WO2015136979A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2015136979A1
WO2015136979A1 PCT/JP2015/051125 JP2015051125W WO2015136979A1 WO 2015136979 A1 WO2015136979 A1 WO 2015136979A1 JP 2015051125 W JP2015051125 W JP 2015051125W WO 2015136979 A1 WO2015136979 A1 WO 2015136979A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
pressure
refrigeration cycle
cycle apparatus
Prior art date
Application number
PCT/JP2015/051125
Other languages
French (fr)
Japanese (ja)
Inventor
英明 前山
佐藤 幸一
Original Assignee
三菱電機株式会社
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 旭硝子株式会社 filed Critical 三菱電機株式会社
Priority to CN201580013964.2A priority Critical patent/CN106104174B/en
Priority to KR1020167028381A priority patent/KR101841869B1/en
Priority to JP2016507384A priority patent/JP6453849B2/en
Publication of WO2015136979A1 publication Critical patent/WO2015136979A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • a refrigerant having a lower global warming potential is also being studied for refrigerants used in refrigeration cycle apparatuses such as air conditioners.
  • GWP global warming potential
  • the G410 of R410A widely used for air conditioners is 2088, which is a very large value.
  • the GWP of difluoromethane (R32), which has begun to be introduced in recent years, is also a considerably large value of 675.
  • HFO-1123 1,1,2-trifluoroethylene
  • Patent Document 1 1,1,2-trifluoroethylene (HFO-1123) (see, for example, Patent Document 1).
  • This refrigerant has the following advantages in particular. -Since the operating pressure is high and the volume flow rate of the refrigerant is small, the pressure loss is small and it is easy to ensure performance.
  • -GWP is less than 1 and is highly advantageous as a measure against global warming.
  • HFO-1123 has the following problems. (1) When ignition energy is applied in a high temperature and high pressure state, an explosion occurs (for example, see Non-Patent Document 1). (2) The atmospheric life is very short, less than 2 days. There is concern about a decrease in chemical stability of the refrigeration cycle system.
  • An object of the present invention is to prevent explosion due to a disproportionation reaction of HFO-1123 in a compressor, for example.
  • An object of the present invention is to avoid the establishment of the condition (1b).
  • a refrigeration cycle apparatus includes: A refrigerant circuit in which a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger are connected, and a refrigerant containing 1,1,2-trifluoroethylene circulates; A control mechanism for controlling the pressure of the refrigerant in the flow path from the compressor to the expansion mechanism of the refrigerant circuit to be equal to or less than a threshold value.
  • a refrigerant containing 1,1,2-trifluoroethylene is applied to the refrigeration cycle apparatus.
  • the control mechanism of the refrigeration cycle apparatus controls the pressure of the refrigerant in the flow path from the compressor of the refrigerant circuit to the expansion mechanism to a threshold value or less.
  • FIG. 3 is a circuit diagram of the refrigeration cycle apparatus (during cooling) according to Embodiment 1.
  • FIG. 3 is a circuit diagram of the refrigeration cycle apparatus (when heating) according to Embodiment 1.
  • 1 is a longitudinal sectional view of a compressor according to Embodiment 1.
  • FIG. 3 is an electrical connection diagram of the stator of the electric element and the pressure fuse provided in the compressor according to the first embodiment.
  • FIG. 1 and 2 are circuit diagrams of a refrigeration cycle apparatus 10 according to the present embodiment.
  • FIG. 1 shows the refrigerant circuit 11a during cooling.
  • FIG. 2 shows the refrigerant circuit 11b during heating.
  • the refrigeration cycle apparatus 10 is an air conditioner. Note that this embodiment can be applied even if the refrigeration cycle apparatus 10 is a device other than an air conditioner (for example, a heat pump cycle apparatus).
  • the refrigeration cycle apparatus 10 includes refrigerant circuits 11a and 11b through which refrigerant circulates.
  • a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion valve 15, and an indoor heat exchanger 16 are connected to the refrigerant circuits 11a and 11b.
  • the compressor 12 compresses the refrigerant.
  • the four-way valve 13 switches the direction of refrigerant flow between cooling and heating.
  • the outdoor heat exchanger 14 is an example of a first heat exchanger.
  • the outdoor heat exchanger 14 operates as a condenser during cooling, and dissipates the refrigerant compressed by the compressor 12.
  • the outdoor heat exchanger 14 operates as an evaporator during heating, and heats the refrigerant by exchanging heat between the outdoor air and the refrigerant expanded by the expansion valve 15.
  • the expansion valve 15 is an example of an expansion mechanism.
  • the expansion valve 15 expands the refrigerant radiated by the condenser.
  • the indoor heat exchanger 16 is an example of a second heat exchanger.
  • the indoor heat exchanger 16 operates as a condenser during heating, and dissipates the refrigerant compressed by the compressor 12.
  • the indoor heat exchanger 16 operates as an evaporator during cooling, and heats the refrigerant by exchanging heat between the indoor air and the refrigerant expanded by the expansion valve 15.
  • the refrigeration cycle apparatus 10 further includes a control device 17.
  • the control device 17 is, for example, a microcomputer. Although only the connection between the control device 17 and the compressor 12 is shown in the figure, the control device 17 is connected not only to the compressor 12 but also to each element connected to the refrigerant circuits 11a and 11b. The control device 17 monitors and controls the state of each element.
  • the refrigeration cycle apparatus 10 further includes a pressure sensor 91 and a pressure switch 92.
  • the pressure sensor 91 and the pressure switch 92 will be described later.
  • bypass valve 93 is connected to the refrigerant circuits 11a and 11b.
  • the bypass valve 93 will also be described later.
  • a refrigerant containing 1,1,2-trifluoroethylene (HFO-1123) is used as the refrigerant circulating in the refrigerant circuits 11a and 11b.
  • This refrigerant may be HFO-1123 alone or a mixture containing 1% or more of HFO-1123. That is, if the refrigerant used in the refrigeration cycle apparatus 10 contains 1 to 100% of HFO-1123, the present embodiment can be applied and the effects described later can be obtained.
  • a mixture of HFO-1123 and difluoromethane can be used.
  • a mixture containing 40 wt% HFO-1123 and 60 wt% R32 can be used. Either one or both of HFO-1123 and R32 in this mixture may be replaced with another substance.
  • HFO-1123 may be replaced with a mixture of HFO-1123 and another ethylene-based fluorohydrocarbon.
  • Other ethylene fluorocarbons include fluoroethylene (HFO-1141), 1,1-difluoroethylene (HFO-1132a), trans-1,2-difluoroethylene (HFO-1132 (E)), cis- 1,2-difluoroethylene (HFO-1132 (Z)) can be used.
  • R32 is 2,3,3,3-tetrafluoropropene (R1234yf), trans-1,3,3,3-tetrafluoropropene (R1234ze (E)), cis-1,3,3,3-tetrafluoro.
  • Propene (R1234ze (Z)), 1,1,1,2-tetrafluoroethane (R134a), 1,1,1,2,2-pentafluoroethane (R125) may be substituted.
  • R32 may be replaced with a mixture of any two or more of R32, R1234yf, R1234ze (E), R1234ze (Z), R134a, and R125.
  • the refrigeration cycle apparatus 10 controls the refrigerant pressure in the flow path (that is, the high pressure side) from the compressor 12 to the expansion valve 15 of the refrigerant circuits 11a and 11b to be equal to or less than the threshold value by the control mechanism. Thereby, diffusion of the disproportionation reaction can be prevented.
  • FIG. 3 is a longitudinal sectional view of the compressor 12. In this figure, hatching representing a cross section is omitted.
  • the compressor 12 is a one-cylinder rotary compressor. Even if the compressor 12 is a multi-cylinder rotary compressor or a scroll compressor, if the inside of the container is in a discharge pressure atmosphere (that is, a high pressure level comparable to the refrigerant discharge pressure), this Embodiments can be applied.
  • the compressor 12 includes a sealed container 20, a compression element 30, an electric element 40, and a shaft 50.
  • the sealed container 20 is an example of a container.
  • a suction pipe 21 for sucking the refrigerant and a discharge pipe 22 for discharging the refrigerant are attached to the sealed container 20.
  • the compression element 30 is stored in the sealed container 20. Specifically, the compression element 30 is installed in the lower part inside the sealed container 20. The compression element 30 compresses the refrigerant sucked into the suction pipe 21.
  • the electric element 40 is also accommodated in the sealed container 20. Specifically, the electric element 40 is installed at a position in the sealed container 20 where the refrigerant compressed by the compression element 30 passes before being discharged from the discharge pipe 22. That is, the electric element 40 is installed above the compression element 30 inside the sealed container 20. The electric element 40 drives the compression element 30.
  • the electric element 40 is a concentrated winding motor.
  • Refrigerator oil that lubricates the sliding portion of the compression element 30 is stored at the bottom of the sealed container 20.
  • refrigerating machine oil for example, POE (polyol ester), PVE (polyvinyl ether), and AB (alkylbenzene) are used.
  • the compressor 12 further includes a bypass valve 94, a pressure fuse 95, and a relief valve 96. These will be described later.
  • a spring 97 is attached to the bypass valve 94.
  • the compression element 30 includes a cylinder 31, a rolling piston 32, a vane (not shown), a main bearing 33, and a sub bearing 34.
  • the outer periphery of the cylinder 31 is substantially circular in plan view.
  • a cylinder chamber that is a substantially circular space in plan view is formed inside the cylinder 31.
  • the cylinder 31 is open at both axial ends.
  • the cylinder 31 is provided with a vane groove (not shown) that communicates with the cylinder chamber and extends in the radial direction.
  • a back pressure chamber which is a substantially circular space in plan view, communicating with the vane groove is formed outside the vane groove.
  • the cylinder 31 is provided with a suction port (not shown) through which gas refrigerant is sucked from the refrigerant circuits 11a and 11b.
  • the suction port penetrates from the outer peripheral surface of the cylinder 31 to the cylinder chamber.
  • the cylinder 31 is provided with a discharge port (not shown) through which the compressed refrigerant is discharged from the cylinder chamber.
  • the discharge port is formed by cutting out the upper end surface of the cylinder 31.
  • the rolling piston 32 has a ring shape.
  • the rolling piston 32 moves eccentrically in the cylinder chamber.
  • the rolling piston 32 is slidably fitted to the eccentric shaft portion 51 of the shaft 50.
  • the shape of the vane is a flat, substantially rectangular parallelepiped.
  • the vane is installed in the vane groove of the cylinder 31.
  • the vane is always pressed against the rolling piston 32 by a vane spring provided in the back pressure chamber. Since the inside of the sealed container 20 is at a high pressure, when the operation of the compressor 12 starts, the force due to the difference between the pressure in the sealed container 20 and the pressure in the cylinder chamber is applied to the back surface of the vane (that is, the surface on the back pressure chamber side). Works.
  • the vane spring is mainly used for the purpose of pressing the vane against the rolling piston 32 when the compressor 12 is started (when there is no difference in pressure between the sealed container 20 and the cylinder chamber).
  • the main bearing 33 has a substantially inverted T shape when viewed from the side.
  • the main bearing 33 is slidably fitted to a main shaft portion 52 that is a portion above the eccentric shaft portion 51 of the shaft 50.
  • the main bearing 33 closes the cylinder chamber of the cylinder 31 and the upper side of the vane groove.
  • the auxiliary bearing 34 is substantially T-shaped when viewed from the side.
  • the auxiliary bearing 34 is slidably fitted to the auxiliary shaft portion 53 that is a portion below the eccentric shaft portion 51 of the shaft 50.
  • the auxiliary bearing 34 closes the cylinder chamber of the cylinder 31 and the lower side of the vane groove.
  • the main bearing 33 includes a discharge valve (not shown).
  • a discharge muffler 35 is attached to the outside of the main bearing 33.
  • the high-temperature and high-pressure gas refrigerant discharged through the discharge valve once enters the discharge muffler 35 and is then discharged from the discharge muffler 35 into the space in the sealed container 20.
  • the discharge valve and the discharge muffler 35 may be provided in the auxiliary bearing 34 or both the main bearing 33 and the auxiliary bearing 34.
  • the material of the cylinder 31, the main bearing 33, and the auxiliary bearing 34 is gray cast iron, sintered steel, carbon steel, or the like.
  • the material of the rolling piston 32 is, for example, alloy steel containing chromium or the like.
  • the material of the vane is, for example, high speed tool steel.
  • a suction muffler 23 is provided beside the sealed container 20.
  • the suction muffler 23 sucks low-pressure gas refrigerant from the refrigerant circuits 11a and 11b.
  • the suction muffler 23 prevents the liquid refrigerant from directly entering the cylinder chamber of the cylinder 31 when the liquid refrigerant returns.
  • the suction muffler 23 is connected to the suction port of the cylinder 31 via the suction pipe 21.
  • the main body of the suction muffler 23 is fixed to the side surface of the sealed container 20 by welding or the like.
  • the electric element 40 is a brushless DC (Direct Current) motor.
  • the present embodiment can be applied even if the electric element 40 is a motor (for example, an induction motor) other than the brushless DC motor.
  • the electric element 40 includes a stator 41 and a rotor 42.
  • the stator 41 is fixed in contact with the inner peripheral surface of the sealed container 20.
  • the rotor 42 is installed inside the stator 41 with a gap of about 0.3 to 1 mm.
  • the stator 41 includes a stator core 43 and a stator winding 44.
  • the stator core 43 is manufactured by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, laminating them in the axial direction, and fixing them by caulking or welding.
  • the stator winding 44 is wound around the stator core 43 in a concentrated manner via an insulating member 48.
  • the material of the insulating member 48 is, for example, PET (polyethylene terephthalate), PBT (polybutylene terephthalate), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • PTFE polytetrafluoroethylene
  • LCP liquid crystal polymer
  • PPS polyphenylene sulfide
  • a lead wire 45 is connected to the stator winding 44.
  • a plurality of notches are formed on the outer periphery of the stator core 43 at substantially equal intervals in the circumferential direction.
  • Each notch becomes one of the passages of the gas refrigerant discharged from the discharge muffler 35 to the space in the sealed container 20.
  • Each notch also serves as a passage for refrigerating machine oil returning from the top of the electric element 40 to the bottom of the sealed container 20.
  • the rotor 42 includes a rotor core 46 and a permanent magnet (not shown).
  • the rotor core 46 is formed by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, stacking them in the axial direction, and fixing them by caulking or welding. Produced.
  • the permanent magnet is inserted into a plurality of insertion holes formed in the rotor core 46.
  • a ferrite magnet or a rare earth magnet is used as the permanent magnet.
  • the rotor core 46 is formed with a plurality of through holes penetrating substantially in the axial direction. Each through hole becomes one of the passages of the gas refrigerant discharged from the discharge muffler 35 to the space in the sealed container 20, similarly to the cutout of the stator core 43.
  • a power terminal 24 (for example, a glass terminal) connected to an external power source is attached to the top of the sealed container 20.
  • the power terminal 24 is fixed to the sealed container 20 by welding, for example.
  • a lead wire 45 from the electric element 40 is connected to the power terminal 24.
  • a discharge pipe 22 having both axial ends opened is attached at the top of the sealed container 20.
  • the gas refrigerant discharged from the compression element 30 is discharged from the space in the sealed container 20 through the discharge pipe 22 to the external refrigerant circuits 11a and 11b.
  • Electric power is supplied from the power supply terminal 24 to the stator 41 of the electric element 40 via the lead wire 45.
  • the rotor 42 of the electric element 40 rotates.
  • the rotation of the rotor 42 causes the shaft 50 fixed to the rotor 42 to rotate.
  • the rolling piston 32 of the compression element 30 rotates eccentrically in the cylinder chamber of the cylinder 31 of the compression element 30.
  • the space between the cylinder 31 and the rolling piston 32 is divided into two by the vanes of the compression element 30.
  • the shaft 50 rotates, the volume of these two spaces changes. In one space, the refrigerant is sucked from the suction muffler 23 by gradually increasing the volume.
  • the volume of the gas refrigerant is gradually reduced to compress the gas refrigerant therein.
  • the compressed gas refrigerant is discharged once from the discharge muffler 35 to the space in the sealed container 20.
  • the discharged gas refrigerant passes through the electric element 40 and is discharged out of the sealed container 20 from the discharge pipe 22 at the top of the sealed container 20.
  • control mechanism controls the pressure of the refrigerant on the high pressure side of the refrigerant circuits 11a and 11b to be equal to or lower than the threshold value.
  • the higher the pressure the easier the disproportionation chain reaction.
  • the diffusion can be prevented.
  • one threshold value is set for each.
  • two or more threshold values are set. In that case, it is possible to prevent the disproportionation reaction from being diffused in multiple stages by applying the thresholds in order starting from a looser threshold.
  • control device 17 and the pressure sensor 91 shown in FIGS. 1 and 2 function as main elements of the control mechanism.
  • the control device 17 decreases the rotational speed of the electric element 40 of the compressor 12.
  • the first value is set to 4 to 5 MPa.
  • the control device 17 may predict that the pressure exceeds the first value from the tendency of the pressure change, and may perform the deceleration control of the electric element 40 before the pressure exceeds the first value.
  • the control device 17 may perform stop control of the electric element 40 instead of deceleration control when it is determined that the pressure change is abrupt and there is clearly an abnormality such as circuit blockage.
  • the pressure on the high-pressure side can be accurately detected by the pressure sensor 91 installed in the high-pressure piping of the refrigerant circuits 11a and 11b.
  • a method of measuring the temperature of the heat exchanger or the compressor 12 and estimating the pressure on the high pressure side from the temperature may be used.
  • the control device 17 can recognize that the protection operation has been performed, it is possible to control the state of the compressor 12 or other elements so that the pressure does not exceed the first value again.
  • FIG. 4 is a partially enlarged view of the longitudinal section of the compressor 12 and a plan view of the bypass valve 94 provided in the compressor 12.
  • the bypass valve 93 shown in FIGS. 1 and 2 or the bypass valve 94 shown in FIGS. 3 and 4 functions as a main element of the control mechanism.
  • the bypass valve 93 connected to the refrigerant circuits 11a and 11b opens a refrigerant flow path for bypassing the compressor 12 when the pressure difference between the refrigerant before and after being compressed by the compressor 12 reaches the second value. open.
  • the bypass valve 94 installed in the compression element 30 of the compressor 12 flows the refrigerant for bypassing the compression element 30. Open the road.
  • the bypass valve 94 is opened by the action of the spring 97, and thereby the suction path and the discharge in the cylinder 31 are discharged.
  • the muffler 35 is communicated.
  • the second value is set to 3.5 to 4.5 MPa.
  • the bypass valves 93 and 94 are opened when the pressure difference between the high pressure and the low pressure exceeds the second value to prevent the high pressure from rising.
  • the bypass valve 94 forms a bypass between the discharge muffler 35 of the compressor 12 and the suction portion of the cylinder 31, so that a high pressure can be reliably ensured even when the high-pressure conveyance path in the compressor 12 is blocked. Can be lowered.
  • bypass valves 93 and 94 operate only while the pressure difference between the high pressure and the low pressure exceeds the second value. Therefore, the operation can be continued without impairing the operation state of the refrigeration cycle apparatus 10.
  • FIG. 5 is an electrical connection diagram of the stator 41 and the pressure fuse 95 of the electric element 40 included in the compressor 12.
  • the pressure switch 92 shown in FIGS. 1 and 2 or the pressure fuse 95 shown in FIGS. 3 and 5 functions as a main element of the control mechanism.
  • the pressure switch 92 installed in the high-pressure piping of the refrigerant circuits 11a and 11b mechanically stops the power supply to the compressor 12 when the refrigerant pressure on the high-pressure side of the refrigerant circuits 11a and 11b reaches the third value.
  • the pressure fuse 95 installed in the electric element 40 of the compressor 12 stops power supply to the electric element 40 when the refrigerant pressure on the high pressure side of the refrigerant circuits 11a and 11b reaches the third value.
  • the pressure fuse 95 interrupts energization between the electric element 40 and the external power source.
  • the third value is set to a value higher than the first value.
  • the third value is set to 5 to 6 MPa.
  • the pressure fuse 95 is more preferable than the pressure switch 92 because it can operate even when the discharge pipe 22 of the compressor 12 is closed.
  • the pressure fuse 95 it is preferable to use an automatic return type. As shown in FIG. 5, the pressure fuse 95 stops the current flow to the electric element 40 by interrupting the neutral point of the three-phase stator winding 44 connected by the Y connection. Thereby, the operation of the compressor 12 can be stopped.
  • the compressor 12 since the compressor 12 is stopped, the operating state of the refrigeration cycle apparatus 10 cannot be maintained. However, safety can be ensured in a state in which the refrigeration cycle apparatus 10 can be restored.
  • the control device 17 shown in FIGS. 1 and 2 and the relief valve 96 shown in FIG. 3 function as main elements of the control mechanism.
  • the relief valve 96 is used to discharge the refrigerant out of the sealed container 20 of the compressor 12.
  • the control device 17 opens the relief valve 96 when the refrigerant pressure on the high pressure side of the refrigerant circuits 11a and 11b reaches the fourth value.
  • the fourth value is set to a value higher than the third value. For example, the fourth value is set to 5.5 to 6.5 MPa.
  • the refrigerant is discharged outside the refrigeration cycle. Therefore, the refrigeration cycle apparatus 10 cannot perform normal operation thereafter. However, safety can be ensured more reliably.
  • the operation priority of the four implementation examples is highest in the first example, and decreases in the order of the second example, the third example, and the fourth example. Thereby, in the initial stage, protection can be applied by means having little influence on the operating state.
  • a clear abnormality occurs in the refrigeration cycle apparatus 10 such as a sensor abnormality, the operation of the refrigeration cycle apparatus 10 can be stopped.
  • the diffusion of the disproportionation reaction of HFO-1123 can be prevented. Therefore, it is possible to prevent an explosion due to a disproportionation reaction of the refrigerant containing HFO-1123.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

A compressor (12), a four-way valve (13), an outdoor heat exchanger (14), an expansion valve (15), and an indoor heat exchanger (16) are connected in a refrigerant circuit (11a) in which a refrigerant containing HFO-1123 circulates. This refrigeration cycle device (10) controls the pressure of the refrigerant in a flow path (that is, the high-pressure side) from the compressor (12) to the expansion valve (15) in the refrigerant circuit (11a) by means of a control mechanism so as to be equal to or less than a threshold value. Thus, even if a disproportionation reaction of the HFO-1123 occurs in a portion of the circuit, such as the compressor (12), proliferation of the reaction is prevented.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus.
 近年、地球温暖化防止の観点より、温室効果ガスの削減が求められている。空気調和機等の冷凍サイクル装置に用いられている冷媒についても、地球温暖化係数(GWP)のより低いものが検討されている。現在、空気調和機用として広く用いられているR410AのGWPは2088と非常に大きい値である。近年導入され始めているジフルオロメタン(R32)のGWPも675とかなり大きい値になっている。 In recent years, reduction of greenhouse gases has been demanded from the viewpoint of preventing global warming. A refrigerant having a lower global warming potential (GWP) is also being studied for refrigerants used in refrigeration cycle apparatuses such as air conditioners. Currently, the G410 of R410A widely used for air conditioners is 2088, which is a very large value. The GWP of difluoromethane (R32), which has begun to be introduced in recent years, is also a considerably large value of 675.
 GWPの低い冷媒としては、二酸化炭素(R744:GWP=1)、アンモニア(R717:GWP=0)、プロパン(R290:GWP=6)、2,3,3,3-テトラフルオロプロペン(R1234yf:GWP=4)、1,3,3,3-テトラフルオロプロペン(R1234ze:GWP=6)等がある。 As a refrigerant having a low GWP, carbon dioxide (R744: GWP = 1), ammonia (R717: GWP = 0), propane (R290: GWP = 6), 2,3,3,3-tetrafluoropropene (R1234yf: GWP) = 4), 1,3,3,3-tetrafluoropropene (R1234ze: GWP = 6) and the like.
 これらの低GWP冷媒は、下記の課題があるため、一般的な空気調和機に適用することは困難である。
・R744:動作圧力が非常に高いため、耐圧確保の課題がある。また、臨界温度が31℃と低いため、空気調和機用途での性能の確保が課題となる。
・R717:高毒性であるため、安全確保の課題がある。
・R290:強燃性であるため、安全確保の課題がある。
・R1234yf/R1234ze:低動作圧で体積流量が大きくなるため、圧力損失増大による性能低下の課題がある。
Since these low GWP refrigerants have the following problems, it is difficult to apply them to general air conditioners.
R744: Since the operating pressure is very high, there is a problem of ensuring a withstand pressure. Moreover, since critical temperature is as low as 31 degreeC, ensuring the performance in an air conditioner use becomes a subject.
-R717: Since it is highly toxic, there is a problem of ensuring safety.
-R290: Since it is highly flammable, there is a problem of ensuring safety.
R1234yf / R1234ze: Since the volume flow rate becomes large at a low operating pressure, there is a problem of performance degradation due to an increase in pressure loss.
 上記の課題を解決する冷媒として、1,1,2-トリフルオロエチレン(HFO-1123)がある(例えば、特許文献1参照)。この冷媒には、特に、以下の利点がある。
・動作圧力が高く、冷媒の体積流量が小さいため、圧力損失が小さく、性能を確保しやすい。
・GWPが1未満であり、地球温暖化対策として優位性が高い。
As a refrigerant for solving the above problems, there is 1,1,2-trifluoroethylene (HFO-1123) (see, for example, Patent Document 1). This refrigerant has the following advantages in particular.
-Since the operating pressure is high and the volume flow rate of the refrigerant is small, the pressure loss is small and it is easy to ensure performance.
-GWP is less than 1 and is highly advantageous as a measure against global warming.
国際公開第2012/157764号International Publication No. 2012/157774
 HFO-1123には、下記の課題がある。
(1)高温、高圧の状態において、着火エネルギーが加わると、爆発が発生する(例えば、非特許文献1参照)。
(2)大気寿命が2日未満と非常に小さい。冷凍サイクル系の化学的安定性の低下が懸念される。
HFO-1123 has the following problems.
(1) When ignition energy is applied in a high temperature and high pressure state, an explosion occurs (for example, see Non-Patent Document 1).
(2) The atmospheric life is very short, less than 2 days. There is concern about a decrease in chemical stability of the refrigeration cycle system.
 HFO-1123を冷凍サイクル装置に適用するには、上記の課題を解決する必要がある。 To apply HFO-1123 to a refrigeration cycle apparatus, it is necessary to solve the above problems.
 (1)の課題については、不均化反応の連鎖によって爆発が発生することが明らかになった。この現象が発生する条件は、下記の2点である。
(1a)冷凍サイクル装置(特に、圧縮機)の内部に着火エネルギー(高温部)が発生し、不均化反応が起こる。
(1b)高温、高圧の状態において、不均化反応が連鎖して拡散する。
As for the problem (1), it became clear that explosion occurred due to the chain of disproportionation reaction. The conditions under which this phenomenon occurs are the following two points.
(1a) Ignition energy (high temperature part) is generated inside the refrigeration cycle apparatus (particularly the compressor), and a disproportionation reaction occurs.
(1b) The disproportionation reaction is chained and diffused at high temperature and high pressure.
 (2)の課題については、冷凍サイクル系の化学的安定性を確保する必要がある。 (2) For the problem (2), it is necessary to ensure the chemical stability of the refrigeration cycle system.
 本発明は、例えば、圧縮機において、HFO-1123の不均化反応による爆発を防止することを目的とする。本発明は、特に、(1b)の条件の成立を回避することを目的とする。 An object of the present invention is to prevent explosion due to a disproportionation reaction of HFO-1123 in a compressor, for example. An object of the present invention is to avoid the establishment of the condition (1b).
 本発明の一の態様に係る冷凍サイクル装置は、
 圧縮機と、第1熱交換器と、膨張機構と、第2熱交換器とが接続され、1,1,2-トリフルオロエチレンを含有する冷媒が循環する冷媒回路と、
 前記冷媒回路の前記圧縮機から前記膨張機構までの流路における前記冷媒の圧力を閾値以下に制御する制御機構とを備える。
A refrigeration cycle apparatus according to an aspect of the present invention includes:
A refrigerant circuit in which a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger are connected, and a refrigerant containing 1,1,2-trifluoroethylene circulates;
A control mechanism for controlling the pressure of the refrigerant in the flow path from the compressor to the expansion mechanism of the refrigerant circuit to be equal to or less than a threshold value.
 本発明では、1,1,2-トリフルオロエチレンを含有する冷媒を冷凍サイクル装置に適用している。冷凍サイクル装置の制御機構は、冷媒回路の圧縮機から膨張機構までの流路における冷媒の圧力を閾値以下に制御する。これにより、冷凍サイクル装置において、HFO-1123の不均化反応が連鎖反応として拡散しないようにして、不均化反応による爆発を防止することができる。 In the present invention, a refrigerant containing 1,1,2-trifluoroethylene is applied to the refrigeration cycle apparatus. The control mechanism of the refrigeration cycle apparatus controls the pressure of the refrigerant in the flow path from the compressor of the refrigerant circuit to the expansion mechanism to a threshold value or less. Thereby, in the refrigeration cycle apparatus, the disproportionation reaction of HFO-1123 is prevented from diffusing as a chain reaction, and an explosion due to the disproportionation reaction can be prevented.
実施の形態1に係る冷凍サイクル装置(冷房時)の回路図。FIG. 3 is a circuit diagram of the refrigeration cycle apparatus (during cooling) according to Embodiment 1. 実施の形態1に係る冷凍サイクル装置(暖房時)の回路図。FIG. 3 is a circuit diagram of the refrigeration cycle apparatus (when heating) according to Embodiment 1. 実施の形態1に係る圧縮機の縦断面図。1 is a longitudinal sectional view of a compressor according to Embodiment 1. FIG. 実施の形態1に係る圧縮機の縦断面部分拡大図、及び、実施の形態1に係る圧縮機が備えるバイパス弁の平面図。The longitudinal cross-section partial enlarged view of the compressor which concerns on Embodiment 1, and the top view of the bypass valve with which the compressor which concerns on Embodiment 1 is provided. 実施の形態1に係る圧縮機が備える電動要素の固定子及び圧力ヒューズの電気接続図。FIG. 3 is an electrical connection diagram of the stator of the electric element and the pressure fuse provided in the compressor according to the first embodiment.
 以下、本発明の実施の形態について、図を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 実施の形態1.
 図1及び図2は、本実施の形態に係る冷凍サイクル装置10の回路図である。図1は、冷房時の冷媒回路11aを示している。図2は、暖房時の冷媒回路11bを示している。
Embodiment 1 FIG.
1 and 2 are circuit diagrams of a refrigeration cycle apparatus 10 according to the present embodiment. FIG. 1 shows the refrigerant circuit 11a during cooling. FIG. 2 shows the refrigerant circuit 11b during heating.
 本実施の形態において、冷凍サイクル装置10は、空気調和機である。なお、冷凍サイクル装置10が空気調和機以外の機器(例えば、ヒートポンプサイクル装置)であっても、本実施の形態を適用することができる。 In the present embodiment, the refrigeration cycle apparatus 10 is an air conditioner. Note that this embodiment can be applied even if the refrigeration cycle apparatus 10 is a device other than an air conditioner (for example, a heat pump cycle apparatus).
 図1及び図2において、冷凍サイクル装置10は、冷媒が循環する冷媒回路11a,11bを備える。 1 and 2, the refrigeration cycle apparatus 10 includes refrigerant circuits 11a and 11b through which refrigerant circulates.
 冷媒回路11a,11bには、圧縮機12と、四方弁13と、室外熱交換器14と、膨張弁15と、室内熱交換器16とが接続されている。圧縮機12は、冷媒を圧縮する。四方弁13は、冷房時と暖房時とで冷媒の流れる方向を切り換える。室外熱交換器14は、第1熱交換器の例である。室外熱交換器14は、冷房時には凝縮器として動作し、圧縮機12により圧縮された冷媒を放熱させる。室外熱交換器14は、暖房時には蒸発器として動作し、室外空気と膨張弁15で膨張した冷媒との間で熱交換を行って冷媒を加熱する。膨張弁15は、膨張機構の例である。膨張弁15は、凝縮器で放熱した冷媒を膨張させる。室内熱交換器16は、第2熱交換器の例である。室内熱交換器16は、暖房時には凝縮器として動作し、圧縮機12により圧縮された冷媒を放熱させる。室内熱交換器16は、冷房時には蒸発器として動作し、室内空気と膨張弁15で膨張した冷媒との間で熱交換を行って冷媒を加熱する。 A compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion valve 15, and an indoor heat exchanger 16 are connected to the refrigerant circuits 11a and 11b. The compressor 12 compresses the refrigerant. The four-way valve 13 switches the direction of refrigerant flow between cooling and heating. The outdoor heat exchanger 14 is an example of a first heat exchanger. The outdoor heat exchanger 14 operates as a condenser during cooling, and dissipates the refrigerant compressed by the compressor 12. The outdoor heat exchanger 14 operates as an evaporator during heating, and heats the refrigerant by exchanging heat between the outdoor air and the refrigerant expanded by the expansion valve 15. The expansion valve 15 is an example of an expansion mechanism. The expansion valve 15 expands the refrigerant radiated by the condenser. The indoor heat exchanger 16 is an example of a second heat exchanger. The indoor heat exchanger 16 operates as a condenser during heating, and dissipates the refrigerant compressed by the compressor 12. The indoor heat exchanger 16 operates as an evaporator during cooling, and heats the refrigerant by exchanging heat between the indoor air and the refrigerant expanded by the expansion valve 15.
 冷凍サイクル装置10は、さらに、制御装置17を備える。 The refrigeration cycle apparatus 10 further includes a control device 17.
 制御装置17は、例えば、マイクロコンピュータである。図では、制御装置17と圧縮機12との接続しか示していないが、制御装置17は、圧縮機12だけでなく、冷媒回路11a,11bに接続された各要素に接続されている。制御装置17は、各要素の状態を監視したり、制御したりする。 The control device 17 is, for example, a microcomputer. Although only the connection between the control device 17 and the compressor 12 is shown in the figure, the control device 17 is connected not only to the compressor 12 but also to each element connected to the refrigerant circuits 11a and 11b. The control device 17 monitors and controls the state of each element.
 冷凍サイクル装置10は、さらに、圧力センサ91と、圧力スイッチ92とを備える。圧力センサ91及び圧力スイッチ92については後述する。 The refrigeration cycle apparatus 10 further includes a pressure sensor 91 and a pressure switch 92. The pressure sensor 91 and the pressure switch 92 will be described later.
 冷媒回路11a,11bには、さらに、バイパス弁93が接続されている。バイパス弁93についても後述する。 Further, a bypass valve 93 is connected to the refrigerant circuits 11a and 11b. The bypass valve 93 will also be described later.
 本実施の形態において、冷媒回路11a,11bを循環する冷媒としては、1,1,2-トリフルオロエチレン(HFO-1123)を含有する冷媒が使用される。この冷媒は、HFO-1123単体であってもよいし、HFO-1123を1%以上含有する混合物であってもよい。即ち、冷凍サイクル装置10に使用される冷媒がHFO-1123を1~100%含有していれば、本実施の形態を適用することができ、後述する効果を得ることができる。 In the present embodiment, a refrigerant containing 1,1,2-trifluoroethylene (HFO-1123) is used as the refrigerant circulating in the refrigerant circuits 11a and 11b. This refrigerant may be HFO-1123 alone or a mixture containing 1% or more of HFO-1123. That is, if the refrigerant used in the refrigeration cycle apparatus 10 contains 1 to 100% of HFO-1123, the present embodiment can be applied and the effects described later can be obtained.
 好適な冷媒として、HFO-1123とジフルオロメタン(R32)との混合物を使用することができる。例えば、HFO-1123を40wt%、R32を60wt%含有する混合物を使用することができる。この混合物のHFO-1123とR32とのいずれか一方又は両方を別の物質に置き換えても構わない。HFO-1123は、HFO-1123と、他のエチレン系フッ化炭化水素との混合物に置き換えても構わない。他のエチレン系フッ化炭化水素としては、フルオロエチレン(HFO-1141)、1,1-ジフルオロエチレン(HFO-1132a)、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、シス-1,2-ジフルオロエチレン(HFO-1132(Z))を使用することができる。R32は、2,3,3,3-テトラフルオロプロペン(R1234yf)、トランス-1,3,3,3-テトラフルオロプロペン(R1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(R1234ze(Z))、1,1,1,2-テトラフルオロエタン(R134a)、1,1,1,2,2-ペンタフルオロエタン(R125)のいずれかに置き換えても構わない。あるいは、R32は、R32、R1234yf、R1234ze(E)、R1234ze(Z)、R134a、R125のうち、いずれか2種類以上からなる混合物に置き換えても構わない。 As a suitable refrigerant, a mixture of HFO-1123 and difluoromethane (R32) can be used. For example, a mixture containing 40 wt% HFO-1123 and 60 wt% R32 can be used. Either one or both of HFO-1123 and R32 in this mixture may be replaced with another substance. HFO-1123 may be replaced with a mixture of HFO-1123 and another ethylene-based fluorohydrocarbon. Other ethylene fluorocarbons include fluoroethylene (HFO-1141), 1,1-difluoroethylene (HFO-1132a), trans-1,2-difluoroethylene (HFO-1132 (E)), cis- 1,2-difluoroethylene (HFO-1132 (Z)) can be used. R32 is 2,3,3,3-tetrafluoropropene (R1234yf), trans-1,3,3,3-tetrafluoropropene (R1234ze (E)), cis-1,3,3,3-tetrafluoro. Propene (R1234ze (Z)), 1,1,1,2-tetrafluoroethane (R134a), 1,1,1,2,2-pentafluoroethane (R125) may be substituted. Alternatively, R32 may be replaced with a mixture of any two or more of R32, R1234yf, R1234ze (E), R1234ze (Z), R134a, and R125.
 いずれの冷媒を使用する際にも、前述した(1)の課題を考慮する必要がある。特に、前述した(1b)の条件の成立を回避する必要がある。即ち、冷凍サイクル装置10において、不均化反応が連鎖して拡散することを回避する必要がある。 When using any refrigerant, it is necessary to consider the above-mentioned problem (1). In particular, it is necessary to avoid the establishment of the condition (1b) described above. That is, in the refrigeration cycle apparatus 10, it is necessary to avoid the disproportionation reaction from being chained and diffused.
 冷凍サイクル装置10は、制御機構によって、冷媒回路11a,11bの圧縮機12から膨張弁15までの流路(即ち、高圧側)における冷媒の圧力を閾値以下に制御する。これにより、不均化反応の拡散を防止することができる。 The refrigeration cycle apparatus 10 controls the refrigerant pressure in the flow path (that is, the high pressure side) from the compressor 12 to the expansion valve 15 of the refrigerant circuits 11a and 11b to be equal to or less than the threshold value by the control mechanism. Thereby, diffusion of the disproportionation reaction can be prevented.
 図3は、圧縮機12の縦断面図である。なお、この図では、断面を表すハッチングを省略している。 FIG. 3 is a longitudinal sectional view of the compressor 12. In this figure, hatching representing a cross section is omitted.
 本実施の形態において、圧縮機12は、1気筒のロータリ圧縮機である。なお、圧縮機12が多気筒のロータリ圧縮機、あるいは、スクロール圧縮機であっても、容器の内部が吐出圧力雰囲気(即ち、冷媒の吐出圧力と同程度の高圧な状態)であれば、本実施の形態を適用することができる。 In the present embodiment, the compressor 12 is a one-cylinder rotary compressor. Even if the compressor 12 is a multi-cylinder rotary compressor or a scroll compressor, if the inside of the container is in a discharge pressure atmosphere (that is, a high pressure level comparable to the refrigerant discharge pressure), this Embodiments can be applied.
 図3において、圧縮機12は、密閉容器20と、圧縮要素30と、電動要素40と、軸50とを備える。 3, the compressor 12 includes a sealed container 20, a compression element 30, an electric element 40, and a shaft 50.
 密閉容器20は、容器の例である。密閉容器20には、冷媒を吸入するための吸入管21と、冷媒を吐出するための吐出管22とが取り付けられている。 The sealed container 20 is an example of a container. A suction pipe 21 for sucking the refrigerant and a discharge pipe 22 for discharging the refrigerant are attached to the sealed container 20.
 圧縮要素30は、密閉容器20の中に収納される。具体的には、圧縮要素30は、密閉容器20の内側下部に設置される。圧縮要素30は、吸入管21に吸入された冷媒を圧縮する。 The compression element 30 is stored in the sealed container 20. Specifically, the compression element 30 is installed in the lower part inside the sealed container 20. The compression element 30 compresses the refrigerant sucked into the suction pipe 21.
 電動要素40も、密閉容器20の中に収納される。具体的には、電動要素40は、密閉容器20の中で、圧縮要素30により圧縮された冷媒が吐出管22から吐出される前に通過する位置に設置される。即ち、電動要素40は、密閉容器20の内側で、圧縮要素30の上方に設置される。電動要素40は、圧縮要素30を駆動する。電動要素40は、集中巻のモータである。 The electric element 40 is also accommodated in the sealed container 20. Specifically, the electric element 40 is installed at a position in the sealed container 20 where the refrigerant compressed by the compression element 30 passes before being discharged from the discharge pipe 22. That is, the electric element 40 is installed above the compression element 30 inside the sealed container 20. The electric element 40 drives the compression element 30. The electric element 40 is a concentrated winding motor.
 密閉容器20の底部には、圧縮要素30の摺動部を潤滑する冷凍機油が貯留されている。冷凍機油としては、例えば、POE(ポリオールエステル)、PVE(ポリビニルエーテル)、AB(アルキルベンゼン)が使用される。 Refrigerator oil that lubricates the sliding portion of the compression element 30 is stored at the bottom of the sealed container 20. As the refrigerating machine oil, for example, POE (polyol ester), PVE (polyvinyl ether), and AB (alkylbenzene) are used.
 圧縮機12は、さらに、バイパス弁94と、圧力ヒューズ95と、リリーフバルブ96とを備える。これらについては後述する。バイパス弁94には、バネ97が取り付けられている。 The compressor 12 further includes a bypass valve 94, a pressure fuse 95, and a relief valve 96. These will be described later. A spring 97 is attached to the bypass valve 94.
 以下では、圧縮要素30の詳細について説明する。 Hereinafter, details of the compression element 30 will be described.
 圧縮要素30は、シリンダ31と、ローリングピストン32と、ベーン(図示していない)と、主軸受33と、副軸受34とを備える。 The compression element 30 includes a cylinder 31, a rolling piston 32, a vane (not shown), a main bearing 33, and a sub bearing 34.
 シリンダ31の外周は、平面視略円形である。シリンダ31の内部には、平面視略円形の空間であるシリンダ室が形成される。シリンダ31は、軸方向両端が開口している。 The outer periphery of the cylinder 31 is substantially circular in plan view. A cylinder chamber that is a substantially circular space in plan view is formed inside the cylinder 31. The cylinder 31 is open at both axial ends.
 シリンダ31には、シリンダ室に連通し、半径方向に延びるベーン溝(図示していない)が設けられる。ベーン溝の外側には、ベーン溝に連通する平面視略円形の空間である背圧室が形成される。 The cylinder 31 is provided with a vane groove (not shown) that communicates with the cylinder chamber and extends in the radial direction. A back pressure chamber, which is a substantially circular space in plan view, communicating with the vane groove is formed outside the vane groove.
 シリンダ31には、冷媒回路11a,11bからガス冷媒が吸入される吸入ポート(図示していない)が設けられる。吸入ポートは、シリンダ31の外周面からシリンダ室に貫通している。 The cylinder 31 is provided with a suction port (not shown) through which gas refrigerant is sucked from the refrigerant circuits 11a and 11b. The suction port penetrates from the outer peripheral surface of the cylinder 31 to the cylinder chamber.
 シリンダ31には、シリンダ室から圧縮された冷媒が吐出される吐出ポート(図示していない)が設けられる。吐出ポートは、シリンダ31の上端面を切り欠いて形成されている。 The cylinder 31 is provided with a discharge port (not shown) through which the compressed refrigerant is discharged from the cylinder chamber. The discharge port is formed by cutting out the upper end surface of the cylinder 31.
 ローリングピストン32は、リング状である。ローリングピストン32は、シリンダ室内で偏心運動する。ローリングピストン32は、軸50の偏心軸部51に摺動自在に嵌合する。 The rolling piston 32 has a ring shape. The rolling piston 32 moves eccentrically in the cylinder chamber. The rolling piston 32 is slidably fitted to the eccentric shaft portion 51 of the shaft 50.
 ベーンの形状は、平坦な略直方体である。ベーンは、シリンダ31のベーン溝内に設置される。ベーンは、背圧室に設けられるベーンスプリングによって常にローリングピストン32に押し付けられている。密閉容器20内が高圧であるため、圧縮機12の運転が開始すると、ベーンの背面(即ち、背圧室側の面)に密閉容器20内の圧力とシリンダ室内の圧力との差による力が作用する。このため、ベーンスプリングは、主に圧縮機12の起動時(密閉容器20内とシリンダ室内の圧力に差がないとき)に、ベーンをローリングピストン32に押し付ける目的で使用される。 The shape of the vane is a flat, substantially rectangular parallelepiped. The vane is installed in the vane groove of the cylinder 31. The vane is always pressed against the rolling piston 32 by a vane spring provided in the back pressure chamber. Since the inside of the sealed container 20 is at a high pressure, when the operation of the compressor 12 starts, the force due to the difference between the pressure in the sealed container 20 and the pressure in the cylinder chamber is applied to the back surface of the vane (that is, the surface on the back pressure chamber side). Works. For this reason, the vane spring is mainly used for the purpose of pressing the vane against the rolling piston 32 when the compressor 12 is started (when there is no difference in pressure between the sealed container 20 and the cylinder chamber).
 主軸受33は、側面視略逆T字状である。主軸受33は、軸50の偏心軸部51よりも上の部分である主軸部52に摺動自在に嵌合する。主軸受33は、シリンダ31のシリンダ室及びベーン溝の上側を閉塞する。 The main bearing 33 has a substantially inverted T shape when viewed from the side. The main bearing 33 is slidably fitted to a main shaft portion 52 that is a portion above the eccentric shaft portion 51 of the shaft 50. The main bearing 33 closes the cylinder chamber of the cylinder 31 and the upper side of the vane groove.
 副軸受34は、側面視略T字状である。副軸受34は、軸50の偏心軸部51よりも下の部分である副軸部53に摺動自在に嵌合する。副軸受34は、シリンダ31のシリンダ室及びベーン溝の下側を閉塞する。 The auxiliary bearing 34 is substantially T-shaped when viewed from the side. The auxiliary bearing 34 is slidably fitted to the auxiliary shaft portion 53 that is a portion below the eccentric shaft portion 51 of the shaft 50. The auxiliary bearing 34 closes the cylinder chamber of the cylinder 31 and the lower side of the vane groove.
 主軸受33は、吐出弁(図示していない)を備える。主軸受33の外側には、吐出マフラ35が取り付けられる。吐出弁を介して吐出される高温・高圧のガス冷媒は、一旦吐出マフラ35に入り、その後吐出マフラ35から密閉容器20内の空間に放出される。なお、吐出弁及び吐出マフラ35は、副軸受34、あるいは、主軸受33と副軸受34との両方に設けられてもよい。 The main bearing 33 includes a discharge valve (not shown). A discharge muffler 35 is attached to the outside of the main bearing 33. The high-temperature and high-pressure gas refrigerant discharged through the discharge valve once enters the discharge muffler 35 and is then discharged from the discharge muffler 35 into the space in the sealed container 20. The discharge valve and the discharge muffler 35 may be provided in the auxiliary bearing 34 or both the main bearing 33 and the auxiliary bearing 34.
 シリンダ31、主軸受33、副軸受34の材質は、ねずみ鋳鉄、焼結鋼、炭素鋼等である。ローリングピストン32の材質は、例えば、クロム等を含有する合金鋼である。ベーンの材質は、例えば、高速度工具鋼である。 The material of the cylinder 31, the main bearing 33, and the auxiliary bearing 34 is gray cast iron, sintered steel, carbon steel, or the like. The material of the rolling piston 32 is, for example, alloy steel containing chromium or the like. The material of the vane is, for example, high speed tool steel.
 密閉容器20の横には、吸入マフラ23が設けられる。吸入マフラ23は、冷媒回路11a,11bから低圧のガス冷媒を吸入する。吸入マフラ23は、液冷媒が戻る場合に液冷媒が直接シリンダ31のシリンダ室に入り込むことを抑制する。吸入マフラ23は、シリンダ31の吸入ポートに吸入管21を介して接続される。吸入マフラ23の本体は、溶接等により密閉容器20の側面に固定される。 A suction muffler 23 is provided beside the sealed container 20. The suction muffler 23 sucks low-pressure gas refrigerant from the refrigerant circuits 11a and 11b. The suction muffler 23 prevents the liquid refrigerant from directly entering the cylinder chamber of the cylinder 31 when the liquid refrigerant returns. The suction muffler 23 is connected to the suction port of the cylinder 31 via the suction pipe 21. The main body of the suction muffler 23 is fixed to the side surface of the sealed container 20 by welding or the like.
 以下では、電動要素40の詳細について説明する。 Hereinafter, details of the electric element 40 will be described.
 本実施の形態において、電動要素40は、ブラシレスDC(Direct・Current)モータである。なお、電動要素40がブラシレスDCモータ以外のモータ(例えば、誘導電動機)であっても、本実施の形態を適用することができる。 In the present embodiment, the electric element 40 is a brushless DC (Direct Current) motor. The present embodiment can be applied even if the electric element 40 is a motor (for example, an induction motor) other than the brushless DC motor.
 電動要素40は、固定子41と、回転子42とを備える。 The electric element 40 includes a stator 41 and a rotor 42.
 固定子41は、密閉容器20の内周面に当接して固定される。回転子42は、固定子41の内側に0.3~1mm程度の空隙を介して設置される。 The stator 41 is fixed in contact with the inner peripheral surface of the sealed container 20. The rotor 42 is installed inside the stator 41 with a gap of about 0.3 to 1 mm.
 固定子41は、固定子鉄心43と、固定子巻線44とを備える。固定子鉄心43は、厚さが0.1~1.5mmの複数枚の電磁鋼板を所定の形状に打ち抜き、軸方向に積層し、カシメや溶接等により固定して製作される。固定子巻線44は、固定子鉄心43に絶縁部材48を介して集中巻で巻回される。絶縁部材48の材質は、例えば、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、PTFE(ポリテトラフルオロエチレン)、LCP(液晶ポリマー)、PPS(ポリフェニレンサルファイド)、フェノール樹脂である。固定子巻線44には、リード線45が接続されている。 The stator 41 includes a stator core 43 and a stator winding 44. The stator core 43 is manufactured by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, laminating them in the axial direction, and fixing them by caulking or welding. The stator winding 44 is wound around the stator core 43 in a concentrated manner via an insulating member 48. The material of the insulating member 48 is, for example, PET (polyethylene terephthalate), PBT (polybutylene terephthalate), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer). PTFE (polytetrafluoroethylene), LCP (liquid crystal polymer), PPS (polyphenylene sulfide), and phenol resin. A lead wire 45 is connected to the stator winding 44.
 固定子鉄心43の外周には、周方向に略等間隔に複数の切欠が形成されている。それぞれの切欠は、吐出マフラ35から密閉容器20内の空間へ放出されるガス冷媒の通路の1つとなる。それぞれの切欠は、電動要素40の上から密閉容器20の底部に戻る冷凍機油の通路にもなる。 A plurality of notches are formed on the outer periphery of the stator core 43 at substantially equal intervals in the circumferential direction. Each notch becomes one of the passages of the gas refrigerant discharged from the discharge muffler 35 to the space in the sealed container 20. Each notch also serves as a passage for refrigerating machine oil returning from the top of the electric element 40 to the bottom of the sealed container 20.
 回転子42は、回転子鉄心46と、永久磁石(図示していない)とを備える。回転子鉄心46は、固定子鉄心43と同様に、厚さが0.1~1.5mmの複数枚の電磁鋼板を所定の形状に打ち抜き、軸方向に積層し、カシメや溶接等により固定して製作される。永久磁石は、回転子鉄心46に形成される複数の挿入孔に挿入される。永久磁石としては、例えば、フェライト磁石、希土類磁石が使用される。 The rotor 42 includes a rotor core 46 and a permanent magnet (not shown). As with the stator core 43, the rotor core 46 is formed by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, stacking them in the axial direction, and fixing them by caulking or welding. Produced. The permanent magnet is inserted into a plurality of insertion holes formed in the rotor core 46. For example, a ferrite magnet or a rare earth magnet is used as the permanent magnet.
 回転子鉄心46には、略軸方向に貫通する複数の貫通孔が形成されている。それぞれの貫通孔は、固定子鉄心43の切欠と同様に、吐出マフラ35から密閉容器20内の空間へ放出されるガス冷媒の通路の1つとなる。 The rotor core 46 is formed with a plurality of through holes penetrating substantially in the axial direction. Each through hole becomes one of the passages of the gas refrigerant discharged from the discharge muffler 35 to the space in the sealed container 20, similarly to the cutout of the stator core 43.
 密閉容器20の頂部には、外部電源と接続する電源端子24(例えば、ガラス端子)が取り付けられている。電源端子24は、例えば、溶接により密閉容器20に固定されている。電源端子24には、電動要素40からのリード線45が接続される。 A power terminal 24 (for example, a glass terminal) connected to an external power source is attached to the top of the sealed container 20. The power terminal 24 is fixed to the sealed container 20 by welding, for example. A lead wire 45 from the electric element 40 is connected to the power terminal 24.
 密閉容器20の頂部には、軸方向両端が開口した吐出管22が取り付けられている。圧縮要素30から吐出されるガス冷媒は、密閉容器20内の空間から吐出管22を通って外部の冷媒回路11a,11bへ吐出される。 At the top of the sealed container 20, a discharge pipe 22 having both axial ends opened is attached. The gas refrigerant discharged from the compression element 30 is discharged from the space in the sealed container 20 through the discharge pipe 22 to the external refrigerant circuits 11a and 11b.
 以下では、圧縮機12の動作について説明する。 Hereinafter, the operation of the compressor 12 will be described.
 電源端子24からリード線45を介して電動要素40の固定子41に電力が供給される。これにより、電動要素40の回転子42が回転する。回転子42の回転によって、回転子42に固定された軸50が回転する。軸50の回転に伴い、圧縮要素30のローリングピストン32が圧縮要素30のシリンダ31のシリンダ室内で偏心回転する。シリンダ31とローリングピストン32との間の空間は、圧縮要素30のベーンによって2つに分割されている。軸50の回転に伴い、それらの2つの空間の容積が変化する。一方の空間では、徐々に容積が拡大することにより、吸入マフラ23から冷媒が吸入される。他方の空
間では、徐々に容積が縮小することにより、中のガス冷媒が圧縮される。圧縮されたガス冷媒は、吐出マフラ35から密閉容器20内の空間に一度吐出される。吐出されたガス冷媒は、電動要素40を通過して密閉容器20の頂部にある吐出管22から密閉容器20の外へ吐出される。
Electric power is supplied from the power supply terminal 24 to the stator 41 of the electric element 40 via the lead wire 45. Thereby, the rotor 42 of the electric element 40 rotates. The rotation of the rotor 42 causes the shaft 50 fixed to the rotor 42 to rotate. As the shaft 50 rotates, the rolling piston 32 of the compression element 30 rotates eccentrically in the cylinder chamber of the cylinder 31 of the compression element 30. The space between the cylinder 31 and the rolling piston 32 is divided into two by the vanes of the compression element 30. As the shaft 50 rotates, the volume of these two spaces changes. In one space, the refrigerant is sucked from the suction muffler 23 by gradually increasing the volume. In the other space, the volume of the gas refrigerant is gradually reduced to compress the gas refrigerant therein. The compressed gas refrigerant is discharged once from the discharge muffler 35 to the space in the sealed container 20. The discharged gas refrigerant passes through the electric element 40 and is discharged out of the sealed container 20 from the discharge pipe 22 at the top of the sealed container 20.
 以下では、本実施の形態に係る制御機構の実装例について説明する。実装例のうち、いずれか1つのみを適用してもよいし、いくつか又は全てを組み合わせて適用してもよい。 Hereinafter, an implementation example of the control mechanism according to the present embodiment will be described. Only one of the implementation examples may be applied, or some or all may be applied in combination.
 前述したように、制御機構は、冷媒回路11a,11bの高圧側における冷媒の圧力を閾値以下に制御する。 As described above, the control mechanism controls the pressure of the refrigerant on the high pressure side of the refrigerant circuits 11a and 11b to be equal to or lower than the threshold value.
 HFO-1123を含有する冷媒は、高圧になるほど、不均化反応の連鎖反応が起きやすい。本実施の形態では、高圧側が一定以上の圧力にならないように制御を行うことで、圧縮機12等、一部で不均化反応が起こっても、その拡散を防止することができる。 In the refrigerant containing HFO-1123, the higher the pressure, the easier the disproportionation chain reaction. In the present embodiment, by controlling so that the high-pressure side does not become a pressure higher than a certain level, even if a disproportionation reaction occurs in some parts such as the compressor 12, the diffusion can be prevented.
 以下に説明する実装例では、それぞれ1つの閾値が設定される。2つ以上の実装例を組み合わせる場合、2つ以上の閾値が設定されることになる。その場合、制限の緩い閾値から順番に適用することで、不均化反応の拡散を多段階で防止することができる。 In the implementation example described below, one threshold value is set for each. When two or more implementation examples are combined, two or more threshold values are set. In that case, it is possible to prevent the disproportionation reaction from being diffused in multiple stages by applying the thresholds in order starting from a looser threshold.
 まず、閾値として第1値が設定される第1例について説明する。 First, a first example in which the first value is set as the threshold will be described.
 第1例では、図1及び図2に示した制御装置17及び圧力センサ91が、制御機構の主要素として機能する。制御装置17は、冷媒回路11a,11bの高圧側における冷媒の圧力が第1値に達すると、圧縮機12の電動要素40の回転数を下げる。例えば、第1値は、4~5MPaに設定される。 In the first example, the control device 17 and the pressure sensor 91 shown in FIGS. 1 and 2 function as main elements of the control mechanism. When the pressure of the refrigerant on the high pressure side of the refrigerant circuits 11a and 11b reaches the first value, the control device 17 decreases the rotational speed of the electric element 40 of the compressor 12. For example, the first value is set to 4 to 5 MPa.
 制御装置17は、圧力変化の傾向より、圧力が第1値を超えることを予測し、圧力が第1値を超える前に電動要素40の減速制御を実施してもよい。制御装置17は、圧力変化が急激で、明らかに回路閉塞等の異常が発生していると判断した場合には、減速制御ではなく、電動要素40の停止制御を実施してもよい。 The control device 17 may predict that the pressure exceeds the first value from the tendency of the pressure change, and may perform the deceleration control of the electric element 40 before the pressure exceeds the first value. The control device 17 may perform stop control of the electric element 40 instead of deceleration control when it is determined that the pressure change is abrupt and there is clearly an abnormality such as circuit blockage.
 高圧側の圧力は、冷媒回路11a,11bの高圧配管に設置された圧力センサ91によって、精度よく検知することができる。なお、圧力センサ91を用いずに、熱交換器あるいは圧縮機12の温度を計測し、その温度から高圧側の圧力を推定する方法を用いてもよい。 The pressure on the high-pressure side can be accurately detected by the pressure sensor 91 installed in the high-pressure piping of the refrigerant circuits 11a and 11b. Instead of using the pressure sensor 91, a method of measuring the temperature of the heat exchanger or the compressor 12 and estimating the pressure on the high pressure side from the temperature may be used.
 第1例では、圧縮機12の運転を停止しなくて済む。そのため、圧縮機12の運転中の圧力条件が大幅に変化しない。したがって、冷凍サイクル装置10の運転状態を損なわずに運転を継続することができる。また、制御装置17は、保護動作を行ったことを認識できるため、圧力が再び第1値を超えないように圧縮機12又はその他の要素の状態を制御することも可能となる。 In the first example, it is not necessary to stop the operation of the compressor 12. Therefore, the pressure conditions during operation of the compressor 12 do not change significantly. Therefore, the operation can be continued without impairing the operation state of the refrigeration cycle apparatus 10. Further, since the control device 17 can recognize that the protection operation has been performed, it is possible to control the state of the compressor 12 or other elements so that the pressure does not exceed the first value again.
 次に、閾値として第2値が設定される第2例について説明する。 Next, a second example in which the second value is set as the threshold will be described.
 図4は、圧縮機12の縦断面部分拡大図、及び、圧縮機12が備えるバイパス弁94の平面図である。 FIG. 4 is a partially enlarged view of the longitudinal section of the compressor 12 and a plan view of the bypass valve 94 provided in the compressor 12.
 第2例では、図1及び図2に示したバイパス弁93、あるいは、図3及び図4に示したバイパス弁94が、制御機構の主要素として機能する。冷媒回路11a,11bに接続されたバイパス弁93は、圧縮機12により圧縮される前と後の冷媒の圧力差が第2値に達すると、圧縮機12をバイパスするための冷媒の流路を開く。圧縮機12の圧縮要素30に設置されたバイパス弁94は、圧縮要素30により圧縮される前と後の冷媒の圧力差が第2値に達すると、圧縮要素30をバイパスするための冷媒の流路を開く。具体的には、バイパス弁94は、圧縮要素30により圧縮される前と後の冷媒の圧力差が第2値に達すると、バネ97の作用によって開くことで、シリンダ31内の吸入経路と吐出マフラ35とを連通させる。例えば、第2値は、3.5~4.5MPaに設定される。 In the second example, the bypass valve 93 shown in FIGS. 1 and 2 or the bypass valve 94 shown in FIGS. 3 and 4 functions as a main element of the control mechanism. The bypass valve 93 connected to the refrigerant circuits 11a and 11b opens a refrigerant flow path for bypassing the compressor 12 when the pressure difference between the refrigerant before and after being compressed by the compressor 12 reaches the second value. open. When the pressure difference between the refrigerant before and after being compressed by the compression element 30 reaches the second value, the bypass valve 94 installed in the compression element 30 of the compressor 12 flows the refrigerant for bypassing the compression element 30. Open the road. Specifically, when the pressure difference between the refrigerant before and after being compressed by the compression element 30 reaches the second value, the bypass valve 94 is opened by the action of the spring 97, and thereby the suction path and the discharge in the cylinder 31 are discharged. The muffler 35 is communicated. For example, the second value is set to 3.5 to 4.5 MPa.
 バイパス弁93,94は、高圧と低圧との圧力差が第2値を超えると開いて高圧の上昇を防止する。例えば、バイパス弁94は、圧縮機12の吐出マフラ35とシリンダ31の吸入部との間にバイパスを形成することにより、圧縮機12内の高圧搬送経路が閉塞された場合においても確実に高圧を下げることができる。 The bypass valves 93 and 94 are opened when the pressure difference between the high pressure and the low pressure exceeds the second value to prevent the high pressure from rising. For example, the bypass valve 94 forms a bypass between the discharge muffler 35 of the compressor 12 and the suction portion of the cylinder 31, so that a high pressure can be reliably ensured even when the high-pressure conveyance path in the compressor 12 is blocked. Can be lowered.
 第2例では、高圧と低圧との圧力差が第2値を超えている間のみ、バイパス弁93,94が動作する。そのため、冷凍サイクル装置10の運転状態を損なわずに運転を継続することができる。 In the second example, the bypass valves 93 and 94 operate only while the pressure difference between the high pressure and the low pressure exceeds the second value. Therefore, the operation can be continued without impairing the operation state of the refrigeration cycle apparatus 10.
 次に、閾値として第3値が設定される第3例について説明する。 Next, a third example in which the third value is set as the threshold will be described.
 図5は、圧縮機12が備える電動要素40の固定子41及び圧力ヒューズ95の電気接続図である。 FIG. 5 is an electrical connection diagram of the stator 41 and the pressure fuse 95 of the electric element 40 included in the compressor 12.
 第3例では、図1及び図2に示した圧力スイッチ92、あるいは、図3及び図5に示した圧力ヒューズ95が、制御機構の主要素として機能する。冷媒回路11a,11bの高圧配管に設置された圧力スイッチ92は、冷媒回路11a,11bの高圧側における冷媒の圧力が第3値に達すると、圧縮機12への給電を機械的に停止する。圧縮機12の電動要素40に設置された圧力ヒューズ95は、冷媒回路11a,11bの高圧側における冷媒の圧力が第3値に達すると、電動要素40への給電を停止する。具体的には、圧力ヒューズ95は、冷媒回路11a,11bの高圧側における冷媒の圧力が第3値に達すると、電動要素40と外部電源との間の通電を遮断する。第3値は、第1値よりも高い値に設定される。例えば、第3値は、5~6MPaに設定される。 In the third example, the pressure switch 92 shown in FIGS. 1 and 2 or the pressure fuse 95 shown in FIGS. 3 and 5 functions as a main element of the control mechanism. The pressure switch 92 installed in the high-pressure piping of the refrigerant circuits 11a and 11b mechanically stops the power supply to the compressor 12 when the refrigerant pressure on the high-pressure side of the refrigerant circuits 11a and 11b reaches the third value. The pressure fuse 95 installed in the electric element 40 of the compressor 12 stops power supply to the electric element 40 when the refrigerant pressure on the high pressure side of the refrigerant circuits 11a and 11b reaches the third value. Specifically, when the pressure of the refrigerant on the high-pressure side of the refrigerant circuits 11a and 11b reaches the third value, the pressure fuse 95 interrupts energization between the electric element 40 and the external power source. The third value is set to a value higher than the first value. For example, the third value is set to 5 to 6 MPa.
 圧力ヒューズ95は、圧縮機12の吐出管22が閉塞した場合にも動作可能なため、圧力スイッチ92よりも好適である。圧力ヒューズ95としては、自動復帰式のものを用いることが好ましい。図5に示すように、圧力ヒューズ95は、Y結線により接続された3相の固定子巻線44の中性点を遮断することで、電動要素40への電流の流れを止める。これにより、圧縮機12の動作を停止することができる。 The pressure fuse 95 is more preferable than the pressure switch 92 because it can operate even when the discharge pipe 22 of the compressor 12 is closed. As the pressure fuse 95, it is preferable to use an automatic return type. As shown in FIG. 5, the pressure fuse 95 stops the current flow to the electric element 40 by interrupting the neutral point of the three-phase stator winding 44 connected by the Y connection. Thereby, the operation of the compressor 12 can be stopped.
 第3例では、圧縮機12が停止するため、冷凍サイクル装置10の運転状態を保つことはできない。しかし、冷凍サイクル装置10の復帰運転が可能な状態で安全を確保することができる。 In the third example, since the compressor 12 is stopped, the operating state of the refrigeration cycle apparatus 10 cannot be maintained. However, safety can be ensured in a state in which the refrigeration cycle apparatus 10 can be restored.
 次に、閾値として第4値が設定される第4例について説明する。 Next, a fourth example in which the fourth value is set as the threshold will be described.
 第4例では、図1及び図2に示した制御装置17と、図3に示したリリーフバルブ96が、制御機構の主要素として機能する。リリーフバルブ96は、圧縮機12の密閉容器20の外に冷媒を排出するために使用される。制御装置17は、冷媒回路11a,11bの高圧側における冷媒の圧力が第4値に達すると、リリーフバルブ96を開く。第4値は、第3値よりも高い値に設定される。例えば、第4値は、5.5~6.5MPaに設定される。 In the fourth example, the control device 17 shown in FIGS. 1 and 2 and the relief valve 96 shown in FIG. 3 function as main elements of the control mechanism. The relief valve 96 is used to discharge the refrigerant out of the sealed container 20 of the compressor 12. The control device 17 opens the relief valve 96 when the refrigerant pressure on the high pressure side of the refrigerant circuits 11a and 11b reaches the fourth value. The fourth value is set to a value higher than the third value. For example, the fourth value is set to 5.5 to 6.5 MPa.
 第4例では、冷媒を冷凍サイクルの外部へ放出してしまう。そのため、冷凍サイクル装置10は、その後に正常運転を行うことができなくなる。しかし、より確実に安全を確保することができる。 In the fourth example, the refrigerant is discharged outside the refrigeration cycle. Therefore, the refrigeration cycle apparatus 10 cannot perform normal operation thereafter. However, safety can be ensured more reliably.
 前述したように、第1例から第4例までの4つの実装例のうち、2つ以上を併用することで、より確実な保護が可能となる。4つの実装例の動作優先順位は、第1例が最も高く、第2例、第3例、第4例の順に低くなっていく。これにより、初期は、運転状態への影響が少ない手段で保護をかけることができる。センサの異常等、冷凍サイクル装置10に明らかな異常が生じた場合には、冷凍サイクル装置10の運転を停止することができる。 As described above, by using two or more of the four mounting examples from the first example to the fourth example, more reliable protection can be achieved. The operation priority of the four implementation examples is highest in the first example, and decreases in the order of the second example, the third example, and the fourth example. Thereby, in the initial stage, protection can be applied by means having little influence on the operating state. When a clear abnormality occurs in the refrigeration cycle apparatus 10 such as a sensor abnormality, the operation of the refrigeration cycle apparatus 10 can be stopped.
 以上説明したように、本実施の形態によれば、HFO-1123の不均化反応の拡散を防止することができる。そのため、HFO-1123を含有する冷媒の不均化反応による爆発を防止することが可能となる。 As described above, according to the present embodiment, the diffusion of the disproportionation reaction of HFO-1123 can be prevented. Therefore, it is possible to prevent an explosion due to a disproportionation reaction of the refrigerant containing HFO-1123.
 以上、本発明の実施の形態について説明したが、この実施の形態を部分的に実施しても構わない。例えば、各図において符号を付した要素のうち、いずれか1つ又はいくつかを省略したり、別の要素に置き換えたりしてもよい。なお、本発明は、この実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。 As mentioned above, although embodiment of this invention was described, you may implement this embodiment partially. For example, any one or some of the elements denoted by reference numerals in each drawing may be omitted or replaced with another element. In addition, this invention is not limited to this embodiment, A various change is possible as needed.
 10 冷凍サイクル装置、11a,11b 冷媒回路、12 圧縮機、13 四方弁、14 室外熱交換器、15 膨張弁、16 室内熱交換器、17 制御装置、20 密閉容器、21 吸入管、22 吐出管、23 吸入マフラ、24 電源端子、30 圧縮要素、31 シリンダ、32 ローリングピストン、33 主軸受、34 副軸受、35 吐出マフラ、40 電動要素、41 固定子、42 回転子、43 固定子鉄心、44 固定子巻線、45 リード線、46 回転子鉄心、48 絶縁部材、50 軸、51 偏心軸部、52 主軸部、53 副軸部、91 圧力センサ、92 圧力スイッチ、93 バイパス弁、94 バイパス弁、95 圧力ヒューズ、96 リリーフバルブ、97 バネ。 10 refrigeration cycle apparatus, 11a, 11b refrigerant circuit, 12 compressor, 13 four-way valve, 14 outdoor heat exchanger, 15 expansion valve, 16 indoor heat exchanger, 17 control device, 20 sealed container, 21 suction pipe, 22 discharge pipe , 23 Suction muffler, 24 Power supply terminal, 30 Compression element, 31 Cylinder, 32 Rolling piston, 33 Main bearing, 34 Sub bearing, 35 Discharge muffler, 40 Electric element, 41 Stator, 42 Rotor, 43 Stator core, 44 Stator winding, 45 lead wire, 46 rotor core, 48 insulation member, 50 shaft, 51 eccentric shaft portion, 52 main shaft portion, 53 subshaft portion, 91 pressure sensor, 92 pressure switch, 93 bypass valve, 94 bypass valve , 95 pressure fuse, 96 relief valve, 97 spring.

Claims (11)

  1.  圧縮機と、第1熱交換器と、膨張機構と、第2熱交換器とが接続され、1,1,2-トリフルオロエチレンを含有する冷媒が循環する冷媒回路と、
     前記冷媒回路の前記圧縮機から前記膨張機構までの流路における前記冷媒の圧力を閾値以下に制御する制御機構と
    を備えることを特徴とする冷凍サイクル装置。
    A refrigerant circuit in which a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger are connected, and a refrigerant containing 1,1,2-trifluoroethylene circulates;
    A refrigeration cycle apparatus comprising: a control mechanism that controls a pressure of the refrigerant in a flow path from the compressor to the expansion mechanism of the refrigerant circuit to be equal to or less than a threshold value.
  2.  前記制御機構は、前記冷媒回路の前記圧縮機から前記膨張機構までの流路における前記冷媒の圧力が第1値に達すると、前記圧縮機の電動要素の回転数を下げることを特徴とする請求項1の冷凍サイクル装置。 The said control mechanism reduces the rotation speed of the electric element of the said compressor, when the pressure of the said refrigerant | coolant in the flow path from the said compressor of the said refrigerant circuit to the said expansion mechanism reaches a 1st value. Item 2. The refrigeration cycle apparatus according to item 1.
  3.  前記制御機構は、前記圧縮機の圧縮要素により圧縮される前と後の前記冷媒の圧力差が第2値に達すると、前記圧縮機の圧縮要素をバイパスするための前記冷媒の流路を開くバイパス弁を前記圧縮機に具備することを特徴とする請求項1又は2の冷凍サイクル装置。 The control mechanism opens the refrigerant flow path for bypassing the compression element of the compressor when the pressure difference between the refrigerant before and after being compressed by the compression element of the compressor reaches a second value. The refrigeration cycle apparatus according to claim 1 or 2, wherein a bypass valve is provided in the compressor.
  4.  前記制御機構は、前記冷媒回路に接続され、前記圧縮機により圧縮される前と後の前記冷媒の圧力差が第2値に達すると、前記圧縮機をバイパスするための前記冷媒の流路を開くバイパス弁を具備することを特徴とする請求項1から3のいずれかの冷凍サイクル装置。 The control mechanism is connected to the refrigerant circuit, and when the pressure difference between the refrigerant before and after being compressed by the compressor reaches a second value, a flow path of the refrigerant for bypassing the compressor The refrigeration cycle apparatus according to any one of claims 1 to 3, further comprising an open bypass valve.
  5.  前記制御機構は、前記冷媒回路の前記圧縮機から前記膨張機構までの流路における前記冷媒の圧力が第3値に達すると、前記圧縮機の電動要素への給電を停止することを特徴とする請求項1又は3又は4の冷凍サイクル装置。 The control mechanism stops power supply to the electric element of the compressor when the pressure of the refrigerant in the flow path from the compressor to the expansion mechanism of the refrigerant circuit reaches a third value. The refrigeration cycle apparatus according to claim 1, 3 or 4.
  6.  前記制御機構は、前記冷媒回路の前記圧縮機から前記膨張機構までの流路における前記冷媒の圧力が前記第1値よりも高い第3値に達すると、前記圧縮機の電動要素への給電を停止することを特徴とする請求項2の冷凍サイクル装置。 When the pressure of the refrigerant in the flow path from the compressor to the expansion mechanism of the refrigerant circuit reaches a third value higher than the first value, the control mechanism supplies power to the electric element of the compressor. The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus is stopped.
  7.  前記制御機構は、前記冷媒回路の前記圧縮機から前記膨張機構までの流路における前記冷媒の圧力が前記第3値に達すると、前記圧縮機の電動要素と外部電源との間の通電を遮断する圧力ヒューズを前記圧縮機に具備することを特徴とする請求項5又は6の冷凍サイクル装置。 When the refrigerant pressure in the flow path from the compressor to the expansion mechanism of the refrigerant circuit reaches the third value, the control mechanism interrupts energization between the electric element of the compressor and an external power source. The refrigeration cycle apparatus according to claim 5 or 6, wherein the compressor is provided with a pressure fuse.
  8.  前記制御機構は、前記圧縮機の容器の外に前記冷媒を排出するためのリリーフバルブを前記圧縮機に具備し、前記冷媒回路の前記圧縮機から前記膨張機構までの流路における前記冷媒の圧力が第4値に達すると、前記リリーフバルブを開くことを特徴とする請求項1から4のいずれかの冷凍サイクル装置。 The control mechanism includes a relief valve for discharging the refrigerant to the outside of the compressor container, and the pressure of the refrigerant in a flow path from the compressor to the expansion mechanism of the refrigerant circuit. The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein when the pressure reaches a fourth value, the relief valve is opened.
  9.  前記制御機構は、前記圧縮機の容器の外に前記冷媒を排出するためのリリーフバルブを前記圧縮機に具備し、前記冷媒回路の前記圧縮機から前記膨張機構までの流路における前記冷媒の圧力が前記第3値よりも高い第4値に達すると、前記リリーフバルブを開くことを特徴とする請求項5から7のいずれかの冷凍サイクル装置。 The control mechanism includes a relief valve for discharging the refrigerant to the outside of the compressor container, and the pressure of the refrigerant in a flow path from the compressor to the expansion mechanism of the refrigerant circuit. The refrigeration cycle apparatus according to any one of claims 5 to 7, wherein when the first value reaches a fourth value higher than the third value, the relief valve is opened.
  10.  前記冷媒が1,1,2-トリフルオロエチレンであることを特徴とする請求項1から9のいずれかの冷凍サイクル装置。 10. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant is 1,1,2-trifluoroethylene.
  11.  前記冷媒が1,1,2-トリフルオロエチレンを1%以上含有する混合物であることを特徴とする請求項1から9のいずれかの冷凍サイクル装置。 10. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant is a mixture containing 1% or more of 1,1,2-trifluoroethylene.
PCT/JP2015/051125 2014-03-14 2015-01-16 Refrigeration cycle device WO2015136979A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580013964.2A CN106104174B (en) 2014-03-14 2015-01-16 Freezing cycle device
KR1020167028381A KR101841869B1 (en) 2014-03-14 2015-01-16 Refrigeration cycle device
JP2016507384A JP6453849B2 (en) 2014-03-14 2015-01-16 Refrigeration cycle equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014052481 2014-03-14
JP2014-052481 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015136979A1 true WO2015136979A1 (en) 2015-09-17

Family

ID=54071433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051125 WO2015136979A1 (en) 2014-03-14 2015-01-16 Refrigeration cycle device

Country Status (5)

Country Link
JP (3) JP6453849B2 (en)
KR (1) KR101841869B1 (en)
CN (1) CN106104174B (en)
CZ (1) CZ2016565A3 (en)
WO (1) WO2015136979A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025372A (en) * 2016-07-27 2018-02-15 パナソニック株式会社 Refrigeration cycle apparatus
JP2018025371A (en) * 2016-07-27 2018-02-15 パナソニック株式会社 Refrigeration cycle apparatus
WO2018100712A1 (en) * 2016-12-01 2018-06-07 三菱電機株式会社 Refrigeration cycle device
WO2018168776A1 (en) * 2017-03-14 2018-09-20 Agc株式会社 Heat cycle system
WO2018181038A1 (en) * 2017-03-31 2018-10-04 ダイキン工業株式会社 Air conditioning device
CN108885038A (en) * 2016-03-28 2018-11-23 三菱电机株式会社 Outdoor unit
JP2019027655A (en) * 2017-07-28 2019-02-21 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2019027654A (en) * 2017-07-28 2019-02-21 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2019032108A (en) * 2017-08-08 2019-02-28 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2019163864A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2020034249A (en) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル Refrigeration cycle device
JP2020034250A (en) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル Refrigeration cycle device
JP2020070930A (en) * 2018-10-29 2020-05-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device
KR20200100740A (en) * 2017-12-18 2020-08-26 다이킨 고교 가부시키가이샤 Refrigeration cycle device
JPWO2021205590A1 (en) * 2020-04-09 2021-10-14

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225287B (en) * 2016-08-09 2019-02-12 宁波阿诺丹机械有限公司 A kind of high-efficiency carbon dioxide refrigeration system
JP7151704B2 (en) * 2017-04-20 2022-10-12 Agc株式会社 heat cycle system
WO2020019608A1 (en) * 2018-07-25 2020-01-30 广东美芝制冷设备有限公司 Compressor and refrigerator
EP4002646A4 (en) * 2019-07-17 2022-07-13 Mitsubishi Electric Corporation Stator, motor, compressor, and air conditioner
EP4137454A4 (en) 2020-04-16 2023-10-11 Furukawa Co., Ltd. Sulfide inorganic solid electrolyte material, solid electrolyte, solid electrolyte film, and lithium ion battery
US20230187986A1 (en) * 2020-07-28 2023-06-15 Mitsubishi Electric Corporation Rotor, motor, compressor, and refrigeration cycle apparatus
JPWO2023182442A1 (en) 2022-03-25 2023-09-28
JP7558358B1 (en) 2023-08-29 2024-09-30 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle device, compressor and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119994A (en) * 1979-03-08 1980-09-16 Matsushita Electric Ind Co Ltd Rotary compressor
JPH0454865B2 (en) * 1986-03-20 1992-09-01 Daikin Ind Ltd
JPH0440130Y2 (en) * 1985-07-29 1992-09-21
JPH06323647A (en) * 1993-05-10 1994-11-25 Hitachi Ltd Refrigerator
JPH10253174A (en) * 1997-03-13 1998-09-25 Toyota Autom Loom Works Ltd Freezing circuit
JP2002243285A (en) * 2001-02-14 2002-08-28 Daikin Ind Ltd Refrigeration unit
JP2006144622A (en) * 2004-11-18 2006-06-08 Calsonic Compressor Inc Gas compressor
WO2009157320A1 (en) * 2008-06-24 2009-12-30 三菱電機株式会社 Refrigerating cycle apparatus, and air conditioning apparatus
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2013029059A (en) * 2011-07-28 2013-02-07 Mitsubishi Electric Corp Rotary two stage compressor
WO2013051271A1 (en) * 2011-10-06 2013-04-11 パナソニック株式会社 Refrigeration device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018584B1 (en) * 1970-05-23 1975-06-30
JPS5082630U (en) * 1973-12-03 1975-07-16
JPS5890716A (en) * 1981-11-25 1983-05-30 松下電器産業株式会社 3-phase condenser device
JP2823560B2 (en) * 1987-09-05 1998-11-11 サンデン株式会社 Compressor protector
JPH02171554A (en) * 1988-12-23 1990-07-03 Matsushita Electric Ind Co Ltd Heating overload control device for air conditioner
JP2790521B2 (en) 1990-05-30 1998-08-27 松下精工株式会社 Heat pump type air conditioner
KR100441005B1 (en) * 2001-11-24 2004-07-21 삼성전자주식회사 Heat-pump air conditioner and control method thereof
JP4011397B2 (en) * 2002-05-13 2007-11-21 株式会社センサータ・テクノロジーズジャパン Internal protector for hermetic electric compressor
JP2009036056A (en) * 2007-07-31 2009-02-19 Ubukata Industries Co Ltd Sealed electric compressor
DE112012002162T5 (en) * 2011-05-19 2014-02-27 Asahi Glass Company, Limited Working medium and heat cycle process system
EP3239267B1 (en) 2011-05-19 2020-02-12 AGC Inc. Working medium and heat-cycle system
JP2014020675A (en) * 2012-07-18 2014-02-03 Denso Corp Refrigeration cycle device for cell temperature adjustment
JP2015145452A (en) * 2014-01-31 2015-08-13 旭硝子株式会社 Heat-cycle working-medium, heat-cycle system composition, and heat-cycle system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119994A (en) * 1979-03-08 1980-09-16 Matsushita Electric Ind Co Ltd Rotary compressor
JPH0440130Y2 (en) * 1985-07-29 1992-09-21
JPH0454865B2 (en) * 1986-03-20 1992-09-01 Daikin Ind Ltd
JPH06323647A (en) * 1993-05-10 1994-11-25 Hitachi Ltd Refrigerator
JPH10253174A (en) * 1997-03-13 1998-09-25 Toyota Autom Loom Works Ltd Freezing circuit
JP2002243285A (en) * 2001-02-14 2002-08-28 Daikin Ind Ltd Refrigeration unit
JP2006144622A (en) * 2004-11-18 2006-06-08 Calsonic Compressor Inc Gas compressor
WO2009157320A1 (en) * 2008-06-24 2009-12-30 三菱電機株式会社 Refrigerating cycle apparatus, and air conditioning apparatus
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2013029059A (en) * 2011-07-28 2013-02-07 Mitsubishi Electric Corp Rotary two stage compressor
WO2013051271A1 (en) * 2011-10-06 2013-04-11 パナソニック株式会社 Refrigeration device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105521B2 (en) 2016-03-28 2021-08-31 Mitsubishi Electric Corporation Outdoor unit
CN114777216A (en) * 2016-03-28 2022-07-22 三菱电机株式会社 Outdoor machine
CN108885038A (en) * 2016-03-28 2018-11-23 三菱电机株式会社 Outdoor unit
JP2018025371A (en) * 2016-07-27 2018-02-15 パナソニック株式会社 Refrigeration cycle apparatus
JP2018025372A (en) * 2016-07-27 2018-02-15 パナソニック株式会社 Refrigeration cycle apparatus
WO2018100712A1 (en) * 2016-12-01 2018-06-07 三菱電機株式会社 Refrigeration cycle device
WO2018168776A1 (en) * 2017-03-14 2018-09-20 Agc株式会社 Heat cycle system
JPWO2018168776A1 (en) * 2017-03-14 2020-05-14 Agc株式会社 Heat cycle system
WO2018181038A1 (en) * 2017-03-31 2018-10-04 ダイキン工業株式会社 Air conditioning device
US11209195B2 (en) 2017-03-31 2021-12-28 Daikin Industries, Ltd. Air conditioner with a refrigerant having a property of undergoing disproportionation
JPWO2018181038A1 (en) * 2017-03-31 2020-01-23 ダイキン工業株式会社 Air conditioner
JP2019027654A (en) * 2017-07-28 2019-02-21 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2019027655A (en) * 2017-07-28 2019-02-21 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2019032108A (en) * 2017-08-08 2019-02-28 パナソニックIpマネジメント株式会社 Refrigeration cycle device
KR102655619B1 (en) 2017-12-18 2024-04-09 다이킨 고교 가부시키가이샤 refrigeration cycle device
KR102655073B1 (en) 2017-12-18 2024-04-08 다이킨 고교 가부시키가이샤 refrigeration cycle device
KR20200100740A (en) * 2017-12-18 2020-08-26 다이킨 고교 가부시키가이샤 Refrigeration cycle device
KR20200101401A (en) * 2017-12-18 2020-08-27 다이킨 고교 가부시키가이샤 Refrigeration cycle device
EP3770517A4 (en) * 2018-03-19 2021-05-12 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle apparatus
WO2019181710A1 (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus
JP2019163864A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP7149494B2 (en) 2018-03-19 2022-10-07 パナソニックIpマネジメント株式会社 refrigeration cycle equipment
JP7187898B2 (en) 2018-08-31 2022-12-13 株式会社富士通ゼネラル refrigeration cycle equipment
JP2020034250A (en) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル Refrigeration cycle device
JP2020034249A (en) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル Refrigeration cycle device
JP7151282B2 (en) 2018-08-31 2022-10-12 株式会社富士通ゼネラル refrigeration cycle equipment
JP2020070930A (en) * 2018-10-29 2020-05-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP7386971B2 (en) 2020-04-09 2023-11-27 三菱電機株式会社 Refrigeration cycle equipment and air conditioning equipment
WO2021205590A1 (en) * 2020-04-09 2021-10-14 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
JPWO2021205590A1 (en) * 2020-04-09 2021-10-14

Also Published As

Publication number Publication date
KR101841869B1 (en) 2018-05-04
JPWO2015136979A1 (en) 2017-04-06
JP6815351B2 (en) 2021-01-20
CN106104174A (en) 2016-11-09
JP2018112396A (en) 2018-07-19
CZ2016565A3 (en) 2017-01-25
JP2020073649A (en) 2020-05-14
JP6453849B2 (en) 2019-01-16
KR20160133517A (en) 2016-11-22
CN106104174B (en) 2019-05-03

Similar Documents

Publication Publication Date Title
JP6815351B2 (en) Refrigeration cycle equipment
JP6180619B2 (en) Compressor and refrigeration cycle apparatus
JP6192851B2 (en) Refrigeration cycle equipment
JP6342006B2 (en) Refrigeration cycle equipment
JP6775542B2 (en) Refrigeration cycle equipment
JP6293262B2 (en) Compressor and refrigeration cycle apparatus
WO2015136980A1 (en) Refrigeration cycle device
CN107614880B (en) Compressor and refrigeration cycle device
JP2018025372A (en) Refrigeration cycle apparatus
JP2019027655A (en) Refrigeration cycle device
JP6872686B2 (en) Refrigeration cycle equipment
CN118946772A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PV2016-565

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 20167028381

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15760729

Country of ref document: EP

Kind code of ref document: A1