WO2015041018A1 - Bi基はんだ合金、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 - Google Patents
Bi基はんだ合金、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 Download PDFInfo
- Publication number
- WO2015041018A1 WO2015041018A1 PCT/JP2014/072397 JP2014072397W WO2015041018A1 WO 2015041018 A1 WO2015041018 A1 WO 2015041018A1 JP 2014072397 W JP2014072397 W JP 2014072397W WO 2015041018 A1 WO2015041018 A1 WO 2015041018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solder alloy
- solder
- mass
- content
- bonding
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions; Methods of application thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/264—Bi as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C12/00—Alloys based on antimony or bismuth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29113—Bismuth [Bi] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83455—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
- H01L2224/83815—Reflow soldering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/157—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2924/15738—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
- H01L2924/15747—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
Definitions
- the present invention relates to a Bi-based solder alloy, an electronic component bonding method using the Bi-based solder alloy, and an electronic component mounting substrate. More specifically, the present invention substantially does not contain Pb, has a solidus temperature of 265 ° C. or higher, and a liquidus wire. Bi solder alloy having a temperature of 390 ° C. or less and excellent in machinability, mechanical strength and bonding reliability, and an Ag-plated electronic component, bare Cu frame electronic component or Ni-plated electronic component using the same The present invention relates to a bonding method and an electronic component mounting board.
- the electronic components such as semiconductor element chips are first joined to the lead frame with solder (die bonding), and then the solder is remelted (reflowed) and mounted on a printed circuit board such as a semiconductor package. Is generally done.
- lead-free solder containing no Pb such as Sn—Ag—Cu has been put into practical use.
- the melting point of lead-free solder such as Sn—Ag—Cu is about 220 ° C. higher than that of conventional Pb / Sn eutectic solder, and the reflow temperature at the time of mounting is around 250 to 260 ° C.
- Patent Document 1 a lead-free solder for high temperature that does not cause a problem in the bonding reliability inside the electronic component even after the cycle of holding for 10 seconds at a reflow temperature of 260 ° C. is required.
- solders for high temperature use remelting at the reflow temperature during mounting (ie, 250 to 260 ° C.) in addition to characteristics such as heat dissipation, stress relaxation, thermal fatigue resistance, and electrical conductivity.
- a solidus line exceeding at least 260 ° C., and a solidus temperature of 265 ° C. or higher is required in consideration of temperature variations during reflow (about 5 ° C.).
- the liquidus temperature of lead-free solder is 400 ° C. or higher, it is necessary to increase the working temperature during die bonding to 400 ° C. or higher, which may cause adverse effects such as changes in chip characteristics and promotion of member oxidation. . Accordingly, the liquidus temperature needs to be lower than 400 ° C., and considering an actual production process, it is preferably 390 ° C. or lower, and more preferably 350 ° C. or lower.
- Bi / 2.5 mass% Ag eutectic solder (melting point 262 ° C) is a typical Bi-Ag solder, but since the solidus temperature is less than 265 ° C, there is a problem of remelting during mounting. May occur. Moreover, it has the weak mechanical characteristic peculiar to Bi solder, and when it is applied as it is, it will have a bad influence on joining reliability, machinability, and the continuous supply property by an apparatus.
- Patent Document 2 discloses Bi / Ag solder of Bi 30 to 80% by mass, but the solidus is 262 ° C. and there is a possibility of remelting. In addition, since the liquidus temperature is as high as 400 to 700 ° C., adverse effects such as changes in chip characteristics and promotion of member oxidation may occur.
- Patent Document 3 discloses a method for producing a multi-component solder containing Bi, which describes that a variation in liquidus temperature is reduced and a high-temperature solder material having a melting point of 250 to 300 ° C. can be produced. However, it does not describe improvement of fragile mechanical characteristics unique to Bi-based solder.
- Patent Document 4 a solder alloy containing Al and Cu in Bi and further containing Sn is proposed. However, by adding Sn, a low melting point layer of 139 ° C. appears and remelting may occur during reflow at 260 ° C.
- the lead frame island portion to which the solder alloy is applied may be pre-plated with Ag, but in recent years, in-vehicle devices, Ni plating is often used instead of Ag. This is because, in a temperature cycle test or the like for checking reliability, the growth of the Ni—solder bonding interface reaction layer may be suppressed, and the long-term bonding reliability becomes high.
- the lead frame island portion may not be processed such as Ag plating or Ni plating.
- This process is called a bare Cu frame and is widely used in general-purpose devices such as transistors. However, it is important that the solder spreads.
- solder alloy when the solder alloy is applied to the lead frame island portion of the bare Cu frame, Cu starts to react preferentially with a specific element in the solder, for example, Sn, but because of its oxide film on its surface, it spreads wet. It tends to affect the decline. Moreover, since Cu hardly dissolves in Bi-based solder alloys and Pb-based solder alloys, wetting spread tends to be lower than that of Ag plating. That is, in the bare Cu frame, there is a problem that the surface oxidation is likely to proceed, and the solder wetting spread is likely to deteriorate due to the influence of the surface roughness. Thus, the solder alloy has been required to be improved so as not to reduce the wetting spread during bonding to the bare Cu frame.
- an object of the present invention is substantially free of Pb, has a solidus temperature of 265 ° C. or higher, and a liquidus temperature of 390 ° C. or lower, and has machinability and mechanical strength. It is another object of the present invention to provide a Bi solder alloy having excellent bonding reliability, and a bonding method and an electronic component mounting board for Ag-plated electronic components, bare Cu frame electronic components, Ni-plated electronic components, and the like using the same.
- the present inventor has mixed and alloyed a specific amount of Al in the conventional Bi-Ag solder, and an intermetallic compound of Ag and Al in the solder alloy. Dispersion of particles containing copper does not cause deterioration or damage of electronic parts due to heat during bonding, nor does it cause remelting defects due to heat during solder reflow, and has high bonding reliability. Has been found, and the present invention has been completed.
- the first invention of the present invention contains Ag and Al, does not substantially contain Pb, has a Bi content of 80% by mass or more, and has a melting point of 265 ° C. or more, A Bi-based solder alloy having a liquidus of 390 ° C. or lower, with an Ag content of 0.6 to 18% by mass, an Al content of 0.1 to 3% by mass, and an Ag content of There is provided a Bi-based solder alloy characterized in that it is 1/20 to 1/2, and particles containing an intermetallic compound of Ag and Al are dispersed in the solder alloy.
- the second invention of the present invention contains Ag and Al, does not substantially contain Pb, has a Bi content of 80% by mass or more, and has a melting point of 265 ° C. or more, A Bi-based solder alloy having a liquidus of 390 ° C. or lower, with an Ag content of 0.6 to 18% by mass, an Al content of 0.1 to 3% by mass, and an Ag content of 1/20 to 1/2, in which particles containing an intermetallic compound of Ag and Al are dispersed in the solder alloy, and 0.001 to 0.3% by mass of one or more of P or Ge A Bi-based solder alloy is provided.
- the third invention of the present invention contains Ag and Al, does not substantially contain Pb, has a Bi content of 80% by mass or more, and has a melting point of 265 ° C. or more, A Bi-based solder alloy having a liquidus of 390 ° C. or lower, with an Ag content of 0.6 to 18% by mass, an Al content of 0.1 to 3% by mass, and an Ag content of 1/20 to 1/2, particles containing an intermetallic compound of Ag and Al dispersed in the solder alloy, and further containing 0.01 to 3% by mass of one or more of Sn or Zn.
- a Bi-based solder alloy is provided.
- any one of the first to third inventions 97% by volume or more of the particles have a particle size of less than 50 ⁇ m with respect to the total volume of the particles.
- a Bi-based solder alloy is provided.
- the Bi group according to any one of the first to third aspects wherein the Al content is 1/15 to 1/4 of the Ag content.
- a solder alloy is provided.
- the composition further comprises 0.01 to 1% by mass of one or more selected from Te, Ni, or Cu.
- a Bi-based solder alloy is provided.
- the Bi-based solder alloy according to the third aspect further comprising 0.001 to 0.3% by mass of one or more of P or Ge. Is done.
- the eighth invention of the present invention in the first to third inventions, after the molten solder alloy is poured into the mold, it is rapidly cooled and solidified to 260 ° C. at a cooling rate of 3 ° C./sec or more.
- a Bi-based solder alloy is provided in which particles containing an intermetallic compound of Ag and Al are dispersed in the alloy.
- the Bi-based solder alloy according to any one of the first to eighth aspects is used to bond an Ag-plated or Ni-plated electronic component or a bare Cu frame electronic component.
- An electronic component bonding method is provided.
- an electronic component mounting in which the electronic component is mounted using the Bi-based solder alloy according to any one of the first to eighth inventions, with a reflow operation peak temperature of 260 to 265 ° C.
- a substrate is provided.
- the Bi-based solder alloy of the present invention does not substantially contain Pb, has a solidus temperature of 265 ° C. or higher and a liquidus temperature of 390 ° C. or lower.
- An intermetallic compound of Ag and Al is contained in the solder alloy. Since the fine particles that are contained are dispersed, there is no deterioration or damage of electronic parts due to heat during bonding, and there is no problem of remelting due to heat during solder reflow.
- a Bi-based solder alloy can be provided, and can be suitably used for die bonding or the like, which is bonding inside an electronic component.
- the improvement in mechanical strength and machinability enables the formation and winding of wire-shaped preform solder, which is particularly suitable as a preform material for high-temperature solder alloys for die bonding.
- the wettability of the solder can be improved and the generation of voids at the time of bonding can be reduced. The bonding strength with respect to is not reduced.
- the lead frame island portion to which the solder alloy is applied is subjected to Ni plating treatment, Electronic components can be bonded without reducing wettability and without decreasing the bonding strength after bonding.
- an electronic component mounting substrate having high mechanical strength without causing any change in chip characteristics or member oxidation. Can be provided.
- FIG. 1 is a cross-sectional view showing an example of a semiconductor package using the Bi-based solder alloy of the present invention.
- FIG. 2 is a chart showing a melting point measurement result of a conventional Bi-based solder alloy (Bi / 2.5Ag).
- FIG. 3 is a chart showing measurement results of a Bi-based solder alloy (Bi / 3Ag / 0.5Al) which is an example of the present invention.
- FIG. 4 is a chart showing melting point measurement results of a Bi-based solder alloy (Bi / 5Ag / 1Al / 0.05Ge) which is an example of the present invention.
- FIG. 5 is a chart showing a melting point measurement result of a Bi-based solder alloy (Bi / 5Ag / 1Al / 0.3Sn) which is an example of the present invention.
- FIG. 6 is a chart showing a tensile test result of a conventional Bi-based solder alloy (Bi / 2.5Ag).
- FIG. 7 is a chart showing a tensile test result of a Bi-based solder alloy (Bi / 3Ag / 0.5Al) which is an example of the present invention.
- FIG. 8 is a chart showing a tensile test result of a Bi-based solder alloy (Bi / 5Ag / 1Al / 0.05Ge) which is an example of the present invention.
- FIG. 9 is a chart showing a tensile test result of a Bi-based solder alloy (Bi / 5Ag / 1Al / 0.3Sn) which is an example of the present invention.
- the present invention relates to a Bi-based solder alloy in which a specific amount of Al is contained in Bi-Ag, and particles containing an intermetallic compound of Ag and Al are dispersed in the solder alloy, and an Ag-plated electron using the same
- the present invention relates to a bonding method and an electronic component mounting substrate for components, bare Cu frame electronic components, Ni-plated electronic components and the like.
- Bi-Ag Components and composition of Bi-based solder alloy
- the Bi-based solder alloy of the present invention is mainly composed of Bi, which belongs to the group Va element of the periodic table, and has a trigonal crystal (rhombohedral crystal) with very low crystal structure and is very fragile.
- the conventional Bi-Ag solder is known as a high-temperature solder that does not contain lead and has a solidus line higher than the upper limit of 260 ° C. when the electronic component is mounted on the substrate.
- Bi-2.5 mass% Ag solder is a eutectic type alloy having a solidus temperature of 262 ° C., which is about 9 ° C. lower than the melting point 271 ° C. of pure Bi.
- the conventional Bi-Ag solder shows only about 8% elongation even in a Bi / 2.5Ag eutectic solder alloy. Due to this fragility, conventional Bi-Ag solder is prone to failure during joining and subsequent reliability tests, and it is possible to ensure the machinability and continuous supply by equipment to preform solder. There wasn't.
- the present applicant as a result of paying attention to the element Al, which has a lower melting point drop or lower than the Bi-Ag eutectic when combined with Bi in order to increase the solidus temperature of Bi-Ag solder,
- the element Al which has a lower melting point drop or lower than the Bi-Ag eutectic when combined with Bi in order to increase the solidus temperature of Bi-Ag solder
- Al By containing Al at a specific ratio with respect to Ag, it has a high solidus temperature and an appropriate liquidus temperature, and can improve mechanical strength, machinability, and the like.
- a solidus temperature of 265 ° C. or higher is obtained by using a Bi—Ag solder as a base and setting the ratio of Ag and Al within a specific range.
- the Bi-based solder alloy of the present invention can maintain the initial state of the solder inside the electronic component without being remelted after being mounted on the substrate, and is excellent in mechanical strength, machinability and the like. is there.
- each component used for the Bi-based solder alloy of the present invention, an electronic component bonding method using the solder alloy, a mounting substrate obtained, and the like will be described in detail.
- the Bi content is determined according to the addition amount of other essential additive elements such as Ag and Al, but must be 80% by mass or more based on the total amount of the solder alloy.
- the Bi content is less than 80% by mass, the liquidus increases greatly, which may cause adverse effects such as changes in chip characteristics and promotion of member oxidation.
- Ag forms an AgAl intermetallic compound, which will be described later, together with Al, and the particles are dispersed in Bi, thereby improving and improving the brittleness of the Bi matrix.
- the content of Ag is 0.6 to 18% by mass.
- the Ag content is less than 0.6% by mass, the AgAl compound is not sufficiently generated, and the brittle mechanical characteristics of the Bi matrix become dominant, and the elongation is not sufficiently improved and the bonding reliability, the solder machine Processability and continuous supply by equipment cannot be secured.
- the Ag content exceeds 18% by mass, the soldering wettability is poor and the bonding reliability is lost.
- the preferable Ag content is 1 to 15% by mass.
- Al increases the solidus temperature of Bi—Ag solder and further improves the fragile mechanical properties unique to Bi-based solder.
- the Al content is 0.1 to 3% by mass. If the Al content is less than 0.1% by mass, the Bi-Ag solidus temperature rise is insufficient and does not exceed 265 ° C., which may cause poor bonding reliability due to remelting. If it exceeds 3% by mass, the liquidus temperature rises, and a wetting defect appears at a joining operation temperature of 400 ° C. or lower.
- the amount of Al is determined according to the content of Ag, that is, in the Ag-Al phase diagram, the Ag 2 Al intermetallic compound in the intermediate layer ⁇ phase and the Ag in the intermediate layer ⁇ phase at a ratio of 5 to 33 wt% Al. 3 Since Al intermetallic compound exists, the content of Ag is set to 1/20 to 1/2. Outside this range, solder wettability is poor and joint reliability is lost. A preferable amount of Al is 1/15 to 1/4 of the Ag content.
- the AgAl intermetallic compound is present in the form of particles in the solder alloy.
- grain in Bi the brittleness of Bi matrix can be disperse-strengthened and improved.
- the AgAl intermetallic compound refers to an intermetallic compound containing Ag and Al, but is a compound having a very small amount of either Ag or Al metal, Te, Ni, Cu, Sn, Zn, P described later. Or Ge etc. shall be included.
- the particle containing the AgAl intermetallic compound preferably has a particle size smaller than 50 ⁇ m. Further, those having a particle size of less than 50 ⁇ m are preferably 97% by volume or more, more preferably 98% by volume or more, and particularly preferably 99% by volume or more based on the total volume of the particles. If particles with a particle size of 50 ⁇ m or more are 3% by volume or more, dispersion strengthening by the compound is not locally performed, and the Bi matrix remains fragile, and there is a possibility that the fragility may occur from that part and the vulnerability may not be improved as a whole. is there. In this case, it becomes a cause of insufficient bonding reliability and poor handling.
- the particle size of the particles containing the AgAl intermetallic compound is more preferably smaller than 40 ⁇ m, and particularly preferably smaller than 30 ⁇ m.
- grains can be easily discriminate
- the Bi-based solder alloy of the present invention can contain one or more selected from Te, Ni, or Cu as an optional additive element.
- Te, Ni, or Cu is an element that precipitates at a temperature higher than the liquidus temperature of the Bi—Ag—Al alloy. Therefore, in the solder alloy, it becomes an initial crystal component that precipitates first, and an Ag—Al metal that precipitates later. There is an effect of finely depositing interstitial compounds and matrix crystal grains (particles). As a result, coarsening of the solidified structure is suppressed as a whole of the solder alloy, and the solder structure becomes a fine solidified structure as compared with the case where Te, Ni, or Cu is not added, and cracks are hardly generated.
- the content of Te, Ni, or Cu is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.8% by mass.
- Te, Ni, or Cu exceeds 1% by mass, it may be generated as a coarse primary crystal component.
- addition amount is less than 0.01% by mass, it is sufficient for refining the solidified structure. It is because it does not contribute to
- the solder alloy of the present invention is preferably used for an Ag-plated electronic component, substantially free of Pb, Bi, Ag, and Al as essential additive components, and optional additive components such as Te, Ni, Any of Cu can be included.
- substantially means that it can be contained as an inevitable impurity.
- inevitable impurities such as Sb and Te can be included in the solder alloy as long as the properties of the solder alloy of the present invention are not affected.
- the total amount is preferably less than 100 ppm in consideration of the influence on the solidus temperature, wettability, and bonding reliability.
- the Bi-based solder alloy of the present invention contains at least one of P and Ge in addition to Bi, Ag, and Al as additive elements.
- P or Ge is added to improve the wettability of the solder and reduce the generation of voids during bonding.
- P and Ge are added, P and Ge are preferentially oxidized, and the oxidation of the solder surface is suppressed. Therefore, the wettability of the solder can be improved and the generation of voids during bonding can be reduced.
- the addition amount of P and Ge is 0.001 to 0.3% by mass.
- P and Ge When the addition amount of P and Ge exceeds 0.3 mass%, P and Ge will form many oxides, which will adversely affect wettability. Moreover, when the addition amount of P and Ge is less than 0.001 mass%, the effect of addition becomes insufficient.
- the content of P or Ge is preferably 0.003 to 0.1% by mass, and more preferably 0.005 to 0.05% by mass.
- Cu (3) is further included as an optional component.
- Cu has the effect of promoting the reaction with the bare Cu frame and improving the wetting and spreading.
- Al often preferentially moves and reacts as a diffusion element to the bare Cu frame in the solder, but when Cu added in the solder is present, the Cu atoms are in contact with each other between the surfaces of the bare Cu frame. Diffusion movement occurs, and as a result, the effect of improving the wetting spread is obtained.
- Cu is an element that precipitates at a temperature higher than the liquidus temperature of the Bi—Ag—Al alloy, so that it becomes an initial crystal component that precipitates first, and finely precipitates Ag—Al compounds and matrix crystals that precipitate later. There is an effect, and the coarsening of the solidified structure can be suppressed as a whole. As a result, the solder structure becomes a fine solidified structure compared to the case where Cu is not added, and cracks are less likely to occur.
- the amount of Cu added is 0 to 1% by mass. When the added amount of Cu exceeds 1% by mass, it may be produced as a coarse primary crystal component. Further, if the addition amount of Cu is less than 0.01% by mass, it may not sufficiently contribute to the refinement of the solidified structure. Therefore, the Cu content is more preferably 0.01 to 1% by mass. More preferred is 0.03 to 0.8% by mass.
- Sn, Zn The Bi-based solder alloy of the present invention, in the case of Ni-plated electronic components, is used as an additive element in addition to the Bi, Ag, and Al elements to improve solder wettability and increase the joint strength after joining.
- Sn or Zn is added. Sn or Zn moves to the bonding interface preferentially over Bi, Ag, and Al elements, and forms a reaction layer with the material of the bonding interface such as Ni, thereby improving the wettability of the solder and increasing the bonding strength after bonding. Can be considered.
- the content of Sn or Zn is 0.01 to 3% by mass, preferably 0.05 to 2.0% by mass, and more preferably 0.1 to 1.5% by mass.
- Sn or Zn exceeds 3 mass%, a lot of Bi-Sn, which is a low melting point layer, remains in the solder and a low melting point abnormality occurs during use, and a thick oxide film layer is formed for Zn. Forming it will adversely affect wettability.
- the addition amount of Sn and Zn is less than 0.01% by mass, the wettability to Ni plating, which is an addition effect, is not preferable.
- the Bi-based solder alloy of the present invention preferably contains Cu (3) as an optional element in addition to the above as an additional element.
- Cu has the effect of promoting the reaction with Ni plating and improving the wetting spread.
- Al often preferentially moves and reacts as a diffusion element to the Ni plating in the solder, but if Cu added in the solder is present, it is between the Cu atom and the Ni atom between the Ni plating surface. Diffusion movement occurs, and as a result, the effect of improving the wetting spread is obtained.
- Cu is an element that precipitates at a temperature higher than the liquidus temperature of the Bi—Ag—Al alloy, so it becomes the primary crystal component that precipitates first, and the Ag—Al compound and matrix crystals that precipitate later are finely precipitated. It is possible to suppress the coarsening of the solidified structure as a whole.
- the solder structure becomes a fine solidified structure compared to the case where Cu is not added, and cracks are less likely to occur.
- the amount of Cu added is 0 to 1% by mass. When the added amount of Cu exceeds 1% by mass, it may be produced as a coarse primary crystal component and the wettability at the time of melting may be lowered. Further, if the addition amount of Cu is less than 0.01% by mass, it may not sufficiently contribute to the refinement of the solidified structure. Therefore, the Cu content is more preferably 0.01 to 1% by mass. More preferred is 0.03 to 0.8% by mass.
- the solder alloy of the present invention is substantially free of Pb, contains Bi, Ag, and Al as main components, Sn or Zn as an essential additive element, and in the case of Ni-plated electronic parts, as an optional additive element , P or Ge may be included.
- the content of P or Ge is 0.001 to 0.3% by mass, preferably 0.01 to 0.1% by mass. When the addition amount of P and Ge exceeds 0.3 mass%, P and Ge will form many oxides, which will adversely affect wettability. Moreover, when the addition amount of P and Ge is less than 0.001 mass%, the effect of addition becomes insufficient.
- the content of P or Ge is preferably 0.003 to 0.1% by mass, and more preferably 0.005 to 0.05% by mass.
- Bi-based solder alloy of the present invention is not particularly limited.
- Bi, Ag and Al described above are essential, and for a bare Cu electronic component.
- P or Ge is added, and in the case of Ni-plated electronic parts, Bi, Ag and Al are essential, and each raw material component added with Sn or Zn can be manufactured by a conventionally known method. it can.
- a raw material in order to form particles (intermetallic compound of Ag and Al) having a particle size of less than 50 ⁇ m in the solder alloy, a shot shape or a piece processed product having a diameter of 5 mm or less, particularly 3 mm or less Is preferably used.
- This raw material is put into a melting furnace, and in order to suppress oxidation of the raw material, an atmosphere of nitrogen or an inert gas is used and heated and melted at 500 to 600 ° C., preferably 500 to 550 ° C.
- an atmosphere of nitrogen or an inert gas is used and heated and melted at 500 to 600 ° C., preferably 500 to 550 ° C.
- a cylindrical graphite mold having an inner diameter of 30 mm or less and a thickness of about 10 mm can be used.
- the stirring time varies depending on the apparatus and the amount of raw materials, but is preferably 1 to 5 minutes.
- a chill metal made of a material having good thermal conductivity, such as Cu, is brought into close contact with the outside of the mold, or a chill metal made by passing cooling water as a hollow structure is preferably adhered, and the molten metal is poured into the mold.
- the shape where the cross-sectional area of the ingot formed by continuous casting becomes small is preferable to make it the shape where the cross-sectional area of the ingot formed by continuous casting becomes small.
- the die is preferably covered with a water cooling jacket and cooled at a cooling rate of 50 ° C./sec or more.
- the Bi-based solder alloy of the present invention thus obtained is substantially free of Pb, has a solidus temperature of 265 ° C. or higher and a liquidus temperature of 390 ° C. or lower, so that it does not remelt even after mounting on the substrate.
- the initial shape of the solder inside the electronic component can be maintained.
- the solidus temperature is measured using a differential scanning calorimeter (DSC) and is 265 ° C. or higher, preferably 267 ° C. or higher, more preferably 268 ° C. or higher.
- the liquidus temperature is confirmed using differential scanning calorimetry (DSC) measurement and a melting test, and is 390 ° C. or lower, preferably 380 ° C. or lower, more preferably 360 to 380 ° C.
- the Bi-based solder alloy of the present invention is excellent in mechanical strength, machinability and joining reliability.
- the Bi-based solder alloy of the present invention has an elongation of preferably 15 to 50%, more preferably 20 to 45%.
- the elongation and the tensile strength are measured by a tensile tester (Tensilon universal tester) after extrusion processing to, for example, 0.75 mm ⁇ to produce a wire-shaped preform solder.
- the Bi-based solder alloy of the present invention is used in bonding methods for Ag-plated electronic components, bare Cu frame electronic components, Ni-plated electronic components, etc., and can easily manufacture an electronic component mounting board. it can.
- FIG. 1 is a cross-sectional view of a semiconductor package of an electronic component using the Bi-based solder alloy of the present invention.
- the Bi-based solder alloy 3 of the present invention is applied to the center surface of the lead frame island 4 and the semiconductor chip 1 is mounted and soldered (die bonding), and then the electrode 2 on the semiconductor chip 1 is bonded. They are connected to the lead frame 5 via the wires 6, and all of them are covered with the mold resin 7 except for the outer periphery of the lead frame 5. Since the lead frame island portion 4 to which the solder alloy 3 of the present invention is applied has been subjected to Ag plating, fine particles containing an intermetallic compound of Ag and Al are dispersed in the solder alloy. During bonding, there is no deterioration or damage of electronic parts due to heat, and there is no problem of remelting due to heat during solder reflow.
- a Bi-based solder alloy is used to bond an electronic component to a mounting substrate of a bare Cu frame in which a plated Ag layer or Ni layer is not formed on the Cu material surface. can do.
- the soldered (die-bonded) semiconductor chip 1 is heated to a reflow temperature around 260 ° C. when mounted on the substrate, but the solidus temperature of the Bi-based solder alloy of the present invention is 265 ° C. or higher.
- the electronic component can maintain mechanical strength without any change in chip characteristics or member oxidation.
- the lead frame island 4 in FIG. 1 is generally subjected to Ag plating, but instead of Ag plating, Ni plating is used as plating capable of controlling the reactivity with solder. Is often used for in-vehicle applications.
- Ni reacts preferentially with Sn and Zn in the solder, but the reaction rate is slower than Ag and Cu. Furthermore, it hardly dissolves in Bi or Pb. Therefore, wetting spread of Ni plating tends to be lower than that of bare Cu frame, but the growth of the bonding interface reaction layer may be suppressed in the temperature cycle test etc. in the reliability test, and the long-term reliability is high. Has been. However, since Ni plating does not spread well, it was necessary to set appropriate conditions for determining conditions. That is, when the solder alloy 3 is applied to the lead frame island part 4, the wetting spread becomes worse than the Ag plating or bare Cu, and the bonding strength is lowered due to insufficient bonding.
- an electronic component can be bonded to a mounting substrate in which a Ni plating layer is formed on a copper material surface using a Bi-based solder alloy.
- the soldered (die-bonded) semiconductor chip 1 is heated to a reflow temperature around 260 ° C. when mounted on the substrate, but the solidus temperature of the Bi-based solder alloy of the present invention is 265 ° C. or higher.
- the electronic component can maintain mechanical strength without any change in chip characteristics or member oxidation.
- the electronic component mounting board of the present invention is obtained by mounting an electronic component using the above-described various Bi-based solder alloys with a reflow work peak temperature of 260 to 265 ° C.
- substrate for electronic component mounting a conventionally well-known board
- substrate can be used and although a ceramic is common, a printed circuit board and Si board
- the size and distribution of the precipitated particles can be easily determined by observation with an optical microscope. Can do. Each specimen was observed with a 200 ⁇ optical microscope, the number of particles containing all intermetallic compounds in the field of view was counted, the cross-sectional diameter of the particles was measured, and the measured value was multiplied by 1.12. The diameter. Based on this particle size, the volume of each intermetallic compound particle was calculated using all the intermetallic compound particles as true spheres, and the proportion of particles having a particle size of less than 50 ⁇ m in all particles was calculated in volume%.
- Bonding reliability A sample obtained by die bonding the above-described dummy chip to a lead frame was further molded with an epoxy resin. The molded product was first subjected to a reflow test at 260 ° C., and then a temperature cycle test of ⁇ 50 ° C./150° C. was performed 500 cycles (or 700 cycles). Thereafter, the resin was opened, and the bonded portion was observed by die bonding. For reliability, the number of cycles was indicated as “good” when there was no cracking in the chip and the joint, and the case where bonding failure or cracking occurred was evaluated as “bad”.
- solder alloy preform solder
- Bi, Ag, Al, Te, Cu, and Ni purity of each element: 99.99% by weight or more
- the raw material used is a shot-shaped raw material of 3 mm ⁇ or less, and when the raw material is large flakes or bulk, cut, pulverize, etc. while keeping in mind that there is no variation in composition due to the sampling location in the alloy after melting, The size was reduced to 3 mm or less.
- a predetermined amount of these raw materials was weighed into a graphite crucible for a high frequency melting furnace.
- the crucible containing the raw material was put into a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 L / min or more per 1 kg of the raw material in order to suppress oxidation.
- the inside of the melting furnace was heated to 500 ° C. at a rate of 5 ° C./sec to heat and melt the raw material.
- the metal began to melt, it was stirred well with a stirring rod and stirred for 3 minutes so as not to cause local compositional variations.
- the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold of the solder mother alloy.
- a cylindrical graphite mold having an inner diameter of 30 mm or less and a wall thickness of about 10 mm was used, and a material having good thermal conductivity (made of copper, and cooling water was passed as a hollow structure outside the mold. (Cold metal) was in close contact, and the molten metal was poured into the mold, and then rapidly solidified by cooling at a cooling rate of 5 ° C./sec to about 260 ° C., depending on the composition.
- Example 4 a continuous casting machine provided with a water-cooling jacket around the die was used. After the raw material was heated and melted, the melt was cooled at a cooling rate of about 60 ° C./sec.
- a part of the obtained solidified product was used as a sample, and the amount of particles (intermetallic compound of Ag and Al) formed in the solder alloy and having a particle size of less than 50 ⁇ m was measured by the method described above. Thereafter, the remaining solidified product was transferred to an atmospheric melting furnace and extruded to a diameter of 0.75 mm under the following conditions to produce a wire-shaped preform solder. In all of the examples, processing and winding into a wire shape were possible.
- a solder alloy was produced in the same manner as in Example 1 except that the raw materials were mixed so as to have the composition shown in Table 1.
- a part of the obtained solidified product was used as a sample, and the amount of particles (intermetallic compound of Ag and Al) formed in the solder alloy and having a particle size of less than 50 ⁇ m was measured by the method described above.
- a wire-shaped preform solder was produced. In all comparative examples, processing and winding into a wire shape were possible.
- the obtained wire-shaped preform solder sample was used to measure the solidus temperature and the liquidus temperature, and to observe and measure the particle diameter including the Ag-Al intermetallic compound.
- the preform solder sample was further die-bonded to an Ag-plated lead frame, the wettability was evaluated, and after molding with an epoxy resin, a temperature cycle test and a reflow test were performed to evaluate the bonding reliability.
- Al is 0.1 to 3% by mass, and the Al content ratio (X) with respect to Ag is in the range of 1/20 ⁇ X ⁇ 1/2, which is representative in the case of FIG. As shown, a solidus temperature of 265 ° C. or higher was confirmed. Further, in Examples 1 to 5, as represented by the case of FIG. 7 of Example 3, the elongation was 15% or more, and it was confirmed that the vulnerability was improved. Furthermore, in Examples 2 to 5 containing 0.5% by mass or more of Al, it can be said that the elongation rate exceeds 30%, and the joint reliability, the machinability of solder, and the continuous supply by the apparatus are very excellent.
- Example 4 it was confirmed by cross-sectional observation that 97% or more of the additive and intermetallic compound particles in the solder wire had a particle diameter of less than 50 ⁇ m.
- Example 4 since the cooling rate was faster than the others, most of the particles around 20 ⁇ m were finer than others. The wettability was good, and even in the temperature cycle test (500 cycles), the chip and the joint were not cracked, and the evaluation result of the joint reliability was “good”. In addition, continuous supply with a die bonder could be carried out without problems.
- Example 8 to 10 in addition to containing Bi, Ag, and Al in the same amount as in Example 1, any one of Te, Ni, and Cu is further added.
- Example 11 in addition to containing the same amounts of Bi, Ag, and Al as in Example 6, both Ni and Cu were further added. It was confirmed that 97% or more of the additive and intermetallic compound particles in the solder wire had a particle size of less than 50 ⁇ m. In all cases, the wettability was good, and even in the temperature cycle test (700 cycles) and the reflow test, the chip and the joint were not cracked, and the evaluation result of the joint reliability was “good”. In addition, continuous supply with a die bonder could be carried out without problems.
- Comparative Example 1 since the Al content exceeds the required content, a “defect” occurs in the wettability test at 390 ° C., and the chip or the joint is cracked by the temperature cycle test. The evaluation result of the property was also “bad”. Moreover, since the comparative example 2 also has a high Ag content ratio and the Al content ratio (X) to Ag is out of the range of 1/20 ⁇ X ⁇ 1/2, the solidus temperature exceeds 265 ° C. There wasn't. The solid / liquid phase line of the Bi / 2.5Ag eutectic solder alloy of Comparative Example 3 was 262 ° C. as shown in the state diagram as it decreased from the melting point 271 ° C. of Bi alone, as shown in FIG.
- the parts bonded with the solder alloy for the Ag-plated electronic component of the present invention are free from peeling and voids even during reflow for mounting the electronic component on the substrate, and the characteristics of the electronic component are improved. There can be no problem.
- Example 12 to 24 (1) Production of solder alloy (preform solder) for bare Cu electronic components Except for using Bi, Ag, Al, P, Ge, Cu (purity of each element: 99.99% by weight or more) as a raw material, In the same manner as in Examples 1 to 11, wire-shaped preform solder was manufactured. In all the examples, processing and winding into a wire shape were possible. (2) Physical properties and performance test Using the wire-shaped preform solder sample obtained by the above method, measurement of solidus temperature and liquidus temperature, and observation of particle diameter including Ag-Al intermetallic compound And measurements were taken. Thereafter, the preform solder sample was further die-bonded to a Cu lead frame, and the wettability was evaluated. After molding with an epoxy resin, a temperature cycle test and a reflow test were performed to evaluate the bonding reliability. These results are shown in Table 2.
- a solder alloy was produced in the same manner as in Example except that the raw materials were mixed so as to have the composition shown in Table 2. In all the comparative examples, processing and winding into a wire shape were possible. The obtained wire-shaped preform solder sample was used to measure the solidus temperature and the liquidus temperature, and to observe and measure the particle diameter including the Ag-Al intermetallic compound. Thereafter, the preform solder sample was further die-bonded to a Cu lead frame, and the wettability was evaluated. After molding with an epoxy resin, a temperature cycle test and a reflow test were performed to evaluate the bonding reliability. These results are shown in Table 2.
- Comparative Examples 5 to 9 which are out of the scope of the present invention do not contain P or Ge, or the content thereof is out of the upper and lower limits of the required content, and compared to the bare Cu frame in the wettability test at 390 ° C. As a result, wetting spread was insufficient, and the evaluation results of the wettability test / reliability test were “bad”.
- the solid / liquid phase line of the conventional Bi / 2.5Ag eutectic solder alloy is 262 ° C. as shown in the state diagram, which decreases from the melting point 271 ° C. of Bi alone, as shown in FIG. Even if it was “good”, it did not contain Al, and therefore, as shown in FIG.
- Comparative Examples 10 to 11 the wettability was improved by adding Ge within the scope of the present invention, but Ag or Al was outside the scope of the present invention, and cracked in the solder layer during the reliability test. Was generated and failed in the evaluation of 500 cycles.
- Comparative Examples 12 to 13 Bi, Ag, Al, and P or Ge were blended within the scope of the present invention.
- the blending amount of Al with respect to Ag is less than 1/20, and reliability Since cracks occurred in the solder layer during the test, the evaluation was rejected in 500 cycles.
- Comparative Example 13 the blending amount of Al with respect to Ag exceeded 1/2.
- Comparative Example 14 Cu was added to the solder alloy of Comparative Example 10 within the scope of the present invention, but cracking of the solder layer was not improved, and the evaluation was rejected after 500 cycles.
- Comparative Example 15 Cu was added to the solder alloy of Comparative Example 13 within the scope of the present invention, but the wetting failure was not improved, and the evaluation failed for 500 cycles.
- Comparative Example 16 the liquidus was 400 ° C., and a part of the liquidus remained undissolved at a bonding temperature of 390 ° C., resulting in insufficient wetting and spreading. Moreover, there was a surface that was not partly joined, and the evaluation was rejected after 500 cycles.
- the parts bonded by the Bi-based solder alloy for bare Cu electronic parts of the present invention are free from peeling and voids even during reflow for mounting the electronic parts on the substrate. It can be said that there is no problem.
- Example 25 to 37 (1) Manufacture of solder alloy (preform solder) for Ni-plated electronic parts Bi, Ag, Al, Sn, Zn, P, Ge, Cu (purity of each element: 99.99% by weight or more) as raw materials A wire-shaped preform solder was produced in the same manner as in Examples 1 to 11 except that it was used. In all the examples, processing and winding into a wire shape were possible.
- solder alloy preform solder
- solder alloy was produced in the same manner as in the above example except that the raw material powder was mixed so as to have the composition shown in Table 4. In all the comparative examples, processing and winding into a wire shape were possible. In addition, using the obtained wire-shaped preform solder sample, the measurement of the solidus temperature and the liquidus temperature, and the observation and measurement of the particle diameter including the AgAl intermetallic compound were performed. Further, the preform solder sample was further die-bonded to a lead frame to evaluate the wettability, and after molding with an epoxy resin, a cycle test was performed to evaluate the bonding reliability. These results are shown in Table 4.
- Examples 25 to 37 since Sn or Zn is added, Sn and Zn cause an interfacial reaction with Ni even on a Ni-faced lead frame with poor wetting spread, resulting in good wetting spread. And wettability improved.
- the chip and the joint were not cracked in 500 cycles with a small number of cycles, and the evaluation result of the joint reliability was “good”. This is because Sn and Zn are contained, so that wetting and spreading are ensured, the bonding strength between the solder and the lead frame is firmly secured, and the reliability can be kept firmly.
- Examples 31 to 37 since Cu is contained in addition to Sn or Zn, the reliability is improved by miniaturization of the structure, and cracks are generated in the chip and the joint even in the temperature cycle test of 700 cycles with a large number of cycles. As a result, the evaluation result of the bonding reliability was “good”. Further, in Examples 29 to 30 and Examples 32 to 37, not only Sn and Zn but also P and Ge for improving the wetting spread are added. Due to the effects of Ge and Ge, Sn and Zn interacted with Ni to further improve the wetting spread, and the evaluation result of wettability was “excellent”. Regarding the mechanical properties, high strength was obtained in the range of the additive elements in Examples 25 to 37, and continuous supply with a die bonder could be performed without breaking the wire.
- Comparative Examples 17 to 21 do not contain Sn or Zn as shown in Table 4, or their contents are out of the upper and lower limits of the required contents, and wetting spread is ensured in the Ag plane lead frame.
- the solid / liquid phase line of the conventional Bi / 2.5Ag eutectic solder alloy is 262 ° C. as shown in the state diagram, which decreases from the melting point 271 ° C.
- Ni plating was applied to the parts joined by the solder alloy for the Ni-plated electronic parts according to the present invention without peeling or voiding even during reflow for mounting the electronic parts on the substrate. It can be said that there is no problem in the characteristics of electronic components.
- the Bi-based solder alloy of the present invention is preferably used as a preform solder or paste solder for Ag-plated electronic parts, bare Cu frame electronic parts, Ni-plated electronic parts, etc. as an alternative to high-temperature solder such as Pb / 5Sn. And can be used particularly suitably for chip bonding of semiconductor packages such as power devices and power modules.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
しかしながら、Sn-Ag-Cu等の無鉛はんだの融点は、従来のPb/Sn共晶はんだより高く約220℃前後であり、実装時のリフロー温度は250~260℃付近となる。このため、リフロー温度260℃で10秒間保持するサイクルを5回程度繰り返した後でも、電子部品内部の接合信頼性等に問題が生じない高温用の無鉛はんだが必要とされる(特許文献1)。
また、本発明者は、このBi-Ag-Alはんだ合金内にP又はGeを添加すると、ベアCuフレームへの濡れ広がりを向上させることができ、電子部品に対する十分な接合強度が得られること、さらには、Bi-Ag-Alはんだ合金内に、Sn又はZnを含有させると、はんだ合金が塗布されるリードフレームアイランド部に、Niメッキ処理をした場合にも、はんだの濡れ性が低下せず、電子部品に対する十分な接合強度が得られることも見出した。
また、本発明の第5の発明によれば、第1~3のいずれかの発明において、Alの含有量がAgの含有量の1/15~1/4であることを特徴とするBi基はんだ合金が提供される。
また、本発明の第7の発明によれば、第3の発明において、さらにPまたはGeの1種以上を0.001~0.3質量%含有することを特徴とするBi基はんだ合金が提供される。
また、添加元素として上記Ag、Alのほか、さらに、PまたはGeのいずれか一種以上を含んでいると、はんだの濡れ性を改善し、接合時のボイド発生を低減させることができベアCuフレームに対する接合強度を低下させることがない。
また、添加元素として上記Ag、Alのほか、さらに、SnまたはZnのいずれか一種以上を含んでいると、はんだ合金が塗布されるリードフレームアイランド部に、Niメッキ処理される場合に、はんだの濡れ性が低下せず、接合後の接合強度が低下することもなく電子部品を接合しうる。
さらに、本発明のBi基はんだ合金を用いた電子部品や、基板への電子部品のボンディング方法によれば、チップ特性の変化や部材酸化が発生せず、機械的強度が高い電子部品実装基板を提供することができる。
(1)Bi-Ag
本発明のBi基はんだ合金は、周期表のVa族元素に属し、結晶構造が対称性の低い三方晶(菱面体晶)で非常に脆弱な金属のBiを主成分とする。
以下、本発明のBi基はんだ合金に用いられる各成分、該はんだ合金を用いた電子部品のボンディング方法、得られる実装基板等について詳細に説明する。
Agの含有量は、0.6~18質量%とする。Ag含有量が0.6質量%未満であると、AgAl化合物が十分に発生せずBiマトリックスの脆弱な機械的特性が支配的になり、伸びが十分改善されずに接合信頼性、はんだの機械加工性、装置による連続供給性を確保することが出来ない。
また、Agの含有量が18質量%を超えるとはんだの濡れ性が不良なため接合信頼性がなくなる。本発明において好ましいAgの含有量は、1~15質量%である。
本発明のBi基はんだ合金において、Alは、Bi-Agはんだの固相線温度を上昇させ、さらに、Bi系はんだ特有の脆弱な機械的特性を改善する。
Alの含有量は、0.1~3質量%である。Alの含有量が0.1質量%未満であると、Bi-Ag固相線温度上昇が不十分で265℃以上にならず、再溶融による接合信頼性不良を発生する可能性があり、一方、3質量%超であると、液相線温度が上昇し、400℃以下の接合作業温度では濡れ不良が出現する。
Alの量は、Agの含有量に応じて決まり、すなわち、Ag-Al状態図では、5~33wt%Alの比率で、中間層ζ相のAg2Al金属間化合物、中間層μ相のAg3Al金属間化合物が存在することから、Agの含有量の1/20~1/2とする。この範囲を外れると、はんだの濡れ性が不良で接合信頼性がなくなる。好ましいAlの量は、Agの含有量の1/15~1/4である。
なお、AgAl金属間化合物を含む粒子は、光学顕微鏡観察によって析出粒子の大きさや分布状態を容易に判別することができる。粒径の測定は、各試片を200倍の光学顕微鏡で観察し、視野中の全金属間化合物を含む粒子の数を計数すると共に、粒子の断面径を測定し、その測定値を1.12倍して求められる。この粒径をもとにすべての金属間化合物粒子を真球として各金属間化合物粒子の体積を計算し、すべての粒子中、粒径50μm未満の粒子の割合が体積%で算出される。
本発明のBi基はんだ合金は、任意添加元素として、Te、Ni、またはCuから選ばれる一種以上を含むことができる。TeまたはNi,Cuは、Bi-Ag-Al合金の液相線温度より高い温度で析出する元素のため、はんだ合金内において、最初に析出する初晶成分となり、後から析出するAg-Al金属間化合物やマトリックスの結晶粒(粒子)を微細に析出させる効果がある。
その結果、はんだ合金全体として凝固組織の粗大化が抑制され、はんだの組織は、TeまたはNi,Cuを添加しない場合に比べて微細な凝固組織となり、クラックが発生しにくくなる。
不可避不純物を含む場合、固相線温度や濡れ性、接合信頼性への影響を考慮して、総計が100ppm未満であることが望ましい。
本発明のBi基はんだ合金は、ベアCu電子部品用の場合、添加元素として上記Bi、Ag、及びAlのほか、さらに、PまたはGeのいずれか一種以上を含むようにする。PまたはGeは、はんだの濡れ性を改善し、接合時のボイド発生を低減させるために添加する。P、Geを添加すると、P、Geが優先的に酸化され、はんだ表面の酸化が抑制されるため、はんだの濡れ性を改善し、接合時のボイド発生を低減できる。
はんだ中のベアCuフレームへの拡散元素として、Alが優先的に移動し反応する事が多いが、はんだ中に添加されたCuが存在すると、ベアCuフレーム表面との間でCu原子同士での拡散移動が起こり、結果として濡れ広がりを改善する効果が得られる。
またCuはBi-Ag-Al合金の液相線温度より高い温度で析出する元素のため最初に析出する初晶成分となり、後から析出するAg-Al化合物やマトリックスの結晶粒を微細に析出させる効果があり、全体として凝固組織の粗大化を抑制することができる。その結果、はんだの組織はCuを添加しない場合に比べて微細な凝固組織となり、クラックが発生しにくくなる。
Cuの添加量は0~1質量%である。Cuの添加量が1質量%を超えると、粗大な初晶成分として、生成されることがある。また、Cuの添加量が0.01質量%を下回ると、凝固組織の微細化に十分に寄与しなくなることがあるため、Cuの含有量は、0.01~1質量%がより好ましく、0.03~0.8質量%がさらに好ましい。
本発明のBi基はんだ合金は、Niメッキ処理電子部品用の場合、前記Bi、Ag、Al元素のほか、さらに添加元素として、はんだの濡れ性を改善し、接合後の接合強度を高めるために、SnまたはZnのいずれか一種以上を添加する。SnまたはZnは、Bi、Ag、Al元素より優先的に接合界面に移動し、Niなど接合界面の物質と反応層を形成するため、はんだの濡れ性を改善し、接合後の接合強度を高めることができるものと考えられる。
また、CuはBi-Ag-Al合金の液相線温度より高い温度で析出する元素のため最初に析出する初晶成分となり、後から析出するAg-Al化合物やマトリックスの結晶粒を微細に析出させる効果があり、全体として凝固組織の粗大化を抑制することができる。その結果、はんだの組織はCuを添加しない場合に比べて微細な凝固組織となり、クラックが発生しにくくなる。
Cuの添加量は、0~1質量%である。Cuの添加量が1質量%を超えると、粗大な初晶成分として生成され溶融時の濡れ性が低下することがある。また、Cuの添加量が0.01質量%を下回ると、凝固組織の微細化に十分に寄与しなくなることがあるため、Cuの含有量は、0.01~1質量%がより好ましく、0.03~0.8質量%がさらに好ましい。
P又はGeの含有量は、0.001~0.3質量%で、好ましくは0.01~0.1質量%である。P、Geの添加量が0.3質量%を超えると、P、Geが多くの酸化物を形成することになり、濡れ性に悪影響を及ぼすことになる。また、P、Geの添加量が0.001質量%を下回ると、添加効果が不十分になる。PまたはGeの含有量は、0.003~0.1質量%が好ましく、0.005~0.05質量%がより好ましい。
本発明のBi基はんだ合金の製造方法は、特に限定されず、Agメッキ処理電子部品用の場合、上記したBi、Ag、Alを必須とし、ベアCu電子部品用の場合、P又はGeを添加し、またNiメッキ処理電子部品用の場合、Bi、Ag、Alを必須とし、さらにSnまたはZnを添加した各原料成分を用いて、従来公知の方法により製造することができる。
原料としては、はんだ合金内に粒径50μm未満の粒子(AgとAlとの金属間化合物)を形成するために、ショット形状または個片加工品の直径が5mm以下、特に3mm以下の微細なものを用いることが好ましい。
また、生産性を考慮して連続鋳造法を用いる場合には、連続鋳造してできる鋳塊の断面積が小さくなる形状とすることが好ましい。例えば、内径が30mm以下のダイスを用い、且つ溶湯を短時間で冷却固化させるために、ダイスを水冷ジャケットで覆って50℃/sec以上の冷却速度で冷却することが望ましい。
固相線温度は、示差走査熱量測定装置(DSC)を用いて測定され、265℃以上、好ましくは267℃以上、より好ましくは268℃以上である。また、液相線温度は、示差走査熱量測定装置(DSC)測定及び溶融試験を用いて確認され、390℃以下、好ましくは380℃以下、より好ましくは360~380℃である。
