppy) 3 ) and bis(4,6-difluorophenylpyridinato-N,C2)picolinate iridium (Firpic) as red, green and blue materials, respectively.
  • CBP 4,4’-N,N’-dicarbazol-biphenyl
  • BCP bathocuproine
  • BAlq aluminum(III)bis(2-methyl-8-quinolinate)(4-phenylphenolate)
  • an organic EL device has a structure of a multilayer comprising a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • the selection of a compound comprised in the hole transport layer is known as a method for improving the characteristics of a device such as hole transport efficiency to the light-emitting layer, luminous efficiency, lifespan, etc.
  • CuPc copper phthalocyanine
  • NPB 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl
  • TPD N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine
  • MTDATA 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine
  • MTDATA 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine
  • an organic EL device using these materials is problematic in quantum efficiency and operational lifespan. It is because, when an organic EL device is driven under high current, thermal stress occurs between an anode and the hole injection layer. Thermal stress significantly reduces the operational lifespan of the device. Further, since the organic material used in the hole injection layer has very high hole mobility, the hole-electron charge balance may be broken and quantum yield (cd/A
  • 10-2014-0015259 discloses a compound wherein an aryl including anthracene is bonded to a nitrogen atom of a dibenzocarbazole as an organic electroluminescent compound.
  • the above references do not specifically disclose an organic electroluminescent compound in which a quinazoline or quinoxaline is bonded to a nitrogen atom of a dibenzocarbazole directly or via a linker.
  • the objective of the present invention is to provide i) an organic electroluminescent compound which can produce an organic electroluminescent device having long operational lifespan, low driving voltage, and excellent luminous efficiency, i.e. current and power efficiencies, and ii) an organic electroluminescent device comprising the compound.
  • L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 3- to 30-membered heteroarylene;
  • X and Y each independently represent N or CR 17 ;
  • R 1 to R 17 each independently represent hydrogen, deuterium, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted di(C1-C30)alkyl(C6-
  • organic electroluminescent compound according to the present invention By using the organic electroluminescent compound according to the present invention, it is possible to manufacture an organic electroluminescent device having low driving voltage, excellent current and power efficiencies, and remarkably improved operational lifespan.
  • the present invention relates to an organic electroluminescent compound of formula 1, an organic electroluminescent material comprising the compound, and an organic electroluminescent device comprising the material.
  • the organic electroluminescent compound of the present invention has a novel structure, and it is possible to manufacture an organic electroluminescent device having good device performance by using it.
  • Compounds having a structure of carbazole, a-benzocarbazole, and c-benzocarbazole have been disclosed. However, these compounds have an imbalance in electron and hole mobilities, so that performances such as efficiency, lifespan, driving voltage, etc., were subpar when producing an organic electroluminescent device comprising them.
  • compounds having a structure of di-c-benzocarbazole, in which a ring is additionally fused to c-benzocarbazole improve the injections and mobilities of the holes and electrons.
  • an organic electroluminescent device having high efficiency, long lifespan, and low driving voltage can be provided.
  • two additionally fused rings form naphthyl, and the dihedral angle is slightly distorted to have completely different structural characteristics, and the glass transition temperature rises to improve thermal stability.
  • the organic electroluminescent compound represented by the above formula 1 will be described in detail.
  • the compound of formula 1 may be represented by the following formula 2 or 3.
  • R 1 to R 17 are as defined in formula 1.
  • (C1-C30)alkyl is meant to be a linear or branched alkyl having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.;
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e. a substituent.
  • L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 3- to 30-membered heteroarylene, preferably represents a single bond, a substituted or unsubstituted (C6-C12)arylene, or a substituted or unsubstituted 3- to 20-membered heteroarylene, and more preferably represents a single bond, an unsubstituted (C6-C12)arylene or a 3- to 20-membered heteroarylene unsubstituted or substituted with a (C6-C12)aryl.
  • L represents a single bond, a substituted or unsubstituted phenyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted indenyl, a substituted or unsubstituted triphenylenyl, a substituted or unsubstituted pyrenyl, a substituted or unsubstituted tetracenyl, a substituted or unsubstituted perylenyl, a substituted or unsubstituted chrysenyl, a substituted or unsubstituted naph
  • X and Y each independently represent N or CR 17 .
  • R 1 to R 17 each independently represent hydrogen, deuterium, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted di(C1-C30)alkyl(C6-
  • L represents a single bond, a substituted or unsubstituted (C6-C12)arylene, or a substituted or unsubstituted 3- to 20-membered heteroarylene;
  • X and Y each independently represent N or CR 17 ; and
  • R 1 to R 17 each independently represent hydrogen, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted 3- to 20-membered heteroaryl, or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic (C3-C20) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur.
  • L represents a single bond, an unsubstituted (C6-C12)arylene or a 3- to 20-membered heteroarylene unsubstituted or substituted with a (C6-C12)aryl;
  • X and Y each independently represent N or CR 17 ; and
  • R 1 to R 17 each independently represent hydrogen, a (C6-C25)aryl unsubstituted or substituted with a (C6-C20)aryl(C1-C6)alkyl or a (C6-C25)aryl, or a 3- to 20-membered heteroaryl unsubstituted or substituted with a (C6-C12)aryl, or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C3-C20) aromatic ring unsubstituted or substituted with a (C6-C12)aryl, whose carbon atom(s) may be replaced with at least one
  • the specific compounds of the present invention include the following compounds, but are not limited thereto:
  • organic electroluminescent compounds of the present invention can be prepared by a synthetic method known to a person skilled in the art. For example, they can be prepared according to the following reaction scheme.
  • L, X, Y, and R 1 to R 16 are as defined in formula 1.
  • the present invention provides an organic electroluminescent material comprising the organic electroluminescent compound of formula 1, and an organic electroluminescent device comprising the material.
  • the above material can be comprised of the organic electroluminescent compound according to the present invention alone, or can further include conventional materials generally used in organic electroluminescent materials.
  • the organic electroluminescent device comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes.
  • the organic layer may comprise at least one organic electroluminescent compound of formula 1.
  • the organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • the compound of formula 1 according to the present invention can be comprised in the light-emitting layer.
  • the compound of formula 1 according to the present invention can be comprised as a phosphorescent host material.
  • the light-emitting layer can further comprise one or more dopants.
  • a compound other than the compound of formula 1 according to the present invention can be additionally comprised as a second host material.
  • the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
  • the second host material can be from any of the known phosphorescent hosts. Specifically, the phosphorescent host selected from the group consisting of the compounds of formulae 11 to 15 below is preferable in terms of luminous efficiency.
  • A represents -O- or -S-;
  • R 21 to R 24 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted of unsubstituted (C6-C30)aryl, a substituted or unsubstituted 5- to 30-membered heteroaryl, or -SiR 25 R 26 R 27 ;
  • R 25 to R 27 each independently represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl;
  • L 4 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 5- to 30-membered heteroarylene;
  • M represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl;
  • Y 1 and Y 2 each independently represent -O-, -S-, -N(R 31 )-, or -C(R 32 )(R 33 )-, provided that Y 1 and Y 2 do not simultaneously exist;
  • R 31 to R 33 each independently represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl, and R 32 and R 33 may be the same or different;
  • h and i each independently represent an integer of 1 to 3;
  • j, k, l, and m each independently represent an integer of 0 to 4.
  • each of (Cz-L 4 ), each of (Cz), each of R 21 , each of R 22 , each of R 23 , or each of R 24 may be the same or different.
  • preferable examples of the second host material are as follows:
  • the dopant comprised in the organic electroluminescent device according to the present invention is preferably at least one phosphorescent dopant.
  • the dopant materials applied to the organic electroluminescent device according to the present invention are not limited, but may be preferably selected from metallated complex compounds of iridium, osmium, copper and platinum, more preferably selected from ortho-metallated complex compounds of iridium, osmium, copper and platinum, and even more preferably ortho-metallated iridium complex compounds.
  • the dopants comprised in the organic electroluminescent device of the present invention may be preferably selected from compounds represented by the following formulae 101 to 103.
  • L is selected from the following structures:
  • R 100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl;
  • R 101 to R 109 , and R 111 to R 123 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; adjacent substituents of R 106 to R 109 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl; and adjacent substituents of R 120 to R 123 may be
  • R 124 to R 127 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R 124 to R 127 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
  • R 201 to R 211 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl, and adjacent substituents of R 208 to R 211 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
  • f and g each independently represent an integer of 1 to 3; where f or g is an integer of 2 or more, each of R 100 may be the same or different; and
  • n an integer of 1 to 3.
  • the dopant compounds include the following:
  • compositions for preparing an organic electroluminescent device comprises the compound according to the present invention as a host material or a hole transport material.
  • the organic electroluminescent device comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes.
  • the organic layer comprises a light-emitting layer, and the light-emitting layer may comprise the composition for preparing the organic electroluminescent device according to the present invention.
  • the organic electroluminescent device according to the present invention may further comprise, in addition to the organic electroluminescent compound represented by formula 1, at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds.
  • the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
  • the organic layer may further comprise a light-emitting layer and a charge generating layer.
  • the organic electroluminescent device according to the present invention may emit white light by further comprising at least one light-emitting layer which comprises a blue electroluminescent compound, a red electroluminescent compound or a green electroluminescent compound known in the field, besides the compound according to the present invention. Also, if necessary, a yellow or orange light-emitting layer can be comprised in the device.
