WO2015140854A1 - Wavelength conversion element manufacturing method - Google Patents

Wavelength conversion element manufacturing method Download PDF

Info

Publication number
WO2015140854A1
WO2015140854A1 PCT/JP2014/005572 JP2014005572W WO2015140854A1 WO 2015140854 A1 WO2015140854 A1 WO 2015140854A1 JP 2014005572 W JP2014005572 W JP 2014005572W WO 2015140854 A1 WO2015140854 A1 WO 2015140854A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
substrate
thin film
binder
wavelength conversion
Prior art date
Application number
PCT/JP2014/005572
Other languages
French (fr)
Japanese (ja)
Inventor
覚 河瀬
梅谷 誠
千春 前田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015140854A1 publication Critical patent/WO2015140854A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials

Definitions

  • the present disclosure relates to a wavelength conversion element used in a solid light source projector.
  • Patent Document 1 discloses a wavelength conversion element having a wavelength conversion member and a heat dissipation member.
  • a mixed powder of glass powder and phosphor powder is placed on a heat radiating member and heated and pressed to form a wavelength conversion member on the heat radiating member, or the mixed powder is pressure-molded and It describes that a wavelength conversion member obtained by firing is bonded onto a heat dissipation member.
  • the present disclosure provides a method of manufacturing a wavelength conversion element that can suppress a change in shape of a phosphor.
  • a paste obtained by mixing phosphor powder, a glass binder, a resin binder, and a solvent is applied onto a substrate to form a paste coating film, The coating film is dried, a phosphor thin film is formed on the substrate, the phosphor thin film is pressed, and the phosphor thin film after pressing is baked at a temperature below the softening point of the glass binder to form a phosphor. Then, the fired phosphor is bonded onto the substrate.
  • the method for manufacturing a wavelength conversion element according to the present disclosure is effective for suppressing changes in the shape of the phosphor.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a light source unit of a solid light source projector.
  • 2 is a plan view and a front view of the phosphor wheel shown in FIG.
  • Drawing 3 is a flowchart showing the manufacturing method of the phosphor wheel concerning an embodiment.
  • FIG. 4 is a diagram for explaining the manufacturing process of the phosphor wheel manufactured by the manufacturing method shown in FIG.
  • FIG. 1 is a schematic view showing a configuration example of a light source unit of a solid light source projector
  • FIG. 2 is a plan view and a front view of the phosphor wheel shown in FIG.
  • the light source unit 20 shown in FIG. 1 includes an excitation light source 206, a collimating lens array 207, a dichroic mirror 208, a quarter wavelength plate 209, a condenser lens 210, a phosphor wheel 1, and a condenser lens 211.
  • the wheel 200 and the rod integrator 212 are provided.
  • the excitation light source 206 is, for example, a blue laser diode that oscillates in the vicinity of a wavelength of about 445 nm, and includes a plurality of laser diodes in order to realize a high-luminance light source device. Excitation light emitted from the excitation light source 206 is converted into parallel light by the collimating lens array 207. The light emitted from the collimating lens array 207 passes through the dichroic mirror 208 and the quarter wavelength plate 209 in order, and is condensed on the phosphor wheel 1 by the condenser lens 210.
  • the phosphor wheel 1 includes a metal substrate 2, a phosphor 3, and a reflective film 4 as shown in FIG. That is, the phosphor 3 is an example of a wavelength conversion element.
  • the metal substrate 2 is a circular flat plate made of a metal such as aluminum.
  • the phosphor 3 is obtained by sintering phosphor powder and a binder into a thin film, and converts excitation light emitted from the excitation light source 206 into fluorescence.
  • the phosphor 3 is formed in four parts in the circumferential direction of the metal substrate 2, but the purpose is to improve manufacturing efficiency in the manufacturing process of the phosphor 3. . Therefore, the shape of the phosphor 3 provided on the metal substrate 2 is not particularly limited and may be arbitrary.
  • the wavelength conversion characteristics of the divided phosphors 3 can be made different.
  • the reflective film 4 is provided in order to reflect the light transmitted through the phosphor 3 and improve the light extraction efficiency from the phosphor 3.
  • the phosphor wheel 1 is connected to a rotation mechanism (not shown) and is rotated at a predetermined rotation speed.
  • Fluorescence emitted from the phosphor wheel 1 passes through the condenser lens 210 and the quarter wavelength plate 209 in order, and then is reflected by the dichroic mirror 208 in the direction of the condenser lens 211.
  • the light reflected by the dichroic mirror 208 is collected by the condenser lens 211, passes through a dichroic filter (not shown) provided on the wheel 200, and enters the incident end face of the rod integrator 212. From the exit end face of the rod integrator 213, light having a uniform illuminance distribution is emitted, and the emitted light is used as illumination light.
  • FIG. 3 is a process diagram showing a method for manufacturing a phosphor wheel according to the embodiment
  • FIG. 4 is a diagram for explaining a manufacturing process of the phosphor wheel manufactured by the manufacturing method shown in FIG.
  • step S1 of FIG. 3 a phosphor powder, a glass binder, a resin binder, and a solvent are mixed to produce a phosphor powder paste.
  • the phosphor powder is selected according to the wavelength of the excitation light and the necessary fluorescence wavelength.
  • the phosphor powder include oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, and halide phosphors.
  • One kind or a mixture of two or more kinds of chalcogenide phosphors, aluminate phosphors, halophosphate phosphors, YAG compound phosphors and the like can be used.
  • the glass binder is for holding the shape of the phosphor 3 after the baking step (step S7 in FIG. 3) described later.
  • the resin binder (organic binder) has the formability of the coating film of the paste in the paste application process (step S2 in FIG. 3) described later and the form retention of the phosphor thin film obtained after the drying process (step S3 in FIG. 3). It is for improving. Moreover, in the press process (step S4 of FIG. 3) mentioned later, when laminating
  • the resin binder examples include acrylic resins made of acrylic acid esters, methacrylic acid ester polymers or copolymers, polyvinyl alcohol (PVA), polypropylene carbonate resins, cellulose resins such as ethyl cellulose, and polymethyl methacrylate (PMM) resins. Can be used.
  • acrylic resins made of acrylic acid esters, methacrylic acid ester polymers or copolymers, polyvinyl alcohol (PVA), polypropylene carbonate resins, cellulose resins such as ethyl cellulose, and polymethyl methacrylate (PMM) resins.
  • PVA polyvinyl alcohol
  • PMM polymethyl methacrylate
  • the solvent examples include ethyl acetate, butyl acetate, 2-butanol, methyl ethyl ketone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, butyl carbitol (diethylene glycol monobutyl ether), butyl carbitol acetate, terpineol, and terpineol.
  • One kind or a mixture of two or more kinds of pinenol acetate, dihydroterpineol, dihydroterpineol acetate, texanol and the like can be used.
  • a plasticizer may be further added to the paste.
  • a phosphor having a desired thickness can be obtained by laminating a plurality of dried phosphor thin films and pressing the phosphor thin film. Since the surface of the layer is not dried, the adhesion of the laminated phosphor thin films can be improved. Since the plasticizer contained in the phosphor thin film is decomposed or volatilized in the firing step described later, there is no problem caused by the use of the plasticizer in the completed phosphor 3.
  • the plasticizer for example, a phthalate ester can be suitably used.
  • the paste is prepared by adding the constituent components of the paste to a solvent and mixing them using various mixers such as a planetary mixer, a ball mill, a blender mill, and a three roll.
  • step S2 of FIG. 3 the paste of the phosphor powder and the binder is applied on the base material 10 to form the paste coating film 11 (see FIGS. 4A and 4B).
  • a resin film having releasability from the phosphor thin film 12 (FIG. 4C) obtained after drying the paste coating film 11 can be used.
  • Materials for the substrate 10 include polyester resins such as polyethylene terephthalate (PET) / polybutylene terephthalate-isophthalate copolymer, polyolefin resins such as polyethylene / polypropylene / polymethylpentene, polyfluorinated ethylene resins, cellulose resins, and acrylic resins.
  • Polyamide resin such as polyimide resin and nylon, polycarbonate resin, polyacetate resin, polyphenylene sulfide resin, cellophane and the like can be used.
  • a release treatment such as providing a release layer made of a fluororesin or a silicone resin may be performed on the surface of the substrate.
  • Application of the paste to the substrate 10 can be performed using a doctor blade, a reverse roll coater, or the like.
  • step S ⁇ b> 3 of FIG. 3 the paste coating film 11 formed on the substrate 10 is dried to obtain the phosphor thin film 12.
  • the main purpose of this drying step is to volatilize the solvent contained in the coating film 11 in order to solidify the coating film 11 of the paste. Therefore, the drying temperature can be appropriately set according to the solvent used.
  • step S4 of FIG. 3 the phosphor thin film 12 formed on the base 10 is pressed to obtain an unsintered phosphor 13.
  • the phosphor thin film 12 By pressing the phosphor thin film 12 at a stage before firing, it is possible to suppress changes in shape such as warpage of the phosphor 3 in the firing process.
  • the plurality of phosphor thin films 12 can be integrated by overlapping and pressing the plurality of phosphor thin films 12.
  • the phosphor thin film 12 is formed by applying and drying the paste on the base material 10, it is possible to form a film while maintaining the uniformity of the film thickness in the application process, depending on the properties such as the viscosity of the paste used.
  • a plurality of phosphor layers are stacked and pressed to obtain an unsintered phosphor 13 (phosphor thin film after pressing) having a desired thickness.
  • an unsintered phosphor 13 phosphor thin film after pressing
  • the phosphor thin films 12 are in contact with a pair of base materials 10 having the phosphor thin film 12 formed on the surface. Overlapping so that.
  • the two layers of the phosphor thin film 12 are pressed in a state of being sandwiched between the base materials 10, whereby the two layers of the phosphor thin film 12 are in close contact and integrated.
  • the phosphor 13 can be obtained.
  • one substrate 10 is peeled off from the state of FIG. 4 (e), and another phosphor thin film 12 formed on the substrate 10 is further laminated.
  • Pressing may be performed again, or as shown by a solid line in FIG. 4 (c), between the pair of facing phosphor thin films 12, one or more phosphor thin films 12 from which the substrate 10 has been peeled are sandwiched and pressed. May be.
  • the main purpose of this pressing step is to suppress changes in the shape of the phosphor such as warpage of the phosphor in the firing step. Therefore, the pressing step is performed even when two or more phosphor thin films 12 are not laminated.
  • a plurality of phosphor thin films 12 can be integrated by performing a pressing process for suppressing a change in the shape of the phosphor in the firing process. It can be said that a separate process for laminating the layers can be omitted.
  • step S5 of FIG. 3 the base material 10 is peeled from the unfired phosphor 13 obtained by pressing.
  • step S6 of FIG. 3 the unfired phosphor 13 after the base material 10 is peeled is desired. (See FIG. 4F).
  • step S7 of FIG. 3 the green phosphor 13 after die cutting is fired to obtain the phosphor 3 (see FIG. 4G).
  • Baking step is carried out at the softening point of the glass binder used (T S) or lower.
  • T S glass binder used
  • the firing temperature is in the range of (T S ⁇ 25) to (T S ⁇ 5) ° C.
  • the reflective film 4 is formed on one surface of the phosphor 3 after firing (see FIG. 4 (h)).
  • the reflective film 4 is made of a metal thin film such as aluminum, silver, gold, palladium, or titanium.
  • the reflective film 4 may be formed by vapor deposition or sputtering, or may be formed by applying a paste or liquid containing metal fine particles or an organometallic compound to one surface of the phosphor 3 and then baking.
  • paste or liquid the paste or liquid is applied to the phosphor before firing, and the reflective film 4 is formed simultaneously with the firing of the phosphor by firing once in the firing process.
  • the reflective film 4 may be formed by applying a paste or liquid to the fired phosphor and firing again.
  • the baking is performed at a temperature lower than the baking temperature of step S7 in FIG.
  • step S ⁇ b> 9 in FIG. 3 the phosphor wheel 1 is obtained by bonding the phosphor 3 after the reflection film 4 is formed to the surface of the metal substrate 2.
  • the method for bonding the phosphor 3 to the metal substrate 2 is not particularly limited, and the surface on the side where the reflective film 4 is formed can be bonded to the metal substrate 2 via an adhesive or solder. In the case of joining with solder, it is more preferable to use solder because it is superior to an adhesive in terms of heat resistance and thermal conductivity.
  • the phosphor layer is pressed before the firing step, and firing is performed at a temperature equal to or lower than the softening point of the glass, thereby suppressing the shape change of the phosphor. .
  • the phosphor powder and the binder are not mixed, molded and fired as they are, but the phosphor powder and the binder are pasted with a solvent to form a substrate. It is applied on top.
  • the phosphor powder and the binder are mixed as they are, the dispersion of the phosphor powder and the binder is not uniform, and the function as a binder by the glass binder is not sufficiently exhibited. It may lead to decline.
  • the phosphor powder and the binder can be uniformly dispersed by pasting the phosphor powder and the binder, so that the phosphor has a sufficient strength after firing. As well as a decrease in luminous efficiency due to non-uniform dispersion of the phosphor powder.
  • a resin binder is used to maintain the shape of the paste coating film and the unfired phosphor.
  • the resin binder decomposes or volatilizes in the firing step and fires.
  • the binder of the phosphor 3 is formed with a glass binder.
  • the phosphor 3 formed with a glass binder is superior in heat resistance as compared with a phosphor formed with a resin binder. Therefore, the intensity of the generated fluorescence can be improved by increasing the output of the excitation light source (laser) that irradiates the phosphor 3 with excitation light.
  • the fluorescent substance 3 formed with the glass binder is excellent also in heat dissipation compared with the fluorescent substance formed with the resin binder. It is known that phosphor molecules are quenched by excessive temperature rise, but the phosphor 3 obtained by the manufacturing method according to the present embodiment is formed of a glass binder, so that heat dissipation is improved. Even if the output of the light source is increased, temperature quenching can be suppressed. Therefore, the phosphor wheel 1 obtained by the manufacturing method according to the present embodiment can suppress the temperature quenching even if the output of the excitation light source is increased, so that the conversion efficiency from excitation light to fluorescence can be improved. .
  • the intensity of the fluorescence generated by increasing the output of the excitation light source can be increased, so that the diameter of the phosphor wheel 1 can be reduced. It becomes possible.
  • the entire light source unit 20 can be downsized.
  • the heat resistance and thermal conductivity of the phosphor wheel 1 are improved, there is an advantage that the cooling system of the light source unit 20 can be simplified.
  • the metal substrate 2 since the metal substrate 2 is used as the wheel substrate, the heat dissipation of the entire phosphor wheel 1 obtained can be improved.
  • the metal substrate 2 has an advantage that it is less likely to be damaged than a ceramic substrate or a glass substrate.
  • a method of joining the fired phosphor 3 to the metal substrate 2 is adopted.
  • the metal substrate 2 is used as the substrate of the phosphor wheel 1 and the glass binder (inorganic binder) is used as the binder of the phosphor powder as in the present embodiment
  • the phosphor powder mixture layer is directly provided on the metal substrate 2.
  • deformation such as warpage may occur in the metal substrate 2 during the cooling process from the firing temperature to room temperature.
  • the thermal expansion coefficient of the glass binder is smaller than the thermal expansion coefficient of the metal substrate 2, the shrinkage of the metal substrate 2 in the cooling process is relatively larger than that of the phosphor 3 after firing, Shape defects such as cracks and peeling from the metal substrate 2 are likely to occur. Even in the case where the phosphor wheel 1 is configured using the metal substrate 2 and the glass binder as in the present embodiment, the thermal expansion characteristics of the material can be used as long as the phosphor 3 after firing is bonded to the metal substrate 2. These shape defects due to the difference can be eliminated.
  • the phosphor thin film 12 formed by applying the paste on the substrate 10 has been described as being punched into a desired shape after pressing, but has a desired planar shape in advance by a printing method or the like.
  • the coating film 11 may be formed on the substrate 10. In this case, the above-described die cutting process can be omitted.
  • the prepared paste was applied to a PET film (thickness 38 ⁇ m) having a release treatment on one side, and the coating film was dried.
  • the dried coating film was pressed at a pressure of 500 kgf / cm 2 (49.05 MPa) for 10 seconds.
  • the PET film was peeled from the pressed phosphor thin film, and the phosphor thin film was punched into the shape shown in FIG. Firing was performed for 240 minutes at 575 ° C. or lower, which is lower than 580 ° C., which is the softening point of the glass binder.
  • the present disclosure is applicable to a phosphor used for a wavelength conversion element such as a solid light source projector.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Projection Apparatus (AREA)

Abstract

Provided is a wavelength conversion element manufacturing method that can inhibit changes in the shape of a phosphor. The wavelength conversion element manufacturing method of the disclosure of the present invention includes: coating onto a base a paste obtained by mixing phosphor powder, a glass binder, a resin binder, and a solvent, and thereby forming a paste coating-film; drying the coating film on the base to form a phosphor thin film on the base; pressing the phosphor thin film and firing the pressed phosphor thin film at a temperature which is no more than the softening point of the glass binder to thereby form a phosphor; and bonding the fired phosphor onto a substrate.

Description

波長変換素子の製造方法Method for manufacturing wavelength conversion element
 本開示は、固体光源プロジェクターに用いられる波長変換素子に関する。 The present disclosure relates to a wavelength conversion element used in a solid light source projector.
 特許文献1は、波長変換部材と放熱部材とを有する波長変換素子を開示する。特許文献1では、ガラス粉末と蛍光体粉末との混合粉末を放熱部材上に載置して加熱プレスすることによって放熱部材上に波長変換部材を形成すること、あるいは、混合粉末を加圧成形及び焼成して得た波長変換部材を放熱部材上に接合することが記載されている。 Patent Document 1 discloses a wavelength conversion element having a wavelength conversion member and a heat dissipation member. In Patent Document 1, a mixed powder of glass powder and phosphor powder is placed on a heat radiating member and heated and pressed to form a wavelength conversion member on the heat radiating member, or the mixed powder is pressure-molded and It describes that a wavelength conversion member obtained by firing is bonded onto a heat dissipation member.
特開2012-185980号公報JP 2012-185980 A
 本開示は、蛍光体の形状変化を抑制できる波長変換素子の製造方法を提供する。 The present disclosure provides a method of manufacturing a wavelength conversion element that can suppress a change in shape of a phosphor.
 本開示に係る波長変換素子の製造方法においては、蛍光体粉末、ガラスバインダー、樹脂バインダー及び溶媒を混合して得られるペーストを基材上に塗布して、ペーストの塗膜を形成し、基材上の塗膜を乾燥させて、基材上に蛍光体薄膜を形成し、蛍光体薄膜をプレスし、プレス後の蛍光体薄膜をガラスバインダーの軟化点以下の温度で焼成して蛍光体を形成し、焼成後の蛍光体を基板上に接合する。 In the method for manufacturing a wavelength conversion element according to the present disclosure, a paste obtained by mixing phosphor powder, a glass binder, a resin binder, and a solvent is applied onto a substrate to form a paste coating film, The coating film is dried, a phosphor thin film is formed on the substrate, the phosphor thin film is pressed, and the phosphor thin film after pressing is baked at a temperature below the softening point of the glass binder to form a phosphor. Then, the fired phosphor is bonded onto the substrate.
 本開示における波長変換素子の製造方法は、蛍光体の形状変化を抑制するのに有効である。 The method for manufacturing a wavelength conversion element according to the present disclosure is effective for suppressing changes in the shape of the phosphor.
図1は、固体光源プロジェクターの光源ユニットの構成例を示す概略図である。FIG. 1 is a schematic diagram illustrating a configuration example of a light source unit of a solid light source projector. 図2は、図1に示した蛍光体ホイールの平面図及び正面図である。2 is a plan view and a front view of the phosphor wheel shown in FIG. 図3は、実施形態に係る蛍光体ホイールの製造方法を示す工程図である。Drawing 3 is a flowchart showing the manufacturing method of the phosphor wheel concerning an embodiment. 図4は、図3に示した製造方法によって製造される蛍光体ホイールの製造過程を説明する図である。FIG. 4 is a diagram for explaining the manufacturing process of the phosphor wheel manufactured by the manufacturing method shown in FIG.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and these are intended to limit the subject matter described in the claims. is not.
 (実施形態)
 [1.光源ユニット及び蛍光体ホイールの構成]
 図1は、固体光源プロジェクターの光源ユニットの構成例を示す概略図であり、図2は、図1に示した蛍光体ホイールの平面図及び正面図である。
(Embodiment)
[1. Configuration of light source unit and phosphor wheel]
FIG. 1 is a schematic view showing a configuration example of a light source unit of a solid light source projector, and FIG. 2 is a plan view and a front view of the phosphor wheel shown in FIG.
 図1に示す光源ユニット20は、励起光源206と、コリメートレンズアレイ207と、ダイクロイックミラー208と、1/4波長板209と、集光レンズ210と、蛍光体ホイール1と、集光レンズ211と、ホイール200と、ロッドインテグレータ212とを備える。 The light source unit 20 shown in FIG. 1 includes an excitation light source 206, a collimating lens array 207, a dichroic mirror 208, a quarter wavelength plate 209, a condenser lens 210, a phosphor wheel 1, and a condenser lens 211. The wheel 200 and the rod integrator 212 are provided.
 励起光源206は、例えば、波長約445nm付近で発振する青色レーザーダイオードであり、高輝度の光源装置を実現するために、複数個のレーザーダイオードにより構成される。励起光源206から出射された励起光は、コリメートレンズアレイ207によって平行光に変換される。コリメートレンズアレイ207から出射された光は、ダイクロイックミラー208、1/4波長版209を順に透過して、集光レンズ210によって蛍光体ホイール1上に集光される。 The excitation light source 206 is, for example, a blue laser diode that oscillates in the vicinity of a wavelength of about 445 nm, and includes a plurality of laser diodes in order to realize a high-luminance light source device. Excitation light emitted from the excitation light source 206 is converted into parallel light by the collimating lens array 207. The light emitted from the collimating lens array 207 passes through the dichroic mirror 208 and the quarter wavelength plate 209 in order, and is condensed on the phosphor wheel 1 by the condenser lens 210.
 蛍光体ホイール1は、図2に示すように、金属基板2と蛍光体3と反射膜4とを備える。すなわち、蛍光体3は波長変換素子の一例である。金属基板2は、アルミニウム等の金属よりなる円形状の平板である。蛍光体3は、蛍光体粉末とバインダーとを薄膜状に焼結させたものであり、励起光源206から出射された励起光を蛍光へと変換する。図2(a)の例では、蛍光体3は、金属基板2の周方向に4分割で形成されているが、蛍光体3の製造工程における製造効率を向上させることを目的としたものである。したがって、金属基板2上に設けられる蛍光体3の形状は特に限定されず、任意で良い。また、図2(a)のように蛍光体3を分割して形成する場合、分割された蛍光体3のそれぞれの波長変換特性を異ならせることができる。反射膜4は、蛍光体3を透過した光を反射させて、蛍光体3からの光の取り出し効率を向上させるために設けられている。蛍光体ホイール1は、図示しない回転機構に接続され、所定の回転速度で回転される。 The phosphor wheel 1 includes a metal substrate 2, a phosphor 3, and a reflective film 4 as shown in FIG. That is, the phosphor 3 is an example of a wavelength conversion element. The metal substrate 2 is a circular flat plate made of a metal such as aluminum. The phosphor 3 is obtained by sintering phosphor powder and a binder into a thin film, and converts excitation light emitted from the excitation light source 206 into fluorescence. In the example of FIG. 2A, the phosphor 3 is formed in four parts in the circumferential direction of the metal substrate 2, but the purpose is to improve manufacturing efficiency in the manufacturing process of the phosphor 3. . Therefore, the shape of the phosphor 3 provided on the metal substrate 2 is not particularly limited and may be arbitrary. Further, when the phosphor 3 is divided and formed as shown in FIG. 2A, the wavelength conversion characteristics of the divided phosphors 3 can be made different. The reflective film 4 is provided in order to reflect the light transmitted through the phosphor 3 and improve the light extraction efficiency from the phosphor 3. The phosphor wheel 1 is connected to a rotation mechanism (not shown) and is rotated at a predetermined rotation speed.
 蛍光体ホイール1から出射された蛍光は、集光レンズ210、1/4波長版209を順に透過した後、ダイクロイックミラー208によって集光レンズ211方向に反射される。ダイクロイックミラー208によって反射された光は、集光レンズ211によって集光され、ホイール200に設けられたダイクロイックフィルター(図示せず)を透過し、ロッドインテグレータ212の入射端面に入射する。ロッドインテグレータ213の出射端面からは、照度分布が均一な光が出射され、出射光が照明光として用いられる。 Fluorescence emitted from the phosphor wheel 1 passes through the condenser lens 210 and the quarter wavelength plate 209 in order, and then is reflected by the dichroic mirror 208 in the direction of the condenser lens 211. The light reflected by the dichroic mirror 208 is collected by the condenser lens 211, passes through a dichroic filter (not shown) provided on the wheel 200, and enters the incident end face of the rod integrator 212. From the exit end face of the rod integrator 213, light having a uniform illuminance distribution is emitted, and the emitted light is used as illumination light.
 [2.蛍光体ホイールの製造方法]
 以下、図3及び4を参照しながら、上述した蛍光体ホイール1の製造方法を説明する。
[2. Method for manufacturing phosphor wheel]
Hereinafter, the manufacturing method of the phosphor wheel 1 described above will be described with reference to FIGS.
 図3は、実施形態に係る蛍光体ホイールの製造方法を示す工程図であり、図4は、図3に示した製造方法によって製造される蛍光体ホイールの製造過程を説明する図である。 FIG. 3 is a process diagram showing a method for manufacturing a phosphor wheel according to the embodiment, and FIG. 4 is a diagram for explaining a manufacturing process of the phosphor wheel manufactured by the manufacturing method shown in FIG.
 <ペーストの調整>
 まず、図3のステップS1において、蛍光体粉末、ガラスバインダー、樹脂バインダー及び溶媒を混合して、蛍光体粉末ペーストを作製する。
<Adjustment of paste>
First, in step S1 of FIG. 3, a phosphor powder, a glass binder, a resin binder, and a solvent are mixed to produce a phosphor powder paste.
 蛍光体粉末は、励起光の波長及び必要な蛍光の波長に応じて選択される。蛍光体粉末としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、YAG系化合物蛍光体等の1種類または2種類以上の混合物を利用できる。 The phosphor powder is selected according to the wavelength of the excitation light and the necessary fluorescence wavelength. Examples of the phosphor powder include oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, and halide phosphors. One kind or a mixture of two or more kinds of chalcogenide phosphors, aluminate phosphors, halophosphate phosphors, YAG compound phosphors and the like can be used.
 ガラスバインダーは、後述する焼成工程(図3のステップS7)の後に蛍光体3の形状を保持するためのものである。 The glass binder is for holding the shape of the phosphor 3 after the baking step (step S7 in FIG. 3) described later.
 樹脂バインダー(有機バインダー)は、後述するペースト塗布工程(図3のステップS2)におけるペーストの塗膜の成形性や、乾燥工程(図3のステップS3)後に得られる蛍光体薄膜の形態保持性を向上させるためのものである。また、後述するプレス工程(図3のステップS4)において、複数の蛍光体薄膜を積層してプレスする場合には、樹脂バインダーが各蛍光体薄膜の積層性を向上させる役割も有する。樹脂バインダーとしては、例えば、アクリル酸エステル、メタクリル酸エステルの重合体または共重合体よりなるアクリル樹脂、ポリビニルアルコール(PVA)、ポリプロピレンカーボネート樹脂、エチルセルロース等のセルロース樹脂、ポリメチルメタクリレート(PMM)樹脂等を利用できる。樹脂バインダーとしては、後述する焼成工程の焼成温度域で分解または揮発する材料を用いることが好ましい。 The resin binder (organic binder) has the formability of the coating film of the paste in the paste application process (step S2 in FIG. 3) described later and the form retention of the phosphor thin film obtained after the drying process (step S3 in FIG. 3). It is for improving. Moreover, in the press process (step S4 of FIG. 3) mentioned later, when laminating | stacking and pressing a some phosphor thin film, the resin binder also has a role which improves the lamination | stacking property of each phosphor thin film. Examples of the resin binder include acrylic resins made of acrylic acid esters, methacrylic acid ester polymers or copolymers, polyvinyl alcohol (PVA), polypropylene carbonate resins, cellulose resins such as ethyl cellulose, and polymethyl methacrylate (PMM) resins. Can be used. As the resin binder, it is preferable to use a material that decomposes or volatilizes in a firing temperature range of a firing step described later.
 溶媒としては、例えば、酢酸エチル、酢酸ブチル、2-ブタノール、メチルエチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ブチルカルビトール(ジエチレングリコールモノブチルエーテル)、ブチルカルビトールアセテート、テルピネオール、テルピネノールアセテート、ジヒロドテルピネオール、ジヒドロテルピネオールアセテート、テキサノール等の1種類または2種類以上の混合物を利用できる。 Examples of the solvent include ethyl acetate, butyl acetate, 2-butanol, methyl ethyl ketone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, butyl carbitol (diethylene glycol monobutyl ether), butyl carbitol acetate, terpineol, and terpineol. One kind or a mixture of two or more kinds of pinenol acetate, dihydroterpineol, dihydroterpineol acetate, texanol and the like can be used.
 ペーストには、更に可塑剤を添加しても良い。後述するように、本実施形態に係る製造方法では、乾燥後の蛍光体薄膜を複数積層してプレスすることによって、所望の厚みの蛍光体を得ることができるが、可塑剤のブリードにより蛍光体層の表面が乾いていない状態となるので、積層された蛍光体薄膜の密着性を向上させることができる。蛍光体薄膜中に含まれる可塑剤は、後述する焼成工程において分解または揮発するので、完成した蛍光体3において可塑剤の使用に起因する問題は生じない。可塑剤としては、例えば、フタル酸エステルを好適に利用できる。 ) A plasticizer may be further added to the paste. As will be described later, in the manufacturing method according to the present embodiment, a phosphor having a desired thickness can be obtained by laminating a plurality of dried phosphor thin films and pressing the phosphor thin film. Since the surface of the layer is not dried, the adhesion of the laminated phosphor thin films can be improved. Since the plasticizer contained in the phosphor thin film is decomposed or volatilized in the firing step described later, there is no problem caused by the use of the plasticizer in the completed phosphor 3. As the plasticizer, for example, a phthalate ester can be suitably used.
 ペーストは、溶媒にペーストの構成成分を添加し、プラネタリーミキサー、ボールミル、ブレンダーミル、3本ロール等の各種混合機を用いて混合することによって調製される。 The paste is prepared by adding the constituent components of the paste to a solvent and mixing them using various mixers such as a planetary mixer, a ball mill, a blender mill, and a three roll.
 <塗布工程>
 次に、図3のステップS2において、基材10上に蛍光体粉末及びバインダーのペーストを塗布し、ペーストの塗膜11を形成する(図4(a)及び(b)参照)。
<Application process>
Next, in step S2 of FIG. 3, the paste of the phosphor powder and the binder is applied on the base material 10 to form the paste coating film 11 (see FIGS. 4A and 4B).
 基材10としては、ペーストの塗膜11を乾燥させた後に得られる蛍光体薄膜12(図4(c))からの剥離性を有する樹脂フィルムを利用できる。基材10の材料としては、ポリエチレンテレフタレート(PET)・ポリブチレンテレフタレート-イソフタレート共重合体等のポリエステル樹脂、ポリエチレン・ポリプロピレン・ポリメチルペンテン等のポリオレフィン樹脂、ポリフッ化エチレン樹脂、セルロース樹脂、アクリル樹脂、ポリイミド樹脂、ナイロン等のポリアミド樹脂、ポリカーボネート樹脂、ポリアセテート樹脂、ポリフェニレンスルフィド樹脂、セロファン等を利用できる。また、基材の表面には、乾燥後の蛍光体層の剥離性を向上させるため、フッ素樹脂やシリコーン樹脂等からなる剥離層を設けるなどの離型処理を施しても良い。 As the substrate 10, a resin film having releasability from the phosphor thin film 12 (FIG. 4C) obtained after drying the paste coating film 11 can be used. Materials for the substrate 10 include polyester resins such as polyethylene terephthalate (PET) / polybutylene terephthalate-isophthalate copolymer, polyolefin resins such as polyethylene / polypropylene / polymethylpentene, polyfluorinated ethylene resins, cellulose resins, and acrylic resins. Polyamide resin such as polyimide resin and nylon, polycarbonate resin, polyacetate resin, polyphenylene sulfide resin, cellophane and the like can be used. Moreover, in order to improve the peelability of the phosphor layer after drying, a release treatment such as providing a release layer made of a fluororesin or a silicone resin may be performed on the surface of the substrate.
 基材10へのペーストの塗布は、ドクターブレードやリバースロールコーター等を用いて行うことができる。 Application of the paste to the substrate 10 can be performed using a doctor blade, a reverse roll coater, or the like.
 <乾燥工程>
 次に、図3のステップS3において、基材10上に形成したペーストの塗膜11を乾燥させて、蛍光体薄膜12を得る。この乾燥工程は、ペーストの塗膜11を固化させるために、塗膜11中に含まれる溶媒を揮発させることを主目的とする。したがって、乾燥温度は、使用する溶媒に応じて適宜設定することができる。
<Drying process>
Next, in step S <b> 3 of FIG. 3, the paste coating film 11 formed on the substrate 10 is dried to obtain the phosphor thin film 12. The main purpose of this drying step is to volatilize the solvent contained in the coating film 11 in order to solidify the coating film 11 of the paste. Therefore, the drying temperature can be appropriately set according to the solvent used.
 <プレス工程>
 次に、図3のステップS4において、基剤10上に形成した蛍光体薄膜12をプレスすることにより、未焼成蛍光体13を得る。蛍光体薄膜12を焼成より前の段階でプレスしておくことによって、焼成工程での蛍光体3の反り等の形状変化を抑制することができる。
<Pressing process>
Next, in step S4 of FIG. 3, the phosphor thin film 12 formed on the base 10 is pressed to obtain an unsintered phosphor 13. By pressing the phosphor thin film 12 at a stage before firing, it is possible to suppress changes in shape such as warpage of the phosphor 3 in the firing process.
 このプレス工程においては、複数の蛍光体薄膜12を重ね合わせてプレスすることにより、複数の蛍光体薄膜12を一体化することができる。基材10へのペーストの塗布及び乾燥によって蛍光体薄膜12を形成する場合、使用するペーストの粘度等の特性にもよるが、塗布工程において膜厚の均一性を維持しつつ成膜可能な塗膜11の厚みには限界がある。すなわち、ペーストの1回の塗布で得られる蛍光体薄膜12で形成可能な蛍光体3の厚みにも上限がある。 In this pressing step, the plurality of phosphor thin films 12 can be integrated by overlapping and pressing the plurality of phosphor thin films 12. When the phosphor thin film 12 is formed by applying and drying the paste on the base material 10, it is possible to form a film while maintaining the uniformity of the film thickness in the application process, depending on the properties such as the viscosity of the paste used. There is a limit to the thickness of the film 11. That is, there is an upper limit to the thickness of the phosphor 3 that can be formed by the phosphor thin film 12 obtained by applying the paste once.
 そこで、図4(c)~(e)に示すように、複数の蛍光体層を積層してプレスすることによって、所望の厚みの未焼成蛍光体13(プレス後の蛍光体薄膜)を得ることができる。例えば、2層の蛍光体薄膜12を積層する場合、まず、図4(c)に示すように、表面に蛍光体薄膜12が形成された一対の基材10を、蛍光体薄膜12同士が接するように重ね合わせる。次に、図4(d)に示すように、2層の蛍光体薄膜12を基材10で挟んだ状態でプレスすることにより、2層の蛍光体薄膜12が密着して一体化した未焼成蛍光体13を得ることができる。3層以上の蛍光体薄膜12を積層する場合は、図4(e)の状態から一方の基材10を剥離し、基材10上に形成された別の蛍光体薄膜12を更に積層して再度プレスしても良いし、図4(c)の実線で示すように対向させた一対の蛍光体薄膜12の間に、基材10を剥離した蛍光体薄膜12を1層以上挟んでプレスしても良い。上述したように、このプレス工程は、焼成工程における蛍光体の反り等の形状変化を抑制することを主目的とするので、2層以上の蛍光体薄膜12を積層しない場合でもプレス工程を行う。つまり、複数の蛍光体薄膜12を積層する場合は、焼成工程における蛍光体の形状変化を抑制するためのプレス工程を行うことによって、複数の蛍光体薄膜12を一体化できるので、蛍光体薄膜12を積層するための別途の工程を省略できるとも言える。 Therefore, as shown in FIGS. 4C to 4E, a plurality of phosphor layers are stacked and pressed to obtain an unsintered phosphor 13 (phosphor thin film after pressing) having a desired thickness. Can do. For example, when two layers of the phosphor thin film 12 are laminated, first, as shown in FIG. 4C, the phosphor thin films 12 are in contact with a pair of base materials 10 having the phosphor thin film 12 formed on the surface. Overlapping so that. Next, as shown in FIG. 4 (d), the two layers of the phosphor thin film 12 are pressed in a state of being sandwiched between the base materials 10, whereby the two layers of the phosphor thin film 12 are in close contact and integrated. The phosphor 13 can be obtained. When three or more layers of phosphor thin films 12 are laminated, one substrate 10 is peeled off from the state of FIG. 4 (e), and another phosphor thin film 12 formed on the substrate 10 is further laminated. Pressing may be performed again, or as shown by a solid line in FIG. 4 (c), between the pair of facing phosphor thin films 12, one or more phosphor thin films 12 from which the substrate 10 has been peeled are sandwiched and pressed. May be. As described above, the main purpose of this pressing step is to suppress changes in the shape of the phosphor such as warpage of the phosphor in the firing step. Therefore, the pressing step is performed even when two or more phosphor thin films 12 are not laminated. That is, when laminating a plurality of phosphor thin films 12, a plurality of phosphor thin films 12 can be integrated by performing a pressing process for suppressing a change in the shape of the phosphor in the firing process. It can be said that a separate process for laminating the layers can be omitted.
 <基材剥離及び型抜き工程>
 次に、図3のステップS5において、プレスにより得られた未焼成蛍光体13から基材10を剥離する、図3のステップS6において、基材10を剥離した後の未焼成蛍光体13を所望の形状に型抜きする(図4(f)参照)。
<Base material peeling and die cutting process>
Next, in step S5 of FIG. 3, the base material 10 is peeled from the unfired phosphor 13 obtained by pressing. In step S6 of FIG. 3, the unfired phosphor 13 after the base material 10 is peeled is desired. (See FIG. 4F).
 <焼成工程>
 次に、図3のステップS7において、型抜き後の未焼成蛍光体13を焼成して、蛍光体3を得る(図4(g)参照)。焼成工程は、使用するガラスバインダーの軟化点(T)以下の温度で行う。ガラスバインダーの軟化点以下の温度で焼成を行うことによって、焼成工程中に蛍光体3に反り等の形状変化が生じることを抑制できる。より具体的には、焼成温度を、(T-25)~(T-5)℃の範囲とする。この温度範囲で焼成を行うことによって、蛍光体の形状変化を抑制しつつ、ガラスマトリクスを形成することができる。ガラスバインダーの軟化点を超える温度で焼成を行った場合、蛍光体3に反り等の形状変化が生じる可能性がある。尚、焼成工程においては、未焼成蛍光体13に含まれる樹脂バインダー及び溶媒と、必要に応じて添加される可塑剤とは、分解または揮発によりほぼ消失する。
<Baking process>
Next, in step S7 of FIG. 3, the green phosphor 13 after die cutting is fired to obtain the phosphor 3 (see FIG. 4G). Baking step is carried out at the softening point of the glass binder used (T S) or lower. By performing baking at a temperature equal to or lower than the softening point of the glass binder, it is possible to suppress a change in shape such as warpage in the phosphor 3 during the baking process. More specifically, the firing temperature is in the range of (T S −25) to (T S −5) ° C. By baking in this temperature range, a glass matrix can be formed while suppressing changes in the shape of the phosphor. When firing is performed at a temperature exceeding the softening point of the glass binder, there is a possibility that a shape change such as warpage occurs in the phosphor 3. In the firing step, the resin binder and solvent contained in the unfired phosphor 13 and the plasticizer added as necessary are almost lost by decomposition or volatilization.
 <反射膜形成工程>
 次に、図3のステップS8において、焼成後の蛍光体3の一方面に反射膜4を形成する(図4(h)参照)。反射膜4は、アルミニウム、銀、金、パラジウム、チタン等の金属の薄膜よりなる。反射膜4は、蒸着やスパッタリングによって形成しても良いし、金属微粒子や有機金属化合物を含むペーストや液体を蛍光体3の一方面に塗布した後、焼成を行うことによって形成しても良い。ペーストや液体の塗布によって反射膜4を形成する場合、焼成前の蛍光体にペーストや液体を塗布して、焼成工程における1回の焼成によって、蛍光体の焼成と同時に反射膜4を形成しても良いし、焼成後の蛍光体にペーストや液体を塗布して再度焼成を行うことによって、反射膜4を形成しても良い。蛍光体3の焼成工程の後に反射膜4を形成するための焼成を行う場合、図3のステップS7の焼成温度より低い温度で焼成を行う。
<Reflective film formation process>
Next, in step S8 of FIG. 3, the reflective film 4 is formed on one surface of the phosphor 3 after firing (see FIG. 4 (h)). The reflective film 4 is made of a metal thin film such as aluminum, silver, gold, palladium, or titanium. The reflective film 4 may be formed by vapor deposition or sputtering, or may be formed by applying a paste or liquid containing metal fine particles or an organometallic compound to one surface of the phosphor 3 and then baking. When the reflective film 4 is formed by applying paste or liquid, the paste or liquid is applied to the phosphor before firing, and the reflective film 4 is formed simultaneously with the firing of the phosphor by firing once in the firing process. Alternatively, the reflective film 4 may be formed by applying a paste or liquid to the fired phosphor and firing again. When baking for forming the reflective film 4 after the baking process of the phosphor 3 is performed, the baking is performed at a temperature lower than the baking temperature of step S7 in FIG.
 <蛍光体接合工程>
 次に、図3のステップS9において、反射膜4を形成した後の蛍光体3を金属基板2の表面に接合することにより、蛍光体ホイール1を得る。金属基板2への蛍光体3の接合方法は特に限定されず、反射膜4が形成された側の面を接着剤または半田を介して金属基板2に接合することができる。半田で接合する場合、耐熱性及び熱伝導性の面で接着剤より優れるので、半田を用いることがより好ましい。
<Phosphor bonding process>
Next, in step S <b> 9 in FIG. 3, the phosphor wheel 1 is obtained by bonding the phosphor 3 after the reflection film 4 is formed to the surface of the metal substrate 2. The method for bonding the phosphor 3 to the metal substrate 2 is not particularly limited, and the surface on the side where the reflective film 4 is formed can be bonded to the metal substrate 2 via an adhesive or solder. In the case of joining with solder, it is more preferable to use solder because it is superior to an adhesive in terms of heat resistance and thermal conductivity.
 [3.効果等]
 本実施形態に係る蛍光体ホイールの製造方法では、焼成工程の前に蛍光体層をプレスし、ガラスの軟化点以下の温度で焼成を行うことによって、蛍光体の形状変化を抑制することができる。
[3. Effect]
In the method for manufacturing a phosphor wheel according to the present embodiment, the phosphor layer is pressed before the firing step, and firing is performed at a temperature equal to or lower than the softening point of the glass, thereby suppressing the shape change of the phosphor. .
 また、本実施形態に係る蛍光体ホイールの製造方法では、蛍光体粉末及びバインダーを粉体のままで混合、成形及び焼成を行うのではなく、蛍光体粉末及びバインダーを溶媒でペースト化して基材上に塗布している。蛍光体粉末及びバインダーを粉体のまま混合した場合、蛍光体粉末及びバインダーの分散が均一にならず、ガラスバインダーによるバインダーとしての機能が十分に発揮されないため、蛍光体の強度低下や発光効率の低下に繋がる場合がある。これに対して、本実施形態に係る製造方法では、蛍光体粉末及びバインダーをペースト化することによって、蛍光体粉末及びバインダーを均一に分散させることができるため、焼成後の蛍光体に十分な強度が得られると共に、蛍光体粉末の分散の不均一性に起因する発光効率の低下を抑制できる。 Further, in the method for manufacturing the phosphor wheel according to the present embodiment, the phosphor powder and the binder are not mixed, molded and fired as they are, but the phosphor powder and the binder are pasted with a solvent to form a substrate. It is applied on top. When the phosphor powder and the binder are mixed as they are, the dispersion of the phosphor powder and the binder is not uniform, and the function as a binder by the glass binder is not sufficiently exhibited. It may lead to decline. On the other hand, in the manufacturing method according to the present embodiment, the phosphor powder and the binder can be uniformly dispersed by pasting the phosphor powder and the binder, so that the phosphor has a sufficient strength after firing. As well as a decrease in luminous efficiency due to non-uniform dispersion of the phosphor powder.
 本実施形態に係る蛍光体ホイールの製造方法では、ペーストの塗膜及び未焼成蛍光体の形状を保持するために樹脂バインダーを使用しているが、樹脂バインダーは焼成工程において分解または揮発し、焼成後はガラスバインダーによって蛍光体3のバインダーが形成される。ガラスバインダーで形成した蛍光体3は、樹脂バインダーで形成した蛍光体と比べ、耐熱性に優れる。したがって、蛍光体3に励起光を照射する励起光源(レーザー)の出力を高くして、発生させる蛍光の強度を向上させることができる。また、ガラスバインダーで形成した蛍光体3は、樹脂バインダーで形成した蛍光体と比べ放熱性にも優れる。蛍光体分子は、過昇温によって温度消光することが知られているが、本実施形態に係る製造方法で得られる蛍光体3はガラスバインダーで形成されることで放熱性が向上するので、励起光源の出力を高くしても、温度消光が生じることを抑制できる。したがって、本実施形態に係る製造方法で得られる蛍光体ホイール1は、励起光源の出力を高くしても温度消光が抑制されることから、励起光から蛍光への変換効率を向上することができる。また、本実施形態に係る製造方法で得られる蛍光体ホイール1によれば、励起光源の出力を高くすることによって発生する蛍光の強度を大きくすることができるので、蛍光体ホイール1を小径化が可能となる。蛍光体ホイール1を小径化することによって、光源ユニット20全体の小型化も可能となる。また、蛍光体ホイール1の耐熱性及び熱伝導性が向上するので、光源ユニット20の冷却系を簡略化できるという利点もある。 In the method for manufacturing a phosphor wheel according to the present embodiment, a resin binder is used to maintain the shape of the paste coating film and the unfired phosphor. However, the resin binder decomposes or volatilizes in the firing step and fires. Thereafter, the binder of the phosphor 3 is formed with a glass binder. The phosphor 3 formed with a glass binder is superior in heat resistance as compared with a phosphor formed with a resin binder. Therefore, the intensity of the generated fluorescence can be improved by increasing the output of the excitation light source (laser) that irradiates the phosphor 3 with excitation light. Moreover, the fluorescent substance 3 formed with the glass binder is excellent also in heat dissipation compared with the fluorescent substance formed with the resin binder. It is known that phosphor molecules are quenched by excessive temperature rise, but the phosphor 3 obtained by the manufacturing method according to the present embodiment is formed of a glass binder, so that heat dissipation is improved. Even if the output of the light source is increased, temperature quenching can be suppressed. Therefore, the phosphor wheel 1 obtained by the manufacturing method according to the present embodiment can suppress the temperature quenching even if the output of the excitation light source is increased, so that the conversion efficiency from excitation light to fluorescence can be improved. . Moreover, according to the phosphor wheel 1 obtained by the manufacturing method according to the present embodiment, the intensity of the fluorescence generated by increasing the output of the excitation light source can be increased, so that the diameter of the phosphor wheel 1 can be reduced. It becomes possible. By reducing the diameter of the phosphor wheel 1, the entire light source unit 20 can be downsized. Moreover, since the heat resistance and thermal conductivity of the phosphor wheel 1 are improved, there is an advantage that the cooling system of the light source unit 20 can be simplified.
 また、本実施形態に係る蛍光体ホイール1の製造方法では、ホイールの基板として金属基板2を使用しているので、得られる蛍光体ホイール1全体の放熱性を向上させることができる。また、金属基板2には、セラミック基板やガラス基板と比べて破損しにくいという利点もある。 Further, in the method for manufacturing the phosphor wheel 1 according to the present embodiment, since the metal substrate 2 is used as the wheel substrate, the heat dissipation of the entire phosphor wheel 1 obtained can be improved. In addition, the metal substrate 2 has an advantage that it is less likely to be damaged than a ceramic substrate or a glass substrate.
 更に、本実施形態に係る蛍光体ホイール1の製造方法では、焼成後の蛍光体3を金属基板2に接合する方法を採用している。本実施形態のように、蛍光体ホイール1の基板として金属基板2を用い、蛍光体粉末のバインダーとしてガラスバインダー(無機バインダー)を用いる場合、金属基板2上に直接蛍光体粉末の混合物層を設けて焼成を行うと、焼成温度から室温への冷却過程において金属基板2に反り等の変形が生じる場合がある。また、金属基板2の熱膨張係数と比べてガラスバインダーの熱膨張係数が小さいことから、冷却過程における金属基板2の収縮が焼成後の蛍光体3と比べて相対的に大きくなり、蛍光体の割れや金属基板2からの剥がれ等の形状不良が生じやすい。本実施形態のように、金属基板2及びガラスバインダーを用いて蛍光体ホイール1を構成する場合でも、焼成後の蛍光体3を金属基板2に接合する方法であれば、材質の熱膨張特性の差に起因するこれらの形状不良を解消することができる。 Furthermore, in the manufacturing method of the phosphor wheel 1 according to the present embodiment, a method of joining the fired phosphor 3 to the metal substrate 2 is adopted. When the metal substrate 2 is used as the substrate of the phosphor wheel 1 and the glass binder (inorganic binder) is used as the binder of the phosphor powder as in the present embodiment, the phosphor powder mixture layer is directly provided on the metal substrate 2. When firing is performed, deformation such as warpage may occur in the metal substrate 2 during the cooling process from the firing temperature to room temperature. In addition, since the thermal expansion coefficient of the glass binder is smaller than the thermal expansion coefficient of the metal substrate 2, the shrinkage of the metal substrate 2 in the cooling process is relatively larger than that of the phosphor 3 after firing, Shape defects such as cracks and peeling from the metal substrate 2 are likely to occur. Even in the case where the phosphor wheel 1 is configured using the metal substrate 2 and the glass binder as in the present embodiment, the thermal expansion characteristics of the material can be used as long as the phosphor 3 after firing is bonded to the metal substrate 2. These shape defects due to the difference can be eliminated.
 (その他の実施形態)
 尚、上記の実施形態では、基材10上にペーストを塗布して形成した蛍光体薄膜12をプレス後に所望形状に型抜きする例を説明したが、印刷法等によって予め所望の平面形状を有する塗膜11を基材10上に形成しても良い。この場合、上述した型抜き工程を省略することができる。
(Other embodiments)
In the above-described embodiment, the phosphor thin film 12 formed by applying the paste on the substrate 10 has been described as being punched into a desired shape after pressing, but has a desired planar shape in advance by a printing method or the like. The coating film 11 may be formed on the substrate 10. In this case, the above-described die cutting process can be omitted.
 以下、本発明の実施形態を具体的に実施した実施例を示す。ただし、本発明は、以下の実施例によって限定されるものではない。 Hereinafter, examples in which the embodiment of the present invention is specifically implemented will be described. However, the present invention is not limited to the following examples.
 まず、蛍光体粉末100重量部に対して、ガラスバインダー(軟化点T:580℃、ガラス転移点T:490℃)10重量部、アクリル系の樹脂バインダー10重量部、溶媒20重量部(ブチルカルビトール10重量部及びプロピレングリコールモノメチルエーテルアセテート10重量部)、可塑剤としてフタル酸ビスブチルベンジル5重量部を混合機を用いて混合して、蛍光体粉末をペースト化した。 First, 10 parts by weight of a glass binder (softening point T S : 580 ° C., glass transition point T G : 490 ° C.), 10 parts by weight of an acrylic resin binder, and 20 parts by weight of a solvent (100 parts by weight of the phosphor powder) 10 parts by weight of butyl carbitol and 10 parts by weight of propylene glycol monomethyl ether acetate) and 5 parts by weight of bisbutylbenzyl phthalate as a plasticizer were mixed using a mixer to paste the phosphor powder.
 次に、作製したペーストを、片面に離型処理が施されたPETフィルム(厚み38μm)に塗布し、塗膜を乾燥させた。 Next, the prepared paste was applied to a PET film (thickness 38 μm) having a release treatment on one side, and the coating film was dried.
 次に、乾燥後の塗膜を、圧力500kgf/cm(49.05MPa)で10秒間プレスした。 Next, the dried coating film was pressed at a pressure of 500 kgf / cm 2 (49.05 MPa) for 10 seconds.
 その後、プレス後の蛍光体薄膜からPETフィルムを剥離し、蛍光体薄膜を図2に示す形状に打ち抜いた後、焼成を行った。焼成はガラスバインダーの軟化点である580℃より低い575℃以下で240分行った。 Thereafter, the PET film was peeled from the pressed phosphor thin film, and the phosphor thin film was punched into the shape shown in FIG. Firing was performed for 240 minutes at 575 ° C. or lower, which is lower than 580 ° C., which is the softening point of the glass binder.
 以上の工程を経て得られた蛍光体を目視で確認したところ、反り等の形状変化は認められなかった。 When the phosphor obtained through the above steps was visually confirmed, no shape change such as warping was observed.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 本開示は、固体光源プロジェクター等の波長変換素子に用いられる蛍光体に適用可能である。 The present disclosure is applicable to a phosphor used for a wavelength conversion element such as a solid light source projector.
 1 蛍光体ホイール
 2 金属基板
 3 蛍光体
 4 反射膜
 10 基材
 11 塗膜
 12 蛍光体薄膜
 13 未焼成蛍光体
DESCRIPTION OF SYMBOLS 1 Phosphor wheel 2 Metal substrate 3 Phosphor 4 Reflective film 10 Base material 11 Coating film 12 Phosphor thin film 13 Unsintered phosphor

Claims (3)

  1.  基板上に蛍光体が設けられる波長変換素子の製造方法であって、
     蛍光体粉末、ガラスバインダー、樹脂バインダー及び溶媒を混合して得られるペーストを基材上に塗布して、前記ペーストの塗膜を形成し、
     前記基材上の塗膜を乾燥させて、前記基材上に蛍光体薄膜を形成し、
     前記蛍光体薄膜をプレスし、
     プレス後の前記蛍光体薄膜を前記ガラスバインダーの軟化点以下の温度で焼成して前記蛍光体を形成し、
     焼成後の前記蛍光体を前記基板上に接合する、波長変換素子の製造方法。
    A method of manufacturing a wavelength conversion element in which a phosphor is provided on a substrate,
    Applying a paste obtained by mixing phosphor powder, glass binder, resin binder and solvent on a substrate to form a coating film of the paste,
    Drying the coating film on the substrate to form a phosphor thin film on the substrate;
    Pressing the phosphor thin film;
    Firing the phosphor thin film after pressing at a temperature below the softening point of the glass binder to form the phosphor,
    A method for manufacturing a wavelength conversion element, wherein the phosphor after firing is bonded onto the substrate.
  2.  前記蛍光層のプレス時に、複数の蛍光体層を積層してプレスする、請求項1に記載の波長変換素子の製造方法。 The method for manufacturing a wavelength conversion element according to claim 1, wherein a plurality of phosphor layers are stacked and pressed when the phosphor layer is pressed.
  3.  焼成後の前記蛍光体の一方面に反射膜を形成し、
     前記反射膜が形成された前記蛍光体の一方面を前記基板に接合する、請求項1に記載の波長変換素子の製造方法。
    A reflective film is formed on one surface of the phosphor after firing,
    The method for manufacturing a wavelength conversion element according to claim 1, wherein one surface of the phosphor on which the reflective film is formed is bonded to the substrate.
PCT/JP2014/005572 2014-03-19 2014-11-05 Wavelength conversion element manufacturing method WO2015140854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-056323 2014-03-19
JP2014056323 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015140854A1 true WO2015140854A1 (en) 2015-09-24

Family

ID=54143880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005572 WO2015140854A1 (en) 2014-03-19 2014-11-05 Wavelength conversion element manufacturing method

Country Status (1)

Country Link
WO (1) WO2015140854A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017081885A1 (en) * 2015-11-10 2017-05-18 Necディスプレイソリューションズ株式会社 Phosphor wheel, projector, and phosphor-wheel production method
CN107664906A (en) * 2016-07-28 2018-02-06 松下知识产权经营株式会社 Fluorescence structure base board, fluorophor wheel, light supply apparatus, projection type video display apparatus
JP2018025750A (en) * 2016-07-28 2018-02-15 パナソニックIpマネジメント株式会社 Phosphor substrate, phosphor wheel, light source device, projection type video display device, and method of manufacturing phosphor substrate
JP2018531415A (en) * 2015-09-25 2018-10-25 マテリオン コーポレイション High optical power light conversion device using phosphor elements with solder attachment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138563A (en) * 1993-06-18 1995-05-30 Mitsubishi Materials Corp High-power infrared laser beam detector and its production
JP2007191702A (en) * 2005-12-22 2007-08-02 Nippon Electric Glass Co Ltd Light emission color converting material
JP2012036367A (en) * 2010-07-14 2012-02-23 Nippon Electric Glass Co Ltd Phosphor composite member
JP2012185980A (en) * 2011-03-04 2012-09-27 Nippon Electric Glass Co Ltd Wavelength conversion element, light source including the same and manufacturing method of the same
JP2013250481A (en) * 2012-06-01 2013-12-12 Panasonic Corp Light source device and projection-type display device including the light source device
JP2014015359A (en) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138563A (en) * 1993-06-18 1995-05-30 Mitsubishi Materials Corp High-power infrared laser beam detector and its production
JP2007191702A (en) * 2005-12-22 2007-08-02 Nippon Electric Glass Co Ltd Light emission color converting material
JP2012036367A (en) * 2010-07-14 2012-02-23 Nippon Electric Glass Co Ltd Phosphor composite member
JP2012185980A (en) * 2011-03-04 2012-09-27 Nippon Electric Glass Co Ltd Wavelength conversion element, light source including the same and manufacturing method of the same
JP2013250481A (en) * 2012-06-01 2013-12-12 Panasonic Corp Light source device and projection-type display device including the light source device
JP2014015359A (en) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7113745B2 (en) 2015-09-25 2022-08-05 マテリオン コーポレイション High optical power light conversion device using phosphor elements with solder attachment
JP2018531415A (en) * 2015-09-25 2018-10-25 マテリオン コーポレイション High optical power light conversion device using phosphor elements with solder attachment
JP2021067957A (en) * 2015-09-25 2021-04-30 マテリオン コーポレイション High optical power light conversion device using phosphor element with solder attachment
US11289616B2 (en) 2015-09-25 2022-03-29 Materion Corporation High optical power light conversion device using a phosphor element with solder attachment
JP7170073B2 (en) 2015-09-25 2022-11-11 マテリオン コーポレイション High optical power light conversion device using phosphor elements with solder attachment
US11658252B2 (en) 2015-09-25 2023-05-23 Materion Corporation High optical power light conversion device using a phosphor element with solder attachment
US12034092B2 (en) 2015-09-25 2024-07-09 Materion Corporation High optical power light conversion device using a phosphor element with solder attachment
WO2017081741A1 (en) * 2015-11-10 2017-05-18 Necディスプレイソリューションズ株式会社 Phosphor wheel, projector, and phosphor-wheel production method
CN108292086A (en) * 2015-11-10 2018-07-17 Nec显示器解决方案株式会社 The manufacturing method of fluorescent wheel, projecting apparatus and fluorescent wheel
JPWO2017081885A1 (en) * 2015-11-10 2018-08-30 Necディスプレイソリューションズ株式会社 Phosphor wheel, projector, and method for manufacturing phosphor wheel
WO2017081885A1 (en) * 2015-11-10 2017-05-18 Necディスプレイソリューションズ株式会社 Phosphor wheel, projector, and phosphor-wheel production method
CN107664906A (en) * 2016-07-28 2018-02-06 松下知识产权经营株式会社 Fluorescence structure base board, fluorophor wheel, light supply apparatus, projection type video display apparatus
JP2018025750A (en) * 2016-07-28 2018-02-15 パナソニックIpマネジメント株式会社 Phosphor substrate, phosphor wheel, light source device, projection type video display device, and method of manufacturing phosphor substrate

Similar Documents

Publication Publication Date Title
TWI753161B (en) Wavelength conversion member and light-emitting device
JP6677680B2 (en) Wavelength conversion device, method of manufacturing the same, and related light emitting device
JP7170073B2 (en) High optical power light conversion device using phosphor elements with solder attachment
US11053161B2 (en) Glass fluorescent powder slice with multi-layer structure and preparation method therefor, and light-emitting device
US10001657B2 (en) Phosphor ceramic, encapsulated optical semiconductor element, circuit board, optical semiconductor device and light-emitting device
KR20180107203A (en) Wavelength converting member, method of manufacturing the same, and light emitting device
WO2018016357A1 (en) Wavelength conversion member and light-emitting device using same
WO2015140854A1 (en) Wavelength conversion element manufacturing method
JP6800307B2 (en) Manufacturing method of wavelength converter
WO2015163108A1 (en) Wavelength conversion joining member, wavelength conversion heat-radiating member, and light emission device
WO2015163109A1 (en) Wavelength conversion member and method for manufacturing same
US20170137328A1 (en) Method of making a ceramic wavelength converter assembly
JP6512067B2 (en) Method of manufacturing wavelength conversion element
JP2017143236A (en) Ceramic plate and method of manufacturing the same, and optical semiconductor device
JP2015118107A (en) Projector fluorescent wheel and projector light-emitting device
WO2015163110A1 (en) Wavelength conversion member and method for producing same
JP6500744B2 (en) Method of manufacturing wavelength conversion element
US11398587B2 (en) Method of manufacturing light-transmissive sheet
JP6582907B2 (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
JP2022007638A (en) Molding, light emitting device and method for producing molding
WO2016132890A1 (en) Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light-emitting device
WO2017138180A1 (en) Ceramic plate, method for manufacturing same, and optical semiconductor device
JP2011155127A (en) Light-emitting device
JP2016150989A (en) Method for producing phosphor ceramic
JP2017111214A (en) Method for manufacturing wavelength conversion member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP