WO2015076059A1 - キャパシタおよびその製造方法 - Google Patents
キャパシタおよびその製造方法 Download PDFInfo
- Publication number
- WO2015076059A1 WO2015076059A1 PCT/JP2014/078331 JP2014078331W WO2015076059A1 WO 2015076059 A1 WO2015076059 A1 WO 2015076059A1 JP 2014078331 W JP2014078331 W JP 2014078331W WO 2015076059 A1 WO2015076059 A1 WO 2015076059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- alkali metal
- separator
- positive electrode
- active material
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 118
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 112
- 229910052751 metal Inorganic materials 0.000 claims abstract description 74
- 239000002184 metal Substances 0.000 claims abstract description 74
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 37
- 239000007773 negative electrode material Substances 0.000 claims abstract description 36
- 229910001413 alkali metal ion Inorganic materials 0.000 claims abstract description 31
- 239000007774 positive electrode material Substances 0.000 claims abstract description 25
- 238000007789 sealing Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 41
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 29
- 229910001416 lithium ion Inorganic materials 0.000 description 29
- 229910052744 lithium Inorganic materials 0.000 description 20
- -1 polyethylene Polymers 0.000 description 20
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 239000006260 foam Substances 0.000 description 16
- 239000011148 porous material Substances 0.000 description 16
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 239000002002 slurry Substances 0.000 description 13
- 150000001450 anions Chemical class 0.000 description 12
- 238000007747 plating Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 150000001768 cations Chemical class 0.000 description 11
- 239000010439 graphite Substances 0.000 description 11
- 229910002804 graphite Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- 210000001787 dendrite Anatomy 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 239000003125 aqueous solvent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000002608 ionic liquid Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000006230 acetylene black Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 229910021385 hard carbon Inorganic materials 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000004080 punching Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 229910000365 copper sulfate Inorganic materials 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000005486 organic electrolyte Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical class [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- NVIANCROYQGROD-UHFFFAOYSA-N bis(fluorosulfonyl)azanide Chemical compound FS(=O)(=O)[N-]S(F)(=O)=O NVIANCROYQGROD-UHFFFAOYSA-N 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011300 coal pitch Substances 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002892 organic cations Chemical class 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- DOYSIZKQWJYULQ-UHFFFAOYSA-N 1,1,2,2,2-pentafluoro-n-(1,1,2,2,2-pentafluoroethylsulfonyl)ethanesulfonamide Chemical compound FC(F)(F)C(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)C(F)(F)F DOYSIZKQWJYULQ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- BMQZYMYBQZGEEY-UHFFFAOYSA-M 1-ethyl-3-methylimidazolium chloride Chemical compound [Cl-].CCN1C=C[N+](C)=C1 BMQZYMYBQZGEEY-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- QECVIPBZOPUTRD-UHFFFAOYSA-N N=S(=O)=O Chemical compound N=S(=O)=O QECVIPBZOPUTRD-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical group OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- HYGWNUKOUCZBND-UHFFFAOYSA-N azanide Chemical compound [NH2-] HYGWNUKOUCZBND-UHFFFAOYSA-N 0.000 description 1
- 229940063013 borate ion Drugs 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- NCMHKCKGHRPLCM-UHFFFAOYSA-N caesium(1+) Chemical compound [Cs+] NCMHKCKGHRPLCM-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- HCQWRNRRURULEY-UHFFFAOYSA-L lithium;potassium;dichloride Chemical compound [Li+].[Cl-].[Cl-].[K+] HCQWRNRRURULEY-UHFFFAOYSA-L 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- GGYPIUANQNUBOE-UHFFFAOYSA-N n-(trifluoromethylsulfonyl)sulfamoyl fluoride Chemical compound FC(F)(F)S(=O)(=O)NS(F)(=O)=O GGYPIUANQNUBOE-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910001419 rubidium ion Inorganic materials 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- KXNAKBRHZYDSLY-UHFFFAOYSA-N sodium;oxygen(2-);titanium(4+) Chemical compound [O-2].[Na+].[Ti+4] KXNAKBRHZYDSLY-UHFFFAOYSA-N 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/70—Current collectors characterised by their structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/02—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to a capacitor including an electrode group in which at least a negative electrode is pre-doped with an alkali metal.
- a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery (LIB) or an electric double layer capacitor (EDLC) is known.
- LIB lithium ion secondary battery
- EDLC electric double layer capacitor
- the lithium ion secondary battery has a limit in the ability to charge and discharge high capacity power in a short time
- the electric double layer capacitor has a limit in the amount of electricity that can be stored. Therefore, in recent years, lithium ion capacitors have attracted attention as large-capacity electricity storage devices that have the advantages of lithium ion secondary batteries and electric double layer capacitors.
- the lithium ion capacitor In order to fully exhibit the performance of the lithium ion capacitor, it is necessary to pre-dope lithium at least one of the positive electrode active material and the negative electrode active material. For example, when activated carbon is used as the positive electrode active material and hard carbon is used as the negative electrode active material, the positive electrode and the negative electrode originally do not contain lithium. Therefore, unless lithium is replenished, the ionic species responsible for charge transfer is insufficient. Further, in order to obtain a high voltage lithium ion capacitor, it is desired to pre-dope lithium into the negative electrode in advance to lower the negative electrode potential. Also in the field of nonaqueous electrolyte batteries, it has been proposed to pre-dope lithium into the positive electrode or the negative electrode in order to obtain a high-capacity battery.
- a lithium supply source is prepared, the lithium supply source and the negative electrode are electrically connected, and lithium is electrochemically pre-doped to the negative electrode (Patent Literature). 1).
- the alkali metal may be deposited on the negative electrode surface closest to the alkali metal supply source.
- Alkali metal deposition is not preferable because it causes a short circuit. Therefore, in Patent Document 1, the physical distance is maintained by arranging two separators so that the gap between the alkali metal supply source and the adjacent negative electrode or positive electrode is 40 to 120 ⁇ m.
- pre-doping takes time, and the alkali metal distribution doped in the thickness direction of the negative electrode tends to be non-uniform.
- One aspect of the present invention includes a positive electrode having a positive electrode active material and a porous positive electrode current collector holding the positive electrode active material, and a negative electrode active material and a porous negative electrode current collector holding the negative electrode active material.
- An electrode group comprising a negative electrode and a first separator interposed between the positive electrode and the negative electrode, a non-aqueous electrolyte having alkali metal ion conductivity, a case for sealing the electrode group and the non-aqueous electrolyte, An alkali metal supply source interposed between the electrode group and the case, and a second separator interposed between the electrode group and the alkali metal supply source, at least the negative electrode being the alkali metal supply source
- the second separator has a thickness of 5 to 60 ⁇ m, and the negative electrode current collector includes a first metal porous body having a three-dimensional network structure. On the capacitor.
- Another aspect of the present invention is a positive electrode having a positive electrode active material and a porous positive electrode current collector that holds the positive electrode active material, a negative electrode active material, and a porous negative electrode current collector that holds the negative electrode active material.
- a step of preparing an electrode group including a negative electrode having a body, and a first separator interposed between the positive electrode and the negative electrode, a step of preparing an alkali metal supply source, the alkali metal supply source, and the electrode A group and a second separator are accommodated in the case such that the alkali metal supply source is interposed between the electrode group and the case, and faces the electrode group via the second separator.
- a step of electrically connecting the negative electrode and the alkali metal supply source, and a nonaqueous electrolyte having alkali metal ion conductivity is injected into the case, and is carried by the alkali metal supply source.
- the present invention it is possible to provide a capacitor in which alkali metal can be pre-doped on the negative electrode uniformly in a short time, and generation of dendrite is suppressed.
- a first aspect of the present invention is (1) a positive electrode having a positive electrode active material and a porous positive electrode current collector holding the positive electrode active material, and a negative electrode active material and a porous negative electrode holding the negative electrode active material
- An electrode group comprising a negative electrode having a current collector and a first separator interposed between the positive electrode and the negative electrode, a nonaqueous electrolyte having alkali metal ion conductivity, the electrode group, and the nonaqueous electrolyte.
- a case for sealing an alkali metal supply source interposed between the electrode group and the case, and a second separator interposed between the electrode group and the alkali metal supply source, at least the negative electrode,
- the first metal porous body contains alkali metal pre-doped from the alkali metal supply source
- the second separator has a thickness of 5 to 60 ⁇ m
- the negative electrode current collector has a three-dimensional network structure Including, on the capacitor.
- the thickness of the negative electrode may be 50 to 600 ⁇ m. This is because even if the negative electrode has this thickness, the negative electrode can be uniformly doped into the negative electrode.
- the positive electrode current collector preferably includes a second metal porous body having a three-dimensional network structure. This is because movement of alkali metal ions is performed more smoothly.
- the porosity of the first separator is preferably 20 to 85%, and the porosity of the second separator is preferably 20 to 85%. This is because movement of alkali metal ions is performed more smoothly.
- the thickness of the first separator is preferably 10% or less with respect to the total thickness of the pair of positive and negative electrodes. This is because the time required for pre-doping is further reduced.
- the potential of the negative electrode is preferably 0 to 1 V with respect to the redox potential of the alkali metal in the discharge state of the capacitor. That is, pre-doping is preferably performed until the potential of the negative electrode becomes 0 to 1 V with respect to the redox potential of the doped alkali metal. This is because a high voltage capacitor can be obtained.
- Another aspect of the present invention is (7) a positive electrode having a positive electrode active material and a porous positive electrode current collector holding the positive electrode active material, a negative electrode active material, and a porous negative electrode current holding the negative electrode active material.
- the present invention relates to a method for manufacturing a capacitor, including a first metal porous body having a three-dimensional network structure. Thereby, it becomes possible to pre-dope an alkali metal uniformly to a negative electrode in a short time. Moreover, the generation of dendrites is also suppressed.
- the second separator is interposed between the alkali metal supply source and the electrode group, and has a thickness of 5 to 60 ⁇ m.
- the thickness of the second separator is preferably 5 to 40 ⁇ m, and more preferably 5 to 35 ⁇ m. When the thickness of the second separator exceeds 60 ⁇ m, it takes a long time for pre-doping, and the dope becomes non-uniform. If the thickness of the second separator is less than 5 ⁇ m, dendrites are likely to be generated.
- the thickness of the second separator is 5 to 60 ⁇ m, the physical distance between the alkali metal supply source and the electrode group is relatively small. However, since the diffusibility of alkali metal ions is high when the negative electrode current collector includes the first metal porous body, the formation of dendrites is suppressed by setting the thickness of the second separator within this range. Further, the negative electrode can be uniformly pre-doped with alkali metal.
- the thickness of the second separator is larger than 40 ⁇ m in order to suppress the formation of dendrites.
- the thickness of the second separator is larger than 40 ⁇ m, there arises a problem that the dope tends to be non-uniform. This is presumably because a potential distribution is formed in the thickness direction of the negative electrode. As the distance between the alkali metal source and the negative electrode increases, the dope tends to become non-uniform.
- the alkali metal ions to be doped can easily move inside the negative electrode and are quickly doped not only on the surface of the negative electrode but also on the entire negative electrode. .
- a potential distribution in the thickness direction is hardly formed on the negative electrode. Therefore, even if the thickness of the second separator is 40 ⁇ m or less, the generation of dendrites can be suppressed if the thickness is 5 ⁇ m or more.
- the thickness of a 2nd separator is 40 micrometers or more, if it is 60 micrometers or less, an alkali metal can be doped uniformly.
- a separator having a thickness of 5 to 60 ⁇ m may be used alone, or a plurality of separators may be stacked to a thickness of 5 to 60 ⁇ m to be used as the second separator. Among them, it is preferable to use a separator having a predetermined thickness alone in terms of more uniform dope.
- the second separator has a porous material structure and allows ions to permeate by holding a non-aqueous electrolyte in the pores.
- the porosity of the second separator is preferably 20 to 85%. When the porosity is within this range, movement of alkali metal ions is performed more smoothly. Therefore, the time required for pre-doping is reduced, and the doping can be performed more uniformly.
- the material of the second separator for example, polyolefin such as polyethylene or polypropylene; polyester such as polyethylene terephthalate; polyamide; polyimide; cellulose; glass fiber or the like can be used.
- the average pore diameter of the second separator is not particularly limited and is, for example, about 0.01 to 5 ⁇ m.
- the negative electrode includes a porous negative electrode current collector and a negative electrode active material.
- a conductive aid, a binder, and the like may be included as optional components.
- the porous negative electrode current collector is a first metal porous body having a three-dimensional network structure.
- the three-dimensional network shape refers to a structure in which rod-like or fibrous metals constituting the porous body are three-dimensionally connected to each other to form a network.
- a sponge-like structure and a nonwoven fabric-like structure can be mentioned. A specific structure will be described later. Since the first metal porous body has communication holes that are continuous with each other, the movement of alkali metal ions is not hindered.
- the three-dimensional network skeleton preferably has a cavity inside (that is, is hollow).
- the porosity of the first metal porous body is preferably 50% or more, and more preferably 80% or more and 98% or less. When the porosity is within this range, movement of alkali metal ions becomes smoother. In a substantially two-dimensional structure such as an expanded metal, a screen punch, a punching metal, or a lath plate, processing up to a porosity of 30% is the limit in terms of strength and the like.
- the porosity is a numerical value obtained by converting the ratio of ⁇ 1- (mass of porous body / true specific gravity of porous body) / (apparent volume of porous body) ⁇ to percentage (%).
- the metal that is the material of the first metal porous body is not particularly limited as long as it is not alloyed with an alkali metal.
- the alkali metal is lithium, copper, a copper alloy, nickel, a nickel alloy or the like can be used.
- the alkali metal is sodium, aluminum or an aluminum alloy can be used.
- the copper alloy preferably contains less than 50% by mass of elements other than copper
- the nickel alloy preferably contains less than 50% by mass of elements other than nickel.
- the product made from Sumitomo Electric Industries, Ltd. which is a copper porous body (porous body containing copper or a copper alloy) and a nickel porous body (porous body containing nickel or a nickel alloy) is used. Copper or nickel "Celmet" (registered trademark) can be used.
- the first metal porous body can be formed, for example, by coating a resin porous body having continuous voids with the metal as described above.
- the coating with metal can be performed by, for example, plating, vapor phase (evaporation, plasma chemical vapor deposition, sputtering, etc.), metal paste application, or the like.
- a three-dimensional network skeleton is formed by coating with metal. Of these coating methods, plating is preferred.
- a metal layer may be formed on the surface of the porous resin body (including the surface in the continuous void), and a known plating treatment method such as an electrolytic plating method or a molten salt plating method can be employed.
- a first metal porous body having a three-dimensional network shape corresponding to the shape of the resin porous body is formed.
- the conductive layer may be formed on the surface of the resin porous body by electroless plating, vapor deposition, sputtering, or by applying a conductive agent.
- the resin porous body is immersed in a dispersion containing the conductive agent. May be formed.
- the resin porous body is not particularly limited as long as it has continuous voids, and a resin foam, a resin nonwoven fabric, or the like can be used.
- a resin foam, a resin nonwoven fabric, or the like can be used as the resin constituting these porous bodies.
- the resin constituting these porous bodies those capable of making the inside of the skeleton hollow by decomposition or dissolution while maintaining the shape of the metal three-dimensional network skeleton after the metal coating treatment are preferable.
- the resin in the skeleton is desirably decomposed or dissolved and removed by heat treatment or the like. When the internal resin is removed after the metal coating process, a cavity is formed inside the skeleton of the metal porous body, and the metal becomes hollow.
- the first metal porous body thus obtained has a three-dimensional network structure skeleton corresponding to the shape of the resin foam.
- FIG. 2 shows a schematic diagram of the skeleton of the first metal porous body.
- the first metal porous body has a plurality of cellular holes 101 surrounded by the metal skeleton 102, and a substantially polygonal opening (or window) is provided between the adjacent holes 101. 103 is formed.
- a substantially polygon is used in a meaning including a polygon and a shape similar to the polygon (for example, a shape in which a corner of the polygon is rounded, a shape in which a side of the polygon is a curve, or the like).
- the openings 103 communicate with each other between the adjacent holes 101 to form a communication hole.
- a cavity 102a (see FIG. 3) is formed inside the skeleton.
- the first metal porous body has a very high porosity and a large specific surface area.
- the specific surface area of the first porous metal body (BET specific surface area) is, for example, 100 ⁇ 700cm 2 / g, preferably 150 ⁇ 650cm 2 / g, more preferably 200 ⁇ 600cm 2 / g.
- FIG. 3 is a schematic cross-sectional view showing a state in which the gap of the first metal porous body in FIG. 2 is filled with a negative electrode mixture.
- the cellular holes 101 are filled with the negative electrode mixture 104 and adhere to the surface of the metal skeleton 102 to form a negative electrode mixture layer.
- the thickness of the negative electrode is preferably 50 to 600 ⁇ m. Even if the thickness of the negative electrode is within this range, a potential difference in the negative electrode is unlikely to occur, and alkali metal pre-doping is performed uniformly. This is because the first metal porous body contained in the negative electrode current collector has a three-dimensional network skeleton. That is, the electrolyte can uniformly permeate through the entire interior including the inside of the negative electrode, and alkali metal ions can also move smoothly inside the negative electrode.
- the thickness of the negative electrode is more preferably 50 to 400 ⁇ m. Further, the porosity of the negative electrode is preferably 10 to 50%.
- the negative electrode active material exchanges electrons with alkali metal ions (Faraday reaction). Therefore, the negative electrode active material includes a material that occludes and releases (or inserts and desorbs) alkali metal ions.
- examples of such materials include carbon materials, lithium titanium oxides (such as spinel type lithium titanium oxides such as lithium titanate), alloy-based active materials, and sodium-containing titanium compounds (such as spinel types such as sodium titanate). Sodium titanium oxide, etc.).
- the carbon material include graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), and graphite.
- An alloy-based active material is an active material containing an element that forms an alloy with an alkali metal.
- a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
- carbon materials are preferable, and graphite and / or hard carbon are particularly preferable.
- graphite examples include natural graphite (eg, scaly graphite), artificial graphite, and graphitized mesocarbon microspheres.
- Graphite is a layered structure in which planar six-membered rings of carbon are two-dimensionally connected, and has a hexagonal crystal structure. Alkali metal ions can easily move between the layers of graphite and are reversibly inserted into and desorbed from the graphite.
- Hard carbon is a carbon material that does not develop a graphite structure even when heated in an inert atmosphere. Fine graphite crystals are arranged in random directions, and nano-order voids are formed between crystal layers.
- a material having The average particle diameter of the hard carbon may be, for example, 3 to 20 ⁇ m, and is 5 to 15 ⁇ m from the viewpoint of improving the filling property of the negative electrode active material in the negative electrode and suppressing side reactions with the electrolyte (molten salt). Is desirable.
- Examples of the conductive auxiliary agent included in the negative electrode include graphite, carbon black, and carbon fiber. Among these, carbon black is preferable because a sufficient conductive path can be easily formed by using a small amount. Examples of carbon black include acetylene black, ketjen black, and thermal black.
- the amount of the conductive auxiliary is preferably 2 to 15 parts by mass, more preferably 3 to 8 parts by mass per 100 parts by mass of the negative electrode active material.
- the binder serves to bind the negative electrode active materials to each other and to fix the negative electrode active material to the negative electrode current collector.
- fluororesin polyamide, polyimide, polyamideimide and the like can be used.
- fluororesin polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, and the like can be used.
- the amount of the binder is preferably 1 to 10 parts by mass and more preferably 3 to 5 parts by mass per 100 parts by mass of the negative electrode active material.
- the negative electrode is, for example, coated or filled with a negative electrode mixture slurry containing a negative electrode active material on a negative electrode current collector, and then the dispersion medium contained in the negative electrode mixture slurry is removed, and further, if necessary, the negative electrode active material It can be obtained by compressing (or rolling) the current collector holding the. Moreover, as a negative electrode, you may use what is obtained by forming the deposit film of a negative electrode active material on the surface of a negative electrode collector by vapor phase methods, such as vapor deposition and sputtering.
- the negative electrode active material is preferably pre-doped with an alkali metal in order to lower the negative electrode potential. This increases the voltage of the capacitor, which is further advantageous for increasing the capacity. In order to suppress the precipitation of alkali metal, it is desirable that the negative electrode capacity be larger than the positive electrode capacity.
- the potential of the negative electrode in the discharged state is preferably 0 to 1 V with respect to the redox potential of the doped alkali metal.
- pre-doping is preferably performed until the potential of the negative electrode becomes 0 to 1 V with respect to the redox potential of the doped alkali metal.
- the pre-doping of the alkali metal negative electrode can be performed by a known method.
- the alkali metal pre-doping may be performed when the capacitor is assembled.
- the alkali metal supply source is housed in the case together with the positive electrode, the negative electrode, and the nonaqueous electrolyte, and the assembled capacitor is kept warm in a constant temperature bath at about 45 ° C., so that alkali metal ions are extracted from the alkali metal supply source. It can be eluted in a non-aqueous electrolyte and pre-doped on the negative electrode.
- pre-doping refers to preliminarily occluding an alkali metal in the negative electrode and / or positive electrode before operating the electricity storage device.
- the alkali metal may be pre-doped in either the positive electrode or the negative electrode, but when the negative electrode active material is a material that does not contain an alkali metal in advance, it is desirable to pre-dope at least the negative electrode.
- the negative electrode potential decreases. For this reason, the voltage of the capacitor increases, and an increase in capacity can be expected.
- the capacitor is not particularly limited.
- a lithium ion capacitor and a sodium ion capacitor can be exemplified.
- the capacitor includes, for example, a positive electrode having a positive electrode active material and a porous positive electrode current collector holding the positive electrode active material, a negative electrode active material and a negative electrode having a porous negative electrode current collector holding the negative electrode active material, and A step of preparing an electrode group including a first separator interposed between the positive electrode and the negative electrode, a step of preparing an alkali metal supply source, the alkali metal supply source, the electrode group, and a second separator In the case where the alkali metal supply source is interposed between the electrode group and the case and faces the electrode group through the second separator, and the negative electrode A step of electrically connecting the alkali metal supply source and a non-aqueous electrolyte having alkali metal ion conductivity into the case to inject the alkali metal supported on the alkali metal supply source.
- Metal can be prepared comprising the steps of pre-doping at least said negative electrode, a step of sealing the case, by.
- FIG. 1 schematically shows a configuration of a capacitor cell according to an embodiment of the present invention.
- Capacitor 100 includes a stacked electrode group, a non-aqueous electrolyte (both not shown), and a rectangular aluminum case 10 for housing them.
- the case 10 includes a bottomed container body 12 having an upper opening and a lid 13 that closes the upper opening.
- the electrode group is not limited to the laminated type, and can be configured by winding the positive electrode 2 and the negative electrode 3 through the separator 1.
- the case 10 may be formed of, for example, an aluminum laminate sheet.
- an alkali metal supply source 4 that is not involved in power storage is accommodated via the second separator 1b so as to face the negative electrode 3.
- the second separator 1b is disposed so as to surround the electrode group, but the form is not particularly limited.
- the alkali metal supply source 4 is connected to the negative electrode 3 by a lead piece 4 c so as to have the same potential as the negative electrode 3. Therefore, by pouring the nonaqueous electrolyte, the alkali metal is eluted into the nonaqueous electrolyte and moves toward the negative electrode 3 in the cell. Then, alkali metal ions are occluded in each negative electrode 3 (strictly, the negative electrode active material), whereby alkali metal pre-doping proceeds.
- An external positive terminal (not shown) that penetrates the lid 13 is provided near one side of the lid 13, and an external negative terminal 15 that penetrates the lid 13 at a position near the other side of the lid 13. Is provided.
- Each terminal is preferably insulated from the case.
- a safety valve 16 is provided in the center of the lid portion 13, for releasing gas generated inside when the internal pressure of the case 10 rises.
- the stacked electrode group is composed of a plurality of positive electrodes 2, a plurality of negative electrodes 3, and a plurality of first separators 1a interposed between them, each having a rectangular sheet shape.
- the first separator 1a has a rectangular sheet shape, but the form is not particularly limited.
- the first separator 1 a may have a bag shape that surrounds the positive electrode 2.
- the plurality of positive electrodes 2 and the plurality of negative electrodes 3 are alternately arranged in the stacking direction within the electrode group.
- a positive electrode lead piece 2 c may be formed at one end of each positive electrode 2.
- the plurality of positive electrodes 2 are connected in parallel by bundling the positive electrode lead pieces 2 c of the plurality of positive electrodes 2 and connecting them to an external positive terminal provided on the lid portion 13 of the case 10.
- a negative electrode lead piece 3 c may be formed at one end of each negative electrode 3.
- a plurality of negative electrodes 3 are connected in parallel by bundling the negative electrode lead pieces 3 c of the plurality of negative electrodes 3 and connecting them to the external negative terminal 15 provided on the lid portion 13 of the case 10. It is desirable that the bundle of the positive electrode lead pieces 2c and the bundle of the negative electrode lead pieces 3c are arranged on the left and right sides of the one end surface of the electrode group with an interval so as to avoid mutual contact.
- Both the external positive terminal and the external negative terminal 15 are columnar, and at least a portion exposed to the outside has a screw groove.
- a nut 7 is fitted in the screw groove of each terminal, and the nut 7 is fixed to the lid portion 13 by rotating the nut 7.
- a flange portion 8 is provided in a portion of each terminal accommodated in the case, and the flange portion 8 is fixed to the inner surface of the lid portion 13 via a washer 9 by the rotation of the nut 7.
- the positive electrode includes a positive electrode current collector and a positive electrode active material held by the positive electrode current collector.
- the positive electrode active material does not exchange electrons with alkali metal ions, and physically adsorbs and desorbs alkali metal ions (non-Faraday reaction). Therefore, the positive electrode active material is not particularly limited as long as it is a material that electrochemically adsorbs and desorbs anions or alkali metal ions.
- a carbon material is preferable. Examples of the carbon material include activated carbon, mesoporous carbon, microporous carbon, and carbon nanotube. The carbon material may be activated or may not be activated. These carbon materials can be used singly or in combination of two or more. Of the carbon materials, activated carbon, microporous carbon, and the like are preferable.
- microporous carbon examples include microporous carbon obtained by heating metal carbide such as silicon carbide and titanium carbide in an atmosphere containing chlorine gas.
- the activated carbon for example, known ones used for lithium ion capacitors can be used.
- the raw material of activated carbon include wood; coconut shells; pulp waste liquid; coal or coal-based pitch obtained by thermal decomposition thereof; heavy oil or petroleum-based pitch obtained by thermal decomposition thereof; phenol resin and the like.
- the carbonized material is generally then activated.
- the activation method include a gas activation method and a chemical activation method.
- the average particle size of the activated carbon is not particularly limited, but is preferably 20 ⁇ m or less, and more preferably 3 to 10 ⁇ m.
- the specific surface area is not particularly limited, but is preferably about 800 to 3000 m 2 / g. When the specific surface area is in such a range, it is advantageous for increasing the capacitance of the capacitor, and the internal resistance can be reduced.
- the positive electrode current collector As the positive electrode current collector, a porous material such as a perforated metal foil that is a two-dimensional structure such as expanded metal, screen punch, punching metal, and lath plate, a non-woven fabric made of metal fiber, or a metal porous sheet is used. It is done.
- the thickness of the perforated metal foil is, for example, 10 to 50 ⁇ m
- the thickness of the non-woven metal fiber or the porous metal sheet is, for example, 100 to 600 ⁇ m.
- the positive electrode current collector like the negative electrode current collector, is a second metal porous body having a three-dimensional network shape and a hollow skeleton in terms of filling property, retention property and current collecting property of the positive electrode active material. It is preferable.
- the second metal porous body is not particularly limited, but is preferably an aluminum porous body containing aluminum and an aluminum alloy because it is stable at the positive electrode potential.
- metal components for example, Fe, Si, Ni, Mn, etc.
- As a commercially available aluminum porous body “Aluminum Celmet” (registered trademark) manufactured by Sumitomo Electric Industries, Ltd. can be used.
- the second metal porous body preferably has communication holes, and the porosity is preferably 30% or more and 98% or less, and more preferably 90 to 98%.
- the lead piece may be formed integrally with the positive electrode current collector, or a separately formed lead piece may be connected to the positive electrode current collector by welding or the like.
- the positive electrode is applied or filled with a positive electrode mixture slurry containing a positive electrode active material on a positive electrode current collector, and then the dispersion medium contained in the positive electrode mixture slurry is removed. It can be obtained by compressing (or rolling) the current collector holding the.
- the positive electrode mixture slurry may contain a binder, a conductive auxiliary agent and the like in addition to the positive electrode active material. As a binder and a conductive support agent, it can select suitably from what was illustrated about the negative mix.
- the alkali metal supply source is disposed in the case so as to face the electrode group via the second separator.
- the alkali metal supply source is disposed so as to face the negative electrode via the second separator, not via the positive electrode. It is important that the distance between the negative electrode and the alkali supply source is 5 to 60 ⁇ m, and this distance is defined by the thickness of the second separator.
- the area of the orthographic image viewed from the normal direction of the main surface of the alkali metal supply source is preferably 100 to 120% with respect to the area of the orthographic image viewed from the normal direction of the main surface of the negative electrode. . If the areas of the negative electrode and the alkali metal supply source are substantially the same, the alkali metal supply source is arranged so as to face almost the entire surface of the negative electrode, so that the alkali metal can be pre-doped into the negative electrode more uniformly.
- the alkali metal supply source can be obtained, for example, by supporting an alkali metal on a metal support.
- a method of supporting an alkali metal on a metal support a method of sticking an alkali metal foil on the surface of the metal support, a method of inserting (occluding) an alkali metal into a cavity of the metal support, a skeleton of the metal support And a method of forming an alkali metal film on the surface by plating or the like.
- the material for the metal support is not particularly limited as long as it is not alloyed with an alkali metal.
- the alkali metal is lithium, copper, a copper alloy, nickel, a nickel alloy or the like can be used.
- the alkali metal is sodium, aluminum or an aluminum alloy can be used.
- the shape is not particularly limited, and two-dimensional structures such as a metal mesh, metal foil, expanded metal, screen punch, punching metal, and lath plate, and a metal nonwoven fabric having a three-dimensional network structure, a metal porous body, etc. It can be illustrated.
- alkali metal ions are eluted into the non-aqueous electrolyte, and the negative electrode and / or the positive electrode are doped with the alkali metal. .
- Almost all of the alkali metal supported on the alkali metal supply source is preferably pre-doped on the negative electrode.
- the alkali metal ion can be appropriately selected from lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion, and the like depending on the type of capacitor.
- the first separator has ion permeability, is interposed between the positive electrode and the negative electrode, and physically separates them to prevent a short circuit.
- the first separator has a porous material structure and allows ions to permeate by holding a nonaqueous electrolyte in the pores.
- a material of the first separator for example, those exemplified for the second separator can be used.
- the average pore diameter of the first separator is not particularly limited and is, for example, about the same as that of the second separator.
- the thickness of the first separator is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 to 50 ⁇ m.
- the thickness of the first separator is preferably 10% or less with respect to the total thickness of the pair of positive and negative electrodes. This is because the time required for pre-doping is further reduced.
- the porosity of the first separator is preferably 20 to 85%, more preferably 50 to 85%. Setting the porosity of the first separator within this range is effective for smooth movement of the alkali metal.
- Nonaqueous electrolyte has alkali metal ion conductivity.
- Nonaqueous electrolytes include, for example, electrolytes (organic electrolytes) in which a salt of an alkali metal ion and an anion (alkali metal salt) is dissolved in a nonaqueous solvent (or an organic solvent), as well as ions containing an alkali metal ion and an anion. Liquid or the like is used.
- the concentration of the alkali metal salt in the nonaqueous electrolyte may be, for example, 0.3 to 3 mol / liter.
- the kind of the anion (first anion) constituting the alkali metal salt is not particularly limited.
- an anion of a fluorine-containing acid anion of fluorine-containing phosphate such as hexafluorophosphate ion (PF 6 ⁇ );
- Anion of fluorine-containing boric acid such as acid ion (BF 4 ⁇ )], anion of chlorine-containing acid [perchlorate ion (ClO 4 ⁇ ), etc.]
- anion of oxygen acid having an oxalate group lithium bis (oxalato) Oxalatoborate ion such as borate ion (B (C 2 O 4 ) 2 ⁇ );
- Oxalatophosphate ion such as lithium tris (oxalato) phosphate ion (P (C 2 O 4 ) 3 ⁇ )], fluoroalkanesulfone anion of acid [trifluoromethanesulfonate ion (CF
- bis (sulfonyl) amide anion examples include bis (fluorosulfonyl) amide anion (FSA ⁇ : bis (fluorosulfonyl) amide anion)); bis (trifluoromethylsulfonyl) amide anion (TFSA ⁇ : bis (trifluoromethylsulfonyl). ) amide anion), bis (pentafluoroethylsulfonyl) amide anion, (fluorosulfonyl) (trifluoromethylsulfonyl) amide anion, and the like.
- ionic liquid is a salt in a molten state (molten salt), and is used to mean a liquid having ionic conductivity.
- the content of the ionic liquid in the nonaqueous electrolyte is preferably 80% by mass or more, and more preferably 90% by mass or more.
- the non-aqueous electrolyte can contain a non-aqueous solvent, an additive and the like in addition to the ionic liquid.
- the total amount of the non-aqueous solvent and the alkali metal salt in the non-aqueous electrolyte is preferably 80% by mass or more of the non-aqueous electrolyte, and 90% by mass or more. It is more preferable.
- the non-aqueous electrolyte can contain an ionic liquid, an additive and the like in addition to the organic electrolyte.
- the non-aqueous solvent is not particularly limited, and a known non-aqueous solvent used for a lithium ion capacitor can be used.
- the non-aqueous solvent is, for example, a cyclic carbonate such as ethylene carbonate (EC), propylene carbonate, or butylene carbonate; a chain carbonate such as dimethyl carbonate, diethyl carbonate (DEC), or ethyl methyl carbonate; Cyclic carbonates such as butyrolactone can be preferably used.
- a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
- the ionic liquid containing alkali metal ions may further contain a second cation in addition to the alkali metal ion (first cation).
- a second cation an inorganic cation other than an alkali metal, for example, a magnesium ion, a calcium ion, an ammonium cation or the like may be used, but an organic cation is preferable.
- a 2nd cation can be used individually by 1 type or in combination of 2 or more types.
- Examples of the organic cation used as the second cation include cations derived from aliphatic amines, alicyclic amines and aromatic amines (for example, quaternary ammonium cations), as well as cations having nitrogen-containing heterocycles ( That is, examples include nitrogen-containing onium cations such as cations derived from cyclic amines; sulfur-containing onium cations; and phosphorus-containing onium cations.
- the capacitor is used in a state where the electrode group including the positive electrode and the negative electrode, the alkali metal supply source, and the nonaqueous electrolyte are accommodated in a case.
- the electrode group is formed by laminating or winding a positive electrode and a negative electrode with a first separator interposed therebetween.
- the alkali metal supply source is preferably disposed between the electrode group and the case so as to face the electrode group via the second separator.
- a lead piece is formed on the alkali metal supply source and connected to the negative electrode current collecting lead piece. The connection may be made inside the case or outside the case.
- Example 1 A lithium ion capacitor was produced according to the following procedure.
- the foam having the conductive layer formed on the surface was immersed in a molten salt aluminum plating bath, and a direct current having a current density of 3.6 A / dm 2 was applied for 90 minutes to form an aluminum layer.
- the mass of the aluminum layer per apparent area of the foam was 150 g / m 2 .
- the molten salt aluminum plating bath contained 33 mol% 1-ethyl-3-methylimidazolium chloride and 67 mol% aluminum chloride, and the temperature was 40 ° C.
- the foam with the aluminum layer formed on the surface was immersed in a lithium chloride-potassium chloride eutectic molten salt at 500 ° C., and a negative potential of ⁇ 1 V was applied for 30 minutes to decompose the foam.
- the obtained aluminum porous body was taken out from the molten salt, cooled, washed with water, and dried to obtain a positive electrode current collector.
- the obtained positive electrode current collector has a three-dimensional network porous structure in which pores communicate with each other, reflecting the pore shape of the foam, has a porosity of 94% by volume, and an average pore diameter is
- the BET method specific surface area (BET specific surface area) was 350 cm 2 / g, and the thickness was 1100 ⁇ m.
- the three-dimensional network-like aluminum skeleton had inside it a cavity formed by removing the foam. In this way, a positive electrode current collector was obtained.
- the obtained positive electrode mixture slurry was filled in the current collector obtained in the above step (a) and dried at 100 ° C. for 30 minutes.
- the dried product was rolled using a pair of rolls to produce a positive electrode having a thickness of 740 ⁇ m.
- the foam with the Cu layer formed on the surface is heat-treated at 700 ° C. in an air atmosphere to decompose the foam, and then fired in a hydrogen atmosphere to remove the oxide film formed on the surface.
- a copper porous body (negative electrode current collector) was obtained.
- the obtained negative electrode current collector has a three-dimensional network-like porous structure in which the pores communicate with each other, reflecting the pore shape of the foam, has a porosity of 92% by volume, and an average pore diameter of 550 ⁇ m.
- the BET specific surface area was 200 cm 2 / g and the thickness was 1100 ⁇ m.
- the three-dimensional network copper skeleton had inside it a cavity formed by removing the foam.
- (B) Production of negative electrode By mixing artificial graphite powder as a negative electrode active material, acetylene black as a conductive additive, PVDF as a binder, and NMP as a dispersion medium, a negative electrode mixture slurry is prepared. Prepared. The mass ratio of the graphite powder, acetylene black, and PVDF was 90: 5: 5. The obtained negative electrode mixture slurry was filled in the current collector obtained in the step (a) and dried at 100 ° C. for 30 minutes. The dried product was rolled using a pair of rolls to produce a negative electrode having a thickness of 180 ⁇ m and a porosity of 31%.
- Lithium foil (thickness: 330 ⁇ m, 105 mm ⁇ 105 mm) is pressure-bonded to one surface of a punching copper foil (thickness: 20 ⁇ m, opening diameter: 50 ⁇ m, opening ratio 50%, 105 mm ⁇ 105 mm). Then, a nickel lead was welded to the other surface.
- the positive electrode, the negative electrode, and the first separator were sufficiently dried by heating at 90 ° C. or higher under a reduced pressure of 0.3 Pa.
- the first separator is interposed between the positive electrode and the negative electrode, the positive electrode lead pieces and the negative electrode lead pieces overlap each other, and the bundle of the positive electrode lead pieces and the bundle of the negative electrode lead pieces are arranged at the right and left target positions.
- the electrode group was fabricated by stacking as described above. Thereafter, a second separator was disposed so as to wrap around the electrode group. Further, an alkali metal supply source was disposed so as to face the negative electrode with the second separator interposed therebetween, and the obtained laminate was accommodated in a case made of an aluminum laminate sheet.
- a nonaqueous electrolyte was injected into the case to impregnate the positive electrode, the negative electrode, and the separator.
- a solution in which a volume ratio of 1: 1 EC / DEC containing LiPF 6 at a concentration of 1.0 mol / L was dissolved was used as the nonaqueous electrolyte.
- a bundle of positive electrode lead pieces and a bundle of negative electrode lead pieces were combined together and welded to a tab lead.
- the lead of the third pole was separately pulled out of the cell, and finally the case was sealed while reducing the pressure with a vacuum sealer.
- the size of the case (only the electrode portion) excluding the external terminals was 110 mm ⁇ 110 mm ⁇ 10.5 mm.
- the external terminal of the negative electrode and the lead wire of the alkali metal supply source were connected to the power source outside the case.
- the cell in this state was allowed to stand for a predetermined time in a 45 ° C. thermostat so that the temperature of the electrolyte was the same as the temperature of the thermostat.
- the lithium metal was charged to a potential of 0 V with a current of 0.2 mA / cm 2 between the negative electrode and the alkali metal supply source. Thereafter, 2.6 mAh / cm 2 is discharged at a current of 0.2 mA / cm 2 , and lithium ions are released until the potential of the negative electrode becomes 0.12 V (vs Li / Li + ) to complete pre-doping.
- a lithium ion capacitor A1 was produced.
- the design capacity of the lithium ion capacitor A1 was about 2100 mAh when charged with 4.2V.
- the following evaluation was performed using the obtained lithium ion capacitor.
- Examples 2 to 7 Lithium ion capacitors A2 to A7 were prepared and evaluated in the same manner as in Example 1 except that one separator having the thickness shown in Table 1 was used as the second separator.
- Examples 8 to 10 Lithium ion capacitors A8 to A10 were prepared and evaluated in the same manner as in Example 1 except that the negative electrode thickness shown in Table 1 was used. The amount of the negative electrode mixture slurry charged in the negative electrode current collector was adjusted so that the negative electrode had the same porosity as in Example 1.
- Lithium ion capacitors B1 and B2 were prepared and evaluated in the same manner as in Example 1 except that the thickness of the second separator was 64 ⁇ m or 72 ⁇ m, respectively.
- Comparative Examples 3 to 6 A punched copper foil (thickness: 20 ⁇ m, opening diameter: 50 ⁇ m, opening ratio 30%, 105 mm ⁇ 105 mm) was used as the negative electrode current collector, and a negative electrode mixture slurry was applied to both sides to produce a negative electrode having a thickness of 180 ⁇ m. did. Lithium ion capacitors B3 to B6 were produced in the same manner as in Example 1 except that this negative electrode was used and the second separator having the thickness shown in Table 1 was used.
- Comparative Example 7 >> A punched copper foil (thickness: 20 ⁇ m, opening diameter: 50 ⁇ m, opening ratio 30%, 105 mm ⁇ 105 mm) was used as the negative electrode current collector, and a negative electrode mixture slurry was applied to both sides thereof to produce a negative electrode having a thickness of 240 ⁇ m. did. A lithium ion capacitor B7 was produced in the same manner as in Comparative Example 4 except that this negative electrode was used.
- Comparison of lithium ion capacitors A1 to A7 with B1 and B2 shows that when the thickness of the second separator is 5 to 60 ⁇ m, it can be uniformly doped in a short time.
- the lithium ion capacitors A1 and A2 with B3 and B4 even if the second separator is thin, when the negative electrode is a three-dimensional network porous body, a short time without causing an internal short circuit. It can be seen that uniform doping is possible.
- it can be seen from the lithium ion capacitors A9 and A10 that even when the thickness of the negative electrode is large, the lithium ion capacitors A9 and A10 are uniformly doped in a relatively short time due to the three-dimensional network porous body.
- the lithium ion capacitor B7 when the negative electrode does not have a three-dimensional network-like porous structure, an internal short circuit occurs even if the thickness of the negative electrode is large, and the uniformity of the dope also decreases. .
- the capacitor of the present invention can be uniformly pre-doped in a short time and the generation of dendrite is suppressed, so that it can be applied to various capacitors.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
最初に本発明の実施形態の内容を列記して説明する。
本発明の第一の局面は、(1)正極活物質および前記正極活物質を保持する多孔質の正極集電体を有する正極と、負極活物質および前記負極活物質を保持する多孔質の負極集電体を有する負極と、前記正極と前記負極との間に介在する第一セパレータと、を具備する電極群、アルカリ金属イオン伝導性を有する非水電解質、前記電極群および前記非水電解質を密封するケース、前記電極群と前記ケースとの間に介在するアルカリ金属供給源、並びに、前記電極群と前記アルカリ金属供給源との間に介在する第二セパレータ、を含み、少なくとも前記負極は、前記アルカリ金属供給源からプレドープされたアルカリ金属を含み、前記第二セパレータの厚さが、5~60μmであり、前記負極集電体が、三次元網目状の構造を有する第一金属多孔体を含む、キャパシタに関する。これにより、負極に、短時間で均一にアルカリ金属をプレドープすることが可能となる。また、デンドライトの生成も抑制される。
本発明の一実施形態を具体的に以下に説明する。なお、本発明は、以下の内容に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
第二セパレータは、アルカリ金属供給源と電極群との間に介在しており、5~60μmの厚さを有している。第二セパレータの厚さは、5~40μmであることが好ましく、5~35μmであることがより好ましい。第二セパレータの厚さが60μmを超えると、プレドープに長い時間を要し、また、ドープが不均一になる。第二セパレータの厚さが5μmより薄いと、デンドライトが生成されやすくなる。
負極は、多孔質の負極集電体および負極活物質を含む。その他、任意成分として導電助剤、結着剤等を含んでもよい。
放電状態の負極の電位をこの範囲とすることにより、キャパシタの電圧を高めることができる。
キャパシタとしては、特に制限されない。例えば、リチウムイオンキャパシタおよびナトリウムイオンキャパシタなどが例示できる。
キャパシタ100は、積層型の電極群、非水電解質(ともに図示せず)およびこれらを収容する角型のアルミニウム製のケース10を具備する。ケース10は、上部が開口した有底の容器本体12と、上部開口を塞ぐ蓋部13とで構成されている。ただし、電極群は、積層タイプに限らず、正極2と負極3とをセパレータ1を介して捲回することにより構成することもできる。また、ケース10は、例えば、アルミニウム製のラミネートシートで形成されていてもよい。
正極は、正極集電体および正極集電体に保持された正極活物質を含む。
なかでも、正極活物質の充填性や保持性、集電性の点で、正極集電体は、負極集電体と同じく、三次元網目状で中空の骨格を有する第二金属多孔体であることが好ましい。
アルカリ金属供給源は、第二セパレータを介して電極群と対向するように、ケース内に配置されている。つまり、アルカリ金属供給源は、正極を介さずに、第二セパレータを介して負極と対向するように配置されている。負極とアルカリ供給源との間の距離を、5~60μmにすることが重要であり、この距離を、第二セパレータの厚みで規定している。
アルカリ金属がリチウムである場合には、銅、銅合金、ニッケルまたはニッケル合金等、ナトリウムである場合には、アルミニウムまたはアルミニウム合金等を挙げることができる。
第一セパレータは、イオン透過性を有し、正極と負極との間に介在して、これらを物理的に離間させて短絡を防止する。第一セパレータは、多孔質材構造を有し、細孔内に非水電解質を保持することで、イオンを透過させる。第一セパレータの材質としては、例えば、第二セパレータで例示したものを用いることができる。第一セパレータの平均孔径は特に制限されず、例えば、第二セパレータと同程度である。
非水電解質は、アルカリ金属イオン伝導性を有する。非水電解質としては、例えば、非水溶媒(または有機溶媒)にアルカリ金属イオンとアニオンとの塩(アルカリ金属塩)を溶解させた電解質(有機電解質)の他、アルカリ金属イオンおよびアニオンを含むイオン液体などが用いられる。非水電解質におけるアルカリ金属塩の濃度は、例えば0.3~3mol/リットルであればよい。
キャパシタは、上記の正極と負極を含む電極群、アルカリ金属供給源および非水電解質を、ケースに収容した状態で用いられる。電極群は、正極と負極とを、これらの間に第一セパレータを介在させて積層または捲回することにより形成される。このとき、アルカリ金属供給源は、好ましくは電極群とケースとの間に、第二セパレータを介して電極群と対向するように配置される。アルカリ金属供給源と負極とを電気的に接続する場合、例えば、アルカリ金属供給源にリード片を形成して、負極の集電用のリード片と接続する。接続は、ケース内で行ってもよいし、ケースの外部で行なってもよい。
下記の手順でリチウムイオンキャパシタを作製した。
(1)正極の作製
(a)正極集電体の作製
熱硬化性ポリウレタンの発泡体(気孔率:95体積%、表面1インチ(=2.54cm)長さ当たりの空孔(セル)数:約50個、縦100mm×横30mm×厚み1.1mm)を準備した。
正極活物質として活性炭粉末(比表面積2300m2/g、平均粒径約5μm)および導電助剤としてアセチレンブラック、結着剤としてPVDF(濃度12質量%でPVDFを含むN-メチル-2-ピロリドン(NMP)溶液)、および分散媒としてNMPを、混合機にて混合、攪拌することにより、正極合剤スラリーを調製した。スラリー中の各成分の質量比は、活性炭:アセチレンブラック:PVDF=87:3:10であった。
(a)負極集電体の作製
正極と同様の手法により、表面に導電性層を形成した発泡体をワークとして、硫酸銅メッキ浴中に浸漬して、陰極電流密度2A/dm2の直流電流を印加することにより、表面にCu層を形成した。なお、発泡体の見掛け面積当たりのCu層の質量は、300g/m2であった。硫酸銅メッキ浴は、250g/Lの硫酸銅、50g/Lの硫酸、および30g/Lの塩化銅を含み、温度は、30℃であった。
負極活物質としての人造黒鉛粉末と、導電助剤としてのアセチレンブラックと、結着剤としてのPVDFと、分散媒としてのNMPとを混合することにより、負極合剤スラリーを調製した。黒鉛粉末と、アセチレンブラックと、PVDFとの質量比は、90:5:5であった。
得られた負極合剤スラリーを、上記工程(a)で得られた集電体に充填し、100℃にて30分乾燥した。乾燥物を、一対のロールを用いて圧延し、厚み180μm、気孔率31%の負極を作製した。
パンチング銅箔(厚み:20μm、開口径:50μm、開口率50%、105mm×105mm)の一方の表面に、リチウム箔(厚み:330μm、105mm×105mm)を圧着し、他方の表面に、ニッケル製のリードを溶接した。
厚さ50μmのポリオレフィン製のセパレータ(平均空孔径0.1μm、気孔率70%)を、サイズ110×110mmに裁断し、22枚の第一セパレータを準備した。
また、厚さ8μmのポリオレフィン製のセパレータ(平均空孔径0.1μm、気孔率70%)を、縦:110mm、幅:電極群を包囲できる長さに裁断し、第二セパレータとして準備した。
上記(1)で得られた正極を、サイズ100×100mmの矩形に裁断し、10枚の正極を準備した。ただし、正極の一辺の一方側端部には、集電用のリード片を形成した。また、上記(2)で得られた負極を、サイズ105×105mmの矩形に裁断し、11枚の負極を準備した。ただし、負極の一辺の一方側端部には、集電用のリード片を形成した。
この状態のセルを、45℃の恒温槽内で、電解質の温度が恒温槽の温度と同じになるように所定時間静置した。次いで、負極とアルカリ金属供給源との間で、0.2mA/cm2の電流で、金属リチウムに対して0Vの電位まで充電した。その後、0.2mA/cm2の電流で2.6mAh/cm2分を放電して、負極の電位が0.12V(vs Li/Li+)になるまでリチウムイオンを放出させて、プレドープを完了し、リチウムイオンキャパシタA1を作製した。リチウムイオンキャパシタA1の設計容量は、4.2V充電時で約2100mAhであった。
得られたリチウムイオンキャパシタを用いて、下記の評価を行った。
表1に示す厚みを有する1枚のセパレータを、第二セパレータとして使用したこと以外、実施例1と同様に、リチウムイオンキャパシタA2~A7を作製し、評価した。
表1に示す厚みの負極を使用したこと以外、実施例1と同様に、リチウムイオンキャパシタA8~A10を作製し、評価した。なお、負極の気孔率が実施例1と同程度になるように、負極集電体に充填する負極合剤スラリーの量を調整した。
第二セパレータの厚みを、それぞれ64μmまたは72μmとしたこと以外、実施例1と同様に、リチウムイオンキャパシタB1およびB2を作製し、評価した。
負極集電体として、パンチング銅箔(厚み:20μm、開口径:50μm、開口率30%、105mm×105mm)を使用し、その両面に負極合剤スラリーを塗布して、厚み180μmの負極を作製した。この負極を使用したこと、および、表1に示す厚みの第二セパレータを使用したこと以外、実施例1と同様に、リチウムイオンキャパシタB3~B6を作製した。
負極集電体として、パンチング銅箔(厚み:20μm、開口径:50μm、開口率30%、105mm×105mm)を使用し、その両面に負極合剤スラリーを塗布して、厚み240μmの負極を作製した。この負極を使用したこと以外、比較例4と同様に、リチウムイオンキャパシタB7を作製した。
(1)内部短絡
リチウムイオンキャパシタをそれぞれ10個作製し、プレドープ完了後に2Cの電流で充電を行い、電圧測定により内部短絡の有無を確認した。
プレドープ開始から、セル電圧が2.8Vになるまでの時間を測定した。
プレドープが完了したセルを分解し、アルカリ金属供給源に最も近い負極(1枚目)のリチウム含有量と、11枚目の負極のリチウム含有量を比較した。表1に、(11枚目の負極のリチウム含有量)/(1枚目の負極のリチウム含有量)を示す。リチウム含有量は、負極の中央部付近から1cm2のサイズの試料を切り出し、ICP質量分析法(Inductively Coupled Plasma Mass Spectrometry)により求めた。
Claims (8)
- 正極活物質および前記正極活物質を保持する多孔質の正極集電体を有する正極と、
負極活物質および前記負極活物質を保持する多孔質の負極集電体を有する負極と、
前記正極と前記負極との間に介在する第一セパレータと、を具備する電極群、
アルカリ金属イオン伝導性を有する非水電解質、
前記電極群および前記非水電解質を密封するケース、
前記電極群と前記ケースとの間に介在するアルカリ金属供給源、並びに、
前記電極群と前記アルカリ金属供給源との間に介在する第二セパレータ、を含み、
少なくとも前記負極は、前記アルカリ金属供給源からプレドープされたアルカリ金属を含み、
前記第二セパレータの厚さが、5~60μmであり、
前記負極集電体が、三次元網目状の構造を有する第一金属多孔体を含む、キャパシタ。 - 前記負極の厚さが、50~600μmである、請求項1に記載のキャパシタ。
- 前記正極集電体が、三次元網目状の構造を有する第二金属多孔体を含む、請求項1または2に記載のキャパシタ。
- 前記第一セパレータの気孔率が、20~85%であり、前記第二セパレータの気孔率が、20~85%である、請求項1~3のいずれか一項に記載のキャパシタ。
- 前記第一セパレータの厚さが、一対の前記正極と前記負極との厚さの合計に対して、10%以下である、請求項1~4のいずれか一項に記載のキャパシタ。
- 放電状態において、前記負極の電位が、前記アルカリ金属の酸化還元電位に対して0~1Vである、請求項1~5のいずれか一項に記載のキャパシタ。
- 正極活物質および前記正極活物質を保持する多孔質の正極集電体を有する正極、負極活物質および前記負極活物質を保持する多孔質の負極集電体を有する負極、および、前記正極と前記負極との間に介在する第一セパレータを含む電極群を準備する工程と、
アルカリ金属を担持するアルカリ金属供給源を準備する工程と、
前記アルカリ金属供給源と、前記電極群と、第二セパレータとを、前記アルカリ金属供給源が、前記電極群とケースとの間に介在し、かつ、前記第二セパレータを介して前記電極群と対向するように、前記ケースに収容する工程と、
前記負極と前記アルカリ金属供給源とを、電気的に接続する工程と、
前記ケースにアルカリ金属イオン伝導性を有する非水電解質を注液して、前記アルカリ金属供給源に担持された前記アルカリ金属を、少なくとも前記負極にプレドープする工程と、
前記ケースを密封する工程と、を備え、
前記第二セパレータの厚さが、5~60μmであり、
前記負極集電体が、三次元網目状の構造を有する第一金属多孔体を含む、キャパシタの製造方法。 - 前記プレドープが、前記負極の電位が前記アルカリ金属の酸化還元電位に対して0~1Vになるまで行われる、請求項7に記載のキャパシタの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015549044A JPWO2015076059A1 (ja) | 2013-11-19 | 2014-10-24 | キャパシタおよびその製造方法 |
EP14863468.6A EP3073500A4 (en) | 2013-11-19 | 2014-10-24 | CAPACITOR AND METHOD FOR MANUFACTURING THE SAME |
US15/037,987 US20160284479A1 (en) | 2013-11-19 | 2014-10-24 | Capacitor and method for producing the same |
KR1020167013125A KR20160087811A (ko) | 2013-11-19 | 2014-10-24 | 커패시터 및 그 제조 방법 |
CN201480063060.6A CN105745727A (zh) | 2013-11-19 | 2014-10-24 | 电容器及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-239093 | 2013-11-19 | ||
JP2013239093 | 2013-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015076059A1 true WO2015076059A1 (ja) | 2015-05-28 |
Family
ID=53179329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/078331 WO2015076059A1 (ja) | 2013-11-19 | 2014-10-24 | キャパシタおよびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160284479A1 (ja) |
EP (1) | EP3073500A4 (ja) |
JP (1) | JPWO2015076059A1 (ja) |
KR (1) | KR20160087811A (ja) |
CN (1) | CN105745727A (ja) |
WO (1) | WO2015076059A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170256782A1 (en) * | 2016-03-01 | 2017-09-07 | Maxwell Technologies, Inc. | Pre-doped anodes and methods and apparatuses for making same |
US11211595B2 (en) | 2018-03-07 | 2021-12-28 | Lg Chem, Ltd. | Method for manufacturing negative electrode |
WO2022092050A1 (ja) * | 2020-10-27 | 2022-05-05 | パナソニックIpマネジメント株式会社 | 電気化学デバイス |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10395848B2 (en) * | 2016-01-22 | 2019-08-27 | Asahi Kasei Kabushiki Kaisha | Nonaqueous lithium storage element |
US9969030B2 (en) * | 2016-05-12 | 2018-05-15 | Pacesetter, Inc. | Laser drilling of metal foils for assembly in an electrolytic capacitor |
KR101885781B1 (ko) * | 2017-07-05 | 2018-08-06 | (주)다오코리아 | 온열 매트 |
US12095071B2 (en) * | 2019-01-23 | 2024-09-17 | Musashi Energy Solutions Co., Ltd. | Electrode manufacturing system and electrode manufacturing method |
CN116583968B (zh) * | 2021-12-10 | 2024-09-24 | 旭化成株式会社 | 非水系锂蓄电元件的电流分离方法、掺杂方法及掺杂装置 |
KR102600733B1 (ko) | 2021-12-10 | 2023-11-09 | 아사히 가세이 가부시키가이샤 | 비수계 리튬 축전 소자의 전류 분리 방법, 도프 방법 및 도프 장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007180434A (ja) * | 2005-12-28 | 2007-07-12 | Fuji Heavy Ind Ltd | リチウムイオンキャパシタ |
JP2009059732A (ja) | 2007-08-29 | 2009-03-19 | Jm Energy Corp | リチウムイオンキャパシタ |
JP2012186142A (ja) * | 2011-02-18 | 2012-09-27 | Sumitomo Electric Ind Ltd | 電気化学デバイス用電極およびその製造方法 |
JP2013008813A (ja) * | 2011-06-24 | 2013-01-10 | Sumitomo Electric Ind Ltd | キャパシタ |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1865520B1 (en) * | 2005-03-31 | 2013-06-05 | Fuji Jukogyo Kabushiki Kaisha | Lithium ion capacitor |
JP4924966B2 (ja) * | 2005-10-17 | 2012-04-25 | 富士重工業株式会社 | リチウムイオンキャパシタ |
CN101261899A (zh) * | 2008-04-24 | 2008-09-10 | 李青海 | 一种高工作电压超级电容器及其制造方法 |
CN101562079B (zh) * | 2009-05-15 | 2012-03-07 | 深圳清华大学研究院 | 超级电容器 |
JP6260209B2 (ja) * | 2013-11-08 | 2018-01-17 | 住友電気工業株式会社 | アルカリ金属イオンキャパシタ、その製造方法および充放電方法 |
-
2014
- 2014-10-24 JP JP2015549044A patent/JPWO2015076059A1/ja not_active Withdrawn
- 2014-10-24 KR KR1020167013125A patent/KR20160087811A/ko not_active Application Discontinuation
- 2014-10-24 EP EP14863468.6A patent/EP3073500A4/en not_active Withdrawn
- 2014-10-24 WO PCT/JP2014/078331 patent/WO2015076059A1/ja active Application Filing
- 2014-10-24 US US15/037,987 patent/US20160284479A1/en not_active Abandoned
- 2014-10-24 CN CN201480063060.6A patent/CN105745727A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007180434A (ja) * | 2005-12-28 | 2007-07-12 | Fuji Heavy Ind Ltd | リチウムイオンキャパシタ |
JP2009059732A (ja) | 2007-08-29 | 2009-03-19 | Jm Energy Corp | リチウムイオンキャパシタ |
JP2012186142A (ja) * | 2011-02-18 | 2012-09-27 | Sumitomo Electric Ind Ltd | 電気化学デバイス用電極およびその製造方法 |
JP2013008813A (ja) * | 2011-06-24 | 2013-01-10 | Sumitomo Electric Ind Ltd | キャパシタ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3073500A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170256782A1 (en) * | 2016-03-01 | 2017-09-07 | Maxwell Technologies, Inc. | Pre-doped anodes and methods and apparatuses for making same |
WO2017151495A1 (en) * | 2016-03-01 | 2017-09-08 | Maxwell Technologies, Inc. | Pre-doped anodes and methods and apparatuses for making same |
KR20180119159A (ko) * | 2016-03-01 | 2018-11-01 | 맥스웰 테크놀러지스 인코포레이티드 | 예비-도핑된 애노드들 및 그의 제조를 위한 방법들 및 장치들 |
CN109074962A (zh) * | 2016-03-01 | 2018-12-21 | 麦斯韦尔技术股份有限公司 | 预掺杂阳极及用于制造其的方法和设备 |
JP2019508896A (ja) * | 2016-03-01 | 2019-03-28 | マックスウェル テクノロジーズ インコーポレイテッド | プレドーピングされたアノードならびにその製造方法および製造装置 |
US11211595B2 (en) | 2018-03-07 | 2021-12-28 | Lg Chem, Ltd. | Method for manufacturing negative electrode |
WO2022092050A1 (ja) * | 2020-10-27 | 2022-05-05 | パナソニックIpマネジメント株式会社 | 電気化学デバイス |
Also Published As
Publication number | Publication date |
---|---|
KR20160087811A (ko) | 2016-07-22 |
JPWO2015076059A1 (ja) | 2017-03-16 |
EP3073500A1 (en) | 2016-09-28 |
CN105745727A (zh) | 2016-07-06 |
EP3073500A4 (en) | 2016-12-21 |
US20160284479A1 (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015076059A1 (ja) | キャパシタおよびその製造方法 | |
WO2014208182A1 (ja) | リチウム電池 | |
WO2014007188A1 (ja) | リチウムイオンキャパシタ | |
WO2012111738A1 (ja) | 電気化学素子 | |
US20120264022A1 (en) | Electrode for electrochemical device and method for producing the same | |
US9959983B2 (en) | Robust porous electrodes for energy storage devices | |
WO2015125647A1 (ja) | 蓄電デバイスおよび充放電システム | |
KR20140006870A (ko) | 전기 화학 디바이스 | |
US9553300B2 (en) | Electrode material; and battery, nonaqueous-electrolyte battery, and capacitor all incorporating the material | |
WO2013054710A1 (ja) | リチウムイオンキャパシタ、および蓄電デバイス、蓄電システム | |
KR20200124253A (ko) | 축전 디바이스, 축전 디바이스용 부극, 및 그들의 제조 방법 | |
KR20160102974A (ko) | 알칼리 금속 이온 커패시터 | |
JPWO2015105136A1 (ja) | リチウムイオンキャパシタ用正極およびそれを用いたリチウムイオンキャパシタ | |
JP6260209B2 (ja) | アルカリ金属イオンキャパシタ、その製造方法および充放電方法 | |
JP2015153700A (ja) | 蓄電デバイス | |
JP2015095634A (ja) | 蓄電デバイスおよびその製造方法 | |
WO2015107800A1 (ja) | 銅多孔体、蓄電デバイス用電極および蓄電デバイス | |
JP2016164948A (ja) | キャパシタ用正極およびキャパシタの製造方法ならびにキャパシタ | |
JP6375964B2 (ja) | ナトリウムイオン二次電池用負極およびナトリウムイオン二次電池 | |
WO2015107965A1 (ja) | アルミニウム多孔体、蓄電デバイス用電極および蓄電デバイス | |
JP2015153699A (ja) | 蓄電デバイス | |
JP2015204437A (ja) | リチウムイオンキャパシタ | |
JP2016152402A (ja) | 充電器 | |
JP2017098363A (ja) | リチウムイオンキャパシタおよびリチウムイオンキャパシタが装着された電子機器 | |
JP2017098365A (ja) | リチウムイオンキャパシタおよびリチウムイオンキャパシタが装着された電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14863468 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015549044 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014863468 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014863468 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167013125 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15037987 Country of ref document: US |