  • a surface layer is preferably placed on an inner surface(s) of one or both electrode(s); selected from a chalcogenide layer, a metal halide layer and a metal oxide layer.
  • a chalcogenide(includes oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer
  • a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer.
  • said chalcogenide includes SiO X (1 ⁇ X ⁇ 2), AlO X (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.; said metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and said metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a mixed region of an electron transport compound and an reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant is preferably placed on at least one surface of a pair of electrodes.
  • the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium.
  • the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium.
  • the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • a reductive dopant layer may be employed as a charge generating layer to prepare an electroluminescent device having two or more electroluminescent layers and emitting white light.
  • dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as spin coating, dip coating, and flow coating methods can be used.
  • a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
  • An OLED device was produced using the organic electroluminescent compound according to the present invention.
  • a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an organic light-emitting diode (OLED) device (Geomatec, Japan) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol.
  • the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus.
  • Compound HI-1 was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10 -6 torr.
  • Compound HT-2 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. Thereafter, compound A-14 was introduced into one cell of the vacuum vapor depositing apparatus, as a host material, and compound D-96 was introduced into another cell as a dopant. The two materials were evaporated at different rates and were deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer.
  • Compound ET-1 and compound EI-1 were then introduced into another two cells, evaporated at the rate of 1:1, and deposited in a doping amount of 50 wt% each to form an electron transport layer having a thickness of 30 nm on the light-emitting layer.
  • an Al cathode having a thickness of 80 nm was deposited by another vacuum vapor deposition apparatus on the electron injection layer.
  • All the materials used for producing the OLED device were purified by vacuum sublimation at 10 -6 torr prior to use.
  • the produced OLED device showed a red emission having a luminance of 1800 cd/m 2 and a current density of 26.5 cd/A at 5.0 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 178 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-94 for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1750 cd/m 2 and a current density of 25.5 cd/A at 6.0 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 153 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-92 for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1850 cd/m 2 and a current density of 25.8 cd/A at 4.6 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 170 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-148 for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1900 cd/m 2 and a current density of 28.6 cd/A at 5.4 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 68 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-6 for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 27.5 cd/A at 5.0 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 170 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-3 for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 26.3 cd/A at 4.1 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 236 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-287 for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 26.4 cd/A at 5.1 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 66 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-224 for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 28.4 cd/A at 4.2 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 74 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-289 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 28.9 cd/A at 4.1 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 53 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-5 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 30.3 cd/A at 4.9 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 306 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-4 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 29.9 cd/A at 4.4 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 300 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-303 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 29.4 cd/A at 4.6 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 323 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-304 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 29.4 cd/A at 5.1 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 320 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-305 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 28.5 cd/A at 3.9 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 172 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-306 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 30.5 cd/A at 4.5 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 294 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-307 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 29.0 cd/A at 4.2 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 319 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-7 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 29.8 cd/A at 4.5 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 328 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-308 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 29.9 cd/A at 4.9 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 93 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-309 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 29.8 cd/A at 5.3 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 52 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-290 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 30.7 cd/A at 4.0 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 99 hours or more.
  • An OLED device was produced in the same manner as in Device Example 1, except for using compound A-310 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 29.6 cd/A at 4.4 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was 51 hours or more.
  • Comparative Example 1 Production of an OLED device using a
  • OLED device was produced in the same manner as in Device Example 1, except for using 4,4'-N,N'-dicarbazole-biphenyl for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
  • the produced OLED device showed a red emission having a luminance of 1000 cd/m 2 and a current density of 14.3 cd/A at 10 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was less than 1 hour.
  • Comparative Example 2 Production of an OLED device using a
  • OLED device was produced in the same manner as in Device Example 1, except for using the compound below for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1500 cd/m 2 and a current density of 24.1 cd/A at 4.6 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was less than 25 hours.
  • Comparative Example 3 Production of an OLED device using a
  • OLED device was produced in the same manner as in Device Example 1, except for using the compound below for the host as the light-emitting material.
  • the produced OLED device showed a red emission having a luminance of 1500 cd/m 2 and a current density of 24.5 cd/A at 4.6 V.
  • the time period for the luminance to decrease to 95% at 5,000 nit was less than 39 hours.
  • the compounds according to the present invention have higher efficiencies and better lifespan performances than the comparative compounds.
  • the reason for this i.e. the structure of the compound according to the present invention having more suitable HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels for a phosphorescent red host material than the comparative compounds, is also confirmed by calculations.
  • the luminous characteristics of the organic electroluminescent compound according to the present invention are superior to the conventional materials and provide longer operational lifespan.
  • a device using the organic electroluminescent compound according to the present invention maintains luminous efficiency at high brightness when compared to that using a conventional organic electroluminescent compound so that it is trendier to the market requiring high resolution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same. By using the organic electroluminescent compound according to the present invention, it is possible to produce an organic electroluminescent device having low driving voltage, excellent current and power efficiencies, and noticeably improved driving lifespan.

Description

AN ORGANIC ELECTROLUMINESCENT COMPOUND AND AN ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING THE SAME
The present invention relates to organic electroluminescent compounds and organic electroluminescent device comprising the same.
An electroluminescent device (EL device) is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time. The first organic EL device was developed by Eastman Kodak, by using small aromatic diamine molecules, and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
The most important factor determining luminous efficiency in an organic EL device is light-emitting materials. Until now, fluorescent materials have been widely used as light-emitting material. However, in view of electroluminescent mechanisms, since phosphorescent materials theoretically enhance luminous efficiency by four (4) times compared to fluorescent materials, development of phosphorescent light-emitting materials are widely being researched. Iridium(III) complexes have been widely known as phosphorescent materials, including bis(2-(2’-benzothienyl)-pyridinato-N,C3’)iridium(acetylacetonate) ((acac)Ir(btp)2), tris(2-phenylpyridine)iridium (Ir(ppy)3) and bis(4,6-difluorophenylpyridinato-N,C2)picolinate iridium (Firpic) as red, green and blue materials, respectively.
At present, 4,4’-N,N’-dicarbazol-biphenyl (CBP) is the most widely known phosphorescent host material. Recently, Pioneer (Japan) et al. developed a high performance organic EL device using bathocuproine (BCP) and aluminum(III)bis(2-methyl-8-quinolinate)(4-phenylphenolate) (BAlq) etc., as host materials, which were known as hole blocking layer materials.
Although these materials provide good light-emitting characteristics, they have the following disadvantages: (1) Due to their low glass transition temperature and poor thermal stability, their degradation may occur during a high-temperature deposition process in a vacuum, and the lifespan of the device decreases. (2) The power efficiency of an organic EL device is given by [(π/voltage) × current efficiency], and the power efficiency is inversely proportional to the voltage. Although an organic EL device comprising phosphorescent host materials provides higher current efficiency (cd/A) than one comprising fluorescent materials, a significantly high driving voltage is necessary. Thus, there is no merit in terms of power efficiency (lm/W). (3) Further, the operational lifespan of an organic EL device is short and luminous efficiency is still required to be improved.
Meanwhile, in order to enhance its efficiency and stability, an organic EL device has a structure of a multilayer comprising a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer. The selection of a compound comprised in the hole transport layer is known as a method for improving the characteristics of a device such as hole transport efficiency to the light-emitting layer, luminous efficiency, lifespan, etc.
In this regard, copper phthalocyanine (CuPc), 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine (MTDATA), etc. were used as a hole injection and transport material. However, an organic EL device using these materials is problematic in quantum efficiency and operational lifespan. It is because, when an organic EL device is driven under high current, thermal stress occurs between an anode and the hole injection layer. Thermal stress significantly reduces the operational lifespan of the device. Further, since the organic material used in the hole injection layer has very high hole mobility, the hole-electron charge balance may be broken and quantum yield (cd/A) may decrease.
Therefore, a hole transport layer for improving durability of an organic EL device still needs to be developed.
US patent No. 8,227,798 B2 and Korean Patent Appln. Laying-Open No. 10-2010-0108924 disclose a compound wherein a nitrogen-containing heteroaryl such as triazine is bonded to a nitrogen atom of a dibenzocarbazole as an organic electroluminescent compound; Korean Patent No. 10-1074193 discloses a compound wherein a nitrogen-containing heteroaryl such as triazine is bonded to a nitrogen atom of a benzocarbazole as an organic electroluminescent compound; and Korean Patent Appln. Laying-Open No. 10-2014-0015259 discloses a compound wherein an aryl including anthracene is bonded to a nitrogen atom of a dibenzocarbazole as an organic electroluminescent compound. However, the above references do not specifically disclose an organic electroluminescent compound in which a quinazoline or quinoxaline is bonded to a nitrogen atom of a dibenzocarbazole directly or via a linker.
The objective of the present invention is to provide i) an organic electroluminescent compound which can produce an organic electroluminescent device having long operational lifespan, low driving voltage, and excellent luminous efficiency, i.e. current and power efficiencies, and ii) an organic electroluminescent device comprising the compound.
The present inventors found that the above objective can be achieved by an organic electroluminescent compound represented by the following formula 1:
Figure PCTKR2015005193-appb-I000001
wherein
L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 3- to 30-membered heteroarylene;
X and Y each independently represent N or CR17;
R1 to R17 each independently represent hydrogen, deuterium, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur; and
the heteroaryl contains at least one hetero atom selected from B, N, O, S, P(=O), Si, and P.
By using the organic electroluminescent compound according to the present invention, it is possible to manufacture an organic electroluminescent device having low driving voltage, excellent current and power efficiencies, and remarkably improved operational lifespan.
Hereinafter, the present invention will be described in detail. However, the following description is intended to explain the invention, and is not meant in any way to restrict the scope of the invention.
The present invention relates to an organic electroluminescent compound of formula 1, an organic electroluminescent material comprising the compound, and an organic electroluminescent device comprising the material.
The organic electroluminescent compound of the present invention has a novel structure, and it is possible to manufacture an organic electroluminescent device having good device performance by using it. Compounds having a structure of carbazole, a-benzocarbazole, and c-benzocarbazole have been disclosed. However, these compounds have an imbalance in electron and hole mobilities, so that performances such as efficiency, lifespan, driving voltage, etc., were subpar when producing an organic electroluminescent device comprising them. In the present invention, compounds having a structure of di-c-benzocarbazole, in which a ring is additionally fused to c-benzocarbazole, improve the injections and mobilities of the holes and electrons. Hence, an organic electroluminescent device having high efficiency, long lifespan, and low driving voltage can be provided. In the structural aspect, unlike carbazole and c-benzocarbazole, two additionally fused rings form naphthyl, and the dihedral angle is slightly distorted to have completely different structural characteristics, and the glass transition temperature rises to improve thermal stability.
The organic electroluminescent compound represented by the above formula 1 will be described in detail.
The compound of formula 1 may be represented by the following formula 2 or 3.
Figure PCTKR2015005193-appb-I000002
Figure PCTKR2015005193-appb-I000003
wherein
L, and R1 to R17 are as defined in formula 1.
Herein, “(C1-C30)alkyl” is meant to be a linear or branched alkyl having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.; “(C2-C30)alkenyl” is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.; “(C2-C30)alkynyl” is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.; “(C3-C30)cycloalkyl” is a mono- or polycyclic hydrocarbon having 3 to 30 carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.; “3- to 7- membered heterocycloalkyl” is a cycloalkyl having 3 to 7 ring backbone atoms, including at least one heteroatom selected from B, N, O, S, P(=O), Si, and P, preferably O, S, and N, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc.; “(C6-C30)aryl(ene)” is a monocyclic or fused ring derived from an aromatic hydrocarbon having 6 to 30 carbon atoms, in which the number of carbon atoms is preferably 6 to 20, more preferably 6 to 15, and includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, phenylterphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.; “3- to 30-membered heteroaryl” is an aryl having 3 to 30 ring backbone atoms, including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, P(=O), Si, and P; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl including benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzoimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenoxazinyl, phenanthridinyl, benzodioxolyl, etc. Further, “halogen” includes F, Cl, Br, and I.
Herein, “substituted” in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e. a substituent. The substituents of the substituted (C3-C30)cycloalkyl, the substituted (C6-C30)aryl(ene), the substituted 3- to 30-membered heteroaryl(ene), the substituted tri(C1-C30)alkylsilyl, the substituted tri(C6-C30)arylsilyl, the substituted di(C1-C30)alkyl(C6-C30)arylsilyl, the substituted (C1-C30)alkyldi(C6-C30)arylsilyl, the substituted mono- or di- (C6-C30)arylamino, the substituted (C1-C30)alkyl(C6-C30)arylamino, and the substituted mono- or polycyclic (C3-C30) alicyclic or aromatic ring in L, and R1 to R17 in formula 1 each independently are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxyl, a nitro, a hydroxyl, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a 3- to 7-membered heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthio, a 5- to 30-membered heteroaryl unsubstituted or substituted with a (C6-C30)aryl, a (C6-C30)aryl unsubstituted or substituted with a 5- to 30-membered heteroaryl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di- (C1-C30)alkylamino, a mono- or di- (C6-C30)arylamino, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl, and a (C1-C30)alkyl(C6-C30)aryl, and preferably each independently are at least one selected from the group consisting of a (C6-C25)aryl or a (C6-C20)aryl(C1-C6)alkyl.
In formula 1 above, L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 3- to 30-membered heteroarylene, preferably represents a single bond, a substituted or unsubstituted (C6-C12)arylene, or a substituted or unsubstituted 3- to 20-membered heteroarylene, and more preferably represents a single bond, an unsubstituted (C6-C12)arylene or a 3- to 20-membered heteroarylene unsubstituted or substituted with a (C6-C12)aryl.
According to one embodiment of the present invention, L represents a single bond, a substituted or unsubstituted phenyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted indenyl, a substituted or unsubstituted triphenylenyl, a substituted or unsubstituted pyrenyl, a substituted or unsubstituted tetracenyl, a substituted or unsubstituted perylenyl, a substituted or unsubstituted chrysenyl, a substituted or unsubstituted naphthacenyl, a substituted or unsubstituted fluoranthenyl, a substituted or unsubstituted carbazole, or a substituted or unsubstituted benzocarbazole.
X and Y each independently represent N or CR17.
R1 to R17 each independently represent hydrogen, deuterium, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur, preferably each independently represent hydrogen, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted 3- to 20-membered heteroaryl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic (C3-C20) alicyclic or aromatic ring, and more preferably each independently represent hydrogen, a (C6-C25)aryl unsubstituted or substituted with a (C6-C20)aryl(C1-C6)alkyl or a (C6-C25)aryl, or a 3- to 20-membered heteroaryl unsubstituted or substituted with a (C6-C12)aryl; or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C3-C20) aromatic ring unsubstituted or substituted with a (C6-C12)aryl.
According to one embodiment of the present invention, in formula 1 above, L represents a single bond, a substituted or unsubstituted (C6-C12)arylene, or a substituted or unsubstituted 3- to 20-membered heteroarylene; X and Y each independently represent N or CR17; and R1 to R17 each independently represent hydrogen, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted 3- to 20-membered heteroaryl, or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic (C3-C20) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur.
According to another embodiment of the present invention, in formula 1 above, L represents a single bond, an unsubstituted (C6-C12)arylene or a 3- to 20-membered heteroarylene unsubstituted or substituted with a (C6-C12)aryl; X and Y each independently represent N or CR17; and R1 to R17 each independently represent hydrogen, a (C6-C25)aryl unsubstituted or substituted with a (C6-C20)aryl(C1-C6)alkyl or a (C6-C25)aryl, or a 3- to 20-membered heteroaryl unsubstituted or substituted with a (C6-C12)aryl, or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C3-C20) aromatic ring unsubstituted or substituted with a (C6-C12)aryl, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur.
The specific compounds of the present invention include the following compounds, but are not limited thereto:
Figure PCTKR2015005193-appb-I000004
Figure PCTKR2015005193-appb-I000005
Figure PCTKR2015005193-appb-I000006
Figure PCTKR2015005193-appb-I000007
Figure PCTKR2015005193-appb-I000008
Figure PCTKR2015005193-appb-I000009
Figure PCTKR2015005193-appb-I000010
Figure PCTKR2015005193-appb-I000011
Figure PCTKR2015005193-appb-I000012
Figure PCTKR2015005193-appb-I000013
Figure PCTKR2015005193-appb-I000014
Figure PCTKR2015005193-appb-I000015
Figure PCTKR2015005193-appb-I000016
Figure PCTKR2015005193-appb-I000017
Figure PCTKR2015005193-appb-I000018
Figure PCTKR2015005193-appb-I000019
Figure PCTKR2015005193-appb-I000020
Figure PCTKR2015005193-appb-I000021
Figure PCTKR2015005193-appb-I000022
Figure PCTKR2015005193-appb-I000023
Figure PCTKR2015005193-appb-I000024
Figure PCTKR2015005193-appb-I000025
Figure PCTKR2015005193-appb-I000026
Figure PCTKR2015005193-appb-I000027
Figure PCTKR2015005193-appb-I000028
Figure PCTKR2015005193-appb-I000029
Figure PCTKR2015005193-appb-I000030
Figure PCTKR2015005193-appb-I000031
Figure PCTKR2015005193-appb-I000032
Figure PCTKR2015005193-appb-I000033
Figure PCTKR2015005193-appb-I000034
Figure PCTKR2015005193-appb-I000035
Figure PCTKR2015005193-appb-I000036
Figure PCTKR2015005193-appb-I000037
Figure PCTKR2015005193-appb-I000038
Figure PCTKR2015005193-appb-I000039
Figure PCTKR2015005193-appb-I000040
Figure PCTKR2015005193-appb-I000041
Figure PCTKR2015005193-appb-I000042
Figure PCTKR2015005193-appb-I000043
Figure PCTKR2015005193-appb-I000044
Figure PCTKR2015005193-appb-I000045
Figure PCTKR2015005193-appb-I000046
Figure PCTKR2015005193-appb-I000047
Figure PCTKR2015005193-appb-I000048
Figure PCTKR2015005193-appb-I000049
Figure PCTKR2015005193-appb-I000050
The organic electroluminescent compounds of the present invention can be prepared by a synthetic method known to a person skilled in the art. For example, they can be prepared according to the following reaction scheme.
[Reaction Scheme 1]
Figure PCTKR2015005193-appb-I000051
wherein L, X, Y, and R1 to R16 are as defined in formula 1.
The present invention provides an organic electroluminescent material comprising the organic electroluminescent compound of formula 1, and an organic electroluminescent device comprising the material.
The above material can be comprised of the organic electroluminescent compound according to the present invention alone, or can further include conventional materials generally used in organic electroluminescent materials.
The organic electroluminescent device comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes. The organic layer may comprise at least one organic electroluminescent compound of formula 1.
One of the first and second electrodes can be an anode, and the other can be a cathode. The organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
The compound of formula 1 according to the present invention can be comprised in the light-emitting layer. Where used in the light-emitting layer, the compound of formula 1 according to the present invention can be comprised as a phosphorescent host material. Preferably, the light-emitting layer can further comprise one or more dopants. If necessary, a compound other than the compound of formula 1 according to the present invention can be additionally comprised as a second host material. Herein, the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
The second host material can be from any of the known phosphorescent hosts. Specifically, the phosphorescent host selected from the group consisting of the compounds of formulae 11 to 15 below is preferable in terms of luminous efficiency.
Figure PCTKR2015005193-appb-I000052
Figure PCTKR2015005193-appb-I000053
Figure PCTKR2015005193-appb-I000054
Figure PCTKR2015005193-appb-I000055
Figure PCTKR2015005193-appb-I000056
wherein Cz represents the following structure;
Figure PCTKR2015005193-appb-I000057
A represents -O- or -S-;
R21 to R24 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted of unsubstituted (C6-C30)aryl, a substituted or unsubstituted 5- to 30-membered heteroaryl, or -SiR25R26R27;
R25 to R27 each independently represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl;
L4 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 5- to 30-membered heteroarylene;
M represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl;
Y1 and Y2 each independently represent -O-, -S-, -N(R31)-, or -C(R32)(R33)-, provided that Y1 and Y2 do not simultaneously exist;
R31 to R33 each independently represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl, and R32 and R33 may be the same or different;
h and i each independently represent an integer of 1 to 3;
j, k, l, and m each independently represent an integer of 0 to 4; and
where h, i, j, k, l, or m is an integer of 2 or more, each of (Cz-L4), each of (Cz), each of R21, each of R22, each of R23, or each of R24 may be the same or different.
Specifically, preferable examples of the second host material are as follows:
Figure PCTKR2015005193-appb-I000058
Figure PCTKR2015005193-appb-I000059
Figure PCTKR2015005193-appb-I000060
Figure PCTKR2015005193-appb-I000061
Figure PCTKR2015005193-appb-I000062
Figure PCTKR2015005193-appb-I000063
Figure PCTKR2015005193-appb-I000064
Figure PCTKR2015005193-appb-I000065
Figure PCTKR2015005193-appb-I000066
Figure PCTKR2015005193-appb-I000067
Figure PCTKR2015005193-appb-I000068
Figure PCTKR2015005193-appb-I000069
Figure PCTKR2015005193-appb-I000070
[wherein TPS represents triphenylsilyl]
The dopant comprised in the organic electroluminescent device according to the present invention is preferably at least one phosphorescent dopant. The dopant materials applied to the organic electroluminescent device according to the present invention are not limited, but may be preferably selected from metallated complex compounds of iridium, osmium, copper and platinum, more preferably selected from ortho-metallated complex compounds of iridium, osmium, copper and platinum, and even more preferably ortho-metallated iridium complex compounds.
The dopants comprised in the organic electroluminescent device of the present invention may be preferably selected from compounds represented by the following formulae 101 to 103.
Figure PCTKR2015005193-appb-I000071
Figure PCTKR2015005193-appb-I000072
Figure PCTKR2015005193-appb-I000073
wherein L is selected from the following structures:
Figure PCTKR2015005193-appb-I000074
R100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl;
R101 to R109, and R111 to R123 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; adjacent substituents of R106 to R109 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl; and adjacent substituents of R120 to R123 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., quinoline unsubstituted or substituted with a halogen, alkyl, or aryl;
R124 to R127 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R124 to R127 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
R201 to R211 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl, and adjacent substituents of R208 to R211 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
f and g each independently represent an integer of 1 to 3; where f or g is an integer of 2 or more, each of R100 may be the same or different; and
n represents an integer of 1 to 3.
Specifically, the dopant compounds include the following:
Figure PCTKR2015005193-appb-I000075
Figure PCTKR2015005193-appb-I000076
Figure PCTKR2015005193-appb-I000077
Figure PCTKR2015005193-appb-I000078
Figure PCTKR2015005193-appb-I000079
Figure PCTKR2015005193-appb-I000080
Figure PCTKR2015005193-appb-I000081
Figure PCTKR2015005193-appb-I000082
Figure PCTKR2015005193-appb-I000083
Figure PCTKR2015005193-appb-I000084
Figure PCTKR2015005193-appb-I000085
Figure PCTKR2015005193-appb-I000086
Figure PCTKR2015005193-appb-I000087
Figure PCTKR2015005193-appb-I000088
Figure PCTKR2015005193-appb-I000089
Figure PCTKR2015005193-appb-I000090
Figure PCTKR2015005193-appb-I000091
Figure PCTKR2015005193-appb-I000092
Figure PCTKR2015005193-appb-I000093
Figure PCTKR2015005193-appb-I000094
Figure PCTKR2015005193-appb-I000095
Figure PCTKR2015005193-appb-I000096
Figure PCTKR2015005193-appb-I000097
Figure PCTKR2015005193-appb-I000098
Figure PCTKR2015005193-appb-I000099
Figure PCTKR2015005193-appb-I000100
Figure PCTKR2015005193-appb-I000101
In another embodiment of the present invention, a composition for preparing an organic electroluminescent device is provided. The composition comprises the compound according to the present invention as a host material or a hole transport material.
In addition, the organic electroluminescent device according to the present invention comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes. The organic layer comprises a light-emitting layer, and the light-emitting layer may comprise the composition for preparing the organic electroluminescent device according to the present invention.
The organic electroluminescent device according to the present invention may further comprise, in addition to the organic electroluminescent compound represented by formula 1, at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds.
In the organic electroluminescent device according to the present invention, the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4th period, transition metals of the 5th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal. The organic layer may further comprise a light-emitting layer and a charge generating layer.
In addition, the organic electroluminescent device according to the present invention may emit white light by further comprising at least one light-emitting layer which comprises a blue electroluminescent compound, a red electroluminescent compound or a green electroluminescent compound known in the field, besides the compound according to the present invention. Also, if necessary, a yellow or orange light-emitting layer can be comprised in the device.
According to the present invention, at least one layer (hereinafter, "a surface layer”) is preferably placed on an inner surface(s) of one or both electrode(s); selected from a chalcogenide layer, a metal halide layer and a metal oxide layer. Specifically, a chalcogenide(includes oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer, and a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer. Such a surface layer provides operation stability for the organic electroluminescent device. Preferably, said chalcogenide includes SiOX(1≤X≤2), AlOX(1≤X≤1.5), SiON, SiAlON, etc.; said metal halide includes LiF, MgF2, CaF2, a rare earth metal fluoride, etc.; and said metal oxide includes Cs2O, Li2O, MgO, SrO, BaO, CaO, etc.
In the organic electroluminescent device according to the present invention, a mixed region of an electron transport compound and an reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant is preferably placed on at least one surface of a pair of electrodes. In this case, the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium. Further, the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium. Preferably, the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof. A reductive dopant layer may be employed as a charge generating layer to prepare an electroluminescent device having two or more electroluminescent layers and emitting white light.
In order to form each layer of the organic electroluminescent device according to the present invention, dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as spin coating, dip coating, and flow coating methods can be used.
When using a wet film-forming method, a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc. The solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
Hereinafter, the organic electroluminescent compound, the preparation method of the compound, and the luminescent properties of the device will be explained in detail with reference to the following examples.
Example 1: Preparation of compound A-92
Figure PCTKR2015005193-appb-I000102
Preparation of compound 1-1
After dissolving 2-bromo-9-phenyl-9H-carbazole (25 g, 77.59 mmol) in tetrahydrofuran (THF) 400 mL in a flask, n-BuLi (2.5 M) was slowly added dropwise to the mixture at -78°C. After stirring the mixture for 1 hour, triisopropyl borate was added dropwise to the mixture. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried using a rotary evaporator to obtain compound 1-1 (15.5 g, 70%).
Preparation of compound 1-2
After dissolving compound 1-1 (15.5 g, 53.98 mmol), 2,4-dichloroquinazoline (10.7 g, 53.98 mmol), and Pd(PPh3)4 (1.9 g, 1.62 mmol) in a mixture solvent of 2 M Na2CO3 67 mL, toluene 270 mL, and ethanol 67 mL in a flask, the mixture was stirred under reflux at 120°C for 5 hours. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and separated with column chromatography to obtain compound 1-2 (13.5 g, 61%).
Preparation of compound A-92
After dissolving compound 1-2 (13.5 g, 33.26 mmol) and 7H-dibenzo[c,g]carbazole (8.1 g, 30.24 mmol) in N,N-dimethylformamide (DMF) 500 mL in a flask, NaH (1.8 g, 45.36 mmol, 60% in mineral oil) was added to the mixture. The mixture was stirred for 3 hours at room temperature, and methanol and distilled water were then added to the mixture. The obtained solid was filtered under reduced pressure and separated with column chromatography to obtain compound A-92 (11 g, 55%).
Figure PCTKR2015005193-appb-I000103
Example 2: Preparation of compound A-148
Figure PCTKR2015005193-appb-I000104
Preparation of compound A-148
After dissolving compound A (11 g, 44.89 mmol), 7H-dibenzo[c,g]carbazole (10 g, 37.40 mmol), K2CO3 (5.1 g, 37.40 mmol), and dimethylaminopyridine (DMAP) (2.2 g, 18.70 mmol) in N,N-dimethylacetamide (DMA) 200 mL in a flask, the mixture was stirred under reflux at 220°C for 5 hours. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and separated with column chromatography to obtain compound A-148 (3.2 g, 18%).
Figure PCTKR2015005193-appb-I000105
Example 3: Preparation of compound A-94
Figure PCTKR2015005193-appb-I000106
Preparation of compound 3-1
After dissolving 2,4-chloroquinazoline (70 g, 306.9 mmol), dibenzothiophen-4-yl boronic acid (61 g, 306.9 mmol), and Pd(PPh3)4 (17.7 g, 15.34 mmol) in a mixture solvent of 2 M K2CO3 aqueous solution 300 mL, toluene 1000 mL, and ethanol 300 mL in a flask, the mixture was stirred under reflux at 120°C for 5 hours. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and separated with column chromatography to obtain compound 3-1 (77.7 g, 73%).
Preparation of compound A-94
After dissolving compound B (7H-dibenzo[c,g]carbazole) (10 g, 37.4 mmol) and compound 3-1 (14.3 g, 41.15 mmol) in DMF 200 mL in a flask, NaH (1.8 g, 44.88 mmol, 60% in mineral oil) was added to the mixture. The mixture was stirred at 150°C for 4 hours, and methanol and distilled water were then added to the mixture. The obtained solid was filtered under reduced pressure and separated with column chromatography to obtain compound A-94 (13.3 g, 56%).
Figure PCTKR2015005193-appb-I000107
Example 4: Preparation of compound A-23
Figure PCTKR2015005193-appb-I000108
Preparation of compound 4-3
After introducing 7H-dibenzo[c,g]carbazole (10 g, 37.41 mmol), 1-bromo-4-iodobenzene (21 g, 74.82 mmol), copper(I) iodide (3.6 g, 18.71 mmol), potassium phosphate (20 g, 93.53 mmol), ethylenediamine (2.5 mL, 37.41 mmol), and toluene 200 mL in a reaction container, the mixture was stirred under reflux for 5 hours. After completing the reaction, the mixture was washed with distilled water and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, the solvent was removed using a rotary evaporator, and the residue was purified with column chromatography to obtain compound 4-3 (11.4 g, 72%).
Preparation of compound 4-4
After introducing compound 4-3 (11.4 g, 26.99 mmol) and tetrahydrofuran 210 mL in a reaction container, the mixture was subjected to nitrogen atmosphere and cooled to -78°C. N-BuLi (16 mL, 2.5 M, 40.49 mmol) was slowly added dropwise to the mixture. After stirring the mixture for 1 hour at -78°C, triisopropyl borate (9.3 mL, 40.49 mmol) was slowly added dropwise to the mixture. After completing the reaction, ammonium chloride aqueous solution was added to the mixture. Next, the mixture was washed with distilled water and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, the solvent was removed using a rotary evaporator, and the residue was purified with column chromatography to obtain compound 4-4 (8.3 g, 79%).
Preparation of compound A-23
After introducing compound 4-4 (8.3 g, 21.43 mmol), 2-chloro-4-phenylquinazoline (4.3 g, 17.86 mmol), tetrakistriphenylphosphine palladium (0.6 g, 0.54 mmol), sodium carbonate (4.7 g, 44.65 mmol), and a mixture solvent of toluene 90 mL, ethanol 22 mL, and distilled water 22 mL in a reaction container, the mixture was stirred at 120°C for 5 hours. After completing the reaction, the mixture was washed with distilled water and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, the solvent was removed using a rotary evaporator, and the residue was purified with column chromatography to obtain compound A-23 (4.5 g, 46%).
Figure PCTKR2015005193-appb-I000109
Example 5: Preparation of compound A-1
Figure PCTKR2015005193-appb-I000110
Preparation of compound A-148
After introducing 7H-dibenzo[c,g]carbazole (5.00 g, 18.70 mmol), 4-([1,1'-biphenyl]-4-yl)-2-chloroquinazoline (7.11 g, 22.45 mmol), K2CO3 (2.58 g, 18.70 mmol), and DMAP (1.14 g, 9.35 mmol) in DMF 100 mL, the mixture was stirred under reflux for 2 hours. The mixture was then cooled to room temperature, reversely added dropwise to MeOH 400 mL, and filtered under reduced pressure to obtain an ocherous solid. The solid was was dissolved in CHCl3 140 mL under heat and filtered with silica. The filtrate was distilled under reduced pressure, solidified by adding methanol, and filtered under reduced pressure to obtain a lemon-colored solid. The solid was recrystallized with DMF to obtain compound A-1 (4.8 g, 46.9%).
Figure PCTKR2015005193-appb-I000111
Example 6: Preparation of compound A-6
Figure PCTKR2015005193-appb-I000112
Preparation of compound 6-3
After dissolving compound 6-1 (9.4 g, 47.42 mmol), compound 6-2 (13 g, 47.42 mmol), and Pd(PPh3)4 (1.6 g, 1.422 mmol) in a mixture solvent of 2 M Na2CO3 120 mL, toluene 250 mL, and ethanol 120 mL in a flask, the mixture was stirred under reflux at 120°C for 5 hours. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and separated with column chromatography to obtain compound 6-3 (7.5 g, 42%).
Preparation of compound A-6
After dissolving compound 6-3 (7.5 g, 19.80 mmol), 7H-dibenzo[c,g]carbazole (4.3 g, 15.90 mmol), K2CO3 (2.2 g, 15.90 mmol), and DMAP (0.9 g, 7.950 mmol) in DMA 100 mL in a flask, the mixture was stirred under reflux at 220°C for 5 hours. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and separated with column chromatography to obtain compound A-6 (5.8 g, 58%).
Figure PCTKR2015005193-appb-I000113
Example 7: Preparation of compound A-3
Figure PCTKR2015005193-appb-I000114
Preparation of compound 7-1
After dissolving 1,3-dibromo-5-chlorobenzene (20 g, 73.98 mmol), phenyl boronic acid (22 g, 177.55 mmol), and Pd(PPh3)4 (4.3 g, 3.699 mmol) in a mixture solvent of 2 M K3PO4 aqueous solution 100 mL, toluene 400 mL, and 1,4-dioxane 100 mL in a flask, the mixture was stirred under reflux at 120°C for 5 hours. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and separated with column chromatography to obtain compound 7-1 (23 g, 70%).
Preparation of compound 7-2
After dissolving compound 7-1 (11 g, 44.89 mmol), diborane (33 g, 130.31 mmol), Pd2(dba)3 (2.4 g, 2.606 mmol), S-phos (3.6 g, 8.687 mmol), and KOAc (21.3 g, 271.17 mmol) in 1,4-dioxane 500 mL in a flask, the mixture was stirred under reflux at 120°C for 5 hours. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and separated with column chromatography to obtain compound 7-2 (20 g, 67%).
Preparation of compound 7-3
After dissolving compound 6-1 (5.6 g, 28.06 mmol), compound 7-2 (10 g, 28.06 mmol), and Pd(PPh3)4 (1.6 g, 1.403 mmol) in a mixture solvent of 2 M Na2CO3 aqueous solution 75 mL and toluene 150 mL in a flask, the mixture was stirred under reflux at 120°C for 5 hours. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and separated with column chromatography to obtain compound 7-3 (10 g, 91%).
Preparation of compound A-3
After dissolving compound 7-3 (7.5 g, 19.30 mmol), 7H-dibenzo[c,g]carbazole (4.3 g, 16.08 mmol), K2CO3 (2.2 g, 1.608 mmol), and DMAP (0.9 g, 1.608 mmol) in DMA 100 mL in a flask, the mixture was stirred under reflux at 220°C for 5 hours. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and separated with column chromatography to obtain compound A-3 (5.3 g, 54%).
Figure PCTKR2015005193-appb-I000115
Example 8: Preparation of compound A-287
Figure PCTKR2015005193-appb-I000116
Preparation of compound 8-2
After introducing compound 8-1 (20 g, 50.34 mmol) and tetrahydrofuran 250 mL in a reaction container, n-BuLi (30 mL, 75.51 mmol) was slowly added dropwise to the mixture at -78°C. After stirring the mixture for 1 hour, triisopropyl borate (8.5 mL, 75.51 mmol) was slowly added dropwise to the mixture. After completing the reaction, an organic layer was extracted with ethyl acetate, and the remaining moisture was removed using magnesium sulfate. The residue was dried and the solvent was removed using a rotary evaporator to obtain compound 8-2 (12.8 g, 70%).
Preparation of compound 8-3
After introducing compound 8-2 (10 g, 27.61 mmol), 2,4-dichloroquinazoline (5.5 g, 27.61 mmol), tetrakistriphenylphosphine palladium (1 g, 0.83 mmol), sodium carbonate (7.3 g, 69.03 mmol), and a mixture solvent of toluene 160 mL, ethanol 40 mL, and distilled water 40 mL in a reaction container, the mixture was stirred at 120°C for 4 hours. After completing the reaction, the mixture was washed with distilled water and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, the solvent was removed using a rotary evaporator, and the residue was purified with column chromatography to obtain compound 8-3 (9.3 g, 70%).
Preparation of compound A-287
After introducing compound 8-3 (9.3 g, 19.34 mmol), compound 8-4 (4.3 g, 16.11 mmol), potassium carbonate (2.2 g, 16.11 mmol), N,N-4-dimethylaminopyridine (1.0 g, 8.06 mmol), and N,N-dimethylformamide 81 mL in a reaction container, the mixture was stirred at 100°C for 4 hours. After completing the reaction, the mixture was washed with distilled water and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, the solvent was removed using a rotary evaporator, and the residue was purified with column chromatography to obtain compound A-287 (6 g, 52%).
Figure PCTKR2015005193-appb-I000117
Example 9: Preparation of compound A-224
Figure PCTKR2015005193-appb-I000118
Preparation of compound 9-2
After introducing compound 9-1 (11.5 g, 43.02 mmol) and DMF 220 mL in a reaction container, sodium hydride (2.6 g, 64.53 mmol) was slowly added dropwise to the mixture at 0°C. The mixture was stirred for 30 minutes, and 2,3-dichloroquinoxaline (10.3 g, 51.62 mmol) was then added dropwise to the mixture. The mixture was stirred for 3 hours at room temperature, and methanol and distilled water were then added to the mixture. The obtained solid was filtered under reduced pressure and separated with column chromatography to obtain compound 9-2 (12.4 g, 67%).
Preparation of compound A-224
After introducing compound 9-2 (12.4 g, 28.84 mmol), compound 9-3 (10 g, 34.61 mmol), tetrakistriphenylphosphine palladium (1 g, 0.87 mmol), sodium carbonate (7.6 g, 72.10 mmol), and a mixture solvent of toluene 160 mL, ethanol 40 mL, and distilled water 40 mL in a reaction container, the mixture was stirred at 120°C for 4 hours. After completing the reaction, the mixture was washed with distilled water and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, the solvent was removed using a rotary evaporator, and the residue was purified with column chromatography to obtain compound A-224 (5 g, 27%).
Figure PCTKR2015005193-appb-I000119
Example 10: Preparation of compound A-289
Figure PCTKR2015005193-appb-I000120
Preparation of compound 10-1
After introducing 2-bromo-4-fluoro-1-nitrobenzene (50 g, 227.3 mmol), phenyl boronic acid (30.5 g, 250 mmol), Pd(PPh3)4 (13.1 g, 11.37 mmol), K2CO3 (62.8 g, 454.6 mmol), toluene 600 mL, EtOH 200 mL, and purified water 200 mL in a reaction container, the mixture was stirred under reflux for 6 hours. After cooling the mixture to room temperature, an organic layer was extracted with ethylacetate (EA) and distilled water. The obtained organic layer was distilled under reduced pressure, and the residue was separated with column chromatography to obtain compound 10-1 (49 g, 99%).
Preparation of compound 10-2
After introducing 7H-dibenzo[c,g]carbazole (34.5 g, 128.9 mmol), compound 10-1 (28 g, 128.9 mmol), NaH (6.7 g, 167.6 mmol), and DMF 600 mL in a reaction container, the mixture was stirred at 75°C for 2 hours. After cooling the mixture to room temperature, MeOH 1 L and purified water were added to the mixture and a solid was filtered. The filtrate was dried under reduced pressure to obtain compound 10-2 (52 g, 86.8%).
Preparation of compound 10-3
After introducing compound 10-2 (52 g, 111.9 mmol), PPh3 (88 g, 335.8 mmol), and 1,2-dichlorobenzene 500 mL in a reaction container, the mixture was stirred under reflux for 6 hours. 1,2-dichlorobenzene was then distilled, and the residue was separated with column chromatography to obtain compound 10-3 (39 g, 75.9%).
Preparation of compound A-289
After introducing compound 10-3 (10 g, 23.12 mmol), 2-chloro-4-phenylquinazoline (6.1 g, 25.43 mmol), 4-dimethylaminopyridine (1.4 g, 11.56 mmol), K2CO3 (3.2 g, 23.12 mmol), and DMF 100 mL in a reaction container, the mixture was stirred under reflux for 3 hours, and cooled to room temperature. MeOH 200 mL and purified water were then added to the mixture and a solid was filtered. The dried solid was separated with column chromatography to obtain compound A-289 (5.5 g, 37.4%).
Figure PCTKR2015005193-appb-I000121
Example 11: Preparation of compound A-5
Figure PCTKR2015005193-appb-I000122
Preparation of compound 11-2
After introducing compound 11-1 (7.6 g, 27.61 mmol), 2,4-dichloroquinazoline (5.5 g, 27.61 mmol), tetrakistriphenylphosphine palladium (1 g, 0.83 mmol), sodium carbonate (7.3 g, 69.03 mmol), toluene 160 mL, and ethanol 40 mL in a reaction container, distilled water 40 mL was added thereto, and the mixture was stirred at 120°C for 4 hours. After completing the reaction, the mixture was washed with distilled water and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, the solvent was removed using a rotary evaporator, and the residue was purified with column chromatography to obtain compound 11-2 (9.3 g, 86%).
Preparation of compound A-5
After mixing compound 11-2 (2.6 g, 6.62 mmol), 7H-dibenzo[c,g]carbazole (1.7 g, 6.30 mmol), potassium carbonate (0.9 g, 6.30 mmol), and N,N-4-dimethylaminopyridine (0.4 g, 3.15 mmol) with N,N-dimethylformamide 32 mL, the mixture was stirred at 100°C for 4 hours. After completing the reaction, the mixture was washed with distilled water and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, the solvent was removed using a rotary evaporator, and the residue was purified with column chromatography to obtain compound A-5 (1.6 g, 41%).
Figure PCTKR2015005193-appb-I000123
Example 12: Preparation of compound A-4
Figure PCTKR2015005193-appb-I000124
After mixing 7H-dibenzo[c,g]carbazole (5.00 g, 18.70 mmol), 4-(biphenyl-3-yl)-2-chloroquinazoline (7.11 g, 22.45 mmol), K2CO3 (2.58 g, 18.70 mmol), and DMAP (1.14 g, 9.35 mmol) with DMF 100 mL, the mixture was stirred under reflux for 2 hours. The mixture was then cooled to room temperature, reversely added dropwise to MeOH 400 mL, and filtered under reduced pressure to obtain an ocherous solid. The dried solid was purified with column chromatography to obtain compound A-4 (7.2 g, 70%).
Figure PCTKR2015005193-appb-I000125
Device Example 1: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced using the organic electroluminescent compound according to the present invention. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an organic light-emitting diode (OLED) device (Geomatec, Japan) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol. Next, the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus. Compound HI-1 was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate. Compound HI-2 was then introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. Compound HT-1 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer. Compound HT-2 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. Thereafter, compound A-14 was introduced into one cell of the vacuum vapor depositing apparatus, as a host material, and compound D-96 was introduced into another cell as a dopant. The two materials were evaporated at different rates and were deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer. Compound ET-1 and compound EI-1 were then introduced into another two cells, evaporated at the rate of 1:1, and deposited in a doping amount of 50 wt% each to form an electron transport layer having a thickness of 30 nm on the light-emitting layer. Next, after depositing compound EI-1 as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 80 nm was deposited by another vacuum vapor deposition apparatus on the electron injection layer. Thus, an OLED device was produced. All the materials used for producing the OLED device were purified by vacuum sublimation at 10-6 torr prior to use.
The produced OLED device showed a red emission having a luminance of 1800 cd/m2 and a current density of 26.5 cd/A at 5.0 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 178 hours or more.
Figure PCTKR2015005193-appb-I000126
Device Example 2: Production of an OLED device using the organic electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-94 for the host as the light-emitting material.
The produced OLED device showed a red emission having a luminance of 1750 cd/m2 and a current density of 25.5 cd/A at 6.0 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 153 hours or more.
Device Example 3: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-92 for the host as the light-emitting material.
The produced OLED device showed a red emission having a luminance of 1850 cd/m2 and a current density of 25.8 cd/A at 4.6 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 170 hours or more.
Device Example 4: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-148 for the host as the light-emitting material.
The produced OLED device showed a red emission having a luminance of 1900 cd/m2 and a current density of 28.6 cd/A at 5.4 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 68 hours or more.
Device Example 5: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-6 for the host as the light-emitting material.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 27.5 cd/A at 5.0 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 170 hours or more.
Device Example 6: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-3 for the host as the light-emitting material.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 26.3 cd/A at 4.1 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 236 hours or more.
Device Example 7: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-287 for the host as the light-emitting material.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 26.4 cd/A at 5.1 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 66 hours or more.
Device Example 8: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-224 for the host as the light-emitting material.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 28.4 cd/A at 4.2 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 74 hours or more.
Device Example 9: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-289 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 28.9 cd/A at 4.1 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 53 hours or more.
Device Example 10: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-5 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 30.3 cd/A at 4.9 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 306 hours or more.
Device Example 11: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-4 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 29.9 cd/A at 4.4 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 300 hours or more.
Device Example 12: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-303 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 29.4 cd/A at 4.6 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 323 hours or more.
Device Example 13: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-304 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 29.4 cd/A at 5.1 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 320 hours or more.
Device Example 14: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-305 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 28.5 cd/A at 3.9 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 172 hours or more.
Device Example 15: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-306 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 30.5 cd/A at 4.5 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 294 hours or more.
Device Example 16: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-307 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 29.0 cd/A at 4.2 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 319 hours or more.
Device Example 17: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-7 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 29.8 cd/A at 4.5 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 328 hours or more.
Device Example 18: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-308 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 29.9 cd/A at 4.9 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 93 hours or more.
Device Example 19: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-309 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 29.8 cd/A at 5.3 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 52 hours or more.
Device Example 20: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-290 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 30.7 cd/A at 4.0 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 99 hours or more.
Device Example 21: Production of an OLED device using the organic
electroluminescent compound according to the present invention
An OLED device was produced in the same manner as in Device Example 1, except for using compound A-310 for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 29.6 cd/A at 4.4 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was 51 hours or more.
Comparative Example 1: Production of an OLED device using a
conventional organic electroluminescent compound
An OLED device was produced in the same manner as in Device Example 1, except for using 4,4'-N,N'-dicarbazole-biphenyl for the host as the light-emitting material, and compound HT-3 for the second hole transport layer.
The produced OLED device showed a red emission having a luminance of 1000 cd/m2 and a current density of 14.3 cd/A at 10 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was less than 1 hour.
Comparative Example 2: Production of an OLED device using a
conventional organic electroluminescent compound
An OLED device was produced in the same manner as in Device Example 1, except for using the compound below for the host as the light-emitting material.
The produced OLED device showed a red emission having a luminance of 1500 cd/m2 and a current density of 24.1 cd/A at 4.6 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was less than 25 hours.
Figure PCTKR2015005193-appb-I000127
Comparative Example 3: Production of an OLED device using a
conventional organic electroluminescent compound
An OLED device was produced in the same manner as in Device Example 1, except for using the compound below for the host as the light-emitting material.
The produced OLED device showed a red emission having a luminance of 1500 cd/m2 and a current density of 24.5 cd/A at 4.6 V. As for the lifespan characteristic, the time period for the luminance to decrease to 95% at 5,000 nit was less than 39 hours.
Figure PCTKR2015005193-appb-I000128
As a result of using the compound according to the present invention and compounds which have similar structures as a phosphorescent red host material, it is verified that the compounds according to the present invention have higher efficiencies and better lifespan performances than the comparative compounds. The reason for this, i.e. the structure of the compound according to the present invention having more suitable HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels for a phosphorescent red host material than the comparative compounds, is also confirmed by calculations.
It is verified that the luminous characteristics of the organic electroluminescent compound according to the present invention are superior to the conventional materials and provide longer operational lifespan. In addition, a device using the organic electroluminescent compound according to the present invention maintains luminous efficiency at high brightness when compared to that using a conventional organic electroluminescent compound so that it is trendier to the market requiring high resolution.

Claims (9)

  1. An organic electroluminescent compound represented by the following formula 1:
    Figure PCTKR2015005193-appb-I000129
    wherein
    L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 3- to 30-membered heteroarylene;
    X and Y each independently represent N or CR17;
    R1 to R17 each independently represent hydrogen, deuterium, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur; and
    the heteroaryl contains at least one hetero atom selected from B, N, O, S, P(=O), Si, and P.
  2. The organic electroluminescent compound according to claim 1, wherein formula 1 is represented by the following formula 2 or 3:
    Figure PCTKR2015005193-appb-I000130
    Figure PCTKR2015005193-appb-I000131
    wherein
    L, and R1 to R17 are as defined in claim 1.
  3. The organic electroluminescent compound according to claim 1, wherein the substituents of the substituted (C3-C30)cycloalkyl, the substituted (C6-C30)aryl(ene), the substituted 3- to 30-membered heteroaryl(ene), the substituted tri(C1-C30)alkylsilyl, the substituted tri(C6-C30)arylsilyl, the substituted di(C1-C30)alkyl(C6-C30)arylsilyl, the substituted (C1-C30)alkyldi(C6-C30)arylsilyl, the substituted mono- or di- (C6-C30)arylamino, the substituted (C1-C30)alkyl(C6-C30)arylamino, and the substituted mono- or polycyclic (C3-C30) alicyclic or aromatic ring in L, and R1 to R17 each independently are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxyl, a nitro, a hydroxyl, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a 3- to 7-membered heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthio, a 5- to 30-membered heteroaryl unsubstituted or substituted with a (C6-C30)aryl, a (C6-C30)aryl unsubstituted or substituted with a 5- to 30-membered heteroaryl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di- (C1-C30)alkylamino, a mono- or di- (C6-C30)arylamino, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl, and a (C1-C30)alkyl(C6-C30)aryl.
  4. The organic electroluminescent compound according to claim 1, wherein
    L represents a single bond, a substituted or unsubstituted (C6-C12)arylene, or a substituted or unsubstituted 3- to 20-membered heteroarylene;
    X and Y each independently represent N or CR17; and
    R1 to R17 each independently represent hydrogen, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted 3- to 20-membered heteroaryl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic (C3-C20) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur.
  5. The organic electroluminescent compound according to claim 1, wherein
    L represents a single bond, an unsubstituted (C6-C12)arylene or a 3- to 20-membered heteroarylene unsubstituted or substituted with a (C6-C12)aryl;
    X and Y each independently represent N or CR17; and
    R1 to R17 each independently represent hydrogen, a (C6-C25)aryl unsubstituted or substituted with a (C6-C20)aryl(C1-C6)alkyl or a (C6-C25)aryl, or a 3- to 20-membered heteroaryl unsubstituted or substituted with a (C6-C12)aryl; or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C3-C20) aromatic ring unsubstituted or substituted with a (C6-C12)aryl, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur.
  6. The organic electroluminescent compound according to claim 1, wherein L represents a single bond, a substituted or unsubstituted phenyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted indenyl, a substituted or unsubstituted triphenylenyl, a substituted or unsubstituted pyrenyl, a substituted or unsubstituted tetracenyl, a substituted or unsubstituted perylenyl, a substituted or unsubstituted chrysenyl, a substituted or unsubstituted naphthacenyl, a substituted or unsubstituted fluoranthenyl, a substituted or unsubstituted carbazole, or a substituted or unsubstituted benzocarbazole.
  7. The organic electroluminescent compound according to claim 1, wherein the compound represented by formula 1 is selected from the group consisting of:
    Figure PCTKR2015005193-appb-I000132
    Figure PCTKR2015005193-appb-I000133
    Figure PCTKR2015005193-appb-I000134
    Figure PCTKR2015005193-appb-I000135
    Figure PCTKR2015005193-appb-I000136
    Figure PCTKR2015005193-appb-I000137
    Figure PCTKR2015005193-appb-I000138
    Figure PCTKR2015005193-appb-I000139
    Figure PCTKR2015005193-appb-I000140
    Figure PCTKR2015005193-appb-I000141
    Figure PCTKR2015005193-appb-I000142
    Figure PCTKR2015005193-appb-I000143
    Figure PCTKR2015005193-appb-I000144
    Figure PCTKR2015005193-appb-I000145
    Figure PCTKR2015005193-appb-I000146
    Figure PCTKR2015005193-appb-I000147
    Figure PCTKR2015005193-appb-I000148
    Figure PCTKR2015005193-appb-I000149
    Figure PCTKR2015005193-appb-I000150
    Figure PCTKR2015005193-appb-I000151
    Figure PCTKR2015005193-appb-I000152
    Figure PCTKR2015005193-appb-I000153
    Figure PCTKR2015005193-appb-I000154
    Figure PCTKR2015005193-appb-I000155
    Figure PCTKR2015005193-appb-I000156
    Figure PCTKR2015005193-appb-I000157
    Figure PCTKR2015005193-appb-I000158
    Figure PCTKR2015005193-appb-I000159
    Figure PCTKR2015005193-appb-I000160
    Figure PCTKR2015005193-appb-I000161
    Figure PCTKR2015005193-appb-I000162
    Figure PCTKR2015005193-appb-I000163
    Figure PCTKR2015005193-appb-I000164
    Figure PCTKR2015005193-appb-I000165
    Figure PCTKR2015005193-appb-I000166
    Figure PCTKR2015005193-appb-I000167
    Figure PCTKR2015005193-appb-I000168
    Figure PCTKR2015005193-appb-I000169
    Figure PCTKR2015005193-appb-I000170
    Figure PCTKR2015005193-appb-I000171
    Figure PCTKR2015005193-appb-I000172
    Figure PCTKR2015005193-appb-I000173
    Figure PCTKR2015005193-appb-I000174
    Figure PCTKR2015005193-appb-I000175
    Figure PCTKR2015005193-appb-I000176
    Figure PCTKR2015005193-appb-I000177
    Figure PCTKR2015005193-appb-I000178
  8. An organic electroluminescent device comprising the organic electroluminescent compound according to claim 1.
  9. The organic electroluminescent device according to claim 8, wherein the compound is used as a phosphorescent host material.
PCT/KR2015/005193 2014-05-23 2015-05-22 An organic electroluminescent compound and an organic electroluminescent device comprising the same WO2015178731A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15796442.0A EP3145924B1 (en) 2014-05-23 2015-05-22 An organic electroluminescent compound and an organic electroluminescent device comprising the same
CN201580026406.XA CN106414428B (en) 2014-05-23 2015-05-22 Organic electroluminescent compounds and organic electroluminescent device comprising the same
JP2016567077A JP6666853B2 (en) 2014-05-23 2015-05-22 Organic electroluminescent compound and organic electroluminescent device containing the same
US15/311,534 US9997723B2 (en) 2014-05-23 2015-05-22 Organic electroluminescent compound and an organic electroluminescent device comprising the same
US15/953,940 US10186669B2 (en) 2014-05-23 2018-04-16 Organic electroluminescent compound and an organic electroluminescent device comprising the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20140062390 2014-05-23
KR10-2014-0062390 2014-05-23
KR10-2014-0117773 2014-09-04
KR20140117773 2014-09-04
KR10-2014-0136149 2014-10-08
KR20140136149 2014-10-08
KR1020150069705A KR101884173B1 (en) 2014-05-23 2015-05-19 An organic electroluminescent compound and an organic electroluminescent device comprising the same
KR10-2015-0069705 2015-05-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/311,534 A-371-Of-International US9997723B2 (en) 2014-05-23 2015-05-22 Organic electroluminescent compound and an organic electroluminescent device comprising the same
US15/953,940 Division US10186669B2 (en) 2014-05-23 2018-04-16 Organic electroluminescent compound and an organic electroluminescent device comprising the same

Publications (1)

Publication Number Publication Date
WO2015178731A1 true WO2015178731A1 (en) 2015-11-26

Family

ID=54554317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005193 WO2015178731A1 (en) 2014-05-23 2015-05-22 An organic electroluminescent compound and an organic electroluminescent device comprising the same

Country Status (1)

Country Link
WO (1) WO2015178731A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014546A1 (en) * 2015-07-20 2017-01-26 Rohm And Haas Electronic Materials Korea Ltd. Luminescent material for delayed fluorescence and organic electroluminescent device comprising the same
CN107129471A (en) * 2016-02-26 2017-09-05 三星Sdi株式会社 Organic compound, organic photoelectric device and display device
JP2017533884A (en) * 2014-10-14 2017-11-16 エルジー・ケム・リミテッド Nitrogen-containing polycyclic compound and organic light-emitting device using the same
JP2018531885A (en) * 2016-04-26 2018-11-01 ドク サン ネオルクス カンパニー リミテッド COMPOUND FOR ORGANIC ELECTRIC ELEMENT, ORGANIC ELECTRIC ELEMENT USING THE SAME, AND ELECTRONIC DEVICE THEREOF
JP2020516064A (en) * 2017-04-03 2020-05-28 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent device
US10797247B2 (en) 2014-07-24 2020-10-06 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element comprising the same and electronic device thereof
US20200343456A1 (en) * 2019-04-29 2020-10-29 Ningbo Lumilan Advanced Materials Co., Ltd. Fused Polycyclic Compound, and Preparation Method and Use Thereof
US11641777B2 (en) 2017-11-24 2023-05-02 Semiconductor Energy Laboratory Co., Ltd. Dibenzo[c,g]carbazole derivative, light-emitting device, light-emitting apparatus, electronic device, and lighting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100108924A (en) 2009-03-31 2010-10-08 다우어드밴스드디스플레이머티리얼 유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR101074193B1 (en) 2008-08-22 2011-10-14 주식회사 엘지화학 Organic electronic device material and organic electronic device using the same
US8227798B2 (en) 2007-03-26 2012-07-24 Nippon Steel Chemical Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device
WO2012165844A1 (en) 2011-05-30 2012-12-06 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
KR20140015259A (en) 2011-07-22 2014-02-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Dibenzo[c,g]carbazole compound, light-emitting element, light-emitting device, display device, lighting device and electronic device
WO2014098455A1 (en) * 2012-12-17 2014-06-26 주식회사 두산 Novel organic compound and organic electroluminescent element comprising same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227798B2 (en) 2007-03-26 2012-07-24 Nippon Steel Chemical Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device
KR101074193B1 (en) 2008-08-22 2011-10-14 주식회사 엘지화학 Organic electronic device material and organic electronic device using the same
KR20100108924A (en) 2009-03-31 2010-10-08 다우어드밴스드디스플레이머티리얼 유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012165844A1 (en) 2011-05-30 2012-12-06 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
KR20140015259A (en) 2011-07-22 2014-02-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Dibenzo[c,g]carbazole compound, light-emitting element, light-emitting device, display device, lighting device and electronic device
WO2014098455A1 (en) * 2012-12-17 2014-06-26 주식회사 두산 Novel organic compound and organic electroluminescent element comprising same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EASTMAN KODAK: "small aromatic diamine molecules, and aluminum complexes as materials for forming a light-emitting layer", APPL. PHYS. LETT, vol. 51, 1987, pages 913
See also references of EP3145924A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10797247B2 (en) 2014-07-24 2020-10-06 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element comprising the same and electronic device thereof
JP2017533884A (en) * 2014-10-14 2017-11-16 エルジー・ケム・リミテッド Nitrogen-containing polycyclic compound and organic light-emitting device using the same
EP3208271A4 (en) * 2014-10-14 2018-05-30 LG Chem, Ltd. Nitrogen-containing polycyclic compound and organic light emitting element using same
US10035765B2 (en) 2014-10-14 2018-07-31 Lg Chem, Ltd. Nitrogen-containing polycyclic compound and organic light emitting device using same
WO2017014546A1 (en) * 2015-07-20 2017-01-26 Rohm And Haas Electronic Materials Korea Ltd. Luminescent material for delayed fluorescence and organic electroluminescent device comprising the same
US10516113B2 (en) 2016-02-26 2019-12-24 Samsung Sdi Co., Ltd. Organic compound, organic optoelectric device and display device
CN107129471A (en) * 2016-02-26 2017-09-05 三星Sdi株式会社 Organic compound, organic photoelectric device and display device
CN107129471B (en) * 2016-02-26 2021-05-07 三星Sdi株式会社 Organic compound, organic photoelectric device and display device
JP2018531885A (en) * 2016-04-26 2018-11-01 ドク サン ネオルクス カンパニー リミテッド COMPOUND FOR ORGANIC ELECTRIC ELEMENT, ORGANIC ELECTRIC ELEMENT USING THE SAME, AND ELECTRONIC DEVICE THEREOF
JP2020516064A (en) * 2017-04-03 2020-05-28 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent device
US11641777B2 (en) 2017-11-24 2023-05-02 Semiconductor Energy Laboratory Co., Ltd. Dibenzo[c,g]carbazole derivative, light-emitting device, light-emitting apparatus, electronic device, and lighting device
US20200343456A1 (en) * 2019-04-29 2020-10-29 Ningbo Lumilan Advanced Materials Co., Ltd. Fused Polycyclic Compound, and Preparation Method and Use Thereof
US11626562B2 (en) * 2019-04-29 2023-04-11 Ningbo Lumilan Advanced Materials Co., Ltd. Fused polycyclic compound, and preparation method and use thereof

Similar Documents

Publication Publication Date Title
EP3145924A1 (en) An organic electroluminescent compound and an organic electroluminescent device comprising the same
WO2018159964A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3589614A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2014054912A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2022015084A1 (en) Organic light-emitting element
EP3371182A1 (en) Electron buffering materials, electron transport materials and organic electroluminescent device comprising the same
WO2019054833A1 (en) Heterocyclic compound and organic light emitting element comprising same
WO2018182294A1 (en) Benzocarbazole-based compound and organic light-emitting device comprising same
EP3137467A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2012077902A9 (en) Compound for an organic optoelectronic device, organic light-emitting diode including the compound, and display device including the organic light-emitting diode
WO2015099507A1 (en) Novel organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
WO2013180376A1 (en) New electron transport material and organic electroluminescent device using the same
WO2018052244A1 (en) Organic electroluminescent device comprising an electron buffer layer and an electron transport layer
WO2013122364A2 (en) Compound for organic electrical element, organic electrical element comprising same, and electronic device therewith
WO2015093878A1 (en) Organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
WO2015050391A1 (en) An organic electroluminescent compound and an organic electroluminescent device comprising the same
EP3685453A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2015178731A1 (en) An organic electroluminescent compound and an organic electroluminescent device comprising the same
WO2014129846A1 (en) Organic electroluminescent compounds and an organic electroluminescent device comprising the same
WO2021029616A1 (en) Organic light-emitting device
EP3386987A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3298016A1 (en) Phosphorous host material and organic electroluminescent device comprising the same
EP3197869A1 (en) Organic electroluminescent compound, and organic electroluminescent material and organic electroluminescent device comprising the same
WO2014104704A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2016089165A2 (en) Novel compound and organic light emitting element comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016567077

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15311534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015796442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015796442

Country of ref document: EP