WO2015000938A1 - A method of converting oxygenates to olefins - Google Patents

A method of converting oxygenates to olefins Download PDF

Info

Publication number
WO2015000938A1
WO2015000938A1 PCT/EP2014/064025 EP2014064025W WO2015000938A1 WO 2015000938 A1 WO2015000938 A1 WO 2015000938A1 EP 2014064025 W EP2014064025 W EP 2014064025W WO 2015000938 A1 WO2015000938 A1 WO 2015000938A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
olefins
dipleg
reactor
coke
Prior art date
Application number
PCT/EP2014/064025
Other languages
French (fr)
Inventor
Richard Addison Sanborn
Ye Mon Chen
Sivakumar SADASIVAN VIJAYAKUMARI
Leslie Andrew Chewter
Original Assignee
Shell Internationale Research Maatschappij B.V.
Shell Oil Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V., Shell Oil Company filed Critical Shell Internationale Research Maatschappij B.V.
Publication of WO2015000938A1 publication Critical patent/WO2015000938A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00247Fouling of the reactor or the process equipment

Definitions

  • the invention relates to a method for the conversion of oxygenates to olefins.
  • the invention further relates to the use of a coke catcher to prevent plugging of the cyclone dipleg.
  • Oxygenate-to-olefin processes are well described in the art. Typically, oxygenate-to-olefin processes are used to produce predominantly ethylene and propylene. An example of such an oxygenate-to-olefin process is described in US Patent Application Publication No. 2011/112344, which is herein incorporated by
  • the publication describes a process for the preparation of an olefin product comprising ethylene and/or propylene, comprising a step of converting an oxygenate feedstock in an oxygenate-to-olefins conversion system, comprising a reaction zone in which an oxygenate feedstock is contacted with an oxygenate conversion catalyst under oxygenate conversion conditions, to obtain a conversion effluent comprising ethylene and/or
  • Additional compounds, especially higher molecular weight hydrocarbons are typically produced with the ethylene and propylene in an oxygenate-to-olefins process.
  • a method of improving the yield of lower molecular weight olefins is desired as these olefins, mainly ethylene and propylene, serve as feeds for the production of numerous chemicals.
  • the catalyst and the activity of the catalyst are important to the performance of the reaction step. - -
  • the invention provides a system for converting oxygenates to olefins comprising: a reactor that has inlets for catalyst and one or more feedstocks and an outlet for the effluent and entrained catalyst; a gas/solid separation device for separating the effluent from the entrained catalyst having a separation section at the top and a dipleg section at the bottom where the dipleg is in fluid communication with the reactor and carries catalyst back to the reactor; and a coke catcher located between the separation section and the dipleg that has a plurality of holes that are sized to allow passage of small particles of coke and catalyst that can pass freely through the dipleg but not to allow passage of large particles of coke that could plug the dipleg.
  • the invention further provides a method of
  • converting an oxygenate comprising feedstock to olefins comprising: feeding an oxygenate comprising feedstock into a reactor containing an oxygenate to olefins conversion catalyst; contacting the feedstock with the catalyst at oxygenate conversion conditions to produce an effluent comprising olefins and catalyst; removing the effluent from the reactor; separating the catalyst from the effluent in a gas/solid separation device; and passing the catalyst through a coke catcher to a dipleg that is in fluid communication with the reactor wherein the coke catcher has a plurality of openings large enough for solids that are less than 75% of the diameter of the dipleg in size.
  • Figure 1 depicts an embodiment of a coke catcher - -
  • MTO methanol to olefins
  • MTP methanol to propylene
  • the oxygenate to olefins process receives as a feedstock a stream comprising one or more oxygenates.
  • An oxygenate is an organic compound that contains at least one oxygen atom.
  • the oxygenate is preferably one or more alcohols, preferably aliphatic alcohols where the
  • aliphatic moiety has from 1 to 20 carbon atoms
  • the alcohols that can be used as a feed to this process include lower straight and branched chain aliphatic alcohols.
  • ethers and other oxygen containing organic molecules can be used. Suitable examples of oxygenates include methanol, ethanol, n- propanol, isopropanol, methyl ethyl ether, dimethyl ether, diethyl ether, di-isopropyl ether, formaldehyde, dimethyl carbonate, dimethyl ketone, acetic acid and mixtures thereof.
  • the alcohols that can be used as a feed to this process include lower straight and branched chain aliphatic alcohols.
  • ethers and other oxygen containing organic molecules can be used. Suitable examples of oxygenates include methanol, ethanol, n- propanol, isopropanol, methyl ethyl ether, dimethyl ether, diethyl ether, di-isopropyl ether, formaldehyde, dimethyl carbonate, dimethyl
  • feedstock comprises one or more of methanol, ethanol, dimethyl ether, diethyl ether or a combination thereof, - - more preferably methanol or dimethyl ether and most preferably methanol.
  • the oxygenate is obtained as a reaction product of synthesis gas.
  • Synthesis gas can, for example, be generated from fossil fuels, such as from natural gas or oil, or from the gasification of coal.
  • the oxygenate is obtained from biomaterials , such as through fermentation.
  • the oxygenate feedstock can be obtained from a pre- reactor, which converts methanol at least partially into dimethylether and water. Water may be removed, by e.g., distillation. In this way, less water is present in the process of converting oxygenates to olefins, which has advantages for the process design and lowers the severity of hydrothermal conditions to which the catalyst is exposed .
  • the oxygenate to olefins process may, in certain embodiments, also receive an olefin co-feed.
  • This co- feed may comprise olefins having carbon numbers of from 1 to 8, preferably from 3 to 6 and more preferably 4 or 5.
  • Suitable olefin co-feeds include butene, pentene and hexene .
  • the oxygenate feed comprises one or more oxygenates and olefins, more preferably oxygenates and olefins in an oxygenate : olefin molar ratio in the range of from 1000:1 to 1:1, preferably 100:1 to 1:1. More preferably, in a oxygenate : olefin molar ratio in the range of from 20:1 to 1:1, more preferably in the range of 18:1 to 1:1, still more preferably in the range of 15:1 to 1:1, even still more preferably in the range of
  • the olefin co-feed may also comprise paraffins.
  • paraffins may serve as diluents or in some cases they may participate in one or more of the reactions taking place in the presence of the catalyst.
  • the paraffins may include alkanes having carbon numbers from 1 to 10, preferably from 3 to 6 and more preferably 4 or 5.
  • the paraffins may be recycled from separation steps occurring downstream of the oxygenate to olefins
  • the oxygenate to olefins process may, in certain embodiments, also receive a diluent co-feed to reduce the concentration of the oxygenates in the feed and suppress side reactions that lead primarily to high molecular weight products.
  • the diluent should generally be non- reactive to the oxygenate feedstock or to the catalyst. Possible diluents include helium, argon, nitrogen, carbon monoxide, carbon dioxide, methane, water and mixtures thereof. The more preferred diluents are water and nitrogen with the most preferred being water.
  • the diluent may be used in either liquid or vapor form.
  • the diluent may be added to the feedstock before or at the time of entering the reactor or added
  • the diluent is added in an amount in the range of from 1 to 90 mole percent, more preferably from 1 to 80 mole percent, more preferably from 5 to 50 mole percent, most preferably from 5 to 40 mole percent.
  • diluent produced as a by-product, which serves as an in-situ - - produced diluent.
  • additional steam is added as diluent.
  • the amount of additional diluent that needs to be added depends on the in-situ water make, which in turn depends on the composition of the oxygenate feed. Where the diluent provided to the reactor is water or steam, the molar ratio of oxygenate to diluent is between 10:1 and 1:20.
  • the oxygenate feed is contacted with the catalyst at a temperature in the range of from 200 to 1000 °C, preferably of from 300 to 800 °C, more preferably of from
  • the feed may be contacted with the catalyst at a
  • the feed may be contacted with the catalyst at a pressure in the range of from 0.1 kPa (1 mbar) to 5 MPa (50 bar), preferably of from 100 kPa (1 bar) to 1.5 MPa (15 bar), more preferably of from 100 kPa (1 bar) to 300 kPa (3 bar) .
  • Reference herein to pressures is to absolute pressures.
  • WHSV weight-to-weight ratio
  • WHSV is defined as the mass of the feed (excluding diluents) per hour per mass of catalyst.
  • the WHSV should preferably be in the range of from 1 hr -1 to 5000 hr -1 .
  • the process takes place in a reactor and the
  • catalyst may be present in the form of a fixed bed, a moving bed, a fluidized bed, a dense fluidized bed, a fast or turbulent fluidized bed, or a circulating
  • the reactor is a riser reactor.
  • riser reactor allows for very - - accurate control of the contact time of the feed with the catalyst, as riser reactors exhibit a flow of catalyst and reactants through the reactor that approaches plug flow .
  • Catalysts suitable for use in the conversion of oxygenates to olefins may be made from practically any small or medium pore molecular sieve.
  • a suitable type of molecular sieve is a zeolite.
  • Suitable zeolites include, but are not limited to AEI, AEL, AFT, AFO, APC, ATN, ATT, ATV, AWW, BIK, CAS, CHA, CHI, DAC,
  • Suitable catalysts include those containing a zeolite of the ZSM group, in particular of the MFI type, such as ZSM-5, the MTT type, such as ZSM-23, the TON type, such as ZSM-22, the MEL type, such as ZSM-11, and the FER type.
  • zeolites are for example zeolites of the STF-type, such as SSZ-35, the SFF type, such as SSZ-44 and the EU-2 type, such as ZSM-48.
  • Preferred zeolites for this process include ZSM-5, ZSM-22 and ZSM-23.
  • a preferred MFI-type zeolite for the oxygenate to olefins conversion catalyst has a silica-to-alumina ratio, SAR, of at least 60, preferably at least 80. More preferred MFI-type zeolite has a silica-to-alumina ratio,
  • SAR in the range of 60 to 150, preferably in the range of 80 to 100.
  • the zeolite-comprising catalyst may comprise more than one zeolite.
  • the catalyst comprises at least a more-dimensional zeolite, in particular of the MFI type, more in particular ZSM-5, or of the MEL type, such as zeolite ZSM-11, and a one- - - dimensional zeolite having 10-membered ring channels, such as of the MTT and/or TON type.
  • zeolites in the hydrogen form are used in the zeolite-comprising catalyst, e.g., HZSM- 5, HZSM-11, and HZSM-22, HZSM-23.
  • the zeolite-comprising catalyst e.g., HZSM- 5, HZSM-11, and HZSM-22, HZSM-23.
  • zeolites preferably at least 95wt% and most preferably 100wt% of the total amount of zeolite used is in the hydrogen form. It is well known in the art how to produce such zeolites in the hydrogen form.
  • SAPOs siliocoaluminophosphates
  • SAPOs have a three dimensional microporous crystal framework of P02+, A102-, and Si02 tetrahedral units.
  • Suitable SAPOs include SAPO- 17, -18, 34, -35, -44, but also SAPO-5, -8, -11, -20, -
  • A1PO aluminophosphates
  • MeAlPO (silico) aluminophosphates
  • SAPOs for this process include SAPO-34, SAPO-17 and SAPO-18.
  • substituent metals for the MeAlPO include Co, Cr, Cu, Fe, Ga, Ge, Mg, Mn, Ni, Sn, Ti, Zn and Zr.
  • the molecular sieves described above are formulated into molecular sieve catalyst compositions for use in the oxygenates to olefins conversion reaction.
  • the molecular sieves are formulated into catalysts by combining the molecular sieve with a binder and/or matrix material and/or filler and forming the composition into particles by techniques such as spray-drying, pelletizing, or extrusion.
  • the molecular sieve may be further processed - - before being combined with the binder and/or matrix. For example, the molecular sieve may be milled and/or
  • Suitable binders for use in these molecular sieve catalyst compositions include various types of aluminas, aluminophosphates , silicas and/or other inorganic oxide sol.
  • the binder acts like glue binding the molecular sieves and other materials together, particularly after thermal treatment.
  • Various compounds may be added to stabilize the binder to allow processing.
  • Matrix materials are usually effective at among other benefits, increasing the density of the catalyst composition and increasing catalyst strength (crush strength and/or attrition resistance).
  • Suitable matrix materials include one or more of the following: rare earth metals, metal oxides including titania, zirconia, magnesia, thoria, beryllia, quartz, silica or sols, and mixtures thereof, for example, silica-magnesia, silica- zirconia, silica-titania, and silica-alumina.
  • matrix materials are natural clays, for example, kaolin.
  • a preferred matrix material is kaolin.
  • the molecular sieve, binder and matrix material are combined in the presence of a liquid to form a molecular sieve catalyst slurry.
  • the amount of binder is in the range of from 2 to 40 wt%, preferably in the range of from 10 to 35 wt%, more preferably in the range of from 15 to 30 wt%, based on the total weight of the molecular sieve, binder and matrix material,
  • the slurry may be mixed, preferably with rigorous mixing to form a substantially homogeneous mixture.
  • suitable liquids include one or more of water, alcohols, ketones, aldehydes and/or - - esters. Water is the preferred liquid.
  • the mixture is colloid-milled for a period of time sufficient to produce the desired texture, particle size or particle size distribution.
  • the molecular sieve, matrix and optional binder can be in the same or different liquids and are combined in any order together, simultaneously, sequentially or a combination thereof.
  • water is the only liquid used.
  • the slurry is mixed or milled to achieve a uniform slurry of sub-particles that is then fed to a forming unit.
  • the forming unit is a spray dryer.
  • the forming unit is typically operated at a temperature high enough to remove most of the liquid from the slurry and from the resulting molecular sieve catalyst composition.
  • the particles are then exposed to ion-exchange using an ammonium nitrate or other appropriate solution.
  • the ion exchange is carried out before the phosphorous impregnation.
  • the ammonium nitrate is used to ion exchange the zeolite to remove alkali ions.
  • the zeolite can be impregnated with phosphorous using
  • the ion exchange is carried out after the phosphorous impregnation.
  • alkali phosphates may be used to
  • the catalyst may be formed into spheres, tablets, rings, extrudates or any other shape known to one of ordinary skill in the art. - -
  • the catalyst may be extruded into various shapes, including cylinders and trilobes.
  • the average particle size is in the range of from 1- 200 ym, preferably from 50-100 ym. If extrudates are formed, then the average size is in the range of from 1 mm to 10 mm, preferably from 2 mm to 7 mm.
  • the catalyst may further comprise phosphorus as such or in a compound, i.e. phosphorus other than any
  • phosphorus included in the framework of the molecular sieve is preferred that a MEL or MFI-type zeolite comprising catalyst additionally comprises phosphorus.
  • the molecular sieve catalyst is prepared by first forming a molecular sieve catalyst precursor as described above, optionally impregnating the catalyst with a phosphorous containing compound and then calcining the catalyst precursor to form the catalyst.
  • the phosphorous impregnation may be carried out by any method known to one of skill in the art.
  • the phosphorus-containing compound preferably comprises a phosphorus species such as P0 4 3 ⁇ , P-(OCH 3 ) 3 , or P 2 O 5 , especially PC ⁇ 3- .
  • the phosphorus- containing compound comprises a compound selected from the group consisting of ammonium phosphate, ammonium dihydrogen phosphate, dimethylphosphate, metaphosphoric acid and trimethyl phosphite and phosphoric acid, especially phosphoric acid.
  • the phosphorus containing compound is preferably not a Group II metal phosphate.
  • Group II metal species include magnesium, calcium, strontium and barium; especially calcium.
  • phosphorus can be deposited on the catalyst by impregnation using acidic solutions containing phosphoric acid (H3PO 4 ) .
  • the concentration of the solution can be adjusted to impregnate the desired - - amount of phosphorus on the precursor.
  • the catalyst precursor may then be dried.
  • the catalyst precursor containing phosphorous
  • the calcination of the catalyst is important to determining the performance of the catalyst in the oxygenate to olefins process.
  • the calcination may be carried out in any type of calciner known to one of ordinary skill in the art.
  • the calcination may be carried out in a tray calciner, a rotary calciner, or a batch oven, optionally in the presence of an inert gas and/or oxygen and/or steam.
  • the calcination may be carried out at a temperature in the range of from 400 °C to 1000 °C, preferably in a range of from 450 °C to 800 °C, more preferably in a range of from 500 °C to 700 ° C.
  • Calcination time is typically dependent on the degree of hardening of the molecular sieve catalyst composition and the temperature and ranges from about 15 minutes to about 2 hours.
  • the calcination is carried out in air at a temperature of from 500 °C to 600 °C.
  • the calcination is carried out for a period of time from 30 minutes to 15 hours, preferably from 1 hour to 10 hours, more preferably from 1 hour to 5 hours.
  • the calcination is carried out on a bed of catalyst.
  • the catalyst precursor added to the tray forms a bed which is typically kept stationary during the calcination.
  • the catalyst added to the rotary drum forms a bed that although not stationary does maintain some form and shape as it passes through the calciner .
  • the olefins produced from the feedstock typically have from 2 to 30 carbon atoms, preferably from 2 to 8 carbon atoms, more preferably from 2 to 6 carbon atoms, most preferably ethylene and/or propylene.
  • diolefins having from 4 to 18 carbon atoms, conjugated or
  • nonconj ugated dienes polyenes, vinyl monomers and cyclic olefins may be produced in the reaction.
  • the feedstock preferably one or more oxygenates
  • the oxygenate is methanol
  • the olefins are ethylene and/or propylene.
  • the products from the reactor are typically hydrogen
  • Such systems typically comprise one or more separation, fractionation or
  • distillation towers, columns, and splitters and other associated equipment for example, various condensers, heat exchangers, refrigeration systems or chill trains, compressors, knock-out drums or pots, pumps and the like.
  • the recovery system may include a demethanizer, a deethanizer, a depropanizer, a wash tower often referred to as a caustic wash tower and/or quench tower,
  • absorbers absorbers, adsorbers, membranes, an ethylene-ethane splitter, a propylene-propane splitter, a butene-butane splitter and the like.
  • the preferred products, ethylene and propylene are preferably separated - - and purified for use in derivative processes such as polymerization processes.
  • the products may comprise C4+ olefins, paraffins and
  • C4+ olefins may be recycled to the oxygenate to olefins conversion reaction or fed to a separate reactor for cracking.
  • the paraffins may also be cracked in a
  • the product will typically comprise some aromatic compounds such as benzene, toluene and xylenes. Although it is not the primary aim of the process, xylenes can be seen as a valuable product.
  • Xylenes may be formed in the OTO process by the
  • a separate fraction comprising aromatics, in particular benzene, toluene and xylenes is separated from the gaseous product and at least in part recycled to the oxygenate to olefins conversion reactor as part of the oxygenate feed.
  • part or all of the xylenes in the fraction comprising aromatics are withdrawn from the process as a product prior to recycling the fraction comprising aromatics to the oxygenate to olefins
  • oxygenate to olefins conversion reactor may be further reacted in an additional reactor containing the same or a different molecular sieve catalyst.
  • the C4+ feed is converted over the molecular - - sieve catalyst at a temperature in the range of from 500 to 700 °C.
  • the additional reactor is also referred to as an OCP reactor and the process that takes place in this reactor is referred to as an olefin cracking process.
  • a product which includes at least ethylene and/or propylene and preferably both.
  • the gaseous product may comprise higher olefins, i.e. C4+ olefins, and paraffins.
  • the gaseous product is retrieved from the second reactor as part of a second reactor effluent stream.
  • the olefin feed is contacted with the catalyst at a temperature in the range of from 500 to 700 °C,
  • Reference herein to pressures is to absolute pressures.
  • the C4+ olefins are separated into at least two fractions: a C4 olefin fraction and a C5+ olefin fraction.
  • the C4 olefins are recycled to the oxygenate to olefins conversion reactor and the C5+ olefins are fed to the OCP reactor.
  • the cracking behavior of C4 olefins and C5 olefins is believed to be different when contacted with a molecular sieve catalyst, in particular above 500 °C.
  • the cracking of C4 olefins is an indirect process which involves a primary oligomerization process to a C8, C12 or higher olefin followed by cracking of the
  • oligomers to lower molecular weight hydrocarbons - - including ethylene and propylene, but also, amongst other things, to C5 to C7 olefins, and by-products such as C2 to C6 paraffins, cyclic hydrocarbons and aromatics.
  • the cracking of C4 olefins is prone to coke formation, which places a restriction on the obtainable conversion of the C4 olefins.
  • paraffins, cyclics and aromatics are not formed by cracking. They are formed by hydrogen transfer reactions and cyclization reactions. This is more likely in larger molecules.
  • the C4 olefin cracking process which as mentioned above includes intermediate oligomerization, is more prone to by-product formation than direct cracking of C5 olefins.
  • the conversion of the C4 olefins is typically a function of the temperature and space time (often expressed as the weight hourly space velocity) .
  • C5 olefin cracking is ideally a relatively straight forward-process whereby the C5 olefin cracks into a C2 and a C3 olefin, in particular above 500°C.
  • This cracking reaction can be run at high conversions, up to 100%, while maintaining, at least compared to C4 olefins, high ethylene and propylene yields with a significantly lower by-product and coke make.
  • C5+ olefins can also oligomerize, this process competes with the more beneficial cracking to ethylene and propylene.
  • the C4 olefins are recycled to the oxygenate to olefins conversion reactor.
  • the C4 olefins are alkylated with, for instance, methanol to C5 and/or C6 olefins.
  • These C5 and/or C6 olefins may subsequently be converted into at least ethylene and/or propylene.
  • the main by-products from this oxygenate to olefins conversion reaction are again C4 and C5 olefins, which can be recycled to the oxygenate to olefins conversion reactor and olefin cracking reactor, respectively .
  • the gaseous products further include C4 olefins
  • at least part of the C4 olefins are provided to (i) the oxygenate to olefins conversion reactor together with or as part of the oxygenate feed, and/or (ii) the olefin cracking reactor as part of the olefin feed, more preferably at least part of the C4 olefins is provided to the oxygenate to olefins conversion reactor together with or as part of the oxygenate feed.
  • the gaseous products further include C5 olefins
  • at least part of the C5 olefins are provided to the olefin cracking reactor as part of the olefin feed.
  • the olefin feed to the olefin cracking reactor comprises C4+ olefins, preferably C5+ olefins, more preferably C5 olefins.
  • the oxygenate to olefins conversion reactor and the optional OCP reactor are operated as riser reactors where the catalyst and
  • gas/solid separators are necessary to separate the entrained catalyst from the reactor effluent.
  • the gas/solid separator may be any separator suitable for separating gases from solids.
  • the gas/solid separator comprises one or more centrifugal separation units, preferably cyclone units, optionally combined with a stripper section.
  • the reactor effluent is preferably cooled in the gas/solid separator to terminate the conversion process and prevent the formation of by-products outside the reactors.
  • the cooling may be achieved by use of a water quench .
  • the catalyst may be returned to the reaction zone from which it came, to another reaction zone or to a
  • the catalyst that has been separated in the gas/solid separator may be combined with catalyst from other gas/solid separators before it is sent to a reaction zone or to the regeneration zone.
  • the gas/solid separation device is a cyclone that comprises a cyclone and a dipleg attached to the bottom of the cyclone that is used to pass the catalyst back into the reaction section.
  • the gas/solid separation may comprise multiple cyclones in series which will be referred to as primary and secondary cyclones .
  • the product gas from the reactor has a high
  • Coke may be formed in the reaction zone and entrained with the product gas. Coke that is formed in the cyclone can fall during a thermal cycle (heating or cooling of the cyclone that typically occurs - - during startup and shutdown) and plug the dipleg that is located at the bottom of the cyclone.
  • the invention provides a coke catcher that is located above the top of the dipleg to prevent large pieces of coke from falling into the dipleg and plugging the dipleg.
  • the coke catcher may be a cage that is constructed of metal bar or pipe or rolled plate that has holes for the passage of catalyst and small coke
  • any device known to one of ordinary skill in the art that can be designed with specific size holes can be used as a coke catcher.
  • An optional vortex stabilizer may be positioned above the coke catcher to reduce the velocity of swirling gases around the coke catcher. This prevents erosion damage to the coke catcher.
  • the catalyst will not discharge from the bottom of the cyclone via the dipleg as designed. Instead, the catalyst will be carried overhead with the gas to the downstream processing and separation equipment. This results in loss of catalyst and the potential for
  • FIG. 1 One embodiment is shown in Figure 1.
  • the cyclone is shown with inlet 10, gas outlet pipe 20, separation section 30 and dipleg 40.
  • the location of the coke catcher 50 is shown between the separation section of the cyclone and the dipleg to prevent large solids from passing into the dipleg. - -
  • a portion of the coked molecular sieve catalyst is withdrawn from the reactor and
  • the regeneration system comprises a regenerator where the coked catalyst is contacted with a regeneration medium, preferably an oxygen-containing gas, under regeneration temperature, pressure and residence time conditions.
  • a regeneration medium preferably an oxygen-containing gas
  • Suitable regeneration media include oxygen, O 3 , SO 3 , N 2 0, NO, NO 2 , N 2 0 5 , air, air enriched with oxygen, air diluted with nitrogen or carbon dioxide, oxygen and water, carbon monoxide and/or hydrogen.
  • the regeneration conditions are those capable of burning at least a portion of the coke from the coked catalyst, preferably to a coke level of less than 75% of the coke level on the catalyst entering the regenerator. More preferably the coke level is reduced to less than 50% of the coke level on the catalyst entering the regenerator and most preferably the coke level is reduced to less than 30% of the coke level on the catalyst entering the regenerator. Complete removal of the coke is not
  • the regeneration temperature is in the range of from 200 °C to 1500 °C, preferably from 300 °C to 1000 °C, more preferably from 450 °C to 700 °C and most preferably from 500 °C to 700 °C.
  • the - - catalyst is regenerated at a temperature in the range of from 550 to 650 °C.
  • the preferred residence time of the coked molecular sieve catalyst in the regenerator is in the range of from 1 minute to several hours, most preferably 1 minute to
  • the preferred volume of oxygen in the regeneration medium is from 0.01 mole percent to 10 mole percent based on the total volume of the regeneration medium.
  • regeneration promoters typically metal containing compounds such as platinum and palladium are added to the regenerator directly or indirectly, for example with the coked catalyst composition.
  • a fresh molecular sieve catalyst is added to the regenerator.
  • a portion of the regenerated molecular sieve catalyst from the regenerator is returned to the reactor, directly to the reaction zone or
  • the burning of coke is an exothermic reaction and in certain embodiments, the temperature in the regeneration system is controlled to prevent it from rising too high.
  • Various known techniques for cooling the system and/or the regenerated catalyst may be employed including feeding a cooled gas to the regenerator, or passing the regenerated catalyst through a catalyst cooler. A portion of the cooled regenerated catalyst may be
  • a liquid or - - gaseous fuel may be fed to the regenerator where it will combust and provide additional heat to the catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A system for converting oxygenates to olefins comprising: a reactor that has inlets for catalyst and one or more feedstocks and an outlet for the effluent and entrained catalyst; a gas/solid separation device for separating the effluent from the entrained catalyst having a separation section at the top and a dipleg section at the bottom where the dipleg is in fluid communication with the reactor and carries catalyst back to the reactor; and a coke catcher located between the separation section and the dipleg that has a plurality of holes that are sized to allow passage of small particles of coke and catalyst that can pass freely through the dipleg but not to allow passage of large particles of coke that could plug the dipleg. A method of converting an oxygenate comprising feedstock to olefins in the system described above.

Description

- -
A METHOD OF CONVERTING OXYGENATES TO OLEFINS
Field of the Invention
The invention relates to a method for the conversion of oxygenates to olefins. The invention further relates to the use of a coke catcher to prevent plugging of the cyclone dipleg.
Background
Oxygenate-to-olefin processes ("OTO") are well described in the art. Typically, oxygenate-to-olefin processes are used to produce predominantly ethylene and propylene. An example of such an oxygenate-to-olefin process is described in US Patent Application Publication No. 2011/112344, which is herein incorporated by
reference. The publication describes a process for the preparation of an olefin product comprising ethylene and/or propylene, comprising a step of converting an oxygenate feedstock in an oxygenate-to-olefins conversion system, comprising a reaction zone in which an oxygenate feedstock is contacted with an oxygenate conversion catalyst under oxygenate conversion conditions, to obtain a conversion effluent comprising ethylene and/or
propylene .
Additional compounds, especially higher molecular weight hydrocarbons are typically produced with the ethylene and propylene in an oxygenate-to-olefins process. A method of improving the yield of lower molecular weight olefins is desired as these olefins, mainly ethylene and propylene, serve as feeds for the production of numerous chemicals. The catalyst and the activity of the catalyst are important to the performance of the reaction step. - -
Summary of the Invention
The invention provides a system for converting oxygenates to olefins comprising: a reactor that has inlets for catalyst and one or more feedstocks and an outlet for the effluent and entrained catalyst; a gas/solid separation device for separating the effluent from the entrained catalyst having a separation section at the top and a dipleg section at the bottom where the dipleg is in fluid communication with the reactor and carries catalyst back to the reactor; and a coke catcher located between the separation section and the dipleg that has a plurality of holes that are sized to allow passage of small particles of coke and catalyst that can pass freely through the dipleg but not to allow passage of large particles of coke that could plug the dipleg.
The invention further provides a method of
converting an oxygenate comprising feedstock to olefins comprising: feeding an oxygenate comprising feedstock into a reactor containing an oxygenate to olefins conversion catalyst; contacting the feedstock with the catalyst at oxygenate conversion conditions to produce an effluent comprising olefins and catalyst; removing the effluent from the reactor; separating the catalyst from the effluent in a gas/solid separation device; and passing the catalyst through a coke catcher to a dipleg that is in fluid communication with the reactor wherein the coke catcher has a plurality of openings large enough for solids that are less than 75% of the diameter of the dipleg in size.
Brief Description of the Drawings
Figure 1 depicts an embodiment of a coke catcher - -
Detailed Description
The method for converting oxygenates to olefins and specifically the use of a coke catcher to prevent
plugging of the cyclone dipleg described herein provides an improved method for the conversion of oxygenates to olefins. The use of this coke catcher is effective in any known oxygenate to olefin process, including
processes known as methanol to olefins (MTO) and methanol to propylene (MTP) . The oxygenate to olefins process can, in certain embodiments, be as described in any of the following references: US 2005/0038304, WO
2006/020083, WO 2007/135052, WO 2009/065848, WO
2009/065877, WO 2009/065875, WO 2009/065870, WO
2009/065855.
The oxygenate to olefins process receives as a feedstock a stream comprising one or more oxygenates. An oxygenate is an organic compound that contains at least one oxygen atom. The oxygenate is preferably one or more alcohols, preferably aliphatic alcohols where the
aliphatic moiety has from 1 to 20 carbon atoms,
preferably from 1 to 10 carbon atoms, more preferably from 1 to 5 carbon atoms and most preferably from 1 to 4 carbon atoms. The alcohols that can be used as a feed to this process include lower straight and branched chain aliphatic alcohols. In addition, ethers and other oxygen containing organic molecules can be used. Suitable examples of oxygenates include methanol, ethanol, n- propanol, isopropanol, methyl ethyl ether, dimethyl ether, diethyl ether, di-isopropyl ether, formaldehyde, dimethyl carbonate, dimethyl ketone, acetic acid and mixtures thereof. In a preferred embodiment, the
feedstock comprises one or more of methanol, ethanol, dimethyl ether, diethyl ether or a combination thereof, - - more preferably methanol or dimethyl ether and most preferably methanol.
In one embodiment, the oxygenate is obtained as a reaction product of synthesis gas. Synthesis gas can, for example, be generated from fossil fuels, such as from natural gas or oil, or from the gasification of coal. In another embodiment, the oxygenate is obtained from biomaterials , such as through fermentation.
The oxygenate feedstock can be obtained from a pre- reactor, which converts methanol at least partially into dimethylether and water. Water may be removed, by e.g., distillation. In this way, less water is present in the process of converting oxygenates to olefins, which has advantages for the process design and lowers the severity of hydrothermal conditions to which the catalyst is exposed .
The oxygenate to olefins process may, in certain embodiments, also receive an olefin co-feed. This co- feed may comprise olefins having carbon numbers of from 1 to 8, preferably from 3 to 6 and more preferably 4 or 5.
Examples of suitable olefin co-feeds include butene, pentene and hexene .
Preferably, the oxygenate feed comprises one or more oxygenates and olefins, more preferably oxygenates and olefins in an oxygenate : olefin molar ratio in the range of from 1000:1 to 1:1, preferably 100:1 to 1:1. More preferably, in a oxygenate : olefin molar ratio in the range of from 20:1 to 1:1, more preferably in the range of 18:1 to 1:1, still more preferably in the range of 15:1 to 1:1, even still more preferably in the range of
14:1 to 1:1. It is preferred to convert a C4 olefin, recycled from the oxygenate to olefins conversion
reaction together with an oxygenate, to obtain a high - - yield of ethylene and propylene, therefore preferably at least one mole of oxygenate is provided for every mole of C4 olefin.
The olefin co-feed may also comprise paraffins.
These paraffins may serve as diluents or in some cases they may participate in one or more of the reactions taking place in the presence of the catalyst. The paraffins may include alkanes having carbon numbers from 1 to 10, preferably from 3 to 6 and more preferably 4 or 5. The paraffins may be recycled from separation steps occurring downstream of the oxygenate to olefins
conversion step.
The oxygenate to olefins process may, in certain embodiments, also receive a diluent co-feed to reduce the concentration of the oxygenates in the feed and suppress side reactions that lead primarily to high molecular weight products. The diluent should generally be non- reactive to the oxygenate feedstock or to the catalyst. Possible diluents include helium, argon, nitrogen, carbon monoxide, carbon dioxide, methane, water and mixtures thereof. The more preferred diluents are water and nitrogen with the most preferred being water.
The diluent may be used in either liquid or vapor form. The diluent may be added to the feedstock before or at the time of entering the reactor or added
separately to the reactor or added with the catalyst. In one embodiment, the diluent is added in an amount in the range of from 1 to 90 mole percent, more preferably from 1 to 80 mole percent, more preferably from 5 to 50 mole percent, most preferably from 5 to 40 mole percent.
During the conversion of the oxygenates in the oxygenate to olefins conversion reactor, steam is
produced as a by-product, which serves as an in-situ - - produced diluent. Typically, additional steam is added as diluent. The amount of additional diluent that needs to be added depends on the in-situ water make, which in turn depends on the composition of the oxygenate feed. Where the diluent provided to the reactor is water or steam, the molar ratio of oxygenate to diluent is between 10:1 and 1:20.
The oxygenate feed is contacted with the catalyst at a temperature in the range of from 200 to 1000 °C, preferably of from 300 to 800 °C, more preferably of from
350 to 700 °C, even more preferably of from 450 to 650°C. The feed may be contacted with the catalyst at a
temperature in the range of from 530 to 620 °C or
preferably of from 580 to 610 °C. The feed may be contacted with the catalyst at a pressure in the range of from 0.1 kPa (1 mbar) to 5 MPa (50 bar), preferably of from 100 kPa (1 bar) to 1.5 MPa (15 bar), more preferably of from 100 kPa (1 bar) to 300 kPa (3 bar) . Reference herein to pressures is to absolute pressures.
A wide range of WHSV for the feedstock may be used.
WHSV is defined as the mass of the feed (excluding diluents) per hour per mass of catalyst. The WHSV should preferably be in the range of from 1 hr-1 to 5000 hr-1.
The process takes place in a reactor and the
catalyst may be present in the form of a fixed bed, a moving bed, a fluidized bed, a dense fluidized bed, a fast or turbulent fluidized bed, or a circulating
fluidized bed. In addition, riser reactors, hybrid reactors or other reactor types known to those skilled in the art may be used. In another embodiment, more than one of these reactor types may be used in series. In one embodiment, the reactor is a riser reactor. The
advantage of a riser reactor is that it allows for very - - accurate control of the contact time of the feed with the catalyst, as riser reactors exhibit a flow of catalyst and reactants through the reactor that approaches plug flow .
Catalysts suitable for use in the conversion of oxygenates to olefins may be made from practically any small or medium pore molecular sieve. One example of a suitable type of molecular sieve is a zeolite. Suitable zeolites include, but are not limited to AEI, AEL, AFT, AFO, APC, ATN, ATT, ATV, AWW, BIK, CAS, CHA, CHI, DAC,
DDR, EDI, ERI, EUO, FER, GOO, HEU, KFI, LEV, LOV, LTA, MFI, MEL, MON, MTT, MTW, PAU, PHI, RHO, ROG, THO, TON and substituted forms of these types. Suitable catalysts include those containing a zeolite of the ZSM group, in particular of the MFI type, such as ZSM-5, the MTT type, such as ZSM-23, the TON type, such as ZSM-22, the MEL type, such as ZSM-11, and the FER type. Other suitable zeolites are for example zeolites of the STF-type, such as SSZ-35, the SFF type, such as SSZ-44 and the EU-2 type, such as ZSM-48. Preferred zeolites for this process include ZSM-5, ZSM-22 and ZSM-23.
A preferred MFI-type zeolite for the oxygenate to olefins conversion catalyst has a silica-to-alumina ratio, SAR, of at least 60, preferably at least 80. More preferred MFI-type zeolite has a silica-to-alumina ratio,
SAR, in the range of 60 to 150, preferably in the range of 80 to 100.
The zeolite-comprising catalyst may comprise more than one zeolite. In that case it is preferred that the catalyst comprises at least a more-dimensional zeolite, in particular of the MFI type, more in particular ZSM-5, or of the MEL type, such as zeolite ZSM-11, and a one- - - dimensional zeolite having 10-membered ring channels, such as of the MTT and/or TON type.
It is preferred that zeolites in the hydrogen form are used in the zeolite-comprising catalyst, e.g., HZSM- 5, HZSM-11, and HZSM-22, HZSM-23. Preferably at least
50wt%, more preferably at least 90wt%, still more
preferably at least 95wt% and most preferably 100wt% of the total amount of zeolite used is in the hydrogen form. It is well known in the art how to produce such zeolites in the hydrogen form.
Another example of suitable molecular sieves is siliocoaluminophosphates (SAPOs) . SAPOs have a three dimensional microporous crystal framework of P02+, A102-, and Si02 tetrahedral units. Suitable SAPOs include SAPO- 17, -18, 34, -35, -44, but also SAPO-5, -8, -11, -20, -
31, -36, 37, -40, -41, -42, -47 and -56;
aluminophosphates (A1PO) and metal substituted
(silico) aluminophosphates (MeAlPO) , wherein the Me in MeAlPO refers to a substituted metal atom, including metal selected from one of Group IA, IIA, IB, IIIB, IVB,
VB, VIB, VIIB, VIIIB and lanthanides of the Periodic Table of Elements. Preferred SAPOs for this process include SAPO-34, SAPO-17 and SAPO-18. Preferred
substituent metals for the MeAlPO include Co, Cr, Cu, Fe, Ga, Ge, Mg, Mn, Ni, Sn, Ti, Zn and Zr.
The molecular sieves described above are formulated into molecular sieve catalyst compositions for use in the oxygenates to olefins conversion reaction. The molecular sieves are formulated into catalysts by combining the molecular sieve with a binder and/or matrix material and/or filler and forming the composition into particles by techniques such as spray-drying, pelletizing, or extrusion. The molecular sieve may be further processed - - before being combined with the binder and/or matrix. For example, the molecular sieve may be milled and/or
calcined .
Suitable binders for use in these molecular sieve catalyst compositions include various types of aluminas, aluminophosphates , silicas and/or other inorganic oxide sol. The binder acts like glue binding the molecular sieves and other materials together, particularly after thermal treatment. Various compounds may be added to stabilize the binder to allow processing.
Matrix materials are usually effective at among other benefits, increasing the density of the catalyst composition and increasing catalyst strength (crush strength and/or attrition resistance). Suitable matrix materials include one or more of the following: rare earth metals, metal oxides including titania, zirconia, magnesia, thoria, beryllia, quartz, silica or sols, and mixtures thereof, for example, silica-magnesia, silica- zirconia, silica-titania, and silica-alumina. In one embodiment, matrix materials are natural clays, for example, kaolin. A preferred matrix material is kaolin.
In one embodiment, the molecular sieve, binder and matrix material are combined in the presence of a liquid to form a molecular sieve catalyst slurry. The amount of binder is in the range of from 2 to 40 wt%, preferably in the range of from 10 to 35 wt%, more preferably in the range of from 15 to 30 wt%, based on the total weight of the molecular sieve, binder and matrix material,
excluding liquid (after calcination) .
After forming the slurry, the slurry may be mixed, preferably with rigorous mixing to form a substantially homogeneous mixture. Suitable liquids include one or more of water, alcohols, ketones, aldehydes and/or - - esters. Water is the preferred liquid. In one
embodiment, the mixture is colloid-milled for a period of time sufficient to produce the desired texture, particle size or particle size distribution.
The molecular sieve, matrix and optional binder can be in the same or different liquids and are combined in any order together, simultaneously, sequentially or a combination thereof. In a preferred embodiment, water is the only liquid used.
In a preferred embodiment, the slurry is mixed or milled to achieve a uniform slurry of sub-particles that is then fed to a forming unit. In a preferred
embodiment, the forming unit is a spray dryer. The forming unit is typically operated at a temperature high enough to remove most of the liquid from the slurry and from the resulting molecular sieve catalyst composition. In a preferred embodiment, the particles are then exposed to ion-exchange using an ammonium nitrate or other appropriate solution.
In one embodiment, the ion exchange is carried out before the phosphorous impregnation. The ammonium nitrate is used to ion exchange the zeolite to remove alkali ions. After a thermal treatment to H+ form, the zeolite can be impregnated with phosphorous using
phosphoric acid. In another embodiment, the ion exchange is carried out after the phosphorous impregnation. In this embodiment, alkali phosphates may be used to
impregnate the zeolite with phosphorous, and then the ammonium nitrate and heat treatment are used to ion exchange and convert the zeolite to the H+ form.
Alternatively to spray drying the catalyst may be formed into spheres, tablets, rings, extrudates or any other shape known to one of ordinary skill in the art. - -
The catalyst may be extruded into various shapes, including cylinders and trilobes.
The average particle size is in the range of from 1- 200 ym, preferably from 50-100 ym. If extrudates are formed, then the average size is in the range of from 1 mm to 10 mm, preferably from 2 mm to 7 mm.
The catalyst may further comprise phosphorus as such or in a compound, i.e. phosphorus other than any
phosphorus included in the framework of the molecular sieve. It is preferred that a MEL or MFI-type zeolite comprising catalyst additionally comprises phosphorus.
The molecular sieve catalyst is prepared by first forming a molecular sieve catalyst precursor as described above, optionally impregnating the catalyst with a phosphorous containing compound and then calcining the catalyst precursor to form the catalyst. The phosphorous impregnation may be carried out by any method known to one of skill in the art.
The phosphorus-containing compound preferably comprises a phosphorus species such as P04 3~, P-(OCH3)3, or P2O5, especially PC^3-. Preferably the phosphorus- containing compound comprises a compound selected from the group consisting of ammonium phosphate, ammonium dihydrogen phosphate, dimethylphosphate, metaphosphoric acid and trimethyl phosphite and phosphoric acid, especially phosphoric acid. The phosphorus containing compound is preferably not a Group II metal phosphate. Group II metal species include magnesium, calcium, strontium and barium; especially calcium.
In one embodiment, phosphorus can be deposited on the catalyst by impregnation using acidic solutions containing phosphoric acid (H3PO4) . The concentration of the solution can be adjusted to impregnate the desired - - amount of phosphorus on the precursor. The catalyst precursor may then be dried.
The catalyst precursor, containing phosphorous
(either in the framework or impregnated) is calcined to form the catalyst. The calcination of the catalyst is important to determining the performance of the catalyst in the oxygenate to olefins process.
The calcination may be carried out in any type of calciner known to one of ordinary skill in the art. The calcination may be carried out in a tray calciner, a rotary calciner, or a batch oven, optionally in the presence of an inert gas and/or oxygen and/or steam.
The calcination may be carried out at a temperature in the range of from 400 °C to 1000 °C, preferably in a range of from 450 °C to 800 °C, more preferably in a range of from 500 °C to 700 ° C. Calcination time is typically dependent on the degree of hardening of the molecular sieve catalyst composition and the temperature and ranges from about 15 minutes to about 2 hours.
In a preferred embodiment, the calcination is carried out in air at a temperature of from 500 °C to 600 °C. The calcination is carried out for a period of time from 30 minutes to 15 hours, preferably from 1 hour to 10 hours, more preferably from 1 hour to 5 hours.
The calcination is carried out on a bed of catalyst.
For example, if the calcination is carried out in a tray calciner, then the catalyst precursor added to the tray forms a bed which is typically kept stationary during the calcination. If the calcination is carried out in a rotary calciner, then the catalyst added to the rotary drum forms a bed that although not stationary does maintain some form and shape as it passes through the calciner . - -
The feedstocks described above are converted
primarily into olefins. The olefins produced from the feedstock typically have from 2 to 30 carbon atoms, preferably from 2 to 8 carbon atoms, more preferably from 2 to 6 carbon atoms, most preferably ethylene and/or propylene. In addition to these olefins, diolefins having from 4 to 18 carbon atoms, conjugated or
nonconj ugated dienes, polyenes, vinyl monomers and cyclic olefins may be produced in the reaction.
In a preferred embodiment, the feedstock, preferably one or more oxygenates, is converted in the presence of a molecular sieve catalyst into olefins having from 2 to 6 carbon atoms. Preferably the oxygenate is methanol, and the olefins are ethylene and/or propylene.
The products from the reactor are typically
separated and/or purified to prepare separate product streams in a recovery system. Such systems typically comprise one or more separation, fractionation or
distillation towers, columns, and splitters and other associated equipment, for example, various condensers, heat exchangers, refrigeration systems or chill trains, compressors, knock-out drums or pots, pumps and the like.
The recovery system may include a demethanizer, a deethanizer, a depropanizer, a wash tower often referred to as a caustic wash tower and/or quench tower,
absorbers, adsorbers, membranes, an ethylene-ethane splitter, a propylene-propane splitter, a butene-butane splitter and the like.
Typically in the recovery system, additional
products, by-products and/or contaminants may be formed along with the preferred olefin products. The preferred products, ethylene and propylene are preferably separated - - and purified for use in derivative processes such as polymerization processes.
In addition to the propylene and ethylene, the products may comprise C4+ olefins, paraffins and
aromatics that may be further reacted, recycled or otherwise further treated to increase the yield of the desired products and/or other valuable products. C4+ olefins may be recycled to the oxygenate to olefins conversion reaction or fed to a separate reactor for cracking. The paraffins may also be cracked in a
separate reactor, and/or removed from the system to be used elsewhere or possibly as fuel.
Although less desired, the product will typically comprise some aromatic compounds such as benzene, toluene and xylenes. Although it is not the primary aim of the process, xylenes can be seen as a valuable product.
Xylenes may be formed in the OTO process by the
alkylation of benzene and, in particular, toluene with oxygenates such as methanol. Therefore, in a preferred embodiment, a separate fraction comprising aromatics, in particular benzene, toluene and xylenes is separated from the gaseous product and at least in part recycled to the oxygenate to olefins conversion reactor as part of the oxygenate feed. Preferably, part or all of the xylenes in the fraction comprising aromatics are withdrawn from the process as a product prior to recycling the fraction comprising aromatics to the oxygenate to olefins
conversion reactor.
The C4+ olefins and paraffins formed in the
oxygenate to olefins conversion reactor may be further reacted in an additional reactor containing the same or a different molecular sieve catalyst. In this additional reactor, the C4+ feed is converted over the molecular - - sieve catalyst at a temperature in the range of from 500 to 700 °C. The additional reactor is also referred to as an OCP reactor and the process that takes place in this reactor is referred to as an olefin cracking process. In contact with the molecular sieve catalyst, at least part of the olefins in the C4+ feed is converted to a product, which includes at least ethylene and/or propylene and preferably both. In addition to ethylene and/or
propylene, the gaseous product may comprise higher olefins, i.e. C4+ olefins, and paraffins. The gaseous product is retrieved from the second reactor as part of a second reactor effluent stream.
The olefin feed is contacted with the catalyst at a temperature in the range of from 500 to 700 °C,
preferably of from 550 to 650°C, more preferably of from
550 to 620°C, even more preferably of from 580 to 610°C; and a pressure in the range of from 0.1 kPa (1 mbara) to 5 MPa (50 bara) , preferably of from 100 kPa (1 bara) to 1.5 MPa (15 bara), more preferably of from 100 kPa ( 1 bara) to 300 kPa (3 bara) . Reference herein to pressures is to absolute pressures.
In one embodiment, the C4+ olefins are separated into at least two fractions: a C4 olefin fraction and a C5+ olefin fraction. In this embodiment, the C4 olefins are recycled to the oxygenate to olefins conversion reactor and the C5+ olefins are fed to the OCP reactor. The cracking behavior of C4 olefins and C5 olefins is believed to be different when contacted with a molecular sieve catalyst, in particular above 500 °C.
The cracking of C4 olefins is an indirect process which involves a primary oligomerization process to a C8, C12 or higher olefin followed by cracking of the
oligomers to lower molecular weight hydrocarbons - - including ethylene and propylene, but also, amongst other things, to C5 to C7 olefins, and by-products such as C2 to C6 paraffins, cyclic hydrocarbons and aromatics. In addition, the cracking of C4 olefins is prone to coke formation, which places a restriction on the obtainable conversion of the C4 olefins. Generally, paraffins, cyclics and aromatics are not formed by cracking. They are formed by hydrogen transfer reactions and cyclization reactions. This is more likely in larger molecules. Hence the C4 olefin cracking process, which as mentioned above includes intermediate oligomerization, is more prone to by-product formation than direct cracking of C5 olefins. The conversion of the C4 olefins is typically a function of the temperature and space time (often expressed as the weight hourly space velocity) . With increasing
temperature and decreasing weight hourly space velocity (WHSV) conversion of the C4 olefins in the feed to the OCP increases. Initially, the ethylene and propylene yields increase, but, at higher conversions, yield decreases at the cost of a higher by-product make and, in particular, a higher coke make, limiting significantly the maximum yield obtainable.
Contrary to C4 olefins, C5 olefin cracking is ideally a relatively straight forward-process whereby the C5 olefin cracks into a C2 and a C3 olefin, in particular above 500°C. This cracking reaction can be run at high conversions, up to 100%, while maintaining, at least compared to C4 olefins, high ethylene and propylene yields with a significantly lower by-product and coke make. Although, C5+ olefins can also oligomerize, this process competes with the more beneficial cracking to ethylene and propylene. - -
In a preferred embodiment of the process according to the present invention, instead of cracking the C4 olefins in the OCP reactor, the C4 olefins are recycled to the oxygenate to olefins conversion reactor. Again without wishing to be bound by any particular theory, it is believed that in the oxygenate to olefins conversion reactor the C4 olefins are alkylated with, for instance, methanol to C5 and/or C6 olefins. These C5 and/or C6 olefins may subsequently be converted into at least ethylene and/or propylene. The main by-products from this oxygenate to olefins conversion reaction are again C4 and C5 olefins, which can be recycled to the oxygenate to olefins conversion reactor and olefin cracking reactor, respectively .
Therefore, preferably, where the gaseous products further include C4 olefins, at least part of the C4 olefins are provided to (i) the oxygenate to olefins conversion reactor together with or as part of the oxygenate feed, and/or (ii) the olefin cracking reactor as part of the olefin feed, more preferably at least part of the C4 olefins is provided to the oxygenate to olefins conversion reactor together with or as part of the oxygenate feed.
Preferably, where the gaseous products further include C5 olefins, at least part of the C5 olefins are provided to the olefin cracking reactor as part of the olefin feed. Preferably, the olefin feed to the olefin cracking reactor comprises C4+ olefins, preferably C5+ olefins, more preferably C5 olefins.
In a preferred embodiment, the oxygenate to olefins conversion reactor and the optional OCP reactor are operated as riser reactors where the catalyst and
feedstock are fed at the base of the riser and an - - effluent stream with entrained catalyst exits the top of the riser. In this embodiment, gas/solid separators are necessary to separate the entrained catalyst from the reactor effluent. The gas/solid separator may be any separator suitable for separating gases from solids.
Preferably, the gas/solid separator comprises one or more centrifugal separation units, preferably cyclone units, optionally combined with a stripper section.
The reactor effluent is preferably cooled in the gas/solid separator to terminate the conversion process and prevent the formation of by-products outside the reactors. The cooling may be achieved by use of a water quench .
Once the catalyst is separated from the effluent, the catalyst may be returned to the reaction zone from which it came, to another reaction zone or to a
regeneration zone. Further, the catalyst that has been separated in the gas/solid separator may be combined with catalyst from other gas/solid separators before it is sent to a reaction zone or to the regeneration zone.
In a preferred embodiment, the gas/solid separation device is a cyclone that comprises a cyclone and a dipleg attached to the bottom of the cyclone that is used to pass the catalyst back into the reaction section. The gas/solid separation may comprise multiple cyclones in series which will be referred to as primary and secondary cyclones .
The product gas from the reactor has a high
concentration of olefins which can oligomerize and form coke. In addition coke may be formed in the reaction zone and entrained with the product gas. Coke that is formed in the cyclone can fall during a thermal cycle (heating or cooling of the cyclone that typically occurs - - during startup and shutdown) and plug the dipleg that is located at the bottom of the cyclone.
The invention provides a coke catcher that is located above the top of the dipleg to prevent large pieces of coke from falling into the dipleg and plugging the dipleg. The coke catcher may be a cage that is constructed of metal bar or pipe or rolled plate that has holes for the passage of catalyst and small coke
particles. The spacing of the cage prevents large coke particles that are large enough to plug the dipleg from entering the dipleg. Alternatively, any device known to one of ordinary skill in the art that can be designed with specific size holes can be used as a coke catcher.
An optional vortex stabilizer may be positioned above the coke catcher to reduce the velocity of swirling gases around the coke catcher. This prevents erosion damage to the coke catcher.
If the dipleg gets plugged with large particles, then the catalyst will not discharge from the bottom of the cyclone via the dipleg as designed. Instead, the catalyst will be carried overhead with the gas to the downstream processing and separation equipment. This results in loss of catalyst and the potential for
blocking downstream piping and vessels which could result in a unit outage and/or required turnaround for
maintenance .
One embodiment is shown in Figure 1. The cyclone is shown with inlet 10, gas outlet pipe 20, separation section 30 and dipleg 40. The location of the coke catcher 50 is shown between the separation section of the cyclone and the dipleg to prevent large solids from passing into the dipleg. - -
During conversion of the oxygenates to olefins, carbonaceous deposits known as "coke" are formed on the surface of and/or within the molecular sieve catalysts. To avoid a significant reduction in activity of the catalyst, the catalyst must be regenerated by burning off the coke deposits.
In one embodiment, a portion of the coked molecular sieve catalyst is withdrawn from the reactor and
introduced into a regeneration system. The regeneration system comprises a regenerator where the coked catalyst is contacted with a regeneration medium, preferably an oxygen-containing gas, under regeneration temperature, pressure and residence time conditions.
Examples of suitable regeneration media include oxygen, O3, SO3, N20, NO, NO2, N205, air, air enriched with oxygen, air diluted with nitrogen or carbon dioxide, oxygen and water, carbon monoxide and/or hydrogen. The regeneration conditions are those capable of burning at least a portion of the coke from the coked catalyst, preferably to a coke level of less than 75% of the coke level on the catalyst entering the regenerator. More preferably the coke level is reduced to less than 50% of the coke level on the catalyst entering the regenerator and most preferably the coke level is reduced to less than 30% of the coke level on the catalyst entering the regenerator. Complete removal of the coke is not
necessary as this may result in degradation of the catalyst .
The regeneration temperature is in the range of from 200 °C to 1500 °C, preferably from 300 °C to 1000 °C, more preferably from 450 °C to 700 °C and most preferably from 500 °C to 700 °C. In a preferred embodiment, the - - catalyst is regenerated at a temperature in the range of from 550 to 650 °C.
The preferred residence time of the coked molecular sieve catalyst in the regenerator is in the range of from 1 minute to several hours, most preferably 1 minute to
100 minutes. The preferred volume of oxygen in the regeneration medium is from 0.01 mole percent to 10 mole percent based on the total volume of the regeneration medium.
In one embodiment, regeneration promoters, typically metal containing compounds such as platinum and palladium are added to the regenerator directly or indirectly, for example with the coked catalyst composition. In another embodiment, a fresh molecular sieve catalyst is added to the regenerator.
In an embodiment, a portion of the regenerated molecular sieve catalyst from the regenerator is returned to the reactor, directly to the reaction zone or
indirectly by pre-contacting with the feedstock.
The burning of coke is an exothermic reaction and in certain embodiments, the temperature in the regeneration system is controlled to prevent it from rising too high. Various known techniques for cooling the system and/or the regenerated catalyst may be employed including feeding a cooled gas to the regenerator, or passing the regenerated catalyst through a catalyst cooler. A portion of the cooled regenerated catalyst may be
returned to the regenerator while another portion is returned to the reactor.
In certain embodiments, there is not sufficient coke on the catalyst to raise the temperature of the catalyst to desired levels. In one embodiment, a liquid or - - gaseous fuel may be fed to the regenerator where it will combust and provide additional heat to the catalyst.

Claims

C L A I M S
1. A system for converting oxygenates to olefins comprising :
a. a reactor that has inlets for catalyst and one or more feedstocks and an outlet for the effluent and entrained catalyst;
b. a gas/solid separation device for separating the effluent from the entrained catalyst having a separation section at the top and a dipleg section at the bottom where the dipleg is in fluid communication with the reactor and carries catalyst back to the reactor; and c. a coke catcher located between the separation section and the dipleg that has a plurality of holes that are sized to allow passage of small particles of coke and catalyst that can pass freely through the dipleg but not to allow passage of large particles of coke that could plug the dipleg.
2. The system of claim 1 further comprising a vortex stabilizer located above the coke catcher.
3. The system of claim 1 wherein the plurality of holes in the coke catcher are sized such that solids that pass through are smaller than 75% of the diameter of the dipleg .
4. The system of claim 1 wherein the plurality of holes in the coke catcher are sized such that solids that pass through are smaller than 50% of the diameter of the dipleg .
5. The system of claim 1 wherein the plurality of holes in the coke catcher are sized such that solids that pass through are smaller than 33% of the diameter of the dipleg.
6. A method of converting an oxygenate comprising feedstock to olefins comprising:
a. feeding an oxygenate comprising feedstock into a reactor containing an oxygenate to olefins conversion catalyst ;
b. contacting the feedstock with the catalyst at oxygenate conversion conditions to produce an effluent comprising olefins and catalyst;
c. removing the effluent from the reactor;
d. separating the catalyst from the effluent in a gas/solid separation device; and
e. passing the catalyst through a coke catcher to a dipleg that is in fluid communication with the reactor wherein the coke catcher has a plurality of openings large enough for solids that are less than 75% of the diameter of the dipleg in size.
7. The method of claim 6 wherein the feedstock comprises methanol .
8. The method of claim 6 wherein the gas/solid
separation device is a cyclone.
9. The method of claim 6 wherein the effluent is passed through a series of more than one gas/solid separation devices .
10. The method of claim 9 wherein the coke catcher is located in the second in the series of gas/solid
separation devices.
PCT/EP2014/064025 2013-07-02 2014-07-02 A method of converting oxygenates to olefins WO2015000938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13174758.6 2013-07-02
EP13174758 2013-07-02

Publications (1)

Publication Number Publication Date
WO2015000938A1 true WO2015000938A1 (en) 2015-01-08

Family

ID=48699679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/064025 WO2015000938A1 (en) 2013-07-02 2014-07-02 A method of converting oxygenates to olefins

Country Status (1)

Country Link
WO (1) WO2015000938A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027949A1 (en) * 1998-11-06 2000-05-18 Shell Internationale Research Maatschappij B.V. Separator apparatus
WO2002085527A2 (en) * 2001-04-20 2002-10-31 Shell Internationale Research Maatschappij B.V. Cyclone separator
US20050038304A1 (en) 2003-08-15 2005-02-17 Van Egmond Cor F. Integrating a methanol to olefin reaction system with a steam cracking system
WO2006020083A1 (en) 2004-07-21 2006-02-23 Exxonmobil Chemical Patents Inc. Processes for converting oxygenates to olefins at reduced volumetric flow rates
US20060049082A1 (en) * 2004-09-09 2006-03-09 Kellogg Brown And Root, Inc. Self-stripping fcc riser cyclone
WO2007135052A1 (en) 2006-05-19 2007-11-29 Shell Internationale Research Maatschappij B.V. Process for the preparation of an olefin
WO2009065870A1 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Process for the preparation of an olefinic product
WO2009065848A1 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Process for the preparation of an olefinic product
WO2009065855A1 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Process for the preparation of an olefin
US20110112344A1 (en) 2009-11-10 2011-05-12 Leslie Andrew Chewter Process and integrated system for the preparation of a lower olefin product

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027949A1 (en) * 1998-11-06 2000-05-18 Shell Internationale Research Maatschappij B.V. Separator apparatus
WO2002085527A2 (en) * 2001-04-20 2002-10-31 Shell Internationale Research Maatschappij B.V. Cyclone separator
US20050038304A1 (en) 2003-08-15 2005-02-17 Van Egmond Cor F. Integrating a methanol to olefin reaction system with a steam cracking system
WO2006020083A1 (en) 2004-07-21 2006-02-23 Exxonmobil Chemical Patents Inc. Processes for converting oxygenates to olefins at reduced volumetric flow rates
US20060049082A1 (en) * 2004-09-09 2006-03-09 Kellogg Brown And Root, Inc. Self-stripping fcc riser cyclone
WO2007135052A1 (en) 2006-05-19 2007-11-29 Shell Internationale Research Maatschappij B.V. Process for the preparation of an olefin
WO2009065870A1 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Process for the preparation of an olefinic product
WO2009065848A1 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Process for the preparation of an olefinic product
WO2009065875A1 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Process for converting an oxygenate into an olefin-containing product, and reactor system
WO2009065877A1 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Catalyst particles, process for the preparation of an olefinic product, and process for the preparation of an oxygenate conversion catalyst
WO2009065855A1 (en) 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Process for the preparation of an olefin
US20110112344A1 (en) 2009-11-10 2011-05-12 Leslie Andrew Chewter Process and integrated system for the preparation of a lower olefin product

Similar Documents

Publication Publication Date Title
EP3040324A1 (en) A Process for Converting Oxygenates to Olefins and Aromatics
US20150119617A1 (en) Process for Converting Oxygenates to Olefins
US20160257625A1 (en) Process for converting oxygenates to olefins
AU2014343715B2 (en) Process for converting oxygenates to olefins
WO2016109379A1 (en) An oxygenate to olefins conversion reactor system and process for converting oxygenates to olefins
WO2016109374A1 (en) An oxygenate to olefins conversion reactor system and process for converting oxygenates to olefins
WO2016109370A1 (en) An oxygenate conversion process
WO2015063251A1 (en) Process for converting oxygenates to olefins
WO2015063250A1 (en) A process for converting oxygenates to olefins
WO2014206972A1 (en) A method of converting oxygenates to olefins
EP3040401A1 (en) An oxygenate to olefins conversion reactor system and process for use thereof
US20150119616A1 (en) Method for converting oxygenates to olefins
WO2015000938A1 (en) A method of converting oxygenates to olefins
EP3040399A1 (en) An oxygenate to olefins conversion reactor system
EP3040125A1 (en) A process for converting oxygenates to olefins
EP3040400A1 (en) A method of starting up an oxygenate to olefins conversion reaction system
US20150018591A1 (en) Method of Converting Oxygenates to Olefins
WO2014207134A1 (en) An olefin cracking catalyst
WO2016109369A1 (en) An oxygenate to olefins conversion reactor system and process for converting oxygenates to olefins
WO2016109367A1 (en) An oxygenate to olefins conversion reactor system and process for converting oxygenates to olefins
WO2015000941A1 (en) A method of converting oxygenates to olefins
US20150114434A1 (en) Process for removing contaminants in a compressor
WO2015063216A1 (en) A process for converting oxygenates to olefins
WO2016109372A1 (en) An oxygenate conversion process
WO2015063255A1 (en) A process for converting oxygenates to olefins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14735928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14735928

Country of ref document: EP

Kind code of ref document: A1