本発明のBi基はんだ合金は、伸び率が、好ましくは15~50%、より好ましくは20~45%である。なお、伸び率及び引張強度は、例えば0.75mmφに押し出し加工を行い、ワイヤー形状のプリフォームはんだを作製した後、引張試験機(テンシロン万能試験機)により測定される。
本発明のBi基はんだ合金は、Agメッキ処理電子部品、ベアCuフレーム電子部品あるいはNiメッキ処理電子部品などのボンディング方法に使用され、電子部品実装基板を容易に製造することができる。
図1に、本発明のBi基はんだ合金を用いた電子部品の半導体パッケージの断面図を示した。この半導体パッケージは、リードフレームアイランド部4中央の表面に本発明のBi基はんだ合金3を塗布し半導体チップ1を載せ、はんだ付け(ダイボンディング)された後、半導体チップ1上の電極2がボンディングワイヤ6を介してリードフレーム5に接続され、そして、それらの全体がリードフレーム5の外周部を除きモールド樹脂7で覆われる。
本発明のはんだ合金3が塗布されるリードフレームアイランド部4には、Agメッキが施されており、はんだ合金内にAgとAlとの金属間化合物を含む微細な粒子が分散しているので、ボンディングの際、熱による電子部品の劣化・損傷が発生したり、はんだリフロー時の熱による再溶融の不具合が発生することがない。
一方、リードフレームアイランド部4にAgメッキやNiメッキなどの処理をしないベアCuフレームでは、はんだの濡れ広がりが重要である。しかし、はんだ合金3がリードフレームアイランド部4に塗布されると、Cuがはんだ中の特定元素、例えばAgと優先的に反応を始めるが、その表面に酸化膜があるために濡れ広がりの低下に影響を及ぼしやすい。しかもCuはBiやPbには殆ど溶け込まないために、濡れ広がりはAgメッキよりも低下する傾向にある。すなわち、ベアCuフレームでは、表面の酸化が進行しやすく、表面粗さの影響ではんだ濡れ広がりが悪くなりやすいという課題があった。
すなわち、本発明の電子部品のボンディング方法によれば、Bi基はんだ合金を使用して、Cu材表面にメッキによるAg層やNi層が形成されていないベアCuフレームの実装基板に電子部品をボンディングすることができる。
はんだ付け(ダイボンディング)された半導体チップ1は、基板へ実装される際、リフロー温度の260℃付近に加熱されるが、本発明のBi基はんだ合金の固相線温度が265℃以上なので、電子部品は、チップ特性の変化や部材酸化が発生せず、機械的強度を維持することができる。
図1のリードフレームアイランド部4には、一般にAgメッキが施されるが、Agめっきの代わりに、はんだとの反応性を制御できるメッキとしてNiメッキ処理が行われることがあり、車載関連で多用されている。
すなわち、はんだ合金3がリードフレームアイランド部4に塗布されると、濡れ広がりはAgメッキやベアCuよりも濡れ広がりが悪くなり、接合不足により接合強度が低下する。
これは、Niメッキは前述のとおりBiとは合金反応をほとんど起こさないが、はんだ中のSnやZnがNiと優先的に反応を始めるためであり、接合部全面とも接合性が保たれる。接合がしっかり確保されていないと、温度サイクル試験等の信頼性試験時に未接合部周辺から応力集中によるクラックが発生・進展し信頼性が得られないが、本発明のはんだ合金とNiメッキの間では接合性および信頼性をしっかりと保つ事が出来る。
すなわち、本発明の電子部品のボンディング方法によれば、Bi基はんだ合金を使用して、銅材表面にNiメッキ層が形成されている実装基板に電子部品をボンディングすることができる。
はんだ付け(ダイボンディング)された半導体チップ1は、基板へ実装される際、リフロー温度の260℃付近に加熱されるが、本発明のBi基はんだ合金の固相線温度が265℃以上なので、電子部品は、チップ特性の変化や部材酸化が発生せず、機械的強度を維持することができる。
本発明の電子部品実装基板は、前記各種のBi基はんだ合金を用いて、リフロー作業ピーク温度を260~265℃として電子部品を実装したものである。
なお、電子部品実装用の基板としては、従来公知の基板を用いることができ、セラミックが一般的であるが、プリント基板やSi基板を用いることもできる。
固相線温度、液相線温度は、示差走査熱量測定装置(DSC)を用いて測定した。
(2)引張強度、伸び率
まず、表1に示される各成分組成のBi合金を後述する方法により大気溶解炉を用いて溶製し、0.75mmφに押し出し加工を行い、ワイヤー形状のプリフォームはんだサンプルを作製した。
得られたワイヤー状はんだ0.75mmφを所定の長さに切断して引張強度測定用の試験サンプルとした。これを引張試験機(装置名:テンシロン万能試験機)にセットし、自動測定で引張強度及び伸び率を測定した。
まず、表1に示される各成分組成のBi合金を用意し大気溶解炉を用いて溶製し、0.75mmφに押し出し加工を行い、ワイヤー形状のプリフォームはんだサンプルを作製した。
得られた0.75mmφワイヤーを樹脂に埋め込み、断面研磨を行った。これを常温の硝酸水溶液(硝酸濃度20%)に5秒間浸漬してエッチングすることにより、断面の合金組織観察を行うための試片とした。
この試片は、主元素のBi母相は腐食して黒く見える一方、金属間化合物等の析出粒子が白く光って見えるため、光学顕微鏡観察によって析出粒子の大きさや分布状態を容易に判別することができる。各試片を200倍の光学顕微鏡で観察し、視野中の全金属間化合物を含む粒子の数を計数すると共に、粒子の断面径を測定し、その測定値を1.12倍したものを粒径とした。この粒径をもとに、すべての金属間化合物粒子を真球として各金属間化合物粒子の体積を計算し、全粒子中の粒径50μm未満の粒子割合を体積%で算出した。
ダイボンダー(NECマシナリー製、CPS-400)を窒素雰囲気中・390℃に設定し、前記(2)で得られた0.75mmφサンプルをセットし、リードフレームに供給した。その後、シリコンチップのダイボンディング面にAuを蒸着して作成したダミーチップをリードフレームにダイボンディングした。
その際、はんだ濡れ性評価として、チップ辺からのはんだのはみ出しが無かった場合を「不良」、はみ出しがあった場合を「良」、より均一にはみ出しがあった場合を「優」と評価した。
上記のダミーチップをリードフレームにダイボンディングしたサンプルをさらに、エポキシ樹脂でモールドした。モールドしたものを用いて、まず260℃リフロー試験し、その後-50℃/150℃の温度サイクル試験を500サイクル(あるいは700サイクル)実施した。その後に樹脂を開封してダイボンディングによる接合部の観察を行った。
信頼性は、チップおよび接合部に割れの発生がない場合を「良」としてサイクル数を示し、接合不良や割れが発生した場合を「不良」と評価した。
(1)Agメッキ処理電子部品用はんだ合金(プリフォームはんだ)の製造
まず、原料として、Bi、Ag,Al、Te、Cu、Ni(各元素の純度:99.99重量%以上)を準備した。原料は3mmφ以下のショット形状原料を用い、原料が大きな薄片やバルク状の場合は、溶解後の合金においてサンプリング場所による組成のバラツキがなく均一になるように留意しながら切断、粉砕等を行い、3mm以下の大きさに細かくした。次に、高周波溶解炉用グラファイト坩堝に、これら原料から所定量を秤量して入れた。
次に、原料の入った坩堝を高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7L/分以上の流量で流した。この状態で溶解炉の内部を500℃まで5℃/secの昇温速度で加熱し、原料を加熱溶融させた。金属が溶融しはじめたら撹拌棒でよく攪拌し、局所的な組成のばらつきが起きないように3分間撹拌を行った。十分溶融したことを確認した後、高周波電源を切り、速やかに坩堝を取り出し、坩堝内の溶湯をはんだ母合金の鋳型に流し込んだ。
鋳型には、内径が30mm以下で肉厚が10mm程度の円筒状の黒鉛製鋳型を使用し、この鋳型の外側に熱伝導性の良い材料(銅からなり、中空構造として冷却水を通水した冷やし金)を密着させ、この鋳型に溶湯を流し込んだ後、組成にもよるが260℃程度まで5℃/secの冷却速度で速やかに冷却固化させた。
なお、実施例4は、ダイスの周りに水冷ジャケットを備えた連続鋳造機を用いており、原料を加熱溶融後に溶融物を冷却速度約60℃/secで冷却した。
得られた固化物の一部をサンプルとして、はんだ合金内に形成された粒径50μm未満の粒子(AgとAlとの金属間化合物)の量を前記の方法で測定した。
その後、得られた固化物の残りを大気溶解炉に移して、下記条件で直径0.75mmに押出し加工を行いワイヤー形状のプリフォームはんだを製造した。なお、すべての実施例において、ワイヤー形状への加工・巻取りが可能であった。
上記方法で得られたワイヤー形状のプリフォームはんだサンプルを用いて、固相線温度、液相線温度の測定、及び、Ag-Al金属間化合物を含む粒子径の観察及び測定を行った。
また、プリフォームはんだサンプルを、さらに、Agメッキリードフレームにダイボンディングして、濡れ性評価をし、エポキシ樹脂でモールド後、温度サイクル試験及びリフロー試験を行い、接合信頼性を評価した。これらの結果を、表1に示す。
原料を表1に示す組成となるように混合した以外は、実施例1と同様にして、はんだ合金を製造した。得られた固化物の一部をサンプルとして、はんだ合金内に形成された粒径50μm未満の粒子(AgとAlとの金属間化合物)の量を前記の方法で測定した。ワイヤー形状のプリフォームはんだを製造した。なお、すべての比較例において、ワイヤー形状への加工・巻取りが可能であった。
また、得られたワイヤー形状のプリフォームはんだサンプルを用いて、固相線温度、液相線温度の測定、及び、Ag-Al金属間化合物を含む粒子径の観察及び測定を行った。
また、プリフォームはんだサンプルを、さらに、Agメッキリードフレームにダイボンディングして、濡れ性評価をし、エポキシ樹脂でモールド後、温度サイクル試験及びリフロー試験を行い、接合信頼性を評価した。これらの結果を、表1に示す。
実施例1~7では、Al0.1~3質量%、Agに対するAlの含有比(X)が、1/20≦X≦1/2の範囲であり、実施例3の図3の場合で代表されるように、それぞれ265℃以上の固相線温度が確認された。また、実施例1~5では、実施例3の図7の場合で代表されるように、伸び率15%以上となり、脆弱性が改善されている事が確認できた。さらに、Alを0.5質量%以上含む実施例2~5では、伸び率が30%を超え、接合信頼性・はんだの機械加工性・装置による連続供給性に非常に優れるといえる。
(1)ベアCu電子部品用はんだ合金(プリフォームはんだ)の製造
原料として、Bi、Ag、Al、P、Ge、Cu(各元素の純度:99.99重量%以上)を用いた以外は、前記実施例1~11と同様にして、ワイヤー形状のプリフォームはんだを製造した。すべての実施例において、ワイヤー形状への加工・巻取りが可能であった。
(2)物性、性能試験
上記方法で得られたワイヤー形状のプリフォームはんだサンプルを用いて、固相線温度、液相線温度の測定、及び、Ag-Al金属間化合物を含む粒子径の観察及び測定を行った。その後、プリフォームはんだサンプルを、さらにCu製リードフレームにダイボンディングして、濡れ性評価をし、エポキシ樹脂でモールド後、温度サイクル試験及びリフロー試験を行い、接合信頼性を評価した。これらの結果を、表2に示す。
原料を表2に示す組成となるように混合した以外は、実施例と同様にして、はんだ合金を製造した。すべての比較例において、ワイヤー形状への加工・巻取りが可能であった。
また、得られたワイヤー形状のプリフォームはんだサンプルを用いて、固相線温度、液相線温度の測定、及び、Ag-Al金属間化合物を含む粒子径の観察及び測定を行った。その後、プリフォームはんだサンプルを、さらにCu製リードフレームにダイボンディングして、濡れ性評価をし、エポキシ樹脂でモールド後、温度サイクル試験及びリフロー試験を行い、接合信頼性を評価した。これらの結果を、表2に示す。
実施例12~24では、Al0.1~3質量%、Agに対するAlの含有比(X)が、1/20≦X≦1/2の範囲であり、実施例14の図4の場合で代表されるように、それぞれ265℃以上の固相線温度が確認された。また、実施例12~22、24については、断面観察により、はんだワイヤー中の添加物や金属間化合物化した粒子の97%以上が、粒径50μm未満になっていることを確認した。さらに、実施例12~17、20では、実施例14の図8の場合で代表されるように、伸び率15%以上となり、脆弱性が改善されている事が確認できた。サイクル数の少ない500サイクルでチップおよび接合部に割れが発生せず、接合信頼性の評価結果は、「良」となった。これは、PやGeを含むため濡れ広がりが確保されて、信頼性が向上したためと考えられる。
実施例18~19および実施例21~22では、PまたはGeのほかにCuを含むため濡れ広がりが一層確保されて、Cuが0.01~1.0%であればサイクル数の多い700サイクルの温度サイクル試験によっても、チップおよび接合部に割れが発生せず、接合信頼性の評価結果が「良」となった。
次いで、モールドしたものの一部を基板に260℃で5回実装し、実装後のチップおよび接合部の異常の有無を調べた結果、いずれも異常は見られず、目立ったボイドも確認できなかった。よって、本発明のベアCu電子部品用はんだで接合された部位は、リフロ-温度260℃に10秒間保持されることを5回程度経ても、溶融することなく保たれることを確認した。
また、比較例10~11では、本発明の範囲内でGeを添加することで濡れ性は良好となったが、AgまたはAlが本発明の範囲外であり、信頼性試験時にはんだ層に割れが発生してしまい500サイクルの評価で不合格となった。
比較例12~13は、本発明の範囲内でBi、Ag、Al、および、PまたはGeを配合したが、比較例12では、Agに対するAlの配合量が1/20未満であり、信頼性試験時にはんだ層に割れが発生してしまい500サイクルの評価で不合格となり、比較例13では、Agに対するAlの配合量が1/2を超えていたため、Alの偏析による濡れ不良が接合部の一部に発生し、接合不足の部位から割れが発生してしまい500サイクルの評価で不合格となった。
比較例14では、比較例10のはんだ合金に、本発明の範囲内でCuを添加したが、はんだ層の割れは改善されず、500サイクルの評価で不合格となった。比較例15では、比較例13のはんだ合金に、本発明の範囲内でCuを添加したが、濡れ不良は改善されず、500サイクルの評価で不合格となった。比較例16では、液相線が400℃であり、390℃の接合温度では一部溶け残っている状態となり、濡れ広がり不足となった。しかも一部接合されていない面があり、500サイクルの評価で不合格となった。
(1)Niメッキ処理電子部品用はんだ合金(プリフォームはんだ)の製造
原料として、Bi、Ag、Al、Sn、Zn、P、Ge、Cu(各元素の純度:99.99重量%以上)を用いた以外は、前記実施例1~11と同様にして、ワイヤー形状のプリフォームはんだを製造した。すべての実施例において、ワイヤー形状への加工・巻取りが可能であった。
上記方法で得られたワイヤー形状のプリフォームはんだサンプルを用いて、固相線温度、液相線温度の測定、及び、AgAl金属間化合物を含む粒子径の観察及び測定を行った。
また、プリフォームはんだサンプルを、さらに、Niメッキリードフレームにダイボンディングして、濡れ性を評価し、エポキシ樹脂でモールド後、サイクル試験を行い、接合信頼性を評価した。これらの結果を、表3に示す。
原料粉末を表4に示す組成となるように混合した以外は、上記実施例と同様にして、はんだ合金を製造した。すべての比較例において、ワイヤー形状への加工・巻取りが可能であった。
また、得られたワイヤー形状のプリフォームはんだサンプルを用いて、固相線温度、液相線温度の測定、及び、AgAl金属間化合物を含む粒子径の観察及び測定を行った。
また、プリフォームはんだサンプルを、さらに、リードフレームにダイボンディングして、濡れ性を評価し、エポキシ樹脂でモールド後、サイクル試験を行い、接合信頼性を評価した。これらの結果を、表4に示す。
実施例25~37では、表3に示したとおりAlが0.1~3質量%、Agに対するAlの含有比(X)が、1/20≦X≦1/2の範囲であり、実施例28の図5の場合で代表されるように、それぞれ265℃以上の固相線温度が確認された。また、断面観察により、はんだワイヤー中の添加物や金属間化合物化した粒子の97%以上が、粒径50μm未満になっていることを確認した。さらに、実施例28の図9の場合で代表されるように、伸び率15%以上となり、脆弱性が改善されている事が確認できた。
また、実施例25~37では、SnまたはZnが添加されているので、濡れ広がりの悪いNi面のリードフレームに対してもSnとZnがNiと界面反応を起こし、濡れ広がりが良好になっており、濡れ性が向上した。実施例25~30では、サイクル数の少ない500サイクルでチップおよび接合部に割れが発生せず、接合信頼性の評価結果は、「良」となった。これは、SnやZnを含むため濡れ広がりが確保されて、はんだ-リードフレーム間の接合強度がしっかりと確保され信頼性をしっかりと保つことが出来たためである。
実施例31~37では、SnまたはZnのほかにCuを含むため組織の微細化により信頼性が向上し、サイクル数の多い700サイクルの温度サイクル試験によっても、チップおよび接合部に割れが発生せず、接合信頼性の評価結果が「良」となった。
さらに、実施例29~30および実施例32~37では、SnやZnだけでなく更に濡れ広がりを良くするPやGeを添加しているので、濡れ広がりの悪いNi面のリードフレームに対してPやGeの効果もあり、SnとZnがNiと界面反応し、濡れ広がりが更に向上し、濡れ性の評価結果は、「優」となった。また機械的特性については実施例25~37の添加元素の範囲では、いずれも高い強度が得られ、ダイボンダーでの連続供給がワイヤーが折れる事無く実施できた。
次いで、モールドしたものの一部を基板に260℃で5回実装し、実装後のチップおよび接合部の異常の有無を調べた結果、いずれも異常は見られず、目立ったボイドも確認できなかった。よって、本発明のNiメッキ処理電子部品用はんだで接合された部位は、リフロ-温度260℃に10秒間保持されることを5回程度経ても、溶融することなく保たれることを確認した。
なお、従来のBi/2.5Ag共晶はんだ合金の固相線・液相線は、図2のように、Bi単体の融点271℃から下がり状態図通り262℃であり、濡れ性試験は「良」であっても、Alを含有しないため図6のように、8%程度の伸び率しか示さず、脆弱な特性のため接合信頼性は「不良」となった。
比較例22~30では、Bi、Ag、Alの含有量が必要含有量の上下限を外れているか、Agの含有量に対するAlの含有量の比が本発明の範囲を外れており、配線の割れや接合不良が発生し、接合信頼性試験の結果が500サイクル未満であった。
2 電極
3 はんだ
4 リードフレームアイランド部
5 リードフレーム
6 ボンディングワイヤ
7 モールド樹脂
Claims (10)
- AgとAlを含有し、実質的にPbを含まずBiの含有率が80質量%以上であり、かつ融点の固相線が265℃以上、液相線が390℃以下のBi基はんだ合金であって、
Agの含有量が0.6~18質量%、また、Alの含有量が0.1~3質量%、かつAgの含有量の1/20~1/2であり、はんだ合金内にAgとAlとの金属間化合物を含む粒子を分散させてなることを特徴とするBi基はんだ合金。 - AgとAlを含有し、実質的にPbを含まずBiの含有率が80質量%以上であり、かつ融点の固相線が265℃以上、液相線が390℃以下のBi基はんだ合金であって、
Agの含有量が0.6~18質量%、また、Alの含有量が0.1~3質量%、かつAgの含有量の1/20~1/2であり、はんだ合金内にAgとAlとの金属間化合物を含む粒子を分散させてなり、さらにPまたはGeの1種以上を0.001~0.3質量%含有することを特徴とするBi基はんだ合金。 - AgとAlを含有し、実質的にPbを含まずBiの含有率が80質量%以上であり、かつ融点の固相線が265℃以上、液相線が390℃以下のBi基はんだ合金であって、
Agの含有量が0.6~18質量%、また、Alの含有量が0.1~3質量%、かつAgの含有量の1/20~1/2であり、はんだ合金内にAgとAlとの金属間化合物を含む粒子を分散させてなり、さらにSnまたはZnの1種以上を0.01~3質量%含有することを特徴とするBi基はんだ合金。 - 前記粒子全体の総体積に対して、97体積%以上の粒子が粒径50μm未満であることを特徴とする請求項1~3のいずれかに記載のBi基はんだ合金。
- Alの含有量がAgの含有量の1/15~1/4であることを特徴とする請求項1~3のいずれかに記載のBi基はんだ合金。
- さらに、Te,NiまたはCuから選ばれる1種以上を0.01~1質量%含有することを特徴とする請求項1~3のいずれかに記載のBi基はんだ合金。
- さらに、PまたはGeを0.001~0.3質量%含有することを特徴とする請求項3に記載のBi基はんだ合金。
- はんだ合金の溶湯を鋳型に流し込んだ後、260℃まで3℃/sec以上の冷却速度で速やかに冷却固化させることで、AgとAlとの金属間化合物を含む粒子が合金内で分散されることを特徴とする請求項1~3のいずれかに記載のBi基はんだ合金。
- 請求項1~8のいずれかに記載のBi基はんだ合金を使用して、Agメッキ処理電子部品、ベアCuフレーム電子部品あるいはNiメッキ処理電子部品をボンディングすることを特徴する電子部品のボンディング方法。
- 請求項1~8のいずれかに記載のBi基はんだ合金を用いて、リフロー作業ピーク温度を260~265℃として電子部品を実装した電子部品実装基板。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14845104.0A EP3047937A4 (en) | 2013-09-20 | 2014-08-27 | Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE |
CN201480050538.1A CN105531075A (zh) | 2013-09-20 | 2014-08-27 | Bi基钎料合金和使用其的电子部件的接合方法以及电子部件安装基板 |
US15/021,794 US20160234945A1 (en) | 2013-09-20 | 2014-08-27 | Bi-BASED SOLDER ALLOY, METHOD OF BONDING ELECTRONIC COMPONENT USING THE SAME, AND ELECTRONIC COMPONENT-MOUNTED BOARD |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-195305 | 2013-09-20 | ||
JP2013195305A JP6136807B2 (ja) | 2013-09-20 | 2013-09-20 | Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 |
JP2013-221843 | 2013-10-25 | ||
JP2013221843A JP6136853B2 (ja) | 2013-10-25 | 2013-10-25 | Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 |
JP2013238722A JP6136878B2 (ja) | 2013-11-19 | 2013-11-19 | Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 |
JP2013-238722 | 2013-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015041018A1 true WO2015041018A1 (ja) | 2015-03-26 |
Family
ID=52688673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072397 WO2015041018A1 (ja) | 2013-09-20 | 2014-08-27 | Bi基はんだ合金、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160234945A1 (ja) |
EP (1) | EP3047937A4 (ja) |
CN (1) | CN105531075A (ja) |
WO (1) | WO2015041018A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2834037A4 (en) * | 2012-03-20 | 2016-03-16 | Alpha Metals | LOTFORFORM AND SOLDER ALLOY ASSEMBLY METHOD |
TWI646203B (zh) * | 2016-07-15 | 2019-01-01 | 日商Jx金屬股份有限公司 | Solder alloy |
US11189550B2 (en) * | 2018-04-10 | 2021-11-30 | Jmj Korea Co., Ltd. | Low-cost semiconductor package using conductive metal structure |
GB2596027B (en) * | 2018-06-25 | 2022-05-04 | Rawwater Engineering Ltd | Improved well sealing material and method of producing a plug |
US12000237B2 (en) | 2018-06-25 | 2024-06-04 | Rawwater Engineering Limited | Well sealing material and method of producing a plug |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002160089A (ja) | 2000-11-30 | 2002-06-04 | Nec Schott Components Corp | 気密端子およびその製造方法 |
JP2002321084A (ja) | 2001-04-26 | 2002-11-05 | Sumitomo Metal Mining Co Ltd | 電子部品接合用はんだ合金 |
JP2006167790A (ja) | 2004-12-20 | 2006-06-29 | Matsushita Electric Ind Co Ltd | はんだ材料の生産方法 |
WO2010150495A1 (ja) * | 2009-06-22 | 2010-12-29 | パナソニック株式会社 | 接合構造体、接合材料、及び接合材料の製造方法 |
JP2012066270A (ja) | 2010-09-22 | 2012-04-05 | Sumitomo Metal Mining Co Ltd | Pbフリーはんだ合金 |
JP2013146765A (ja) * | 2012-01-20 | 2013-08-01 | Sumitomo Metal Mining Co Ltd | Mgを含有するPbフリーBi系はんだ合金 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004533327A (ja) * | 2001-05-28 | 2004-11-04 | ハネウエル・インターナシヨナル・インコーポレーテツド | 高温鉛フリーハンダ用組成物、方法およびデバイス |
JP2005095977A (ja) * | 2003-08-26 | 2005-04-14 | Sanyo Electric Co Ltd | 回路装置 |
JP5093260B2 (ja) * | 2010-02-12 | 2012-12-12 | 住友金属鉱山株式会社 | Pbフリーはんだ合金 |
JP5640915B2 (ja) * | 2011-07-25 | 2014-12-17 | 住友金属鉱山株式会社 | 鉛フリーはんだ合金 |
-
2014
- 2014-08-27 CN CN201480050538.1A patent/CN105531075A/zh active Pending
- 2014-08-27 EP EP14845104.0A patent/EP3047937A4/en not_active Withdrawn
- 2014-08-27 US US15/021,794 patent/US20160234945A1/en not_active Abandoned
- 2014-08-27 WO PCT/JP2014/072397 patent/WO2015041018A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002160089A (ja) | 2000-11-30 | 2002-06-04 | Nec Schott Components Corp | 気密端子およびその製造方法 |
JP2002321084A (ja) | 2001-04-26 | 2002-11-05 | Sumitomo Metal Mining Co Ltd | 電子部品接合用はんだ合金 |
JP2006167790A (ja) | 2004-12-20 | 2006-06-29 | Matsushita Electric Ind Co Ltd | はんだ材料の生産方法 |
WO2010150495A1 (ja) * | 2009-06-22 | 2010-12-29 | パナソニック株式会社 | 接合構造体、接合材料、及び接合材料の製造方法 |
JP2012066270A (ja) | 2010-09-22 | 2012-04-05 | Sumitomo Metal Mining Co Ltd | Pbフリーはんだ合金 |
JP2013146765A (ja) * | 2012-01-20 | 2013-08-01 | Sumitomo Metal Mining Co Ltd | Mgを含有するPbフリーBi系はんだ合金 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3047937A4 |
Also Published As
Publication number | Publication date |
---|---|
US20160234945A1 (en) | 2016-08-11 |
EP3047937A1 (en) | 2016-07-27 |
CN105531075A (zh) | 2016-04-27 |
EP3047937A4 (en) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102090548B1 (ko) | 땜납 합금 | |
JP6423447B2 (ja) | 亜鉛を主成分として、アルミニウムを合金化金属として含む鉛フリー共晶はんだ合金 | |
WO2015041018A1 (ja) | Bi基はんだ合金、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 | |
WO2012077415A1 (ja) | Znを主成分とするPbフリーはんだ合金 | |
JP6136878B2 (ja) | Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 | |
JP2018047500A (ja) | Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板 | |
JP2011251332A (ja) | Al粉を用いた高温Pbフリーはんだペースト | |
JP2018047499A (ja) | Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板 | |
JP2016093831A (ja) | Pbを含まないMg−Cu系はんだ合金 | |
JP2011251329A (ja) | 高温鉛フリーはんだペースト | |
JP6136853B2 (ja) | Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 | |
JP6136807B2 (ja) | Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板 | |
JP5979083B2 (ja) | PbフリーAu−Ge−Sn系はんだ合金 | |
JP2017035708A (ja) | Pbを含まないSb−Cu系はんだ合金 | |
JP2017196647A (ja) | Au−Sn−Ag−α系はんだ合金及びそのはんだ材料並びに該はんだ材料を用いて接合又は封止された実装基板 | |
WO2016075983A1 (ja) | Au-Sn-Ag系はんだ合金とはんだ材料並びにこのはんだ合金又ははんだ材料を用いて封止された電子部品及び電子部品搭載装置 | |
JP2018047497A (ja) | Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板 | |
JP2015139777A (ja) | Au−Sb系はんだ合金 | |
JP2016059924A (ja) | Au−Sn−Ag系はんだ合金並びにこのAu−Sn−Ag系はんだ合金を用いて封止された電子部品及び電子部品搭載装置 | |
TWI810099B (zh) | 焊料合金、焊膏、焊料球、焊料預成型、及焊料接頭 | |
JP5633812B2 (ja) | Au−Sn系合金はんだ | |
JP5861526B2 (ja) | Pbを含まないGe−Al系はんだ合金 | |
JP2018149554A (ja) | PbフリーBi系はんだ合金、該はんだ合金を用いた電子部品、および電子部品実装基板 | |
JP2017225979A (ja) | 高温用PbフリーZn系はんだ合金 | |
JP2016097444A (ja) | Pbを含まないSb−In系はんだ合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480050538.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14845104 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15021794 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014845104 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014845104 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |