WO2015001141A1 - Compositions and methods for biofuel production using pseudomonas brassicacearum - Google Patents

Compositions and methods for biofuel production using pseudomonas brassicacearum Download PDF

Info

Publication number
WO2015001141A1
WO2015001141A1 PCT/ES2013/070454 ES2013070454W WO2015001141A1 WO 2015001141 A1 WO2015001141 A1 WO 2015001141A1 ES 2013070454 W ES2013070454 W ES 2013070454W WO 2015001141 A1 WO2015001141 A1 WO 2015001141A1
Authority
WO
WIPO (PCT)
Prior art keywords
procedure
lipids
microbial biomass
microorganism
carried out
Prior art date
Application number
PCT/ES2013/070454
Other languages
Spanish (es)
French (fr)
Inventor
Enrique ESPÍ GUZMÁN
José Luis Adrio Fondevila
Sonia Campoy García
Armando Lara Cambil
Javier VELASCO ÁLVAREZ
Original Assignee
Repsol, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repsol, S.A. filed Critical Repsol, S.A.
Priority to PCT/ES2013/070454 priority Critical patent/WO2015001141A1/en
Publication of WO2015001141A1 publication Critical patent/WO2015001141A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6458Glycerides by transesterification, e.g. interesterification, ester interchange, alcoholysis or acidolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a microorganism capable of accumulating triglycerides up to at least 20% of the dry weight.
  • the present invention also relates to methods and uses of said microorganism to obtain biomass, extract lipids and obtain paraffins. BACKGROUND OF THE INVENTION
  • lipids from microorganisms has long been the subject of investigation.
  • Some fungi, yeasts and algae have the ability to accumulate, intracellularly, up to more than 70% of their biomass in the form of lipids during periods of metabolic stress, so, similar to what happens with vegetable seeds, He calls them oleaginous microorganisms.
  • prokaryotes accumulate polyhydroxyalkanoates (PHAs) as a reserve material
  • PHAs polyhydroxyalkanoates
  • strains belonging to the group of actinomycetes Streptomyces, Nocardia, Gordonia, Rhodococcus, or Mycobacterium
  • other genus such as, for example, Mangroveibacter or Pseudomonas
  • triglyceride accumulation occurs when a carbon source is in excess and the nitrogen source limits growth. Under these growth conditions, cells use the carbon source for the synthesis of neutral lipids.
  • oleaginous eukaryotic microorganisms including filamentous fungi, yeasts and some microalgae are able to metabolize D-xylose naturally.
  • this property is absent in most of the few known oleaginous prokaryotic species, so it is necessary to clone and express exogenous genes involved in the metabolism of this pentose, as has been done in Cupriavidus or Rhodococcus opacus as described in publications EP2407531 and WO2010147642, respectively.
  • biofuels is carried out with vegetable oils and animal fats, or mixtures of these with diesel distilled fractions from petroleum (EP2141217, WO2010000934, WO2008151 149 and US20090047721), or even with fatty acids present in lipids of microbial origin ( WO2007068797, EP1682466, EP1795576, EP1681337, WO2010000934, EP1640437). Therefore, obtaining strains capable of growing and metabolizing different carbon sources, including all the sugars present in lignocellulosic biomass hydrolysates, and that are capable of producing and accumulating large amounts of lipids, can not only be an alternative raw material. economically viable, it would also enable the sustainability criteria required of biofuels to be achieved by directives 2009/28 / EC and 2009/30 / EC.
  • the present invention relates to a microorganism of the strain Pseudomonas brassicacearum CECT 8162, or a mutant strain thereof that maintains the ability to accumulate lipids up to at least 20% of the dry weight.
  • the present invention relates to a process for obtaining a microbial biomass rich in triglycerides, which comprises
  • a microorganism according to the first aspect of the invention in a culture medium comprising at least one carbon source and at least one nitrogen source, under conditions suitable for the growth of said microorganism, and
  • the present invention relates to a method for extracting lipids from microbial biomass according to the previous aspect, which comprises a mechanical extraction method or a solid-liquid extraction method.
  • the present invention relates to a process for obtaining paraffins from the lipids obtained in the process according to the above aspect, which comprises
  • step ii) convert the refined lipid mixture obtained in step ii) into paraffins.
  • the present invention relates to the use of the microorganism according to the invention to obtain a triglyceride-rich microbial biomass according to the first process of the invention.
  • the present invention relates to the use of the microorganism according to the invention to extract the lipids from the microbial biomass according to the second process of the invention.
  • the present invention relates to the use of the microorganism according to the invention to obtain paraffins according to the third method of the invention.
  • the present invention relates to a microorganism of the strain Pseudomonas brassicacearum CECT 8162, or a mutant strain thereof that maintains the ability to accumulate lipids up to at least 20% of the dry weight, hereinafter "microorganism of the invention ".
  • microorganism refers to a microscopic organism capable of accumulating lipids intracellularly, which can be unicellular or multicellular.
  • the microorganism of the invention is a bacterium of the species Pseudomonas brassicacearum, in particular, strain CECT 8162.
  • the strain CECT 8162 of P. brassicacearum has the ability to metabolize different carbon sources including, without limitation, glucose, glycerin raw or the sugars present in lignocellulosic biomass hydrolysates, which is in excess in relation to the source of nitrogen present in the same medium.
  • the microorganism of the invention also refers to a mutant strain thereof that maintains the ability to accumulate lipids to at least 20% of the dry weight.
  • strain refers to a genetic variance or subtype of a deermined organism.
  • muiele strain refers to a strain resulting from the mutation of a strain of a deermined organism that maintains the ability to accumulate lipids to at least 20% of its dry weight .
  • the muierie strain of the muierie strain of the CECT 8162 strain of P. brassicacearum CECT maintains the ability to accumulate lipids to at least 30% dry weight, 40% dry weight, 50% dry weight , at least 60% of dry weight, at least 70% of the dry weight, at least 80% of dry weight or at least 90% of the dry weight.
  • the ability to accumulate lipids can be analyzed by numerous methods that are available in the art. These methods include, without limitation, the determination of the total lipid content by extraction methods with organic solvents (for example Soxhlet, Goldfish, Mojonnier), or it can also be quantified by extraction methods that do not include solvents (for example, Babcock, Gerber ) and by instrumental methods that are based on physical or chemical properties of lipids (for example, infrared, density and X-ray absorption).
  • organic solvents for example Soxhlet, Goldfish, Mojonnier
  • extraction methods that do not include solvents for example, Babcock, Gerber
  • instrumental methods that are based on physical or chemical properties of lipids (for example, infrared, density and X-ray absorption).
  • the Soxhlet method consists of a semi-continuous extraction with an organic solvent.
  • the solvent is heated, volatilized and condensed dripping on the sample which is immersed in the solvent. This is subsequently siphoned to the heating flask to start the process again.
  • the lipid content is quantified by weight difference.
  • the Goldfish method consists of continuous extraction with an organic solvent. This is heated, volatilized and subsequently condensed on the sample. The solvent drips continuously through the sample to extract lipids. The fat content is quantified by difference in weight between the sample or the fat removed.
  • the batch method makes use of the intrinsic lipid solubility; It is clear that a non-polar compound is soluble in a non-polar solvent. The extraction is performed cold to avoid damage of the lipid material and in batches to increase efficiency.
  • the Bligh-Dyer method provides a rapid method for the extraction of lipids from tissues and food products that contain a significant amount of water.
  • the method is based on the homogenization of the sample with chloroform, methanol and water in proportions such that a single phase miscible with the water of the sample is formed.
  • phase separation is achieved.
  • the lipid material is in the non-aqueous phase, while the non-lipid material is in the aqueous phase.
  • lipid separation is achieved by ammonia and ethanol with a subsequent dehydration effect on phospholipids.
  • the mutant strain of P. brassicacearum strain CECT 8162 maintains the ability to accumulate lipids up to at least 20% of the dry weight, at least 30% of the dry weight, at least 40% of the dry weight , at least 50% of the dry weight, at least 60% of the dry weight, at least 70% of the dry weight, or at least 90% of the dry weight.
  • first process of the invention relates to a process for obtaining a microbial biomass rich in triglycerides, hereinafter "first process of the invention", which comprises
  • microbial biomass refers to the biological material of living or recently living organisms, in particular of the microorganism of the invention, and to organic matter originated in a biological, spontaneous or provoked biological process. , usable as a source of energy. As a renewable energy source, biomass can be used directly or indirectly, after conversion into another type of product such as biofuel. In the particular case of the present invention, microbial biomass is rich in triglycerides.
  • triglyceride-rich microbial biomass refers to a microbial biomass with a triglyceride content of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70% or at least 80% of its total weight.
  • the first process of the invention comprises culturing the microorganism of the invention in a culture medium comprising at least one carbon source and at least one nitrogen source, under conditions suitable for the growth of said microorganism.
  • cultivate refers to the process of planting, maintaining and causing microorganisms to develop on suitable culture media.
  • culture medium refers to a liquid, semi-solid or solid medium that has the necessary nutrients to allow, under favorable conditions of pH, temperature and oxygenation, the growth of microorganisms
  • the culture medium is a liquid medium.
  • Culture media suitable for growing microorganisms are widely known in the art, such as Maniatis et al. (1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, NY) and Madigan & Martinko (2005, Brock Biology of Microorganisms, 11 th ed.).
  • the culture medium comprises a carbon source and a nitrogen source.
  • Non-limiting examples of culture media suitable for carrying out the first process of the invention include TSA medium, M9 medium, MEM medium, LB medium, TSB medium.
  • the carbon source is selected from the group consisting of glucose, glycerol, glycerin, molasses, xylose, arabinose, mannose, fructose, acetate, starches and combinations thereof.
  • the carbon source is glucose.
  • the source of the nitrogen source is selected from the group consisting of yeast extract, peptone, macerated liquid of corn, urea, sodium glutamate, different sources of inorganic nitrogen, such as ammonium salts and combinations thereof.
  • the nitrogen source is an ammonium salt, preferably ammonium chloride.
  • the culture medium that is used to obtain the microbial biomass according to the present invention is biomass hydrolyzate.
  • biomass hydrolyzate refers to any saccharification product, which contains the sugars produced in the saccharification process, the remains of non-hydrolyzed biomass and the enzymes used for the hydrolysis of said biomass
  • sacharification or “biomass hydrolysis”, as used in the present invention, refers to the production of fermentable sugars from polysaccharides.
  • transfermentable sugar refers to oligosaccharides and monosaccharides that can be used as a carbon source by a microorganism in the fermentation process to obtain products such as ethanol.
  • biomass and “biomass substrate”, as used in the present invention, refer to any material suitable for use in saccharification reactions. Such terms include but are not limited to materials comprising cellulose (eg, cellulosic biomass, cellulosic feedstock and cellulosic substrate), lignin or the combination of cellulose and lignin. Biomass can be derived from plants, animals or microorganisms and may include, but is not limited to agricultural, industrial and forestry wastes, agricultural and municipal wastes, and land and aquatic crops for energy purposes.
  • cellulose eg, cellulosic biomass, cellulosic feedstock and cellulosic substrate
  • lignin or the combination of cellulose and lignin.
  • Biomass can be derived from plants, animals or microorganisms and may include, but is not limited to agricultural, industrial and forestry wastes, agricultural and municipal wastes, and land and aquatic crops for energy purposes.
  • biomass substrates include but are not limited to wood, wood pulp, paper pulp, corn fiber, corn grain, corn cobs, crop residues such as corn husks, corn stubble, grasses, wheat, straw of wheat, barley, barley straw, hay, rice, rice straw, millet, paper waste, paper, pulp, woody or herbaceous processing waste, fruit or vegetable pulp, grain distillate products, herbs, husks of rice, cotton, hemp, flax, sisal, bagasse, sorghum, soy, millet, components obtained from the grinding of grains, trees, branches, roots, leaves, wood shavings, sawdust, shrubs and bushes, vegetables, fruits and flowers and any combination thereof.
  • crop residues such as corn husks, corn stubble, grasses, wheat, straw of wheat, barley, barley straw, hay, rice, rice straw, millet, paper waste, paper, pulp, woody or herbaceous processing waste, fruit or vegetable pulp, grain distillate products, herbs, husks of rice,
  • the biomass comprises but is not limited to cultivated plants (for example, herbs, including C4 grasses, such as rod grass, spinal grass, rye grass, Miscanthus, ribbon grass or combinations thereof), processing residues of sugar, for example but not limited to, bagasse [for example, sugarcane bagasse, beet pulp (for example, sugar beet), or a combination thereof], agricultural residues (for example, soy stubble, stubble corn, corn fiber, rice straw, straw cane sugar, rice, rice husks, barley straw, corn cobs, wheat straw, cane straw, oat straw, oat shells, corn fiber, hemp, flax, sisal, cotton or any combination thereof), fruit pulp, vegetable pulp, grain distillate products, forest biomass (e.g. wood, wood pulp, fiber, recycled wood pulp fibers, sawdust wood hard, such as poplar wood, softwood or a combination thereof).
  • bagasse for example, sugarcane bagasse, beet pulp (for example, sugar beet), or a combination
  • the biomass comprises cellulosic waste material and / or forest residues including but not limited to paper and paper pulp processing waste, municipal paper waste, newspaper, cardboard and the like.
  • the biomass comprises a kind of fiber while in other alternative embodiments, the biomass comprises a mixture of fibers that originate from different biomass.
  • the biomass may also comprise transgenic plants that express ligninase and / or cellulases (see, for example, US2008 / 0104724 A1).
  • biomass includes any living or dead biological material that contains polysaccharides as substrates including but not limited to cellulose, starch, other forms of long-chain carbohydrate polymers and combinations thereof. It may or may not be completely formed from glucose or xylose, and optionally, it may contain other pentose or hexose monomers.
  • Xylose is an aldopentose that contains five carbon atoms and an aldehyde group. It is the precursor sugar of hemicellulose and is often the main component of biomass.
  • the substrate is suspended before pretreatment. In some embodiments, the consistency of the suspension is between about 2% and about 30% and more typically between about 4% and about 15%.
  • the suspension is washed or treated with acid before pretreatment.
  • the suspension is dehydrated by any suitable method to reduce the consumption of water and chemicals before pretreatment. Examples of dehydration devices include, but are not limited to pressurized screw presses (see, for example, WO 2010/02251 1), pressurized filters and extruders.
  • a biomass substrate is "pretreated” when it has undergone physical and / or chemical procedures to facilitate saccharification.
  • the biomass substrate is "pretreated” or “treated” to increase the susceptibility of said biomass to cellulose hydrolysis by using methods known in the state of the art (Cuervo et al., Biotechnology, 2008 , 13: 3), such as physical-chemical pretreatment methods (for example, ammonium treatment, dilute acid pretreatment, dilute alkali pretreatment, solvent exposure, steam explosion, grinding, extrusion), biological pretreatment methods (for example, the application of lignin-solubilizing microorganisms) and combinations thereof.
  • physical-chemical pretreatment methods for example, ammonium treatment, dilute acid pretreatment, dilute alkali pretreatment, solvent exposure, steam explosion, grinding, extrusion
  • biological pretreatment methods for example, the application of lignin-solubilizing microorganisms
  • Extrusion is a process whereby plant material is forced to flow under one or more of a variety of mixing, heating and shearing conditions, through a nozzle designed to shape or expand the ingredients. It can be made cold where the material is extruded without expansion or hot or hot, where the macromolecules of the components lose their discontinuous native structure and a continuous and viscous mass is formed that dextrinizes and gelatinizes the starch, the proteins are denatured, the proteins are denatured inactivate the enzymes responsible for possible deterioration, some non-nutritional compounds are destroyed and the microbial load is destroyed.
  • Acid hydrolysis consists in treating the plant material with acids such as sulfuric acid or hydrochloric acid using high temperatures. Through this process, cellulose hydrolysis is favored but requires pH neutralization at the end of hydrolysis to allow subsequent growth of microorganisms.
  • the alkali treatment consists of the addition of diluted bases to the plant biomass.
  • the efficiency of this procedure depends on the lignin content of the materials. Diluted sodium hydroxide produces a swelling, allowing an increase in the internal surface area reducing the degree of polymerization and crystallinity of the cellulose, causing the separation of the structural junctions between lignin and carbohydrates.
  • the treatment with organic solvents consists of using solvents such as methanol, ethanol or acetone to break the bonds of lignin and cellulose.
  • solvents such as methanol, ethanol or acetone to break the bonds of lignin and cellulose.
  • the removal of solvents from the system is necessary, since they inhibit the growth of organisms.
  • ionic liquids for example, with a solution of sodium chloride
  • ionic liquids favors the degradation of cellulose because the hydrogen and oxygen atoms that are part of it interact separately with the solvent so that rupture occurs of hydrogen bonding links between cellulose chains.
  • the steam explosion treatment consists of treating the biomass with saturated steam at a temperature of 160-260 ° C (0.69-4.83 MPa) for a certain time that will depend on the type of plant material of origin.
  • Treatment with lignin-solubilizing microorganisms consists in treating biomass with microorganisms that produce enzymes capable of degrading lignocellulosic material such as, for example, Trichoderma reesei, Fusarium oxysporium, Piptopus betulinus, Penicillum echinalatum, Penicillum purpurogenum, Aspergillus fus, Aspergillus nius Anaeromyces sp., Caecomices sp., Cyllamcyces sp., Neocallimastix sp., Orpinomyces sp., Piromyces sp., Sporotrichum thermophile, Scytalidium thermophillu, Thermonospora cubata, Rhodosporillum rubrum, Cellulomonas fimi, Clostridium stercocarium, Bacillus polymyxa, Pyrococcus furiosus, Acidothermus cellu
  • lignocellulosic material refers to a composition comprising both lignin and cellulose.
  • the lignocellulosic material may also comprise starch.
  • “Lignin” is a polyphenolic material. Lignins can be highly branched and can also be crosslinked. Lignins can have a significant structural variation that depends, at least in part, on the source of the plant in question.
  • Lignocellulosic materials include a variety of plants and plant materials, such as, without limitation, papermaking sludge, wood, and wood-related materials, for example, saw dust, or particle boards, leaves or trees like poplars, herbs, like millet whole; sow corn, sorghum, Sudan grass, grass clippings, rice husk, bagasse (for example, bagasse sugar cane), jute, hemp, flax, bamboo, sisal, abaca, hay, straw, corn cobs, corn and stubble of sorghum, and coconut hair.
  • papermaking sludge, wood, and wood-related materials for example, saw dust, or particle boards, leaves or trees like poplars, herbs, like millet whole
  • Metabolic stress can be induced by an excess of carbon source in relation to the source of nitrogen in the culture medium. Triglyceride accumulation occurs when a carbon source is in excess and the nitrogen source limits growth. Under these growth conditions, cells use the carbon source for the synthesis of neutral lipids.
  • the process for obtaining a microbial biomass rich in triglycerides employs a culture medium where the C: N ratio is high.
  • the ratio of C: N is at minus 10: 1 (weight / weight), at least 15: 1 (weight / weight), at least 20: 1 (weight / weight), at least 30: 1 (weight / weight), at least 40: 1 (weight / weight), at least 50: 1 (weight / weight), at least 60: 1 (weight / weight), at least 70: 1 (weight / weight), at least 80: 1 (weight / weight), at least 90: 1 (weight / weight), or at least 100: 1 (weight / weight).
  • Methods for the cultivation of microorganisms are standard in the art and are widely known to those skilled in the art.
  • the culture can be carried out in flasks or bioreactors until a high triglyceride content is reached, typically equal to or greater than 20% by dry weight.
  • the duration of the crop is variable, although typically the culture is carried out for 2 to 5 days.
  • condition suitable for the growth of the microorganism of the invention refers to conditions that support the growth of the microorganism of the invention.
  • Such conditions may include pH, nutrients, temperature, humidity, oxygenation, environment and other factors.
  • the conditions suitable for the growth of said microorganism of step i) comprise
  • the first process of the invention comprises separating the microbial biomass from the culture medium.
  • the cells are collected by any of the procedures commonly used for this purpose.
  • the second stage of the first process of the invention is carried out by a method selected from the group consisting of filtration, microfiltration, centrifugation, pressure, settling and combinations thereof.
  • the process of the invention further comprises drying the microbial biomass obtained in the second stage.
  • said additional drying step is performed at a temperature between 50 ° C and 70 ° C. In a more preferred embodiment, said additional drying step is performed at a temperature of 60 ° C.
  • Microbial biomass in another aspect, also relates to triglyceride-rich microbial biomass obtainable according to the first process of the invention, hereinafter referred to as "microbial biomass of the invention".
  • microbial biomass of the invention triglyceride-rich microbial biomass obtainable according to the first process of the invention.
  • the microbial biomass generated according to the first method of the invention comprises not only the microorganisms but also all those components of the culture generated by the microorganisms or that have been incorporated into the microorganisms from the culture during their growth and proliferation, such as nucleic acids , proteins, polysaccharides or lipids.
  • the microbial biomass according to the invention comprises microorganisms of the strain Pseudomonas brassicacearum CECT 8162 or a mutant strain thereof that maintains the ability to accumulate lipids up to at least 20% of the dry weight.
  • the triglyceride-rich biomass has a triglyceride content of at least 50% of the dry weight, at least 60% of the dry weight, at least 70% of the dry weight, or at least 80% of the weight dry.
  • the triglyceride-rich biomass contains an amount of the microorganism of the invention of at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at less than 95% or more compared to the rest of microorganisms present in the culture.
  • the present invention relates to a method for extracting lipids from microbial biomass of the invention, hereafter referred to as "second process of the invention", which comprises a method of mechanical extraction or a solid-liquid extraction method.
  • second process of the invention comprises a method of mechanical extraction or a solid-liquid extraction method.
  • microbial biomass has been described in detail in the context of the first process of the invention, and its definition and details also apply to the second process of the invention.
  • the methods for extracting and determining the amount of lipids used in relation to the microorganism of the invention can also be applied in relation to the second method of the invention.
  • the microorganisms that accumulate lipids and that are part of the microbial biomass according to the present invention can be lysed to produce a lysate, which is used as a starting material for lipid extraction.
  • the lysis step can be carried out using any method known to an expert, such as heat lysis, basic medium lysis, acid medium lysis, enzymatic lysis using enzymes such as proteases or enzymes that degrade polysaccharides (amylases) , ultrasonic lysis, mechanical lysis, osmotic shock lysis, These methods can be carried out individually or in combination and, in case of combined use, they can be carried out simultaneously or sequentially.
  • the degree of cell breakage can be determined by microscopic analysis.
  • the mechanical extraction method comprises the use of screw press, French press or ball mill.
  • the lysis step requires the breakage of at least about 70% of the cells, at least about 80% of the cells, at least about 90% of the cells or, preferably, at least about 100% of the cells.
  • Suitable methods for separating lipids from cell lysates include any chemical mechanical extraction method and, within these, any solid-liquid extraction method. Suitable methods include, extraction in the presence of organic solvents, which allows the expression of lipids and lipid derivatives such as aldehydes and alcohols of acid grades (Frenz et al. 1989, Enzyme Microb. Technol., 1 1: 717), liquefaction ( Sawayama et al. 1999, Biomass and Bioenergy 17: 33-39 and Inoue et al. 1993, Biomass Bioenergy 6 (4): 269-274); liquefaction in oil (Minowa et al. 1995, Fuel 74 (12): 1735-1738), extraction with supercritical C0 2 .
  • the extraction of lipids from microbial biomass can also be carried out taking advantage of differences in their solubility in a given solvent.
  • a certain solvent usually a organic solvent
  • an extraction can be performed consisting of adding this solvent to the mixture contained in a beaker, a flask or a porcelain capsule, cold or hot, stir or crush with help from a glass rod and filter off the solution containing the extracted product and the insoluble fraction.
  • the solid-liquid extraction is usually much more efficient when done continuously with the hot extraction solvent in a closed system, using a methodology similar to that explained above, based on the organic solvent maceration of the solid mixture to be extracted, prior to vaporizing in a flask and condensed in a refrigerant.
  • the passage of the organic solvent with part of the product extracted to the initial flask allows the same organic solvent to be vaporized again, repeating a new extraction cycle, while the extracted, non-volatile product is concentrated in the flask.
  • the solid-liquid extraction method is performed using a water immiscible organic solvent.
  • organic solvent refers to a substance that dissolves a solute whose molecules contain carbon atoms.
  • water immiscible organic solvent refers to an organic solvent with little or no ability to mix with water.
  • Non-limiting examples of water-immiscible organic solvents include n-hexane, acetone, petroleum ether and ethyl ether.
  • said water immiscible organic solvent is selected from the group consisting of n-hexane, acetone, petroleum ether, ethyl ether and combinations thereof.
  • said water immiscible organic solvent is n-hexane.
  • the solid-liquid extraction is usually much more efficient when done continuously with the hot extraction solvent in a closed system, using a methodology similar to that discussed for continuous liquid-liquid extraction, based on organic solvent maceration, previously vaporized in a flask and condensed in a refrigerant, of the solid mixture to be extracted contained within a cellulose cartridge or bag that is placed in the extraction chamber.
  • the passage of the organic solvent with part of the product extracted to the initial flask allows the same organic solvent to be vaporized again, repeating a new cycle of extraction, while the extracted product, not volatile, is concentrated in the flask.
  • the lipid fraction extracted from the biomaterial according to the invention may contain at least 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8 %, 99.9% or substantially 100% (by weight) of fatty acids and glycerides, including monoglycerides, diglycerides and triglycerides. Methods for determining the percentage by weight of the various components (acid grades and glycerides) are known from the state of the art and include, without limitation, gas chromatography or electrophoresis.
  • the lipids obtained from the microbial biomass according to the present invention can be chemically processed to produce products of interest in the industry.
  • Examples of chemical modification methods that can be applied to lipids according to the invention include lipid hydrolysis, lipid hydroprocessing and lipid esterification.
  • Other chemical modifications include, without limitation, epoxidation, oxidation, hydrolysis, sulphation, sulfonation, ethoxylation, propoxylation, amidation and saponification.
  • the modification of the lipids according to the present invention allows to generate products that can be further modified to give rise to compounds of interest, such as soaps, fatty acids, fatty acid esters, fatty alcohols, fatty nitrogen compounds, methyl esters of fatty acids and glycerol.
  • oleochemical derivatives include, but are not limited to, fatty nitriles, esters, dimer acids, quaternary compounds, surfactants, fatty alkanolamides, fatty alcohol sulfates, resins, emulsifiers, fatty alcohols, olefins, drilling muds, polyols, polyurethanes , polyacrylates, rubber, candles, cosmetics, soaps, metal soaps, alpha-sulphonated methyl esters, fatty alcohol sulfates, fatty alcohol ethoxylates, fatty alcohol ether sulfates, imidazolines, surfactants, detergents, esters, quaternary compounds, Ozonolysis products, fatty amines, fatty alkanolamides, ethoxy sulfates, monoglycerides, diglycerides, triglycerides (including medium chain triglycerides), lubricants, hydraulic fluids, fats, dielectric fluids,
  • the present invention relates to a process for obtaining paraffins, hereinafter "third process of the invention", which comprises the steps of:
  • step ii) convert the refined lipid mixture obtained in step i) into paraffins.
  • step iii) convert the refined lipid mixture obtained in step ii) into paraffins.
  • paraffin refers to a group of alkane hydrocarbons of the general formula CnH2n + 2, where n is the number of carbon atoms.
  • the simple paraffin molecule comes from methane, CH 4 , a gas at room temperature; instead, the heaviest members of the series, such as octane C8H18, are presented as liquids.
  • the solid forms of paraffin, called paraffin wax come from the heaviest molecules C20 to C40.
  • paraffins include kerosene, diesel, biofuel or biofuel, paraffin wax, nuyol, adepsin oil, albolin, glimol, medicinal paraffin, saxol and USP mineral oil.
  • biomass refers to a fuel that is derived from biomass, such as animal, plant or microbial waste.
  • Biofuels include, but are not limited to, biodiesel, renewable biokerosene diesel, biohydrogen, biogas, biomass derived from dimethylfuran (DMF), and the like.
  • biofuels is also used to refer to fuel mixtures comprising combustible biomass derivatives, such as alcohol / gasoline mixtures (ie, gasohols).
  • Paraffin is a renewable diesel.
  • the third process of the invention comprises retinating the lipids obtained from the second process of the invention.
  • the term "refinement” or “refining”, as used in the present invention, refers to the process of purification of a chemical substance obtained many times from a natural resource. Numerous methods are known in the state of the art for the refining of substances. For example, liquid refining is often achieved through distillation or fractionation. A gas can also be refined in this way by cooling or compressing it until liquefaction. Gases and liquids can also be refined by extraction with a solvent that dissolves the substance of interest or impurities. Thus, in a particular embodiment, the lipids obtained in the second process of the invention are refined by at least one wash with NaOH at a concentration between 5% and 15%.
  • the refining process comprises at least one wash with NaOH, at least two washings with NaOH, at least three washings with NaOH, at least four washings with NaOH, at least five washings with NaOH, at least ten washings with NaOH or more.
  • the concentration of NaOH is between 8% and 12%. In a more preferred embodiment, the concentration of NaOH is 10%.
  • the process of the invention comprises converting the mixture of refined lipids obtained in step i) into paraffins.
  • step ii) of the third method of the invention comprises a method selected from the group consisting of hydrotreatment or hydroprocessing.
  • hydrotreatment or hydroprocessing there are numerous processes in the art for converting lipids into paraffins that include, without limitation, hydrotreatment or hydroprocessing procedures (EP1682466, EP1795576, EP1681337, EP1640437).
  • hydrotreatment refers to hydrogenation reactions, usually catalytic, which are widely used on petroleum fractions such as naphtha, kerosene and diesel, as well as lipid fractions. , under high pressure and temperature.
  • hydroprocessing is carried out on the lipid mixture obtained from the second process of the invention.
  • Hydroprocessing is necessary to remove contaminants such as sulfur metals, nitrogen and heavy metals from combustible oils.
  • oxygenated hydrocarbons replace their oxygen atoms with hydrogen atoms, and the oxygen atoms that come out combine with hydrogen molecules forming water.
  • Nitrogen hydrocarbons replace their nitrogen atoms with hydrogen atoms, and the nitrogen atoms that come out combine with hydrogen molecules forming ammonia.
  • sulfur-containing hydrocarbons replace their sulfur atoms with hydrogen atoms, and the sulfur atoms that come out combine with hydrogen molecules forming hydrogen sulfide.
  • catalysis refers to the increase in the speed of a chemical reaction due to the participation of a substance called catalyst. Unlike other reagents in the chemical reaction, a catalyst is not consumed. A catalyst can participate in multiple chemical transformations. The effect of a catalyst may vary due to the presence of other substances known as inhibitors or poisons (which reduce catalytic activity) or promoters (which increase activity).
  • the main catalysts useful in hydroprocessing are based on molybdenum disulfide (MoS 2 ) together with smaller amounts of others. metals Most metals catalyze hydroprocessing, but those in the middle of a metal's transition series are more active.
  • Ruthenium disulfide seems to be the most active catalyst, but binary combinations of cobalt and molybdenum are also highly active. Apart from the cobalt base modified with MoS2 catalyst, nickel and tungsten are also used. For example, Ni-W catalysts are more effective for hydrodesnitrogenation.
  • Another method of hydrotreatment comprises contacting the refined lipids with water, applying a high temperature and pressure, and separating the organic phase from the water.
  • Another method of hydroprocessing comprises hydrogenating the refined lipid mixture obtained in the step, and also deoxygenating said refined lipid mixture.
  • the hydrotreatment method comprises
  • hydrotreatment is carried out in the liquid phase, at an elevated temperature, from 100 to 400 ° C, preferably 250 to 350 ° C.
  • the reaction can be carried out at atmospheric pressure.
  • the reaction pressure ranges have a range from atmospheric pressure to 20 MPa , preferably from 0.1 to 5 MPa.
  • the organic phase is separated from the water, obtaining as a product a distillate with the composition of a renewable diesel.
  • the hydroprocessing method comprises
  • the hydroprocessing method is carried out at elevated temperature and pressure.
  • deoxygenation refers to a chemical reaction that involves the removal of molecular oxygen (0 2 ) from a reaction mixture or solvent, or the removal of atoms of oxygen of a molecule.
  • Non-limiting examples of deoxygenation reactions include the replacement of a hydroxyl group by hydrogen in the deoxygenation of Barton-McCombie or in the deoxygenation Markó-Lam, and the replacement of an oxo group by two hydrogen atoms in the reduction of Wolff-Kishner .
  • the lipids and optionally a solvent or a mixture of solvents are contacted with a heterogeneous decarboxylation catalyst selected from catalysts containing one or more metals of group VIII and / or VIA of the periodic system.
  • the catalysts are catalysts of Pd, Pt, Ni, NiMo or CoMo, the one on an alumina, silica and / or carbon support.
  • Hydrogen can optionally be used.
  • the decarboxylation reaction conditions vary with the raw material used. The reaction is carried out in a liquid phase, at an elevated temperature, from 100 to 400 ° C, preferably 250 to 350 ° C. The reaction can be carried out at atmospheric pressure.
  • reaction pressure ranges have a range from atmospheric pressure to 150 MPa , preferably from 0.1 to 5 MPa.
  • the hydrogenation and deoxygenation of said refined lipid mixture is performed in the same stage. In another preferred embodiment, the hydrogenation and deoxygenation of said refined lipid mixture is carried out in consecutive stages.
  • the product obtained after the end of the reaction is a renewable diesel.
  • the third process of the invention further comprises a catalytic cracking process under conditions suitable for converting the paraffins obtained in step iii) into biokerosene.
  • catalytic cracking refers to the rupture of a long chain alkane in others. More useful short chain alkenes and alkenes, that is, the process of breaking up long chain hydrocarbons into short chain hydrocarbons. It is a thermal decomposition process in the presence of a catalyst of the paraffin components obtained through hydrotreatment processes, with the purpose of cracking long chain hydrocarbons whose boiling point is equal to or greater than 315 ° C, and convert them into short chain hydrocarbons whose boiling point is below 221 ° C. Said catalysts are presented in granular or microspheric form. Catalysts are usually composed of silicon oxide (Si0 2 ) and alumina (Al 2 0 3 ). The most commonly used mineral for this purpose is faujasite.
  • said catalytic cracking employs a solid catalyst.
  • solid catalyst refers to a chemical substance, solid, simple or compound, that modifies the speed of a chemical reaction, intervening in it but without becoming part of the products resulting from it. .
  • the majority of solid catalysts are metals or oxides, sulphides and haloids of metallic and semi-metallic elements such as boron aluminum, and silicon elements.
  • Solid catalysts can be prepared by precipitation-deposition, which consists of depositing a hydroxide by precipitation of a soluble salt of the metal on the support. In this case the precipitation is mainly done by modification of the pH of the solution.
  • said solid catalyst is selected from the group consisting of catalysts consisting of bifunctional metal hydrogenation-dehydrogenation systems (e.g., Co-Mo or Pd-Pt) and acidic components for cracking (e.g., Al 2 0 3 , Si0 2 , and also in the form of zeolites) in the presence of hydrogen.
  • bifunctional metal hydrogenation-dehydrogenation systems e.g., Co-Mo or Pd-Pt
  • acidic components for cracking e.g., Al 2 0 3 , Si0 2 , and also in the form of zeolites
  • the invention relates to a method for obtaining biodiesel, hereinafter the fourth method of the invention, comprising the steps of: i) refine the lipids obtained in the second process of the invention and
  • step ii) convert the refined lipid mixture obtained in step i) into paraffins.
  • biodiesel refers to a chemical composition consisting primarily of monoalkyl esters of long chain fatty acids.
  • the esters that are part of the biodiesel are methyl, ethyl or propyl esters and the fatty acids are those that come from the lipid composition according to the present invention.
  • the biodiesel according to the present invention comprises one or more of the following fatty acid alkyl esters: fatty acid methyl esters (FAME or fatty acid methyl ester), fatty acid ethyl esters (FAEE or fatty acid ethyl esters), butyl esters of fatty acids (FABE or fatty acid butyl esters).
  • the biodiesel may contain one or more fatty acids selected from myristate, palmitate, stearate, oleate, linolenate, arachidida and behenate.
  • biodiesel is a fuel that is composed entirely of esters of biological origin that do not contain diesel from petroleum and that comprise monoalkyl esters of long-chain fatty acids.
  • This type of biodiesel is known as B100 and indicates that 100% of the fuel is biodiesel.
  • the biodiesel may contain one or more fatty acids selected from myristate, palmitate, stearate, oleate, linolenate, arachididate and behenate.
  • biodiesel is a fuel that is composed entirely of esters of biological origin that do not contain diesel. from petroleum and comprising monoalkyl esters of long chain fatty acids.
  • This type of biodiesel is known as B100 and indicates that 100% of the fuel is biodiesel.
  • the fourth process of the invention comprises retinating the lipids obtained from the second process of the invention.
  • the term "refinement” or “refining” has been described in the context of the third method of the present invention and is used in the same manner in relation to the fourth method of the invention.
  • esterification or "transesterification” as used in the present invention refers to the reaction that occurs between a fatty acid and an alcohol.
  • the product of said reaction is a fatty acid ester.
  • Transesterification can be catalyzed by bases, acids or enzymes.
  • the biodiesel is obtained from the lipid preparation obtained in step i) of the third process of the invention by transesterification of the free fatty acids that are part of the lipid preparation.
  • the acid catalyzed transesterification process is carried out in the presence of Bronsted acids, preferably by sulfonic or sulfuric acid. These catalysts generate a very high production of alkyl esters but the reactions are slow compared to alkaline catalysts. Typically this type of transesterification is used with those lipids with a high content of free fatty acids.
  • the base catalyzed transesterification process is carried out with methanol via alkaline route.
  • the catalyst for example, NaOH, KOH, NaHC0 3 , KHC0 3
  • the catalyst is dissolved in the alcohol and after adding it to the oil, the mixture is stirred at a certain temperature and pressure, which can be adjusted according to experimental conditions. This reaction gives rise to esters of fatty acids and crude glycerin as final reaction products.
  • the lipase-catalyzed enzymatic transesterification process is carried out in the presence of these enzymes or of microorganisms that produce them, such as those belonging to the genera Candida sp, Chromobacteri sp, Cryptococcus sp, Mucor sp, Pseudomonas sp, Rhizomucor sp, Rhizopus sp, Thermomyces sp, etc.
  • biodiesel is obtained by base catalyzed transesterification as shown in example 6 of the present invention.
  • concentration of the basic catalyst, the amount of substrate, the temperature and the reaction time can be adjusted.
  • the reaction products obtained are methyl esters of the corresponding fatty acids that make up the biodiesel and glycerin.
  • the methanol used as a catalyst diluent can be removed by different physical-chemical procedures known in the state of the art such as heat treatment, distillation etc.
  • the light phase where glycerin and other compounds will be found, can be separated from the heavy phase, formed by fatty acid methyl esters, by any known technique that allows the separation of liquids of different density such as centrifugation, sedimentation, filtration, crystallization etc.
  • the methyl esters obtained can be optionally purified to remove impurities (small amounts of methanol, glycerin, catalyst, soaps, cell debris and high boiling compounds).
  • Methods for the purification of methyl esters are well known in the state of the art, and include without limitation, chromatographic purification methods, crystallization, vacuum distillation, or washing with dilute acid solutions.
  • the purification step of the methyl esters obtained is carried out by washing with a dilute solution of hydrochloric acid. This washing eliminates the insoluble impurities that accompany the ester and manages to avoid the formation of emulsions. Typically the washing is carried out at the same temperature used in the transesterification reaction.
  • the aqueous and organic phase of the mixture is separated.
  • any technique that allows the separation of the organic phase and the aqueous phase may be used in the context of the present invention.
  • the separation of both phases can be carried out, but not limited to, by extraction of the organic phase, decantation, or evaporation of the aqueous phase.
  • the organic phase, where the methyl esters will be found still drags a considerable part of water that must be removed.
  • the drying stage is carried out under conditions of high pressure and temperature (temperatures of around 100 ° C and vacuum is usually applied).
  • the present invention relates to the use of the microorganism of the invention, hereinafter "first use of the invention", to obtain a microbial biomass rich in triglycerides according to the first process of the invention.
  • first use of the invention to obtain a microbial biomass rich in triglycerides according to the first process of the invention.
  • the terms "microorganism” and “microbial biomass rich in triglycerides” and their particularities have been described in the context of the microorganism and the first process of the invention, and are applicable to the first use of the invention. Likewise, the particular and preferred embodiments of the microorganism and the first method of the invention are equally applicable.
  • the present invention relates to the use of the microorganism of the invention, hereinafter "second use of the invention", to extract the lipids from the microbial biomass according to the second process of the invention.
  • microorganism and “microbial biomass” and their particularities have been described in the context of the microorganism and the first process of the invention, and are applicable to the second use of the invention. Likewise, the particular and preferred embodiments of the microorganism and the second method of the invention are equally applicable.
  • the present invention relates to the use of the microorganism of the invention, hereinafter "third use of the invention", to obtain paraffins according to the third process of the invention.
  • third use of the invention to obtain paraffins according to the third process of the invention.
  • the terms "microorganism” and “paraffin” and their particularities have been described in the context of the microorganism and the third process of the invention, and are applicable to the third use of the invention.
  • the particular and preferred embodiments of the microorganism and the third method of the invention are equally applicable.
  • This strain was carried out from a soil sample from which serial dilutions were prepared in saline solution, 0.1 mL was plated in plates containing TSA medium (per liter, 10 g yeast extract, bacteriological peptone, 20 g, crude glycerin 47 g) supplemented with cycloheximide and nystatin (50 ⁇ g / mL) to inhibit eukaryotic growth. Plates were incubated at 30 ° C for 3-4 days.
  • TSA medium per liter, 10 g yeast extract, bacteriological peptone, 20 g, crude glycerin 47 g
  • cycloheximide and nystatin 50 ⁇ g / mL
  • the ability to accumulate fat was analyzed by screening using Nile red staining (Kimura K, et al., 2004, J. Microbiol. Methods, 56, 331-338).
  • the strain was grown in cultures at 30 ° C, 250 rpm for 96 hours in flasks containing 50 mL of M9 medium (for 1 liter: Glucose 40 g, Na 2 HP0 4 - 12H 2 0 7 g, KH 2 P0 4 3 g , NaCI 0.5 g, NH 4 CI 1 g, FeS0 4 -7H 2 0 0.5 mg, MgS0 4 0, 12 g, trace elements 2.5 mL Trace elements (per liter): ZnCI 2 50 mg, MNCI 2 -4H 2 0 30 mg, H 3 B0 3 300 mg, 200 mg COCI 2, CuCl 2 -2H 2 0 10 mg, NICI 2 -6H 2 0 20 mg, NaMo0 4 -2H 2 0 30 mg).
  • the cells were collected by centrifugation, and resuspended in 5 mL of water containing 0.75 mL of ammonium hydroxide. The suspension was stirred gently and incubated in a bath at 60-70 ° C for 15 minutes. It was cooled and 5 mL of ethanol was added with vigorous stirring. Then 12.5 mL of ethyl ether was added, stirred briefly and the same volume of petroleum ether was added. The mixture was separated by centrifugation, the organic phase being removed to a flat bottom spherical flask. The organic phase is evaporated to dryness in a rotary evaporator and the flask was placed in an oven at 102 ° C until a constant weight was obtained.
  • This gravimetry measurement confirmed that the strain was able to accumulate more than 25% of its dry weight in the form of lipids.
  • This strain was identified, by sequencing the D1 / D2 region of the 16S subunit of the ribosomal DNA (SEQ ID NO 1) and a fragment of the STI (SEQ ID NO 2) as Pseudomonas brassicacearum showing differences against the sequences of this species deposited in the databases consulted.
  • the microorganism has been deposited in the Spanish Type Culture Collection as P. brassicacearum CECT 8162.
  • the present strain of P. brassicacearum is capable of metabolizing different carbon sources including glucose, crude glycerin or the sugars present in hydrolyzates of lignocellulosic biomass, which is found in excess in relation to the source of nitrogen present in the same medium.
  • M9-1 This medium consists of (based on 1 liter): Glucose 40 g; NH 4 CI 3.8 g;
  • the fermenter was maintained at 30 ° C, the concentration of dissolved oxygen was maintained above 20% while maintaining a stirring of 1,000 rpm. After 40 hours the biomass concentration in the fermenter was 60-70 g / L and the intracellular lipid content was 23%.
  • the extracted lipid mixture was fractionated on a silica column to obtain 4 fractions that were analyzed by HPLC-ELSD and HPLC-MS. The identity of the compounds present in each and the percentage by weight with respect to the glyceride content of the sample was as follows: Fraction Composition% weight
  • composition of fatty acids present was analyzed by gas chromatography, observing a majority of palmitic acid (37.5%), heptadecenoic acid (19%), myristic (16.5%), vaccenic (14%) and oleic (13% ).
  • a sample (0.5 kg) of oil extracted and refined from the strain P. brassicacearum CECT 8162 was used to carry out the transesterification reaction.
  • the reaction was carried out in three stages each lasting 2 hours at a temperature of 55 ° C.
  • NaOH 1% w / v
  • methanol 10% v / v
  • stirring was stopped and the mixture was separated by centrifugation. Two phases were obtained: a light one, containing the methyl esters and excess methanol, and a heavy phase formed by glycerin, methanol residues, catalyst and salts.
  • the purification of the light phase was carried out by four washing steps at 55 ° C. In the first, HCI (2%) was used and in the remaining three distilled water. At the end of each wash, the mixture was allowed to decant until a good separation of the organic and aqueous phase was achieved. The aqueous phase was removed and the methyl esters were subjected to a drying stage, to remove the remains of methanol and water, by evaporation under vacuum and 115 ° C. The final amount obtained was 0.49 kg of methyl esters, which represents a 98% yield.
  • the biodiesel analysis obtained met all the parameters required by the EN 14214 standard.
  • strain Pseudomonas brassicacearum characterized by its ability to accumulate lipids up to at least 20% of the dry weight has been deposited in the Spanish Type Culture Collection under the conditions stipulated in the Budapest Treaty. The deposit was made on June 15, 2012 and the number assigned to said deposit was CECT 8162.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to a microorganism of Pseudomonas brassicacearum strain CECT 8162 or a mutant strain of same, which maintains the ability to accumulate up to at least 20 % of its dry weight in the form of lipids. The invention also relates to a method for producing a microbial biomass of said strain that is rich in triglycerides, and to methods for producing a lipid composition from the microbial biomass and for producing paraffins or biodiesel from said lipids.

Description

COMPOSICIONES Y MÉTODOS PARA LA PRODUCCIÓN DE BIOCOMBUSTIBLES  COMPOSITIONS AND METHODS FOR THE PRODUCTION OF BIOFUELS
CAMPO DE LA INVENCIÓN La presente invención se relaciona con un microorganismo capaz de acumular triglicéridos hasta al menos un 20% del peso seco. La presente invención también se relaciona con procedimientos y usos de dicho microorganismo para obtener biomasa, extraer lípidos y obtener parafinas. ANTECEDENTES DE LA INVENCIÓN FIELD OF THE INVENTION The present invention relates to a microorganism capable of accumulating triglycerides up to at least 20% of the dry weight. The present invention also relates to methods and uses of said microorganism to obtain biomass, extract lipids and obtain paraffins. BACKGROUND OF THE INVENTION
La producción de lípidos a partir de microorganismos ha sido, desde hace tiempo, objeto de investigación. Algunos hongos, levaduras y algas poseen la capacidad de acumular, intracelularmente, hasta más de un 70% de su biomasa en forma de lípidos durante períodos de stress metabólico, por lo que, de forma similar a lo que sucede con las semillas vegetales, se les denomina microorganismos oleaginosos. The production of lipids from microorganisms has long been the subject of investigation. Some fungi, yeasts and algae have the ability to accumulate, intracellularly, up to more than 70% of their biomass in the form of lipids during periods of metabolic stress, so, similar to what happens with vegetable seeds, He calls them oleaginous microorganisms.
Aunque la mayoría de los procariotas acumulan polihidroxialcanoatos (PHAs) como material de reserva, cepas pertenecientes al grupo de los actinomicetos (Streptomyces, Nocardia, Gordonia, Rhodococcus, o Mycobacterium), y muy pocas especies de otros género como, por ejemplo, Mangroveibacter o Pseudomonas, son capaces de acumular más del 20% de su peso seco en forma de lípidos. Al igual que sucede en eucariotas, la acumulación de triglicéridos se produce cuando una fuente de carbono se encuentra en exceso y la fuente de nitrógeno limita el crecimiento. Bajo estas condiciones de crecimiento, las células utilizan la fuente de carbono para la síntesis de lípidos neutros. Although most prokaryotes accumulate polyhydroxyalkanoates (PHAs) as a reserve material, strains belonging to the group of actinomycetes (Streptomyces, Nocardia, Gordonia, Rhodococcus, or Mycobacterium), and very few species of other genus such as, for example, Mangroveibacter or Pseudomonas, are able to accumulate more than 20% of their dry weight in the form of lipids. As with eukaryotes, triglyceride accumulation occurs when a carbon source is in excess and the nitrogen source limits growth. Under these growth conditions, cells use the carbon source for the synthesis of neutral lipids.
Las mezclas de azúcares obtenidos a partir de materiales lignocelulósicos, especialmente los residuos procedentes de los sectores agrícola, forestal e industrial, son las materias primas con mayor potencial para la producción de biocarburantes en el futuro ya que, no sólo no tienen valor económico en el contexto en el que se generan, sino que suelen provocar problemas ambientales durante su eliminación. Mixtures of sugars obtained from lignocellulosic materials, especially waste from the agricultural, forestry and industrial sectors, are the raw materials with the greatest potential for biofuel production in the future since, not only do they not have economic value in the context in which they are generated, but usually cause environmental problems during their elimination.
Sin embargo, la producción de biocombustibles a partir de estas materias primas presenta dos grandes retos que son necesarios solventar a la hora de lograr un proceso económicamente competitivo. Por una parte se requiere la capacidad para crecer en presencia de los compuestos tóxicos generados durante la etapa de pretratamiento de la biomasa, y por otra, la completa utilización de las hexosas y, sobre todo, las pentosas (mayoritariamente xilosa) presentes en los hidrolizados. However, the production of biofuels from these raw materials presents two major challenges that need to be solved when it comes to achieving economically competitive process. On the one hand, the ability to grow in the presence of toxic compounds generated during the biomass pretreatment stage is required, and on the other, the full use of hexoses and, above all, pentoses (mostly xylose) present in hydrolysates .
La mayoría de los microrganismos eucariotas oleaginosos, incluyendo hongos filamentosos, levaduras y algunas microalgas son capaces de metabolizar D-xilosa de forma natural. Sin embargo, esta propiedad está ausente en la mayoría de las escasas especies procariotas oleaginosas conocidas, por lo que es necesario clonar y expresar genes exógenos implicados en el metabolismo de esta pentosa, tal y como se ha realizado en Cupriavidus o Rhodococcus opacus como se describe en las publicaciones EP2407531 y WO2010147642, respectivamente. Most oleaginous eukaryotic microorganisms, including filamentous fungi, yeasts and some microalgae are able to metabolize D-xylose naturally. However, this property is absent in most of the few known oleaginous prokaryotic species, so it is necessary to clone and express exogenous genes involved in the metabolism of this pentose, as has been done in Cupriavidus or Rhodococcus opacus as described in publications EP2407531 and WO2010147642, respectively.
La obtención de estos biocombustibles se realiza con aceites vegetales y grasas animales, o mezclas de éstos con las fracciones destiladas diésel procedentes del petróleo (EP2141217, WO2010000934, WO2008151 149 y US20090047721), o incluso con los ácidos grasos presentes en lípidos de origen microbiano (WO2007068797, EP1682466, EP1795576, EP1681337, WO2010000934, EP1640437). Por lo tanto, la obtención de cepas capaces de crecer y metabolizar diferentes fuentes de carbono, incluyendo todos los azúcares presentes en hidrolizados de biomasa lignocelulósica, y que sean capaces de producir y acumular grandes cantidades de lípidos, no sólo puede suponer una materia prima alternativa económicamente viable, sino que también permitiría lograr los criterios de sostenibilidad requeridos a los biocombustibles por las directivas 2009/28/CE y 2009/30/CE. Obtaining these biofuels is carried out with vegetable oils and animal fats, or mixtures of these with diesel distilled fractions from petroleum (EP2141217, WO2010000934, WO2008151 149 and US20090047721), or even with fatty acids present in lipids of microbial origin ( WO2007068797, EP1682466, EP1795576, EP1681337, WO2010000934, EP1640437). Therefore, obtaining strains capable of growing and metabolizing different carbon sources, including all the sugars present in lignocellulosic biomass hydrolysates, and that are capable of producing and accumulating large amounts of lipids, can not only be an alternative raw material. economically viable, it would also enable the sustainability criteria required of biofuels to be achieved by directives 2009/28 / EC and 2009/30 / EC.
COMPENDIO DE LA INVENCIÓN SUMMARY OF THE INVENTION
Los autores de la presente invención han aislado un microorganismo de la cepa Pseudomonas brassicacearum CECT 8162, que tiene la capacidad de metabolizar diferentes fuentes de carbono incluyendo, sin limitación, glucosa, glicerina cruda o los azúcares presentes en hidrolizados de biomasa lignocelulósica, y además de acumular lípidos hasta al menos un 20% del peso seco. Por lo tanto, en un primer aspecto, la presente invención se relaciona con un microorganismo de la cepa Pseudomonas brassicacearum CECT 8162, o de una cepa muíante de la misma que mantiene la capacidad de acumular lípidos hasta al menos un 20% del peso seco. The authors of the present invention have isolated a microorganism from the strain Pseudomonas brassicacearum CECT 8162, which has the ability to metabolize different carbon sources including, without limitation, glucose, crude glycerin or the sugars present in lignocellulosic biomass hydrolysates, and in addition to accumulate lipids up to at least 20% of the dry weight. Therefore, in a first aspect, the present invention relates to a microorganism of the strain Pseudomonas brassicacearum CECT 8162, or a mutant strain thereof that maintains the ability to accumulate lipids up to at least 20% of the dry weight.
En otro aspecto, la presente invención se relaciona con un procedimiento para obtener una biomasa microbiana rica en triglicéridos, que comprende In another aspect, the present invention relates to a process for obtaining a microbial biomass rich in triglycerides, which comprises
i) cultivar un microorganismo según el primer aspecto de la invención en un medio de cultivo que comprende al menos una fuente de carbono y al menos una fuente de nitrógeno, en condiciones adecuadas para el crecimiento de dicho microorganismo, y  i) cultivating a microorganism according to the first aspect of the invention in a culture medium comprising at least one carbon source and at least one nitrogen source, under conditions suitable for the growth of said microorganism, and
ii) separar la biomasa microbiana del medio de cultivo,  ii) separate the microbial biomass from the culture medium,
en donde la proporción C:N en el medio de cultivo es elevada. En otro aspecto, la presente invención se relaciona con un procedimiento para extraer los lípidos de la biomasa microbiana según el aspecto anterior, que comprende un método de extracción mecánica o un método de extracción sólido-líquido. where the C: N ratio in the culture medium is high. In another aspect, the present invention relates to a method for extracting lipids from microbial biomass according to the previous aspect, which comprises a mechanical extraction method or a solid-liquid extraction method.
En otro aspecto, la presente invención se relaciona con un procedimiento para obtener parafinas a partir de los lípidos obtenidos en el procedimiento según el aspecto anterior, que comprende In another aspect, the present invention relates to a process for obtaining paraffins from the lipids obtained in the process according to the above aspect, which comprises
i) refinar dichos lípidos,  i) refine said lipids,
ii) convertir la mezcla de lípidos refinados obtenidos en la etapa ii) en parafinas.  ii) convert the refined lipid mixture obtained in step ii) into paraffins.
En otro aspecto, la presente invención se relaciona con el uso del microorganismo según la invención para obtener una biomasa microbiana rica en triglicéridos según el primer procedimiento de la invención. En otro aspecto, la presente invención se relaciona con el uso del microorganismo según la invención para extraer los lípidos de la biomasa microbiana según el segundo procedimiento de la invención. En otro aspecto, la presente invención se relaciona con el uso del microorganismo según la invención para obtener para obtener parafinas según el tercer procedimiento de la invención. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN In another aspect, the present invention relates to the use of the microorganism according to the invention to obtain a triglyceride-rich microbial biomass according to the first process of the invention. In another aspect, the present invention relates to the use of the microorganism according to the invention to extract the lipids from the microbial biomass according to the second process of the invention. In another aspect, the present invention relates to the use of the microorganism according to the invention to obtain paraffins according to the third method of the invention. DETAILED DESCRIPTION OF THE INVENTION
Microorganismo de la invención Microorganism of the invention
En un primer aspecto, la presente invención se relaciona con un microorganismo de la cepa Pseudomonas brassicacearum CECT 8162, o de una cepa muíante de la misma que mantiene la capacidad de acumular lípidos hasta al menos un 20% del peso seco, en adelante "microorganismo de la invención". In a first aspect, the present invention relates to a microorganism of the strain Pseudomonas brassicacearum CECT 8162, or a mutant strain thereof that maintains the ability to accumulate lipids up to at least 20% of the dry weight, hereinafter "microorganism of the invention ".
El término "microorganismo" o "microbio", tal y como se utiliza en la presente invención, se refiere a un organismo microscópico con capacidad de acumular lípidos intracelularmente, que puede ser unicelular o multicelular. El particular, el microorganismo de la invención es una bacteria de la especie Pseudomonas brassicacearum, en concreto, la cepa CECT 8162. La cepa CECT 8162 de P. brassicacearum tiene la capacidad de metabolizar diferentes fuentes de carbono incluyendo, sin limitación, glucosa, glicerina cruda o los azúcares presentes en hidrolizados de biomasa lignocelulósica, que se encuentra en exceso en relación con la fuente de nitrógeno presente en el mismo medio. El microorganismo de la invención también se refiere a una cepa muíante de la misma que maníiene la capacidad de acumular lípidos hasía al menos un 20% del peso seco. The term "microorganism" or "microbe", as used in the present invention, refers to a microscopic organism capable of accumulating lipids intracellularly, which can be unicellular or multicellular. In particular, the microorganism of the invention is a bacterium of the species Pseudomonas brassicacearum, in particular, strain CECT 8162. The strain CECT 8162 of P. brassicacearum has the ability to metabolize different carbon sources including, without limitation, glucose, glycerin raw or the sugars present in lignocellulosic biomass hydrolysates, which is in excess in relation to the source of nitrogen present in the same medium. The microorganism of the invention also refers to a mutant strain thereof that maintains the ability to accumulate lipids to at least 20% of the dry weight.
El íérmino "cepa", íal y como se uíiliza en la preseníe invención, se refiere a una varianíe genéíica o subíipo de un organismo deíerminado. El íérmino "cepa muíanle", íal y como se uíiliza en la preseníe invención, se refiere a una cepa resulíaníe de la muíación de una cepa de un organismo deíerminado que maníiene la capacidad de acumular lípidos hasía al menos un 20% de su peso seco. En una realización particular, la cepa muíaníe de la cepa muíaníe de la cepa CECT 8162 de P. brassicacearum CECT maníiene la capacidad de acumular lípidos hasía al menos un 30% de peso seco, un 40% del peso seco, 50% del peso seco, al menos un 60% del peso seco, al menos un 70% del peso seco, al menos un 80% de peso seco o al menos un 90% del peso seco. The term "strain", as it is used in the present invention, refers to a genetic variance or subtype of a deermined organism. The term "muiele strain", as it is and as used in the present invention, refers to a strain resulting from the mutation of a strain of a deermined organism that maintains the ability to accumulate lipids to at least 20% of its dry weight . In a particular embodiment, the muierie strain of the muierie strain of the CECT 8162 strain of P. brassicacearum CECT maintains the ability to accumulate lipids to at least 30% dry weight, 40% dry weight, 50% dry weight , at least 60% of dry weight, at least 70% of the dry weight, at least 80% of dry weight or at least 90% of the dry weight.
Como es conocido por el experto en la materia, la capacidad para acumular lípidos se puede analizar mediante numerosos métodos que están disponibles en la técnica. Estos métodos incluyen, sin limitación, la determinación del contenido total de lípidos por métodos de extracción con disolventes orgánicos (por ejemplo Soxhlet, Goldfish, Mojonnier), o también puede cuantificarse por métodos de extracción que no incluyen disolventes (por ejemplo, Babcock, Gerber) y por métodos instrumentales que se basan en propiedades físicas o químicas de los lípidos (por ejemplo, infrarrojo, densidad y absorción de rayos X). As is known to one skilled in the art, the ability to accumulate lipids can be analyzed by numerous methods that are available in the art. These methods include, without limitation, the determination of the total lipid content by extraction methods with organic solvents (for example Soxhlet, Goldfish, Mojonnier), or it can also be quantified by extraction methods that do not include solvents (for example, Babcock, Gerber ) and by instrumental methods that are based on physical or chemical properties of lipids (for example, infrared, density and X-ray absorption).
El método de Soxhlet consiste en una extracción semicontinua con un disolvente orgánico. En este método el disolvente se calienta, se volatiliza y condensa goteando sobre la muestra la cual queda sumergida en el disolvente. Posteriormente éste es sifoneado al matraz de calentamiento para empezar de nuevo el proceso. El contenido de lípidos se cuantifica por diferencia de peso. The Soxhlet method consists of a semi-continuous extraction with an organic solvent. In this method the solvent is heated, volatilized and condensed dripping on the sample which is immersed in the solvent. This is subsequently siphoned to the heating flask to start the process again. The lipid content is quantified by weight difference.
El método de Goldfish consiste en una extracción continua con un disolvente orgánico. Éste se calienta, volatiliza para posteriormente condensarse sobre la muestra. El disolvente gotea continuamente a través de la muestra para extraer los lípidos. El contenido de grasa se cuantifica por diferencia de peso entre la muestra o la grasa removida. El método por lotes hace uso de la solubilidad intrínseca de los lípidos; es claro que un compuesto no polar es soluble en un disolvente no polar. La extracción se realiza en frío para evitar el daño del material lipídico y por lotes para incrementar la eficiencia. The Goldfish method consists of continuous extraction with an organic solvent. This is heated, volatilized and subsequently condensed on the sample. The solvent drips continuously through the sample to extract lipids. The fat content is quantified by difference in weight between the sample or the fat removed. The batch method makes use of the intrinsic lipid solubility; It is clear that a non-polar compound is soluble in a non-polar solvent. The extraction is performed cold to avoid damage of the lipid material and in batches to increase efficiency.
El método de Bligh-Dyer, así como su modificación por Hanson y Olley, proporciona un método rápido para la extracción de lípidos de tejidos y productos alimenticios que contienen una cantidad significativa de agua. El método se basa en la homogenización de la muestra con cloroformo, metanol y agua en proporciones tales que se forme una sola fase miscible con el agua de la muestra. Al añadir alícuotas de cloroformo y agua se logra la separación de fases. El material lipídico se encuentra en la fase no acuosa, mientras que el material no lipídico se encuentra en la fase acuosa. De acuerdo con el método de Róse-Gottlieb método, la separación de los lípidos se logra por amoniaco y etanol con un posterior efecto de deshidratación sobre los fosfolípidos. Los lípidos se disuelven en éter recién destilado y se añade algo de petróleo para que se separen algunos compuestos no lipidíeos que se puedan encontrar en la fase etérea. Esta mezcla es completamente inmiscible en agua de manera que mediante una extracción adecuada es simple dejar el componente lipídico en la fase etérea. En una realización particular, la cepa muíante de la cepa CECT 8162 de P. brassicacearum mantiene la capacidad de acumular lípidos hasta al menos un 20% del peso seco, al menos un 30% del peso seco, al menos un 40% del peso seco, al menos un 50% del peso seco, al menos un 60% del peso seco, al menos un 70% del peso seco, o al menos un 90% del peso seco. The Bligh-Dyer method, as well as its modification by Hanson and Olley, provides a rapid method for the extraction of lipids from tissues and food products that contain a significant amount of water. The method is based on the homogenization of the sample with chloroform, methanol and water in proportions such that a single phase miscible with the water of the sample is formed. By adding aliquots of chloroform and water, phase separation is achieved. The lipid material is in the non-aqueous phase, while the non-lipid material is in the aqueous phase. According to the Róse-Gottlieb method, lipid separation is achieved by ammonia and ethanol with a subsequent dehydration effect on phospholipids. The lipids are dissolved in freshly distilled ether and some petroleum is added so that some non-lipid compounds that can be found in the ether phase are separated. This mixture is completely immiscible in water so that by proper extraction it is simple to leave the lipid component in the etheric phase. In a particular embodiment, the mutant strain of P. brassicacearum strain CECT 8162 maintains the ability to accumulate lipids up to at least 20% of the dry weight, at least 30% of the dry weight, at least 40% of the dry weight , at least 50% of the dry weight, at least 60% of the dry weight, at least 70% of the dry weight, or at least 90% of the dry weight.
Procedimiento para obtener una biomasa microbiana rica en triglicéridos Procedure to obtain a microbial biomass rich in triglycerides
En otro aspecto, la presente invención se relaciona con un procedimiento para obtener una biomasa microbiana rica en triglicéridos, en adelante "primer procedimiento de la invención", que comprende In another aspect, the present invention relates to a process for obtaining a microbial biomass rich in triglycerides, hereinafter "first process of the invention", which comprises
i) cultivar el microorganismo de la invención en un medio de cultivo que comprende al menos una fuente de carbono y al menos una fuente de nitrógeno, en condiciones adecuadas para el crecimiento de dicho microorganismo, y  i) culturing the microorganism of the invention in a culture medium comprising at least one carbon source and at least one nitrogen source, under conditions suitable for the growth of said microorganism, and
ii) separar la biomasa microbiana del medio de cultivo,  ii) separate the microbial biomass from the culture medium,
en donde la proporción C:N en el medio de cultivo es elevada. where the C: N ratio in the culture medium is high.
El término "biomasa microbiana", tal y como se utiliza en la presente invención, se refiere al material biológico de organismos vivos o recientemente vivos, en particular del microorganismo de la invención, y a la materia orgánica originada en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía. Como una fuente de energía renovable, la biomasa puede ser utilizada directa o indirectamente, previa conversión en otro tipo de producto tal como biocombustible. En el caso particular de la presente invención, la biomasa microbiana es rica en triglicéridos. El término "biomasa microbiana rica en triglicéridos", tal y como se utiliza en la presente invención, se refiere a una biomasa microbiana con un contenido de triglicéridos de al menos el 20%, al menos el 30%, al menos el 40%, al menos el 50%, al menos el 60%, al menos el 70% o al menos el 80% de su peso total. En una primera etapa, el primer procedimiento de la invención comprende cultivar el microorganismo de la invención en un medio de cultivo que comprende al menos una fuente de carbono y al menos una fuente de nitrógeno, en condiciones adecuadas para el crecimiento de dicho microorganismo. El término "cultivar", tal y como se utiliza en la presente invención, se refiere al procedimiento de sembrar, mantener y hacer que se desarrollen microorganismos sobre medios de cultivo adecuados. The term "microbial biomass", as used in the present invention, refers to the biological material of living or recently living organisms, in particular of the microorganism of the invention, and to organic matter originated in a biological, spontaneous or provoked biological process. , usable as a source of energy. As a renewable energy source, biomass can be used directly or indirectly, after conversion into another type of product such as biofuel. In the particular case of the present invention, microbial biomass is rich in triglycerides. The term "triglyceride-rich microbial biomass", as used herein invention refers to a microbial biomass with a triglyceride content of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70% or at least 80% of its total weight. In a first stage, the first process of the invention comprises culturing the microorganism of the invention in a culture medium comprising at least one carbon source and at least one nitrogen source, under conditions suitable for the growth of said microorganism. The term "cultivate", as used in the present invention, refers to the process of planting, maintaining and causing microorganisms to develop on suitable culture media.
El término "medio de cultivo", tal y como se utiliza en la presente invención, se refiere a un medio líquido, semisólido o sólido que cuenta con los nutrientes necesarios para permitir, en condiciones favorables de pH, temperatura y oxigenación, el crecimiento de microorganismos. En una forma de realización particular, el medio de cultivo es un medio líquido. Medios de cultivo adecuados para cultivar microorganismos son ampliamente conocidos en la materia, como por ejemplo Maniatis et al. (1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, NY) y Madigan & Martinko (2005, Brock Biology of Microorganisms, 11th ed.). Entre otros nutrientes, el medio de cultivo comprende una fuente de carbono y una fuente de nitrógeno. Ejemplos no limitativos de medios de cultivo adecuados para llevar a cabo el primer procedimiento de la invención incluyen medio TSA, medio M9, medio MEM, medio LB, medio TSB. The term "culture medium", as used in the present invention, refers to a liquid, semi-solid or solid medium that has the necessary nutrients to allow, under favorable conditions of pH, temperature and oxygenation, the growth of microorganisms In a particular embodiment, the culture medium is a liquid medium. Culture media suitable for growing microorganisms are widely known in the art, such as Maniatis et al. (1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, NY) and Madigan & Martinko (2005, Brock Biology of Microorganisms, 11 th ed.). Among other nutrients, the culture medium comprises a carbon source and a nitrogen source. Non-limiting examples of culture media suitable for carrying out the first process of the invention include TSA medium, M9 medium, MEM medium, LB medium, TSB medium.
En otra realización particular, la fuente de carbono se selecciona del grupo que consiste en glucosa, glicerol, glicerina, melazas, xilosa, arabinosa, mañosa, fructosa, acetato, almidones y combinaciones de las mismas. En una realización preferida, la fuente de carbono es glucosa. In another particular embodiment, the carbon source is selected from the group consisting of glucose, glycerol, glycerin, molasses, xylose, arabinose, mannose, fructose, acetate, starches and combinations thereof. In a preferred embodiment, the carbon source is glucose.
En otra realización particular, la fuente de la fuente de nitrógeno se selecciona del grupo que consiste en extracto de levadura, peptona, líquido macerado de maíz, urea, glutamato sódico, diferentes fuentes de nitrógeno inorgánico, como sales de amonio y combinaciones de las mismas. En una realización preferida, la fuente de nitrógeno es una sal de amonio, preferiblemente cloruro de amonio. In another particular embodiment, the source of the nitrogen source is selected from the group consisting of yeast extract, peptone, macerated liquid of corn, urea, sodium glutamate, different sources of inorganic nitrogen, such as ammonium salts and combinations thereof. In a preferred embodiment, the nitrogen source is an ammonium salt, preferably ammonium chloride.
En una forma preferida de realización, el medio de cultivo que se usa para obtener la biomasa microbiana de acuerdo a la presentre invención es hidrolizado de biomasa. In a preferred embodiment, the culture medium that is used to obtain the microbial biomass according to the present invention is biomass hydrolyzate.
El término "hidrolizado de biomasa", según se usa en la presente invención, se refiere a cualquier producto de sacarificación, que contiene los azúcares producidos en el proceso de sacarificación, los restos de biomasa no hidrolizada y las enzimas empleadas para la hidrólisis de dicha biomasa. The term "biomass hydrolyzate", as used in the present invention, refers to any saccharification product, which contains the sugars produced in the saccharification process, the remains of non-hydrolyzed biomass and the enzymes used for the hydrolysis of said biomass
El término "sacarificación" o "hidrólisis de la biomasa", según se usa en la presente invención, se refiere a la producción de azúcares fermentables a partir de polisacáridos. The term "saccharification" or "biomass hydrolysis", as used in the present invention, refers to the production of fermentable sugars from polysaccharides.
El término "azúcar fermentable", tal y como se utiliza en la presente invención, se refiere a los oligosacáridos y monosacáridos que pueden ser empleados como fuente de carbono por un microorganismo en el proceso de fermentación para la obtención de productos como etanol. The term "fermentable sugar", as used in the present invention, refers to oligosaccharides and monosaccharides that can be used as a carbon source by a microorganism in the fermentation process to obtain products such as ethanol.
Los términos "biomasa" y "sustrato de biomasa", tal y como se utilizan en la presente invención, hacen referencia a cualquier material apropiado para su uso en reacciones de sacarificación. Dichos términos incluyen pero no están limitados a materiales que comprenden celulosa (por ejemplo, biomasa celulósica, materia prima celulósica y sustrato celulósico), lignina o la combinación de celulosa y lignina. La biomasa puede derivar de plantas, animales o microorganismos y pude incluir, sin estar limitada, a residuos agrícolas, industriales y forestales, desechos agrícolas y municipales y cultivos terrestres y acuáticos con fines energéticos. Ejemplos de sustratos de biomasa incluyen pero no están limitados a madera, pasta de madera, pasta de papel, fibra de maíz, grano de maíz, mazorcas de maíz, residuos de cosechas como hojas de maíz, rastrojo de maíz, pastos, trigo, paja de trigo, cebada, paja de cebada, heno, arroz, paja de arroz, mijo, residuos de papel, papel, residuos de procesamiento de pulpa, leñosas o herbáceas, pulpa de fruta o verdura, productos de destilado del grano, hierbas, cáscaras de arroz, algodón, cáñamo, lino, sisal, bagazo de caña, sorgo, soja, mijo, componentes obtenidos de la molienda de granos, árboles, ramas, raíces, hojas, virutas de madera, aserrín, arbustos y matas, verduras, frutas y flores y cualquier combinación de los mismos. En algunas realizaciones, la biomasa comprende pero no está limitada a plantas cultivadas (por ejemplo, hierbas, incluyendo gramíneas C4, tales como pasto varilla, hierba espinal, hierba de centeno, Miscanthus, hierba cinta o combinaciones de las mismas), residuos de procesamiento del azúcar, por ejemplo pero sin limitarse a, bagazo [por ejemplo, bagazo de caña de azúcar, pulpa de remolacha (por ejemplo remolacha azucarera), o una combinación de las mismas], residuos agrícolas (por ejemplo rastrojo de soja, rastrojo de maíz, fibra de maíz, paja de arroz, azúcar de caña de paja, arroz, cáscaras de arroz, paja de cebada, mazorcas de maíz, paja de trigo, paja de cañóla, paja de avena, cáscaras de avena, fibra de maíz, cáñamo, lino, sisal, algodón o cualquier combinación de los mismos), pulpa de fruta, pulpa de vegetales, productos de destilado del grano, biomasa forestal (por ejemplo madera, pasta de madera, fibra, fibras de pasta de madera reciclada, serrín, madera dura, tal y como madera de álamo, madera blanda o una combinación de las mismas). The terms "biomass" and "biomass substrate", as used in the present invention, refer to any material suitable for use in saccharification reactions. Such terms include but are not limited to materials comprising cellulose (eg, cellulosic biomass, cellulosic feedstock and cellulosic substrate), lignin or the combination of cellulose and lignin. Biomass can be derived from plants, animals or microorganisms and may include, but is not limited to agricultural, industrial and forestry wastes, agricultural and municipal wastes, and land and aquatic crops for energy purposes. Examples of biomass substrates include but are not limited to wood, wood pulp, paper pulp, corn fiber, corn grain, corn cobs, crop residues such as corn husks, corn stubble, grasses, wheat, straw of wheat, barley, barley straw, hay, rice, rice straw, millet, paper waste, paper, pulp, woody or herbaceous processing waste, fruit or vegetable pulp, grain distillate products, herbs, husks of rice, cotton, hemp, flax, sisal, bagasse, sorghum, soy, millet, components obtained from the grinding of grains, trees, branches, roots, leaves, wood shavings, sawdust, shrubs and bushes, vegetables, fruits and flowers and any combination thereof. In some embodiments, the biomass comprises but is not limited to cultivated plants (for example, herbs, including C4 grasses, such as rod grass, spinal grass, rye grass, Miscanthus, ribbon grass or combinations thereof), processing residues of sugar, for example but not limited to, bagasse [for example, sugarcane bagasse, beet pulp (for example, sugar beet), or a combination thereof], agricultural residues (for example, soy stubble, stubble corn, corn fiber, rice straw, straw cane sugar, rice, rice husks, barley straw, corn cobs, wheat straw, cane straw, oat straw, oat shells, corn fiber, hemp, flax, sisal, cotton or any combination thereof), fruit pulp, vegetable pulp, grain distillate products, forest biomass (e.g. wood, wood pulp, fiber, recycled wood pulp fibers, sawdust wood hard, such as poplar wood, softwood or a combination thereof).
En algunas formas de realización, la biomasa comprende material de desecho celulósico y/o residuos forestales incluyendo pero sin estar limitada a, papel y residuos de procesamiento de pasta de papel, residuos municipales de papel, papel de periódico, cartón y similares. En algunas realizaciones, la biomasa comprende una especie de fibra mientras que en otras realizaciones alternativas, la biomasa comprende una mezcla de fibras que se originan a partir de diferentes biomasas. En algunas realizaciones, la biomasa puede comprender también plantas transgénicas que expresan ligninasa y/o celulasas (ver por ejemplo, el documento US2008/0104724 A1). In some embodiments, the biomass comprises cellulosic waste material and / or forest residues including but not limited to paper and paper pulp processing waste, municipal paper waste, newspaper, cardboard and the like. In some embodiments, the biomass comprises a kind of fiber while in other alternative embodiments, the biomass comprises a mixture of fibers that originate from different biomass. In some embodiments, the biomass may also comprise transgenic plants that express ligninase and / or cellulases (see, for example, US2008 / 0104724 A1).
El término "biomasa" incluye cualquier material biológico vivo o muerto que contiene polisacáridos como sustratos incluyendo pero sin estar limitado a celulosa, almidón, otras formas de polímeros de carbohidratos de cadena larga y combinaciones de los mismos. Puede o no estar formado completamente a partir de glucosa o xilosa, y opcionalmente, puede contener otros monómeros de pentosas o hexosas. La xilosa es una aldopentosa que contiene cinco átomos de carbono y un grupo aldehido. Es el azúcar precursor de la hemicelulosa y es a menudo, el componente principal de la biomasa. En algunas realizaciones, el sustrato se pone en suspensión antes del pretratamiento. En algunas realizaciones, la consistencia de la suspensión es de entre aproximadamente 2% y aproximadamente 30% y más típicamente entre aproximadamente 4% y aproximadamente 15%. En algunas realizaciones la suspensión se lava o se trata con ácido antes del pretratamiento. En algunas formas de realización, la suspensión se deshidrata mediante cualquier método adecuado para reducir el consumo de agua y de productos químicos antes del pretratamiento. Ejemplos de dispositivos de deshidratación incluyen, pero no se limitan a prensas de tornillo a presión (véase por ejemplo, el documento WO 2010/02251 1), filtros presurizados y extrusoras. Un sustrato de biomasa está "pretratado" cuando ha sido sometido a procedimientos físicos y/o químicos para facilitar la sacarificación. En algunas realizaciones, el sustrato de biomasa es "pretratado" o "tratado" para aumentar la susceptibilidad de dicha biomasa a la hidrólisis de la celulosa mediante el empleo de métodos conocidos en el estado de la técnica (Cuervo et al., Biotecnología, 2008, 13:3), tales como métodos de pretratamiento físico-químicos (por ejemplo, tratamiento con amonio, pretratamiento con ácido diluido, pretratamiento con álcalis diluida, exposición a disolventes, explosión de vapor, molienda, extrusión), métodos de pretratamiento biológico (por ejemplo, la aplicación de microorganismos lignina-solubilizantes) y combinaciones de los mismos. The term "biomass" includes any living or dead biological material that contains polysaccharides as substrates including but not limited to cellulose, starch, other forms of long-chain carbohydrate polymers and combinations thereof. It may or may not be completely formed from glucose or xylose, and optionally, it may contain other pentose or hexose monomers. Xylose is an aldopentose that contains five carbon atoms and an aldehyde group. It is the precursor sugar of hemicellulose and is often the main component of biomass. In some embodiments, the substrate is suspended before pretreatment. In some embodiments, the consistency of the suspension is between about 2% and about 30% and more typically between about 4% and about 15%. In some embodiments, the suspension is washed or treated with acid before pretreatment. In some embodiments, the suspension is dehydrated by any suitable method to reduce the consumption of water and chemicals before pretreatment. Examples of dehydration devices include, but are not limited to pressurized screw presses (see, for example, WO 2010/02251 1), pressurized filters and extruders. A biomass substrate is "pretreated" when it has undergone physical and / or chemical procedures to facilitate saccharification. In some embodiments, the biomass substrate is "pretreated" or "treated" to increase the susceptibility of said biomass to cellulose hydrolysis by using methods known in the state of the art (Cuervo et al., Biotechnology, 2008 , 13: 3), such as physical-chemical pretreatment methods (for example, ammonium treatment, dilute acid pretreatment, dilute alkali pretreatment, solvent exposure, steam explosion, grinding, extrusion), biological pretreatment methods ( for example, the application of lignin-solubilizing microorganisms) and combinations thereof.
La molienda consiste en un proceso de trituración de la materia vegetal hasta su reducción a partículas de diferentes tamaños que pueden ser separadas por procedimientos mecánicos. La extrusión es un procedimiento mediante el cual el material vegetal es forzado a fluir bajo una o más de una variedad de condiciones de mezclado, calentamiento y cizallamiento, a través de una boquilla diseñada para dar forma o expandir los ingredientes. Puede realizarse en frío donde el material se extruye sin expansión o en caliente o en caliente, donde las macromoléculas de los componentes pierden su estructura nativa discontinua y se forma una masa continua y viscosa que dextriniza y gelatiniza el almidón, se desnaturalizan las proteínas, se inactivan las enzimas responsables de posibles deterioros, se destruyen algunos compuestos no nutricionales y se destruye al carga microbiana. La hidrólisis ácida consiste en tratar el material vegetal con ácidos como ácido sulfúrico o ácido clorhídrico empleando altas temperaturas. Mediante este proceso se favorece la hidrólisis de la celulosa pero requiere una neutralización del pH al finalizar la hidrólisis para permitir el crecimiento posterior de microrganismos. Grinding consists of a process of crushing plant matter until it is reduced to particles of different sizes that can be separated by mechanical procedures. Extrusion is a process whereby plant material is forced to flow under one or more of a variety of mixing, heating and shearing conditions, through a nozzle designed to shape or expand the ingredients. It can be made cold where the material is extruded without expansion or hot or hot, where the macromolecules of the components lose their discontinuous native structure and a continuous and viscous mass is formed that dextrinizes and gelatinizes the starch, the proteins are denatured, the proteins are denatured inactivate the enzymes responsible for possible deterioration, some non-nutritional compounds are destroyed and the microbial load is destroyed. Acid hydrolysis consists in treating the plant material with acids such as sulfuric acid or hydrochloric acid using high temperatures. Through this process, cellulose hydrolysis is favored but requires pH neutralization at the end of hydrolysis to allow subsequent growth of microorganisms.
El tratamiento con álcalis consiste en la adición de bases diluidas a la biomasa vegetal. La eficiencia de este procedimiento depende del contenido de lignina de los materiales. El hidróxido de sodio diluido produce un hinchamiento, permitiendo un incremento en el área de superficie interna reduciendo el grado de polimerización y cristalinidad de la celulosa, causando la separación de las uniones estructurales entre la lignina y los carbohidratos. The alkali treatment consists of the addition of diluted bases to the plant biomass. The efficiency of this procedure depends on the lignin content of the materials. Diluted sodium hydroxide produces a swelling, allowing an increase in the internal surface area reducing the degree of polymerization and crystallinity of the cellulose, causing the separation of the structural junctions between lignin and carbohydrates.
El tratamiento con disolventes orgánicos consiste en utilizar solventes como el metanol, etanol o acetona para la ruptura de los enlaces de la lignina y la celulosa. La remoción de los solventes del sistema es necesaria, ya que inhiben el crecimiento de los organismos. The treatment with organic solvents consists of using solvents such as methanol, ethanol or acetone to break the bonds of lignin and cellulose. The removal of solvents from the system is necessary, since they inhibit the growth of organisms.
El tratamiento con líquidos iónicos (por ejemplo, con una disolución de cloruro sódico) favorece la degradación de la celulosa debido a que los átomos de hidrógeno y oxígeno que forman parte de la misma interactúan por separado con el solvente de manera que se produce la ruptura de los enlaces puentes de hidrógeno entre las cadenas de celulosa. Treatment with ionic liquids (for example, with a solution of sodium chloride) favors the degradation of cellulose because the hydrogen and oxygen atoms that are part of it interact separately with the solvent so that rupture occurs of hydrogen bonding links between cellulose chains.
El tratamiento con explosión de vapor consiste en tratar la biomasa con vapor saturado a una temperatura de 160-260°C (0,69-4,83 MPa) durante un cierto tiempo que dependerá del tipo de material vegetal de origen. The steam explosion treatment consists of treating the biomass with saturated steam at a temperature of 160-260 ° C (0.69-4.83 MPa) for a certain time that will depend on the type of plant material of origin.
El tratamiento con microorganismos lignina-solubilizantes consiste en tratar a la biomasa con microorganismos que producen enzimas con capacidad de degradar el material lignocelulósico como por ejemplo, Trichoderma reesei, Fusarium oxysporium, Piptopus betulinus, Penicillum echinalatum, Penicillum purpurogenum, Aspergillus niger, Aspergillus fumigatus, Anaeromyces sp., Caecomices sp., Cyllamcyces sp., Neocallimastix sp., Orpinomyces sp., Piromyces sp., Sporotrichum thermophile, Scytalidium thermophillu, Thermonospora cubata, Rhodosporillum rubrum, Cellulomonas fimi, Clostridium stercocarium, Bacillus polymyxa, Pyrococcus furiosus, Acidothermus cellulotycus, Saccharophagus degradans, etc. Treatment with lignin-solubilizing microorganisms consists in treating biomass with microorganisms that produce enzymes capable of degrading lignocellulosic material such as, for example, Trichoderma reesei, Fusarium oxysporium, Piptopus betulinus, Penicillum echinalatum, Penicillum purpurogenum, Aspergillus fus, Aspergillus nius Anaeromyces sp., Caecomices sp., Cyllamcyces sp., Neocallimastix sp., Orpinomyces sp., Piromyces sp., Sporotrichum thermophile, Scytalidium thermophillu, Thermonospora cubata, Rhodosporillum rubrum, Cellulomonas fimi, Clostridium stercocarium, Bacillus polymyxa, Pyrococcus furiosus, Acidothermus cellulotycus, Saccharophagus degradans, etc.
El término "material lignocelulósico", tal y como se utiliza en la presente invención, se refiere a una composición que comprende tanto la lignina y celulosa. En algunas realizaciones, el material lignocelulósico también puede comprender almidón. "Lignina" es un material polifenólico. Las ligninas pueden ser altamente ramificadas y puede estar también reticuladas. Las ligninas pueden tener una variación significativa estructural que depende, al menos en parte, en la fuente de la planta en cuestión. Los materiales lignocelulósicos incluyen una variedad de plantas y materiales vegetales, tales como, sin limitación, los lodos de fabricación de papel, la madera, y materiales relacionados con la madera, por ejemplo, polvo de sierra, o tableros de partículas, hojas o árboles como los álamos, las hierbas, como el mijo enteros; sembrar maíz, sorgo, pasto Sudán, recortes de césped, cáscara de arroz, bagazo (por ejemplo, la caña de azúcar bagazo), yute, cáñamo, lino, bambú, sisal, abacá, heno, paja, mazorcas de maíz, maíz y rastrojo de sorgo, y el pelo de coco. The term "lignocellulosic material", as used in the present invention, refers to a composition comprising both lignin and cellulose. In some embodiments, the lignocellulosic material may also comprise starch. "Lignin" is a polyphenolic material. Lignins can be highly branched and can also be crosslinked. Lignins can have a significant structural variation that depends, at least in part, on the source of the plant in question. Lignocellulosic materials include a variety of plants and plant materials, such as, without limitation, papermaking sludge, wood, and wood-related materials, for example, saw dust, or particle boards, leaves or trees like poplars, herbs, like millet whole; sow corn, sorghum, Sudan grass, grass clippings, rice husk, bagasse (for example, bagasse sugar cane), jute, hemp, flax, bamboo, sisal, abaca, hay, straw, corn cobs, corn and stubble of sorghum, and coconut hair.
Es necesario someter al cultivo de microorganismos a un estrés metabólico para que produzcan y acumulen intracelularmente grandes cantidades de lípidos. El estrés metabólico se puede inducir por un exceso de fuente de carbono en relación con la fuente de nitrógeno en el medio de cultivo. La acumulación de triglicéridos se produce cuando una fuente de carbono se encuentra en exceso y la fuente de nitrógeno limita el crecimiento. Bajo estas condiciones de crecimiento, las células utilizan la fuente de carbono para la síntesis de lípidos neutros. It is necessary to subject the culture of microorganisms to metabolic stress so that they produce and accumulate large amounts of lipids intracellularly. Metabolic stress can be induced by an excess of carbon source in relation to the source of nitrogen in the culture medium. Triglyceride accumulation occurs when a carbon source is in excess and the nitrogen source limits growth. Under these growth conditions, cells use the carbon source for the synthesis of neutral lipids.
Así, el procedimiento para obtener una biomasa microbiana rica en triglicéridos emplea un medio de cultivo en donde la proporción C:N es elevada. El término "elevada", tal y como se utiliza en la presente invención, se refiere a una proporción de C:N donde hay un exceso de C con respecto a N. En una realización particular, la proporción de C:N es de al menos 10: 1 (peso/peso), al menos 15: 1 (peso/peso), al menos 20: 1 (peso/peso), al menos 30: 1 (peso/peso), al menos 40: 1 (peso/peso), al menos 50: 1 (peso/peso), al menos 60:1 (peso/peso), al menos 70: 1 (peso/peso), al menos 80: 1 (peso/peso), al menos 90: 1 (peso/peso), o al menos 100: 1 (peso/peso). Los métodos para el cultivo de microorganismos son estándares en la técnica y son ampliamente conocidos por el experto en la materia. El cultivo puede llevarse a cabo en matraces o biorreactores hasta alcanzar un contenido en triglicéridos elevado, típicamente igual o superior al 20% en peso seco. La duración del cultivo es variable, aunque típicamente el cultivo se realiza durante de 2 a 5 días. Thus, the process for obtaining a microbial biomass rich in triglycerides employs a culture medium where the C: N ratio is high. The term "high", as used in the present invention, refers to a ratio of C: N where there is an excess of C with respect to N. In a particular embodiment, the ratio of C: N is at minus 10: 1 (weight / weight), at least 15: 1 (weight / weight), at least 20: 1 (weight / weight), at least 30: 1 (weight / weight), at least 40: 1 (weight / weight), at least 50: 1 (weight / weight), at least 60: 1 (weight / weight), at least 70: 1 (weight / weight), at least 80: 1 (weight / weight), at least 90: 1 (weight / weight), or at least 100: 1 (weight / weight). Methods for the cultivation of microorganisms are standard in the art and are widely known to those skilled in the art. The culture can be carried out in flasks or bioreactors until a high triglyceride content is reached, typically equal to or greater than 20% by dry weight. The duration of the crop is variable, although typically the culture is carried out for 2 to 5 days.
El término "condiciones adecuadas para el crecimiento del microorganismo de la invención", tal y como se utiliza en la presente invención, se refiere a condiciones que soportan el crecimiento del microorganismo de la invención. Tales condiciones pueden incluir pH, nutrientes, temperatura, humedad, oxigenación, ambiente y otros factores. The term "conditions suitable for the growth of the microorganism of the invention", as used in the present invention, refers to conditions that support the growth of the microorganism of the invention. Such conditions may include pH, nutrients, temperature, humidity, oxygenation, environment and other factors.
En una realización particular, las condiciones adecuadas para el crecimiento de dicho microorganismo de la etapa i) comprenden In a particular embodiment, the conditions suitable for the growth of said microorganism of step i) comprise
- una temperatura en un rango entre 18 °C y 37 °C, preferentemente entre 23 °C y 32 °C, más preferentemente entre 28 °C y 30°C;  - a temperature in a range between 18 ° C and 37 ° C, preferably between 23 ° C and 32 ° C, more preferably between 28 ° C and 30 ° C;
- una concentración de oxígeno disuelto de al menos el 20%, y/o  - a dissolved oxygen concentration of at least 20%, and / or
- agitación constante.  - constant agitation.
Una vez alcanzada la máxima cantidad intracelular de triglicéridos, en una segunda etapa, el primer procedimiento de la invención comprende separar la biomasa microbiana del medio de cultivo. Las células se recogen mediante alguno de los procedimientos habitualmente utilizados para este fin. En una realización particular, la segunda etapa del primer procedimiento de la invención se realiza mediante un método seleccionado del grupo que consiste en filtración, microfiltración, centrifugación, presión, decantamiento y combinaciones de los mismos. Once the maximum intracellular amount of triglycerides has been reached, in a second stage, the first process of the invention comprises separating the microbial biomass from the culture medium. The cells are collected by any of the procedures commonly used for this purpose. In a particular embodiment, the second stage of the first process of the invention is carried out by a method selected from the group consisting of filtration, microfiltration, centrifugation, pressure, settling and combinations thereof.
En una realización particular, el procedimiento de la invención comprende además secar la biomasa microbiana obtenida en la segunda etapa. En una realización preferida, dicha etapa adicional de secado se realiza a una temperatura entre 50 °C y 70 °C. En una realización más preferida, dicha etapa adicional de secado se realiza a una temperatura de 60 °C. In a particular embodiment, the process of the invention further comprises drying the microbial biomass obtained in the second stage. In a preferred embodiment, said additional drying step is performed at a temperature between 50 ° C and 70 ° C. In a more preferred embodiment, said additional drying step is performed at a temperature of 60 ° C.
Biomasa microbiana En otro aspecto, la presente invención también se refiere a la biomasa microbiana rica en triglicéridos obtenible según el primer procedimiento de la invención, en adelante "biomasa microbiana de la invención". El término "biomasa microbiana" se ha descrito con anterioridad y es de aplicación en el presente aspecto. Microbial biomass In another aspect, the present invention also relates to triglyceride-rich microbial biomass obtainable according to the first process of the invention, hereinafter referred to as "microbial biomass of the invention". The term "microbial biomass" has been described previously and is applicable in the present aspect.
La biomasa microbiana generada de acuerdo al primer método de la invención comprende no solo los microorganismos sino también todos aquellos componentes del cultivo generados por los microorganismos o que se han incorporado a los microorganismos a partir del cultivo durante su crecimiento y proliferación, tales como ácidos nucleicos, proteínas, polisacáridos o lípidos. La biomasa microbiana de acuerdo a la invención comprende microorganismos de la cepa Pseudomonas brassicacearum CECT 8162 o una cepa muíante de la misma que mantiene la capacidad de acumular lípidos hasta al menos un 20% del peso seco. En una realización particular, la biomasa rica en triglicéridos tiene un contenido en triglicéridos al menos el 50% del peso seco, al menos el 60% del peso seco, al menos el 70% del peso seco, o al menos el 80% del peso seco. The microbial biomass generated according to the first method of the invention comprises not only the microorganisms but also all those components of the culture generated by the microorganisms or that have been incorporated into the microorganisms from the culture during their growth and proliferation, such as nucleic acids , proteins, polysaccharides or lipids. The microbial biomass according to the invention comprises microorganisms of the strain Pseudomonas brassicacearum CECT 8162 or a mutant strain thereof that maintains the ability to accumulate lipids up to at least 20% of the dry weight. In a particular embodiment, the triglyceride-rich biomass has a triglyceride content of at least 50% of the dry weight, at least 60% of the dry weight, at least 70% of the dry weight, or at least 80% of the weight dry.
En otra realización particular, la biomasa rica en triglicéridos contiene una cantidad del microorganismo de la invención de al menos el 70%, al menos el 75%, al menos el 80%, al menos el 85%, al menos el 90%, al menos el 95% o superior respecto al resto de microorganismos presentes en el cultivo. In another particular embodiment, the triglyceride-rich biomass contains an amount of the microorganism of the invention of at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at less than 95% or more compared to the rest of microorganisms present in the culture.
Procedimiento para extraer los lípidos de la biomasa microbiana En otro aspecto, la presente invención se relaciona con un procedimiento para extraer los lípidos de la biomasa microbiana de la invención, en adelante "segundo procedimiento de la invención", que comprende un método de extracción mecánica o un método de extracción sólido-líquido. El término "biomasa microbiana" se ha descrito en detalle en el contexto del primer procedimiento de la invención, y su definición y sus detalles se aplican igualmente al segundo procedimiento de la invención Los métodos para extraer y determinar la cantidad de lípidos empleados en relación con el microorganismo de la invención se pueden aplicar igualmente en relación con el segundo método de la invención. Los microorganismos que acumulan lípidos y que forman parte de la biomasa microbiana de acuerdo la presente invención se puede lisar para producir un lisado, que se usa como material de partida para la extracción de lípidos. La etapa de lisis se puede llevar a cabo usando cualquier método conocido para un experto, como por ejemplo, lisis por calor, lisis en medio básico, lisis en medio ácido, lisis enzimática usando enzimas tales como proteasas o enzimas que degradan polisacáridos (amilasas), lisis mediante ultrasonidos, lisis mecánica, lisis mediante choque osmótico, Estos métodos se pueden llevar a cabo de forma individual o combinada y, en caso de uso combinado, se pueden llevar a cabo de forma simultanea o secuencial. El grado de rotura celular se puede determinar mediante análisis microscópico. Method for extracting lipids from microbial biomass In another aspect, the present invention relates to a method for extracting lipids from microbial biomass of the invention, hereafter referred to as "second process of the invention", which comprises a method of mechanical extraction or a solid-liquid extraction method. The term "microbial biomass" has been described in detail in the context of the first process of the invention, and its definition and details also apply to the second process of the invention. The methods for extracting and determining the amount of lipids used in relation to the microorganism of the invention can also be applied in relation to the second method of the invention. The microorganisms that accumulate lipids and that are part of the microbial biomass according to the present invention can be lysed to produce a lysate, which is used as a starting material for lipid extraction. The lysis step can be carried out using any method known to an expert, such as heat lysis, basic medium lysis, acid medium lysis, enzymatic lysis using enzymes such as proteases or enzymes that degrade polysaccharides (amylases) , ultrasonic lysis, mechanical lysis, osmotic shock lysis, These methods can be carried out individually or in combination and, in case of combined use, they can be carried out simultaneously or sequentially. The degree of cell breakage can be determined by microscopic analysis.
De esta manera, en una realización particular, el método de extracción mecánica comprende el uso de prensa de tornillo, prensa francesa o molino de bolas. Thus, in a particular embodiment, the mechanical extraction method comprises the use of screw press, French press or ball mill.
Preferiblemente, la etapa de lisis requiere de la rotura de al menos en torno a un 70% de las células, al menos en torno a un 80% de las células, al menos en torno a un 90% de las células o, preferiblemente, al menos en torno a un 100% de las células. Preferably, the lysis step requires the breakage of at least about 70% of the cells, at least about 80% of the cells, at least about 90% of the cells or, preferably, at least about 100% of the cells.
Métodos adecuados para separar lípidos de los lisados celulares incluyen cualquier método de extracción mecánico químico y, dentro de estos, cualquier método de extracción sólido-líquido. Métodos adecuados incluyen, la extracción en presencia de solventes orgánicos, que permite la expresión de lípidos y derivados lipidíeos tales como aldehidos y alcoholes de ácidos grados (Frenz et al. 1989, Enzyme Microb. Technol., 1 1 :717), licuefacción (Sawayama et al. 1999, Biomass and Bioenergy 17:33- 39 and Inoue et al. 1993, Biomass Bioenergy 6(4):269-274); licuefacción en aceite (Minowa et al. 1995, Fuel 74(12):1735-1738), extracción con C02 supercrítico. Suitable methods for separating lipids from cell lysates include any chemical mechanical extraction method and, within these, any solid-liquid extraction method. Suitable methods include, extraction in the presence of organic solvents, which allows the expression of lipids and lipid derivatives such as aldehydes and alcohols of acid grades (Frenz et al. 1989, Enzyme Microb. Technol., 1 1: 717), liquefaction ( Sawayama et al. 1999, Biomass and Bioenergy 17: 33-39 and Inoue et al. 1993, Biomass Bioenergy 6 (4): 269-274); liquefaction in oil (Minowa et al. 1995, Fuel 74 (12): 1735-1738), extraction with supercritical C0 2 .
Por otra parte, la extracción de los lípidos de la biomasa microbiana también se puede llevar a cabo aprovechando diferencias de solubilidad de los mismos en un determinado disolvente. En el caso favorable de una mezcla de sólidos en la cual uno de los compuestos es soluble en un determinado disolvente (normalmente un disolvente orgánico), mientras que los otros son insolubles, se puede realizar una extracción consistente en añadir este disolvente a la mezcla contenida en un vaso de precipitados, un matraz o una cápsula de porcelana, en frío o en caliente, agitar o triturar con ayuda de una varilla de vidrio y separar por filtración la disolución que contiene el producto extraído y la fracción insoluble. La extracción sólido-líquido suele ser mucho más eficiente cuando se hace de manera continua con el disolvente de extracción caliente en un sistema cerrado, utilizando una metodología similar a la explicada anteriormente, basada en la maceracion con disolvente orgánico de la mezcla sólida a extraer, previa al vaporizado en un matraz y condensado en un refrigerante. El paso del disolvente orgánico con parte del producto extraído al matraz inicial, permite que el mismo disolvente orgánico vuelva a ser vaporizado, repitiendo un nuevo ciclo de extracción, mientras que el producto extraído, no volátil, se concentra en el matraz. Así, en otra realización particular, el método de extracción sólido-líquido se realiza usando un disolvente orgánico inmiscible en agua. El término "disolvente orgánico", tal y como se utiliza en la presente invención, se refiere a una sustancia que disuelve un soluto cuyas moléculas contienen átomos de carbono. El término "disolvente orgánico inmiscible en agua", tal y como se utiliza en la presente invención, se refiere a un disolvente orgánico con poca o ninguna capacidad para mezclarse con el agua. Ejemplos no limitativos de disolventes orgánicos inmiscibles en agua incluyen n- hexano, acetona, éter de petróleo y éter-etílico. Así, en una realización preferida, dicho disolvente orgánico inmiscible en agua se selecciona del grupo que consiste en n- hexano, acetona, éter de petróleo, éter-etílico y combinaciones de los mismos. En una realización aún más preferida, dicho disolvente orgánico inmiscible en agua es n- hexano. On the other hand, the extraction of lipids from microbial biomass can also be carried out taking advantage of differences in their solubility in a given solvent. In the favorable case of a mixture of solids in which one of the compounds is soluble in a certain solvent (usually a organic solvent), while the others are insoluble, an extraction can be performed consisting of adding this solvent to the mixture contained in a beaker, a flask or a porcelain capsule, cold or hot, stir or crush with help from a glass rod and filter off the solution containing the extracted product and the insoluble fraction. The solid-liquid extraction is usually much more efficient when done continuously with the hot extraction solvent in a closed system, using a methodology similar to that explained above, based on the organic solvent maceration of the solid mixture to be extracted, prior to vaporizing in a flask and condensed in a refrigerant. The passage of the organic solvent with part of the product extracted to the initial flask, allows the same organic solvent to be vaporized again, repeating a new extraction cycle, while the extracted, non-volatile product is concentrated in the flask. Thus, in another particular embodiment, the solid-liquid extraction method is performed using a water immiscible organic solvent. The term "organic solvent", as used in the present invention, refers to a substance that dissolves a solute whose molecules contain carbon atoms. The term "water immiscible organic solvent", as used in the present invention, refers to an organic solvent with little or no ability to mix with water. Non-limiting examples of water-immiscible organic solvents include n-hexane, acetone, petroleum ether and ethyl ether. Thus, in a preferred embodiment, said water immiscible organic solvent is selected from the group consisting of n-hexane, acetone, petroleum ether, ethyl ether and combinations thereof. In an even more preferred embodiment, said water immiscible organic solvent is n-hexane.
La extracción sólido-líquido suele ser mucho más eficiente cuando se hace de manera continua con el disolvente de extracción caliente en un sistema cerrado, utilizando una metodología similar a la comentada para la extracción líquido-líquido continua, basada en la maceracion con disolvente orgánico, previamente vaporizado en un matraz y condensado en un refrigerante, de la mezcla sólida a extraer contenida dentro de un cartucho o bolsa de celulosa que se coloca en la cámara de extracción. El paso del disolvente orgánico con parte del producto extraído al matraz inicial, permite que el mismo disolvente orgánico vuelva a ser vaporizado, repitiendo un nuevo ciclo de extracción, mientras que el producto extraído, no volátil, se va concentrando en el matraz. The solid-liquid extraction is usually much more efficient when done continuously with the hot extraction solvent in a closed system, using a methodology similar to that discussed for continuous liquid-liquid extraction, based on organic solvent maceration, previously vaporized in a flask and condensed in a refrigerant, of the solid mixture to be extracted contained within a cellulose cartridge or bag that is placed in the extraction chamber. The passage of the organic solvent with part of the product extracted to the initial flask allows the same organic solvent to be vaporized again, repeating a new cycle of extraction, while the extracted product, not volatile, is concentrated in the flask.
La fracción lipídica extraída del biomaterial de acuerdo a la invención puede contener al menos un 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9% o sustancialmente 100% (en peso) de ácidos grasos y glicéridos, incluyendo monoglicéridos, diglicéridos y triglicéridos. Métodos para determinar el porcentaje en peso de los distintos componentes (ácidos grados y glicéridos) son conocidos del estado de la técnica e incluyen, sin limitación, cromatografía de gases o electroforesis. The lipid fraction extracted from the biomaterial according to the invention may contain at least 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8 %, 99.9% or substantially 100% (by weight) of fatty acids and glycerides, including monoglycerides, diglycerides and triglycerides. Methods for determining the percentage by weight of the various components (acid grades and glycerides) are known from the state of the art and include, without limitation, gas chromatography or electrophoresis.
Procedimiento para obtener productos de interés industrial a partir de la biomasa rica en lípidos de acuerdo a la invención Procedure for obtaining products of industrial interest from lipid rich biomass according to the invention
Los lípidos obtenidos a partir de la biomasa microbiana de acuerdo a la presente invención pueden ser procesados químicamente para dar lugar a productos de interés en la industria. Ejemplos de métodos de modificación química que pueden ser aplicados a los lípidos de acuerdo a la invención incluyen hidrólisis de los lípidos, hidroprocesamiento de los lípidos y esterificación de los lípidos. Otras modificaciones químicas incluyen, sin limitación, epoxidación, oxidación, hidrólisis, sulfatación, sulfonación, etoxilación, propoxilación, amidación y saponificación. La modificación de los lípidos de acuerdo a la presente invención permite generar productos que pueden ser modificados adicionalmente para dar lugar a compuestos de interés, tales como jabones, ácidos grasos, ésteres de ácidos grasos, alcoholes grasos, compuestos de nitrógeno grasos, ésteres metílicos de ácidos grasos y glicerol. Ejemplos de productos oleoquímicos derivados incluyen, pero no se limitan a, nitrilos grasos, ésteres, ácidos dímeros, compuestos cuaternarios, tensioactivos, alcanolamidas grasos, sulfatos de alcoholes grasos, resinas, emulsionantes, alcoholes grasos, olefinas, lodos de perforación, polioles, poliuretanos, poliacrilatos, goma, velas, cosméticos, jabones, jabones metálicos, ésteres de metilo alfa-sulfonados, sulfatos de alcoholes grasos, etoxilatos de alcoholes grasos, sulfatos de éteres de alcoholes grasos, imidazolinas, agentes tensioactivos, detergentes, ésteres, compuestos cuaternarios, productos de ozonolisis, aminas grasas, alcanolamidas grasos, sulfatos de etoxi, monoglicéridos, diglicéridos, triglicéridos (incluyendo triglicéridos de cadena media), lubricantes, fluidos hidráulicos, grasas, fluidos dieléctricos, agentes de liberación del molde, fluidos para trabajo de metales, fluidos de transferencia de calor, otros fluidos funcionales, productos químicos industriales (por ejemplo, productos de limpieza, auxiliares de tratamiento de los textiles, plastificantes, estabilizantes, aditivos), superficie revestimientos, pinturas y lacas, aislamiento del cableado eléctrico, y alcanos superiores. The lipids obtained from the microbial biomass according to the present invention can be chemically processed to produce products of interest in the industry. Examples of chemical modification methods that can be applied to lipids according to the invention include lipid hydrolysis, lipid hydroprocessing and lipid esterification. Other chemical modifications include, without limitation, epoxidation, oxidation, hydrolysis, sulphation, sulfonation, ethoxylation, propoxylation, amidation and saponification. The modification of the lipids according to the present invention allows to generate products that can be further modified to give rise to compounds of interest, such as soaps, fatty acids, fatty acid esters, fatty alcohols, fatty nitrogen compounds, methyl esters of fatty acids and glycerol. Examples of oleochemical derivatives include, but are not limited to, fatty nitriles, esters, dimer acids, quaternary compounds, surfactants, fatty alkanolamides, fatty alcohol sulfates, resins, emulsifiers, fatty alcohols, olefins, drilling muds, polyols, polyurethanes , polyacrylates, rubber, candles, cosmetics, soaps, metal soaps, alpha-sulphonated methyl esters, fatty alcohol sulfates, fatty alcohol ethoxylates, fatty alcohol ether sulfates, imidazolines, surfactants, detergents, esters, quaternary compounds, Ozonolysis products, fatty amines, fatty alkanolamides, ethoxy sulfates, monoglycerides, diglycerides, triglycerides (including medium chain triglycerides), lubricants, hydraulic fluids, fats, dielectric fluids, mold release agents, metalworking fluids, fluids Heat transfer, other functional fluids, industrial chemicals (for example, cleaning products, textile processing aids, plasticizers, stabilizers, additives), surface coatings, paints and lacquers, electrical wiring insulation, and higher alkanes.
Procedimiento para obtener parafinas a partir de lípidos Procedure to obtain paraffins from lipids
En otro aspecto, la presente invención se relaciona con un procedimiento para obtener parafinas, en adelante "tercer procedimiento de la invención", que comprende las etapas de: In another aspect, the present invention relates to a process for obtaining paraffins, hereinafter "third process of the invention", which comprises the steps of:
i) refinar los lípidos obtenidos en el segundo procedimiento de la invención y  i) refine the lipids obtained in the second process of the invention and
ii) convertir la mezcla de lípidos refinados obtenidos en la etapa i) en parafinas.  ii) convert the refined lipid mixture obtained in step i) into paraffins.
o las etapas de or the stages of
i) obtener una preparación enriquecida en lípidos a partir de una biomasa microbiana de acuerdo a la invención,  i) obtain a lipid-enriched preparation from a microbial biomass according to the invention,
ii) refinar los lípidos obtendos en la etapa ii) y  ii) refine the lipids obtained in stage ii) and
iii) convertir la mezcla de lípidos refinados obtenidos en la etapa ii) en parafinas.  iii) convert the refined lipid mixture obtained in step ii) into paraffins.
El término "parafina", tal y como se utiliza en la presente invención, se refiere a un grupo de hidrocarburos alcanos de fórmula general CnH2n+2, donde n es el número de átomos de carbono. La molécula simple de la parafina proviene del metano, CH4, un gas a temperatura ambiente; en cambio, los miembros más pesados de la serie, como el octano C8H18, se presentan como líquidos. Las formas sólidas de parafina, llamadas cera de parafina, provienen de las moléculas más pesadas C20 a C40. Ejemplos no limitativos de parafinas incluyen queroseno, diésel, biofuel o biocombustible, cera de parafina, nuyol, aceite de adepsina, albolin, glimol, parafina medicinal, saxol y aceite mineral de USP. The term "paraffin", as used in the present invention, refers to a group of alkane hydrocarbons of the general formula CnH2n + 2, where n is the number of carbon atoms. The simple paraffin molecule comes from methane, CH 4 , a gas at room temperature; instead, the heaviest members of the series, such as octane C8H18, are presented as liquids. The solid forms of paraffin, called paraffin wax, come from the heaviest molecules C20 to C40. Non-limiting examples of paraffins include kerosene, diesel, biofuel or biofuel, paraffin wax, nuyol, adepsin oil, albolin, glimol, medicinal paraffin, saxol and USP mineral oil.
El término " biofuel" o "biocombustible", tal y como se utiliza en la presente invención, se refiere a un combustible que se deriva de la biomasa, tal como residuos animales, de plantas o microbianos. Los biocombustibles incluyen, pero no se limitan a, biodiesel, diésel renovable bioqueroseno, biohidrógeno, biogás, biomasa derivada de dimetilfurano (DMF), y similares. El término "biocombustibles" también se utiliza para referirse a mezclas de combustible que comprenden derivados de la biomasa combustibles, tales como mezclas de alcohol / gasolina (es decir, gasohols). En una realización particular del tercer método de la invención, La parafina es un diésel renovable. The term "biofuel" or "biofuel", as used in the present invention, refers to a fuel that is derived from biomass, such as animal, plant or microbial waste. Biofuels include, but are not limited to, biodiesel, renewable biokerosene diesel, biohydrogen, biogas, biomass derived from dimethylfuran (DMF), and the like. The term "biofuels" is also used to refer to fuel mixtures comprising combustible biomass derivatives, such as alcohol / gasoline mixtures (ie, gasohols). In a particular embodiment of the third method of the invention, Paraffin is a renewable diesel.
En una primera etapa, el tercer procedimiento de la invención comprende retinar los lípidos obtenidos a partir del segundo procedimiento de la invención. In a first stage, the third process of the invention comprises retinating the lipids obtained from the second process of the invention.
El término "refinamiento" o "refino", tal y como se utiliza en la presente invención, se refiere al proceso de purificación de una sustancia química obtenida muchas veces a partir de un recurso natural. Numerosos métodos son conocidos en el estado de la técnica para la refinación de sustancias. Por ejemplo, la refinación de líquidos se logra a menudo a través de la destilación o fraccionamiento. Un gas se puede refinar también de esta manera enfriándolo o comprimiéndolo hasta su licuefacción. Los gases y líquidos también se pueden refinar por extracción con un solvente que disuelva la sustancia de interés o bien las impurezas. Así, en una realización particular, los lípidos obtenidos en el segundo procedimiento de la invención se refinan mediante al menos un lavado con NaOH a una concentración entre 5% y 15%. El proceso de refinación comprende al menos un lavado con NaOH, al menos dos lavados con NaOH, al menos tres lavados con NaOH, al menos cuatro lavados con NaOH, al menos cinco lavados con NaOH, al menos diez lavados con NaOH o más. En una realización preferida, la concentración de NaOH es de entre 8% y 12%. En una realización más preferida, la concentración de NaOH es de 10%. The term "refinement" or "refining", as used in the present invention, refers to the process of purification of a chemical substance obtained many times from a natural resource. Numerous methods are known in the state of the art for the refining of substances. For example, liquid refining is often achieved through distillation or fractionation. A gas can also be refined in this way by cooling or compressing it until liquefaction. Gases and liquids can also be refined by extraction with a solvent that dissolves the substance of interest or impurities. Thus, in a particular embodiment, the lipids obtained in the second process of the invention are refined by at least one wash with NaOH at a concentration between 5% and 15%. The refining process comprises at least one wash with NaOH, at least two washings with NaOH, at least three washings with NaOH, at least four washings with NaOH, at least five washings with NaOH, at least ten washings with NaOH or more. In a preferred embodiment, the concentration of NaOH is between 8% and 12%. In a more preferred embodiment, the concentration of NaOH is 10%.
En una segunda etapa, el procedimiento de la invención comprende convertir la mezcla de lípidos refinados obtenidos en la etapa i) en parafinas. In a second stage, the process of the invention comprises converting the mixture of refined lipids obtained in step i) into paraffins.
En una realización particular, la etapa ii) del tercer método de la invención comprende un procedimiento seleccionado del grupo que consiste en hidrotratamiento o hidroprocesamiento El experto en la materia entenderá que existen en la técnica numerosos procedimientos para convertir lípidos en parafinas que incluyen, sin limitación, procedimientos de hidrotratamiento o hidroprocesamiento (EP1682466, EP1795576, EP1681337, EP1640437). In a particular embodiment, step ii) of the third method of the invention comprises a method selected from the group consisting of hydrotreatment or hydroprocessing. The skilled artisan will understand that there are numerous processes in the art for converting lipids into paraffins that include, without limitation, hydrotreatment or hydroprocessing procedures (EP1682466, EP1795576, EP1681337, EP1640437).
El término "hidrotratamiento" o "hidroprocesamiento", tal y como se utiliza en la presente invención, se refiere a reacciones de hidrogenación, habitualmente catalíticas, que son ampliamente usadas sobre fracciones de petróleo como nafta, keroseno y diesel, así como fracciones de lípidos, bajo presión y temperatura elevadas. En el caso particular de la presente invención, el hidroprocesamiento se efectúa sobre la mezcla de lípidos obtenida del segundo procedimiento de la invención. The term "hydrotreatment" or "hydroprocessing", as used in the present invention, refers to hydrogenation reactions, usually catalytic, which are widely used on petroleum fractions such as naphtha, kerosene and diesel, as well as lipid fractions. , under high pressure and temperature. In the particular case of the present invention, the hydroprocessing is carried out on the lipid mixture obtained from the second process of the invention.
El hidroprocesamiento es necesario para eliminar los contaminantes como los metales de azufre, nitrógeno y metales pesados de aceites combustibles. De esta manera, los hidrocarburos oxigenados reemplazan sus átomos de oxígeno por átomos de hidrógeno, y los átomos de oxígeno que salen se combinan con moléculas de hidrógeno formando agua. Los hidrocarburos nitrogenados reemplazan sus átomos de nitrógeno por átomos de hidrógeno, y los átomos de nitrógeno que salen se combinan con moléculas de hidrógeno formando amoníaco. Finalmente los hidrocarburos que contienen azufre reemplazan sus átomos de azufre por átomos de hidrógeno, y los átomos de azufre que salen se combinan con moléculas de hidrógeno formando sulfuro de hidrógeno. Una vez realizado el procedimiento de hidroprocesamiento, se separan las parafinas del resto de las sustancias y se someten a otros tratamientos hasta conseguir las características deseadas. Hydroprocessing is necessary to remove contaminants such as sulfur metals, nitrogen and heavy metals from combustible oils. In this way, oxygenated hydrocarbons replace their oxygen atoms with hydrogen atoms, and the oxygen atoms that come out combine with hydrogen molecules forming water. Nitrogen hydrocarbons replace their nitrogen atoms with hydrogen atoms, and the nitrogen atoms that come out combine with hydrogen molecules forming ammonia. Finally, sulfur-containing hydrocarbons replace their sulfur atoms with hydrogen atoms, and the sulfur atoms that come out combine with hydrogen molecules forming hydrogen sulfide. Once the hydroprocessing procedure is carried out, the paraffins are separated from the rest of the substances and subjected to other treatments until the desired characteristics are achieved.
El término "catálisis", tal y como se utiliza en la presente invención, se refiere al aumento de la velocidad de una reacción química debido a la participación de una sustancia denominada catalizador. A diferencia de otros reactivos en la reacción química, un catalizador no se consume. Un catalizador puede participar en múltiples transformaciones químicas. El efecto de un catalizador puede variar debido a la presencia de otras sustancias conocidas como inhibidores o venenos (que reducen la actividad catalítica) o promotores (que aumentan la actividad). En el contexto de la presente invención, los principales catalizadores útiles en hidroprocesamiento se basan en disulfuro de molibdeno (MoS2) junto con cantidades menores de otros metales. La mayoría de los metales catalizan el hidroprocesamiento, pero aquellos en el medio de la serie de transición de un metal son más activos. El disulfuro de rutenio parece ser el catalizador más activo, pero las combinaciones binarias de cobalto y el molibdeno son también altamente activas. Aparte de la base de cobalto modificado con catalizador MoS2, también se utilizan níquel y tungsteno. Por ejemplo, los catalizadores de Ni-W son más eficaces para hidrodesnitrogenación. The term "catalysis", as used in the present invention, refers to the increase in the speed of a chemical reaction due to the participation of a substance called catalyst. Unlike other reagents in the chemical reaction, a catalyst is not consumed. A catalyst can participate in multiple chemical transformations. The effect of a catalyst may vary due to the presence of other substances known as inhibitors or poisons (which reduce catalytic activity) or promoters (which increase activity). In the context of the present invention, the main catalysts useful in hydroprocessing are based on molybdenum disulfide (MoS 2 ) together with smaller amounts of others. metals Most metals catalyze hydroprocessing, but those in the middle of a metal's transition series are more active. Ruthenium disulfide seems to be the most active catalyst, but binary combinations of cobalt and molybdenum are also highly active. Apart from the cobalt base modified with MoS2 catalyst, nickel and tungsten are also used. For example, Ni-W catalysts are more effective for hydrodesnitrogenation.
Otro método de hidrotratamiento comprende poner en contacto los lípidos refinados con agua, aplicar una temperatura y presión elevadas, y separar la fase orgánica del agua. Otro método de hidroprocesamiento comprende hidrogenar la mezcla de lípidos refinados obtenidos en la etapa, y además desoxigenar dicha mezcla de lípidos refinados. Another method of hydrotreatment comprises contacting the refined lipids with water, applying a high temperature and pressure, and separating the organic phase from the water. Another method of hydroprocessing comprises hydrogenating the refined lipid mixture obtained in the step, and also deoxygenating said refined lipid mixture.
En una realización preferida, el método de hidrotratamiento comprende In a preferred embodiment, the hydrotreatment method comprises
- poner en contacto la mezcla de lípidos refinados obtenidos en la etapa ii) con agua,  - contacting the mixture of refined lipids obtained in step ii) with water,
aplicar una temperatura y presión elevadas, y  apply a high temperature and pressure, and
separar la fase orgánica del agua. En esta realización, el hidrotratamiento se lleva a cabo en fase líquida, a una temperatura elevada, de 100 a 400 °C, preferiblemente 250 a 350 °C. La reacción puede llevarse a cabo a presión atmosférica. Sin embargo, con el objetivo de mantener los reactivos en la fase líquida, es preferible utilizar una presión mayor que la presión de saturación de vapor y, por lo tanto, los intervalos de presión de reacción tienen un rango desde la presión atmosférica hasta 20 MPa, preferiblemente de 0, 1 a 5 MPa.  separate the organic phase from the water. In this embodiment, hydrotreatment is carried out in the liquid phase, at an elevated temperature, from 100 to 400 ° C, preferably 250 to 350 ° C. The reaction can be carried out at atmospheric pressure. However, in order to keep the reagents in the liquid phase, it is preferable to use a pressure greater than the vapor saturation pressure and, therefore, the reaction pressure ranges have a range from atmospheric pressure to 20 MPa , preferably from 0.1 to 5 MPa.
Una vez finalizada la reacción, la fase orgánica se separa del agua obteniéndose como producto un destilado con la composición de un diésel renovable. Once the reaction is finished, the organic phase is separated from the water, obtaining as a product a distillate with the composition of a renewable diesel.
En otra realización preferida, el método de hidroprocesamiento comprende In another preferred embodiment, the hydroprocessing method comprises
hidrogenar la mezcla de lípidos refinados obtenidos en la etapa ii), y desoxigenar dicha mezcla de lípidos refinados.  hydrogenate the refined lipid mixture obtained in step ii), and deoxygenate said refined lipid mixture.
En una realización más preferida, el método de hidroprocesamiento se lleva a cabo a temperatura y presión elevadas. El término "desoxigenación", tal y como se utiliza en la presente invención, se refiere a una reacción química que implica la eliminación de oxígeno molecular (02) a partir de una mezcla de reacción o disolvente, o la eliminación de los átomos de oxígeno de una molécula. Ejemplos no limitativos de reacciones de desoxigenación incluyen la sustitución de un grupo hidroxilo por hidrógeno en la desoxigenación de Barton- McCombie o en la desoxigenación Markó-Lam, y la sustitución de un grupo oxo por dos átomos de hidrógeno en la reducción de Wolff-Kishner. Por ejemplo, los lípidos y opcionalmente un disolvente o una mezcla de disolventes se ponen en contacto con un catalizador heterogéneo de descarboxilación seleccionado a partir de catalizadores que contienen uno o más metales del grupo VIII y/o VIA del sistema periódico. Preferiblemente, los catalizadores son catalizadores de Pd, Pt, Ni, NiMo o CoMo, la sobre un soporte de alúmina, sílice y/o carbono. Se puede usar hidrógeno opcionalmente. Las condiciones de reacción de descarboxilación varían con la materia prima utilizada. La reacción se lleva a cabo en fase líquida, a una temperatura elevada, de 100 a 400 °C, preferiblemente 250 a 350 °C. La reacción puede llevarse a cabo a presión atmosférica. Sin embargo, con el objetivo de mantener los reactivos en la fase líquida, es preferible utilizar una presión mayor que la presión de saturación de vapor y, por lo tanto, los intervalos de presión de reacción tienen un rango desde la presión atmosférica hasta 150 MPa, preferiblemente de 0, 1 a 5 MPa. In a more preferred embodiment, the hydroprocessing method is carried out at elevated temperature and pressure. The term "deoxygenation", as used in the present invention, refers to a chemical reaction that involves the removal of molecular oxygen (0 2 ) from a reaction mixture or solvent, or the removal of atoms of oxygen of a molecule. Non-limiting examples of deoxygenation reactions include the replacement of a hydroxyl group by hydrogen in the deoxygenation of Barton-McCombie or in the deoxygenation Markó-Lam, and the replacement of an oxo group by two hydrogen atoms in the reduction of Wolff-Kishner . For example, the lipids and optionally a solvent or a mixture of solvents are contacted with a heterogeneous decarboxylation catalyst selected from catalysts containing one or more metals of group VIII and / or VIA of the periodic system. Preferably, the catalysts are catalysts of Pd, Pt, Ni, NiMo or CoMo, the one on an alumina, silica and / or carbon support. Hydrogen can optionally be used. The decarboxylation reaction conditions vary with the raw material used. The reaction is carried out in a liquid phase, at an elevated temperature, from 100 to 400 ° C, preferably 250 to 350 ° C. The reaction can be carried out at atmospheric pressure. However, in order to keep the reagents in the liquid phase, it is preferable to use a pressure greater than the vapor saturation pressure and, therefore, the reaction pressure ranges have a range from atmospheric pressure to 150 MPa , preferably from 0.1 to 5 MPa.
En una realización preferida, la hidrogenación y desoxigenación de dicha mezcla de lípidos refinados se realiza en la misma etapa. En otra realización preferida, la hidrogenación y desoxigenación de dicha mezcla de lípidos refinados se realiza en etapas consecutivas. In a preferred embodiment, the hydrogenation and deoxygenation of said refined lipid mixture is performed in the same stage. In another preferred embodiment, the hydrogenation and deoxygenation of said refined lipid mixture is carried out in consecutive stages.
El producto que se obtiene una vez finalizada la reacción es un diésel renovable. En otra realización particular, el tercer procedimiento de la invención comprende adicionalmente un proceso de craqueo catalítico en condiciones adecuadas para convertir las parafinas obtenidas en la etapa iii) en bioqueroseno. The product obtained after the end of the reaction is a renewable diesel. In another particular embodiment, the third process of the invention further comprises a catalytic cracking process under conditions suitable for converting the paraffins obtained in step iii) into biokerosene.
El término "craqueo catalítico" o "cracking catalítico", tal y como se utiliza en la presente invención, se refiere a la ruptura de un alcano de cadena larga en otros aléanos y alquenos de cadena corta más útiles, es decir, el proceso de ruptura de hidrocarburos de cadena larga en hidrocarburos de cadena corta. Se trata de un proceso de descomposición termal en presencia de un catalizador de los componentes de las parafinas obtenidas mediante los procesos de hidrotratamiento, con el propósito de craquear hidrocarburos de cadena larga cuyo punto de ebullición es igual o superior a los 315 °C, y convertirlos en hidrocarburos de cadena corta cuyo punto de ebullición se encuentra por debajo de los 221 °C. Dichos catalizadores se presentan en forma granular o microesférica. Los catalizadores usualmente se componen por óxido de silicio (Si02) y alúmina (Al203). El mineral más comúnmente usado para este fin es la faujasita. The term "catalytic cracking" or "catalytic cracking," as used in the present invention, refers to the rupture of a long chain alkane in others. more useful short chain alkenes and alkenes, that is, the process of breaking up long chain hydrocarbons into short chain hydrocarbons. It is a thermal decomposition process in the presence of a catalyst of the paraffin components obtained through hydrotreatment processes, with the purpose of cracking long chain hydrocarbons whose boiling point is equal to or greater than 315 ° C, and convert them into short chain hydrocarbons whose boiling point is below 221 ° C. Said catalysts are presented in granular or microspheric form. Catalysts are usually composed of silicon oxide (Si0 2 ) and alumina (Al 2 0 3 ). The most commonly used mineral for this purpose is faujasite.
En una realización preferida, dicho craqueo catalítico emplea un catalizador sólido. In a preferred embodiment, said catalytic cracking employs a solid catalyst.
El término "catalizador sólido" tal y como se usa aquí se refiere a una sustancia química, sólida, simple o compuesta, que modifica la velocidad de una reacción química, interviniendo en ella pero sin llegar a formar parte de los productos resultantes de la misma. La mayoría de los catalizadores sólidos son los metales o los óxidos, sulfuras y haloideos de elementos metálicos y de semimetálicos como los elementos boro aluminio, y silicio. Los catalizadores sólidos pueden prepararse mediante precipitación-deposición, que consiste en depositar un hidróxido mediante la precipitación de una sal soluble del metal sobre el soporte. En este caso la precipitación se realiza principalmente por modificación del pH de la disolución. El método más empleado debido a su sencillez es la impregnación, que consiste en añadir el soporte a una disolución, con el contenido de fase activa deseado, y eliminar el disolvente por evaporación. En una realización más preferida, dicho catalizador sólido se selecciona del grupo que consiste en catalizadores que consisten en sistemas bifuncionales de hidrogenación-deshidrogenación metálicos (por ejemplo, Co-Mo o Pd-Pt) y componentes ácidos para craqueo (por ejemplo, Al203, Si02, y también en forma de zeolitas) en presencia de hidrógeno. The term "solid catalyst" as used herein refers to a chemical substance, solid, simple or compound, that modifies the speed of a chemical reaction, intervening in it but without becoming part of the products resulting from it. . The majority of solid catalysts are metals or oxides, sulphides and haloids of metallic and semi-metallic elements such as boron aluminum, and silicon elements. Solid catalysts can be prepared by precipitation-deposition, which consists of depositing a hydroxide by precipitation of a soluble salt of the metal on the support. In this case the precipitation is mainly done by modification of the pH of the solution. The most commonly used method due to its simplicity is impregnation, which consists of adding the support to a solution, with the desired active phase content, and removing the solvent by evaporation. In a more preferred embodiment, said solid catalyst is selected from the group consisting of catalysts consisting of bifunctional metal hydrogenation-dehydrogenation systems (e.g., Co-Mo or Pd-Pt) and acidic components for cracking (e.g., Al 2 0 3 , Si0 2 , and also in the form of zeolites) in the presence of hydrogen.
Procedimiento para obtener biodiesel Procedure to obtain biodiesel
En otra realización particular, la invención se refiere a un método para obtener biodiesel, en adelante cuarto método de la invención, que comprende las etapas de: i) refinar los lípidos obtenidos en el segundo procedimiento de la invención y In another particular embodiment, the invention relates to a method for obtaining biodiesel, hereinafter the fourth method of the invention, comprising the steps of: i) refine the lipids obtained in the second process of the invention and
ii) convertir la mezcla de lípidos refinados obtenidos en la etapa i) en parafinas.  ii) convert the refined lipid mixture obtained in step i) into paraffins.
o las etapas de or the stages of
i) obtener una preparación enriquecida en lípidos a partir de la biomasa microbiana de acuerdo a la invención,  i) obtain a lipid-enriched preparation from the microbial biomass according to the invention,
ii) refinar los lípidos obtenidos en la etapa i) y  ii) refine the lipids obtained in step i) and
iii) convertir la mezcla de lípidos refinados obtenidos en la etapa ii) en biodiesel  iii) convert the refined lipid mixture obtained in step ii) into biodiesel
El término "biodiesel", tal y como se utiliza en la presente invención, se refiere a una composición química compuesta fundamentalmente por ésteres monoalquílicos de ácidos grasos de cadena larga. Los ésteres que forman parte del biodiesel son ésteres metilo, etilo o propilo y los ácidos grasos son los que proceden de la composición lipídica de acuerdo a la presente invención. The term "biodiesel", as used in the present invention, refers to a chemical composition consisting primarily of monoalkyl esters of long chain fatty acids. The esters that are part of the biodiesel are methyl, ethyl or propyl esters and the fatty acids are those that come from the lipid composition according to the present invention.
En formas particulares de realización, el biodiesel de acuerdo a la presente invención comprende uno o varios de los siguiente ésteres de alquílicos de ácidos grasos: esteres metílicos de ácidos grasos (FAME o fatty acid methyl ester), esteres etílicos de ácidos grasos (FAEE o fatty acid ethyl esters), ésteres butílicos de ácidos grasos (FABE o fatty acid butyl esters). En formas particulares de realización, el biodiesel puede contener uno o varios ácidos grasos seleccionados de miristato, palmitato, estearato, oleato, linolenato, araquidate y behenato. En una forma preferida de la invención, el biodiesel es un combustible que está compuesto en su totalidad por esteres de origen biológico que no contienen diésel procedente del petróleo y que comprende monoalquil ésteres de ácidos grasos de cadena larga. Este tipo de biodiesel se conoce con B100 e indica que el 100% del combustible es biodiesel En otras formas particulares de realización, el biodiesel puede contener uno o varios ácidos grasos seleccionados de miristato, palmitato, estearato, oleato, linolenato, araquidato y behenato. In particular embodiments, the biodiesel according to the present invention comprises one or more of the following fatty acid alkyl esters: fatty acid methyl esters (FAME or fatty acid methyl ester), fatty acid ethyl esters (FAEE or fatty acid ethyl esters), butyl esters of fatty acids (FABE or fatty acid butyl esters). In particular embodiments, the biodiesel may contain one or more fatty acids selected from myristate, palmitate, stearate, oleate, linolenate, arachidida and behenate. In a preferred form of the invention, biodiesel is a fuel that is composed entirely of esters of biological origin that do not contain diesel from petroleum and that comprise monoalkyl esters of long-chain fatty acids. This type of biodiesel is known as B100 and indicates that 100% of the fuel is biodiesel. In other particular embodiments, the biodiesel may contain one or more fatty acids selected from myristate, palmitate, stearate, oleate, linolenate, arachididate and behenate.
En una forma preferida de la invención, el biodiesel es un combustible que está compuesto en su totalidad por esteres de origen biológico que no contienen diésel procedente del petróleo y que comprende monoalquil ésteres de ácidos grasos de cadena larga. Este tipo de biodiesel se conoce con B100 e indica que el 100% del combustible es biodiesel En una primera etapa, el cuarto procedimiento de la invención comprende retinar los lípidos obtenidos a partir del segundo procedimiento de la invención. El término "refinamiento" o "refino", se ha descrito en el contexto del tercer método de la presente invención y es usado de la misma manera en relación al cuarto método de la invención. In a preferred form of the invention, biodiesel is a fuel that is composed entirely of esters of biological origin that do not contain diesel. from petroleum and comprising monoalkyl esters of long chain fatty acids. This type of biodiesel is known as B100 and indicates that 100% of the fuel is biodiesel. In a first stage, the fourth process of the invention comprises retinating the lipids obtained from the second process of the invention. The term "refinement" or "refining" has been described in the context of the third method of the present invention and is used in the same manner in relation to the fourth method of the invention.
El experto en la materia entenderá que existen en la técnica numerosos procedimientos para convertir lípidos en biodiesel que incluyen, sin limitación, procedimientos de transesterificación (EP1682466, EP1795576, EP1681337, EP1640437). The person skilled in the art will understand that there are numerous processes in the art for converting lipids into biodiesel that include, without limitation, transesterification procedures (EP1682466, EP1795576, EP1681337, EP1640437).
El término "esterificación" o "transesterificación" tal y como se usa en la presente invención, se refiere a la reacción que se produce entre un ácido graso y un alcohol. El producto de dicha reacción es un éster de ácido graso. La transesterificación puede ser catalizada por bases, ácidos o enzimas. En una forma de realización, el biodiesel se obtiene a partir de la preparación lipídica obtenida en la etapa i) del tercer procedimiento de la invención mediante la transesterifiación de los ácidos grasos libres que forman parte de la preparación lipídica. The term "esterification" or "transesterification" as used in the present invention refers to the reaction that occurs between a fatty acid and an alcohol. The product of said reaction is a fatty acid ester. Transesterification can be catalyzed by bases, acids or enzymes. In one embodiment, the biodiesel is obtained from the lipid preparation obtained in step i) of the third process of the invention by transesterification of the free fatty acids that are part of the lipid preparation.
El proceso de transesterificación catalizado por ácidos se lleva a cabo en presencia de ácidos Brónsted, preferentemente por ácido sulfónico o sulfúrico. Estos catalizadores generan una muy alta producción de ésteres alquílicos pero las reacciones son lentas en comparación con catalizadores alcalinos. Típicamente este tipo de transesterificación se emplea con aquellos lípidos de elevado contenido en ácidos grasos libres. The acid catalyzed transesterification process is carried out in the presence of Bronsted acids, preferably by sulfonic or sulfuric acid. These catalysts generate a very high production of alkyl esters but the reactions are slow compared to alkaline catalysts. Typically this type of transesterification is used with those lipids with a high content of free fatty acids.
El proceso de transesterificación catalizado por bases se lleva a cabo con metanol vía alcalina. El catalizador (por ejemplo, NaOH, KOH, NaHC03, KHC03) es disuelto en el alcohol y tras añadirlo al aceite, la mezcla se agita a una determinada temperatura y presión, que podrán ser ajustadas según las condiciones experimentales. Esta reacción da lugar a ésteres de ácidos grasos y glicerina cruda como productos finales de reacción. The base catalyzed transesterification process is carried out with methanol via alkaline route. The catalyst (for example, NaOH, KOH, NaHC0 3 , KHC0 3 ) is dissolved in the alcohol and after adding it to the oil, the mixture is stirred at a certain temperature and pressure, which can be adjusted according to experimental conditions. This reaction gives rise to esters of fatty acids and crude glycerin as final reaction products.
El proceso de transesterificación enzimática catalizado por lipasas se lleva a cabo en presencia de estas enzimas o de microrganismos que las producen, como por ejemplo aquellos pertenecientes a los géneros Candida sp, Chromobacteri sp, Cryptococcus sp, Mucor sp, Pseudomonas sp, Rhizomucor sp, Rhizopus sp, Thermomyces sp, etc. The lipase-catalyzed enzymatic transesterification process is carried out in the presence of these enzymes or of microorganisms that produce them, such as those belonging to the genera Candida sp, Chromobacteri sp, Cryptococcus sp, Mucor sp, Pseudomonas sp, Rhizomucor sp, Rhizopus sp, Thermomyces sp, etc.
En una realización aún más particular la obtención de biodiesel se lleva a cabo mediante transesterificación catalizada por bases tal y como se muestra en el ejemplo 6 de la presente invención. Como el experto en la materia entenderá, la concentración del catalizador básico, la cantidad de sustrato, la temperatura y el tiempo de reacción podrá ser ajustada. Los productos de reacción obtenidos son esteres metílicos de los correspondientes ácidos grasos que conforman el biodiesel y glicerina. El metanol utilizado como diluyente del catalizador puede ser retirado mediante diferentes procedimientos físico-químicos conocidos en el estado de la técnica como tratamiento con calor, destilación etc. Debido a la distinta densidad de los productos de reacción, la fase ligera, en donde se encontrará la glicerina y otros compuestos, puede ser separada de la fase pesada, formada por los ésteres metílicos de los ácidos grasos, mediante cualquier técnica conocida que permita la separación de líquidos de distinta densidad como por ejemplo centrifugación, sedimentación, filtración, cristalización etc. In an even more particular embodiment, biodiesel is obtained by base catalyzed transesterification as shown in example 6 of the present invention. As the person skilled in the art will understand, the concentration of the basic catalyst, the amount of substrate, the temperature and the reaction time can be adjusted. The reaction products obtained are methyl esters of the corresponding fatty acids that make up the biodiesel and glycerin. The methanol used as a catalyst diluent can be removed by different physical-chemical procedures known in the state of the art such as heat treatment, distillation etc. Due to the different density of the reaction products, the light phase, where glycerin and other compounds will be found, can be separated from the heavy phase, formed by fatty acid methyl esters, by any known technique that allows the separation of liquids of different density such as centrifugation, sedimentation, filtration, crystallization etc.
Los ésteres metílicos obtenidos, pueden ser opcionalmente purificados para eliminar impurezas (pequeñas cantidades de metanol, glicerina, catalizador, jabones, restos celulares y compuestos de alto punto de ebullición). Métodos para la purificación de ésteres metílicos son bien conocidos en el estado de la técnica, e incluyen sin limitarse a, métodos de purificación cromatográficos, cristalización, destilación al vacío, o lavado con soluciones diluidas de ácido. En una realización aún más particular etapa de purificación de los ésteres metílicos obtenidos se lleva a cabo mediante lavado con una solución diluida de ácido clorhídrico. Este lavado permite eliminar las impurezas insolubles que acompañan al éster y consigue evitar la formación de emulsiones. Típicamente el lavado se realiza a la misma temperatura empleada en la reacción de transesterificación. Tras el lavado, se lleva a cabo la separación la fase acuosa y orgánica de la mezcla. Como el experto en la materia entenderá cualquier técnica que permita la separación de la fase orgánica y la fase acuosa podrá ser empleada en el contexto de la presente invención. La separación de ambas fases puede llevarse a cabo, pero sin estar limitado a, mediante la extracción de la fase orgánica, decantación, o evaporación de la fase acuosa. Finalmente, la fase orgánica, en donde se encontrarán los ésteres metílicos, aún arrastra una parte considerable de agua que debe ser eliminada. Típicamente la etapa de secado se lleva cabo en condiciones de presión y temperatura elevadas (temperaturas de alrededor de 100°C y se suele aplicar el vacío). The methyl esters obtained can be optionally purified to remove impurities (small amounts of methanol, glycerin, catalyst, soaps, cell debris and high boiling compounds). Methods for the purification of methyl esters are well known in the state of the art, and include without limitation, chromatographic purification methods, crystallization, vacuum distillation, or washing with dilute acid solutions. In an even more particular embodiment, the purification step of the methyl esters obtained is carried out by washing with a dilute solution of hydrochloric acid. This washing eliminates the insoluble impurities that accompany the ester and manages to avoid the formation of emulsions. Typically the washing is carried out at the same temperature used in the transesterification reaction. After washing, the aqueous and organic phase of the mixture is separated. As the person skilled in the art will understand any technique that allows the separation of the organic phase and the aqueous phase may be used in the context of the present invention. The separation of both phases can be carried out, but not limited to, by extraction of the organic phase, decantation, or evaporation of the aqueous phase. Finally, the organic phase, where the methyl esters will be found, still drags a considerable part of water that must be removed. Typically the drying stage is carried out under conditions of high pressure and temperature (temperatures of around 100 ° C and vacuum is usually applied).
Usos de la invención Uses of the invention
En otro aspecto, la presente invención se relaciona con el uso del microorganismo de la invención, en adelante "primer uso de la invención", para obtener una biomasa microbiana rica en triglicéridos según el primer procedimiento de la invención. Los términos "microorganismo" y "biomasa microbiana rica en triglicéridos" y sus particularidades han sido descritos en el contexto del microorganismo y del primer procedimiento de la invención, y son aplicables al primer uso de la invención. Asimismo, también son aplicables de igual manera los modos de realización particulares y preferidos del microorganismo y del primer procedimiento de la invención. In another aspect, the present invention relates to the use of the microorganism of the invention, hereinafter "first use of the invention", to obtain a microbial biomass rich in triglycerides according to the first process of the invention. The terms "microorganism" and "microbial biomass rich in triglycerides" and their particularities have been described in the context of the microorganism and the first process of the invention, and are applicable to the first use of the invention. Likewise, the particular and preferred embodiments of the microorganism and the first method of the invention are equally applicable.
En otro aspecto, la presente invención se relaciona con el uso del microorganismo de la invención, en adelante "segundo uso de la invención", para extraer los lípidos de la biomasa microbiana según el segundo procedimiento de la invención. In another aspect, the present invention relates to the use of the microorganism of the invention, hereinafter "second use of the invention", to extract the lipids from the microbial biomass according to the second process of the invention.
Los términos "microorganismo" y "biomasa microbiana" y sus particularidades han sido descritos en el contexto del microorganismo y del primer procedimiento de la invención, y son aplicables al segundo uso de la invención. Asimismo, también son aplicables de igual manera los modos de realización particulares y preferidos del microorganismo y del segundo procedimiento de la invención. The terms "microorganism" and "microbial biomass" and their particularities have been described in the context of the microorganism and the first process of the invention, and are applicable to the second use of the invention. Likewise, the particular and preferred embodiments of the microorganism and the second method of the invention are equally applicable.
En otro aspecto, la presente invención se relaciona con el uso del microorganismo de la invención, en adelante "tercer uso de la invención", para obtener para obtener parafinas según el tercer procedimiento de la invención. Los términos "microorganismo" y "parafina" y sus particularidades han sido descritos en el contexto del microorganismo y del tercer procedimiento de la invención, y son aplicables al tercer uso de la invención. Asimismo, también son aplicables de igual manera los modos de realización particulares y preferidos del microorganismo y del tercer procedimiento de la invención. In another aspect, the present invention relates to the use of the microorganism of the invention, hereinafter "third use of the invention", to obtain paraffins according to the third process of the invention. The terms "microorganism" and "paraffin" and their particularities have been described in the context of the microorganism and the third process of the invention, and are applicable to the third use of the invention. Likewise, the particular and preferred embodiments of the microorganism and the third method of the invention are equally applicable.
La invención se describe en detalle a continuación por medio de los siguientes ejemplos, que han de interpretarse como meramente ilustrativos y no limitativos del alcance de la invención. The invention is described in detail below by means of the following examples, which are to be interpreted as merely illustrative and not limiting the scope of the invention.
EJEMPLOS Ejemplo 1 : Aislamiento de Pseudomonas brassicacearum CECT 8162 EXAMPLES Example 1: Isolation of Pseudomonas brassicacearum CECT 8162
La selección de esta cepa se llevó a cabo a partir de una muestra de suelo de la que se prepararon diluciones seriadas en solución salina, sembrándose 0,1 mL en placas conteniendo medio TSA (por litro, extracto de levadura 10 g, peptona bacteriológica, 20 g, glicerina cruda 47 g) suplementado con cicloheximida y nistatina (50 μg/mL) para inhibir el crecimiento de eucariotas. Las placas se incubaron a 30°C durante 3-4 días. The selection of this strain was carried out from a soil sample from which serial dilutions were prepared in saline solution, 0.1 mL was plated in plates containing TSA medium (per liter, 10 g yeast extract, bacteriological peptone, 20 g, crude glycerin 47 g) supplemented with cycloheximide and nystatin (50 μg / mL) to inhibit eukaryotic growth. Plates were incubated at 30 ° C for 3-4 days.
La capacidad para acumular grasas se analizó mediante un screening utilizando la tinción con rojo Nilo (Kimura K, et al., 2004, J. Microbiol. Methods, 56, 331-338). La cepa se creció en cultivos a 30°C, 250 rpm durante 96 horas en matraces conteniendo 50 mL de medio M9 (para 1 litro: Glucosa 40 g, Na2HP04- 12H20 7 g, KH2P04 3 g, NaCI 0,5 g, NH4CI 1 g, FeS04-7H20 0,5 mg, MgS04 0, 12 g, elementos traza 2,5 mL. Elementos traza (por litro): ZnCI2 50 mg, MnCI2-4H20 30 mg, H3B03 300 mg, CoCI2 200 mg, CuCI2-2H20 10 mg, NiCI2-6H20 20 mg, NaMo04-2H20 30 mg). Las células se recogieron por centrifugación, y se resuspendieron en 5 mL de agua conteniendo 0,75 mL de hidróxido amónico. La suspensión se agitó suavemente y se incubó en un baño a 60-70°C durante 15 minutos. Se enfrió y se añadieron 5 mL de etanol agitando con fuerza. A continuación se añadieron 12,5 mL de éter etílico, se agitó brevemente y se añadió el mismo volumen de éter de petróleo. La mezcla se separó por centrifugación retirándose la fase orgánica a un matraz esférico de fondo plano. La fase orgánica se evaporó a sequedad en un rotavapor y el matraz se introdujo en una estufa a 102°C hasta obtener un peso constante. The ability to accumulate fat was analyzed by screening using Nile red staining (Kimura K, et al., 2004, J. Microbiol. Methods, 56, 331-338). The strain was grown in cultures at 30 ° C, 250 rpm for 96 hours in flasks containing 50 mL of M9 medium (for 1 liter: Glucose 40 g, Na 2 HP0 4 - 12H 2 0 7 g, KH 2 P0 4 3 g , NaCI 0.5 g, NH 4 CI 1 g, FeS0 4 -7H 2 0 0.5 mg, MgS0 4 0, 12 g, trace elements 2.5 mL Trace elements (per liter): ZnCI 2 50 mg, MNCI 2 -4H 2 0 30 mg, H 3 B0 3 300 mg, 200 mg COCI 2, CuCl 2 -2H 2 0 10 mg, NICI 2 -6H 2 0 20 mg, NaMo0 4 -2H 2 0 30 mg). The cells were collected by centrifugation, and resuspended in 5 mL of water containing 0.75 mL of ammonium hydroxide. The suspension was stirred gently and incubated in a bath at 60-70 ° C for 15 minutes. It was cooled and 5 mL of ethanol was added with vigorous stirring. Then 12.5 mL of ethyl ether was added, stirred briefly and the same volume of petroleum ether was added. The mixture was separated by centrifugation, the organic phase being removed to a flat bottom spherical flask. The organic phase is evaporated to dryness in a rotary evaporator and the flask was placed in an oven at 102 ° C until a constant weight was obtained.
Mediante esta medida por gravimetría se confirmó que la cepa era capaz de acumular más de un 25% de su peso seco en forma de lípidos. Esta cepa se identificó, mediante la secuenciación de la región D1/D2 de la subunidad 16S del ADN ribosómico (SEQ ID NO 1) y un fragmento de la ITS (SEQ ID NO 2) como Pseudomonas brassicacearum mostrando diferencias frente a las secuencias de esta especie depositadas en las bases de datos consultadas. El microorganismo se ha depositado en la Colección Española de Cultivos Tipo como P. brassicacearum CECT 8162. This gravimetry measurement confirmed that the strain was able to accumulate more than 25% of its dry weight in the form of lipids. This strain was identified, by sequencing the D1 / D2 region of the 16S subunit of the ribosomal DNA (SEQ ID NO 1) and a fragment of the STI (SEQ ID NO 2) as Pseudomonas brassicacearum showing differences against the sequences of this species deposited in the databases consulted. The microorganism has been deposited in the Spanish Type Culture Collection as P. brassicacearum CECT 8162.
La presente cepa de P. brassicacearum es capaz de metabolizar diferentes fuentes de carbono incluyendo glucosa, glicerina cruda o los azúcares presentes en hidrolizados de biomasa lignocelulósica, que se encuentra en exceso en relación con la fuente de nitrógeno presente en el mismo medio. The present strain of P. brassicacearum is capable of metabolizing different carbon sources including glucose, crude glycerin or the sugars present in hydrolyzates of lignocellulosic biomass, which is found in excess in relation to the source of nitrogen present in the same medium.
Ejemplo 2: Producción de lípidos en biorreactores Example 2: Production of lipids in bioreactors
Cultivos de la cepa P. brassicacearum CECT 8162 crecidos en medio TSA se utilizaron para inocular matraces de 2 litros conteniendo 350 mL de medio TSB. Las células se incubaron 24 h en un agitador orbital (250 rpm, 30°C). A continuación se transfirieron 800 mL de este cultivo a un fermentador conteniendo 3,2 litros de medioCultures of the P. brassicacearum CECT 8162 strain grown in TSA medium were used to inoculate 2 liter flasks containing 350 mL of TSB medium. The cells were incubated 24 h on an orbital shaker (250 rpm, 30 ° C). Then 800 mL of this culture was transferred to a fermenter containing 3.2 liters of medium
M9-1. Este medio consiste en (sobre la base de 1 litro): Glucosa 40 g; NH4CI 3,8 g;M9-1 This medium consists of (based on 1 liter): Glucose 40 g; NH 4 CI 3.8 g;
MgS04-7H20 0,8 g; Na2HP04- 12H20 24 g; KH2P04 4 g; elementos traza 8 mL. Elementos traza (por litro): FeS04-7H20 10 g; CaCI2-2H20 3 g; ZnS04-7H20 2,2 g;MgSO 4 -7H 2 0 0.8 g; Na 2 HP0 4 - 12H 2 0 24 g; KH 2 P0 4 4 g; trace elements 8 mL. Trace elements (per liter): FeS0 4 -7H 2 0 10 g; CaCI 2 -2H 2 0 3 g; ZnS04-7H20 2.2 g;
MnS04 H20 0,4 g; H3BO30,3 g; CoCI2 0,2 g; NaMo04-2H20 0, 15 g; NiCI2-6H20 0,02 g;MnS0 4 H 2 0 0.4 g; H 3 BO 3 0.3 g; CoCI 2 0.2 g; NaMo0 4 -2H 2 0 0, 15 g; NiCI 2 -6H 2 0 0.02 g;
CuS04-5H20 1 g. CuS0 4 -5H 2 0 1 g.
El fermentador se mantuvo a 30°C, la concentración de oxígeno disuelto se mantuvo por encima del 20% manteniendo una agitación de 1.000 rpm. Al cabo de 40 horas la concentración de biomasa en el fermentador era de 60-70 g/L y el contenido intracelular de lípidos fue del 23%. La mezcla de lípidos extraída se fraccionó en una columna de silica obteniéndose 4 fracciones que se analizaron por HPLC-ELSD y HPLC-MS. La identidad de los compuestos presentes en cada una y el porcentaje en peso con respecto al contenido en glicéridos de la muestra fue el siguiente: Fracción Composición % peso The fermenter was maintained at 30 ° C, the concentration of dissolved oxygen was maintained above 20% while maintaining a stirring of 1,000 rpm. After 40 hours the biomass concentration in the fermenter was 60-70 g / L and the intracellular lipid content was 23%. The extracted lipid mixture was fractionated on a silica column to obtain 4 fractions that were analyzed by HPLC-ELSD and HPLC-MS. The identity of the compounds present in each and the percentage by weight with respect to the glyceride content of the sample was as follows: Fraction Composition% weight
1 Triglicéridos 8,9  1 Triglycerides 8.9
2 Acidos grasos libres 1 ,0  2 Free fatty acids 1, 0
3 Diglicéridos 7,2  3 Diglycerides 7.2
4 Monoglicéridos 33,7  4 Monoglycerides 33.7
La composición de ácidos grasos presentes se analizó mediante cromatografía de gases observándose una cantidad mayoritaria de ácido palmítico (37,5%), heptadecenoico (19%), mirístico (16,5%), vaccénico (14%) y oleico (13%). The composition of fatty acids present was analyzed by gas chromatography, observing a majority of palmitic acid (37.5%), heptadecenoic acid (19%), myristic (16.5%), vaccenic (14%) and oleic (13% ).
Ejemplo 3: Extracción del aceite Example 3: Oil extraction
Se trituraron 1 ,4 kg de biomasa seca de P. brassicacearum CECT 8162 hasta lograr un tamaño de partícula con diámetro inferior a 1 mm. A continuación se realizó una extracción durante 24 horas, mediante soxhlet empleando n-hexano como disolvente. El extracto se centrifugó a 9.000 rpm durante 15 minutos y se filtró a través de una membrana de 0,2 μηι. Finalmente se evaporó el hexano a sequedad obteniéndose 306,6 g de extracto seco. 1.4 kg of dry biomass of P. brassicacearum CECT 8162 were crushed to a particle size with a diameter of less than 1 mm. Then an extraction was carried out for 24 hours, using soxhlet using n-hexane as solvent. The extract was centrifuged at 9,000 rpm for 15 minutes and filtered through a 0.2 μηι membrane. Finally, hexane was evaporated to dryness to obtain 306.6 g of dry extract.
Ejemplo 4: Producción de biodiésel Example 4: Biodiesel Production
Una muestra (0,5 kg) de aceite extraído y refinado de la cepa P. brassicacearum CECT 8162 se empleó para llevar a cabo la reacción de transesterificación. La reacción se realizó en tres etapas cada una de 2 horas de duración a una temperatura de 55°C. En cada etapa se añadieron NaOH (1 % p/v) y metanol (10% v/v). Concluida la reacción se detuvo la agitación y la mezcla se separó mediante centrifugación. Se obtuvieron dos fases: una ligera, conteniendo los ésteres metílicos y metanol en exceso, y una fase pesada formada por glicerina, restos de metanol, catalizador y sales. A sample (0.5 kg) of oil extracted and refined from the strain P. brassicacearum CECT 8162 was used to carry out the transesterification reaction. The reaction was carried out in three stages each lasting 2 hours at a temperature of 55 ° C. In each step, NaOH (1% w / v) and methanol (10% v / v) were added. After completion of the reaction, stirring was stopped and the mixture was separated by centrifugation. Two phases were obtained: a light one, containing the methyl esters and excess methanol, and a heavy phase formed by glycerin, methanol residues, catalyst and salts.
La purificación de la fase ligera se realizó mediante cuatro etapas de lavado a 55°C. En la primera se utilizó HCI (al 2%) y en las tres restantes agua destilada. Al finalizar cada lavado se dejó decantar la mezcla hasta lograr una buena separación de la fase orgánica y acuosa. Se retiró la fase acuosa y los ésteres metílicos se sometieron a una etapa de secado, para eliminar los restos de metanol y agua, mediante evaporación a vacío y 115°C. La cantidad final obtenida fue de 0,49 kg de ésteres metílicos lo que representa un rendimiento del 98%. El análisis del biodiésel obtenido cumplió todos los parámetros exigidos por la norma EN 14214. The purification of the light phase was carried out by four washing steps at 55 ° C. In the first, HCI (2%) was used and in the remaining three distilled water. At the end of each wash, the mixture was allowed to decant until a good separation of the organic and aqueous phase was achieved. The aqueous phase was removed and the methyl esters were subjected to a drying stage, to remove the remains of methanol and water, by evaporation under vacuum and 115 ° C. The final amount obtained was 0.49 kg of methyl esters, which represents a 98% yield. The biodiesel analysis obtained met all the parameters required by the EN 14214 standard.
DEPÓSITOS DE MATERIAL BIOLÓGICO BIOLOGICAL MATERIAL DEPOSITS
La cepa Pseudomonas brassicacearum caracterizada por su capacidad de acumular lípidos hasta al menos un 20% del peso seco ha sido depositada en la Colección Española de Cultivos Tipo en las condiciones estipuladas en el Tratado de Budapest. El deposito se efectuó el 15 de junio de 2012 y el número asignado a dicho depósito fue de CECT 8162. The strain Pseudomonas brassicacearum characterized by its ability to accumulate lipids up to at least 20% of the dry weight has been deposited in the Spanish Type Culture Collection under the conditions stipulated in the Budapest Treaty. The deposit was made on June 15, 2012 and the number assigned to said deposit was CECT 8162.

Claims

REIVINDICACIONES
1. Un microorganismo de la cepa Pseudomonas brassicacearum CECT 8162, o de una cepa muíante de la misma que mantiene la capacidad de acumular lípidos hasta al menos un 20% del peso seco. 1. A microorganism of the Pseudomonas brassicacearum CECT 8162 strain, or a mutant strain thereof that maintains the ability to accumulate lipids up to at least 20% of the dry weight.
2. Un procedimiento para obtener una biomasa microbiana rica en triglicéridos, que comprende 2. A procedure to obtain a microbial biomass rich in triglycerides, which comprises
i) cultivar un microorganismo según la reivindicación 1 , en un medio de cultivo que comprende al menos una fuente de carbono y al menos una fuente de nitrógeno, en condiciones adecuadas para el crecimiento de dicho microorganismo, y i) cultivating a microorganism according to claim 1, in a culture medium that comprises at least one carbon source and at least one nitrogen source, under conditions suitable for the growth of said microorganism, and
ii) separar la biomasa microbiana del medio de cultivo, ii) separate the microbial biomass from the culture medium,
en donde la proporción C:N en el medio de cultivo es elevada. where the C:N ratio in the culture medium is high.
3. El procedimiento según la reivindicación 2, en donde la proporción C:N es de al menos 10:1 (peso/peso). 3. The method according to claim 2, wherein the C:N ratio is at least 10:1 (weight/weight).
4. El procedimiento según cualquiera de las reivindicaciones 2 o 3, en donde la fuente de carbono se selecciona del grupo que consiste en glucosa, glicerol, melazas, xilosa, arabinosa, mañosa, fructosa, acetato y combinaciones de las mismas. 4. The process according to any of claims 2 or 3, wherein the carbon source is selected from the group consisting of glucose, glycerol, molasses, xylose, arabinose, mannose, fructose, acetate and combinations thereof.
5. El procedimiento según cualquiera de las reivindicaciones 2 a 4, en donde la fuente de carbono es glucosa. 5. The method according to any of claims 2 to 4, wherein the carbon source is glucose.
6. El procedimiento según cualquiera de las reivindicaciones 2 a 5, en donde la fuente de nitrógeno se selecciona del grupo que consiste en extracto de levadura, peptona, líquido macerado de maíz, urea, glutamato sódico, diferentes fuentes de nitrógeno inorgánico, como sales de amonio y combinaciones de las mismas. 6. The method according to any of claims 2 to 5, wherein the nitrogen source is selected from the group consisting of yeast extract, peptone, corn steep liquid, urea, sodium glutamate, different inorganic nitrogen sources, such as salts. of ammonium and combinations thereof.
7. El procedimiento según cualquiera de las reivindicaciones 2 a 6, en donde la fuente de nitrógeno es una sal de amonio, preferiblemente cloruro de amonio. 7. The process according to any of claims 2 to 6, wherein the nitrogen source is an ammonium salt, preferably ammonium chloride.
8. El procedimiento según cualquiera de las reivindicaciones 2 a 7, en donde las condiciones adecuadas para el crecimiento de dicho microorganismo de la etapa i) comprenden 8. The procedure according to any of claims 2 to 7, wherein the conditions suitable for the growth of said microorganism of step i) comprise
temperatura en un rango entre 18 °C y 37 °C, temperature in a range between 18 °C and 37 °C,
- concentración de oxígeno disuelto de al menos el 20%, y/o - dissolved oxygen concentration of at least 20%, and/or
agitación constante. constant stirring.
9. El procedimiento según cualquiera de las reivindicaciones 2 a 8, en donde la etapa ii) se realiza mediante un método seleccionado del grupo que consiste en filtración, microfiltración, centrifugación y combinaciones de los mismos. 9. The procedure according to any of claims 2 to 8, wherein step ii) is carried out by a method selected from the group consisting of filtration, microfiltration, centrifugation and combinations thereof.
10. El procedimiento según cualquiera de las reivindicaciones 2 a 9, que comprende además secar la biomasa microbiana de la etapa ii). 10. The method according to any of claims 2 to 9, further comprising drying the microbial biomass of step ii).
1 1. El procedimiento según la reivindicación 10, en donde la etapa de secado se realiza a una temperatura entre 50 °C y 70 °C. 1 1. The procedure according to claim 10, wherein the drying step is carried out at a temperature between 50 °C and 70 °C.
12. Biomasa microbiana rica en triglicéridos obtenible según el procedimiento de cualquiera de las reivindicaciones 2 a 1 1. 12. Microbial biomass rich in triglycerides obtainable according to the procedure of any of claims 2 to 1 1.
13. Un procedimiento para obtener una composición lipídica a partir de la biomasa microbiana según la reivindicación 12, que comprende extraer la fracción lipídica de la biomasa microbiana. 13. A procedure to obtain a lipid composition from the microbial biomass according to claim 12, which comprises extracting the lipid fraction from the microbial biomass.
14. El procedimiento según la reivindicación 13 en donde la extracción de la fracción lipídica se lleva a cabo mediante extracción mecánica o mediante un método de extracción sólido-líquido. 14. The procedure according to claim 13 wherein the extraction of the lipid fraction is carried out by mechanical extraction or by a solid-liquid extraction method.
15. El procedimiento según la reivindicación 14, en donde el método de extracción mecánica se realiza usando prensa de tornillo, prensa francesa o molino de bolas. 15. The method according to claim 14, wherein the mechanical extraction method is performed using screw press, French press or ball mill.
El procedimiento según la reivindicación 15, en donde el método de extracción sólido-líquido se realiza usando un disolvente orgánico inmiscible en agua. The procedure according to claim 15, wherein the solid-liquid extraction method is carried out using an organic solvent immiscible in water.
17. El procedimiento según la reivindicación 16, en donde dicho disolvente orgánico inmiscible en agua se selecciona del grupo que consiste en n-hexano, acetona, éter de petróleo, éter-etílico y combinaciones de los mismos. i17. The process according to claim 16, wherein said water-immiscible organic solvent is selected from the group consisting of n-hexane, acetone, petroleum ether, ethyl ether and combinations thereof. Yo
18. Un procedimiento para obtener parafinas que comprende 18. A procedure to obtain paraffins that comprises
i) retinar los lípidos obtenidos de acuerdo al procedimiento según cualquiera de las reivindicaciones 13 a 17 y i) retinal the lipids obtained according to the procedure according to any of claims 13 to 17 and
ii) convertir la mezcla de lípidos refinados obtenidos en la etapa i) en parafinas. ii) convert the mixture of refined lipids obtained in step i) into paraffins.
19. El procedimiento según la reivindicación 18, en donde la etapa i) se realiza mediante al menos un lavado con NaOH a una concentración entre 5% y 15%. 19. The procedure according to claim 18, wherein step i) is carried out by at least one wash with NaOH at a concentration between 5% and 15%.
20. El procedimiento según cualquiera de las reivindicaciones 18 o 19, en donde la etapa ii) comprende un procedimiento seleccionado del grupo que consiste en desoxigenación, hidrogenación e hidrotratamiento. 20. The procedure according to any of claims 18 or 19, wherein step ii) comprises a procedure selected from the group consisting of deoxygenation, hydrogenation and hydrotreatment.
21. El procedimiento según la reivindicación 20, en donde el método de hidrotratamiento comprende 21. The method according to claim 20, wherein the hydrotreatment method comprises
- poner en contacto la mezcla de lípidos refinados obtenidos en la etapa ii) con agua, - contact the mixture of refined lipids obtained in step ii) with water,
aplicar una temperatura y presión elevadas, y apply elevated temperature and pressure, and
separar la fase orgánica del agua. separate the organic phase from the water.
22. El procedimiento según la reivindicación 21 , en donde el método de hidroprocesamiento comprende 22. The method according to claim 21, wherein the hydroprocessing method comprises
hidrogenar la mezcla de lípidos refinados obtenidos en la etapa ii), y desoxigenar dicha mezcla de lípidos refinados. hydrogenate the mixture of refined lipids obtained in step ii), and deoxygenate said mixture of refined lipids.
23. El procedimiento según la reivindicación 22, en donde la hidrogenación y desoxigenación de dicha mezcla de lípidos refinados se realiza en la misma etapa o en etapas consecutivas. 23. The process according to claim 22, wherein the hydrogenation and deoxygenation of said refined lipid mixture is carried out in the same step or in consecutive steps.
24. El procedimiento según cualquiera de las reivindicaciones 22 o 23, en donde el hidroprocesamiento se lleva a cabo a temperatura y presión elevadas. 24. The method according to any of claims 22 or 23, wherein the hydroprocessing is carried out at elevated temperature and pressure.
25. El procedimiento según cualquiera de las reivindicaciones 18 a 24, que comprende adicionalmente un proceso de craqueo catalítico en condiciones adecuadas para convertir las parafinas obtenidas en la etapa ii) en bioqueroseno. 25. The procedure according to any of claims 18 to 24, which additionally comprises a catalytic cracking process under suitable conditions to convert the paraffins obtained in step ii) into biokerosene.
26. El procedimiento según la reivindicación 25, en donde dicho craqueo catalítico emplea un catalizador sólido. 26. The process according to claim 25, wherein said catalytic cracking employs a solid catalyst.
27. El procedimiento según la reivindicación 26, en donde dicho catalizador sólido se selecciona del grupo que consiste en un sistema bifuncional de hidrogenación- deshidrogenación metálico y un componente ácido para craqueo en presencia de hidrógeno. 27. The process according to claim 26, wherein said solid catalyst is selected from the group consisting of a bifunctional metallic hydrogenation-dehydrogenation system and an acid component for cracking in the presence of hydrogen.
28. El procedimiento según la reivindicación 27, en donde dicho catalizador sólido es un sistema bifuncional de hidrogenación-deshidrogenación metálico. 28. The process according to claim 27, wherein said solid catalyst is a bifunctional metallic hydrogenation-dehydrogenation system.
29. El procedimiento según la reivindicación 28, en donde dicho catalizador sólido es un componente ácido para craqueo en presencia de hidrógeno. 29. The process according to claim 28, wherein said solid catalyst is an acidic component for cracking in the presence of hydrogen.
30. Un procedimiento para obtener biodiesel que comprende 30. A procedure to obtain biodiesel that includes
i) refinar los lípidos obtenidos de acuerdo al procedimiento según cualquiera de las reivindicaciones 13 a 17 y i) refine the lipids obtained according to the procedure according to any of claims 13 to 17 and
ii) convertir la mezcla de lípidos refinados obtenidos en la etapa i) en biodiesel. ii) convert the mixture of refined lipids obtained in step i) into biodiesel.
31. El procedimiento según la reivindicación 30, en donde la etapa i) se realiza mediante al menos un lavado con NaOH a una concentración entre 5% y 15%. 31. The procedure according to claim 30, wherein step i) is carried out by at least one wash with NaOH at a concentration between 5% and 15%.
32. El procedimiento según las reivindicaciones 30 o 31 , en donde el procedimiento de conversión de la mezcla de lípidos refinados de la etapa i) en un biodiésel es una transesterificación. 32. The procedure according to claims 30 or 31, wherein the procedure for converting the refined lipid mixture of step i) into a biodiesel is a transesterification.
33. El procedimiento según la reivindicación 32, en donde la transesterificación es catalizada por bases, ácidos o enzimas. Uso del microorganismo según la reivindicación 1 o de la biomasa microbiana rica en triglicéridos según la reivindicación 12 para obtener una biomasa microbiana rica en triglicéridos, para extraer los lípidos de la biomasa microbiana, para obtener para obtener parafinas o para obtener biodiesel. 33. The process according to claim 32, wherein the transesterification is catalyzed by bases, acids or enzymes. Use of the microorganism according to claim 1 or of the microbial biomass rich in triglycerides according to claim 12 to obtain a microbial biomass rich in triglycerides, to extract lipids from the microbial biomass, to obtain paraffins or to obtain biodiesel.
PCT/ES2013/070454 2013-07-02 2013-07-02 Compositions and methods for biofuel production using pseudomonas brassicacearum WO2015001141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070454 WO2015001141A1 (en) 2013-07-02 2013-07-02 Compositions and methods for biofuel production using pseudomonas brassicacearum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070454 WO2015001141A1 (en) 2013-07-02 2013-07-02 Compositions and methods for biofuel production using pseudomonas brassicacearum

Publications (1)

Publication Number Publication Date
WO2015001141A1 true WO2015001141A1 (en) 2015-01-08

Family

ID=49510182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070454 WO2015001141A1 (en) 2013-07-02 2013-07-02 Compositions and methods for biofuel production using pseudomonas brassicacearum

Country Status (1)

Country Link
WO (1) WO2015001141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182199A (en) * 2018-09-29 2019-01-11 中国科学院成都生物研究所 One plant of rape pseudomonad with Plant growth promotion

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273664A1 (en) * 2000-03-31 2003-01-08 Idemitsu Petrochemical Co., Ltd. Process for producing lipids and lipid-secreting microorganisms
EP1640437A1 (en) 2004-09-28 2006-03-29 Neste Oil Oyj Production of fuel components
EP1681337A1 (en) 2005-01-14 2006-07-19 Neste Oil OYJ Method for the manufacture of hydrocarbons
EP1682466A1 (en) 2003-11-13 2006-07-26 Neste Oil OYJ Process for the hydrogenation of olefins
EP1795576A1 (en) 2005-12-12 2007-06-13 Neste Oil OYJ Process for the manufacture of hydrocarbons
WO2007068797A2 (en) 2005-12-12 2007-06-21 Neste Oil Oyj Process for producing a branched hydrocarbon component
US20080104724A1 (en) 2000-10-20 2008-05-01 Board Of Trustees Of Michigan State University Transgenic plants containing ligninase and cellulase which degrade lignin and cellulose to fermentable sugars
WO2008151149A2 (en) 2007-06-01 2008-12-11 Solazyme, Inc. Production of oil in microorganisms
EP2141217A1 (en) 2008-07-01 2010-01-06 Neste Oil OYJ Process for the manufacture of hydrocarbons of biological origin
WO2010022511A1 (en) 2008-08-29 2010-03-04 Iogen Energy Corporation Method for low water hydrolysis or pretreatment of polysaccharides in a lignocellulosic feedstock
US20100239533A1 (en) * 2009-03-19 2010-09-23 Martek Biosciences Corporation Thraustochytrids, Fatty Acid Compositions, and Methods of Making and Uses Thereof
WO2010147642A1 (en) 2009-06-15 2010-12-23 Massachusetts Institute Of Technology Production of triacylglycerides, fatty acids, and their derivatives
EP2407531A1 (en) 2010-07-16 2012-01-18 Neste Oil Oyj Microorganisms with extended substrate utilization range

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273664A1 (en) * 2000-03-31 2003-01-08 Idemitsu Petrochemical Co., Ltd. Process for producing lipids and lipid-secreting microorganisms
US20080104724A1 (en) 2000-10-20 2008-05-01 Board Of Trustees Of Michigan State University Transgenic plants containing ligninase and cellulase which degrade lignin and cellulose to fermentable sugars
EP1682466A1 (en) 2003-11-13 2006-07-26 Neste Oil OYJ Process for the hydrogenation of olefins
EP1640437A1 (en) 2004-09-28 2006-03-29 Neste Oil Oyj Production of fuel components
EP1681337A1 (en) 2005-01-14 2006-07-19 Neste Oil OYJ Method for the manufacture of hydrocarbons
EP1795576A1 (en) 2005-12-12 2007-06-13 Neste Oil OYJ Process for the manufacture of hydrocarbons
WO2007068797A2 (en) 2005-12-12 2007-06-21 Neste Oil Oyj Process for producing a branched hydrocarbon component
WO2008151149A2 (en) 2007-06-01 2008-12-11 Solazyme, Inc. Production of oil in microorganisms
US20090047721A1 (en) 2007-06-01 2009-02-19 Solazyme, Inc. Renewable Diesel and Jet Fuel from Microbial Sources
EP2141217A1 (en) 2008-07-01 2010-01-06 Neste Oil OYJ Process for the manufacture of hydrocarbons of biological origin
WO2010000934A1 (en) 2008-07-01 2010-01-07 Neste Oil Oyj Process for the manufacture of hydrocarbons of biological origin
WO2010022511A1 (en) 2008-08-29 2010-03-04 Iogen Energy Corporation Method for low water hydrolysis or pretreatment of polysaccharides in a lignocellulosic feedstock
US20100239533A1 (en) * 2009-03-19 2010-09-23 Martek Biosciences Corporation Thraustochytrids, Fatty Acid Compositions, and Methods of Making and Uses Thereof
WO2010147642A1 (en) 2009-06-15 2010-12-23 Massachusetts Institute Of Technology Production of triacylglycerides, fatty acids, and their derivatives
EP2407531A1 (en) 2010-07-16 2012-01-18 Neste Oil Oyj Microorganisms with extended substrate utilization range

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CUERVO ET AL., BIOTECHNOLOGY, vol. 13, 2008, pages 3
FRENZ ET AL., ENZYME MICROB. TECHNOL., vol. 11, 1989, pages 717
INOUE ET AL., BIOMASS BIOENERGY, vol. 6, no. 4, 1993, pages 269 - 274
KIMURA K ET AL., J MICROBIOL. METHODS, vol. 56, 2004, pages 331 - 338
MADIGAN; MARTINKO: "Brock Biology of Microorganisms", 2005
MANIATIS ET AL.: "Molecular Cloning, A Laboratory Manual", 1982, COLD SPRING HARBOR LABORATORY
MINOWA ET AL., FUEL, vol. 74, no. 12, 1995, pages 1735 - 1738
SAWAYAMA ET AL., BIOMASS AND BIOENERGY, vol. 17, 1999, pages 33 - 39

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182199A (en) * 2018-09-29 2019-01-11 中国科学院成都生物研究所 One plant of rape pseudomonad with Plant growth promotion
CN109182199B (en) * 2018-09-29 2021-09-07 中国科学院成都生物研究所 Pseudomonas brassicae with plant growth promoting effect

Similar Documents

Publication Publication Date Title
Bhatia et al. An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies
Ganesan et al. A review on prospective production of biofuel from microalgae
US20200032182A1 (en) Utilization of Wastewater for Microalgal Cultivation
Atadashi et al. The effects of water on biodiesel production and refining technologies: A review
Patel et al. Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1
WO2014198988A1 (en) Production of microbial oils
Neto et al. Third-generation biofuels: An overview
CN102203229A (en) Process for producing fatty acids for biofuels, biodiesel, and other useful chemicals
JP2012520076A (en) Algal biomass fractionation
WO2010006228A2 (en) A method of producing fatty acids for biofuel, biodiesel, and other valuable chemicals
JP2013505024A (en) Fermentation of microalgae using controlled lighting
EP3080288B1 (en) Method of processing lignocellulosic material using a cationic compound
KR20100091217A (en) Method for producing lipid
PT106959B (en) PROCESSES FOR THE PRODUCTION OF MICROBIAL GLYCOLIPIDES OF THE MANOSILERITRITOLIPID TYPE, FROM LEMOCELLULOSIC MATERIALS AND THEIR APPLICATIONS
CN101475823B (en) Method for preparing biodiesel from sugarcane
US9879288B2 (en) Use of marine algae for producing polymers
US20140171608A1 (en) Use of marine algae for producing polymers
Halim et al. Bioprocess engineering aspects of biodiesel and bioethanol production from microalgae
US20110167714A1 (en) Use of marine algae for producing hydrocarbons
Maymandi et al. Optimization of lipid productivity by Citrobacter youngae CECT 5335 and biodiesel preparation using ionic liquid catalyst
Roy et al. Liquid fuels production from algal biomass
WO2015001141A1 (en) Compositions and methods for biofuel production using pseudomonas brassicacearum
ES2564249B1 (en) COMPOSITIONS AND METHODS FOR THE PRODUCTION OF BIOFUELS
Sirajunnisa et al. Current and future perspectives on lipid-based biofuels
Singh et al. Lipid Biomass to Biofuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13783615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P201590136

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13783615

Country of ref document: EP

Kind code of ref document: A1