WO2015141582A1 - ユーザ端末、基地局、通信システム及び通信方法 - Google Patents
ユーザ端末、基地局、通信システム及び通信方法 Download PDFInfo
- Publication number
- WO2015141582A1 WO2015141582A1 PCT/JP2015/057496 JP2015057496W WO2015141582A1 WO 2015141582 A1 WO2015141582 A1 WO 2015141582A1 JP 2015057496 W JP2015057496 W JP 2015057496W WO 2015141582 A1 WO2015141582 A1 WO 2015141582A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- state
- base station
- user terminal
- small cell
- downlink control
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0203—Power saving arrangements in the radio access network or backbone network of wireless communication networks
- H04W52/0206—Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/32—Hierarchical cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a user terminal, a base station, a communication system, and a communication method in a next-generation communication system in which a user terminal communicates simultaneously with a first base station and a second base station.
- LTE Long Term Evolution
- FRA Full Radio Access
- 4G Long Term Evolution
- LTE Advanced Long Term Evolution Advanced
- FRA Full Radio Access
- 4G Long Term Evolution Advanced
- LTE Advanced Long Term Evolution Advanced
- FRA Full Radio Access
- 4G Long Term Evolution Advanced
- LTE Advanced Long Term Evolution Advanced
- a radio communication system in which cells having a relatively small coverage with a radius of several meters to several tens of meters hereinafter also referred to as small cells, pico cells, femto cells, etc.
- HetNet also referred to as Heterogeneous Network
- small cells are arranged at high density in a specific place (for example, a station) where it is estimated that traffic is relatively high in the macro cell.
- a specific place for example, a station
- it is considered to perform on / off control for switching between an on state and an off state of a small cell (also referred to as a small base station or a secondary (S) cell).
- S secondary
- the on / off control it is considered to switch the small cell from the off state to the on state based on the presence / absence of traffic to the user terminal.
- on / off control in order to improve throughput in the small cell, the delay time from when the small cell is switched from the off state to the on state until data transmission to the user terminal is started is reduced. It is hoped that.
- the present invention has been made in view of such a point, and provides a user terminal, a base station, a communication system, and a communication method capable of reducing a delay time until data transmission to a user terminal is started in a small cell. Objective.
- the user terminal is a user terminal that communicates simultaneously with the first base station and the second base station, and a connection state between the first base station and the user terminal is in a deactivated state.
- a measurement unit that periodically measures channel state information using a channel state information reference signal transmitted from the first base station, and when the connection state is the deactivated state,
- a monitoring unit that periodically monitors a downlink control channel transmitted from a station, and when downlink control information for the user terminal is detected by periodic monitoring of the downlink control channel, the state of the connection is The deactivation state is switched to the activation state.
- HetNet It is explanatory drawing of the example of a scenario which arrange
- FIG. 1 is an overall configuration diagram of a radio communication system according to the present embodiment. It is a schematic block diagram of the radio base station which concerns on this Embodiment. It is a schematic block diagram of the user terminal which concerns on this Embodiment. It is a detailed block diagram of the small base station which concerns on this Embodiment. It is a detailed block diagram of the user terminal which concerns on this Embodiment.
- FIG. 1 is a conceptual diagram of HetNet.
- HetNet is a wireless communication system in which at least a part of a macro cell and a small cell are geographically overlapped.
- HetNet is a radio base station that forms a macro cell (hereinafter referred to as a macro base station (MeNB: Macro eNodeB)), a radio base station that forms a small cell (hereinafter referred to as a small base station (SeNB: Small eNodeB)), A user equipment (UE: User Equipment) that communicates with the macro base station and the small base station is configured.
- MeNB Macro eNodeB
- SeNB Small eNodeB
- UE User Equipment
- a relatively low frequency band for example, 800 MHz or 2 GHz
- a relatively high frequency band for example, 3.5 GHz
- a licensed band for example, 3.5 GHz
- an unlicensed band such as 5 GHz
- transmission power lower than that of the macro cell is used.
- HetNet also considers increasing capacity and user terminal throughput in small cells while securing coverage and mobility in macro cells (also called Macro-assisted Small Cell Operation, C / U-plane split, etc.).
- C control
- U user
- C control
- U user
- FIG. 1 in a macro cell, communication of some user (U) planes, such as a real-time service, may be performed.
- HetNet it is also considered that small cells are arranged at different densities and different environments (for example, indoor or outdoor). This is because the user distribution and traffic are generally not uniform and fluctuate in time or location. For example, in stations and shopping malls where many user terminals are gathered, increase the density of small cells (Dense small cell), and in places where user terminals do not gather, reduce the density of small cells (Sparse small cells). Can be considered.
- the said small cell is used for a user terminal by the carrier aggregation with a macro cell (primary (P) cell).
- carrier aggregation (CA) is to integrate a macro cell (P cell) and a carrier (component carrier) of at least one small cell (S cell).
- a user terminal communicates with a radio base station forming a macro cell (hereinafter referred to as a macro base station) simultaneously with a radio base station forming a small cell (hereinafter referred to as a small base station).
- carrier aggregation includes intra-base station carrier aggregation (Intra-eNB CA) (also simply referred to as carrier aggregation) and inter-base station carrier aggregation (Inter-eNB CA) (also referred to as dual connectivity).
- Intra-eNB CA intra-base station carrier aggregation
- Inter-eNB CA inter-base station carrier aggregation
- the base station CA the macro base station may perform scheduling of the small base station.
- CA dual connectivity
- a user terminal may connect to both a macro cell and a small cell, and a macro base station and a small base station may perform scheduling. Below, it demonstrates centering around the case of CA (dual connectivity) between base stations.
- FIG. 2 is an explanatory diagram of a scenario example in which small cells are arranged with high density.
- a scenario in which small cells are arranged at high density within a specific range of clusters for example, a Rel-12 SCE (Small Cell Enhancement) scenario, hereinafter referred to as an SCE scenario.
- the In this SCE scenario the reception quality of the user terminal (for example, RSRQ: Reference Signal Received Quality, SINR: Signal Interference and Noise Ratio) may be deteriorated due to interference from adjacent small cells.
- RSRQ Reference Signal Received Quality
- SINR Signal Interference and Noise Ratio
- FIG. 3 is an explanatory diagram of interference between adjacent small cells # 1 and # 2 in the SCE scenario.
- the user terminal is connected to the small cell (small base station) # 2.
- the signal configuration illustrated in FIG. 3 is merely an example, and is not limited thereto.
- a synchronization signal (not shown) (for example, PSS: Primary Synchronization Signal, SSS: Secondary Synchronization Signal) or a reference signal may be arranged.
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- a reference signal may be arranged.
- the same frequency is used in the small cells # 1 and # 2.
- a downlink shared channel (PDSCH) is assigned to both small cells # 1 and # 2.
- the PDSCH of the small cell # 2 to which the user terminal is connected receives interference from the PDSCH of the small cell # 1.
- the PDSCH of small cell # 2 receives the cell-specific reference signal (CRS: Cell-specific of small cell # 1). Interference caused by Reference Signal and synchronization signal (not shown).
- CRS Cell-specific of small cell # 1
- the reception quality of the user terminal may be deteriorated due to interference from the adjacent small cell.
- the effect of improving the throughput by increasing the density of the small cells is saturated.
- small cells are arranged without considering the positional relationship between cells, so that it is assumed that interference from adjacent small cells increases.
- interference coordination Inter-Cell Interference Coordination
- SCE secondary
- FIG. 4 is an explanatory diagram of on / off control in the SCE scenario.
- the small cells 1 and 3 are in an on state and the small cell 2 is in an off state.
- the on state is a state in which PDSCH, CRS, and the like are transmitted in the small cell
- the off state is a state in which transmission of PDSCH, CRS, and the like is stopped in the small cell.
- each of the small base stations 1-3 transmits a discovery signal in a burst manner.
- the discovery signal is a signal (detection / measurement signal) (also simply referred to as a detection signal) used for detection and / or measurement of a small cell.
- the discovery signal is transmitted in bursts with a relatively long period such as 100 ms or 160 ms.
- “in a burst” means, for example, transmission in 1 ms or transmission in 2 ms.
- the small base station 1-3 transmits a discovery signal in synchronization. By synchronously transmitting the discovery signal, the measurement period of the discovery signal in the user terminal can be reduced, and a battery saving effect can be obtained. Note that information (for example, subframe number, sequence, transmission cycle, etc.) related to discovery signal burst transmission may be notified from the macro base station to the user terminal.
- the user terminal uses the discovery signal from the small base station 1-3 to receive power and / or reception quality (hereinafter referred to as reception power / reception quality) in the small cell 1-3. ).
- the macro base station sets the small cell 1-3 as a small cell (secondary (S) cell) that performs carrier aggregation with the macro cell (primary (P) cell), and based on the traffic to the user terminal
- S secondary
- P primary
- the small cell 1-3 is turned on / off.
- RSRP Reference Signal Received Power
- RSRQ, SINR, or the like may be used as the reception quality.
- FIG. 5 is an explanatory diagram of a small cell on / off state switching procedure.
- FIG. 5 illustrates a procedure for switching the small cell from the off state to the on state.
- the case where the carrier aggregation (dual connectivity) between base stations is performed between a macro cell and a small cell is demonstrated as an example.
- the base station that controls the macro cell may be regarded as performing the scheduling of the small cell.
- the macro base station notifies the user terminal of parameter information of a signal transmitted from the small base station (step ST101).
- the parameter information includes information related to burst transmission of the above discovery signal (for example, subframe number, sequence, transmission cycle, etc.) and configuration information of a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal). Etc. may be included.
- CSI-RS Channel State Information-Reference Signal
- the small base station transmits a discovery signal to the user terminal (step ST102).
- the user terminal notifies the macro base station of a measurement report (MR: Measurement Report) indicating the measurement result of the reception power / reception quality of the discovery signal (step ST103).
- MR Measurement Report
- the macro base station determines a small cell to perform carrier aggregation with the macro cell based on the measurement report from the user terminal (step ST104). For example, the macro base station may determine a small cell whose reception quality of the discovery signal at the user terminal is equal to or higher than a predetermined threshold (or higher) as a small cell to be subjected to carrier aggregation.
- the user terminal can monitor the downlink control channel (PDCCH: Physical Downlink Control Channel) (PDCCH monitoring) and CSI reporting (CSI reporting, CQI / PMI / RI / PTI reporting). ) Etc. is in a deactivated state. In response to an instruction from the macro base station, the user terminal shifts to an activation state in which downlink control channel monitoring, CSI measurement and reporting, and the like are performed.
- PDCCH Physical Downlink Control Channel
- CSI reporting CQI / PMI / RI / PTI reporting
- the user terminal is instructed to activate the small cell (step ST106), and starts measuring channel state information (CSI) using CSI-RS from the small base station.
- CSI channel state information
- the instruction information to the user terminal may be notified by, for example, MAC (Medium Access Control) signaling.
- MAC Medium Access Control
- the small cell shifts from the off state to the on state at the same timing as the activation of the user terminal and transmission of a downlink signal such as CSI-RS is started (step ST107)
- the user terminal is not delayed. CSI measurement can be started.
- CSI is information used for scheduling of PDSCH from a small base station, and includes a channel quality identifier (CQI: Channel Quality Indicator), a rank identifier (RI: Rank Indicator), a precoding matrix identifier (PMI: Precoding Matrix Indicator). ) May be included.
- CQI Channel Quality Indicator
- RI rank Indicator
- PMI Precoding Matrix Indicator
- the user terminal When it is necessary to establish uplink synchronization, the user terminal performs a random access procedure with the small base station (step ST108), and notifies CSI to the small base station (step ST109).
- the random access procedure may be omitted, or the random access procedure and the CSI report may be performed together.
- the small base station performs scheduling of PDSCH transmitted from the small base station based on CSI from the user terminal (step ST110).
- the throughput may decrease due to a delay time from when the small cell is switched from the off state to the on state until data transmission from the small base station to the user terminal starts.
- FIG. 6 the delay time when the small cell is switched from the off state to the on state will be described in detail.
- FIG. 6 it is assumed that the small cell 1 is in the on state and the small cell 2 is switched from the off state to the on state. Note that FIG. 6 is merely an example, and the present invention is not limited to this.
- a discovery signal is transmitted at a predetermined cycle (for example, 100 ms, 160 ms), and CRS and PDSCH are transmitted in each subframe.
- CRS does not have to be transmitted in New Carrier Type, which is a new type of carrier.
- the user terminal monitors the PDCCH in each subframe and receives the PDSCH.
- the CSI-RS is transmitted at a predetermined cycle (for example, a cycle shorter than the discovery signal such as 5 ms, 10 ms).
- the user terminal measures CSI using the CSI-RS.
- the PDSCH of the small cell 1 is scheduled.
- the small cell 2 in the off state, transmission of CRS and PDSCH in each subframe and transmission of CSI-RS in a predetermined cycle are stopped.
- the small cell 2 is switched from the off state to the on state simultaneously with the instruction information (SCell activation) from the macro base station to the user terminal. Thereby, transmission of CSI-RS of a predetermined period is started from the small cell 2.
- the user terminal is instructed to activate the small cell by the macro base station, and starts measuring CSI using the CSI-RS of the small cell 2. If the small cell shifts from the off state to the on state at the same timing as the activation of the user terminal and transmission of downlink signals such as CSI-RS is started, the user terminal starts CSI measurement without delay. it can. The user terminal feeds back the CSI to the small base station. In the small cell 2, transmission of the PDSCH scheduled based on the CSI is started.
- the user terminal starts CSI measurement after receiving an activation instruction from the macro base station.
- the CSI-RS is not transmitted in the small cell 2 in the off state, and transmission of the CSI-RS is started only after switching to the on state.
- the user terminal takes time to measure CSI for the small cell 2 instructed to be activated by the macro base station, and there is a possibility that the start of PDSCH transmission scheduled based on the CSI is delayed. As a result, the throughput of the user terminal in the small cell 2 may be reduced.
- the present inventors have studied a method for reducing the delay time until data transmission to the user terminal is started in the small cell, and have reached the present invention. Specifically, the present inventors can measure the CSI in the user terminal even when the small cell is in the off state while allowing the user terminal to switch to the activated state without an instruction from the macro base station. The idea was to reduce the above delay time by making it possible.
- the wireless communication method (communication method) according to the present invention will be described below.
- the radio communication method according to the present invention is used in a radio communication system including a user terminal capable of switching an operation state in a small cell in a macro cell and a radio base station forming the small cell.
- the user terminal connects simultaneously with the macro base station (second base station) and the small base station (first base station), that is, performs communication at the same time.
- the operation state in the small cell is a deactivated state
- the channel state information (CSI-RS) is used for the channel state information (CSI-RS).
- CSI is periodically measured and the downlink control channel (PDCCH) of the small cell is periodically monitored.
- DCI downlink control information
- the deactivated state is an operating state of the user terminal in a small cell (for example, a small cell in an off state), and when necessary (for example, periodically) without activating the RF circuit as much as possible. It is in a state to start.
- the activated state is an operation state of the user terminal in the small cell (for example, an on-state small cell), and is a state in which the RF circuit of the user terminal is continuously activated in the small cell.
- the deactivated user terminal and the activated user terminal are also referred to as a deactivated UE and an activated UE, respectively.
- the deactivated state and the activated state may be a state of a connection between the small base station (first base station) and the user terminal, respectively.
- the radio communication method according to the present invention is not limited to a case where dual connectivity (inter-base station carrier aggregation (Inter-eNB CA)) in which a user terminal connects to both a macro cell and a small cell is performed.
- the present invention is also applicable to the case where intra-base station carrier aggregation (Intra-eNB CA) is performed with a cell.
- intra-base station carrier aggregation the user terminal may report CSI to the macro cell, but may report CSI to the small cell.
- intra-base station carrier aggregation since the macro cell and the small cell are controlled by one base station, it may be considered that the base station that controls the macro cell performs scheduling of the small cell.
- the wireless communication method according to the present invention includes not only a case where an existing carrier in which PDCCH is arranged in a small cell is used, but also an incompatible carrier (NCT: New Carrier Type) that is not compatible with the existing carrier. It is applicable also when used.
- NCT New Carrier Type
- EPDCCH Enhanced Physical Downlink Control Channel
- the existing carrier is used in a small cell is demonstrated as an example.
- FIG. 7 is an explanatory diagram of the wireless communication method according to the present invention.
- FIG. 7 illustrates an example in which the small cell is switched from the off state to the on state (the operation state of the user terminal in the small cell is changed from the deactivated state to the activated state).
- the CSI-RS is transmitted in a predetermined cycle not only when the small cell is in the on state but also in the off state.
- the CSI-RS may be transmitted in a shorter cycle (for example, 10 ms in FIG. 7) than the discovery signal, or may be transmitted in the same cycle as the discovery signal.
- the CSI-RS and the discovery signal may be transmitted in the same subframe (for example, subframe (SF) # 0 of radio frame (RF) #n in FIG. 7).
- the CSI-RS and the discovery signal may be the same signal.
- the signals transmitted in the off state are not limited to these.
- PSS / SSS may be transmitted, or CRS may be transmitted at a lower frequency like NCT.
- FIG. 8 shows an example of these downlink transmission signals in the off state.
- the OFF state may include the 1-4th OFF state, and the downlink transmission signal transmitted according to the 1-4 OFF state may be changed.
- the user terminal When the small cell is in an off state (when the operation state of the user terminal in the small cell is a deactivated state (Deactivated UE)), the user terminal periodically uses the CSI-RS to change the CSI of the small cell. To measure. Note that the user terminal may feed back the measured CSI to the small base station.
- Deactivated UE deactivated UE
- the user terminal periodically monitors the downlink control channel (PDCCH) of the small cell when the small cell is in an off state (when the operation state of the user terminal in the small cell is a deactivated state).
- the periodic measurement of CSI-RS and the periodic monitoring of PDCCH are performed in the same subframe (for example, RF # n of FIG. 7, SF # 0 of # n + 1). Also good. Thereby, since the user terminal can reduce the frequency
- the small cell when the small cell is in the off state (when the operation state of the user terminal in the small cell is the deactivated state), when data for the user terminal is generated, downlink control for the user terminal is performed.
- Information (DCI) is transmitted via PDCCH.
- DCI for the user terminal is detected by periodic monitoring of the PDCCH in the user terminal, the small cell is switched from the off state to the on state (the operation state of the user terminal in the small cell is changed from the deactivated state to the activated state). (Switched to Activated UE).
- the user terminal when data for a user terminal is generated in SF # 5 of RF # n + 1, the user terminal transmits DCI including the scheduling information of the data to RF # n + 2 by periodically monitoring the PDCCH. Is detected at SF # 0.
- the small cell is implicitly switched from the off state to the on state. That is, in the wireless communication method according to the present invention, the operation state of the user terminal in the small cell is switched from the deactivated state to the activated state without instruction information (SCell Activation) from the macro base station.
- SCell Activation instruction information
- the detection of DCI implicitly switches the small cell from the off state to the on state, and switches from the deactivated state to the activated state. For this reason, it is desirable that the small cell can recognize whether the user terminal has detected DCI.
- the small cell when transmitting DCI for the first time, by always triggering aperiodic CSI, the small cell recognizes whether the user terminal can detect DCI by reporting CSI. Is possible.
- DCI when DCI is transmitted for the first time, non-detection of DCI can be prevented with higher probability by transmitting both downlink assignment (DL assignment) and uplink grant (UL grant) from the small cell. .
- DL assignment downlink assignment
- UL grant uplink grant
- the user terminal When the small cell is switched from the off state to the on state (when the operation state of the user terminal in the small cell is switched from the deactivated state to the activated state), the user terminal performs monitoring for each subframe of the PDCCH. Start. Further, the user terminal can perform data (downlink shared channel (PDSCH)) scheduled based on CSI measured when the small cell is in an off state (when the operation state of the user terminal in the small cell is a deactivated state). )).
- PDSCH downlink shared channel
- CSI is measured even when the small cell is in the off state (when the operation state of the user terminal in the small cell is in the deactivated state), the user terminal When data is generated, scheduling of the data can be quickly performed based on the CSI.
- the wireless communication method when the small cell is switched to the on state, PDSCH scheduling can be performed using the CSI measured in the off state without waiting for the periodic CSI measurement. it can.
- the delay time caused by the measurement of the CSI from the switching to the activated state to the start of data transmission (FIG. 6) Can be reduced.
- FIG. 9 is a sequence diagram showing a wireless communication method according to the present invention. Note that steps ST11, ST12, ST14, and ST16 in FIG. 9 are the same as steps ST101, ST102, ST108, and ST110 in FIG.
- the small base station since the small base station is in the off state, the small base station periodically transmits the CSI-RS (step ST13). Even when the user terminal is in the deactivated state, the user terminal may transmit CSI measured using the CSI-RS from the small base station to the small base station (step ST15).
- the small base station transmits DCI indicating the scheduling result in step ST16 via PDCCH and also transmits PDSCH (step ST17).
- the user terminal in the deactivated state detects DCI from the small base station by periodically monitoring the PDCCH, the user terminal switches the operation state in the small cell from the deactivated state to the activated state. Note that the user terminal may switch the connection state with the small base station from the deactivated state to the activated state.
- FIG. 10 is a flowchart showing the operation of the user terminal when the small cell is switched from the off state to the on state (when the operation state in the small cell is switched from the deactivated state to the activated state).
- the user terminal when the small cell is in an off state (when the operation state of the user terminal in the small cell is a deactivated state), the user terminal performs discovery signal measurement and report, CSI measurement and report.
- the PDCCH is monitored periodically (step ST01).
- CSI measurement and PDCCH monitoring may be performed in the same subframe.
- the discovery signal may be measured in the same cycle as the CSI measurement and PDCCH monitoring, or in a different cycle.
- the discovery signal may be measured in at least one subframe in which CSI measurement and PDCCH monitoring are performed.
- the CSI-RS and the discovery signal may be the same signal.
- transmission timing information related to PDCCH monitoring and CSI measurement may be notified from the macro base station to the user terminal by higher layer signaling.
- the information regarding the transmission timing may be an index of a transmission subframe or a transmission cycle, or the timing information may be notified by a bitmap.
- the small cell in the on state (the user terminal is in the active state). Also good.
- the small cell is changed from the off state to the on state (the operation state of the user terminal in the small cell (or the small base station and the user terminal).
- the state of the connection between the two is switched from the deactivated state (Deactivated UE) to the activated state (Activated UE).
- the user terminal performs PDCCH monitoring for each subframe (step ST03).
- the user terminal periodically performs discovery signal measurement and reporting, CSI measurement and reporting, and PDCCH monitoring.
- step ST04 When DCI for the user terminal is not detected for a certain period of time by monitoring each subframe of the PDCCH (step ST04; Yes), the small cell is switched from the on state to the off state (the operation state of the user terminal in the small cell (or the small base station). Of the connection between the user terminal and the user terminal) is switched again from the activated state to the deactivated state), and the operation returns to step ST01.
- FIG. 11 is an overall configuration diagram of the wireless communication system 1 according to the present embodiment.
- the wireless communication system 1 shown in FIG. 11 is a system including, for example, an LTE system or SUPER 3G.
- This wireless communication system may be called IMT-Advanced, or may be called 4G, FRA (Future Radio Access).
- the radio communication system 1 includes a macro base station 11 that forms a macro cell C1, and small base stations 12a and 12b that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. I have. Moreover, the user terminal 20 is arrange
- the user terminal 20 is arranged in the macro cell C1 and each small cell C2.
- the user terminal 20 is configured to be able to wirelessly communicate with the macro base station 11 and / or the small base station 12.
- Communication between the user terminal 20 and the macro base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz).
- communication between the user terminal 20 and the small base station 12 can be performed using a carrier having a relatively high frequency band (for example, 3.5 GHz).
- the user terminal 20 may communicate with the small base station 12 using a licensed band carrier such as 3.5 GHz, or an unlicensed band such as 5 GHz. You may communicate with the small base station 12 using the carrier of.
- the carrier (first carrier) used by the macro base station 11 may be an existing carrier (legacy carrier type, LTE carrier).
- the carrier (second carrier) used by the small base station 12 (small cell C2) may be an incompatible carrier (NCT: New Carrier Type) that is not compatible with an existing carrier, or an existing carrier. May be.
- the macro base station 11 and the small base station 12 may be connected by a relatively high speed line (Ideal backhaul) such as an optical fiber, or a relatively low speed line (Non-ideal backhaul) such as an X2 interface. ) May be connected.
- a relatively high-speed line the macro base station 11 and the small base station 12 perform intra-base station carrier aggregation (Intra-eNB CA) (also simply referred to as carrier aggregation).
- Intra-eNB CA intra-base station carrier aggregation
- the macro base station 11 and the small base station 12 When connected via a relatively low-speed line, the macro base station 11 and the small base station 12 perform inter-base station carrier aggregation (Inter-eNB CA) (also referred to as dual connectivity).
- Inter-eNB CA inter-base station carrier aggregation
- the small base stations 12a and 12b may be connected by a relatively high speed line (Ideal backhaul) such as an optical fiber, or a relatively low speed line (Non-ideal backhaul) such as an X2 interface. ) May be connected.
- a relatively high speed line such as an optical fiber
- a relatively low speed line such as an X2 interface.
- the macro base station 11 and each small base station 12 are each connected to the core network 30.
- the core network 30 is provided with core network devices such as MME (Mobility Management Entity), S-GW (Serving-Gateway), and P-GW (Packet-Gateway).
- MME Mobility Management Entity
- S-GW Serving-Gateway
- P-GW Packet-Gateway
- the macro base station 11 is a radio base station (second base station) having a relatively wide coverage, and may be called an eNodeB, a macro base station, an aggregation node, a transmission point, a transmission / reception point, or the like.
- the small base station 12 is a radio base station (first base station) having local coverage, and includes a small base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), a micro base station. It may be called a base station, a transmission point, a transmission / reception point, or the like.
- the user terminal 20 is a terminal that supports various communication schemes such as LTE, LTE-A, and FRA, and may include not only a mobile communication terminal but also a fixed communication terminal.
- a downlink shared channel shared by each user terminal 20
- a downlink control channel (PDCCH: Physical Downlink Control Channel)
- PDSCH Downlink Control Channel
- An enhanced downlink control channel EPDCCH: Enhanced Physical Downlink Control Channel
- PBCH broadcast channel
- DCI Downlink control information
- an uplink shared channel (PUSCH) shared by each user terminal 20 and an uplink control channel (PUCCH: Physical Uplink Control Channel) are used as uplink physical channels. It is done. User data and higher layer control information are transmitted by PUSCH. Also, downlink channel state information (CSI: Channel State Information), delivery confirmation information (ACK / NACK), and the like are transmitted by PUCCH or PUSCH.
- PUSCH uplink shared channel
- PUCCH Physical Uplink Control Channel
- FIG. 12 is an overall configuration diagram of the radio base station 10.
- the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103 (transmission unit, reception unit), a baseband signal processing unit 104, A call processing unit 105 and a transmission path interface 106 are provided.
- user data transmitted from the radio base station 10 to the user terminal 20 is input from the S-GW provided in the core network 30 to the baseband signal processing unit 104 via the transmission path interface 106.
- the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103. Also, downlink control signals (including reference signals, synchronization signals, broadcast signals, etc.) are subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to each transmitting / receiving unit 103.
- RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
- Each transmission / reception unit 103 converts the downlink signal output from the baseband signal processing unit 104 by precoding for each antenna to a radio frequency.
- the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 101.
- the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102, frequency-converted by each transmitting / receiving unit 103, converted into a baseband signal, and sent to the baseband signal processing unit 104. Entered.
- the baseband signal processing unit 104 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on user data included in the input uplink signal.
- the data is transferred to the core network 30 via the transmission path interface 106.
- the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
- FIG. 13 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
- the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203 (transmission unit, reception unit), a baseband signal processing unit 204, and an application unit 205.
- the user terminal 20 may switch the reception frequency by one reception circuit (RF circuit) or may have a plurality of reception circuits.
- the receiving circuit (RF circuit) can be switched between an on state and an off state.
- radio frequency signals received by a plurality of transmission / reception antennas 201 are respectively amplified by an amplifier unit 202, frequency-converted by a transmission / reception unit 203, and input to a baseband signal processing unit 204.
- the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like.
- User data included in the downlink signal is transferred to the application unit 205.
- the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information in the downlink data is also transferred to the application unit 205.
- uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
- the baseband signal processing unit 204 performs transmission processing for retransmission control (H-ARQ (Hybrid ARQ)), channel coding, precoding, DFT processing, IFFT processing, and the like, and transfers them to each transmission / reception unit 203.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency. Thereafter, the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 201.
- the detailed configuration of the small base station 12 illustrated in FIG. 14 is mainly configured by the baseband signal processing unit 104.
- the detailed configuration of the user terminal 20 illustrated in FIG. 15 is mainly configured by the baseband signal processing unit 204.
- FIG. 14 is a detailed configuration diagram of the small base station 12 (first base station) according to the present embodiment.
- the small base station 12 includes a scheduling unit 301, a DCI generation unit 302, a data generation unit 303, a CSI-RS generation unit (generation unit) 304, a DS generation unit 305, a CRS generation unit 306, and a control unit. 307.
- the scheduling unit 301 Based on the CSI (including at least one of CQI, PMI, and RI) received by the transceiver 103, the scheduling unit 301 performs PDSCH scheduling (resource allocation, MCS (Modulation and Coding Scheme), Determination of precoding matrix). The scheduling unit 301 outputs the scheduling result to the DCI generation unit 302 and the data generation unit 303.
- PDSCH scheduling resource allocation, MCS (Modulation and Coding Scheme), Determination of precoding matrix.
- the scheduling is performed by the macro base station 11, and thus the scheduling unit 301 may be omitted.
- the scheduling result by the macro base station 11 is input to the control unit 307 via the transmission path interface 106.
- the DCI generation unit 302 generates downlink control information (DCI). Specifically, the DCI generation unit 302 generates DCI indicating the scheduling result by the scheduling unit 301. DCI is output to the transmission / reception part 103, and is transmitted to the user terminal 20 via PDCCH or EPDCCH.
- DCI downlink control information
- the DCI generating unit 302 when generating the first DCI (DCI for detecting switching to the activated state (on state)) for the user terminal 20, the DCI generating unit 302 generates the DCI including the trigger information of the aperiodic CSI. It may be generated.
- the DCI generating unit 302 generates a downlink assignment (DL assignment) and an uplink grant (UL) when generating the first DCI (DCI for detecting switching to the activated state (on state)) for the user terminal 20.
- DCI including both (grant) may be generated.
- the data generation unit 303 generates data based on the scheduling result by the scheduling unit 301. Specifically, the data generation unit 303 performs data encoding, modulation, precoding, and the like for the user terminal 20. The data is output to the transmission / reception unit 103 and transmitted to the user terminal 20 via the PDSCH. Note that the data may include control information of higher layers (for example, RRC signaling, MAC signaling, etc.) in addition to traffic data (user data).
- control information of higher layers for example, RRC signaling, MAC signaling, etc.
- the CSI-RS generation unit 304 generates a channel state information reference signal (CSI-RS). Specifically, the CSI-RS generation unit 304 is periodically transmitted (for example, in a 10 ms cycle and a 5 ms cycle) regardless of whether data for the user terminal 20 exists or not according to control by the control unit 307. CSI-RS is generated. That is, the CSI-RS generation unit 304 generates CSI-RS that is periodically transmitted not only when the small cell C2 is in the on state but also when it is in the off state.
- CSI-RS channel state information reference signal
- the CSI-RS generated by the CSI-RS generation unit 304 is output to the transmission / reception unit 103 and transmitted by the small cell C2.
- the CSI-RS is generated so as to be orthogonal between the small cells C2. Further, the CSI-RS is arranged at a predetermined period (for example, 5 ms, 10 ms), and the arrangement density is relatively low. For this reason, even if CSI-RS is transmitted when the small cell C2 is in the off state, the influence of interference on the adjacent small cell C2 is small.
- the DS generation unit 305 generates a discovery signal (DS). Specifically, the DS generation unit 305 is periodically transmitted according to control by the control unit 307 regardless of whether data for the user terminal 20 exists or not (for example, in a 100 ms cycle or a 5 ms cycle). Generate a signal. That is, the DS generation unit 305 generates a discovery signal that is periodically transmitted not only when the small cell C2 is in the on state but also in the off state.
- DS discovery signal
- the discovery signal generated by the DS generation unit 305 is output to the transmission / reception unit 103 and transmitted by the small cell C2.
- the discovery signal may be transmitted in bursts with a relatively high arrangement density.
- the discovery signal may be transmitted synchronously between the small cells C2. Further, the discovery signal may be transmitted in the same cycle as the CSI-RS, or in a cycle longer than the CSI-RS, or may be transmitted in at least one subframe in which the CSI-RS is transmitted.
- the CRS generator 306 generates a cell-specific reference signal (CRS). Specifically, the CRS generation unit 306 generates a CRS that is multiplexed with the data generated by the data generation unit 303 under the control of the control unit 307.
- CRS cell-specific reference signal
- the CRS generated by the CRS generation unit 306 is output to the transmission / reception unit 103 and multiplexed with the data generated by the data generation unit 303 and transmitted. That is, the CRS generation unit 306 is transmitted when the small cell C2 is in the on state, and is not transmitted when the small cell C2 is in the off state. As described above, the CRS is not necessarily orthogonal between the small cells C2. Also, the CRS is arranged in each subframe and has a relatively high arrangement density. For this reason, interference with the adjacent small cell C2 can be reduced by stopping transmission when the small cell C2 is in the off state.
- the control unit 307 controls the scheduling unit 301, the CSI-RS generation unit 304, the DS generation unit 305, and the CRS generation unit 306.
- the control unit 307 directly controls the DCI generation unit 302 and the data generation unit 303 based on the scheduling result in the macro base station 11. May be.
- control unit 307 determines whether there is data for the user terminal 20 (on / off state of the small cell C2), the scheduling unit 301, the CSI-RS generation unit 304, and the DS generation unit 305.
- a CRS generator 306 is provided.
- control unit 307 may control switching of the on / off state of the small cell C2. Specifically, when data for the user terminal 20 is generated, scheduling is performed based on CSI reported from the user terminal 20 in order to activate the user terminal 20, and a DCI generation unit 302, a data generation unit 303, and a CRS The generation unit 306 is instructed to transmit a downlink signal (the small cell C2 is switched to the on state at this timing). Note that switching of the on / off state of the small cell C2 may be explicitly performed based on instruction information (SCell Activation) from the macro base station 11.
- SCell Activation instruction information
- FIG. 15 is a detailed configuration diagram of the user terminal 20 according to the present embodiment.
- the user terminal 20 includes a DS measurement unit (measurement unit) 401, a CSI measurement unit (measurement unit) 402, a monitoring unit 403, a data demodulation unit 404, and a control unit 405.
- the DS measurement unit 401 measures the reception power and / or reception quality (hereinafter, reception power / reception quality) of the discovery signal of the small cell C2 received by the transmission / reception unit 203 in accordance with control by the control unit 405.
- the reception power may be RSRP, for example, and the reception quality may be RSRQ or SINR, for example.
- the DS measurement unit 401 (regardless of the on / off state of the small cell C2) (the operational state of the user terminal 20 in the small cell C2 (or the connection between the user terminal 20 and the small base station 12). Regardless of the state)), the reception power / reception quality of the discovery signal is periodically measured.
- a measurement report (MR) indicating a measurement result by the DS measurement unit 401 is output to the transmission / reception unit 203 and transmitted to the macro base station 11.
- the measurement report may be transmitted by higher layer signaling such as RRC signaling.
- a small cell (S cell) that is a target of intra-base station carrier aggregation or inter-base station carrier aggregation (dual connectivity) of the user terminal 20 is set.
- the CSI measurement unit 402 measures (generates) CSI using the CSI-RS of the small cell C2 received by the transmission / reception unit 203 according to control by the control unit 405.
- the CSI includes at least one of CQI, RI, and PMI.
- the CSI measurement unit 402 (the operational state of the user terminal 20 in the small cell C2 (or the state of the connection between the user terminal 20 and the small base station 12)) Is in a deactivated state), the CSI is measured periodically.
- the CSI measurement unit 402 activates when the small cell C2 is in the on state (the operational state of the user terminal 20 in the small cell C2 (or the state of the connection between the user terminal 20 and the small base station 12)).
- the CSI may be measured periodically.
- the CSI measured by the CSI measurement unit 402 is output to the transmission / reception unit 203 and transmitted by PUCCH or PUSCH.
- the CSI may be transmitted (reported) to the macro base station 11.
- the CSI may be transmitted (reported) to the small base station 12.
- the monitoring unit 403 monitors the downlink control channel (PDCCH) of the small cell C2 according to the control by the control unit 405. Note that the monitoring unit 403 may monitor the extended downlink control channel (EPDCCH) of the small cell C2.
- PDCCH downlink control channel
- EPDCCH extended downlink control channel
- monitoring of PDCCH is to perform blind decoding of the search space.
- the DCI for the user terminal 20 is detected by monitoring the PDCCH.
- the monitoring unit 403 indicates that the small cell C2 is in an off state (the operational state of the user terminal 20 in the small cell C2 (or the state of the connection between the user terminal 20 and the small base station 12)).
- PDCCH or EPDCCH is periodically monitored (when deactivated).
- the monitoring unit 403 when the small cell C2 is switched from the off state to the on state (the operational state of the user terminal 20 in the small cell C2 (or the state of the connection between the user terminal 20 and the small base station 12) ) Is switched from the deactivated state to the activated state), the PDCCH (or EPDCCH) is monitored for each subframe.
- the small cell C2 when the small cell C2 is in the off state (when the operation state of the user terminal 20 in the small cell C2 (or the state of the connection between the user terminal 20 and the small base station 12) is in the deactivated state.
- the CSI measurement by the CSI measurement unit 402 and the PDCCH monitoring by the monitoring unit 403 may be performed in the same subframe (RF # n and # n + 1 SF # 0 in FIG. 7).
- the DS reception power / reception quality measurement by the DS measurement unit 401 may be performed at the same or different period from the CSI measurement by the CSI measurement unit 402 and the PDCCH (or EPDCCH) monitoring by the monitoring unit 403.
- the measurement of the DS received power / reception quality by the DS measurement unit 401 is performed in at least one of the subframes in which the CSI measurement by the CSI measurement unit 402 and the PDCCH (or EPDCCH) monitoring by the monitoring unit 403 are performed. (SF # 0 of RF # n in FIG. 7).
- PDCCH and CSI transmission timing information used for monitoring of PDCCH by the monitoring unit 403 and CSI measurement by the CSI measuring unit 402 may be notified from the macro base station 11 to the user terminal 20 by higher layer signaling.
- the transmission timing information may be an index or transmission cycle of a PDCCH or CSI transmission subframe, or may be a bitmap.
- the data demodulator 404 demodulates and decodes the PDSCH received by the transceiver 203 based on the DCI detected by monitoring the PDCCH (or EPDCCH) by the monitoring unit 403.
- the transmitting / receiving unit 203 The PDSCH transmitted based on the CSI measured in the bait state may be received, and the data demodulation unit 404 may perform demodulation and decoding of the PDSCH.
- the control unit 405 controls the DS measurement unit 401, the CSI measurement unit 402, and the monitoring unit 403. Specifically, the control unit 405 switches the small cell C2 from the off state to the on state when the DCI for the user terminal 20 is detected by periodic monitoring of the PDCCH (or EPDCCH) by the monitoring unit 403 (small cell). The operating state of the user terminal 20 in C2 is switched from the deactivated state to the activated state).
- control unit 405 may switch the small cell C2 from the on state to the off state when DCI for the user terminal 20 is not detected for a predetermined period by monitoring the PDCCH (or EPDCCH) for each subframe by the monitoring unit 403 (The operating state of the user terminal 20 in the small cell C2 may be switched from the activated state to the deactivated state).
- the deactivated state and the activated state may be a connection state between the small base station 12 (first base station) and the user terminal 20, respectively.
- the control unit 405 determines the state of the connection between the small base station 12 and the user terminal 20. You may switch from the deactivated state to the activated state.
- the control unit 405 may switch from the activated state to the deactivated state when DCI for the user terminal 20 is not detected for a predetermined period by monitoring the PDCCH (or EPDCCH) for each subframe by the monitoring unit 403.
- the wireless communication system 1 when the small cell C2 is in the off state (the operation state of the user terminal 20 in the small cell C2 (or the user terminal 20 and the small base station 12).
- the CSI is also measured in the case where the state of the connection between (1) and (2) is in the deactivated state. For this reason, when the small cell C2 is switched to the on state (the operation state of the user terminal 20 in the small cell C2 (or the state of the connection between the user terminal 20 and the small base station 12) is switched to the activated state.
- PDSCH scheduling can be performed without waiting for periodic CSI measurement. As a result, the delay time (FIG. 6) caused by the measurement of CSI until the data transmission is started can be reduced.
- the radio communication system 1 even when the operation state of the user terminal 20 in the small cell C2 is switched from the deactivated state to the activated state, DCI is not detected for a certain period.
- the operation state is switched again from the activated state to the deactivated state. That is, PDCCH monitoring is changed from each subframe to a period (for example, 5 ms, 10 ms) longer than the subframe. For this reason, the battery saving effect of the user terminal 20 can be acquired compared with the case where PDCCH is continuously monitored for every sub-frame.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
スモールセルにおいてユーザ端末に対するデータ送信が開始されるまでの遅延時間を軽減すること。本発明のユーザ端末は、スモール基地局との間のコネクションの状態がディアクティベイト状態である場合、前記スモール基地局から送信されるチャネル状態情報参照信号を用いてチャネル状態情報を周期的に測定する測定部と、前記コネクションの状態が前記ディアクティベイト状態である場合、前記スモール基地局から送信される下り制御チャネルを周期的に監視する監視部と、を具備し、前記下り制御チャネルの周期的な監視により前記ユーザ端末に対する下り制御情報が検出された場合、前記コネクションの状態は、前記ディアクティベイト状態からアクティベイト状態に切り替えられる。
Description
本発明は、ユーザ端末が第1基地局及び第2基地局と同時に通信を行う次世代通信システムにおけるユーザ端末、基地局、通信システム及び通信方法に関する。
LTE(Long Term Evolution)やLTEの後継システム(例えば、LTEアドバンスト、FRA(Future Radio Access)、4Gなどともいう)では、半径数百メートルから数キロメートル程度の相対的に大きいカバレッジを有するセル(以下、マクロセルという)と重複して、半径数メートルから数十メートル程度の相対的に小さいカバレッジ有するセル(以下、スモールセルという、ピコセル、フェムトセルなどともいう)が配置される無線通信システム(例えば、HetNet(Heterogeneous Network)ともいう)が検討されている(例えば、非特許文献1)。
この無線通信システムでは、マクロセルとスモールセルとの間で、同一の周波数帯のキャリア(コンポーネントキャリア(CC))を用いるシナリオだけでなく、異なる周波数帯のキャリアを用いるシナリオも検討されている。
3GPP TR36.814 "E-UTRA Further advancements for E-UTRA physical layer aspects"
上述の無線通信システムでは、マクロセル内でトラヒックが相対的に多いと推定される特定場所(例えば、駅など)において、スモールセルを高密度に配置することが想定される。この場合、隣接するスモールセル間での干渉を抑制するために、スモールセル(スモール基地局、セカンダリ(S)セルともいう)のオン状態とオフ状態とを切り替えるオン/オフ制御を行うことが検討されている。
具体的には、オン/オフ制御では、ユーザ端末に対するトラヒックの有無に基づいて、スモールセルをオフ状態からオン状態に切り替えることが検討されている。オン/オフ制御が行われる場合、スモールセルにおけるスループットを向上させるためには、スモールセルがオフ状態からオン状態に切り替えられてから、ユーザ端末に対するデータ送信が開始されるまでの遅延時間を軽減することが望まれる。
本発明はかかる点に鑑みてなされたものであり、スモールセルにおいてユーザ端末に対するデータ送信が開始されるまでの遅延時間を軽減可能なユーザ端末、基地局、通信システム及び通信方法を提供することを目的とする。
本発明のユーザ端末は、第1基地局及び第2基地局と同時に通信を行うユーザ端末であって、前記第1基地局と前記ユーザ端末との間のコネクションの状態がディアクティベイト状態である場合、前記第1基地局から送信されるチャネル状態情報参照信号を用いてチャネル状態情報を周期的に測定する測定部と、前記コネクションの状態が前記ディアクティベイト状態である場合、前記第1基地局から送信される下り制御チャネルを周期的に監視する監視部と、を具備し、前記下り制御チャネルの周期的な監視により前記ユーザ端末に対する下り制御情報が検出された場合、前記コネクションの状態は、前記ディアクティベイト状態からアクティベイト状態に切り替えられることを特徴とする。
本発明によれば、スモールセルにおいてユーザ端末に対するデータ送信が開始されるまでの遅延時間を軽減できる。
図1は、HetNetの概念図である。図1に示すように、HetNetは、マクロセルとスモールセルとの少なくとも一部が地理的に重複して配置される無線通信システムである。HetNetは、マクロセルを形成する無線基地局(以下、マクロ基地局(MeNB:Macro eNodeB)という)と、スモールセルを形成する無線基地局(以下、スモール基地局(SeNB:Small eNodeB)という)と、マクロ基地局とスモール基地局と通信するユーザ端末(UE:User Equipment)とを含んで構成される。
図1に示すように、マクロセルでは、相対的に低い周波数帯(例えば、800MHzや2GHzなど)が用いられ、スモールセルでは、相対的に高い周波数帯(例えば、3.5GHzなど)が用いられる。また、スモールセルでは、例えば、3.5GHzなどのライセンス帯域(licensed band)だけでなく、例えば、5GHzなどの非ライセンス帯域(unlicensed band)が用いられてもよい。また、スモールセルでは、マクロセルよりも低い送信電力が用いられる。
また、HetNetでは、マクロセルにおいてカバレッジやモビリティを確保しながら、スモールセルにおいてキャパシティ増大やユーザ端末のスループット増大を図ること(Macro-assisted Small Cell operation、C/U-plane splitなどともいう)も検討されている。具体的には、マクロセルでは、制御信号などの制御(C)プレーンの通信を行い、スモールセルでは、ユーザデータなどのユーザ(U)プレーンの通信を行うことが検討されている。なお、図1に示すように、マクロセルでは、リアルタイムサービスなど、一部のユーザ(U)プレーンの通信が行われてもよい。
また、HetNetでは、スモールセルを異なる密度や異なる環境(例えば、indoor又はoutdoorなど)で配置することも検討されている。一般に、ユーザ分布やトラフィックは均一でなく、時間的、あるいは、場所的に変動するためである。例えば、ユーザ端末が多く集まる駅やショッピングモール等では、スモールセルの配置密度を高くし(Dense small cell)、ユーザ端末が集まらない場所では、スモールセルの配置密度を低くする(Sparse small cell)ことが考えられる。
なお、上記スモールセルは、マクロセル(プライマリ(P)セル)とのキャリアアグリゲーションにより、ユーザ端末に使用される。ここで、キャリアアグリゲーション(CA)とは、マクロセル(Pセル)と少なくとも一つのスモールセル(Sセル)のキャリア(コンポーネントキャリア)を統合することである。キャリアアグリゲーションでは、ユーザ端末は、マクロセルを形成する無線基地局(以下、マクロ基地局という)とスモールセルを形成する無線基地局(以下、スモール基地局という)と同時に通信を行う。
また、キャリアアグリゲーションには、基地局内キャリアアグリゲーション(Intra-eNB CA)(単に、キャリアアグリゲーションともいう)と、基地局間キャリアアグリゲーション(Inter-eNB CA)(デュアルコネクティビティともいう)とが含まれる。基地局内CAでは、マクロ基地局がスモール基地局のスケジューリングを行ってもよい。また、基地局間CA(デュアルコネクティビティ)では、ユーザ端末がマクロセルとスモールセルとの双方に接続し、マクロ基地局及びスモール基地局がスケジューリングを行ってもよい。以下では、基地局間CA(デュアルコネクティビティ)の場合を中心に説明を行う。
図2は、スモールセルを高密度に配置するシナリオ例の説明図である。図2に示すように、特定範囲のクラスター(small cell cluster)内に高密度にスモールセルを配置するシナリオ(例えば、Rel-12 SCE(Small Cell Enhancement)シナリオ、以下、SCEシナリオという)が想定される。このSCEシナリオでは、隣接スモールセルからの干渉により、ユーザ端末の受信品質(例えば、RSRQ:Reference Signal Received Quality、SINR:Signal Interference and Noise Ratio)が劣化する恐れがある。
図3は、SCEシナリオにおける隣接スモールセル#1及び#2間の干渉の説明図である。なお、図3では、ユーザ端末がスモールセル(スモール基地局)#2に接続するものとする。また、図3に示す信号構成は、例示にすぎず、これに限られない。図3において、不図示の同期信号(例えば、PSS:Primary Synchronization Signal、SSS:Secondary Synchronization Signal)や参照信号が配置されてもよい。また、図3では、スモールセル#1及び#2で同一周波数が用いられるものとする。
図3のサブフレーム#1に示すように、トラヒックが相対的に高い場合、スモールセル#1及び#2の双方において下り共有チャネル(PDSCH:Physical Downlink Shared Channel)が割り当てられる。この場合、ユーザ端末が接続するスモールセル#2のPDSCHは、スモールセル#1のPDSCHによる干渉を受ける。
一方、図3のサブフレーム#1+n(n≧1)に示すように、トラヒックが相対的に低い場合、スモールセル#2のPDSCHは、スモールセル#1のセル固有参照信号(CRS:Cell-specific Reference Signal)や同期信号(不図示)による干渉を受ける。
このように、SCEシナリオでは、隣接スモールセルからの干渉により、ユーザ端末の受信品質が劣化する恐れがある。この結果、スモールセルの高密度化によるスループットの改善効果が飽和する恐れがある。また、SCEシナリオでは、セルプラニングを容易にするため、セル間の位置関係を考慮せずにスモールセルが配置されるため、隣接スモールセルからの干渉が増大することが想定される。
このため、SCEシナリオでは、スモールセル間の干渉コーディネーション(ICIC:Inter-Cell Interference Coordination)を行うことが望まれる。スモールセル間の干渉コーディネーションとしては、例えば、スモールセル(スモール基地局、セカンダリ(S)セルともいう)のオン状態とオフ状態とを切り替えるオン/オフ制御を行うことが考えられる。
図4は、SCEシナリオにおけるオン/オフ制御の説明図である。図4では、例えば、スモールセル1、3がオン状態であり、スモールセル2がオフ状態であるものとする。また、オン状態とは、スモールセルにおいてPDSCH、CRSなどが送信される状態であり、オフ状態とは、スモールセルにおいてPDSCH、CRSなどの送信が停止される状態である。
図4に示すように、スモール基地局1-3は、それぞれ、ディスカバリー信号をバースト的に送信する。ここで、ディスカバリー信号は、スモールセルの検出及び/又は測定に用いられる信号(検出/測定用信号)(単に、検出用信号ともいう)である。ディスカバリー信号は、例えば、100ms、160msなどの相対的に長い周期でバースト的に送信される。ここで「バースト的に」とは、例えば、1msでの送信、あるいは、2msでの送信である。また、スモール基地局1-3は、同期してディスカバリー信号を送信する。ディスカバリー信号を同期送信することにより、ユーザ端末におけるディスカバリー信号のメジャメント期間を軽減でき、バッテリーセービング効果を得ることができる。なお、ディスカバリー信号のバースト送信に関する情報(例えば、サブフレーム番号、系列、送信周期など)は、マクロ基地局からユーザ端末に通知されてもよい。
図4に示すオン/オフ制御では、ユーザ端末は、スモール基地局1-3からのディスカバリー信号を用いて、スモールセル1-3における受信電力及び/又は受信品質(以下、受信電力/受信品質という)を測定する。マクロ基地局は、測定結果に基づいて、マクロセル(プライマリ(P)セル)とのキャリアアグリゲーションを行うスモールセル(セカンダリ(S)セル)としてスモールセル1-3を設定し、ユーザ端末に対するトラヒックに基づいてスモールセル1-3のオン/オフ制御を行う。なお、受信電力としては、RSRP(Reference Signal Received Power)が用いられ、受信品質としては、RSRQやSINRなどが用いられてもよい。
図5は、スモールセルのオン/オフ状態の切り替え手順の説明図である。図5では、スモールセルをオフ状態からオン状態に切り替える手順について説明する。なお、図5では、マクロセルとスモールセルとの間で基地局間キャリアアグリゲーション(デュアルコネクティビティ)が行われる場合を一例として説明する。なお、基地局内キャリアアグリゲーションの場合、マクロセルとスモールセルの両方が1つの基地局により制御されるため、マクロセルを制御する基地局が、スモールセルのスケジューリングを行うとみなされてもよい。
図5に示すように、マクロ基地局は、ユーザ端末に対して、スモール基地局から送信される信号のパラメータ情報を通知する(ステップST101)。当該パラメータ情報には、上述のディスカバリー信号のバースト送信に関する情報(例えば、サブフレーム番号、系列、送信周期など)や、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)の構成情報などが含まれてもよい。
スモール基地局は、ユーザ端末に対して、ディスカバリー信号を送信する(ステップST102)。ユーザ端末は、ディスカバリー信号の受信電力/受信品質の測定結果を示す測定報告(MR:Measurement Report)をマクロ基地局に通知する(ステップST103)。
マクロ基地局は、ユーザ端末からの測定報告に基づいて、マクロセルとのキャリアアグリゲーションを行うスモールセルを決定する(ステップST104)。例えば、マクロ基地局は、ユーザ端末におけるディスカバリー信号の受信品質が所定の閾値以上(又は、より大きい)であるスモールセルを、キャリアアグリゲーションの対象となるスモールセルとして決定してもよい。
ここで、スモールセルがオフ状態である場合、ユーザ端末は、下り制御チャネル(PDCCH:Physical Downlink Control Channel)の監視(PDCCH monitoring)や、CSIの報告(CSI reporting、CQI/PMI/RI/PTI reporting)などを行わないディアクティベーションの状態にある。また、ユーザ端末は、マクロ基地局からの指示を受けて、下り制御チャネルの監視や、CSIの測定及び報告などを行うアクティベーションの状態に移行する。
ユーザ端末はスモールセルのアクティベーションを指示されるとともに(ステップST106)、スモール基地局からのCSI-RSを用いたチャネル状態情報(CSI)の測定を開始する。なお、ユーザ端末への指示情報は、例えば、MAC(Medium Access Control)シグナリングにより、通知されてもよい。また、ユーザ端末のアクティベーションと同じタイミングで、スモールセルがオフの状態からオンの状態に移行し、CSI-RS等の下り信号の送信が開始されれば(ステップST107)、遅延なくユーザ端末がCSI測定を開始できる。
なお、CSIは、スモール基地局からのPDSCHのスケジューリングに用いられる情報であり、チャネル品質識別子(CQI:Channel Quality Indicator)、ランク識別子(RI:Rank Indicator)、プリコーディングマトリクス識別子(PMI:Precoding Matrix Indicator)の少なくとも一つを含んでもよい。
ユーザ端末は、上りリンクの同期の確立が必要な場合、スモール基地局との間でランダムアクセス手順を行い(ステップST108)、CSIをスモール基地局に通知する(ステップST109)。なお、当該ランダムアクセス手順は、省略されてもよいし、ランダムアクセス手順とCSI報告は一緒に行われても良い。
スモール基地局は、ユーザ端末からのCSIに基づいて、スモール基地局から送信されるPDSCHのスケジューリングを行う(ステップST110)。
以上のような切り替え手順では、スモールセルがオフ状態からオン状態に切り替えられてから、当該スモール基地局からユーザ端末に対するデータ送信が開始されるまでの遅延時間により、スループットが低下する恐れがある。
図6を参照し、スモールセルがオフ状態からオン状態に切り替えられる場合の遅延時間について詳述する。なお、図6では、スモールセル1がオン状態であり、スモールセル2がオフ状態からオン状態に切り替えられるものとする。なお、図6は、一例にすぎず、これに限られない。
図6に示すように、オン状態のスモールセル1では、所定周期(例えば、100ms、160ms)でディスカバリー信号が送信され、各サブフレームにおいてCRS及びPDSCHが送信される。尚、例えば、新しいタイプのキャリアであるNew Carrier Type等においては、CRSは送信されなくてもよい。ユーザ端末は、オン状態のスモールセル1において、各サブフレームにおいてPDCCHの監視(monitoring)を行い、PDSCHを受信する。
また、オン状態のスモールセル1では、所定周期(例えば、5ms、10msなどディスカバリー信号よりも短い周期)でCSI-RSが送信される。ユーザ端末は、当該CSI-RSを用いてCSIを測定する。当該CSIに基づいて、スモールセル1のPDSCHがスケジューリングされる。
一方、オフ状態のスモールセル2では、各サブフレームにおけるCRS及びPDSCHの送信、所定周期のCSI-RSの送信が停止される。図6では、マクロ基地局からユーザ端末への指示情報(SCell activation)と同時に、スモールセル2は、オフ状態からオン状態に切り替えられる。これにより、スモールセル2から所定周期のCSI-RSの送信が開始される。
ユーザ端末は、マクロ基地局によりスモールセルのアクティベーションを指示されるとともに、スモールセル2のCSI-RSを用いたCSIの測定を開始する。なお、ユーザ端末のアクティベーションと同じタイミングで、スモールセルがオフの状態からオンの状態に移行し、CSI-RS等の下り信号の送信が開始されれば、遅延なくユーザ端末がCSI測定を開始できる。ユーザ端末は、当該CSIをスモール基地局にフィードバックする。スモールセル2では、当該CSIに基づいてスケジューリングされたPDSCHの送信が開始される。
図5のようにユーザ端末はマクロ基地局からのアクティベーションの指示を受けてから、CSI測定を開始する。一方、図6のように、オフ状態のスモールセル2ではCSI-RSは送信されず、オン状態に切り替えられてから初めてCSI-RSの送信が開始される。このように、ユーザ端末はマクロ基地局からアクティベーションを指示されたスモールセル2に対するCSIの測定に時間を要し、当該CSIに基づいてスケジューリングされるPDSCHの送信開始が遅延する恐れがある。この結果、スモールセル2におけるユーザ端末のスループットが、低下する恐れがある。
そこで、本発明者らは、スモールセルにおいてユーザ端末に対するデータ送信が開始されるまでの遅延時間を軽減する方法を検討し、本発明に至った。具体的には、本発明者らは、マクロ基地局からの指示なしにユーザ端末がアクティベーションの状態に切り替わることを可能としつつ、スモールセルがオフ状態である場合にもユーザ端末におけるCSIの測定を可能とすることで、上記遅延時間を軽減することを着想した。
(無線通信方法)
以下、本発明に係る無線通信方法(通信方法)を説明する。本発明に係る無線通信方法は、マクロセル内のスモールセルにおける動作状態を切り替え可能なユーザ端末と、前記スモールセルを形成する無線基地局とを含む無線通信システムで用いられる。
以下、本発明に係る無線通信方法(通信方法)を説明する。本発明に係る無線通信方法は、マクロセル内のスモールセルにおける動作状態を切り替え可能なユーザ端末と、前記スモールセルを形成する無線基地局とを含む無線通信システムで用いられる。
具体的には、本発明に係る無線通信方法では、ユーザ端末は、マクロ基地局(第2基地局)とスモール基地局(第1基地局)と同時に接続する、すなわち、同時に通信を行う。そして、スモールセル(かかるスモール基地局が移動通信サービスを提供するセル)における動作状態がディアクティベイト状態である場合、スモールセルのチャネル状態情報参照信号(CSI-RS)を用いてチャネル状態情報(CSI)を周期的に測定し、スモールセルの下り制御チャネル(PDCCH)を周期的に監視する。PDCCHの周期的な監視によりユーザ端末に対する下り制御情報(DCI)が検出された場合、当該ユーザ端末の動作状態は、ディアクティベイト状態からアクティベイト状態に切り替えられる。
ここで、ディアクティベイト状態とは、スモールセル(例えば、オフ状態のスモールセル)におけるユーザ端末の動作状態であり、RF回路をできるだけ起動せずに、必要な場合に(例えば、周期的に)起動する状態である。一方、アクティベイト状態とは、スモールセル(例えば、オン状態のスモールセル)におけるユーザ端末の動作状態であり、スモールセルにおいてユーザ端末のRF回路を起動し続ける状態である。なお、ディアクティベイト状態、アクティベイト状態のユーザ端末は、それぞれ、Deactivated UE、Activated UEとも呼ばれる。また、ディアクティベイト状態とアクティベイト状態とは、それぞれ、スモール基地局(第1基地局)とユーザ端末との間のコネクションの状態であってもよい。
また、本発明に係る無線通信方法は、ユーザ端末がマクロセルとスモールセルとの双方に接続するデュアルコネクティビティ(基地局間キャリアアグリゲーション(Inter-eNB CA))が行われる場合だけでなく、マクロセルとスモールセルとの基地局内キャリアアグリゲーション(Intra-eNB CA)が行われる場合にも適用可能である。基地局内キャリアアグリゲーションでは、ユーザ端末が、マクロセルにCSIの報告を行う場合が考えられるが、スモールセルにCSIの報告を行っても良い。また、基地局内キャリアアグリゲーションの場合、マクロセルとスモールセルは1つの基地局により制御されるため、マクロセルを制御する基地局がスモールセルのスケジューリングを行うとみなされてもよい。
また、本発明に係る無線通信方法は、スモールセルにおいてPDCCHが配置される既存キャリアが用いられる場合だけでなく、既存キャリアとの互換性を有しない非互換性キャリア(NCT:New Carrier Type)が用いられる場合にも適用可能である。スモールセルにおいてNCTが用いられる場合、PDCCHの代わりに、拡張下り制御チャネル(EPDCCH:Enhanced Physical Downlink Control Channel)が監視されてもよい。以下では、一例として、スモールセルにおいて既存キャリアが用いられる場合を説明する。
図7は、本発明に係る無線通信方法の説明図である。なお、図7では、スモールセルがオフ状態からオン状態(スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態からアクティベイト状態)に切り替えられる場合を一例として説明する。
図7に示すように、本発明に係る無線通信方法では、スモールセルがオン状態である場合だけでなくオフ状態である場合でも、CSI-RSが所定周期で送信される。ここで、CSI-RSは、ディスカバリー信号より短い周期(例えば、図7では、10ms)で送信されてもよいし、ディスカバリー信号と同一の周期で送信されてもよい。また、CSI-RSとディスカバリー信号とは、同一のサブフレーム(例えば、図7の無線フレーム(RF)#nのサブフレーム(SF)#0)で送信されてもよい。あるいは、CSI-RSとディスカバリー信号は同じ信号であってもよい。
また、オフ状態に送信される信号として、これらに限らない。たとえば、オフ状態である場合でも、PSS/SSSが送信されても良いし、NCTのように更にCRSが低頻度で送信されても良い。図8にこれらオフ状態の下り送信信号の一例について示す。図8に示すように、オフ状態には、第1-4のオフ状態が含まれてもよく、第1-4のオフ状態に応じて送信される下り送信信号は変更されてもよい。
ユーザ端末は、スモールセルがオフ状態である場合(スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態である場合(Deactivated UE))、当該CSI-RSを用いて、スモールセルのCSIを周期的に測定する。なお、ユーザ端末は、測定されたCSIをスモール基地局にフィードバックしても良い。
また、ユーザ端末は、スモールセルがオフ状態である場合(スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態である場合)、スモールセルの下り制御チャネル(PDCCH)を周期的に監視する。図7に示すように、CSI-RSの周期的な測定とPDCCHの周期的な監視とは、同一のサブフレーム(例えば、図7のRF#n、#n+1のSF#0)で行われてもよい。これにより、ユーザ端末は、RF回路の起動回数を減らせるので、バッテリーセービング効果を得ることができる。
本発明に係る無線通信方法では、スモールセルがオフ状態である場合(スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態である場合)、ユーザ端末に対するデータが発生すると、当該ユーザ端末に対する下り制御情報(DCI)がPDCCHを介して送信される。ユーザ端末におけるPDCCHの周期的な監視により、ユーザ端末に対するDCIが検出されると、スモールセルがオフ状態からオン状態に切り替えられる(スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態からアクティベイト状態(Activated UE)に切り替えられる)。
例えば、図7に示すように、RF#n+1のSF#5でユーザ端末に対するデータが発生する場合、ユーザ端末は、PDCCHの周期的な監視により、当該データのスケジューリング情報を含むDCIをRF#n+2のSF#0で検出する。これにより、スモールセルが黙示的に(implicitly)オフ状態からオン状態に切り替えられる。すなわち、本発明に係る無線通信方法では、マクロ基地局からの指示情報(SCell Activation)なしに、スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態からアクティベイト状態に切り替えられる。
本発明に係る無線通信方法では、DCIを検出したことにより、スモールセルが黙示的に(implicitly)オフ状態からオン状態に切り替わり、ディアクティベイト状態からアクティベイト状態に切り替えられる。このため、ユーザ端末がDCIを検出したかどうかをスモールセルが認識できることが望ましい。これを解決するために、最初にDCIを送信する際に、非周期(Aperiodic)CSIを必ずトリガーすることで、スモールセルはCSIの報告により、ユーザ端末がDCIを検出できたかどうかを認識することが可能となる。
また、最初にDCIを送信する際に、下りリンク割り当て(DL assignment)と上りリンクグラント(UL grant)の両方をスモールセルから送信することで、DCIの未検出をより高い確率で防ぐことが出来る。つまり、DL assignmentが未検出となった場合でも、PUSCHを受信したことで、UL grantを受信したことを認識でき、一方、UL grantが未検出となった場合でも、PUCCHのACK/NACKを受信したことで、DL assignmentを受信したことを認識することが出来る。
なお、上記の説明では、上りリンクの同期が確立している場合を想定しているが、上りの同期が確立できていない場合を想定し、ユーザ端末は、常にランダムアクセス手順をトリガーするためのPDCCHを監視し、これを受信したらアクティベーション状態に移行しても良い。
スモールセルがオフ状態からオン状態に切り替えられた場合(スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態からアクティベイト状態に切り替えられた場合)、ユーザ端末は、PDCCHのサブフレーム毎の監視を開始する。また、ユーザ端末は、スモールセルがオフ状態である場合(スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態である場合)に測定されたCSIに基づいてスケジューリングされたデータ(下り共有チャネル(PDSCH))を受信する。
このように、本発明に係る無線通信方法では、スモールセルがオフ状態である場合(スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態である場合)にもCSIが測定されるので、ユーザ端末に対するデータが発生した場合に、当該CSIに基づいて、当該データのスケジューリングを迅速に行うことができる。
すなわち、本発明に係る無線通信方法では、スモールセルがオン状態に切り替えられた際に周期的なCSIの測定を待たずに、オフ状態で測定されたCSIを用いてPDSCHのスケジューリングを行うことができる。この結果、マクロ基地局からの指示情報なしにユーザ端末はアクティベーションへ切り替えられるため、アクティベイト状態に切り替えられてからデータ送信を開始するまでの間のCSIの測定によって生じる遅延時間(図6)を軽減できる。
図9を参照し、本発明に係る無線通信方法について、図5と比較して説明する。図9は、本発明に係る無線通信方法を示すシーケンス図である。なお、図9のステップST11、ST12、ST14、ST16は、図5のステップST101、ST102、ST108、ST110と同様である。
図9に示すように、スモール基地局は、オフ状態である場合でも、CSI-RSを周期的に送信する(ステップST13)。ユーザ端末は、ディアクティベイト状態である場合でも、スモール基地局からのCSI-RSを用いて測定されたCSIをスモール基地局に送信しても良い(ステップST15)。
スモール基地局は、ステップST16におけるスケジューリング結果を示すDCIを、PDCCHを介して送信するとともに、PDSCHを送信する(ステップST17)。ディアクティベイト状態のユーザ端末は、周期的なPDCCHの監視により、スモール基地局からのDCIを検出すると、スモールセルにおける動作状態をディアクティベイト状態からアクティベイト状態に切り替える。なお、ユーザ端末は、スモール基地局とのコネクションの状態をディアクティベイト状態からアクティベイト状態に切り替えてもよい。
図10を参照し、本発明に係る無線通信方法におけるユーザ端末の動作状態について詳述する。図10は、スモールセルがオフ状態からオン状態に切り替えられる場合(スモールセルにおける動作状態がディアクティベイト状態からアクティベイト状態に切り替えられる場合)のユーザ端末の動作を示すフローチャートである。
図10に示すように、スモールセルがオフ状態である場合(スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態である場合)、ユーザ端末は、ディスカバリー信号の測定及び報告、CSIの測定及び報告、PDCCHの監視を周期的に行う(ステップST01)。
図7で説明したように、CSIの測定及びPDCCHの監視とは、同一のサブフレームで行われてもよい。また、ディスカバリー信号の測定は、CSIの測定及びPDCCHの監視と同一周期で行われてもよいし、異なる周期で行われてもよい。また、ディスカバリー信号の測定は、CSIの測定及びPDCCHの監視が行われる少なくとも一つのサブフレームで行われてもよい。あるいは、CSI-RSとディスカバリー信号は同じ信号であってもよい。
ここで、PDCCHの監視やCSIの測定に関する送信タイミング情報は、マクロ基地局からユーザ端末に上位レイヤシグナリングで通知しても良い。ここで、送信タイミングに関する情報は、送信サブフレームのインデックスや送信周期でも良いし、ビットマップでタイミング情報を通知しても良い。また、スモールセルがオフの状態の時のCSIの測定頻度を下げてユーザ端末のバッテリー消費を抑えるために、スモールセルがオンの状態(ユーザ端末がアクティブの状態)とは、測定頻度を変えても良い。
PDCCHの周期的な監視によりユーザ端末に対するDCIが検出された場合(ステップST02;Yes)、スモールセルがオフ状態からオン状態(スモールセルにおけるユーザ端末の動作状態(或いは、スモール基地局とユーザ端末との間のコネクションの状態)がディアクティベイト状態(Deactivated UE)からアクティベイト状態(Activated UE))に切り替えられる。この場合、ユーザ端末は、PDCCHの監視をサブフレーム毎に行う(ステップST03)。なお、ユーザ端末は、ディスカバリー信号の測定及び報告、CSIの測定及び報告、PDCCHの監視については、周期的に行う。
PDCCHのサブフレーム毎の監視により一定期間ユーザ端末に対するDCIが検出されなかった場合(ステップST04;Yes)、スモールセルがオン状態からオフ状態(スモールセルにおけるユーザ端末の動作状態(或いは、スモール基地局とユーザ端末との間のコネクションの状態)がアクティベイト状態からディアクティベイト状態)に再び切り替えられ、本動作は、ステップST01に戻る。
図10に示す動作によれば、スモールセルにおけるユーザ端末の動作状態がディアクティベイト状態からアクティベイト状態に切り替えられた場合でも、一定期間DCIが検出されなければ、当該動作状態がアクティベイト状態からディアクティベイト状態に再び切り替えられる。すなわち、PDCCHの監視がサブフレーム毎から、サブフレームよりも長い周期(例えば、5ms、10ms)に変更される。このため、PDCCHをサブフレーム毎に監視し続ける場合と比較して、バッテリーセービング効果を得ることができる。
(無線通信システム)
以下、本実施の形態に係る無線通信システム(通信システム)を説明する。なお、本実施の形態に係る無線通信システムでは、上述の無線通信方法(通信方法)が適用される。
以下、本実施の形態に係る無線通信システム(通信システム)を説明する。なお、本実施の形態に係る無線通信システムでは、上述の無線通信方法(通信方法)が適用される。
図11は、本実施の形態に係る無線通信システム1の全体構成図である。なお、図11に示す無線通信システム1は、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムは、IMT-Advancedと呼ばれても良いし、4G、FRA(Future Radio Access)と呼ばれても良い。
図11に示すように、無線通信システム1は、マクロセルC1を形成するマクロ基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成するスモール基地局12a及び12bとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。なお、マクロセルC1(マクロ基地局11)、スモールセルC2(スモール基地局12)、ユーザ端末20の数は図11に示すものに限られない。
また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。ユーザ端末20は、マクロ基地局11及び/又はスモール基地局12と無線通信可能に構成されている。
ユーザ端末20とマクロ基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)のキャリアを用いて通信を行うことができる。一方、ユーザ端末20とスモール基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHzなど)のキャリアを用いて通信を行うことができる。また、ユーザ端末20は、例えば、3.5GHzなどのライセンス帯域(licensed band)のキャリアを用いてスモール基地局12と通信を行ってもよいし、例えば、5GHzなどの非ライセンス帯域(unlicensed band)のキャリアを用いてスモール基地局12と通信を行ってもよい。
マクロ基地局11(マクロセルC1)が用いるキャリア(第1キャリア)は、既存キャリア(legacy carrier type、LTE carrier)であってもよい。スモール基地局12(スモールセルC2)が用いるキャリア(第2キャリア)は、既存キャリアとの互換性を有しない非互換性キャリア(NCT:New Carrier Type)であってもよいし、既存キャリアであってもよい。
マクロ基地局11及びスモール基地局12の間は、光ファイバなどの相対的に高速の回線(Ideal backhaul)で接続されてもよいし、X2インターフェースなどの相対的に低速の回線(Non-ideal backhaul)で接続されてもよい。相対的に高速の回線で接続される場合、マクロ基地局11及びスモール基地局12は、基地局内キャリアアグリゲーション(Intra-eNB CA)(単に、キャリアアグリゲーションともいう)を行う。相対的に低速の回線で接続される場合、マクロ基地局11及びスモール基地局12は、基地局間キャリアアグリゲーション(Inter-eNB CA)(デュアルコネクティビティともいう)を行う。
同様に、スモール基地局12a及び12bの間は、光ファイバなどの相対的に高速の回線(Ideal backhaul)で接続されてもよいし、X2インターフェースなどの相対的に低速の回線(Non-ideal backhaul)で接続されてもよい。
マクロ基地局11及び各スモール基地局12は、それぞれコアネットワーク30に接続される。コアネットワーク30には、MME(Mobility Management Entity)や、S-GW(Serving-GateWay)、P-GW(Packet-GateWay)などのコアネットワーク装置が設けられる。
また、マクロ基地局11は、相対的に広いカバレッジを有する無線基地局(第2基地局)であり、eNodeB、マクロ基地局、集約ノード、送信ポイント、送受信ポイントなどと呼ばれてもよい。スモール基地局12は、局所的なカバレッジを有する無線基地局(第1基地局)であり、スモール基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、マイクロ基地局、送信ポイント、送受信ポイントなどと呼ばれてもよい。
以下、マクロ基地局11及びスモール基地局12を区別しない場合は、無線基地局10と総称する。ユーザ端末20は、LTE、LTE-A、FRAなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
また、無線通信システム1では、下りリンクの物理チャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)と、下り制御チャネル(PDCCH:Physical Downlink Control Channel)、PDSCHと周波数分割多重される拡張下り制御チャネル(EPDCCH:Enhanced Physical Downlink Control Channel)、報知チャネル(PBCH)などが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。PDCCH、EPDCCHにより、下り制御情報(DCI)が伝送される。
また、無線通信システム1では、上りリンクの物理チャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)と、上り制御チャネル(PUCCH:Physical Uplink Control Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCH又はPUSCHにより、下りリンクのチャネル状態情報(CSI:Channel State Information)や、送達確認情報(ACK/NACK)等が伝送される。
図12及び13を参照し、無線基地局10(マクロ基地局11(第2基地局)、スモール基地局12(第1基地局)を含む)、ユーザ端末20の全体構成を説明する。図12は、無線基地局10の全体構成図である。図12に示すように、無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103(送信部、受信部)と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
下りリンクにおいて、無線基地局10からユーザ端末20に送信されるユーザデータは、コアネットワーク30に設けられるS-GWから伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下り制御信号(参照信号、同期信号、報知信号などを含む)に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力された下り信号を無線周波数に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介してコアネットワーク30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
図13は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203(送信部、受信部)と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。なお、ユーザ端末20は、1つの受信回路(RF回路)により、受信周波数を切り替えてもよいし、複数の受信回路を有していてもよい。また、受信回路(RF回路)は、オン状態とオフ状態とを切り替え可能である。
下り信号については、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換され、ベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、FFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下り信号に含まれるユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H-ARQ(Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
次に、図14-15を参照し、スモール基地局12及びユーザ端末20の詳細構成について詳述する。図14に示すスモール基地局12の詳細構成は、主に、ベースバンド信号処理部104によって構成される。また、図15に示すユーザ端末20の詳細構成は、主に、ベースバンド信号処理部204によって構成される。
図14は、本実施の形態に係るスモール基地局12(第1基地局)の詳細構成図である。図14に示すように、スモール基地局12は、スケジューリング部301、DCI生成部302、データ生成部303、CSI-RS生成部(生成部)304、DS生成部305、CRS生成部306、制御部307を具備する。
スケジューリング部301は、送受信部103で受信されたCSI(CQI、PMI、RIの少なくとも一つを含む)に基づいて、ユーザ端末20に対するPDSCHのスケジューリング(リソースの割り当て、MCS(Modulation and Coding Scheme)、プリコーディングマトリクスの決定など)を行う。スケジューリング部301は、スケジューリング結果をDCI生成部302及びデータ生成部303に出力する。
なお、マクロ基地局11とスモール基地局12との基地局内キャリアアグリゲーションが行われる場合、スケジューリングはマクロ基地局11で行われるため、スケジューリング部301は、省略されてもよい。この場合、マクロ基地局11によるスケジューリング結果が伝送路インターフェース106を介して制御部307に入力される。
DCI生成部302は、下り制御情報(DCI)を生成する。具体的には、DCI生成部302は、スケジューリング部301によるスケジューリング結果を示すDCIを生成する。DCIは、送受信部103に出力され、PDCCH又はEPDCCHを介してユーザ端末20に送信される。
また、DCI生成部302は、ユーザ端末20に対する最初のDCI(アクティベイト状態(オン状態)への切り替え検出用のDCI)を生成する際に、非周期(Aperiodic)CSIのトリガー情報を含むDCIを生成してもよい。
また、DCI生成部302は、ユーザ端末20に対する最初のDCI(アクティベイト状態(オン状態)への切り替え検出用のDCI)を生成する際に、下りリンク割り当て(DL assignment)と上りリンクグラント(UL grant)との両方を含むDCIを生成してもよい。
データ生成部303は、スケジューリング部301によるスケジューリング結果に基づいて、データを生成する。具体的には、データ生成部303は、ユーザ端末20に対するデータの符号化、変調、プリコーディングなどを行う。当該データは、送受信部103に出力され、PDSCHを介してユーザ端末20に送信される。なお、当該データには、トラヒックデータ(ユーザデータ)の他に、上位レイヤ(例えば、RRCシグナリング、MACシグナリングなど)の制御情報が含まれてもよい。
CSI-RS生成部304は、チャネル状態情報参照信号(CSI-RS)を生成する。具体的には、CSI-RS生成部304は、制御部307による制御に従って、ユーザ端末20に対するデータが存在するか否かに関係なく、周期的に(例えば、10ms周期、5ms周期で)送信されるCSI-RSを生成する。すなわち、CSI-RS生成部304は、スモールセルC2がオン状態である場合だけでなくオフ状態である場合にも、周期的に送信されるCSI-RSを生成する。
CSI-RS生成部304で生成されたCSI-RSは、送受信部103に出力され、スモールセルC2で送信される。なお、CSI-RSは、スモールセルC2間で直交するように生成される。また、CSI-RSは、所定周期(例えば、5ms、10ms)で配置され、相対的に配置密度が低い。このため、スモールセルC2がオフ状態である場合にCSI-RSが送信されても、隣接するスモールセルC2に与える干渉の影響は少ない。
DS生成部305は、ディスカバリー信号(DS)を生成する。具体的には、DS生成部305は、制御部307による制御に従って、ユーザ端末20に対するデータが存在するか否かに関係なく、周期的に(例えば、100ms周期、5ms周期で)送信されるディスカバリー信号を生成する。すなわち、DS生成部305は、スモールセルC2がオン状態である場合だけでなくオフ状態である場合にも、周期的に送信されるディスカバリー信号を生成する。
DS生成部305で生成されたディスカバリー信号は、送受信部103に出力され、スモールセルC2で送信される。なお、ディスカバリー信号は、相対的に高い配置密度でバースト送信されてもよい。また、ディスカバリー信号は、スモールセルC2間で同期送信されてもよい。また、ディスカバリー信号は、CSI-RSと同一の周期、又は、CSI-RSよりも長い周期で送信されてもよく、CSI-RSが送信される少なくとも一つのサブフレームで送信されてもよい。
CRS生成部306は、セル固有参照信号(CRS)を生成する。具体的には、CRS生成部306は、制御部307による制御に従って、データ生成部303で生成されたデータに多重されるCRSを生成する。
CRS生成部306で生成されたCRSは、送受信部103に出力され、データ生成部303で生成されるデータと多重して送信される。すなわち、CRS生成部306は、スモールセルC2がオン状態である場合に送信され、スモールセルC2がオフ状態である場合には送信されない。上述のように、CRSは、スモールセルC2間で直交するとは限らない。また、CRSは、各サブフレームに配置され、相対的に配置密度が高い。このため、スモールセルC2がオフ状態である場合に送信を停止することで、隣接するスモールセルC2に対する干渉を軽減できる。
制御部307は、スケジューリング部301、CSI-RS生成部304、DS生成部305、CRS生成部306を制御する。なお、マクロ基地局11とスモール基地局12との基地局内キャリアアグリゲーションが行われる場合、制御部307は、マクロ基地局11におけるスケジューリング結果に基づいて、DCI生成部302、データ生成部303を直接制御してもよい。
具体的には、制御部307は、ユーザ端末20に対するデータが存在するか否か(スモールセルC2のオン/オフ状態)に基づいて、スケジューリング部301、CSI-RS生成部304、DS生成部305、CRS生成部306を具備する。
また、制御部307は、スモールセルC2のオン/オフ状態の切り替えを制御してもよい。具体的に、ユーザ端末20に対するデータが発生した場合、ユーザ端末20をアクティベイトするために、ユーザ端末20から報告されたCSIに基づいてスケジューリングを行い、DCI生成部302、データ生成部303、CRS生成部306に下り信号送信を指示する(このタイミングでスモールセルC2がオン状態に切り替わることになる)。なお、スモールセルC2のオン/オフ状態の切り替えは、マクロ基地局11からの指示情報(SCell Activation)に基づいて明示的に行われてもよい。
図15は、本実施の形態に係るユーザ端末20の詳細構成図である。図15に示すように、ユーザ端末20は、DS測定部(測定部)401、CSI測定部(測定部)402、監視部403、データ復調部404、制御部405を具備する。
DS測定部401は、制御部405による制御に従って、送受信部203で受信されたスモールセルC2のディスカバリー信号の受信電力及び/又は受信品質(以下、受信電力/受信品質)を測定する。上述のように、受信電力は、例えば、RSRPであり、受信品質は、例えば、RSRQやSINRであってもよい。具体的には、DS測定部401は、スモールセルC2のオン/オフ状態に関係なく(スモールセルC2におけるユーザ端末20の動作状態(又は、ユーザ端末20とスモール基地局12との間のコネクションの状態)に関係なく)、ディスカバリー信号の受信電力/受信品質を周期的に測定する。
DS測定部401による測定結果を示す測定報告(MR)は、送受信部203に出力され、マクロ基地局11に送信される。当該測定報告は、RRCシグナリングなどの上位レイヤシグナリングにより送信されてもよい。当該測定報告に基づいて、ユーザ端末20の基地局内キャリアアグリゲーション又は基地局間キャリアアグリゲーション(デュアルコネクティビティ)の対象となるスモールセル(Sセル)が設定される。
CSI測定部402は、制御部405による制御に従って、送受信部203で受信されたスモールセルC2のCSI-RSを用いてCSIを測定(生成)する。上述のように、CSIは、CQI、RI、PMIの少なくとも一つを含む。
具体的には、CSI測定部402は、スモールセルC2がオフ状態である場合(スモールセルC2におけるユーザ端末20の動作状態(又は、ユーザ端末20とスモール基地局12との間のコネクションの状態)がディアクティベイト状態である場合)、CSIを周期的に測定する。また、CSI測定部402は、スモールセルC2がオン状態である場合(スモールセルC2におけるユーザ端末20の動作状態(又は、ユーザ端末20とスモール基地局12との間のコネクションの状態)がアクティベイト状態である場合)、CSIを周期的に測定してもよい。
CSI測定部402で測定されたCSIは、送受信部203に出力され、PUCCH又はPUSCHにより送信される。マクロ基地局11とスモール基地局12との基地局内キャリアアグリゲーションが行われる場合、当該CSIは、マクロ基地局11に送信(報告)されてもよい。また、マクロ基地局11とスモール基地局12との基地局間キャリアアグリゲーション(デュアルコネクティビティ)が行われる場合、当該CSIは、スモール基地局12に送信(報告)されてもよい。
監視部403は、制御部405による制御に従って、スモールセルC2の下り制御チャネル(PDCCH)を監視する。なお、監視部403は、スモールセルC2の拡張下り制御チャネル(EPDCCH)を監視してもよい。
ここで、PDCCH(又はEPDCCH)の監視とは、サーチスペースをブラインド復号することである。当該PDCCHの監視により、ユーザ端末20に対するDCIが検出される。具体的には、監視部403は、スモールセルC2がオフ状態である場合(スモールセルC2におけるユーザ端末20の動作状態(又は、ユーザ端末20とスモール基地局12との間のコネクションの状態)がディアクティベイト状態である場合)、PDCCH(又はEPDCCH)を周期的に監視する。
また、監視部403は、スモールセルC2がオフ状態からオン状態に切り替えられた場合(スモールセルC2におけるユーザ端末20の動作状態(又は、ユーザ端末20とスモール基地局12との間のコネクションの状態)がディアクティベイト状態からアクティベイト状態に切り替えられた場合)、PDCCH(又はEPDCCH)をサブフレーム毎に監視する。
ここで、スモールセルC2がオフ状態である場合(スモールセルC2におけるユーザ端末20の動作状態(又は、ユーザ端末20とスモール基地局12との間のコネクションの状態)がディアクティベイト状態である場合)、CSI測定部402によるCSIの測定と監視部403によるPDCCHの監視とは、同一のサブフレームで行われてもよい(図7のRF#n及び#n+1のSF#0)。
また、スモールセルC2がオフ状態である場合(スモールセルC2におけるユーザ端末20の動作状態(又は、ユーザ端末20とスモール基地局12との間のコネクションの状態)がディアクティベイト状態である場合)、DS測定部401によるDSの受信電力/受信品質の測定は、CSI測定部402によるCSIの測定及び監視部403によるPDCCH(又はEPDCCH)の監視と、同一又は異なる周期で行われてもよい。また、DS測定部401によるDSの受信電力/受信品質の測定は、CSI測定部402によるCSIの測定と監視部403によるPDCCH(又はEPDCCH)の監視とが行われるサブフレームの少なくとも一つで行われてもよい(図7のRF#nのSF#0)。
また、監視部403によるPDCCHの監視やCSI測定部402によるCSIの測定に用いられるPDCCHやCSIの送信タイミング情報は、マクロ基地局11からユーザ端末20に上位レイヤシグナリングで通知しても良い。ここで、送信タイミング情報は、PDCCHやCSIの送信サブフレームのインデックスや送信周期でも良いし、ビットマップであってもよい。
データ復調部404は、監視部403によるPDCCH(又はEPDCCH)の監視により検出されたDCIに基づいて、送受信部203で受信されたPDSCHの復調、復号などを行う。なお、スモールセルC2がオフ状態からオン状態に切り替えられた場合(スモールセルC2におけるユーザ端末20の動作状態がディアクティベイト状態からアクティベイト状態に切り替えられた場合)、送受信部203は、ディアクティベイト状態で測定されたCSIに基づいて送信されるPDSCHを受信し、データ復調部404は、当該PDSCHの復調、復号などを行ってもよい。
制御部405は、DS測定部401、CSI測定部402、監視部403を制御する。具体的には、制御部405は、監視部403によるPDCCH(又はEPDCCH)の周期的な監視によりユーザ端末20に対するDCIが検出された場合、スモールセルC2をオフ状態からオン状態に切り替える(スモールセルC2におけるユーザ端末20の動作状態をディアクティベイト状態からアクティベイト状態に切り替える)。
また、制御部405は、監視部403によるPDCCH(又はEPDCCH)のサブフレーム毎の監視によりユーザ端末20に対するDCIが所定期間検出されない場合、スモールセルC2をオン状態からオフ状態に切り替えてもよい(スモールセルC2におけるユーザ端末20の動作状態をアクティベイト状態からディアクティベイト状態に切り替えてもよい)。
なお、ディアクティベイト状態とアクティベイト状態とは、それぞれ、スモール基地局12(第1基地局)とユーザ端末20との間のコネクションの状態であってもよい。この場合、制御部405は、監視部403によるPDCCH(又はEPDCCH)の周期的な監視によりユーザ端末20に対するDCIが検出された場合、スモール基地局12とユーザ端末20との間のコネクションの状態をディアクティベイト状態からアクティベイト状態に切り替えてもよい。また、制御部405は、監視部403によるPDCCH(又はEPDCCH)のサブフレーム毎の監視によりユーザ端末20に対するDCIが所定期間検出されない場合、アクティベイト状態からディアクティベイト状態に切り替えてもよい。
以上のように、本実施の形態に係る無線通信システム1によれば、スモールセルC2がオフ状態である場合(スモールセルC2におけるユーザ端末20の動作状態(又は、ユーザ端末20とスモール基地局12との間のコネクションの状態)がディアクティベイト状態である場合)にもCSIが測定される。このため、スモールセルC2がオン状態に切り替えられた場合(スモールセルC2におけるユーザ端末20の動作状態(又は、ユーザ端末20とスモール基地局12との間のコネクションの状態)がアクティベイト状態に切り替えられた場合)、周期的なCSIの測定を待たずに、PDSCHのスケジューリングを行うことができる。この結果、データ送信が開始されるまでの間のCSIの測定によって生じる遅延時間(図6)を軽減できる。
また、本実施の形態に係る無線通信システム1によれば、スモールセルC2におけるユーザ端末20の動作状態がディアクティベイト状態からアクティベイト状態に切り替えられた場合でも、一定期間DCIが検出されなければ、当該動作状態がアクティベイト状態からディアクティベイト状態に再び切り替えられる。すなわち、PDCCHの監視がサブフレーム毎から、サブフレームよりも長い周期(例えば、5ms、10ms)に変更される。このため、PDCCHをサブフレーム毎に監視し続ける場合と比較して、ユーザ端末20のバッテリーセービング効果を得ることができる。
以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。また、各実施の態様は適宜組み合わせて適用することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
本出願は、2014年3月20日出願の特願2014-058836に基づく。この内容は、全てここに含めておく。
Claims (10)
- 第1基地局及び第2基地局と同時に通信を行うユーザ端末であって、
前記第1基地局と前記ユーザ端末との間のコネクションの状態がディアクティベイト状態である場合、前記第1基地局から送信されるチャネル状態情報参照信号を用いてチャネル状態情報を周期的に測定する測定部と、
前記コネクションの状態が前記ディアクティベイト状態である場合、前記第1基地局から送信される下り制御チャネルを周期的に監視する監視部と、を具備し、
前記下り制御チャネルの周期的な監視により前記ユーザ端末に対する下り制御情報が検出された場合、前記コネクションの状態は、前記ディアクティベイト状態からアクティベイト状態に切り替えられることを特徴とするユーザ端末。 - 前記コネクションの状態が前記ディアクティベイト状態である場合、前記測定部によって測定された前記チャネル状態情報を前記第1基地局に対して送信する送信部を更に具備することを特徴とする請求項1に記載のユーザ端末。
- 前記コネクションの状態が前記ディアクティベイト状態から前記アクティベイト状態に切り替えられた場合、前記監視部は、前記下り制御チャネルをサブフレーム毎に監視することを特徴とする請求項1又は請求項2に記載のユーザ端末。
- 前記下り制御チャネルのサブフレーム毎の監視により前記下り制御情報が所定期間検出されない場合、前記コネクションの状態は、前記アクティベイト状態から前記ディアクティベイト状態に切り替えられることを特徴とする請求項3に記載のユーザ端末。
- 前記コネクションの状態が前記ディアクティベイト状態である場合、前記チャネル状態情報の測定と前記下り制御チャネルの監視とは、同一のサブフレームで行われることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
- 前記コネクションの状態が前記ディアクティベイト状態である場合、前記測定部は、前記スモールセルの検出/測定用信号の受信電力及び/又は受信品質を周期的に測定し、
前記受信電力及び/又は受信品質の測定は、前記チャネル状態情報の測定と前記下り制御チャネルの監視とが行われるサブフレームの少なくとも一つで行われることを特徴とする請求項5に記載のユーザ端末。 - 前記第1基地局は、マクロセル内でスモールセルを形成するスモール基地局であり、前記第2基地局は、前記マクロセルを形成するマクロ基地局であり、前記ユーザ端末は、前記スモール基地局及び前記マクロ基地局と基地局内キャリアアグリゲーション又は基地局間キャリアアグリゲーションにより同時に通信することを特徴とする請求項1から請求項6のいずれかに記載のユーザ端末。
- 第2基地局と同時に通信を行うユーザ端末と通信する第1基地局であって、
チャネル状態情報参照信号を生成する生成部と、
前記第1基地局と前記ユーザ端末との間のコネクションの状態がディアクティベイト状態である場合、前記チャネル状態情報参照信号を周期的に送信する送信部と、を具備し、
前記送信部は、前記ユーザ端末に対するデータが発生した場合に、前記ユーザ端末に対する下り制御情報を下り制御チャネルを介して送信することを特徴とする第1基地局。 - ユーザ端末が第1基地局及び第2基地局と同時に通信を行う通信システムであって、
前記ユーザ端末は、前記第1基地局と前記ユーザ端末との間のコネクションの状態がディアクティベイト状態である場合、前記第1基地局から送信されるチャネル状態情報参照信号を用いてチャネル状態情報を周期的に測定する測定部と、前記コネクションの状態が前記ディアクティベイト状態である場合、前記第1基地局から送信される下り制御チャネルを周期的に監視する監視部と、を具備し、
前記下り制御チャネルの周期的な監視により前記ユーザ端末に対する下り制御情報が検出された場合、前記コネクションの状態は、前記ディアクティベイト状態からアクティベイト状態に切り替えられることを特徴とする通信システム。 - 第1基地局及び第2基地局と同時に通信を行うユーザ端末における通信方法であって、
前記第1基地局と前記ユーザ端末との間のコネクションの状態がディアクティベイト状態である場合、前記第1基地局から送信されるチャネル状態情報参照信号を用いてチャネル状態情報を周期的に測定する工程と、
前記コネクションの状態が前記ディアクティベイト状態である場合、前記第1基地局から送信される下り制御チャネルを周期的に監視する工程と、を有し、
前記下り制御チャネルの周期的な監視により前記ユーザ端末に対する下り制御情報が検出された場合、前記コネクションの状態は、前記ディアクティベイト状態からアクティベイト状態に切り替えられることを特徴とする通信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/127,520 US20170135039A1 (en) | 2014-03-20 | 2015-03-13 | User terminal, base station and communication method |
CN201580014797.3A CN106105353A (zh) | 2014-03-20 | 2015-03-13 | 用户终端、基站、通信系统以及通信方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014058836A JP6399778B2 (ja) | 2014-03-20 | 2014-03-20 | ユーザ端末、基地局、通信システム及び通信方法 |
JP2014-058836 | 2014-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141582A1 true WO2015141582A1 (ja) | 2015-09-24 |
Family
ID=54144551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/057496 WO2015141582A1 (ja) | 2014-03-20 | 2015-03-13 | ユーザ端末、基地局、通信システム及び通信方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170135039A1 (ja) |
JP (1) | JP6399778B2 (ja) |
CN (1) | CN106105353A (ja) |
WO (1) | WO2015141582A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101878210B1 (ko) * | 2013-11-29 | 2018-07-13 | 삼성전자주식회사 | 무선 통신 시스템에서 소형 셀을 발견하기 위한 장치 및 방법 |
EP3111702B1 (en) * | 2014-03-21 | 2021-06-23 | Huawei Technologies Co., Ltd. | Methods and nodes in a wireless communication network |
CN105099604B (zh) * | 2014-05-07 | 2018-11-20 | 中兴通讯股份有限公司 | 信道状态反馈信息反馈方法、终端、基站及通信系统 |
US10278090B2 (en) * | 2014-10-30 | 2019-04-30 | Lg Electronics Inc. | Method and apparatus for handling user equipment measurements in case of absence of discovery signals in wireless communication system |
EP3270522B1 (en) * | 2016-07-14 | 2023-06-28 | Indian Institute Of Technology Hyderabad | Method and apparatus for a cluster specific cloud radio transmission and reception |
WO2018031953A1 (en) * | 2016-08-11 | 2018-02-15 | Intel Corporation | Beamforming and signaling support for downlink control channel transmission |
CN108282283B (zh) | 2017-01-05 | 2023-04-18 | 华为技术有限公司 | 资源映射方法及用户设备 |
CN108112088B (zh) * | 2017-09-30 | 2023-05-23 | 中兴通讯股份有限公司 | 下行控制信息的发送、检测方法及装置 |
JP7058667B2 (ja) * | 2017-10-26 | 2022-04-22 | 株式会社Nttドコモ | 端末、無線通信方法及びシステム |
EP3706458A4 (en) * | 2017-11-01 | 2021-07-14 | NTT DoCoMo, Inc. | USER EQUIPMENT, AND WIRELESS COMMUNICATION PROCESS |
BR112020008925A2 (pt) * | 2017-11-10 | 2020-10-13 | Ntt Docomo, Inc. | terminal de usuário e método de radiocomunicação em um terminal de usuário |
CN110022595B (zh) * | 2018-01-08 | 2022-06-07 | 中国移动通信有限公司研究院 | 下行数据发送方法、网络设备和计算机存储介质 |
CN111757410B (zh) * | 2018-02-11 | 2022-11-25 | 维沃移动通信有限公司 | 下行信道的接收方法、发送方法、终端和基站 |
WO2020031391A1 (ja) * | 2018-08-10 | 2020-02-13 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
US20220232606A1 (en) * | 2019-05-15 | 2022-07-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Uplink control information (uci) coordination for distributed carrier aggregation (ca) scheduling |
CN114424481A (zh) * | 2019-11-07 | 2022-04-29 | 华为技术有限公司 | 一种通信方法和通信装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009077288A (ja) * | 2007-09-21 | 2009-04-09 | Ntt Docomo Inc | 移動通信システムにおけるユーザ装置、基地局装置及び方法 |
WO2013142089A1 (en) * | 2012-03-19 | 2013-09-26 | Qualcomm Incorporated | Channel state information reference signal configuring and reporting for a coordinated multi-point transmission scheme |
WO2013140436A1 (ja) * | 2012-03-19 | 2013-09-26 | 富士通株式会社 | 無線通信システム、無線基地局、無線端末および無線通信方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101179825B (zh) * | 2006-11-08 | 2010-09-29 | 华为技术有限公司 | 上行非连续传输的处理方法、终端、基站及系统 |
US20120275366A1 (en) * | 2011-04-29 | 2012-11-01 | Nicholas William Anderson | Switching activation of ue receviers |
-
2014
- 2014-03-20 JP JP2014058836A patent/JP6399778B2/ja not_active Expired - Fee Related
-
2015
- 2015-03-13 CN CN201580014797.3A patent/CN106105353A/zh active Pending
- 2015-03-13 WO PCT/JP2015/057496 patent/WO2015141582A1/ja active Application Filing
- 2015-03-13 US US15/127,520 patent/US20170135039A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009077288A (ja) * | 2007-09-21 | 2009-04-09 | Ntt Docomo Inc | 移動通信システムにおけるユーザ装置、基地局装置及び方法 |
WO2013142089A1 (en) * | 2012-03-19 | 2013-09-26 | Qualcomm Incorporated | Channel state information reference signal configuring and reporting for a coordinated multi-point transmission scheme |
WO2013140436A1 (ja) * | 2012-03-19 | 2013-09-26 | 富士通株式会社 | 無線通信システム、無線基地局、無線端末および無線通信方法 |
Non-Patent Citations (4)
Title |
---|
"Small cell enhancements for E-UTRA and E-UTRAN - Physical layer aspects (Release 12", 3GPP TR 36.872 V12.1.0, vol. 47, December 2013 (2013-12-01), pages 58 - 59 * |
"Views on Support of Small Cell On/Off", 3GPP TSG-RAN WG1 #74BIS, R1-134448, October 2013 (2013-10-01), XP050717565 * |
NEW POSTCOM: "Consideration on CRM measurement for SCell", 3GPP TSG RAN WG2 MEETING #79, R2- 123487, August 2012 (2012-08-01), pages 1 - 3, XP050614668 * |
NTT DOCOMO: "Views on Transition Time Reduction for Small Cell On/Off", 3GPP TSG RAN WG1 MEETING #76BIS, RL-141464, 22 March 2014 (2014-03-22), pages 1 - 5 * |
Also Published As
Publication number | Publication date |
---|---|
CN106105353A (zh) | 2016-11-09 |
JP2015185930A (ja) | 2015-10-22 |
US20170135039A1 (en) | 2017-05-11 |
JP6399778B2 (ja) | 2018-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6399778B2 (ja) | ユーザ端末、基地局、通信システム及び通信方法 | |
CN110169110B (zh) | 用户终端以及无线通信方法 | |
US10154430B2 (en) | Radio base station, user terminal and radio communication system | |
JP6359815B2 (ja) | ユーザ端末、無線基地局及び異周波測定方法 | |
US10154479B2 (en) | User terminal, base station and radio communication method | |
WO2015174438A1 (ja) | ユーザ端末、無線基地局、無線通信方法及び無線通信システム | |
US9693291B2 (en) | User terminal, radio base station and communication control method | |
US9888520B2 (en) | User terminal, radio base station and communication control method | |
US10057023B2 (en) | User terminal, radio base station and radio communication method | |
JP6219110B2 (ja) | 無線基地局、ユーザ端末及び通信制御方法 | |
US9844007B2 (en) | Radio base station, user terminal and radio communication method | |
US20170086175A1 (en) | Radio base station, user terminal and radio communication method | |
US12137407B2 (en) | Terminal, radio communication method, and base station | |
WO2015098529A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
JP6282830B2 (ja) | 基地局、ユーザ端末及び無線通信制御方法 | |
JP6180844B2 (ja) | 基地局及び無線通信制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15764214 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15127520 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15764214 Country of ref document: EP Kind code of ref document: A1 |