WO2014208493A1 - Method for producing sugar solution - Google Patents
Method for producing sugar solution Download PDFInfo
- Publication number
- WO2014208493A1 WO2014208493A1 PCT/JP2014/066534 JP2014066534W WO2014208493A1 WO 2014208493 A1 WO2014208493 A1 WO 2014208493A1 JP 2014066534 W JP2014066534 W JP 2014066534W WO 2014208493 A1 WO2014208493 A1 WO 2014208493A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sugar
- solution
- producing
- filamentous fungus
- sugar solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/56—Lactic acid
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K1/00—Glucose; Glucose-containing syrups
- C13K1/02—Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K13/00—Sugars not otherwise provided for in this class
- C13K13/002—Xylose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P2203/00—Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a method for producing a sugar liquid from cellulose-containing biomass.
- the fermentative production process of chemicals using sugar as a raw material is used for the production of various industrial raw materials.
- the sugar used as the fermentation raw material a process for efficiently producing a sugar solution from renewable non-edible resources, that is, cellulose-containing biomass, or a process for efficiently converting the obtained sugar solution as a fermentation raw material into an industrial raw material. Construction is under consideration.
- Non-patent Document 1 a method for producing a sugar solution from cellulose-containing biomass, a method for producing a sugar solution by hydrolyzing cellulose and hemicellulose with an acid using concentrated sulfuric acid (Patent Documents 1 and 2), and hydrolyzing a cellulose-containing biomass with dilute sulfuric acid.
- a method for producing a sugar solution by further performing saccharification treatment using a saccharifying enzyme such as cellulase after decomposition is disclosed (Non-patent Document 1).
- a method not using an acid a method of hydrolyzing cellulose-containing biomass using subcritical water at about 250 to 500 ° C.
- Patent Document 3 a method of using cellulose-containing biomass with subcritical water After the treatment, a method for producing a sugar solution by further saccharifying with a saccharifying enzyme (Patent Document 4), hydrolyzing cellulose-containing biomass with hot hot water at 240 to 280 ° C., and further using a saccharifying enzyme
- Patent Document 5 A method for producing a sugar solution by saccharification treatment (Patent Document 5) is disclosed.
- a method for hydrolyzing biomass using a saccharifying enzyme that has a particularly small amount of energy consumption and an environmental load and that has a high sugar yield has been widely studied.
- the method for producing a sugar solution using such a saccharifying enzyme has a high cost for the enzyme, and therefore the cost for producing the sugar solution is high.
- a method for recovering and reusing the saccharifying enzyme used for hydrolysis has been proposed.
- a solid-liquid separation is carried out continuously with a spin filter, the obtained sugar solution is filtered through an ultrafiltration membrane, and the enzyme is recovered (Patent Document 6).
- Patent Document 6 In the stage of enzymatic saccharification, cellulose is converted into an enzyme.
- a method for recovering an enzyme component Patent Document 8
- a method for recovering and reusing an enzyme by putting the saccharification residue after enzymatic saccharification into new biomass again Patent Document 9
- a method for hydrolyzing cellulose-containing biomass using a saccharifying enzyme has been developed. From the viewpoint of reducing the amount of saccharifying enzyme used, a saccharifying enzyme is used for producing a sugar solution from cellulose-containing biomass. There is a need for a method for producing a sugar solution while using it more effectively.
- an object of the present invention is to provide a method for producing a sugar solution that can produce a sugar solution while further reducing the amount of saccharifying enzyme used.
- the present inventors have intensively studied a method for producing a sugar solution.
- the filamentous fungus-derived cellulase adsorbed on the saccharification residue is eluted into an aqueous solution containing a lignin blocking agent, and the aqueous solution from which the filamentous fungus-derived cellulase is eluted is filtered to obtain a non-permeate containing the filamentous fungus-derived cellulase.
- a sugar solution can be produced by further reducing the amount of filamentous fungus-derived cellulase used by collecting and reusing.
- the present invention has been completed based on such findings.
- the present invention has the following configurations [1] to [10].
- [1] A method for producing a sugar solution from cellulose-containing biomass, Step (1): A step of hydrolyzing the cellulose-containing biomass with a filamentous fungus-derived cellulase to obtain a hydrolyzate, Step (2): Solid-liquid separation of the hydrolyzate into a sugar solution and a saccharification residue, Step (3): washing the saccharification residue with an aqueous solution containing a lignin blocking agent to obtain a washed solution containing the filamentous fungus-derived cellulase contained in the saccharification residue, and step (4): the washing Filtering the solution containing the solution, and recovering the non-permeate containing the filamentous fungus-derived cellulase,
- a method for producing a sugar solution comprising: [2]
- the lignin blocking agent is corn steep liquor, peptone, yeast extract, meat extract, casein, bovine serum-derived albumin, skim milk,
- the method includes a step of mixing the sugar solution obtained in the step (2) with the washed solution obtained in the step (3), and the sugar solution and the washed solution The method for producing a sugar solution according to any one of [1] to [3], wherein a mixed solution containing the solution is filtered to collect a permeate containing the sugar solution.
- the temperature of the aqueous solution containing the lignin blocking agent is 40 to 60 ° C.
- [6] The method for producing a sugar liquid according to any one of [1] to [5], wherein the aqueous solution containing the lignin blocking agent contains an inorganic salt.
- [7] The method for producing a sugar liquid according to any one of [1] to [6], wherein the filamentous fungus-derived cellulase is derived from a Trichoderma microorganism.
- [8] The method for producing a sugar liquid according to any one of [1] to [7], wherein the non-permeating liquid is mixed with the filamentous fungus-derived cellulase in step (1).
- the filamentous fungus-derived cellulase adsorbed on the saccharification residue is eluted in an aqueous solution containing a lignin blocking agent, and the aqueous solution from which the filamentous fungus-derived cellulase is eluted is filtered, thereby impermeable liquid containing the filamentous fungus-derived cellulase.
- a sugar solution can be produced while further reducing the amount of the filamentous fungus-derived cellulase used. Thereby, the manufacturing cost of a sugar liquid can be reduced significantly.
- FIG. 1 A method for producing a sugar solution according to the present invention is shown in FIG.
- the method for producing a sugar solution according to the present invention will be described for each step.
- Step (1) a filamentous fungus-derived cellulase that is a saccharifying enzyme is added to the cellulose-containing biomass, and the cellulose-containing biomass is hydrolyzed by the filamentous fungus-derived cellulase. Thereby, a hydrolyzate is obtained.
- the purpose of hydrolysis is to reduce the molecular weight of cellulose to produce monosaccharides or oligosaccharides, but in the hydrolysis of cellulose-containing biomass, hemicellulose components such as xylan, mannan and arabinan are also hydrolyzed at the same time.
- Cellulose-containing biomass refers to biological resources that contain cellulose components. Specifically, herbaceous biomass such as bagasse, switchgrass, napiergrass, Eliansus, corn stover, beet pulp, cottonseed husk, palm husk, rice straw, straw, bamboo, straw, birch, beech, etc. Woody biomass such as wood and waste building materials, as well as biomass derived from the aquatic environment such as algae and seaweed.
- the cellulose-containing biomass contains lignin, which is an aromatic polymer, in addition to cellulose composed of sugar and hemicellulose (hereinafter referred to as “cellulose” as a generic term for cellulose and hemicellulose).
- the reaction conditions for the hydrolysis with a saccharifying enzyme may be carried out in accordance with the preferable reaction conditions for a saccharifying enzyme.
- the reaction temperature is preferably in the range of 15 to 100 ° C. 40 to 60 ° C is more preferable, and around 50 ° C is more preferable.
- the reaction time for hydrolysis is preferably in the range of 2 hours to 200 hours. If it is 2 hours or more, sufficient sugar is produced. Moreover, if it is 200 hours or less, the fall of enzyme activity can be suppressed and the collect
- the pH of the hydrolysis reaction has the highest effect of hydrolysis by the filamentous fungus-derived cellulase at the optimum pH of the filamentous fungus-derived cellulase, so the pH during the cellulase treatment should be the optimum pH of the filamentous fungus-derived cellulase. preferable.
- the pH is preferably in the range of 3 to 9, more preferably 4 to 5.5, and even more preferably around 5.
- the optimum pH for the reaction is 5.0.
- Adjustment of the pH of the reaction solution containing cellulose-containing biomass and filamentous fungus-derived cellulase is performed immediately before solid-liquid separation of the hydrolyzate or simultaneously with solid-liquid separation of the hydrolyzate in step (2) described later. May be.
- the pH can be adjusted before solid-liquid separation of the hydrolyzate, and the effect can be further enhanced by allowing it to stand for a certain period of time until solid-liquid separation is started. For example, after adjusting the pH of the hydrolyzate, there is a method of solid-liquid separation after standing for 1 hour.
- pH adjustment may use a buffer solution for a hydrolyzate suitably.
- the acid or alkali used for pH adjustment is not particularly limited.
- the acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and the like.
- sulfuric acid, nitric acid, and phosphoric acid are used from the viewpoint that inhibition during fermentation of the sugar liquid obtained in the present invention hardly occurs. More preferably, sulfuric acid is used from the viewpoint of economy.
- alkali preferably, ammonia, sodium hydroxide, calcium hydroxide and an aqueous solution containing them are used from the viewpoint of economy, and more preferably, membrane fouling is performed during membrane separation in step (4) described later.
- monovalent ions such as ammonia and sodium hydroxide are used, and more preferably, ammonia is used from the viewpoint that inhibition during fermentation hardly occurs.
- the solid content concentration of cellulose is preferably 1 to 25% by weight, more preferably 5 to 20% by weight.
- the cellulase derived from filamentous fungi used as a saccharifying enzyme the genus Trichoderma, Aspergillus, Cellulomonas, Clostridium, Streptomyces, Humi
- Examples include cellulases derived from microorganisms such as Acremonium, Irpex, Mucor, Talaromyces, Phanerochaete, white rotten gold, and brown rotting fungi. .
- a cellulase derived from a mutant strain in which cellulase productivity has been improved by subjecting these microorganisms to a mutation treatment or irradiation with ultraviolet rays or the like may be used.
- Trichoderma genus-derived cellulase it is preferable to use Trichoderma genus-derived cellulase, which produces a large amount of enzyme components with high specific activity in the hydrolysis of cellulose.
- Trichoderma-derived cellulase is an enzyme composition mainly composed of cellulase derived from Trichoderma microorganisms.
- the microorganism of the genus Trichoderma is not particularly limited, but Trichoderma reesei (Trichoderma reesei) is preferable, and specifically, Trichoderma reesei QM9414 (Trichoderma reesei QM9414), Trichoderma reesei QM9123 (Trichoderma reesei QM9123) reeseiRut C-30), Trichoderma reesei PC3-7 (Trichoderma reesei PC3-7), Trichoderma reesei CL-847 (Trichoderma reeseiCL-847), Trichoderma reesei MCG77 (Trichoderma MCe 77) Ma reesei MCG80 (Trichoderma reeseiMCG80), can be exempl
- Filamentous fungus-derived cellulase is an enzyme composition that contains a plurality of enzymes that hydrolyze cellulose and has an activity of hydrolyzing and saccharifying cellulose and / or hemicellulose.
- enzymes that hydrolyze cellulose include cellobiohydrase, endoglucanase, exoglucanase, ⁇ -glucosidase, xylanase, and xylosidase. Since the filamentous fungus-derived cellulase contains a plurality of such enzymes, cellulose and / or hemicellulose can be efficiently hydrolyzed by the concerted effect or the complementary effect of the plurality of enzymes in cellulose degradation.
- the filamentous fungus-derived cellulase used in the present invention preferably contains cellobiohydrase and xylanase.
- the present invention by adding a high-concentration inorganic salt to cellulose-containing biomass and filamentous fungus-derived cellulase at the time of hydrolysis of cellulose-containing biomass, cellobio for the pretreatment product of biomass before hydrolysis of cellulose-containing biomass is performed. This is because adsorption of hydrase and xylanase is reduced and a high enzyme recovery rate is obtained.
- Cellobiohydrase is a general term for cellulases that start hydrolysis of cellulose from the terminal portion and release cellobiose, and an enzyme group belonging to cellobiohydrase as EC number: EC 3.2.1.91. Is described. Cellulolytic activity can be measured from the amount of glucose liberated when an enzyme is allowed to act on cellulose as a substrate, and specific methods are described in “Pure & Appl. Chem., Vol. 59, No. 2”. 257-268 page, "FILTER PAPER ASSAY FOR SACCHARIFYING CELLULASE" can be used.
- Endoglucanase is a general term for cellulases having an activity of hydrolyzing from the central part of a cellulose molecular chain, and EC numbers: EC 3.2.1.4, EC 3.2.1.6, EC 3.2.1.39. EC 3.2.1.73 describes an enzyme group belonging to endoglucanase.
- Cellulolytic activity can be measured from the amount of reducing sugar released when an enzyme is allowed to act using carboxymethylcellulose (CMC) as a substrate.
- CMC carboxymethylcellulose
- Exoglucanase is a general term for cellulases that hydrolyze from the ends of cellulose molecular chains, and the enzyme groups belonging to exoglucanase are described as EC numbers: EC3.2.1.74 and EC3.2.1.58. ing.
- ⁇ -glucosidase is a general term for cellulases that hydrolyze cellooligosaccharides or cellobiose, and describes an enzyme group belonging to ⁇ -glucosidase as EC number: EC 3.2.1.21.
- Cellobiose degrading activity (hereinafter also referred to as “BGL activity”) can be measured from the amount of glucose released when an enzyme is allowed to act on cellobiose as a substrate.
- BGL activity Cellobiose degrading activity
- Xylanase is a general term for cellulases characterized by acting on hemicellulose or especially xylan, and an enzyme group belonging to xylanase is described as EC number: EC3.2.1.8.
- Xylosidase is a general term for cellulases characterized by acting on xylo-oligosaccharides, and an enzyme group belonging to xylosidase is described as EC number: EC 3.2.1.37.
- Enzymes contained in such filamentous fungus-derived cellulases are separated by known techniques such as gel filtration, ion exchange, two-dimensional electrophoresis, and the amino acid sequences of the separated components (N-terminal analysis, C-terminal analysis, mass spectrometry) are performed. It can be identified by comparison with a database.
- the enzyme activity of filamentous fungus-derived cellulase can be evaluated by polysaccharide hydrolysis activity such as Avicel degradation activity, xylan degradation activity, carboxymethylcellulose (CMC) degradation activity, cellobiose degradation activity, mannan degradation activity.
- the main enzyme exhibiting Avicel-degrading activity is cellobiohydrase or exoglucanase, which has the characteristic of hydrolyzing from the terminal portion of cellulose.
- the main enzymes showing xylan degradation activity are xylanase and ⁇ -xylosidase.
- the main enzymes involved in CMC degradation activity are cellobiohydrase, exoglucanase and endoglucanase.
- the main enzyme exhibiting cellobiose degrading activity is ⁇ -glucosidase.
- the term “principal” is an expression from what is known to be most involved in degradation, and means that other enzyme components are also involved in the degradation.
- the culture solution may be used as it is as a crude enzyme agent, or the enzyme group is purified by a known method and formulated into a filamentous fungus-derived cellulase mixture. May be used as When a filamentous fungus-derived cellulase is purified and used as a preparation, a substance added with a substance other than an enzyme such as a protease inhibitor, a dispersant, a dissolution accelerator, or a stabilizer may be used as a cellulase preparation. .
- a crude enzyme product is preferably used as the cellulase derived from filamentous fungi.
- the crude enzyme product is derived from the culture supernatant obtained by culturing the microorganism for an arbitrary period in a medium adjusted so that the microorganism of the genus Trichoderma produces cellulase.
- the medium components to be used are not particularly limited, but in order to promote the production of cellulase, a medium to which cellulose is added can be generally used.
- the culture supernatant is preferably used as it is or from the culture supernatant obtained by removing Trichoderma cells.
- the weight ratio of each enzyme component in the crude enzyme product is not particularly limited.
- the culture solution derived from Trichoderma reesei contains 50 to 95% by weight of cellobiohydrase, and the rest.
- the endoglucanase, ⁇ -glucosidase, etc. are contained in the components.
- Trichoderma microorganisms produce a strong cellulase component in the culture solution, while ⁇ -glucosidase has low ⁇ -glucosidase activity in the culture solution because it is retained in the cell or on the cell surface. Therefore, you may add a different type or the same type of beta-glucosidase to the crude enzyme product.
- ⁇ -glucosidase derived from Aspergillus can be preferably used.
- ⁇ -glucosidase derived from the genus Aspergillus include Novozyme 188 commercially available from Novozyme.
- a method of adding a heterologous or homologous ⁇ -glucosidase to a crude enzyme product a gene is introduced into a Trichoderma microorganism, and the Trichoderma microorganism that has been genetically modified so as to be produced in the culture solution is cultured. A method of isolating the culture solution may also be used.
- Preprocessing Cellulose-containing biomass contains lignin and the like in addition to cellulose as described above. Therefore, it is preferable to pretreat the cellulose-containing biomass. Thereby, the hydrolysis efficiency of the cellulose containing biomass by a filamentous fungus origin cellulase can be improved.
- the pretreatment method for cellulose-containing biomass include acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, acetic acid treatment, alkali treatment, caustic soda treatment, ammonia treatment, hydrothermal treatment, subcritical water treatment, pulverization treatment, and steaming treatment. . In the present invention, it is preferable to perform ammonia treatment, hydrothermal treatment or dilute sulfuric acid treatment from the viewpoint of efficiently recovering various enzymes in the step (3) described later.
- the ammonia treatment can be performed according to the methods described in JP 2008-161125 A, JP 2008-535664 A, and the like.
- the ammonia concentration to be used is added in the range of 0.1 to 15% by weight with respect to the biomass, and the treatment is performed at 4 to 200 ° C., preferably 90 to 150 ° C.
- Ammonia to be added may be either liquid or gas.
- the form to be added may be pure ammonia or an aqueous ammonia solution.
- the number of processes is not particularly limited, and the process may be performed once or more. In particular, when the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
- the treated product obtained by the ammonia treatment is further subjected to an enzymatic hydrolysis reaction, it is necessary to neutralize ammonia or remove ammonia. Neutralization may be performed on ammonia from which the solid content has been removed from the hydrolyzate by solid-liquid separation, or may be performed while the solid content is still contained.
- the acid reagent used for neutralization is not particularly limited. Ammonia can be removed by volatilizing ammonia into a gaseous state by keeping the ammonia-treated product in a reduced pressure state. The removed ammonia may be recovered and reused.
- hydrothermal treatment After adding water so that the cellulose-containing biomass becomes 0.1 to 50% by weight, it is treated at a temperature of 100 to 400 ° C. for 1 second to 60 minutes. By treating under such temperature conditions, hydrolysis of cellulose occurs.
- the number of processes is not particularly limited, and the process may be performed once or more. In particular, when the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
- the concentration of sulfuric acid is preferably 0.1 to 15% by weight, and more preferably 0.5 to 5% by weight.
- the reaction temperature can be set in the range of 100 to 300 ° C., preferably 120 to 250 ° C.
- the reaction time can be set in the range of 1 second to 60 minutes.
- the number of processes is not particularly limited, and the process may be performed once or more. In particular, when the above process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
- the hydrolyzate obtained by the dilute sulfuric acid treatment contains an acid, and further needs to be neutralized in order to perform a hydrolysis reaction with cellulase or to use as a fermentation raw material.
- step (2) the hydrolyzate obtained in step (1) is subjected to solid-liquid separation into a sugar solution and a saccharification residue.
- the method for solid-liquid separation of the hydrolyzate in the step (2) is not particularly limited, and a conventionally known general solid-liquid separation method can be used.
- the solid-liquid separation method include centrifugal separation using a screw decanter, membrane separation such as a filter press, separation using a belt filter, natural sedimentation, or filtration using a mesh screen, nonwoven fabric, filter paper, and the like.
- membrane separation As the solid-liquid separation method of the hydrolyzate, it is preferable to use membrane separation.
- the hydrolyzate solid-liquid separation method can efficiently remove the saccharification residue, which is a particulate solid, and can recover more saccharose by pressing the removed saccharification residue. From the viewpoint that the hydrolyzate can be solid-liquid separated by press filtration, it is most preferable to use a filter press.
- the method for solid-liquid separation of the hydrolyzate may be used singly or in combination.
- Step (3) the saccharification residue is washed with an aqueous solution containing a lignin blocking agent, and the filamentous fungus-derived cellulase contained by adsorption to the saccharification residue is eluted into the aqueous solution containing the lignin blocking agent. As a result, a washed solution containing the filamentous fungus-derived cellulase contained in the saccharification residue is obtained.
- the lignin blocking agent is a component that has an affinity for the lignin component contained in the cellulose-containing biomass and can be adsorbed by hydrophobic interaction, hydrogen bond, ionic bond, and the like.
- Specific examples of the component include hydrophilic polymer compounds such as peptides, proteins, and polysaccharides.
- the lignin blocking agent is derived from filamentous fungus adsorbed on the saccharification residue because it contains other components such as sugars, amino acids, salts, fats, etc. than those containing these polymer compounds alone. This is preferable from the viewpoint of enhancing the elution effect of cellulase.
- preferable lignin blocking agents containing the polymer compound and other components include corn steep liquor (CSL), peptone, yeast extract, meat extract, casein, skim milk, bovine serum-derived albumin (BSA), ethanol fermentation Distilled residue (DDGS), zein, fish processing waste, meat processing waste, whey protein (whey protein), sugar processing waste, grain processing waste, food, algal protein, soy protein, bacterial protein, fungal protein, etc. Is mentioned. These may be used alone or as a mixture of two or more. Among these, a coastal liquor and / or ethanol fermentation distillation residue is more preferable. Moreover, the lignin blocking agent exemplified above has an advantage that the price per unit is low.
- the lignin blocking agent is preferably contained in the aqueous solution at a concentration of 1 g / L or more from the viewpoint of enhancing the elution effect of the filamentous fungus-derived cellulase adsorbed on the saccharification residue, and more preferably 1 to 10 g / L. preferable.
- the lignin blocking agent contained in the aqueous solution need not be in a state of being completely dissolved in water, but may be partially insolubilized.
- the aqueous solution containing the lignin blocking agent further contains an inorganic salt.
- an enzyme component that cannot be eluted only with a lignin blocking agent specifically, a hemicellulase component such as xylosidase can be eluted.
- inorganic salts include sodium chloride, sodium sulfate, magnesium chloride, magnesium sulfate, calcium chloride, and ammonium sulfate. Among these, ammonium sulfate is preferable.
- concentration of the inorganic salt contained in the aqueous solution containing the lignin blocking agent is preferably 1 to 25 g / L.
- the washing of the saccharification residue may be a method of dispersing the saccharification residue in an aqueous solution containing a lignin blocking agent and stirring and mixing, or a method of passing an aqueous solution containing a lignin blocking agent through the saccharification residue.
- a method of passing an aqueous solution containing a lignin blocking agent to the saccharification residue is preferable.
- the temperature of the aqueous solution containing the lignin blocking agent is preferably 40 to 60 ° C.
- the temperature at the time of washing is 40 ° C. or higher, the washing effect of the saccharification residue is increased, and the amount of filamentous fungus-derived cellulase eluted is increased.
- the temperature at the time of washing is 60 ° C. or lower, it is possible to suppress the inactivation of the filamentous fungus-derived cellulase, so that it is possible to suppress the reduction of each activity of the filamentous fungus-derived cellulase in the washed solution. it can.
- step (4) the washed solution is filtered and separated into a permeate containing a sugar solution and a non-permeate containing a filamentous fungus-derived cellulase. As a result, the permeate is collected and the non-permeate containing the filamentous fungus-derived cellulase is collected. Since the permeate contains a sugar liquid, it can be used as a sugar liquid by being mixed with the sugar liquid obtained in the step (2).
- a method for filtration of the washed solution, a method is used that allows permeation of monosaccharides such as glucose (molecular weight 180) and xylose (molecular weight 150) and prevents permeation of filamentous fungus-derived cellulase.
- monosaccharides such as glucose (molecular weight 180) and xylose (molecular weight 150) and prevents permeation of filamentous fungus-derived cellulase.
- an ultrafiltration membrane (UF membrane) is preferably used for filtering the washed solution.
- the ultrafiltration membrane can permeate sugar while preventing permeation of macromolecules such as filamentous fungus-derived cellulase contained in the washed solution.
- Filamentous fungal cellulase adsorbed on the saccharification residue is eluted in the washed solution obtained by washing the saccharification residue.
- Filtration of the washed solution through an ultrafiltration membrane separates and recovers the filamentous fungus-derived cellulase contained in the washed solution from the washed solution as an ultrafiltration membrane non-permeate. Can do.
- the washed solution may be filtered through an ultrafiltration membrane sequentially or continuously.
- the ultrafiltration membrane it is preferable to use a membrane having a fractional molecular weight capable of permeating monosaccharides such as glucose and xylose and preventing permeation of filamentous fungus-derived cellulase.
- the molecular weight cutoff of the ultrafiltration membrane is preferably 500 to 100,000. If an ultrafiltration membrane having a molecular weight cut-off within this range is used, it is possible to permeate monosaccharides as a sugar solution while preventing permeation of filamentous fungus-derived cellulase. Further, the molecular weight cut off of the ultrafiltration membrane is more preferably 10,000 to 50,000 from the viewpoint of separating contaminants having an inhibitory action on the enzyme reaction from the enzyme.
- the ultrafiltration membrane is too small to measure the pore diameter on the membrane surface with an electron microscope or the like, and instead of the average pore diameter, the value of the fractional molecular weight is an index of the pore size. It is supposed to be.
- the molecular weight cut-off refers to the Membrane Science Experiment Series Vol. III, Artificial Membrane Editor, Editorial Committee / Naofumi Kimura, Shinichi Nakao, Haruhiko Ohya, Tsutomu Nakagawa (1993, Kyoritsu Shuppan), P92.
- a plot of data with the rejection rate on the vertical axis is called a fractional molecular weight curve.
- the molecular weight at which the blocking rate is 90% is called the fractional molecular weight of the membrane. ”Is well known to those skilled in the art as an index representing the membrane performance of the ultrafiltration membrane.
- ultrafiltration membrane examples include polyethersulfone (PES), polysulfone (PS), polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), regenerated cellulose, cellulose, cellulose ester, polysulfone, polyethersulfone, Organic materials such as chlorinated polyethylene, polypropylene, sulfonated polysulfone, sulfonated polyethersulfone, polyolefin, polyvinyl alcohol, polymethyl methacrylate, polytetrafluoroethylene, metals such as stainless steel, or inorganic materials such as ceramic .
- PES polyethersulfone
- PS polysulfone
- PAN polyacrylonitrile
- PVDF polyvinylidene fluoride
- regenerated cellulose cellulose, cellulose ester
- Organic materials such as chlorinated polyethylene, polypropylene, sulfonated polysulfone, sulfonated polyethersulfone,
- a tubular type, a spiral type, a flat membrane type, a hollow fiber type and the like can be preferably used.
- ultrafiltration membrane filtration method examples include a crossflow filtration method and a dead-end filtration method, but the crossflow filtration method is preferable from the viewpoint of suppressing membrane fouling and flux.
- filtration method pressure filtration, vacuum filtration, centrifugal filtration and the like can be preferably used.
- the filtration operation include constant pressure filtration, constant flow filtration, non-constant pressure non-constant flow filtration, and the like.
- the filtration operation may be multistage filtration using the ultrafiltration membrane twice or more.
- the non-permeated liquid recovered in the step (4) contains a filamentous fungus-derived cellulase
- the recovered non-permeated liquid is mixed with the filamentous fungus-derived cellulase used in the step (1). It can be used as the filamentous fungus-derived cellulase of (1).
- a sugar solution of the present invention by eluting the filamentous fungus-derived cellulase adsorbed on the saccharification residue into an aqueous solution containing a lignin blocking agent, and filtering the aqueous solution from which the filamentous fungus-derived cellulase is eluted, A non-permeate liquid containing a filamentous fungus-derived cellulase can be obtained.
- a sugar solution can be produced while further reducing the amount of saccharifying enzyme used. Thereby, the manufacturing cost of a sugar liquid can be reduced significantly.
- the present invention is not limited to this.
- the sugar solution obtained in the step (2) is filtered separately from the washed solution to separate the filamentous fungus-derived cellulase contained in the sugar solution from the sugar solution, and the permeate is recovered as the sugar solution, You may make it collect
- the filamentous fungus-derived cellulase contained in the sugar solution can also be effectively reused.
- the mixed solution is filtered to separate the cellulase derived from filamentous fungi contained in the mixed solution. You may make it do. Thereby, while being able to collect
- An example of the form which filters a mixed solution is shown in FIG. As shown in FIG. 2, the sugar solution and the washed solution are mixed to obtain a mixed solution.
- step (4) the mixed solution is filtered through an ultrafiltration membrane, and separated into a non-permeate containing cellulase derived from filamentous fungi and a permeate containing a sugar solution.
- the permeate containing the sugar solution is recovered and the non-permeate containing the cellulase derived from the filamentous fungus is recovered.
- the permeate may be used as a sugar solution as it is, or only a sugar solution obtained by separating components other than the sugar solution may be used.
- the recovered non-permeate can be mixed with the filamentous fungus-derived cellulase added in step (1) and reused in step (1).
- the sugar-containing biomass obtained in the step (2) also hydrolyzes the cellulose-containing biomass in the step (1). Contains the cellulase component derived from the filamentous fungus used. Therefore, in the step (4), the filamentous fungus-derived cellulase contained in the sugar solution obtained in the step (2) can also be collected together with the filamentous fungus-derived cellulase contained in the washed solution. The amount of cellulase recovered can be further increased. This makes it possible to produce a sugar solution while further reducing the amount of saccharifying enzyme used.
- the case where the mixed solution is filtered is more efficient for the production of cellulase derived from filamentous fungi while simplifying the production apparatus. It can be recovered well.
- the mixed solution may be prepared by temporarily holding the sugar solution obtained in step (2) before filtering and mixing it with the washed solution obtained in step (3).
- proteins tend to be adsorbed on the surface of an ultrafiltration membrane, and can also be adsorbed to pipes, tanks, and the like. Since the main protein component contained in the sugar solution obtained in the step (2) is a filamentous fungus-derived cellulase component, if the protein component is adsorbed in the ultrafiltration membrane, piping, or tank, it is recovered. The amount of cellulase derived from bacteria will decrease.
- the sugar solution in the step (2) and the washed solution obtained in the step (3) are mixed in advance, and the mixed solution is filtered through a filtration membrane such as an ultrafiltration membrane, whereby the sugar is obtained.
- a filtration membrane such as an ultrafiltration membrane
- FIG. 3 is a diagram showing an example of a sugar liquid production apparatus using the sugar liquid production method according to the present invention.
- FIG. 3 shows an apparatus using the method for producing a sugar solution according to the present invention described in FIG.
- a sugar solution production apparatus 10 using the method for producing a sugar solution according to the present invention includes a hydrolysis reaction tank 11, a solid-liquid separator 12, a washing water tank 13, a filtrate collection tank 14, and ultrafiltration. It has a membrane device 15 and a saccharification enzyme recovery line L11.
- the hydrolysis reaction tank 11 includes a stirring tank 21 that performs hydrolysis, a stirring device 23 that stirs and mixes the cellulose-containing biomass 22, and a heat retaining device 24 that keeps the stirring tank 21 warm.
- the stirring tank 21 includes a supply port 25 to which the cellulose-containing biomass 22 is supplied and a supply port 27 to which a filamentous fungus-derived cellulase 26 is supplied.
- the cellulose-containing biomass 22 and the filamentous fungus-derived cellulase 26 are supplied into the stirring tank 21, the cellulose-containing biomass 22 is hydrolyzed by the filamentous fungus-derived cellulase 26 in the stirring tank 21 to obtain a hydrolyzate 28 ( Step (1)).
- the hydrolyzate 28 obtained in the stirring tank 21 is extracted from the stirring tank 21 by opening the control valve V11, is pumped by the pump P1, and is supplied to the solid-liquid separator 12 from the supply port 31.
- the solid-liquid separator 12 includes a press filtration apparatus 32 and a compressor 33.
- the hydrolyzate 28 is squeezed in the press filtration apparatus 32 by the compressor 33, so that it is separated into a liquid and a saccharification residue (solid) (step (2)).
- the sugar liquid is discharged from the press filtration apparatus 32 to the sugar liquid supply line L21, and the saccharification residue is retained in the filtration chamber.
- a branch line L22 connected to the washing water tank 13 is connected.
- the sugar solution supply line L21 is provided with a control valve V21
- the branch line L22 is provided with a control valve V22.
- the sugar solution discharged from the press filtration apparatus 32 is supplied to the filtrate collection tank 14 through the sugar solution supply line L21, and the filtrate collection tank. 14.
- the sugar liquid discharged from the press filtration apparatus 32 is supplied to the washing water tank 13 through the branch line L22 and held in the washing water tank 13. Is done.
- the aqueous solution 34 containing the lignin blocking agent is supplied from the cleaning water tank 13 through the cleaning liquid supply line L23 to the press filtration apparatus 32 through the water inlet 35.
- the saccharification residue generated in the press filtration apparatus 32 is washed with the aqueous solution 34 containing the lignin blocking agent, and the filamentous fungus-derived cellulase adhering to the saccharification residue is eluted into the aqueous solution 34 containing the lignin blocking agent, and is derived from the filamentous fungus.
- a washed solution containing cellulase is obtained (step (3)).
- the aqueous solution 34 containing the lignin blocking agent is extracted from the washing water tank 13 by adjusting the opening degree of the control valve V23, is pumped by the pump P2, and is supplied from the washing water tank 13 to the press filtration apparatus 32. .
- the washing water tank 13 is provided with a heat insulation facility 36 around it. Thereby, the aqueous solution 34 containing the lignin blocking agent in the washing water tank 13 is kept at a predetermined temperature.
- the cleaning water tank 13 is connected to the circulation line L11 and the cleaning liquid supply line L24.
- the aqueous solution 34 containing the lignin blocking agent is supplied to the cleaning water tank 13 through the cleaning liquid supply line L24.
- the supply amount of the aqueous solution 34 containing the lignin blocking agent is adjusted by adjusting the opening degree of the control valve V24.
- the cleaning liquid obtained by the press filtration apparatus 32 is supplied to the filtrate recovery tank 14 through the sugar liquid supply line L21, and is mixed with the sugar liquid in the filtrate recovery tank 14. Further, the cleaning liquid obtained by the press filtration apparatus 32 may be circulated to the cleaning water tank 13 through the branch line L22. At this time, the opening degree of the control valves V21 and V25 is adjusted so that the control valve V21 is closed and the control valve V25 is opened.
- the filtrate collection tank 14 is a tank for storing a sugar solution, a washing solution, or a mixed solution 41 in which these are mixed.
- a sugar solution supply line L 31 that supplies the solution in the filtrate collection tank 14 to the ultrafiltration membrane device 15, and a filament shape that supplies the solution in the filtrate collection tank 14 to the stirring tank 21.
- a saccharification enzyme recovery line L11 mixed with the fungus-derived cellulase 26 is connected.
- the mixed solution 41 is supplied to the ultrafiltration membrane device 15 through the sugar solution supply line L31.
- the sugar solution supply line L31 is provided with a control valve V31, and the supply amount of the mixed solution 41 to the ultrafiltration membrane device 15 is adjusted by adjusting the opening degree of the control valve V31.
- the mixed solution 41 is pumped by the pump P3 and supplied to the ultrafiltration membrane device 15.
- the ultrafiltration membrane device 15 filters the mixed solution 41 and separates it into a permeate 42 and a non-permeate 43.
- the permeate 42 that has passed through the ultrafiltration membrane in the ultrafiltration membrane device 15 is recovered as a sugar solution.
- the non-permeated liquid 43 that does not pass through the ultrafiltration membrane is supplied to the filtrate collection tank 14 after the mixed solution 41 in the filtrate collection tank 14 is discharged.
- the non-permeated liquid 43 recovered in the filtrate recovery tank 14 is mixed with the filamentous fungus-derived cellulase supplied to the stirring tank 21 through the saccharifying enzyme recovery line L11 and supplied to the stirring tank 21.
- the saccharification enzyme recovery line L11 is provided with a control valve V32, and the supply amount of the non-permeated liquid is adjusted by adjusting the opening degree of the control valve V32. Since the non-permeated liquid 43 collected in the filtrate collection tank 14 contains filamentous fungus-derived cellulase, it can be reused as the filamentous fungus-derived cellulase in the stirring tank 21.
- the apparatus for producing a sugar solution using the method for producing a sugar solution according to the present invention recovers and reuses the filamentous fungus-derived cellulase adhering to the saccharification residue, thereby further reducing the amount of fungus-derived cellulase used. Can be manufactured. Thereby, the manufacturing cost of the sugar solution can be greatly reduced.
- the sugar solution obtained by the present invention can be used for various uses such as food raw materials, pharmaceutical raw materials, and fermentation raw materials such as chemicals.
- the sugar solution obtained by the present invention is used as a fermentation raw material, and various chemicals can be produced by growing microorganisms having the ability to produce chemical products.
- growing the microorganism means that the sugar component or amino source contained in the sugar solution is used as a nutrient of the microorganism to propagate and maintain the growth of the microorganism.
- chemical products include substances that are mass-produced in the fermentation industry, such as alcohols, organic acids, amino acids, and nucleic acids.
- Such chemical products are accumulated and produced as chemical products inside and outside the body in the process of metabolism using the sugar component in the sugar solution as a carbon source.
- chemicals that can be produced by microorganisms include alcohols such as ethanol, propanol, butanol, 1,3-propanediol, 1,4-butanediol, and glycerol, acetic acid, lactic acid, pyruvic acid, succinic acid, malic acid, and itacone.
- examples thereof include organic acids such as acids and citric acid, nucleosides such as inosine and guanosine, nucleotides such as inosinic acid and guanylic acid, and amine compounds such as cadaverine.
- the sugar solution obtained by the method for producing a sugar solution of the present invention can be applied to the production of enzymes, antibiotics, recombinant proteins, and the like.
- the microorganism used for the production of such a chemical product may be any microorganism that can efficiently produce the target chemical product, and microorganisms such as Escherichia coli, yeast, filamentous fungi, and basidiomycetes can be used.
- the pre-culture medium was inoculated with Trichoderma reesei ATCC 66589 at 1 ⁇ 10 5 cells / mL, and a shaking device (BIO-SHAKER BR-40LF manufactured by TAITEC) was used at a temperature of 28 ° C. for 72 hours. Pre-culture was performed by shaking culture at 180 rpm for a period of time.
- the sugar concentration and the activity of cellulase derived from filamentous fungi were measured as follows.
- Example 1 Hydrolysis of cellulose-containing biomass (step (1))> [Pretreatment of cellulose-containing biomass] (Ammonia treatment of cellulose-containing biomass (Pretreatment 1)) Rice straw was used as the cellulose-containing biomass. The rice straw was put into a small reactor (manufactured by pressure-resistant glass industry, TVS-N2 30 ml) and cooled with liquid nitrogen. Ammonia gas was flowed into the reactor, and the sample was completely immersed in liquid ammonia. The reactor lid was closed and left at room temperature for about 15 minutes. Subsequently, it processed in the 150 degreeC oil bath for 1 hour. After the treatment, the reactor was taken out from the oil bath, and immediately after ammonia gas leaked in the fume hood, the reactor was further evacuated to 10 Pa and dried. This was used as the pre-processed product 1 in the following examples.
- Each of the present compositions was transferred to a branched reaction vessel (manufactured by Tokyo Rika Kikai Co., Ltd., ⁇ 30, NS14 / 23). Thereafter, the branched reaction vessel was placed in a thermostatic bath (MG-2200, manufactured by Tokyo Rika Co., Ltd.), and the present composition was used at 50 ° C. for 24 hours using a small stirrer (CPS-1000, manufactured by Tokyo Rika Co., Ltd.). The mixture was hydrolyzed while keeping it warm and stirring.
- the hydrolyzate obtained from the pretreatment product 1 is referred to as “hydrolyzate 1”
- the hydrolyzate obtained from the pretreatment product 2 is referred to as “hydrolyzate 2” in the following steps (2) and subsequent examples. did.
- Example 2 Solid-liquid separation of hydrolyzate (step (2))>
- the hydrolyzate 1 and hydrolyzate 2 obtained in Example 1 were subjected to solid-liquid separation by centrifugation (3000 G, 10 minutes), respectively, and separated into a sugar solution (6 g) and a saccharification residue (4 g).
- the sugar solution and saccharification residue obtained from the hydrolyzate 1 are designated as “sugar solution 1” and “saccharification residue 1”
- the sugar solution and the saccharification residue obtained from the hydrolyzate 2 are designated as “sugar solution 2” and “ As saccharification residue 2 ", it was used in the examples after step (3).
- sugar concentrations (glucose and xylose concentrations) of the obtained sugar solution 1 and sugar solution 2 were measured by the method described in Reference Example 1.
- Table 1 shows the measurement results of the sugar concentrations (glucose and xylose concentrations) of the obtained sugar solution 1 and sugar solution 2.
- Example 3 Washing of saccharification residue (step (3)) and filtration of the obtained washed solution (step (4))> Each saccharification residue obtained in Example 2 was washed with an aqueous solution containing a lignin blocking agent at room temperature.
- lignin blocking agents BSA (bovine serum-derived albumin, manufactured by Sigma-Aldrich), casein (manufactured by Sigma-Aldrich), DDGS (maize distillation residue, BP-50, manufactured by Wilbur-Ellis), CSL (corn steep liquor, prince Cornstarch Co., Ltd.), skim milk (Wako Pure Chemical Industries, Ltd.), and peptone (BBL Peptone, Becton Dickinson) were used.
- BSA bovine serum-derived albumin, manufactured by Sigma-Aldrich
- casein manufactured by Sigma-Aldrich
- DDGS miize distillation residue
- BP-50 manufactured by Wilbur-Ellis
- CSL corn steep liquor, prince Cornstarch Co.
- a lignin blocking agent was added to sterilized water to a final concentration of 5 g / L to prepare a washed solution. 6 g (6 mL) of these washed solutions were added to “saccharification residue 1” and “saccharification residue 2” and mixed. After mixing, the mixture was allowed to stand at room temperature for 30 minutes, and then centrifuged (3000 G, 10 minutes) for solid-liquid separation, and 6 g of each washed solution of saccharification residue 1 and saccharification residue 2 was collected as each centrifugation supernatant. The collected supernatant component was subjected to microfiltration using a Milex HV filter unit (33 mm, PVDF, pore diameter 0.45 ⁇ m).
- the obtained filtrate was filtered through an ultrafiltration membrane having a fractional molecular weight of 10,000 (VARISPIN 20 material: PES, manufactured by Sartorius steady biotech), and centrifuged at 4500 G until the membrane fraction became 1 mL. Further, 6 mL of distilled water was added to the membrane fraction, and centrifuged at 4500 G until the membrane fraction reached 1 mL again. Thereafter, the enzyme was recovered from the membrane fraction.
- Each activity of the recovered enzyme was measured according to Reference Example 3.
- Comparative Example 1 the activity of each recovered enzyme component when the saccharification residue was washed only with distilled water (not including the lignin blocking agent) was used as a reference value, and the recovered enzyme as a relative value.
- the activity of the components is shown in Tables 2 and 3.
- Example 4 Filtration of a mixed solution of the sugar solution of step (2) and the washed solution (step (4))>
- the sugar solution 1 (6 g) of Example 2 and the washed solution (6 g) of Example 3 were mixed and filtered through an ultrafiltration membrane. Went. Microfiltration was performed using a Milex HV filter unit (33 mm, made by PVDF, pore diameter 0.45 ⁇ m). The obtained filtrate was filtered through an ultrafiltration membrane having a fractional molecular weight of 10,000 (VARISPIN 20 material: PES, manufactured by Sartorius Steadim Biotech), and centrifuged at 4500 G until the membrane fraction became 1 mL.
- VARISPIN 20 material PES, manufactured by Sartorius Steadim Biotech
- Example 4 As is clear from Table 4, it was found that in Example 4, each recovered enzyme activity increased compared to Comparative Example 2. Moreover, in Example 4, it turned out that the difference of each collection
- Example 5 Effect of temperature during washing of saccharification residue in aqueous solution containing lignin blocking agent>
- washing cleaning solution to the saccharification residue 1 was immersed in the hot water bath set to each temperature of 40 degreeC, 50 degreeC, and 60 degreeC, and it was left to stand for 30 minutes. Thereafter, the recovered enzyme was obtained in the same manner as in Example 3, and each enzyme activity was measured.
- Example 6 Washing of saccharification residue with aqueous solution containing lignin blocking agent and ammonium sulfate>
- lignin blocking agents BSA (bovine serum-derived albumin, manufactured by Sigma Aldrich) and CSL (Corn Steep liquor, manufactured by Oji Cornstarch Co., Ltd.) were used.
- the lignin blocking agent was added to sterilized water to a final concentration of 5 g / L, and in this example, ammonium sulfate was further added to 1 g / L, 5 g / L, and 10 g / L to obtain a washed solution.
- Example 7 Production of lactic acid> Using the sugar solution 1 and the sugar solution 2 of Example 2 as fermentation raw materials, the Lactococcus lactis JCM7638 strain was statically cultured at a temperature of 37 ° C. for 24 hours. The concentration of L-lactic acid contained in the culture solution was analyzed under the following conditions. The results are shown in Table 9.
- L-lactic acid can be produced by using sugar solution 1 and sugar solution 2 as fermentation raw materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Emergency Medicine (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
A method for producing a sugar solution according to the present invention is a method for producing the sugar solution form a cellulose-containing biomass, and comprises: (1) a step of hydrolyzing the cellulose-containing biomass with a filamentous fungus-originated cellulase to produce a hydrolysate; (2) a step of subjecting the hydrolysate to solid/liquid separation to produce a sugar solution and a glycosylation residue; (3) a step of washing the glycosylation residue with an aqueous solution containing a lignin blocking agent to produce a wash solution containing the filamentous fungus-originated cellulase contained in the glycosylation residue; and (4) a step of filtrating the wash solution to collect an unpenetrated solution containing the filamentous fungus-originated cellulase.
Description
本発明は、セルロース含有バイオマスから糖液を製造する方法に関する。
The present invention relates to a method for producing a sugar liquid from cellulose-containing biomass.
糖を原料とした化学品の発酵生産プロセスは、種々の工業原料の生産に利用されている。この発酵原料となる糖として、再生可能な非食用資源、すなわちセルロース含有バイオマスから効率的に糖液を製造するプロセス、または得られた糖液を発酵原料として効率的に工業原料に変換するプロセスの構築が検討されている。
The fermentative production process of chemicals using sugar as a raw material is used for the production of various industrial raw materials. As the sugar used as the fermentation raw material, a process for efficiently producing a sugar solution from renewable non-edible resources, that is, cellulose-containing biomass, or a process for efficiently converting the obtained sugar solution as a fermentation raw material into an industrial raw material. Construction is under consideration.
セルロース含有バイオマスから糖液を製造する方法として、濃硫酸を使用してセルロースおよびヘミセルロースを酸で加水分解して糖液を製造する方法(特許文献1、2)、セルロース含有バイオマスを希硫酸で加水分解した後、さらにセルラーゼなどの糖化酵素を用いて糖化処理することにより糖液を製造する方法が開示されている(非特許文献1)。また、酸を使用しない方法として、250~500℃程度の亜臨界水を使用してセルロース含有バイオマスを加水分解して糖液を製造する方法(特許文献3)、セルロース含有バイオマスを亜臨界水で処理した後、さらに糖化酵素で糖化処理することにより糖液を製造する方法(特許文献4)、セルロース含有バイオマスを240~280℃の加圧熱水で加水分解した後、さらに糖化酵素を用いて糖化処理することにより糖液を製造する方法(特許文献5)が開示されている。これらの中でも、近年、特にエネルギー使用量および環境負荷が少なく、かつ糖収量が多い糖化酵素を使用したバイオマスの加水分解方法が広く検討されている。しかしながら、このような糖化酵素を使用して糖液を製造する方法は、酵素の費用が高いため、糖液を製造するための費用が高くなる。
As a method for producing a sugar solution from cellulose-containing biomass, a method for producing a sugar solution by hydrolyzing cellulose and hemicellulose with an acid using concentrated sulfuric acid (Patent Documents 1 and 2), and hydrolyzing a cellulose-containing biomass with dilute sulfuric acid. A method for producing a sugar solution by further performing saccharification treatment using a saccharifying enzyme such as cellulase after decomposition is disclosed (Non-patent Document 1). In addition, as a method not using an acid, a method of hydrolyzing cellulose-containing biomass using subcritical water at about 250 to 500 ° C. to produce a sugar solution (Patent Document 3), a method of using cellulose-containing biomass with subcritical water After the treatment, a method for producing a sugar solution by further saccharifying with a saccharifying enzyme (Patent Document 4), hydrolyzing cellulose-containing biomass with hot hot water at 240 to 280 ° C., and further using a saccharifying enzyme A method for producing a sugar solution by saccharification treatment (Patent Document 5) is disclosed. Among these, in recent years, a method for hydrolyzing biomass using a saccharifying enzyme that has a particularly small amount of energy consumption and an environmental load and that has a high sugar yield has been widely studied. However, the method for producing a sugar solution using such a saccharifying enzyme has a high cost for the enzyme, and therefore the cost for producing the sugar solution is high.
そのため、前述の技術課題を解決する方法として、加水分解に使用した糖化酵素を回収して再利用する方法が提案されている。例えば、スピンフィルターで連続して固液分離を行い、得られた糖液を限外ろ過膜に通じてろ過し、酵素を回収する方法(特許文献6)、酵素糖化の段階において、セルロースを酵素で糖化した糖化液中に残存する固形分に界面活性剤を投入することで、固形分に対する酵素吸着を抑制し回収効率を向上させる方法(特許文献7)、酵素糖化後の糖化残さを通電処理することで酵素成分を回収する方法(特許文献8)、酵素糖化後の糖化残さを再度新しいバイオマスに投入することで酵素を回収して再利用する方法(特許文献9)などが開示されている。
Therefore, as a method for solving the above technical problem, a method for recovering and reusing the saccharifying enzyme used for hydrolysis has been proposed. For example, a solid-liquid separation is carried out continuously with a spin filter, the obtained sugar solution is filtered through an ultrafiltration membrane, and the enzyme is recovered (Patent Document 6). In the stage of enzymatic saccharification, cellulose is converted into an enzyme. A method for improving the recovery efficiency by introducing a surfactant into the solid content remaining in the saccharified solution saccharified in (Patent Document 7), and conducting the saccharification residue after enzymatic saccharification A method for recovering an enzyme component (Patent Document 8), a method for recovering and reusing an enzyme by putting the saccharification residue after enzymatic saccharification into new biomass again (Patent Document 9), and the like are disclosed. .
上述の通り、糖化酵素を使用したセルロース含有バイオマスを加水分解する方法が開発されているが、糖化酵素の使用量を削減するという観点から、セルロース含有バイオマスから糖液を製造する当たり、糖化酵素をより有効に利用しつつ糖液を製造する方法が求められている。
As described above, a method for hydrolyzing cellulose-containing biomass using a saccharifying enzyme has been developed. From the viewpoint of reducing the amount of saccharifying enzyme used, a saccharifying enzyme is used for producing a sugar solution from cellulose-containing biomass. There is a need for a method for producing a sugar solution while using it more effectively.
そこで、本発明は、かかる状況を鑑み、糖化酵素の使用量をさらに低減しつつ糖液を製造することができる糖液の製造方法を提供することを課題とする。
Therefore, in view of such circumstances, an object of the present invention is to provide a method for producing a sugar solution that can produce a sugar solution while further reducing the amount of saccharifying enzyme used.
上述した課題を解決するため、本発明者らは、糖液の製造方法について鋭意検討を行った。その結果、糖化残さに吸着した糖化酵素である糸状菌由来セルラーゼを、リグニンブロッキング剤を含む水溶液に溶出させ、糸状菌由来セルラーゼが溶出した水溶液をろ過して、糸状菌由来セルラーゼを含む非透過液を回収して再利用することで、糸状菌由来セルラーゼの使用量をさらに低減しつつ糖液を製造することができることを見出した。本発明は、かかる知見に基づいて完成されたものである。
In order to solve the above-described problems, the present inventors have intensively studied a method for producing a sugar solution. As a result, the filamentous fungus-derived cellulase adsorbed on the saccharification residue is eluted into an aqueous solution containing a lignin blocking agent, and the aqueous solution from which the filamentous fungus-derived cellulase is eluted is filtered to obtain a non-permeate containing the filamentous fungus-derived cellulase. It was found that a sugar solution can be produced by further reducing the amount of filamentous fungus-derived cellulase used by collecting and reusing. The present invention has been completed based on such findings.
本発明は以下の[1]~[10]の構成を有する。
[1] セルロース含有バイオマスから糖液を製造する方法であって、
工程(1):前記セルロース含有バイオマスを糸状菌由来セルラーゼにより加水分解して、加水分解物を得る工程、
工程(2):前記加水分解物を、糖液と糖化残さとに固液分離する工程、
工程(3):前記糖化残さをリグニンブロッキング剤を含む水溶液で洗浄して、前記糖化残さに含まれる前記糸状菌由来セルラーゼを含む洗浄された溶液を得る工程、および
工程(4):前記洗浄された溶液を含む溶液をろ過し、糸状菌由来セルラーゼを含む非透過液を回収する工程、
を含む、糖液の製造方法。
[2] 前記リグニンブロッキング剤が、コーンスティープリカー、ペプトン、酵母エキス、肉エキス、カゼイン、牛血清由来アルブミン、スキムミルク、エタノール発酵蒸留残さ、ゼイン、魚加工廃棄物、肉加工廃棄物、ホエータンパク質、穀物加工廃棄物、糖加工廃棄物、食物、藻類タンパク質、大豆タンパク質、細菌タンパク質、および菌タンパク質からなる群から選択される1以上である、[1]に記載の糖液の製造方法。
[3] 工程(4)において、前記洗浄された溶液のろ過が、限外ろ過膜である、[1]または[2]に記載の糖液の製造方法。
[4] 工程(4)において、工程(2)において得られた糖液と、工程(3)において得られた前記洗浄された溶液とを混合する工程を含み、前記糖液および前記洗浄された溶液とを含む混合溶液をろ過して、前記糖液を含む透過液を回収する、[1]~[3]のいずれか一つに記載の糖液の製造方法。
[5] 工程(3)において、前記リグニンブロッキング剤を含む水溶液の温度が、40~60℃である、[1]~[4]のいずれか一つに記載の糖液の製造方法。
[6] 前記リグニンブロッキング剤を含む水溶液が、無機塩を含む、[1]~[5]のいずれか一つに記載の糖液の製造方法。
[7] 前記糸状菌由来セルラーゼが、トリコデルマ属微生物由来である、[1]~[6]のいずれか一つに記載の糖液の製造方法。
[8] 前記非透過液が、工程(1)の前記糸状菌由来セルラーゼに混合される、[1]~[7]のいずれか一つに記載の糖液の製造方法。
[9] 工程(2)において、前記加水分解物の固液分離がプレスろ過により行われる、[1]~[8]のいずれか一つに記載の糖液の製造方法。
[10] [1]~[9]のいずれか一つに記載の糖液の製造方法により糖液を製造する工程と、
前記糖液を発酵原料として化学品を生産する能力を有する微生物を培養する工程と、
を含む、化学品の製造方法。 The present invention has the following configurations [1] to [10].
[1] A method for producing a sugar solution from cellulose-containing biomass,
Step (1): A step of hydrolyzing the cellulose-containing biomass with a filamentous fungus-derived cellulase to obtain a hydrolyzate,
Step (2): Solid-liquid separation of the hydrolyzate into a sugar solution and a saccharification residue,
Step (3): washing the saccharification residue with an aqueous solution containing a lignin blocking agent to obtain a washed solution containing the filamentous fungus-derived cellulase contained in the saccharification residue, and step (4): the washing Filtering the solution containing the solution, and recovering the non-permeate containing the filamentous fungus-derived cellulase,
A method for producing a sugar solution, comprising:
[2] The lignin blocking agent is corn steep liquor, peptone, yeast extract, meat extract, casein, bovine serum-derived albumin, skim milk, ethanol fermentation distillation residue, zein, fish processing waste, meat processing waste, whey protein, The method for producing a sugar liquid according to [1], wherein the sugar solution is one or more selected from the group consisting of grain processing waste, sugar processing waste, food, algal protein, soy protein, bacterial protein, and fungal protein.
[3] The method for producing a sugar solution according to [1] or [2], wherein in the step (4), filtration of the washed solution is an ultrafiltration membrane.
[4] In the step (4), the method includes a step of mixing the sugar solution obtained in the step (2) with the washed solution obtained in the step (3), and the sugar solution and the washed solution The method for producing a sugar solution according to any one of [1] to [3], wherein a mixed solution containing the solution is filtered to collect a permeate containing the sugar solution.
[5] The method for producing a sugar liquid according to any one of [1] to [4], wherein in step (3), the temperature of the aqueous solution containing the lignin blocking agent is 40 to 60 ° C.
[6] The method for producing a sugar liquid according to any one of [1] to [5], wherein the aqueous solution containing the lignin blocking agent contains an inorganic salt.
[7] The method for producing a sugar liquid according to any one of [1] to [6], wherein the filamentous fungus-derived cellulase is derived from a Trichoderma microorganism.
[8] The method for producing a sugar liquid according to any one of [1] to [7], wherein the non-permeating liquid is mixed with the filamentous fungus-derived cellulase in step (1).
[9] The method for producing a sugar liquid according to any one of [1] to [8], wherein in the step (2), the solid-liquid separation of the hydrolyzate is performed by press filtration.
[10] A step of producing a sugar solution by the method for producing a sugar solution according to any one of [1] to [9];
Culturing a microorganism having the ability to produce a chemical using the sugar solution as a fermentation raw material;
A method for producing a chemical product.
[1] セルロース含有バイオマスから糖液を製造する方法であって、
工程(1):前記セルロース含有バイオマスを糸状菌由来セルラーゼにより加水分解して、加水分解物を得る工程、
工程(2):前記加水分解物を、糖液と糖化残さとに固液分離する工程、
工程(3):前記糖化残さをリグニンブロッキング剤を含む水溶液で洗浄して、前記糖化残さに含まれる前記糸状菌由来セルラーゼを含む洗浄された溶液を得る工程、および
工程(4):前記洗浄された溶液を含む溶液をろ過し、糸状菌由来セルラーゼを含む非透過液を回収する工程、
を含む、糖液の製造方法。
[2] 前記リグニンブロッキング剤が、コーンスティープリカー、ペプトン、酵母エキス、肉エキス、カゼイン、牛血清由来アルブミン、スキムミルク、エタノール発酵蒸留残さ、ゼイン、魚加工廃棄物、肉加工廃棄物、ホエータンパク質、穀物加工廃棄物、糖加工廃棄物、食物、藻類タンパク質、大豆タンパク質、細菌タンパク質、および菌タンパク質からなる群から選択される1以上である、[1]に記載の糖液の製造方法。
[3] 工程(4)において、前記洗浄された溶液のろ過が、限外ろ過膜である、[1]または[2]に記載の糖液の製造方法。
[4] 工程(4)において、工程(2)において得られた糖液と、工程(3)において得られた前記洗浄された溶液とを混合する工程を含み、前記糖液および前記洗浄された溶液とを含む混合溶液をろ過して、前記糖液を含む透過液を回収する、[1]~[3]のいずれか一つに記載の糖液の製造方法。
[5] 工程(3)において、前記リグニンブロッキング剤を含む水溶液の温度が、40~60℃である、[1]~[4]のいずれか一つに記載の糖液の製造方法。
[6] 前記リグニンブロッキング剤を含む水溶液が、無機塩を含む、[1]~[5]のいずれか一つに記載の糖液の製造方法。
[7] 前記糸状菌由来セルラーゼが、トリコデルマ属微生物由来である、[1]~[6]のいずれか一つに記載の糖液の製造方法。
[8] 前記非透過液が、工程(1)の前記糸状菌由来セルラーゼに混合される、[1]~[7]のいずれか一つに記載の糖液の製造方法。
[9] 工程(2)において、前記加水分解物の固液分離がプレスろ過により行われる、[1]~[8]のいずれか一つに記載の糖液の製造方法。
[10] [1]~[9]のいずれか一つに記載の糖液の製造方法により糖液を製造する工程と、
前記糖液を発酵原料として化学品を生産する能力を有する微生物を培養する工程と、
を含む、化学品の製造方法。 The present invention has the following configurations [1] to [10].
[1] A method for producing a sugar solution from cellulose-containing biomass,
Step (1): A step of hydrolyzing the cellulose-containing biomass with a filamentous fungus-derived cellulase to obtain a hydrolyzate,
Step (2): Solid-liquid separation of the hydrolyzate into a sugar solution and a saccharification residue,
Step (3): washing the saccharification residue with an aqueous solution containing a lignin blocking agent to obtain a washed solution containing the filamentous fungus-derived cellulase contained in the saccharification residue, and step (4): the washing Filtering the solution containing the solution, and recovering the non-permeate containing the filamentous fungus-derived cellulase,
A method for producing a sugar solution, comprising:
[2] The lignin blocking agent is corn steep liquor, peptone, yeast extract, meat extract, casein, bovine serum-derived albumin, skim milk, ethanol fermentation distillation residue, zein, fish processing waste, meat processing waste, whey protein, The method for producing a sugar liquid according to [1], wherein the sugar solution is one or more selected from the group consisting of grain processing waste, sugar processing waste, food, algal protein, soy protein, bacterial protein, and fungal protein.
[3] The method for producing a sugar solution according to [1] or [2], wherein in the step (4), filtration of the washed solution is an ultrafiltration membrane.
[4] In the step (4), the method includes a step of mixing the sugar solution obtained in the step (2) with the washed solution obtained in the step (3), and the sugar solution and the washed solution The method for producing a sugar solution according to any one of [1] to [3], wherein a mixed solution containing the solution is filtered to collect a permeate containing the sugar solution.
[5] The method for producing a sugar liquid according to any one of [1] to [4], wherein in step (3), the temperature of the aqueous solution containing the lignin blocking agent is 40 to 60 ° C.
[6] The method for producing a sugar liquid according to any one of [1] to [5], wherein the aqueous solution containing the lignin blocking agent contains an inorganic salt.
[7] The method for producing a sugar liquid according to any one of [1] to [6], wherein the filamentous fungus-derived cellulase is derived from a Trichoderma microorganism.
[8] The method for producing a sugar liquid according to any one of [1] to [7], wherein the non-permeating liquid is mixed with the filamentous fungus-derived cellulase in step (1).
[9] The method for producing a sugar liquid according to any one of [1] to [8], wherein in the step (2), the solid-liquid separation of the hydrolyzate is performed by press filtration.
[10] A step of producing a sugar solution by the method for producing a sugar solution according to any one of [1] to [9];
Culturing a microorganism having the ability to produce a chemical using the sugar solution as a fermentation raw material;
A method for producing a chemical product.
本発明によれば、糖化残さに吸着した糸状菌由来セルラーゼを、リグニンブロッキング剤を含む水溶液に溶出させ、糸状菌由来セルラーゼが溶出した水溶液をろ過することで、糸状菌由来セルラーゼを含む非透過液を得ることができる。得られた糸状菌由来セルラーゼを含む非透過液を回収して再利用することにより、糸状菌由来セルラーゼの使用量をさらに低減しつつ糖液を製造することができる。これにより、糖液の製造コストを大幅に削減することができる。
According to the present invention, the filamentous fungus-derived cellulase adsorbed on the saccharification residue is eluted in an aqueous solution containing a lignin blocking agent, and the aqueous solution from which the filamentous fungus-derived cellulase is eluted is filtered, thereby impermeable liquid containing the filamentous fungus-derived cellulase. Can be obtained. By collecting and reusing the obtained non-permeate containing the filamentous fungus-derived cellulase, a sugar solution can be produced while further reducing the amount of the filamentous fungus-derived cellulase used. Thereby, the manufacturing cost of a sugar liquid can be reduced significantly.
以下、本発明を実施するための形態について詳細に説明する。なお、本発明を実施するための形態は、以下に限定されるものではない。
Hereinafter, embodiments for carrying out the present invention will be described in detail. In addition, the form for implementing this invention is not limited to the following.
<糖液の製造方法>
本発明による糖液の製造方法を図1に示す。本発明による糖液の製造方法について、以下、各工程ごとに説明する。 <Method for producing sugar solution>
A method for producing a sugar solution according to the present invention is shown in FIG. Hereinafter, the method for producing a sugar solution according to the present invention will be described for each step.
本発明による糖液の製造方法を図1に示す。本発明による糖液の製造方法について、以下、各工程ごとに説明する。 <Method for producing sugar solution>
A method for producing a sugar solution according to the present invention is shown in FIG. Hereinafter, the method for producing a sugar solution according to the present invention will be described for each step.
[工程(1)]
工程(1)では、セルロース含有バイオマスに、糖化酵素である糸状菌由来セルラーゼを添加して、セルロース含有バイオマスを糸状菌由来セルラーゼにより加水分解する。これにより、加水分解物が得られる。加水分解は、セルロースを低分子量化し、単糖またはオリゴ糖を生成することを目的とするが、セルロース含有バイオマスの加水分解では、キシラン、マンナン、アラビナンなどのヘミセルロース成分も同時に加水分解される。 [Step (1)]
In the step (1), a filamentous fungus-derived cellulase that is a saccharifying enzyme is added to the cellulose-containing biomass, and the cellulose-containing biomass is hydrolyzed by the filamentous fungus-derived cellulase. Thereby, a hydrolyzate is obtained. The purpose of hydrolysis is to reduce the molecular weight of cellulose to produce monosaccharides or oligosaccharides, but in the hydrolysis of cellulose-containing biomass, hemicellulose components such as xylan, mannan and arabinan are also hydrolyzed at the same time.
工程(1)では、セルロース含有バイオマスに、糖化酵素である糸状菌由来セルラーゼを添加して、セルロース含有バイオマスを糸状菌由来セルラーゼにより加水分解する。これにより、加水分解物が得られる。加水分解は、セルロースを低分子量化し、単糖またはオリゴ糖を生成することを目的とするが、セルロース含有バイオマスの加水分解では、キシラン、マンナン、アラビナンなどのヘミセルロース成分も同時に加水分解される。 [Step (1)]
In the step (1), a filamentous fungus-derived cellulase that is a saccharifying enzyme is added to the cellulose-containing biomass, and the cellulose-containing biomass is hydrolyzed by the filamentous fungus-derived cellulase. Thereby, a hydrolyzate is obtained. The purpose of hydrolysis is to reduce the molecular weight of cellulose to produce monosaccharides or oligosaccharides, but in the hydrolysis of cellulose-containing biomass, hemicellulose components such as xylan, mannan and arabinan are also hydrolyzed at the same time.
セルロース含有バイオマスとは、セルロース成分を含む生物資源のことをいう。具体的には、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、ビートパルプ、綿実殻、パーム殻房、稲わら、麦わら、竹、笹などの草本系バイオマス、または、シラカバ、ブナなどの樹木、廃建材などの木質系バイオマス、さらに藻類、海草など水生環境由来のバイオマスを挙げることができる。なお、セルロース含有バイオマスには、糖から構成されるセルロースおよびヘミセルロース(以下、セルロースとヘミセルロースの総称として「セルロース」という。)の他に、芳香族高分子であるリグニンなどを含有している。
Cellulose-containing biomass refers to biological resources that contain cellulose components. Specifically, herbaceous biomass such as bagasse, switchgrass, napiergrass, Eliansus, corn stover, beet pulp, cottonseed husk, palm husk, rice straw, straw, bamboo, straw, birch, beech, etc. Woody biomass such as wood and waste building materials, as well as biomass derived from the aquatic environment such as algae and seaweed. The cellulose-containing biomass contains lignin, which is an aromatic polymer, in addition to cellulose composed of sugar and hemicellulose (hereinafter referred to as “cellulose” as a generic term for cellulose and hemicellulose).
糖化酵素による加水分解の反応条件としては、糖化酵素の好ましい反応条件に準じて行えばよく、本発明においては、糸状菌由来セルラーゼを使用するため、反応温度は、15~100℃の範囲が好ましく、40~60℃がより好ましく、50℃前後が更に好ましい。
The reaction conditions for the hydrolysis with a saccharifying enzyme may be carried out in accordance with the preferable reaction conditions for a saccharifying enzyme. In the present invention, since a filamentous fungus-derived cellulase is used, the reaction temperature is preferably in the range of 15 to 100 ° C. 40 to 60 ° C is more preferable, and around 50 ° C is more preferable.
加水分解の反応時間は、2時間~200時間の範囲であることが好ましい。2時間以上であれば、十分な糖が生成される。また、200時間以下であれば、酵素活性の低下を抑制し、回収した糖化酵素を再利用することができる。
The reaction time for hydrolysis is preferably in the range of 2 hours to 200 hours. If it is 2 hours or more, sufficient sugar is produced. Moreover, if it is 200 hours or less, the fall of enzyme activity can be suppressed and the collect | recovered saccharifying enzyme can be reused.
加水分解反応のpHは、糸状菌由来セルラーゼの至適pHにおいて糸状菌由来セルラーゼによる加水分解の効果が最も高くなるため、セルラーゼ処理時のpHは、糸状菌由来セルラーゼの至適pHとすることが好ましい。本発明においては、糸状菌由来セルラーゼを使用するため、pHは、3~9の範囲が好ましく、4~5.5がより好ましく、5前後がさらに好ましい。また、糸状菌由来セルラーゼとしてトリコデルマ属由来セルラーゼを使用する場合、その反応最適pHは5.0である。
The pH of the hydrolysis reaction has the highest effect of hydrolysis by the filamentous fungus-derived cellulase at the optimum pH of the filamentous fungus-derived cellulase, so the pH during the cellulase treatment should be the optimum pH of the filamentous fungus-derived cellulase. preferable. In the present invention, since filamentous fungus-derived cellulase is used, the pH is preferably in the range of 3 to 9, more preferably 4 to 5.5, and even more preferably around 5. When Trichoderma genus cellulase is used as the filamentous fungus-derived cellulase, the optimum pH for the reaction is 5.0.
セルロース含有バイオマスおよび糸状菌由来セルラーゼを含む反応溶液のpHの調整は、後述する、工程(2)において、加水分解物を固液分離する直前、または加水分解物を固液分離するのと同時に行ってもよい。pHの調整は加水分解物の固液分離を行う前に行い、固液分離を開始するまで一定時間静置することにより、さらに効果を高めることができる。例えば、加水分解物のpH調整後、1時間静置した後、固液分離を行う方法などがある。
Adjustment of the pH of the reaction solution containing cellulose-containing biomass and filamentous fungus-derived cellulase is performed immediately before solid-liquid separation of the hydrolyzate or simultaneously with solid-liquid separation of the hydrolyzate in step (2) described later. May be. The pH can be adjusted before solid-liquid separation of the hydrolyzate, and the effect can be further enhanced by allowing it to stand for a certain period of time until solid-liquid separation is started. For example, after adjusting the pH of the hydrolyzate, there is a method of solid-liquid separation after standing for 1 hour.
さらに、加水分解の過程でpHの変化が起きるため、pH調整には、酸またはアルカリを使用して一定のpHとなるように調整することが好ましい。また、pH調整は、適宜、加水分解物に緩衝液を使用してもよい。pH調整に用いる、酸またはアルカリは、特に限定されるものではない。酸としては、例えば、塩酸、硫酸、硝酸、リン酸などが挙げられ、好ましくは、本発明において得られる糖液の発酵時の阻害が起こりにくいという観点から、硫酸、硝酸、リン酸が用いられ、より好ましくは、経済性の観点から、硫酸が用いられる。アルカリとしては、好ましくは、経済性の観点から、アンモニア、水酸化ナトリウム、水酸化カルシウムとそれらを含む水溶液が用いられ、より好ましくは、後述の行程(4)において膜分離する際に膜ファウリングが生じることを抑制する観点から、1価イオンである、アンモニア、水酸化ナトリウムが用いられ、さらに好ましくは、発酵時の阻害が起こり難いという観点から、アンモニアが用いられる。
Furthermore, since a change in pH occurs during the hydrolysis process, it is preferable to adjust the pH so that the pH becomes constant using acid or alkali. Moreover, pH adjustment may use a buffer solution for a hydrolyzate suitably. The acid or alkali used for pH adjustment is not particularly limited. Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and the like. Preferably, sulfuric acid, nitric acid, and phosphoric acid are used from the viewpoint that inhibition during fermentation of the sugar liquid obtained in the present invention hardly occurs. More preferably, sulfuric acid is used from the viewpoint of economy. As the alkali, preferably, ammonia, sodium hydroxide, calcium hydroxide and an aqueous solution containing them are used from the viewpoint of economy, and more preferably, membrane fouling is performed during membrane separation in step (4) described later. From the viewpoint of suppressing the occurrence of water, monovalent ions such as ammonia and sodium hydroxide are used, and more preferably, ammonia is used from the viewpoint that inhibition during fermentation hardly occurs.
セルロース含有バイオマスと糖化酵素との接触を促進させると共に、加水分解物の糖濃度を均一にするため、セルロース含有バイオマスと糖化酵素とを攪拌しながら混合することが好ましい。
In order to promote the contact between the cellulose-containing biomass and the saccharifying enzyme, and to make the sugar concentration of the hydrolyzate uniform, it is preferable to mix the cellulose-containing biomass and the saccharifying enzyme while stirring.
セルロースの固形分濃度は、好ましくは1~25重量%、より好ましくは5~20重量%の範囲となるようにする。
The solid content concentration of cellulose is preferably 1 to 25% by weight, more preferably 5 to 20% by weight.
糖化酵素として用いられる糸状菌由来セルラーゼとしては、トリコデルマ属(Trichoderma)、アスペルギルス属(Aspergillus)、セルロモナス属(Cellulomonas)、クロストリジウム属(Clostridium)、ストレプトマイセス属(Streptomyces)、フミコラ属(Humicola)、アクレモニウム属(Acremonium)、イルペックス属(Irpex)、ムコール属(Mucor)、タラロマイセス属(Talaromyces)、ファネロカエーテ(Phanerochaete)属、白色腐朽金、褐色腐朽菌などの微生物に由来するセルラーゼを挙げることができる。また、これらの微生物に変異剤あるいは紫外線照射などで変異処理を施してセルラーゼ生産性が向上した変異株由来のセルラーゼであってもよい。こうした糸状菌由来セルラーゼの中でも、セルロースの加水分解において比活性の高い酵素成分を培養液中に大量に生産するトリコデルマ属由来セルラーゼを使用することが好ましい。
As the cellulase derived from filamentous fungi used as a saccharifying enzyme, the genus Trichoderma, Aspergillus, Cellulomonas, Clostridium, Streptomyces, Humi, Examples include cellulases derived from microorganisms such as Acremonium, Irpex, Mucor, Talaromyces, Phanerochaete, white rotten gold, and brown rotting fungi. . In addition, a cellulase derived from a mutant strain in which cellulase productivity has been improved by subjecting these microorganisms to a mutation treatment or irradiation with ultraviolet rays or the like may be used. Among these filamentous fungus-derived cellulases, it is preferable to use Trichoderma genus-derived cellulase, which produces a large amount of enzyme components with high specific activity in the hydrolysis of cellulose.
トリコデルマ属由来セルラーゼとは、トリコデルマ属微生物由来のセルラーゼを主成分とする酵素組成物である。トリコデルマ属微生物は特に限定されないが、トリコデルマ・リーセイ(Trichoderma reesei)が好ましく、具体的にはトリコデルマ・リーセイQM9414(Trichoderma reesei QM9414)、トリコデルマ・リーセイQM9123(Trichoderma reeseiQM9123)、トリコデルマ・リーセイRutC-30(Trichoderma reeseiRut C-30)、トリコデルマ・リーセイPC3-7(Trichoderma reesei PC3-7)、トリコデルマ・リーセイCL-847(Trichoderma reeseiCL-847)、トリコデルマ・リーセイMCG77(Trichoderma reesei MCG77)、トリコデルマ・リーセイMCG80(Trichoderma reeseiMCG80)、トリコデルマ・ビリデQM9123(Trichoderma viride9123)を例示することができる。
Trichoderma-derived cellulase is an enzyme composition mainly composed of cellulase derived from Trichoderma microorganisms. The microorganism of the genus Trichoderma is not particularly limited, but Trichoderma reesei (Trichoderma reesei) is preferable, and specifically, Trichoderma reesei QM9414 (Trichoderma reesei QM9414), Trichoderma reesei QM9123 (Trichoderma reesei QM9123) reeseiRut C-30), Trichoderma reesei PC3-7 (Trichoderma reesei PC3-7), Trichoderma reesei CL-847 (Trichoderma reeseiCL-847), Trichoderma reesei MCG77 (Trichoderma MCe 77) Ma reesei MCG80 (Trichoderma reeseiMCG80), can be exemplified Trichoderma viride QM9123 a (Trichoderma viride9123).
糸状菌由来セルラーゼは、セルロースを加水分解する複数の酵素を含んでおり、セルロースおよび/またはヘミセルロースを加水分解して糖化する活性を有する酵素組成物である。セルロースを加水分解する酵素としては、セロビオハイドラーゼ、エンドグルカナーゼ、エキソグルカナーゼ、βグルコシダーゼ、キシラナーゼ、キシロシダーゼなどが挙げられる。糸状菌由来セルラーゼは、こうした複数の酵素を含んでいるため、セルロース分解において複数の酵素の協奏効果または補完効果により効率的にセルロースおよび/またはヘミセルロースの加水分解を行うことができる。
Filamentous fungus-derived cellulase is an enzyme composition that contains a plurality of enzymes that hydrolyze cellulose and has an activity of hydrolyzing and saccharifying cellulose and / or hemicellulose. Examples of enzymes that hydrolyze cellulose include cellobiohydrase, endoglucanase, exoglucanase, β-glucosidase, xylanase, and xylosidase. Since the filamentous fungus-derived cellulase contains a plurality of such enzymes, cellulose and / or hemicellulose can be efficiently hydrolyzed by the concerted effect or the complementary effect of the plurality of enzymes in cellulose degradation.
特に、本発明で使用する糸状菌由来セルラーゼは、セロビオハイドラーゼおよびキシラナーゼを含むことが好ましい。本発明においては、高濃度の無機塩を、セルロース含有バイオマスの加水分解時にセルロース含有バイオマスおよび糸状菌由来セルラーゼに添加することにより、セルロース含有バイオマスの加水分解前である、バイオマス前処理物に対するセロビオハイドラーゼおよびキシラナーゼの吸着を低減させ、高い酵素回収率が得られるためである。
In particular, the filamentous fungus-derived cellulase used in the present invention preferably contains cellobiohydrase and xylanase. In the present invention, by adding a high-concentration inorganic salt to cellulose-containing biomass and filamentous fungus-derived cellulase at the time of hydrolysis of cellulose-containing biomass, cellobio for the pretreatment product of biomass before hydrolysis of cellulose-containing biomass is performed. This is because adsorption of hydrase and xylanase is reduced and a high enzyme recovery rate is obtained.
セロビオハイドラーゼとは、セルロースを末端部分から加水分解を開始し、セロビオースを放出するセルラーゼの総称であり、EC番号:EC3.2.1.91として、セロビオハイドラーゼに帰属される酵素群が記載されている。セルロース分解活性は、セルロースを基質として酵素を作用させた際に遊離してくるグルコース量より測定することができ、具体的な方法は、「Pure & Appl.Chem.、Vol.59、No.2、257-268ページ」の“FILTER PAPER ASSAY FOR SACCHARIFYING CELLULASE”に記載の方法を使用できる。
Cellobiohydrase is a general term for cellulases that start hydrolysis of cellulose from the terminal portion and release cellobiose, and an enzyme group belonging to cellobiohydrase as EC number: EC 3.2.1.91. Is described. Cellulolytic activity can be measured from the amount of glucose liberated when an enzyme is allowed to act on cellulose as a substrate, and specific methods are described in “Pure & Appl. Chem., Vol. 59, No. 2”. 257-268 page, "FILTER PAPER ASSAY FOR SACCHARIFYING CELLULASE" can be used.
エンドグルカナーゼとは、セルロース分子鎖の中央部分から加水分解する活性を有するセルラーゼの総称であり、EC番号:EC3.2.1.4、EC3.2.1.6、EC3.2.1.39、EC3.2.1.73としてエンドグルカナーゼに帰属される酵素群が記載されている。セルロース分解活性は、カルボキシメチルセルロース(CMC)を基質として酵素を作用させた際に遊離してくる還元糖の量より測定することができ、具体的な方法は、例えば、「Pure & Appl.Chem.、Vol.59、No.2、257-268ページ」の“CARBOXYL CELLULASE ASSAY FOR ENDO-β-1,4-GLUCANASE”に記載の方法を使用できる。
Endoglucanase is a general term for cellulases having an activity of hydrolyzing from the central part of a cellulose molecular chain, and EC numbers: EC 3.2.1.4, EC 3.2.1.6, EC 3.2.1.39. EC 3.2.1.73 describes an enzyme group belonging to endoglucanase. Cellulolytic activity can be measured from the amount of reducing sugar released when an enzyme is allowed to act using carboxymethylcellulose (CMC) as a substrate. Specific methods are described in, for example, “Pure & Appl. Chem. , Vol.59, No.2, pp. 257-268 ”, the method described in“ CARBOXYL CELLULASE ASSAY FOR ENDO-β-1,4-GLUCANCE ”can be used.
エキソグルカナーゼとは、セルロース分子鎖の末端から加水分解するセルラーゼの総称であり、EC番号:EC3.2.1.74、EC3.2.1.58としてエキソグルカナーゼに帰属される酵素群が記載されている。
Exoglucanase is a general term for cellulases that hydrolyze from the ends of cellulose molecular chains, and the enzyme groups belonging to exoglucanase are described as EC numbers: EC3.2.1.74 and EC3.2.1.58. ing.
βグルコシダーゼとは、セロオリゴ糖またはセロビオースを加水分解するセルラーゼの総称であり、EC番号:EC3.2.1.21としてβグルコシダーゼに帰属される酵素群が記載されている。セロビオース分解活性(以下、「BGL活性」ともいう)は、セロビオースを基質として酵素を作用させた際に遊離してくるグルコースの量より測定することができ、例えば、「Pure & Appl.Chem.、Vol.59、No.2、257-268ページ」に記載の“Cellobiase assay”の方法に従って測定することができる。
Β-glucosidase is a general term for cellulases that hydrolyze cellooligosaccharides or cellobiose, and describes an enzyme group belonging to β-glucosidase as EC number: EC 3.2.1.21. Cellobiose degrading activity (hereinafter also referred to as “BGL activity”) can be measured from the amount of glucose released when an enzyme is allowed to act on cellobiose as a substrate. For example, “Pure & Appl. Chem. Vol.59, No.2, pages 257-268 "can be measured according to the method of" Cellobiase assay ".
キシラナーゼとは、ヘミセルロースまたは特にキシランに作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.8としてキシラナーゼに帰属される酵素群が記載されている。
Xylanase is a general term for cellulases characterized by acting on hemicellulose or especially xylan, and an enzyme group belonging to xylanase is described as EC number: EC3.2.1.8.
キシロシダーゼとは、キシロオリゴ糖に作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.37としてキシロシダーゼに帰属される酵素群が記載されている。
Xylosidase is a general term for cellulases characterized by acting on xylo-oligosaccharides, and an enzyme group belonging to xylosidase is described as EC number: EC 3.2.1.37.
こうした糸状菌由来セルラーゼに含まれる酵素は、ゲルろ過、イオン交換、二次元電気泳動などの公知手法により分離し、分離した成分のアミノ酸配列(N末端分析、C末端分析、質量分析)を行い、データベースとの比較により同定することができる。
Enzymes contained in such filamentous fungus-derived cellulases are separated by known techniques such as gel filtration, ion exchange, two-dimensional electrophoresis, and the amino acid sequences of the separated components (N-terminal analysis, C-terminal analysis, mass spectrometry) are performed. It can be identified by comparison with a database.
また、糸状菌由来セルラーゼの酵素活性は、アビセル分解活性、キシラン分解活性、カルボキシメチルセルロース(CMC)分解活性、セロビオース分解活性、マンナン分解活性などの多糖の加水分解活性によって評価することができる。アビセル分解活性を示す主たる酵素は、セルロース末端部分から加水分解する特徴を有するセロビオハイドラーゼあるいはエキソグルカナーゼである。キシラン分解活性を示す主たる酵素はキシラナーゼ、β-キシロシダーゼである。CMC分解活性に関与する主たる酵素は、セロビオハイドラーゼ、エキソグルカナーゼ、エンドグルカナーゼである。セロビオース分解活性を示す主たる酵素は、β-グルコシダーゼである。ここで、“主たる”という意味は、最も分解に関与することが知られていることからの表現であり、これ以外の酵素成分もその分解に関与していることを意味している。
In addition, the enzyme activity of filamentous fungus-derived cellulase can be evaluated by polysaccharide hydrolysis activity such as Avicel degradation activity, xylan degradation activity, carboxymethylcellulose (CMC) degradation activity, cellobiose degradation activity, mannan degradation activity. The main enzyme exhibiting Avicel-degrading activity is cellobiohydrase or exoglucanase, which has the characteristic of hydrolyzing from the terminal portion of cellulose. The main enzymes showing xylan degradation activity are xylanase and β-xylosidase. The main enzymes involved in CMC degradation activity are cellobiohydrase, exoglucanase and endoglucanase. The main enzyme exhibiting cellobiose degrading activity is β-glucosidase. Here, the term “principal” is an expression from what is known to be most involved in degradation, and means that other enzyme components are also involved in the degradation.
糸状菌は、培養液中にセルラーゼを産生するため、その培養液を粗酵素剤としてそのまま使用してもよいし、公知の方法で酵素群を精製し、製剤化したものを糸状菌由来セルラーゼ混合物として使用してもよい。糸状菌由来セルラーゼを精製し、製剤化したものとして使用する場合、プロテアーゼ阻害剤、分散剤、溶解促進剤、安定化剤など、酵素以外の物質を添加したものをセルラーゼ製剤として使用してもよい。
Since the filamentous fungus produces cellulase in the culture solution, the culture solution may be used as it is as a crude enzyme agent, or the enzyme group is purified by a known method and formulated into a filamentous fungus-derived cellulase mixture. May be used as When a filamentous fungus-derived cellulase is purified and used as a preparation, a substance added with a substance other than an enzyme such as a protease inhibitor, a dispersant, a dissolution accelerator, or a stabilizer may be used as a cellulase preparation. .
本発明においては、糸状菌由来セルラーゼとしては、粗酵素物が好ましく使用される。粗酵素物は、トリコデルマ属の微生物がセルラーゼを産生するよう調整した培地中で、任意の期間、該微生物を培養した培養上清に由来する。使用する培地成分は特に限定されないが、セルラーゼの産生を促進するために、セルロースを添加した培地が一般的に使用できる。そして、粗酵素物として、培養液をそのまま、またはトリコデルマ菌体を除去したのみの培養上清が好ましく使用される。
In the present invention, a crude enzyme product is preferably used as the cellulase derived from filamentous fungi. The crude enzyme product is derived from the culture supernatant obtained by culturing the microorganism for an arbitrary period in a medium adjusted so that the microorganism of the genus Trichoderma produces cellulase. The medium components to be used are not particularly limited, but in order to promote the production of cellulase, a medium to which cellulose is added can be generally used. As the crude enzyme product, the culture supernatant is preferably used as it is or from the culture supernatant obtained by removing Trichoderma cells.
粗酵素物中の各酵素成分の重量比は特に限定されるものではないが、例えば、トリコデルマ・リーセイ由来の培養液には、50~95重量%のセロビオハイドラーゼが含まれており、残りの成分にエンドグルカナーゼ、βグルコシダーゼなどが含まれている。また、トリコデルマ属の微生物は、強力なセルラーゼ成分を培養液中に生産する一方で、βグルコシダーゼに関しては、細胞内または細胞表層に保持しているため培養液中のβグルコシダーゼ活性は低い。そのため、粗酵素物に、さらに異種または同種のβグルコシダーゼを添加してもよい。異種のβグルコシダーゼとしては、アスペルギルス属由来のβグルコシダーゼが好ましく使用できる。アスペルギルス属由来のβグルコシダーゼとして、ノボザイム社より市販されているNovozyme188などを例示することができる。粗酵素物に異種または同種のβグルコシダーゼを添加する方法としては、トリコデルマ属の微生物に遺伝子を導入し、その培養液中に産生されるよう遺伝子組換えされたトリコデルマ属の微生物を培養し、その培養液を単離する方法でもよい。
The weight ratio of each enzyme component in the crude enzyme product is not particularly limited. For example, the culture solution derived from Trichoderma reesei contains 50 to 95% by weight of cellobiohydrase, and the rest. The endoglucanase, β-glucosidase, etc. are contained in the components. Trichoderma microorganisms produce a strong cellulase component in the culture solution, while β-glucosidase has low β-glucosidase activity in the culture solution because it is retained in the cell or on the cell surface. Therefore, you may add a different type or the same type of beta-glucosidase to the crude enzyme product. As the heterogeneous β-glucosidase, β-glucosidase derived from Aspergillus can be preferably used. Examples of β-glucosidase derived from the genus Aspergillus include Novozyme 188 commercially available from Novozyme. As a method of adding a heterologous or homologous β-glucosidase to a crude enzyme product, a gene is introduced into a Trichoderma microorganism, and the Trichoderma microorganism that has been genetically modified so as to be produced in the culture solution is cultured. A method of isolating the culture solution may also be used.
(前処理)
セルロース含有バイオマスは、上記のように、セルロースの他に、リグニンなどを含有している。そのため、セルロース含有バイオマスを前処理しておくことが好ましい。これにより、糸状菌由来セルラーゼによるセルロース含有バイオマスの加水分解効率を向上させることができる。セルロース含有バイオマスの前処理方法としては、酸処理、硫酸処理、希硫酸処理、酢酸処理、アルカリ処理、苛性ソーダ処理、アンモニア処理、水熱処理、亜臨界水処理、微粉砕処理、蒸煮処理などが挙げられる。本発明においては、後述の工程(3)で種々の酵素を効率よく回収するという観点から、アンモニア処理、水熱処理または希硫酸処理を行うことが好ましい。 (Preprocessing)
Cellulose-containing biomass contains lignin and the like in addition to cellulose as described above. Therefore, it is preferable to pretreat the cellulose-containing biomass. Thereby, the hydrolysis efficiency of the cellulose containing biomass by a filamentous fungus origin cellulase can be improved. Examples of the pretreatment method for cellulose-containing biomass include acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, acetic acid treatment, alkali treatment, caustic soda treatment, ammonia treatment, hydrothermal treatment, subcritical water treatment, pulverization treatment, and steaming treatment. . In the present invention, it is preferable to perform ammonia treatment, hydrothermal treatment or dilute sulfuric acid treatment from the viewpoint of efficiently recovering various enzymes in the step (3) described later.
セルロース含有バイオマスは、上記のように、セルロースの他に、リグニンなどを含有している。そのため、セルロース含有バイオマスを前処理しておくことが好ましい。これにより、糸状菌由来セルラーゼによるセルロース含有バイオマスの加水分解効率を向上させることができる。セルロース含有バイオマスの前処理方法としては、酸処理、硫酸処理、希硫酸処理、酢酸処理、アルカリ処理、苛性ソーダ処理、アンモニア処理、水熱処理、亜臨界水処理、微粉砕処理、蒸煮処理などが挙げられる。本発明においては、後述の工程(3)で種々の酵素を効率よく回収するという観点から、アンモニア処理、水熱処理または希硫酸処理を行うことが好ましい。 (Preprocessing)
Cellulose-containing biomass contains lignin and the like in addition to cellulose as described above. Therefore, it is preferable to pretreat the cellulose-containing biomass. Thereby, the hydrolysis efficiency of the cellulose containing biomass by a filamentous fungus origin cellulase can be improved. Examples of the pretreatment method for cellulose-containing biomass include acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, acetic acid treatment, alkali treatment, caustic soda treatment, ammonia treatment, hydrothermal treatment, subcritical water treatment, pulverization treatment, and steaming treatment. . In the present invention, it is preferable to perform ammonia treatment, hydrothermal treatment or dilute sulfuric acid treatment from the viewpoint of efficiently recovering various enzymes in the step (3) described later.
アンモニア処理は、特開2008-161125号公報や特開2008-535664号公報などに記載の方法に準拠して行うことができる。例えば、使用するアンモニア濃度はバイオマスに対して0.1~15重量%の範囲で添加し、4~200℃、好ましくは90~150℃で処理する。添加するアンモニアは、液体または気体のどちらでもよい。添加する形態は、純粋なアンモニアでもアンモニア水溶液の形態でもよい。処理回数は、特に限定されず、前記処理を1回以上行えばよい。特に、前記処理を2回以上行う場合、1回目と2回目以降の処理を異なる条件で行ってもよい。アンモニア処理によって得られた処理物は、さらに酵素による加水分解反応を行うため、アンモニアの中和またはアンモニアの除去を行う必要がある。中和は、加水分解物より固形分を固液分離により除去したアンモニアに対し行ってもよいし、固形分を含んだままの状態で行ってもよい。中和に使用する酸試薬は、特に限定されない。アンモニアの除去は、アンモニア処理物を減圧状態に保つことでアンモニアを気体状態に揮発させて除去することができる。また、除去したアンモニアは、回収して再利用してもよい。
The ammonia treatment can be performed according to the methods described in JP 2008-161125 A, JP 2008-535664 A, and the like. For example, the ammonia concentration to be used is added in the range of 0.1 to 15% by weight with respect to the biomass, and the treatment is performed at 4 to 200 ° C., preferably 90 to 150 ° C. Ammonia to be added may be either liquid or gas. The form to be added may be pure ammonia or an aqueous ammonia solution. The number of processes is not particularly limited, and the process may be performed once or more. In particular, when the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions. Since the treated product obtained by the ammonia treatment is further subjected to an enzymatic hydrolysis reaction, it is necessary to neutralize ammonia or remove ammonia. Neutralization may be performed on ammonia from which the solid content has been removed from the hydrolyzate by solid-liquid separation, or may be performed while the solid content is still contained. The acid reagent used for neutralization is not particularly limited. Ammonia can be removed by volatilizing ammonia into a gaseous state by keeping the ammonia-treated product in a reduced pressure state. The removed ammonia may be recovered and reused.
水熱処理の場合、セルロース含有バイオマスが、0.1~50重量%となるよう水を添加後、100~400℃の温度で、1秒~60分処理する。このような温度条件で処理することにより、セルロースの加水分解が生じる。処理回数は、特に限定されず、該処理を1回以上行えばよい。特に、該処理を2回以上行う場合、1回目と2回目以降の処理を異なる条件で実施してもよい。
In the case of hydrothermal treatment, after adding water so that the cellulose-containing biomass becomes 0.1 to 50% by weight, it is treated at a temperature of 100 to 400 ° C. for 1 second to 60 minutes. By treating under such temperature conditions, hydrolysis of cellulose occurs. The number of processes is not particularly limited, and the process may be performed once or more. In particular, when the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
希硫酸処理の場合、硫酸の濃度は0.1~15重量%であることが好ましく、0.5~5重量%であることがより好ましい。反応温度は、100~300℃の範囲で設定することができ、120~250℃で設定することが好ましい。反応時間は、1秒~60分の範囲で設定することができる。処理回数は、特に限定されず前記処理を1回以上行えばよい。特に、上記処理を2回以上行う場合、1回目と2回目以降の処理を異なる条件で行ってもよい。希硫酸処理によって得られた加水分解物は、酸を含んでおり、さらにセルラーゼによる加水分解反応を行うため、または発酵原料として使用するために、中和を行う必要がある。
In the case of dilute sulfuric acid treatment, the concentration of sulfuric acid is preferably 0.1 to 15% by weight, and more preferably 0.5 to 5% by weight. The reaction temperature can be set in the range of 100 to 300 ° C., preferably 120 to 250 ° C. The reaction time can be set in the range of 1 second to 60 minutes. The number of processes is not particularly limited, and the process may be performed once or more. In particular, when the above process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions. The hydrolyzate obtained by the dilute sulfuric acid treatment contains an acid, and further needs to be neutralized in order to perform a hydrolysis reaction with cellulase or to use as a fermentation raw material.
[工程(2)]
工程(2)では、工程(1)で得られた加水分解物を、糖液と糖化残さとに固液分離する。 [Step (2)]
In step (2), the hydrolyzate obtained in step (1) is subjected to solid-liquid separation into a sugar solution and a saccharification residue.
工程(2)では、工程(1)で得られた加水分解物を、糖液と糖化残さとに固液分離する。 [Step (2)]
In step (2), the hydrolyzate obtained in step (1) is subjected to solid-liquid separation into a sugar solution and a saccharification residue.
工程(2)で加水分解物を固液分離する方法は、特に限定されず、従来より公知の一般の固液分離の方法を使用することができる。固液分離の方法として、例えば、スクリューデカンタなどの遠心分離、フィルタープレスなどの膜分離、ベルトフィルター、自然沈降による分離、またはメッシュスクリーン、不織布、および濾紙などによるろ過などが挙げられる。加水分解物の固液分離方法は、膜分離を用いることが好ましい。膜分離の中でも、加水分解物の固液分離方法は、粒子状の固形物である糖化残さを効率よく除去でき、かつ除去した糖化残さを圧搾することで、より多くの糖液を回収することができるという観点から、加水分解物の固液分離をプレスろ過により行うフィルタープレスを用いることが最も好ましい。加水分解物を固液分離する方法は、単独で用いてもよいし、複数を組み合わせて用いてもよい。
The method for solid-liquid separation of the hydrolyzate in the step (2) is not particularly limited, and a conventionally known general solid-liquid separation method can be used. Examples of the solid-liquid separation method include centrifugal separation using a screw decanter, membrane separation such as a filter press, separation using a belt filter, natural sedimentation, or filtration using a mesh screen, nonwoven fabric, filter paper, and the like. As the solid-liquid separation method of the hydrolyzate, it is preferable to use membrane separation. Among membrane separations, the hydrolyzate solid-liquid separation method can efficiently remove the saccharification residue, which is a particulate solid, and can recover more saccharose by pressing the removed saccharification residue. From the viewpoint that the hydrolyzate can be solid-liquid separated by press filtration, it is most preferable to use a filter press. The method for solid-liquid separation of the hydrolyzate may be used singly or in combination.
[工程(3)]
工程(3)では、糖化残さをリグニンブロッキング剤を含む水溶液で洗浄して、糖化残さに吸着などして含まれる糸状菌由来セルラーゼをリグニンブロッキング剤を含む水溶液に溶出させる。これにより、糖化残さに含まれる糸状菌由来セルラーゼを含む洗浄された溶液が得られる。 [Step (3)]
In the step (3), the saccharification residue is washed with an aqueous solution containing a lignin blocking agent, and the filamentous fungus-derived cellulase contained by adsorption to the saccharification residue is eluted into the aqueous solution containing the lignin blocking agent. As a result, a washed solution containing the filamentous fungus-derived cellulase contained in the saccharification residue is obtained.
工程(3)では、糖化残さをリグニンブロッキング剤を含む水溶液で洗浄して、糖化残さに吸着などして含まれる糸状菌由来セルラーゼをリグニンブロッキング剤を含む水溶液に溶出させる。これにより、糖化残さに含まれる糸状菌由来セルラーゼを含む洗浄された溶液が得られる。 [Step (3)]
In the step (3), the saccharification residue is washed with an aqueous solution containing a lignin blocking agent, and the filamentous fungus-derived cellulase contained by adsorption to the saccharification residue is eluted into the aqueous solution containing the lignin blocking agent. As a result, a washed solution containing the filamentous fungus-derived cellulase contained in the saccharification residue is obtained.
リグニンブロッキング剤とは、セルロース含有バイオマスに含まれるリグニン成分に対し親和性を有しており、疎水性相互作用、水素結合、イオン結合などにより吸着可能な成分のことである。前記成分として、具体的には、ペプチド、タンパク質、多糖などの親水性の高分子化合物などが挙げられる。また、リグニンブロッキング剤は、これら高分子化合物を単独で含むものよりも、それ以外の成分、例えば、糖、アミノ酸、塩類、脂肪なども含まれていることが、糖化残さに吸着した糸状菌由来セルラーゼの溶出効果を高めるという観点で好ましい。
The lignin blocking agent is a component that has an affinity for the lignin component contained in the cellulose-containing biomass and can be adsorbed by hydrophobic interaction, hydrogen bond, ionic bond, and the like. Specific examples of the component include hydrophilic polymer compounds such as peptides, proteins, and polysaccharides. In addition, the lignin blocking agent is derived from filamentous fungus adsorbed on the saccharification residue because it contains other components such as sugars, amino acids, salts, fats, etc. than those containing these polymer compounds alone. This is preferable from the viewpoint of enhancing the elution effect of cellulase.
前記高分子化合物とそれ以外の成分を含む好ましいリグニンブロッキング剤の具体例としては、コーンスティープリカー(CSL)、ペプトン、酵母エキス、肉エキス、カゼイン、スキムミルク、牛血清由来アルブミン(BSA)、エタノール発酵蒸留残さ(DDGS)、ゼイン、魚加工廃棄物、肉加工廃棄物、ホエータンパク質(乳清タンパク質)、糖加工廃棄物、穀物加工廃棄物、食物、藻類タンパク質、大豆タンパク質、細菌タンパク質、菌タンパク質などが挙げられる。これらは、1種類単独で使用してもよいしも複数種類混合して使用してもよい。これらの中でも、コースティープリカーおよび/またはエタノール発酵蒸留残さが、より好ましい。また、上記の例示したリグニンブロッキング剤は、単位あたりの値段が安いという利点を有する。
Specific examples of preferable lignin blocking agents containing the polymer compound and other components include corn steep liquor (CSL), peptone, yeast extract, meat extract, casein, skim milk, bovine serum-derived albumin (BSA), ethanol fermentation Distilled residue (DDGS), zein, fish processing waste, meat processing waste, whey protein (whey protein), sugar processing waste, grain processing waste, food, algal protein, soy protein, bacterial protein, fungal protein, etc. Is mentioned. These may be used alone or as a mixture of two or more. Among these, a coastal liquor and / or ethanol fermentation distillation residue is more preferable. Moreover, the lignin blocking agent exemplified above has an advantage that the price per unit is low.
リグニンブロッキング剤は、水溶液中に1g/L以上の濃度で含まれることが、糖化残さに吸着した糸状菌由来セルラーゼの溶出効果を高めるという観点から、好ましく、1~10g/Lであることがより好ましい。なお、水溶液に含まれるリグニンブロッキング剤は、すべて水に溶解した状態である必要はなく、一部は不溶化した状態であってもよい。
The lignin blocking agent is preferably contained in the aqueous solution at a concentration of 1 g / L or more from the viewpoint of enhancing the elution effect of the filamentous fungus-derived cellulase adsorbed on the saccharification residue, and more preferably 1 to 10 g / L. preferable. Note that the lignin blocking agent contained in the aqueous solution need not be in a state of being completely dissolved in water, but may be partially insolubilized.
リグニンブロッキング剤を含む水溶液は、さらに無機塩を含むことが好ましい。これにより、リグニンブロッキング剤のみでは溶出させられない酵素成分、具体的には、キシロシダーゼなどのヘミセルラーゼ成分を溶出させることができる。
It is preferable that the aqueous solution containing the lignin blocking agent further contains an inorganic salt. Thereby, an enzyme component that cannot be eluted only with a lignin blocking agent, specifically, a hemicellulase component such as xylosidase can be eluted.
無機塩としては、塩化ナトリウム、硫酸ナトリウム、塩化マグネシウム、硫酸マグネシウム、塩化カルシウム、硫酸アンモニウムなどが挙げられる。これらの中でも、硫酸アンモニウムが好ましい。リグニンブロッキング剤を含む水溶液中に含まれる無機塩の濃度は、1~25g/Lであることが好ましい。
Examples of inorganic salts include sodium chloride, sodium sulfate, magnesium chloride, magnesium sulfate, calcium chloride, and ammonium sulfate. Among these, ammonium sulfate is preferable. The concentration of the inorganic salt contained in the aqueous solution containing the lignin blocking agent is preferably 1 to 25 g / L.
糖化残さの洗浄は、糖化残さをリグニンブロッキング剤を含む水溶液に分散させて攪拌混合する方法でもよいし、糖化残さに対して、リグニンブロッキング剤を含む水溶液を通液させる方法であってもよい。糖化残さに吸着した糸状菌由来セルラーゼの溶出効果を高めるという観点から、糖化残さに対して、リグニンブロッキング剤を含む水溶液を通液させる方法が好ましい。
The washing of the saccharification residue may be a method of dispersing the saccharification residue in an aqueous solution containing a lignin blocking agent and stirring and mixing, or a method of passing an aqueous solution containing a lignin blocking agent through the saccharification residue. From the viewpoint of enhancing the elution effect of the filamentous fungus-derived cellulase adsorbed on the saccharification residue, a method of passing an aqueous solution containing a lignin blocking agent to the saccharification residue is preferable.
リグニンブロッキング剤を含む水溶液で糖化残さを洗浄する際の、リグニンブロッキング剤を含む水溶液の温度は、40~60℃であることが好ましい。洗浄時の温度が40℃以上であると、糖化残さの洗浄効果が高まり、糸状菌由来セルラーゼの溶出量が増大する。洗浄時の温度が60℃以下の場合には、糸状菌由来セルラーゼの失活が進むことを抑制できるため、洗浄された溶液中の糸状菌由来セルラーゼの各活性が減少することを抑制することができる。
When the saccharification residue is washed with an aqueous solution containing a lignin blocking agent, the temperature of the aqueous solution containing the lignin blocking agent is preferably 40 to 60 ° C. When the temperature at the time of washing is 40 ° C. or higher, the washing effect of the saccharification residue is increased, and the amount of filamentous fungus-derived cellulase eluted is increased. When the temperature at the time of washing is 60 ° C. or lower, it is possible to suppress the inactivation of the filamentous fungus-derived cellulase, so that it is possible to suppress the reduction of each activity of the filamentous fungus-derived cellulase in the washed solution. it can.
[工程(4)]
工程(4)では、洗浄された溶液をろ過して、糖液を含む透過液と、糸状菌由来セルラーゼを含む非透過液とに分離する。これにより、透過液が回収されると共に、糸状菌由来セルラーゼを含む非透過液が回収される。透過液は、糖液を含んでいるため、工程(2)で得られた糖液に混合されることで、糖液として利用できる。 [Step (4)]
In step (4), the washed solution is filtered and separated into a permeate containing a sugar solution and a non-permeate containing a filamentous fungus-derived cellulase. As a result, the permeate is collected and the non-permeate containing the filamentous fungus-derived cellulase is collected. Since the permeate contains a sugar liquid, it can be used as a sugar liquid by being mixed with the sugar liquid obtained in the step (2).
工程(4)では、洗浄された溶液をろ過して、糖液を含む透過液と、糸状菌由来セルラーゼを含む非透過液とに分離する。これにより、透過液が回収されると共に、糸状菌由来セルラーゼを含む非透過液が回収される。透過液は、糖液を含んでいるため、工程(2)で得られた糖液に混合されることで、糖液として利用できる。 [Step (4)]
In step (4), the washed solution is filtered and separated into a permeate containing a sugar solution and a non-permeate containing a filamentous fungus-derived cellulase. As a result, the permeate is collected and the non-permeate containing the filamentous fungus-derived cellulase is collected. Since the permeate contains a sugar liquid, it can be used as a sugar liquid by being mixed with the sugar liquid obtained in the step (2).
洗浄された溶液のろ過は、単糖であるグルコース(分子量180)やキシロース(分子量150)が透過可能であって、糸状菌由来セルラーゼの透過を阻止できる方法が用いられる。
For filtration of the washed solution, a method is used that allows permeation of monosaccharides such as glucose (molecular weight 180) and xylose (molecular weight 150) and prevents permeation of filamentous fungus-derived cellulase.
本発明においては、洗浄された溶液のろ過には、限外ろ過膜(UF膜)が用いられることが好ましい。限外ろ過膜は、洗浄された溶液中に含まれる糸状菌由来セルラーゼなどの高分子の透過を阻止しつつ糖を透過させることができる。糖化残さを洗浄して得られた洗浄された溶液には、糖化残さに吸着していた糸状菌由来セルラーゼが溶出している。洗浄された溶液を限外ろ過膜でろ過することで、洗浄された溶液中に含まれる糸状菌由来セルラーゼを限外ろ過膜の非透過液として、洗浄された溶液から分離して、回収することができる。また、洗浄された溶液は、逐次的または連続して限外ろ過膜に通じてろ過するようにしてもよい。
In the present invention, an ultrafiltration membrane (UF membrane) is preferably used for filtering the washed solution. The ultrafiltration membrane can permeate sugar while preventing permeation of macromolecules such as filamentous fungus-derived cellulase contained in the washed solution. Filamentous fungal cellulase adsorbed on the saccharification residue is eluted in the washed solution obtained by washing the saccharification residue. Filtration of the washed solution through an ultrafiltration membrane separates and recovers the filamentous fungus-derived cellulase contained in the washed solution from the washed solution as an ultrafiltration membrane non-permeate. Can do. Further, the washed solution may be filtered through an ultrafiltration membrane sequentially or continuously.
限外ろ過膜は、グルコースやキシロースなどの単糖が透過でき、かつ糸状菌由来セルラーゼの透過を阻止できる分画分子量を有するものを用いることが好ましい。本発明においては、限外ろ過膜の分画分子量は、好ましくは500~100,000である。この範囲内の分画分子量を有する限外ろ過膜を用いれば、糸状菌由来セルラーゼが透過することを阻止しつつ単糖を糖液として透過させることができる。また、限外ろ過膜の分画分子量は、酵素反応に阻害的作用を示す夾雑物質を酵素と分離するという観点から、より好ましくは10,000~50,000である。
As the ultrafiltration membrane, it is preferable to use a membrane having a fractional molecular weight capable of permeating monosaccharides such as glucose and xylose and preventing permeation of filamentous fungus-derived cellulase. In the present invention, the molecular weight cutoff of the ultrafiltration membrane is preferably 500 to 100,000. If an ultrafiltration membrane having a molecular weight cut-off within this range is used, it is possible to permeate monosaccharides as a sugar solution while preventing permeation of filamentous fungus-derived cellulase. Further, the molecular weight cut off of the ultrafiltration membrane is more preferably 10,000 to 50,000 from the viewpoint of separating contaminants having an inhibitory action on the enzyme reaction from the enzyme.
ここで、限外ろ過膜は、孔径が小さすぎて膜表面の細孔径を電子顕微鏡などで計測することが困難であり、平均細孔径の代わりに分画分子量という値を孔径の大きさの指標とすることになっている。分画分子量とは、日本膜学会編 膜学実験シリーズ 第III巻 人工膜編 編集委員/木村尚史・中尾真一・大矢晴彦・仲川勤(1993 共立出版) P92に、『溶質の分子量を横軸に、阻止率を縦軸にとってデータをプロットしたものを分画分子量曲線とよんでいる。そして阻止率が90%となる分子量を膜の分画分子量とよんでいる。』とあるように、限外ろ過膜の膜性能を表す指標として当業者には周知のものである。
Here, the ultrafiltration membrane is too small to measure the pore diameter on the membrane surface with an electron microscope or the like, and instead of the average pore diameter, the value of the fractional molecular weight is an index of the pore size. It is supposed to be. The molecular weight cut-off refers to the Membrane Science Experiment Series Vol. III, Artificial Membrane Editor, Editorial Committee / Naofumi Kimura, Shinichi Nakao, Haruhiko Ohya, Tsutomu Nakagawa (1993, Kyoritsu Shuppan), P92. A plot of data with the rejection rate on the vertical axis is called a fractional molecular weight curve. The molecular weight at which the blocking rate is 90% is called the fractional molecular weight of the membrane. ”Is well known to those skilled in the art as an index representing the membrane performance of the ultrafiltration membrane.
使用する限外ろ過膜の素材としては、ポリエーテルスルホン(PES)、ポリスルホン(PS)、ポリアクリロニトリル(PAN)、ポリフッ化ビニルデン(PVDF)、再生セルロース、セルロース、セルロースエステル、ポリスルホン、ポリエーテルスルホン、塩素化ポリエチレン、ポリプロピレン、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、ポリオレフィン、ポリビニルアルコール、ポリメチルメタクリレート、ポリ4フッ化エチレンなどの有機材料、あるいはステンレスなどの金属、またはセラミックなど無機材料などが挙げられる。使用する限外ろ過膜の材質としては、再生セルロース、セルロース、セルロースエステルはセルラーゼによる分解を受けるため、PES、PVDFなどを使用することが好ましい。
Examples of the ultrafiltration membrane used include polyethersulfone (PES), polysulfone (PS), polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), regenerated cellulose, cellulose, cellulose ester, polysulfone, polyethersulfone, Organic materials such as chlorinated polyethylene, polypropylene, sulfonated polysulfone, sulfonated polyethersulfone, polyolefin, polyvinyl alcohol, polymethyl methacrylate, polytetrafluoroethylene, metals such as stainless steel, or inorganic materials such as ceramic . As the material of the ultrafiltration membrane to be used, it is preferable to use PES, PVDF or the like because regenerated cellulose, cellulose, and cellulose ester are decomposed by cellulase.
限外ろ過膜の形態は、チューブラー型、スパイラル型、平膜型、中空糸型などが好ましく使用できる。具体的には、DESAL社のG-5タイプ、G-10タイプ、G-20タイプ、G-50タイプ、PWタイプ、HWSUFタイプ、KOCH社のHFM-180、HFM-183、HFM-251、HFM-300、HFK-131、HFK-328、MPT-U20、MPS-U20P、MPS-U20S、Synder社のSPE1、SPE3、SPE5、SPE10、SPE30、SPV5、SPV50、SOW30、旭化成株式会社製のマイクローザ(登録商標)UFシリーズの分画分子量3,000から10,000に相当するもの、日東電工株式会社製のNTR7410、NTR7450などが挙げられる。
As the form of the ultrafiltration membrane, a tubular type, a spiral type, a flat membrane type, a hollow fiber type and the like can be preferably used. Specifically, DESAL's G-5 type, G-10 type, G-20 type, G-50 type, PW type, HWSUF type, KOCH HFM-180, HFM-183, HFM-251, HFM -300, HFK-131, HFK-328, MPT-U20, MPS-U20P, MPS-U20S, SPE1 from Sinder, SPE3, SPE5, SPE10, SPE30, SPV5, SPV50, SOW30, Microza from Asahi Kasei Corporation Examples thereof include those corresponding to a molecular weight cutoff of 3,000 to 10,000 in the registered trademark UF series, NTR7410 and NTR7450 manufactured by Nitto Denko Corporation.
限外ろ過膜のろ過方式は、クロスフローろ過方式、デッドエンドろ過方式などが挙げられるが、膜ファウリング、フラックスの抑制などを図る観点から、クロスフローろ過方式が好ましい。
Examples of the ultrafiltration membrane filtration method include a crossflow filtration method and a dead-end filtration method, but the crossflow filtration method is preferable from the viewpoint of suppressing membrane fouling and flux.
ろ過方法としては、圧ろ過、真空ろ過、遠心ろ過などが好ましく使用できる。また、ろ過操作として、定圧ろ過、定流量ろ過、非定圧非定流量ろ過などが挙げられる。ろ過操作は、上記限外ろ過膜を2回以上使用する多段ろ過でもよい。
As the filtration method, pressure filtration, vacuum filtration, centrifugal filtration and the like can be preferably used. Examples of the filtration operation include constant pressure filtration, constant flow filtration, non-constant pressure non-constant flow filtration, and the like. The filtration operation may be multistage filtration using the ultrafiltration membrane twice or more.
工程(4)で回収された非透過液は、糸状菌由来セルラーゼを含んでいるため、回収された非透過液を、工程(1)で使用される糸状菌由来セルラーゼに混合することで、工程(1)の糸状菌由来セルラーゼとして使用することができる。これにより、工程(1)で新たに使用する糸状菌由来セルラーゼの量を低減することができるため、糸状菌由来セルラーゼの費用の低減を図ることができる。
Since the non-permeated liquid recovered in the step (4) contains a filamentous fungus-derived cellulase, the recovered non-permeated liquid is mixed with the filamentous fungus-derived cellulase used in the step (1). It can be used as the filamentous fungus-derived cellulase of (1). Thereby, since the amount of the filamentous fungus-derived cellulase newly used in the step (1) can be reduced, the cost of the filamentous fungus-derived cellulase can be reduced.
このように、本発明の糖液の製造方法によれば、糖化残さに吸着した糸状菌由来セルラーゼをリグニンブロッキング剤を含む水溶液に溶出させ、糸状菌由来セルラーゼが溶出した水溶液をろ過することにより、糸状菌由来セルラーゼを含む非透過液を得ることができる。得られた非透過液中の糸状菌由来セルラーゼを回収して再利用することで、糖化酵素の使用量をさらに低減しつつ糖液を製造することができる。これにより、糖液の製造コストを大幅に削減することができる。
Thus, according to the method for producing a sugar solution of the present invention, by eluting the filamentous fungus-derived cellulase adsorbed on the saccharification residue into an aqueous solution containing a lignin blocking agent, and filtering the aqueous solution from which the filamentous fungus-derived cellulase is eluted, A non-permeate liquid containing a filamentous fungus-derived cellulase can be obtained. By collecting and reusing the filamentous fungus-derived cellulase in the obtained non-permeate, a sugar solution can be produced while further reducing the amount of saccharifying enzyme used. Thereby, the manufacturing cost of a sugar liquid can be reduced significantly.
(他の形態)
本発明においては、工程(4)で洗浄された液をろ過して、得られた非透過液を回収する場合について説明したが、これに限定されるものではない。例えば、工程(2)で得られた糖液も洗浄された溶液とは別にろ過して、糖液に含まれる糸状菌由来セルラーゼを糖液から分離し、透過液を糖液として回収し、糸状菌由来セルラーゼを含む非透過液を回収するようにしてもよい。これにより、糖液に含まれる糸状菌由来セルラーゼも有効に再利用することができる。 (Other forms)
In the present invention, the case where the liquid washed in the step (4) is filtered and the obtained non-permeated liquid is recovered has been described, but the present invention is not limited to this. For example, the sugar solution obtained in the step (2) is filtered separately from the washed solution to separate the filamentous fungus-derived cellulase contained in the sugar solution from the sugar solution, and the permeate is recovered as the sugar solution, You may make it collect | recover the non-permeated liquid containing a fungal origin cellulase. Thereby, the filamentous fungus-derived cellulase contained in the sugar solution can also be effectively reused.
本発明においては、工程(4)で洗浄された液をろ過して、得られた非透過液を回収する場合について説明したが、これに限定されるものではない。例えば、工程(2)で得られた糖液も洗浄された溶液とは別にろ過して、糖液に含まれる糸状菌由来セルラーゼを糖液から分離し、透過液を糖液として回収し、糸状菌由来セルラーゼを含む非透過液を回収するようにしてもよい。これにより、糖液に含まれる糸状菌由来セルラーゼも有効に再利用することができる。 (Other forms)
In the present invention, the case where the liquid washed in the step (4) is filtered and the obtained non-permeated liquid is recovered has been described, but the present invention is not limited to this. For example, the sugar solution obtained in the step (2) is filtered separately from the washed solution to separate the filamentous fungus-derived cellulase contained in the sugar solution from the sugar solution, and the permeate is recovered as the sugar solution, You may make it collect | recover the non-permeated liquid containing a fungal origin cellulase. Thereby, the filamentous fungus-derived cellulase contained in the sugar solution can also be effectively reused.
また、工程(2)で得られた糖液と工程(3)で得られた洗浄された溶液とを混合した後、この混合溶液をろ過し、混合溶液に含まれる糸状菌由来のセルラーゼを分離するようにしてもよい。これにより、糖液を含む透過液を回収することができると共に、糸状菌由来セルラーゼを含む非透過液を回収することができる。混合溶液をろ過する形態の一例を図2に示す。図2に示すように、糖液と洗浄された溶液とを混合して混合溶液とする。その後、工程(4)において、混合溶液を限外ろ過膜でろ過して、糸状菌由来のセルラーゼを含む非透過液と、糖液を含む透過液とに分離する。これにより、糖液を含む透過液が回収されると共に、糸状菌由来のセルラーゼを含む非透過液が回収される。透過液は、そのまま糖液として使用してもよいし、糖液以外の成分を分離して得られた糖液のみを使用してもよい。回収された非透過液は、工程(1)で添加される糸状菌由来セルラーゼに混合して、工程(1)において再利用することができる。工程(2)で得られた糖化残さには、糸状菌由来セルラーゼの多くが吸着しているが、工程(2)で得られた糖液にも、工程(1)でセルロース含有バイオマスの加水分解に使用された糸状菌由来セルラーゼ成分が含まれている。そのため、工程(4)において、工程(2)で得られた糖液に含まれる糸状菌由来セルラーゼも洗浄された溶液に含まれる糸状菌由来セルラーゼとまとめて回収することができるため、糸状菌由来セルラーゼの回収量を更に高めることができる。これにより、糖化酵素の使用量をさらに低減しつつ糖液を製造することが可能となる。また、工程(2)で得られた糖液を洗浄された溶液とは別にろ過する場合に比べ、混合溶液をろ過する場合の方が、製造装置の簡略化を図りつつ糸状菌由来セルラーゼを効率良く回収することができる。
In addition, after the sugar solution obtained in step (2) and the washed solution obtained in step (3) are mixed, the mixed solution is filtered to separate the cellulase derived from filamentous fungi contained in the mixed solution. You may make it do. Thereby, while being able to collect | recover the permeate containing a sugar liquid, the non-permeate containing a filamentous fungus origin cellulase can be collect | recovered. An example of the form which filters a mixed solution is shown in FIG. As shown in FIG. 2, the sugar solution and the washed solution are mixed to obtain a mixed solution. Thereafter, in step (4), the mixed solution is filtered through an ultrafiltration membrane, and separated into a non-permeate containing cellulase derived from filamentous fungi and a permeate containing a sugar solution. Thereby, the permeate containing the sugar solution is recovered and the non-permeate containing the cellulase derived from the filamentous fungus is recovered. The permeate may be used as a sugar solution as it is, or only a sugar solution obtained by separating components other than the sugar solution may be used. The recovered non-permeate can be mixed with the filamentous fungus-derived cellulase added in step (1) and reused in step (1). Although most of the filamentous fungus-derived cellulase is adsorbed to the saccharification residue obtained in the step (2), the sugar-containing biomass obtained in the step (2) also hydrolyzes the cellulose-containing biomass in the step (1). Contains the cellulase component derived from the filamentous fungus used. Therefore, in the step (4), the filamentous fungus-derived cellulase contained in the sugar solution obtained in the step (2) can also be collected together with the filamentous fungus-derived cellulase contained in the washed solution. The amount of cellulase recovered can be further increased. This makes it possible to produce a sugar solution while further reducing the amount of saccharifying enzyme used. In addition, compared with the case where the sugar solution obtained in step (2) is filtered separately from the washed solution, the case where the mixed solution is filtered is more efficient for the production of cellulase derived from filamentous fungi while simplifying the production apparatus. It can be recovered well.
また、混合溶液は、工程(2)で得られた糖液を、ろ過する前に一時保持しておき、工程(3)で得られた洗浄された溶液と混合して調製しておくことが好ましい。一般的に、タンパク質は、限外ろ過膜の表面に吸着する傾向がある他、配管、タンクなどにも吸着しうる。工程(2)で得られる糖液に含まれる主なタンパク質成分は、糸状菌由来セルラーゼ成分であるため、限外ろ過膜、配管、タンク内にタンパク質成分が吸着してしまうと、回収される糸状菌由来セルラーゼ量が減少することになる。そこで、工程(2)の糖液と工程(3)で得られた洗浄された溶液とを予め混合しておき、この混合溶液を、限外ろ過膜などのろ過膜でろ過することにより、糖液中の糸状菌由来セルラーゼ成分が、特に限外ろ過膜、配管、タンク内などに吸着することを抑制することができる。これにより、糸状菌由来セルラーゼの回収量を更に高めることができる。
In addition, the mixed solution may be prepared by temporarily holding the sugar solution obtained in step (2) before filtering and mixing it with the washed solution obtained in step (3). preferable. In general, proteins tend to be adsorbed on the surface of an ultrafiltration membrane, and can also be adsorbed to pipes, tanks, and the like. Since the main protein component contained in the sugar solution obtained in the step (2) is a filamentous fungus-derived cellulase component, if the protein component is adsorbed in the ultrafiltration membrane, piping, or tank, it is recovered. The amount of cellulase derived from bacteria will decrease. Therefore, the sugar solution in the step (2) and the washed solution obtained in the step (3) are mixed in advance, and the mixed solution is filtered through a filtration membrane such as an ultrafiltration membrane, whereby the sugar is obtained. It can suppress that the filamentous fungus origin cellulase component in a liquid adsorb | sucks especially in an ultrafiltration membrane, piping, a tank inside. Thereby, the collection amount of the filamentous fungus-derived cellulase can be further increased.
<糖液製造装置>
本発明による糖液の製造方法を用いた糖液製造装置について説明する。なお、糖液製造装置の形態は、以下に限定されるものではない。図3は、本発明による糖液の製造方法を用いた糖液製造装置の一例を示す図である。なお、図3は、上記の図2に記載の本発明による糖液の製造方法を用いた装置である。図3に示すように、本発明による糖液の製造方法を用いた糖液製造装置10は、加水分解反応槽11、固液分離装置12、洗浄水槽13、ろ液回収タンク14、限外ろ過膜装置15、および糖化酵素回収ラインL11を有する。 <Sugar solution production equipment>
A sugar solution production apparatus using the method for producing a sugar solution according to the present invention will be described. In addition, the form of the sugar liquid manufacturing apparatus is not limited to the following. FIG. 3 is a diagram showing an example of a sugar liquid production apparatus using the sugar liquid production method according to the present invention. FIG. 3 shows an apparatus using the method for producing a sugar solution according to the present invention described in FIG. As shown in FIG. 3, a sugarsolution production apparatus 10 using the method for producing a sugar solution according to the present invention includes a hydrolysis reaction tank 11, a solid-liquid separator 12, a washing water tank 13, a filtrate collection tank 14, and ultrafiltration. It has a membrane device 15 and a saccharification enzyme recovery line L11.
本発明による糖液の製造方法を用いた糖液製造装置について説明する。なお、糖液製造装置の形態は、以下に限定されるものではない。図3は、本発明による糖液の製造方法を用いた糖液製造装置の一例を示す図である。なお、図3は、上記の図2に記載の本発明による糖液の製造方法を用いた装置である。図3に示すように、本発明による糖液の製造方法を用いた糖液製造装置10は、加水分解反応槽11、固液分離装置12、洗浄水槽13、ろ液回収タンク14、限外ろ過膜装置15、および糖化酵素回収ラインL11を有する。 <Sugar solution production equipment>
A sugar solution production apparatus using the method for producing a sugar solution according to the present invention will be described. In addition, the form of the sugar liquid manufacturing apparatus is not limited to the following. FIG. 3 is a diagram showing an example of a sugar liquid production apparatus using the sugar liquid production method according to the present invention. FIG. 3 shows an apparatus using the method for producing a sugar solution according to the present invention described in FIG. As shown in FIG. 3, a sugar
加水分解反応槽11は、加水分解を行う攪拌タンク21、セルロース含有バイオマス22を攪拌混合する撹拌装置23、および攪拌タンク21を保温する保温設備24を備える。攪拌タンク21は、上部に、セルロース含有バイオマス22が供給される供給口25と、糸状菌由来セルラーゼ26が供給される供給口27とを備える。セルロース含有バイオマス22および糸状菌由来セルラーゼ26が攪拌タンク21内に供給されると、攪拌タンク21において、セルロース含有バイオマス22は、糸状菌由来セルラーゼ26により加水分解され、加水分解物28が得られる(工程(1))。
The hydrolysis reaction tank 11 includes a stirring tank 21 that performs hydrolysis, a stirring device 23 that stirs and mixes the cellulose-containing biomass 22, and a heat retaining device 24 that keeps the stirring tank 21 warm. The stirring tank 21 includes a supply port 25 to which the cellulose-containing biomass 22 is supplied and a supply port 27 to which a filamentous fungus-derived cellulase 26 is supplied. When the cellulose-containing biomass 22 and the filamentous fungus-derived cellulase 26 are supplied into the stirring tank 21, the cellulose-containing biomass 22 is hydrolyzed by the filamentous fungus-derived cellulase 26 in the stirring tank 21 to obtain a hydrolyzate 28 ( Step (1)).
攪拌タンク21で得られた加水分解物28は、調節弁V11を開くことで、攪拌タンク21から抜き出され、ポンプP1により圧送されて、供給口31から固液分離装置12に供給される。
The hydrolyzate 28 obtained in the stirring tank 21 is extracted from the stirring tank 21 by opening the control valve V11, is pumped by the pump P1, and is supplied to the solid-liquid separator 12 from the supply port 31.
固液分離装置12は、プレスろ過過装置32と、コンプレッサー33とを備える。加水分解物28は、コンプレッサー33によりプレスろ過過装置32において圧搾されることで、糖液と糖化残さ(固形物)とに固液分離される(工程(2))。糖液は、プレスろ過過装置32から糖液供給ラインL21に排出され、ろ過室内には糖化残さが保持される。
The solid-liquid separator 12 includes a press filtration apparatus 32 and a compressor 33. The hydrolyzate 28 is squeezed in the press filtration apparatus 32 by the compressor 33, so that it is separated into a liquid and a saccharification residue (solid) (step (2)). The sugar liquid is discharged from the press filtration apparatus 32 to the sugar liquid supply line L21, and the saccharification residue is retained in the filtration chamber.
糖液供給ラインL21は、その途中に、洗浄水槽13と連結した分岐ラインL22が連結されている。糖液供給ラインL21に調節弁V21が設けられ、分岐ラインL22に調節弁V22が設けられている。調節弁V21を開き、かつ調節弁V22を閉じることで、プレスろ過過装置32から排出された糖液は、糖液供給ラインL21を通って、ろ液回収タンク14に供給され、ろ液回収タンク14内に保持される。また、調節弁V21を閉じ、かつ調節弁V22を開くことで、プレスろ過過装置32から排出された糖液は、分岐ラインL22を通って、洗浄水槽13に供給され、洗浄水槽13内に保持される。
In the middle of the sugar solution supply line L21, a branch line L22 connected to the washing water tank 13 is connected. The sugar solution supply line L21 is provided with a control valve V21, and the branch line L22 is provided with a control valve V22. By opening the control valve V21 and closing the control valve V22, the sugar solution discharged from the press filtration apparatus 32 is supplied to the filtrate collection tank 14 through the sugar solution supply line L21, and the filtrate collection tank. 14. Also, by closing the control valve V21 and opening the control valve V22, the sugar liquid discharged from the press filtration apparatus 32 is supplied to the washing water tank 13 through the branch line L22 and held in the washing water tank 13. Is done.
リグニンブロッキング剤を含む水溶液34は、洗浄水槽13から洗浄液供給ラインL23を通って、通水口35よりプレスろ過過装置32に供給される。プレスろ過過装置32で生じた糖化残さは、リグニンブロッキング剤を含む水溶液34で洗浄され、糖化残さに付着している糸状菌由来セルラーゼがリグニンブロッキング剤を含む水溶液34に溶出して、糸状菌由来セルラーゼを含む洗浄された溶液が得られる(工程(3))。なお、リグニンブロッキング剤を含む水溶液34は、調節弁V23の開度を調整することで洗浄水槽13から抜き出され、ポンプP2で圧送されて、洗浄水槽13からプレスろ過過装置32に供給される。
The aqueous solution 34 containing the lignin blocking agent is supplied from the cleaning water tank 13 through the cleaning liquid supply line L23 to the press filtration apparatus 32 through the water inlet 35. The saccharification residue generated in the press filtration apparatus 32 is washed with the aqueous solution 34 containing the lignin blocking agent, and the filamentous fungus-derived cellulase adhering to the saccharification residue is eluted into the aqueous solution 34 containing the lignin blocking agent, and is derived from the filamentous fungus. A washed solution containing cellulase is obtained (step (3)). The aqueous solution 34 containing the lignin blocking agent is extracted from the washing water tank 13 by adjusting the opening degree of the control valve V23, is pumped by the pump P2, and is supplied from the washing water tank 13 to the press filtration apparatus 32. .
また、洗浄水槽13は、その周囲に保温設備36を備えている。これにより、洗浄水槽13内のリグニンブロッキング剤を含む水溶液34は、所定温度に保温される。洗浄水槽13は、循環ラインL11および洗浄液供給ラインL24と連結されている。リグニンブロッキング剤を含む水溶液34は、洗浄液供給ラインL24を介して洗浄水槽13に供給される。リグニンブロッキング剤を含む水溶液34の供給量は、調節弁V24の開度を調整することで調整される。
Further, the washing water tank 13 is provided with a heat insulation facility 36 around it. Thereby, the aqueous solution 34 containing the lignin blocking agent in the washing water tank 13 is kept at a predetermined temperature. The cleaning water tank 13 is connected to the circulation line L11 and the cleaning liquid supply line L24. The aqueous solution 34 containing the lignin blocking agent is supplied to the cleaning water tank 13 through the cleaning liquid supply line L24. The supply amount of the aqueous solution 34 containing the lignin blocking agent is adjusted by adjusting the opening degree of the control valve V24.
プレスろ過過装置32で得られた洗浄液は、糖液供給ラインL21を通って、ろ液回収タンク14に供給され、ろ液回収タンク14内で糖液と混合される。また、プレスろ過過装置32で得られた洗浄液は、分岐ラインL22を通って洗浄水槽13に循環させるようにしてもよい。この時、調節弁V21、V25の開度が調整され、調節弁V21は閉じて調節弁V25は開くようにする。
The cleaning liquid obtained by the press filtration apparatus 32 is supplied to the filtrate recovery tank 14 through the sugar liquid supply line L21, and is mixed with the sugar liquid in the filtrate recovery tank 14. Further, the cleaning liquid obtained by the press filtration apparatus 32 may be circulated to the cleaning water tank 13 through the branch line L22. At this time, the opening degree of the control valves V21 and V25 is adjusted so that the control valve V21 is closed and the control valve V25 is opened.
ろ液回収タンク14は、糖液、洗浄液、またはこれらが混合された混合溶液41を貯留するためのタンクである。ろ液回収タンク14には、ろ液回収タンク14内の溶液を限外ろ過膜装置15に供給する糖液供給ラインL31と、ろ液回収タンク14内の溶液を攪拌タンク21に供給される糸状菌由来セルラーゼ26に混合する糖化酵素回収ラインL11とが連結されている。
The filtrate collection tank 14 is a tank for storing a sugar solution, a washing solution, or a mixed solution 41 in which these are mixed. In the filtrate collection tank 14, a sugar solution supply line L 31 that supplies the solution in the filtrate collection tank 14 to the ultrafiltration membrane device 15, and a filament shape that supplies the solution in the filtrate collection tank 14 to the stirring tank 21. A saccharification enzyme recovery line L11 mixed with the fungus-derived cellulase 26 is connected.
混合溶液41は、糖液供給ラインL31を通って、限外ろ過膜装置15に供給される。糖液供給ラインL31には、調節弁V31が設けられており、混合溶液41の限外ろ過膜装置15への供給量は、調節弁V31の開度を調整することにより調整される。混合溶液41は、ポンプP3で圧送されて、限外ろ過膜装置15に供給される。
The mixed solution 41 is supplied to the ultrafiltration membrane device 15 through the sugar solution supply line L31. The sugar solution supply line L31 is provided with a control valve V31, and the supply amount of the mixed solution 41 to the ultrafiltration membrane device 15 is adjusted by adjusting the opening degree of the control valve V31. The mixed solution 41 is pumped by the pump P3 and supplied to the ultrafiltration membrane device 15.
限外ろ過膜装置15は、混合溶液41をろ過して、透過液42と非透過液43とに分離する。限外ろ過膜装置15内の限外ろ過膜を透過した透過液42は、糖液を回収される。限外ろ過膜を透過しない非透過液43は、ろ液回収タンク14内の混合溶液41が排出された後、ろ液回収タンク14に供給される。
The ultrafiltration membrane device 15 filters the mixed solution 41 and separates it into a permeate 42 and a non-permeate 43. The permeate 42 that has passed through the ultrafiltration membrane in the ultrafiltration membrane device 15 is recovered as a sugar solution. The non-permeated liquid 43 that does not pass through the ultrafiltration membrane is supplied to the filtrate collection tank 14 after the mixed solution 41 in the filtrate collection tank 14 is discharged.
ろ液回収タンク14に回収された非透過液43は、糖化酵素回収ラインL11を通って、攪拌タンク21に供給される糸状菌由来セルラーゼと混合されて、攪拌タンク21に供給される。糖化酵素回収ラインL11には、調節弁V32が設けられており、非透過液の供給量は、調節弁V32の開度を調整することで調整される。ろ液回収タンク14に回収された非透過液43は、糸状菌由来セルラーゼを含んでいるため、攪拌タンク21で糸状菌由来セルラーゼとして再利用することができる。
The non-permeated liquid 43 recovered in the filtrate recovery tank 14 is mixed with the filamentous fungus-derived cellulase supplied to the stirring tank 21 through the saccharifying enzyme recovery line L11 and supplied to the stirring tank 21. The saccharification enzyme recovery line L11 is provided with a control valve V32, and the supply amount of the non-permeated liquid is adjusted by adjusting the opening degree of the control valve V32. Since the non-permeated liquid 43 collected in the filtrate collection tank 14 contains filamentous fungus-derived cellulase, it can be reused as the filamentous fungus-derived cellulase in the stirring tank 21.
本発明による糖液の製造方法を用いた糖液製造装置は、糖化残さに付着した糸状菌由来セルラーゼを回収して再利用することで、糸状菌由来セルラーゼの使用量をさらに低減しつつ糖液を製造することができる。これにより、糖液の製造コストの大幅な削減を図ることができる。
The apparatus for producing a sugar solution using the method for producing a sugar solution according to the present invention recovers and reuses the filamentous fungus-derived cellulase adhering to the saccharification residue, thereby further reducing the amount of fungus-derived cellulase used. Can be manufactured. Thereby, the manufacturing cost of the sugar solution can be greatly reduced.
<糖液の用途>
本発明により得られた糖液は、食品原料、医薬品原料、化学品などの発酵原料などのさまざまな用途に使用することができる。本発明により得られた糖液は、発酵原料として使用し、化学品を生産する能力を有する微生物を生育させることで、各種化学品を製造することができる。なお、微生物を生育させるとは、糖液に含まれる糖成分またはアミノ源を微生物の栄養素として利用し、微生物の増殖、生育維持を行うことをいう。化学品の具体例としては、アルコール、有機酸、アミノ酸、核酸など発酵工業において大量生産されている物質を挙げることができる。こうした化学品は、糖液中の糖成分を炭素源として、その代謝の過程において生体内外に化学品として蓄積生産する。微生物によって生産可能な化学品として、例えば、エタノール、プロパノール、ブタノール、1,3-プロパンジオール、1,4-ブタンジオール、グリセロールなどのアルコール、酢酸、乳酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸などの有機酸、イノシン、グアノシンなどのヌクレオシド、イノシン酸、グアニル酸などのヌクレオチド、カダベリンなどのアミン化合物を挙げることができる。さらに、本発明の糖液の製造方法により得られる糖液は、酵素、抗生物質、組換えタンパク質などの生産に適用することも可能である。こうした化学品の製造に使用する微生物としては、目的の化学品を効率的に生産可能な微生物であればよく、大腸菌、酵母、糸状菌、担子菌などの微生物を使用することができる。 <Application of sugar solution>
The sugar solution obtained by the present invention can be used for various uses such as food raw materials, pharmaceutical raw materials, and fermentation raw materials such as chemicals. The sugar solution obtained by the present invention is used as a fermentation raw material, and various chemicals can be produced by growing microorganisms having the ability to produce chemical products. Note that growing the microorganism means that the sugar component or amino source contained in the sugar solution is used as a nutrient of the microorganism to propagate and maintain the growth of the microorganism. Specific examples of chemical products include substances that are mass-produced in the fermentation industry, such as alcohols, organic acids, amino acids, and nucleic acids. Such chemical products are accumulated and produced as chemical products inside and outside the body in the process of metabolism using the sugar component in the sugar solution as a carbon source. Examples of chemicals that can be produced by microorganisms include alcohols such as ethanol, propanol, butanol, 1,3-propanediol, 1,4-butanediol, and glycerol, acetic acid, lactic acid, pyruvic acid, succinic acid, malic acid, and itacone. Examples thereof include organic acids such as acids and citric acid, nucleosides such as inosine and guanosine, nucleotides such as inosinic acid and guanylic acid, and amine compounds such as cadaverine. Furthermore, the sugar solution obtained by the method for producing a sugar solution of the present invention can be applied to the production of enzymes, antibiotics, recombinant proteins, and the like. The microorganism used for the production of such a chemical product may be any microorganism that can efficiently produce the target chemical product, and microorganisms such as Escherichia coli, yeast, filamentous fungi, and basidiomycetes can be used.
本発明により得られた糖液は、食品原料、医薬品原料、化学品などの発酵原料などのさまざまな用途に使用することができる。本発明により得られた糖液は、発酵原料として使用し、化学品を生産する能力を有する微生物を生育させることで、各種化学品を製造することができる。なお、微生物を生育させるとは、糖液に含まれる糖成分またはアミノ源を微生物の栄養素として利用し、微生物の増殖、生育維持を行うことをいう。化学品の具体例としては、アルコール、有機酸、アミノ酸、核酸など発酵工業において大量生産されている物質を挙げることができる。こうした化学品は、糖液中の糖成分を炭素源として、その代謝の過程において生体内外に化学品として蓄積生産する。微生物によって生産可能な化学品として、例えば、エタノール、プロパノール、ブタノール、1,3-プロパンジオール、1,4-ブタンジオール、グリセロールなどのアルコール、酢酸、乳酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸などの有機酸、イノシン、グアノシンなどのヌクレオシド、イノシン酸、グアニル酸などのヌクレオチド、カダベリンなどのアミン化合物を挙げることができる。さらに、本発明の糖液の製造方法により得られる糖液は、酵素、抗生物質、組換えタンパク質などの生産に適用することも可能である。こうした化学品の製造に使用する微生物としては、目的の化学品を効率的に生産可能な微生物であればよく、大腸菌、酵母、糸状菌、担子菌などの微生物を使用することができる。 <Application of sugar solution>
The sugar solution obtained by the present invention can be used for various uses such as food raw materials, pharmaceutical raw materials, and fermentation raw materials such as chemicals. The sugar solution obtained by the present invention is used as a fermentation raw material, and various chemicals can be produced by growing microorganisms having the ability to produce chemical products. Note that growing the microorganism means that the sugar component or amino source contained in the sugar solution is used as a nutrient of the microorganism to propagate and maintain the growth of the microorganism. Specific examples of chemical products include substances that are mass-produced in the fermentation industry, such as alcohols, organic acids, amino acids, and nucleic acids. Such chemical products are accumulated and produced as chemical products inside and outside the body in the process of metabolism using the sugar component in the sugar solution as a carbon source. Examples of chemicals that can be produced by microorganisms include alcohols such as ethanol, propanol, butanol, 1,3-propanediol, 1,4-butanediol, and glycerol, acetic acid, lactic acid, pyruvic acid, succinic acid, malic acid, and itacone. Examples thereof include organic acids such as acids and citric acid, nucleosides such as inosine and guanosine, nucleotides such as inosinic acid and guanylic acid, and amine compounds such as cadaverine. Furthermore, the sugar solution obtained by the method for producing a sugar solution of the present invention can be applied to the production of enzymes, antibiotics, recombinant proteins, and the like. The microorganism used for the production of such a chemical product may be any microorganism that can efficiently produce the target chemical product, and microorganisms such as Escherichia coli, yeast, filamentous fungi, and basidiomycetes can be used.
以下、本発明の糖液の製造方法に関し、さらに詳細に説明するために実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。
Hereinafter, the method for producing a sugar solution of the present invention will be specifically described with reference to examples in order to explain in more detail. However, the present invention is not limited to these.
(参考例1)糸状菌由来セルラーゼ(培養液)の調製
糸状菌由来セルラーゼ(培養液)は、次の方法で調製した。 (Reference Example 1) Preparation of filamentous fungus-derived cellulase (culture solution) Filamentous fungus-derived cellulase (culture solution) was prepared by the following method.
糸状菌由来セルラーゼ(培養液)は、次の方法で調製した。 (Reference Example 1) Preparation of filamentous fungus-derived cellulase (culture solution) Filamentous fungus-derived cellulase (culture solution) was prepared by the following method.
(前培養)
コーンスティップリカー5%(w/vol)、グルコース2%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、および七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるように蒸留水に添加し、上記各成分を含む蒸留水100mLを500mLバッフル付き三角フラスコに張り込み、121℃の温度で15分間オートクレーブ滅菌した。放冷後、これとは別に、それぞれ121℃の温度で15分間オートクレーブ滅菌したPE-MとTween80とを、上記の500mLバッフル付き三角フラスコにそれぞれ0.01%(w/vol)添加した。この前培養培地に、トリコデルマ・リーセイATCC66589を1×105個/mLになるように植菌し、振とう装置(TAITEC社製 BIO-SHAKER BR-40LF)を用いて、28℃の温度で72時間、180rpmで振とう培養し、前培養とした。 (Pre-culture)
Corn steep liquor 5% (w / vol), glucose 2% (w / vol), ammonium tartrate 0.37% (w / vol), ammonium sulfate 0.14 (w / vol), potassium dihydrogen phosphate 0.2 % (W / vol), calcium chloride dihydrate 0.03% (w / vol), magnesium sulfate heptahydrate 0.03% (w / vol), zinc chloride 0.02% (w / vol) , Iron (III) chloride hexahydrate 0.01% (w / vol), copper (II) sulfate pentahydrate 0.004% (w / vol), manganese chloride tetrahydrate 0.0008% ( w / vol), boric acid 0.0006% (w / vol), and hexamolybdate hexaammonium tetrahydrate 0.0026% (w / vol) were added to distilled water. 500mL baffle with 100mL distilled water containing The flask was placed in an Erlenmeyer flask and sterilized by autoclave at a temperature of 121 ° C. for 15 minutes. After standing to cool, separately from this, PE-M and Tween 80, which were autoclaved at 121 ° C. for 15 minutes, were respectively added to the above 500 mL baffled Erlenmeyer flasks at 0.01% (w / vol). The pre-culture medium was inoculated with Trichoderma reesei ATCC 66589 at 1 × 10 5 cells / mL, and a shaking device (BIO-SHAKER BR-40LF manufactured by TAITEC) was used at a temperature of 28 ° C. for 72 hours. Pre-culture was performed by shaking culture at 180 rpm for a period of time.
コーンスティップリカー5%(w/vol)、グルコース2%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、および七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるように蒸留水に添加し、上記各成分を含む蒸留水100mLを500mLバッフル付き三角フラスコに張り込み、121℃の温度で15分間オートクレーブ滅菌した。放冷後、これとは別に、それぞれ121℃の温度で15分間オートクレーブ滅菌したPE-MとTween80とを、上記の500mLバッフル付き三角フラスコにそれぞれ0.01%(w/vol)添加した。この前培養培地に、トリコデルマ・リーセイATCC66589を1×105個/mLになるように植菌し、振とう装置(TAITEC社製 BIO-SHAKER BR-40LF)を用いて、28℃の温度で72時間、180rpmで振とう培養し、前培養とした。 (Pre-culture)
Corn steep liquor 5% (w / vol), glucose 2% (w / vol), ammonium tartrate 0.37% (w / vol), ammonium sulfate 0.14 (w / vol), potassium dihydrogen phosphate 0.2 % (W / vol), calcium chloride dihydrate 0.03% (w / vol), magnesium sulfate heptahydrate 0.03% (w / vol), zinc chloride 0.02% (w / vol) , Iron (III) chloride hexahydrate 0.01% (w / vol), copper (II) sulfate pentahydrate 0.004% (w / vol), manganese chloride tetrahydrate 0.0008% ( w / vol), boric acid 0.0006% (w / vol), and hexamolybdate hexaammonium tetrahydrate 0.0026% (w / vol) were added to distilled water. 500mL baffle with 100mL distilled water containing The flask was placed in an Erlenmeyer flask and sterilized by autoclave at a temperature of 121 ° C. for 15 minutes. After standing to cool, separately from this, PE-M and Tween 80, which were autoclaved at 121 ° C. for 15 minutes, were respectively added to the above 500 mL baffled Erlenmeyer flasks at 0.01% (w / vol). The pre-culture medium was inoculated with Trichoderma reesei ATCC 66589 at 1 × 10 5 cells / mL, and a shaking device (BIO-SHAKER BR-40LF manufactured by TAITEC) was used at a temperature of 28 ° C. for 72 hours. Pre-culture was performed by shaking culture at 180 rpm for a period of time.
(本培養)
コーンスティップリカー5%(w/vol)、グルコース2%(w/vol)、セルロース(アビセル)10%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14%(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、および七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるように蒸留水に添加し、上記各成分を含む蒸留水2.5Lを5L容撹拌ジャー(DPC-2A、ABLE社製)容器に張り込み、121℃の温度で15分間オートクレーブ滅菌した。放冷後、これとは別に、それぞれ121℃で15分間オートクレーブ滅菌したPE-MとTween80とを、それぞれ0.1%添加し、予め前記の方法で液体培地で前培養したトリコデルマ・リーセイATCC66589を250mL接種した。その後、振とう装置(TAITEC社製 BIO-SHAKER BR-40LF)を用いて、28℃で87時間、300rpm、通気量1vvmの条件で振とう培養を行った。その後、遠心分離した後、上清を膜ろ過(ステリカップ-GV、材質:PVDF、ミリポア社製)した。得られた培養液を糸状菌由来セルラーゼとして、以下の実施例に使用した。 (Main culture)
Corn steep liquor 5% (w / vol), glucose 2% (w / vol), cellulose (Avicel) 10% (w / vol), ammonium tartrate 0.37% (w / vol), ammonium sulfate 0.14% ( w / vol), potassium dihydrogen phosphate 0.2% (w / vol), calcium chloride dihydrate 0.03% (w / vol), magnesium sulfate heptahydrate 0.03% (w / vol) ), Zinc chloride 0.02% (w / vol), iron (III) chloride hexahydrate 0.01% (w / vol), copper (II) sulfate pentahydrate 0.004% (w / vol) ), Manganese chloride tetrahydrate 0.0008% (w / vol), boric acid 0.0006% (w / vol), and hexamolybdate hexaammonium tetrahydrate 0.0026% (w / vol) Add to distilled water so that each of the above components Was added to a 5 L stirring jar (DPC-2A, manufactured by Able) container, and autoclaved at a temperature of 121 ° C. for 15 minutes. Separately from this, 0.1% each of PE-M and Tween 80 which were autoclaved at 121 ° C. for 15 minutes, respectively, was added, and Trichoderma reesei ATCC 66589 pre-cultured in a liquid medium by the above-described method was added. 250 mL was inoculated. Thereafter, using a shaking device (BIO-SHAKER BR-40LF manufactured by TAITEC), shaking culture was performed at 28 ° C. for 87 hours under the conditions of 300 rpm and aeration volume of 1 vvm. Then, after centrifuging, the supernatant was subjected to membrane filtration (Stellicup-GV, material: PVDF, manufactured by Millipore). The obtained culture broth was used as a filamentous fungus-derived cellulase in the following examples.
コーンスティップリカー5%(w/vol)、グルコース2%(w/vol)、セルロース(アビセル)10%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14%(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、および七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるように蒸留水に添加し、上記各成分を含む蒸留水2.5Lを5L容撹拌ジャー(DPC-2A、ABLE社製)容器に張り込み、121℃の温度で15分間オートクレーブ滅菌した。放冷後、これとは別に、それぞれ121℃で15分間オートクレーブ滅菌したPE-MとTween80とを、それぞれ0.1%添加し、予め前記の方法で液体培地で前培養したトリコデルマ・リーセイATCC66589を250mL接種した。その後、振とう装置(TAITEC社製 BIO-SHAKER BR-40LF)を用いて、28℃で87時間、300rpm、通気量1vvmの条件で振とう培養を行った。その後、遠心分離した後、上清を膜ろ過(ステリカップ-GV、材質:PVDF、ミリポア社製)した。得られた培養液を糸状菌由来セルラーゼとして、以下の実施例に使用した。 (Main culture)
Corn steep liquor 5% (w / vol), glucose 2% (w / vol), cellulose (Avicel) 10% (w / vol), ammonium tartrate 0.37% (w / vol), ammonium sulfate 0.14% ( w / vol), potassium dihydrogen phosphate 0.2% (w / vol), calcium chloride dihydrate 0.03% (w / vol), magnesium sulfate heptahydrate 0.03% (w / vol) ), Zinc chloride 0.02% (w / vol), iron (III) chloride hexahydrate 0.01% (w / vol), copper (II) sulfate pentahydrate 0.004% (w / vol) ), Manganese chloride tetrahydrate 0.0008% (w / vol), boric acid 0.0006% (w / vol), and hexamolybdate hexaammonium tetrahydrate 0.0026% (w / vol) Add to distilled water so that each of the above components Was added to a 5 L stirring jar (DPC-2A, manufactured by Able) container, and autoclaved at a temperature of 121 ° C. for 15 minutes. Separately from this, 0.1% each of PE-M and Tween 80 which were autoclaved at 121 ° C. for 15 minutes, respectively, was added, and Trichoderma reesei ATCC 66589 pre-cultured in a liquid medium by the above-described method was added. 250 mL was inoculated. Thereafter, using a shaking device (BIO-SHAKER BR-40LF manufactured by TAITEC), shaking culture was performed at 28 ° C. for 87 hours under the conditions of 300 rpm and aeration volume of 1 vvm. Then, after centrifuging, the supernatant was subjected to membrane filtration (Stellicup-GV, material: PVDF, manufactured by Millipore). The obtained culture broth was used as a filamentous fungus-derived cellulase in the following examples.
以下の実施例および比較例において、糖濃度、糸状菌由来セルラーゼの活性は、以下のようにして測定した。
In the following examples and comparative examples, the sugar concentration and the activity of cellulase derived from filamentous fungi were measured as follows.
(参考例2)糖濃度の測定
糖液に含まれるグルコースおよびキシロースの各濃度は、下記に示す高速液体クロマトグラフィー(High performance liquid chromatography:HPLC)条件で、標品との比較により定量した。
(HPLC条件)
カラム:Luna NH2(Phenomenex社製)
移動相:ミリQ:アセトニトリル=25:75
流速:0.6mL/分
反応液:なし
検出方法:RI(示差屈折率)
温度:30℃。 Reference Example 2 Measurement of Sugar Concentration Each concentration of glucose and xylose contained in the sugar solution was quantified by comparison with a standard under the following high performance liquid chromatography (HPLC) conditions.
(HPLC conditions)
Column: Luna NH 2 (Phenomenex)
Mobile phase: Milli Q: Acetonitrile = 25: 75
Flow rate: 0.6 mL / min Reaction liquid: None Detection method: RI (differential refractive index)
Temperature: 30 ° C.
糖液に含まれるグルコースおよびキシロースの各濃度は、下記に示す高速液体クロマトグラフィー(High performance liquid chromatography:HPLC)条件で、標品との比較により定量した。
(HPLC条件)
カラム:Luna NH2(Phenomenex社製)
移動相:ミリQ:アセトニトリル=25:75
流速:0.6mL/分
反応液:なし
検出方法:RI(示差屈折率)
温度:30℃。 Reference Example 2 Measurement of Sugar Concentration Each concentration of glucose and xylose contained in the sugar solution was quantified by comparison with a standard under the following high performance liquid chromatography (HPLC) conditions.
(HPLC conditions)
Column: Luna NH 2 (Phenomenex)
Mobile phase: Milli Q: Acetonitrile = 25: 75
Flow rate: 0.6 mL / min Reaction liquid: None Detection method: RI (differential refractive index)
Temperature: 30 ° C.
(参考例3)糸状菌由来セルラーゼの活性の測定
糸状菌由来セルラーゼの酵素活性は、(1)アビセル分解活性および(2)キシラン分解活性の2種の分解活性に分けて、次の手順で活性を測定評価した。 (Reference Example 3) Measurement of activity of filamentous fungus-derived cellulase The enzymatic activity of filamentous fungus-derived cellulase is divided into two types of degradation activity: (1) Avicel degradation activity and (2) Xylan degradation activity. Was evaluated.
糸状菌由来セルラーゼの酵素活性は、(1)アビセル分解活性および(2)キシラン分解活性の2種の分解活性に分けて、次の手順で活性を測定評価した。 (Reference Example 3) Measurement of activity of filamentous fungus-derived cellulase The enzymatic activity of filamentous fungus-derived cellulase is divided into two types of degradation activity: (1) Avicel degradation activity and (2) Xylan degradation activity. Was evaluated.
(1)アビセル分解活性
回収した酵素液(100μL)に対し、アビセル(メルク社製)を1g/Lと酢酸ナトリウム緩衝液(pH5.0)を100mMとなるように添加し、50℃の温度で24時間反応させた。反応液は1mLチューブで調整し、前記の条件で回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のグルコース濃度を測定した。グルコース濃度は、参考例2に記載の方法に準じて測定した。アビセル分解活性は、生成したグルコース濃度(g/L)をそのまま活性値とした。 (1) Avicel decomposition activity To the recovered enzyme solution (100 μL), 1 g / L of Avicel (Merck) and sodium acetate buffer (pH 5.0) were added to a concentration of 100 mM, and the temperature was 50 ° C. The reaction was performed for 24 hours. The reaction solution was adjusted with a 1 mL tube, and the reaction was performed while rotating and mixing under the above conditions. After the reaction, the tube was centrifuged, and the glucose concentration of the supernatant component was measured. The glucose concentration was measured according to the method described in Reference Example 2. For the Avicel degradation activity, the generated glucose concentration (g / L) was used as the activity value as it was.
回収した酵素液(100μL)に対し、アビセル(メルク社製)を1g/Lと酢酸ナトリウム緩衝液(pH5.0)を100mMとなるように添加し、50℃の温度で24時間反応させた。反応液は1mLチューブで調整し、前記の条件で回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のグルコース濃度を測定した。グルコース濃度は、参考例2に記載の方法に準じて測定した。アビセル分解活性は、生成したグルコース濃度(g/L)をそのまま活性値とした。 (1) Avicel decomposition activity To the recovered enzyme solution (100 μL), 1 g / L of Avicel (Merck) and sodium acetate buffer (pH 5.0) were added to a concentration of 100 mM, and the temperature was 50 ° C. The reaction was performed for 24 hours. The reaction solution was adjusted with a 1 mL tube, and the reaction was performed while rotating and mixing under the above conditions. After the reaction, the tube was centrifuged, and the glucose concentration of the supernatant component was measured. The glucose concentration was measured according to the method described in Reference Example 2. For the Avicel degradation activity, the generated glucose concentration (g / L) was used as the activity value as it was.
(2)キシラン分解活性
酵素液に対し、キシラン(Birch wood xylan、和光純薬工業株式会社製)10g/Lと酢酸ナトリウム緩衝液(pH5.0)を100mMとなるように添加し、50℃で4時間反応させた。反応液は1mLチューブで調整し、前記の条件で回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のキシロース濃度を測定した。キシロース濃度は、参考例2に記載の方法に準じて測定した。キシロース分解活性は、生成したキシロース濃度(g/L)をそのまま活性値とした。 (2) Xylan decomposition activity To the enzyme solution, 10 g / L of xylan (Birch wood xylan, manufactured by Wako Pure Chemical Industries, Ltd.) and sodium acetate buffer (pH 5.0) were added to a concentration of 100 mM at 50 ° C. The reaction was performed for 4 hours. The reaction solution was adjusted with a 1 mL tube, and the reaction was performed while rotating and mixing under the above conditions. After the reaction, the tube was centrifuged, and the xylose concentration of the supernatant component was measured. The xylose concentration was measured according to the method described in Reference Example 2. For the xylose decomposition activity, the generated xylose concentration (g / L) was directly used as the activity value.
酵素液に対し、キシラン(Birch wood xylan、和光純薬工業株式会社製)10g/Lと酢酸ナトリウム緩衝液(pH5.0)を100mMとなるように添加し、50℃で4時間反応させた。反応液は1mLチューブで調整し、前記の条件で回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のキシロース濃度を測定した。キシロース濃度は、参考例2に記載の方法に準じて測定した。キシロース分解活性は、生成したキシロース濃度(g/L)をそのまま活性値とした。 (2) Xylan decomposition activity To the enzyme solution, 10 g / L of xylan (Birch wood xylan, manufactured by Wako Pure Chemical Industries, Ltd.) and sodium acetate buffer (pH 5.0) were added to a concentration of 100 mM at 50 ° C. The reaction was performed for 4 hours. The reaction solution was adjusted with a 1 mL tube, and the reaction was performed while rotating and mixing under the above conditions. After the reaction, the tube was centrifuged, and the xylose concentration of the supernatant component was measured. The xylose concentration was measured according to the method described in Reference Example 2. For the xylose decomposition activity, the generated xylose concentration (g / L) was directly used as the activity value.
<実施例1:セルロース含有バイオマスの加水分解(工程(1))>
[セルロース含有バイオマスの前処理]
(セルロース含有バイオマスのアンモニア処理(前処理1))
セルロース含有バイオマスとして稲藁を使用した。稲藁を小型反応器(耐圧硝子工業製、TVS-N2 30ml)に投入し、液体窒素で冷却した。この反応器にアンモニアガスを流入し、試料を完全に液体アンモニアに浸漬させた。リアクターの蓋を閉め、室温で15分ほど放置した。次いで、150℃のオイルバス中にて1時間処理した。処理後、反応器をオイルバスから取り出し、ドラフト中で直ちにアンモニアガスをリーク後、さらに真空ポンプで反応器内を10Paまで真空引きし乾燥させた。これを前処理物1として、以下の実施例に使用した。 <Example 1: Hydrolysis of cellulose-containing biomass (step (1))>
[Pretreatment of cellulose-containing biomass]
(Ammonia treatment of cellulose-containing biomass (Pretreatment 1))
Rice straw was used as the cellulose-containing biomass. The rice straw was put into a small reactor (manufactured by pressure-resistant glass industry, TVS-N2 30 ml) and cooled with liquid nitrogen. Ammonia gas was flowed into the reactor, and the sample was completely immersed in liquid ammonia. The reactor lid was closed and left at room temperature for about 15 minutes. Subsequently, it processed in the 150 degreeC oil bath for 1 hour. After the treatment, the reactor was taken out from the oil bath, and immediately after ammonia gas leaked in the fume hood, the reactor was further evacuated to 10 Pa and dried. This was used as the pre-processed product 1 in the following examples.
[セルロース含有バイオマスの前処理]
(セルロース含有バイオマスのアンモニア処理(前処理1))
セルロース含有バイオマスとして稲藁を使用した。稲藁を小型反応器(耐圧硝子工業製、TVS-N2 30ml)に投入し、液体窒素で冷却した。この反応器にアンモニアガスを流入し、試料を完全に液体アンモニアに浸漬させた。リアクターの蓋を閉め、室温で15分ほど放置した。次いで、150℃のオイルバス中にて1時間処理した。処理後、反応器をオイルバスから取り出し、ドラフト中で直ちにアンモニアガスをリーク後、さらに真空ポンプで反応器内を10Paまで真空引きし乾燥させた。これを前処理物1として、以下の実施例に使用した。 <Example 1: Hydrolysis of cellulose-containing biomass (step (1))>
[Pretreatment of cellulose-containing biomass]
(Ammonia treatment of cellulose-containing biomass (Pretreatment 1))
Rice straw was used as the cellulose-containing biomass. The rice straw was put into a small reactor (manufactured by pressure-resistant glass industry, TVS-N2 30 ml) and cooled with liquid nitrogen. Ammonia gas was flowed into the reactor, and the sample was completely immersed in liquid ammonia. The reactor lid was closed and left at room temperature for about 15 minutes. Subsequently, it processed in the 150 degreeC oil bath for 1 hour. After the treatment, the reactor was taken out from the oil bath, and immediately after ammonia gas leaked in the fume hood, the reactor was further evacuated to 10 Pa and dried. This was used as the pre-processed product 1 in the following examples.
(セルロース含有バイオマスの水熱処理(前処理2))
セルロース含有バイオマスとして稲藁を使用した。稲藁を水に浸し、撹拌しながら180℃で20分間オートクレーブ処理(日東高圧株式会社製)した。その際の圧力は10MPaであった。処理後は溶液成分(以下、水熱処理液という。)と処理バイオマス成分に遠心分離(3000G)を用いて固液分離した。この処理バイオマス成分を前処理物2として、以下の実施例に使用した。 (Hydrothermal treatment of cellulose-containing biomass (Pretreatment 2))
Rice straw was used as the cellulose-containing biomass. The rice straw was soaked in water and autoclaved (manufactured by Nitto Koatsu Co., Ltd.) for 20 minutes at 180 ° C. with stirring. The pressure at that time was 10 MPa. After the treatment, the solution component (hereinafter referred to as hydrothermal treatment liquid) and the treated biomass component were subjected to solid-liquid separation using centrifugation (3000G). This treated biomass component was used as a pretreated product 2 in the following examples.
セルロース含有バイオマスとして稲藁を使用した。稲藁を水に浸し、撹拌しながら180℃で20分間オートクレーブ処理(日東高圧株式会社製)した。その際の圧力は10MPaであった。処理後は溶液成分(以下、水熱処理液という。)と処理バイオマス成分に遠心分離(3000G)を用いて固液分離した。この処理バイオマス成分を前処理物2として、以下の実施例に使用した。 (Hydrothermal treatment of cellulose-containing biomass (Pretreatment 2))
Rice straw was used as the cellulose-containing biomass. The rice straw was soaked in water and autoclaved (manufactured by Nitto Koatsu Co., Ltd.) for 20 minutes at 180 ° C. with stirring. The pressure at that time was 10 MPa. After the treatment, the solution component (hereinafter referred to as hydrothermal treatment liquid) and the treated biomass component were subjected to solid-liquid separation using centrifugation (3000G). This treated biomass component was used as a pretreated product 2 in the following examples.
[セルロース含有バイオマスの糸状菌由来セルラーゼによる加水分解]
前述の前処理物1および前処理物2をそれぞれ糸状菌由来セルラーゼで加水分解を行った。それぞれの前処理物(0.5g)に蒸留水を加えた後、参考例2で調製した糸状菌由来セルラーゼ0.5mLを添加した。その後、それぞれの前処理物(0.5g)に、総重量が10gとなるように、さらに蒸留水を添加した。さらに、それぞれの本組成物のpHが4.5~5.3の範囲となるように、希釈硫酸または希釈苛性ソーダを添加して調整した。それぞれの本組成物を枝付き反応容器(東京理化器械株式会社製、φ30、NS14/23)に移した。その後、この枝付き反応容器を恒温槽(MG-2200、東京理化社製)に入れて、小型攪拌機(CPS-1000、東京理化社製)を用いて、50℃で24時間、前記本組成物を保温および攪拌しながら加水分解を行った。前処理物1から得られた加水分解物を「加水分解物1」、前処理物2から得られた加水分解物を「加水分解物2」として、以下工程(2)以降の実施例に使用した。 [Hydrolysis of cellulose-containing biomass by cellulase derived from filamentous fungi]
The aforementioned pretreated product 1 and pretreated product 2 were each hydrolyzed with filamentous fungus-derived cellulase. Distilled water was added to each pretreated product (0.5 g), and then 0.5 mL of the filamentous fungus-derived cellulase prepared in Reference Example 2 was added. Thereafter, distilled water was further added to each pretreated product (0.5 g) so that the total weight was 10 g. Further, dilute sulfuric acid or dilute caustic soda was added to adjust the pH of each of the present compositions to be in the range of 4.5 to 5.3. Each of the present compositions was transferred to a branched reaction vessel (manufactured by Tokyo Rika Kikai Co., Ltd., φ30, NS14 / 23). Thereafter, the branched reaction vessel was placed in a thermostatic bath (MG-2200, manufactured by Tokyo Rika Co., Ltd.), and the present composition was used at 50 ° C. for 24 hours using a small stirrer (CPS-1000, manufactured by Tokyo Rika Co., Ltd.). The mixture was hydrolyzed while keeping it warm and stirring. The hydrolyzate obtained from the pretreatment product 1 is referred to as “hydrolyzate 1”, and the hydrolyzate obtained from the pretreatment product 2 is referred to as “hydrolyzate 2” in the following steps (2) and subsequent examples. did.
前述の前処理物1および前処理物2をそれぞれ糸状菌由来セルラーゼで加水分解を行った。それぞれの前処理物(0.5g)に蒸留水を加えた後、参考例2で調製した糸状菌由来セルラーゼ0.5mLを添加した。その後、それぞれの前処理物(0.5g)に、総重量が10gとなるように、さらに蒸留水を添加した。さらに、それぞれの本組成物のpHが4.5~5.3の範囲となるように、希釈硫酸または希釈苛性ソーダを添加して調整した。それぞれの本組成物を枝付き反応容器(東京理化器械株式会社製、φ30、NS14/23)に移した。その後、この枝付き反応容器を恒温槽(MG-2200、東京理化社製)に入れて、小型攪拌機(CPS-1000、東京理化社製)を用いて、50℃で24時間、前記本組成物を保温および攪拌しながら加水分解を行った。前処理物1から得られた加水分解物を「加水分解物1」、前処理物2から得られた加水分解物を「加水分解物2」として、以下工程(2)以降の実施例に使用した。 [Hydrolysis of cellulose-containing biomass by cellulase derived from filamentous fungi]
The aforementioned pretreated product 1 and pretreated product 2 were each hydrolyzed with filamentous fungus-derived cellulase. Distilled water was added to each pretreated product (0.5 g), and then 0.5 mL of the filamentous fungus-derived cellulase prepared in Reference Example 2 was added. Thereafter, distilled water was further added to each pretreated product (0.5 g) so that the total weight was 10 g. Further, dilute sulfuric acid or dilute caustic soda was added to adjust the pH of each of the present compositions to be in the range of 4.5 to 5.3. Each of the present compositions was transferred to a branched reaction vessel (manufactured by Tokyo Rika Kikai Co., Ltd., φ30, NS14 / 23). Thereafter, the branched reaction vessel was placed in a thermostatic bath (MG-2200, manufactured by Tokyo Rika Co., Ltd.), and the present composition was used at 50 ° C. for 24 hours using a small stirrer (CPS-1000, manufactured by Tokyo Rika Co., Ltd.). The mixture was hydrolyzed while keeping it warm and stirring. The hydrolyzate obtained from the pretreatment product 1 is referred to as “hydrolyzate 1”, and the hydrolyzate obtained from the pretreatment product 2 is referred to as “hydrolyzate 2” in the following steps (2) and subsequent examples. did.
<実施例2:加水分解物の固液分離(工程(2))>
実施例1において得られた加水分解物1および加水分解物2をそれぞれ遠心分離(3000G、10分)して固液分離し、糖液(6g)と糖化残さ(4g)とに分離した。加水分解物1から得られた糖液および糖化残さを、「糖液1」および「糖化残さ1」とし、加水分解物2から得られた糖液および糖化残さを、「糖液2」および「糖化残さ2」として、工程(3)以降の実施例に使用した。また、得られた糖液1および糖液2の糖濃度(グルコースおよびキシロース濃度)は、参考例1に記載の方法で測定した。得られた糖液1および糖液2の糖濃度(グルコースおよびキシロース濃度)の測定結果を、表1に示す。 <Example 2: Solid-liquid separation of hydrolyzate (step (2))>
The hydrolyzate 1 and hydrolyzate 2 obtained in Example 1 were subjected to solid-liquid separation by centrifugation (3000 G, 10 minutes), respectively, and separated into a sugar solution (6 g) and a saccharification residue (4 g). The sugar solution and saccharification residue obtained from the hydrolyzate 1 are designated as “sugar solution 1” and “saccharification residue 1”, and the sugar solution and the saccharification residue obtained from the hydrolyzate 2 are designated as “sugar solution 2” and “ As saccharification residue 2 ", it was used in the examples after step (3). Further, the sugar concentrations (glucose and xylose concentrations) of the obtained sugar solution 1 and sugar solution 2 were measured by the method described in Reference Example 1. Table 1 shows the measurement results of the sugar concentrations (glucose and xylose concentrations) of the obtained sugar solution 1 and sugar solution 2.
実施例1において得られた加水分解物1および加水分解物2をそれぞれ遠心分離(3000G、10分)して固液分離し、糖液(6g)と糖化残さ(4g)とに分離した。加水分解物1から得られた糖液および糖化残さを、「糖液1」および「糖化残さ1」とし、加水分解物2から得られた糖液および糖化残さを、「糖液2」および「糖化残さ2」として、工程(3)以降の実施例に使用した。また、得られた糖液1および糖液2の糖濃度(グルコースおよびキシロース濃度)は、参考例1に記載の方法で測定した。得られた糖液1および糖液2の糖濃度(グルコースおよびキシロース濃度)の測定結果を、表1に示す。 <Example 2: Solid-liquid separation of hydrolyzate (step (2))>
The hydrolyzate 1 and hydrolyzate 2 obtained in Example 1 were subjected to solid-liquid separation by centrifugation (3000 G, 10 minutes), respectively, and separated into a sugar solution (6 g) and a saccharification residue (4 g). The sugar solution and saccharification residue obtained from the hydrolyzate 1 are designated as “sugar solution 1” and “saccharification residue 1”, and the sugar solution and the saccharification residue obtained from the hydrolyzate 2 are designated as “sugar solution 2” and “ As saccharification residue 2 ", it was used in the examples after step (3). Further, the sugar concentrations (glucose and xylose concentrations) of the obtained sugar solution 1 and sugar solution 2 were measured by the method described in Reference Example 1. Table 1 shows the measurement results of the sugar concentrations (glucose and xylose concentrations) of the obtained sugar solution 1 and sugar solution 2.
<実施例3:糖化残さの洗浄(工程(3))、および得られた洗浄された溶液のろ過(工程(4))>
実施例2で得られた各糖化残さに対し、リグニンブロッキング剤を含む水溶液で洗浄操作を室温で行った。リグニンブロッキング剤としては、BSA(牛血清由来アルブミン、シグマアルドリッチ社製)、カゼイン(シグマアルドリッチ社製)、DDGS(トウモロコシ蒸留残さ、BP-50、Wilbur-Ellis製)、CSL(コーンスティープリカー、王子コーンスターチ株式会社製)、スキムミルク(和光純薬工業株式会社製)、ペプトン(BBLペプトン、ベクトン・ディッキンソン製)を使用した。リグニンブロッキング剤を滅菌水に最終濃度5g/Lとなるように添加し、洗浄された溶液を調製した。これら洗浄された溶液を「糖化残さ1」および「糖化残さ2」に対し、6g(6mL)添加し混合した。混合後、30分、室温で放置した後、遠心分離(3000G、10分)して固液分離し、糖化残さ1および糖化残さ2の各洗浄された溶液6gを各遠心上清として回収した。回収した上清成分は、マイレクスHVフィルターユニット(33mm、PVDF製、細孔径0.45μm)を使用して精密濾過を行った。得られたろ液は、分画分子量10000の限外ろ過膜(Sartorius stedim biotech社製 VIVASPIN 20 材質:PES)でろ過し、膜画分が1mLになるまで4500Gで遠心した。さらに蒸留水6mLを膜画分に添加し、再度膜画分が1mLになるまで4500Gで遠心した。その後、膜画分から酵素を回収した。回収酵素の各活性は、参考例3に準じて測定した。また、従来技術との比較のため、比較例1として蒸留水のみ(リグニンブロッキング剤を含まない)で糖化残さを洗浄した際のそれぞれの回収酵素成分の活性を基準1として、相対値として回収酵素成分の活性を表2および表3に示す。 <Example 3: Washing of saccharification residue (step (3)) and filtration of the obtained washed solution (step (4))>
Each saccharification residue obtained in Example 2 was washed with an aqueous solution containing a lignin blocking agent at room temperature. As lignin blocking agents, BSA (bovine serum-derived albumin, manufactured by Sigma-Aldrich), casein (manufactured by Sigma-Aldrich), DDGS (maize distillation residue, BP-50, manufactured by Wilbur-Ellis), CSL (corn steep liquor, prince Cornstarch Co., Ltd.), skim milk (Wako Pure Chemical Industries, Ltd.), and peptone (BBL Peptone, Becton Dickinson) were used. A lignin blocking agent was added to sterilized water to a final concentration of 5 g / L to prepare a washed solution. 6 g (6 mL) of these washed solutions were added to “saccharification residue 1” and “saccharification residue 2” and mixed. After mixing, the mixture was allowed to stand at room temperature for 30 minutes, and then centrifuged (3000 G, 10 minutes) for solid-liquid separation, and 6 g of each washed solution of saccharification residue 1 and saccharification residue 2 was collected as each centrifugation supernatant. The collected supernatant component was subjected to microfiltration using a Milex HV filter unit (33 mm, PVDF, pore diameter 0.45 μm). The obtained filtrate was filtered through an ultrafiltration membrane having a fractional molecular weight of 10,000 (VARISPIN 20 material: PES, manufactured by Sartorius steady biotech), and centrifuged at 4500 G until the membrane fraction became 1 mL. Further, 6 mL of distilled water was added to the membrane fraction, and centrifuged at 4500 G until the membrane fraction reached 1 mL again. Thereafter, the enzyme was recovered from the membrane fraction. Each activity of the recovered enzyme was measured according to Reference Example 3. For comparison with the prior art, as Comparative Example 1, the activity of each recovered enzyme component when the saccharification residue was washed only with distilled water (not including the lignin blocking agent) was used as a reference value, and the recovered enzyme as a relative value. The activity of the components is shown in Tables 2 and 3.
実施例2で得られた各糖化残さに対し、リグニンブロッキング剤を含む水溶液で洗浄操作を室温で行った。リグニンブロッキング剤としては、BSA(牛血清由来アルブミン、シグマアルドリッチ社製)、カゼイン(シグマアルドリッチ社製)、DDGS(トウモロコシ蒸留残さ、BP-50、Wilbur-Ellis製)、CSL(コーンスティープリカー、王子コーンスターチ株式会社製)、スキムミルク(和光純薬工業株式会社製)、ペプトン(BBLペプトン、ベクトン・ディッキンソン製)を使用した。リグニンブロッキング剤を滅菌水に最終濃度5g/Lとなるように添加し、洗浄された溶液を調製した。これら洗浄された溶液を「糖化残さ1」および「糖化残さ2」に対し、6g(6mL)添加し混合した。混合後、30分、室温で放置した後、遠心分離(3000G、10分)して固液分離し、糖化残さ1および糖化残さ2の各洗浄された溶液6gを各遠心上清として回収した。回収した上清成分は、マイレクスHVフィルターユニット(33mm、PVDF製、細孔径0.45μm)を使用して精密濾過を行った。得られたろ液は、分画分子量10000の限外ろ過膜(Sartorius stedim biotech社製 VIVASPIN 20 材質:PES)でろ過し、膜画分が1mLになるまで4500Gで遠心した。さらに蒸留水6mLを膜画分に添加し、再度膜画分が1mLになるまで4500Gで遠心した。その後、膜画分から酵素を回収した。回収酵素の各活性は、参考例3に準じて測定した。また、従来技術との比較のため、比較例1として蒸留水のみ(リグニンブロッキング剤を含まない)で糖化残さを洗浄した際のそれぞれの回収酵素成分の活性を基準1として、相対値として回収酵素成分の活性を表2および表3に示す。 <Example 3: Washing of saccharification residue (step (3)) and filtration of the obtained washed solution (step (4))>
Each saccharification residue obtained in Example 2 was washed with an aqueous solution containing a lignin blocking agent at room temperature. As lignin blocking agents, BSA (bovine serum-derived albumin, manufactured by Sigma-Aldrich), casein (manufactured by Sigma-Aldrich), DDGS (maize distillation residue, BP-50, manufactured by Wilbur-Ellis), CSL (corn steep liquor, prince Cornstarch Co., Ltd.), skim milk (Wako Pure Chemical Industries, Ltd.), and peptone (BBL Peptone, Becton Dickinson) were used. A lignin blocking agent was added to sterilized water to a final concentration of 5 g / L to prepare a washed solution. 6 g (6 mL) of these washed solutions were added to “saccharification residue 1” and “saccharification residue 2” and mixed. After mixing, the mixture was allowed to stand at room temperature for 30 minutes, and then centrifuged (3000 G, 10 minutes) for solid-liquid separation, and 6 g of each washed solution of saccharification residue 1 and saccharification residue 2 was collected as each centrifugation supernatant. The collected supernatant component was subjected to microfiltration using a Milex HV filter unit (33 mm, PVDF, pore diameter 0.45 μm). The obtained filtrate was filtered through an ultrafiltration membrane having a fractional molecular weight of 10,000 (VARISPIN 20 material: PES, manufactured by Sartorius steady biotech), and centrifuged at 4500 G until the membrane fraction became 1 mL. Further, 6 mL of distilled water was added to the membrane fraction, and centrifuged at 4500 G until the membrane fraction reached 1 mL again. Thereafter, the enzyme was recovered from the membrane fraction. Each activity of the recovered enzyme was measured according to Reference Example 3. For comparison with the prior art, as Comparative Example 1, the activity of each recovered enzyme component when the saccharification residue was washed only with distilled water (not including the lignin blocking agent) was used as a reference value, and the recovered enzyme as a relative value. The activity of the components is shown in Tables 2 and 3.
表2および表3から明らかなように、リグニンブロッキング剤を含む水溶液による洗浄で糸状菌由来セルラーゼの回収が高まり、回収酵素成分中のアビセル分解活性が特に高まることが判明した。
As is apparent from Tables 2 and 3, it was found that washing with an aqueous solution containing a lignin blocking agent increased the recovery of cellulase derived from filamentous fungi, and the Avicel degradation activity in the recovered enzyme component was particularly increased.
<実施例4:工程(2)の糖液と洗浄された溶液との混合溶液のろ過(工程(4))>
実施例2の糖液1(6g)と実施例3の洗浄された溶液(6g)(糖化残さ1をCSLで洗浄した洗浄された溶液)とを混合して、限外ろ過膜に通じてろ過を行った。マイレクスHVフィルターユニット(33mm、PVDF製、細孔径0.45μm)を使用して精密ろ過を行った。得られたろ液を、分画分子量10000の限外ろ過膜(Sartorius stedim biotech社製 VIVASPIN 20 材質:PES)でろ過し、膜画分が1mLになるまで4500Gで遠心した。さらに蒸留水6mLを膜画分に添加し、再度膜画分が1mLになるまで4500Gで遠心した。この後、膜画分から酵素を回収した。回収酵素の各活性は、参考例3に準じて測定した。また、回収酵素活性の比較のため、工程(2)の糖液と比較例1の糖化残さの洗浄された溶液とを混合した後、限外ろ過膜に通じてろ過して、非透過液として糸状菌由来セルラーゼを回収する工程(比較例2)で得られた回収酵素活性を基準(1)として、相対値として表4に示した。 <Example 4: Filtration of a mixed solution of the sugar solution of step (2) and the washed solution (step (4))>
The sugar solution 1 (6 g) of Example 2 and the washed solution (6 g) of Example 3 (washed solution obtained by washing saccharification residue 1 with CSL) were mixed and filtered through an ultrafiltration membrane. Went. Microfiltration was performed using a Milex HV filter unit (33 mm, made by PVDF, pore diameter 0.45 μm). The obtained filtrate was filtered through an ultrafiltration membrane having a fractional molecular weight of 10,000 (VARISPIN 20 material: PES, manufactured by Sartorius Steadim Biotech), and centrifuged at 4500 G until the membrane fraction became 1 mL. Further, 6 mL of distilled water was added to the membrane fraction, and centrifuged at 4500 G until the membrane fraction reached 1 mL again. Thereafter, the enzyme was recovered from the membrane fraction. Each activity of the recovered enzyme was measured according to Reference Example 3. In addition, for comparison of the recovered enzyme activity, after mixing the sugar solution of step (2) with the washed solution of the saccharification residue of Comparative Example 1, it is filtered through an ultrafiltration membrane to obtain a non-permeate solution. The recovered enzyme activity obtained in the step of recovering the filamentous fungus-derived cellulase (Comparative Example 2) is shown in Table 4 as relative values based on the reference (1).
実施例2の糖液1(6g)と実施例3の洗浄された溶液(6g)(糖化残さ1をCSLで洗浄した洗浄された溶液)とを混合して、限外ろ過膜に通じてろ過を行った。マイレクスHVフィルターユニット(33mm、PVDF製、細孔径0.45μm)を使用して精密ろ過を行った。得られたろ液を、分画分子量10000の限外ろ過膜(Sartorius stedim biotech社製 VIVASPIN 20 材質:PES)でろ過し、膜画分が1mLになるまで4500Gで遠心した。さらに蒸留水6mLを膜画分に添加し、再度膜画分が1mLになるまで4500Gで遠心した。この後、膜画分から酵素を回収した。回収酵素の各活性は、参考例3に準じて測定した。また、回収酵素活性の比較のため、工程(2)の糖液と比較例1の糖化残さの洗浄された溶液とを混合した後、限外ろ過膜に通じてろ過して、非透過液として糸状菌由来セルラーゼを回収する工程(比較例2)で得られた回収酵素活性を基準(1)として、相対値として表4に示した。 <Example 4: Filtration of a mixed solution of the sugar solution of step (2) and the washed solution (step (4))>
The sugar solution 1 (6 g) of Example 2 and the washed solution (6 g) of Example 3 (washed solution obtained by washing saccharification residue 1 with CSL) were mixed and filtered through an ultrafiltration membrane. Went. Microfiltration was performed using a Milex HV filter unit (33 mm, made by PVDF, pore diameter 0.45 μm). The obtained filtrate was filtered through an ultrafiltration membrane having a fractional molecular weight of 10,000 (VARISPIN 20 material: PES, manufactured by Sartorius Steadim Biotech), and centrifuged at 4500 G until the membrane fraction became 1 mL. Further, 6 mL of distilled water was added to the membrane fraction, and centrifuged at 4500 G until the membrane fraction reached 1 mL again. Thereafter, the enzyme was recovered from the membrane fraction. Each activity of the recovered enzyme was measured according to Reference Example 3. In addition, for comparison of the recovered enzyme activity, after mixing the sugar solution of step (2) with the washed solution of the saccharification residue of Comparative Example 1, it is filtered through an ultrafiltration membrane to obtain a non-permeate solution. The recovered enzyme activity obtained in the step of recovering the filamentous fungus-derived cellulase (Comparative Example 2) is shown in Table 4 as relative values based on the reference (1).
表4から明らかなように、比較例2に対して、実施例4では各回収酵素活性が高まることが判明した。また、実施例4では比較例2との相対的な各回収酵素活性の差が、実施例3に対して大きくなっていることが判明した。
As is clear from Table 4, it was found that in Example 4, each recovered enzyme activity increased compared to Comparative Example 2. Moreover, in Example 4, it turned out that the difference of each collection | recovery enzyme activity relative to Comparative Example 2 is large with respect to Example 3.
<実施例5:リグニンブロッキング剤を含む水溶液での糖化残さの洗浄時の温度の影響>
リグニンブロッキング剤を含む水溶液を用いて糖化残さを洗浄する場合において、洗浄時の温度による糖化残さの洗浄への影響を検討した。40℃、50℃、60℃の各温度に設定した湯浴に対し、糖化残さ1に洗浄された溶液を添加したものを浸し、30分放置した。その後、実施例3と同様の操作で回収酵素を得て、各酵素活性を測定した。 <Example 5: Effect of temperature during washing of saccharification residue in aqueous solution containing lignin blocking agent>
When washing the saccharification residue using an aqueous solution containing a lignin blocking agent, the effect of the temperature during washing on the saccharification residue was examined. What added the washing | cleaning solution to the saccharification residue 1 was immersed in the hot water bath set to each temperature of 40 degreeC, 50 degreeC, and 60 degreeC, and it was left to stand for 30 minutes. Thereafter, the recovered enzyme was obtained in the same manner as in Example 3, and each enzyme activity was measured.
リグニンブロッキング剤を含む水溶液を用いて糖化残さを洗浄する場合において、洗浄時の温度による糖化残さの洗浄への影響を検討した。40℃、50℃、60℃の各温度に設定した湯浴に対し、糖化残さ1に洗浄された溶液を添加したものを浸し、30分放置した。その後、実施例3と同様の操作で回収酵素を得て、各酵素活性を測定した。 <Example 5: Effect of temperature during washing of saccharification residue in aqueous solution containing lignin blocking agent>
When washing the saccharification residue using an aqueous solution containing a lignin blocking agent, the effect of the temperature during washing on the saccharification residue was examined. What added the washing | cleaning solution to the saccharification residue 1 was immersed in the hot water bath set to each temperature of 40 degreeC, 50 degreeC, and 60 degreeC, and it was left to stand for 30 minutes. Thereafter, the recovered enzyme was obtained in the same manner as in Example 3, and each enzyme activity was measured.
表5および表6に示すように、40~60℃の温度範囲で糖化残さ1を洗浄して回収された洗浄された溶液の酵素活性が室温に比べて増大することが判明した。
As shown in Tables 5 and 6, it was found that the enzyme activity of the washed solution recovered by washing saccharification residue 1 in the temperature range of 40 to 60 ° C. was increased as compared to room temperature.
<実施例6:リグニンブロッキング剤と硫酸アンモニウムを含む水溶液による糖化残さの洗浄>
リグニンブロッキング剤を含む水溶液による糖化残さの洗浄において、さらに、無機塩として硫酸アンモニウムを添加する場合の洗浄効果を検討した。リグニンブロッキング剤として、BSA(牛血清由来アルブミン、シグマアルドリッチ社製)、CSL(コーンスティープリカー、王子コーンスターチ株式会社製)を使用した。前記リグニンブロッキング剤を滅菌水に最終濃度5g/Lとなるように添加し、本実施例ではさらに硫酸アンモニウムを1g/L、5g/L、10g/Lとなるように添加して、洗浄された溶液を調製した。これら洗浄された溶液を「糖化残さ1」に対し、6g(6mL)添加して混合した。混合後、30分、室温で放置した後、遠心分離(3000G、10分)して固液分離し、糖化残さ1の洗浄された溶液6gを各遠心上清として回収した。回収した上清成分は、実施例3と同じ手順で各酵素活性を測定した。結果を表7および表8に示す。 <Example 6: Washing of saccharification residue with aqueous solution containing lignin blocking agent and ammonium sulfate>
In washing saccharification residue with an aqueous solution containing a lignin blocking agent, the washing effect in the case of adding ammonium sulfate as an inorganic salt was examined. As lignin blocking agents, BSA (bovine serum-derived albumin, manufactured by Sigma Aldrich) and CSL (Corn Steep liquor, manufactured by Oji Cornstarch Co., Ltd.) were used. The lignin blocking agent was added to sterilized water to a final concentration of 5 g / L, and in this example, ammonium sulfate was further added to 1 g / L, 5 g / L, and 10 g / L to obtain a washed solution. Was prepared. 6 g (6 mL) of these washed solutions was added to “saccharification residue 1” and mixed. After mixing, the mixture was allowed to stand at room temperature for 30 minutes, and then centrifuged (3000 G, 10 minutes) for solid-liquid separation, and 6 g of the washed solution of saccharification residue 1 was collected as each centrifugal supernatant. The collected supernatant components were measured for each enzyme activity in the same procedure as in Example 3. The results are shown in Table 7 and Table 8.
リグニンブロッキング剤を含む水溶液による糖化残さの洗浄において、さらに、無機塩として硫酸アンモニウムを添加する場合の洗浄効果を検討した。リグニンブロッキング剤として、BSA(牛血清由来アルブミン、シグマアルドリッチ社製)、CSL(コーンスティープリカー、王子コーンスターチ株式会社製)を使用した。前記リグニンブロッキング剤を滅菌水に最終濃度5g/Lとなるように添加し、本実施例ではさらに硫酸アンモニウムを1g/L、5g/L、10g/Lとなるように添加して、洗浄された溶液を調製した。これら洗浄された溶液を「糖化残さ1」に対し、6g(6mL)添加して混合した。混合後、30分、室温で放置した後、遠心分離(3000G、10分)して固液分離し、糖化残さ1の洗浄された溶液6gを各遠心上清として回収した。回収した上清成分は、実施例3と同じ手順で各酵素活性を測定した。結果を表7および表8に示す。 <Example 6: Washing of saccharification residue with aqueous solution containing lignin blocking agent and ammonium sulfate>
In washing saccharification residue with an aqueous solution containing a lignin blocking agent, the washing effect in the case of adding ammonium sulfate as an inorganic salt was examined. As lignin blocking agents, BSA (bovine serum-derived albumin, manufactured by Sigma Aldrich) and CSL (Corn Steep liquor, manufactured by Oji Cornstarch Co., Ltd.) were used. The lignin blocking agent was added to sterilized water to a final concentration of 5 g / L, and in this example, ammonium sulfate was further added to 1 g / L, 5 g / L, and 10 g / L to obtain a washed solution. Was prepared. 6 g (6 mL) of these washed solutions was added to “saccharification residue 1” and mixed. After mixing, the mixture was allowed to stand at room temperature for 30 minutes, and then centrifuged (3000 G, 10 minutes) for solid-liquid separation, and 6 g of the washed solution of saccharification residue 1 was collected as each centrifugal supernatant. The collected supernatant components were measured for each enzyme activity in the same procedure as in Example 3. The results are shown in Table 7 and Table 8.
表7および表8から明らかなように、硫酸アンモニウムをさらに洗浄された溶液に添加することによって、酵素活性が増大することが判明した。特にこの効果は、キシラン分解活性に対して大きいことが判明した。
As is apparent from Tables 7 and 8, it was found that the enzyme activity was increased by adding ammonium sulfate to the further washed solution. In particular, this effect has been found to be great for xylan decomposition activity.
<実施例7:乳酸の生産>
実施例2の糖液1および糖液2を発酵原料として使用して、ラクトコッカス・ラクティスJCM7638株を24時間、37℃の温度で静置培養した。培養液に含まれるL-乳酸濃度を以下の条件で分析した。結果を表9に示す。
カラム:Shim-Pack SPR-H(株式会社島津製作所製)
移動相:5mM p-トルエンスルホン酸(流速0.8mL/min)
反応液:5mM p-トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
検出方法:電気伝導度
温度:45℃ <Example 7: Production of lactic acid>
Using the sugar solution 1 and the sugar solution 2 of Example 2 as fermentation raw materials, the Lactococcus lactis JCM7638 strain was statically cultured at a temperature of 37 ° C. for 24 hours. The concentration of L-lactic acid contained in the culture solution was analyzed under the following conditions. The results are shown in Table 9.
Column: Shim-Pack SPR-H (manufactured by Shimadzu Corporation)
Mobile phase: 5 mM p-toluenesulfonic acid (flow rate 0.8 mL / min)
Reaction solution: 5 mM p-toluenesulfonic acid, 20 mM Bistris, 0.1 mM EDTA · 2Na (flow rate 0.8 mL / min)
Detection method: Electrical conductivity Temperature: 45 ° C
実施例2の糖液1および糖液2を発酵原料として使用して、ラクトコッカス・ラクティスJCM7638株を24時間、37℃の温度で静置培養した。培養液に含まれるL-乳酸濃度を以下の条件で分析した。結果を表9に示す。
カラム:Shim-Pack SPR-H(株式会社島津製作所製)
移動相:5mM p-トルエンスルホン酸(流速0.8mL/min)
反応液:5mM p-トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
検出方法:電気伝導度
温度:45℃ <Example 7: Production of lactic acid>
Using the sugar solution 1 and the sugar solution 2 of Example 2 as fermentation raw materials, the Lactococcus lactis JCM7638 strain was statically cultured at a temperature of 37 ° C. for 24 hours. The concentration of L-lactic acid contained in the culture solution was analyzed under the following conditions. The results are shown in Table 9.
Column: Shim-Pack SPR-H (manufactured by Shimadzu Corporation)
Mobile phase: 5 mM p-toluenesulfonic acid (flow rate 0.8 mL / min)
Reaction solution: 5 mM p-toluenesulfonic acid, 20 mM Bistris, 0.1 mM EDTA · 2Na (flow rate 0.8 mL / min)
Detection method: Electrical conductivity Temperature: 45 ° C
表9に示す通り、糖液1および糖液2を発酵原料として使用することで、L-乳酸を生産することが可能であることが確認された。
As shown in Table 9, it was confirmed that L-lactic acid can be produced by using sugar solution 1 and sugar solution 2 as fermentation raw materials.
10 糖液製造装置
11 加水分解反応槽
12 固液分離装置
13 洗浄水槽
14 ろ液回収タンク
15 限外ろ過膜装置
21 攪拌タンク
22 セルロース含有バイオマス
23 撹拌装置
24、36 保温設備
25、31 供給口
26 糸状菌由来セルラーゼ
28 加水分解物
32 プレスろ過過装置
33 コンプレッサー
34 リグニンブロッキング剤を含む水溶液
35 通水口
41 混合溶液
42 糖液(透過液)
43 非透過液
L11 糖化酵素回収ライン DESCRIPTION OFSYMBOLS 10 Sugar liquid production apparatus 11 Hydrolysis reaction tank 12 Solid-liquid separation apparatus 13 Washing water tank 14 Filtrate collection tank 15 Ultrafiltration membrane apparatus 21 Stirring tank 22 Cellulose containing biomass 23 Stirring apparatus 24, 36 Thermal insulation equipment 25, 31 Supply port 26 Filamentous cellulase 28 Hydrolyzate 32 Press filtration apparatus 33 Compressor 34 Aqueous solution containing lignin blocking agent 35 Water inlet 41 Mixed solution 42 Sugar solution (permeate)
43 Non-permeate L11 Saccharification enzyme recovery line
11 加水分解反応槽
12 固液分離装置
13 洗浄水槽
14 ろ液回収タンク
15 限外ろ過膜装置
21 攪拌タンク
22 セルロース含有バイオマス
23 撹拌装置
24、36 保温設備
25、31 供給口
26 糸状菌由来セルラーゼ
28 加水分解物
32 プレスろ過過装置
33 コンプレッサー
34 リグニンブロッキング剤を含む水溶液
35 通水口
41 混合溶液
42 糖液(透過液)
43 非透過液
L11 糖化酵素回収ライン DESCRIPTION OF
43 Non-permeate L11 Saccharification enzyme recovery line
Claims (10)
- セルロース含有バイオマスから糖液を製造する方法であって、
工程(1):前記セルロース含有バイオマスを糸状菌由来セルラーゼにより加水分解して、加水分解物を得る工程、
工程(2):前記加水分解物を、糖液と糖化残さとに固液分離する工程、
工程(3):前記糖化残さをリグニンブロッキング剤を含む水溶液で洗浄して、前記糖化残さに含まれる前記糸状菌由来セルラーゼを含む洗浄された溶液を得る工程、および
工程(4):前記洗浄された溶液を含む溶液をろ過し、糸状菌由来セルラーゼを含む非透過液を回収する工程、
を含む、糖液の製造方法。 A method for producing a sugar solution from cellulose-containing biomass,
Step (1): A step of hydrolyzing the cellulose-containing biomass with a filamentous fungus-derived cellulase to obtain a hydrolyzate,
Step (2): Solid-liquid separation of the hydrolyzate into a sugar solution and a saccharification residue,
Step (3): washing the saccharification residue with an aqueous solution containing a lignin blocking agent to obtain a washed solution containing the filamentous fungus-derived cellulase contained in the saccharification residue, and step (4): the washing Filtering the solution containing the solution, and recovering the non-permeate containing the filamentous fungus-derived cellulase,
A method for producing a sugar solution, comprising: - 前記リグニンブロッキング剤が、コーンスティープリカー、ペプトン、酵母エキス、肉エキス、カゼイン、スキムミルク、牛血清由来アルブミン、エタノール発酵蒸留残さ、ゼイン、魚加工廃棄物、肉加工廃棄物、ホエータンパク質、穀物加工廃棄物、糖加工廃棄物、食物、藻類タンパク質、大豆タンパク質、細菌タンパク質、および菌タンパク質からなる群から選択される1以上である、請求項1に記載の糖液の製造方法。 The lignin blocking agent is corn steep liquor, peptone, yeast extract, meat extract, casein, skim milk, bovine serum-derived albumin, ethanol fermentation distillation residue, zein, fish processing waste, meat processing waste, whey protein, grain processing waste The manufacturing method of the sugar liquid of Claim 1 which is 1 or more selected from the group which consists of a thing, sugar processing waste, food, algal protein, soybean protein, bacterial protein, and fungal protein.
- 工程(4)において、前記洗浄された溶液のろ過が、限外ろ過膜である、請求項1または2に記載の糖液の製造方法。 The method for producing a sugar solution according to claim 1 or 2, wherein in the step (4), the filtration of the washed solution is an ultrafiltration membrane.
- 工程(2)において得られた糖液と、工程(3)において得られた前記洗浄された溶液とを混合する工程を含み、
工程(4)において、前記糖液および前記洗浄された溶液とを含む混合溶液をろ過して、前記糖液を含む透過液を回収する、請求項1~3のいずれか一項に記載の糖液の製造方法。 Mixing the sugar solution obtained in step (2) with the washed solution obtained in step (3),
The sugar according to any one of claims 1 to 3, wherein in the step (4), a mixed solution containing the sugar solution and the washed solution is filtered to collect a permeate containing the sugar solution. Liquid manufacturing method. - 工程(3)において、前記リグニンブロッキング剤を含む水溶液の温度が、40~60℃である、請求項1~4のいずれか一項に記載の糖液の製造方法。 The method for producing a sugar liquid according to any one of claims 1 to 4, wherein in step (3), the temperature of the aqueous solution containing the lignin blocking agent is 40 to 60 ° C.
- 前記リグニンブロッキング剤を含む水溶液が、無機塩を含む、請求項1~5のいずれか一項に記載の糖液の製造方法。 The method for producing a sugar liquid according to any one of claims 1 to 5, wherein the aqueous solution containing the lignin blocking agent contains an inorganic salt.
- 前記糸状菌由来セルラーゼが、トリコデルマ属微生物由来である、請求項1~6のいずれか一項に記載の糖液の製造方法。 The method for producing a sugar solution according to any one of claims 1 to 6, wherein the filamentous fungus-derived cellulase is derived from a Trichoderma microorganism.
- 前記非透過液が、工程(1)の前記糸状菌由来セルラーゼに混合される、請求項1~7のいずれか一項に記載の糖液の製造方法。 The method for producing a sugar liquid according to any one of claims 1 to 7, wherein the non-permeating liquid is mixed with the filamentous fungus-derived cellulase in the step (1).
- 工程(2)において、前記加水分解物の固液分離がプレスろ過により行われる、請求項1~8のいずれか一項に記載の糖液の製造方法。 The method for producing a sugar liquid according to any one of claims 1 to 8, wherein in the step (2), the solid-liquid separation of the hydrolyzate is performed by press filtration.
- 請求項1~9のいずれか一項に記載の糖液の製造方法により糖液を製造する工程と、
前記糖液を発酵原料として化学品を生産する能力を有する微生物を培養する工程と、
を含む、化学品の製造方法。 A step of producing a sugar solution by the method for producing a sugar solution according to any one of claims 1 to 9,
Culturing a microorganism having the ability to produce a chemical using the sugar solution as a fermentation raw material;
A method for producing a chemical product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014552412A JPWO2014208493A1 (en) | 2013-06-25 | 2014-06-23 | Method for producing sugar solution |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013132757 | 2013-06-25 | ||
JP2013-132757 | 2013-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208493A1 true WO2014208493A1 (en) | 2014-12-31 |
Family
ID=52141828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/066534 WO2014208493A1 (en) | 2013-06-25 | 2014-06-23 | Method for producing sugar solution |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014208493A1 (en) |
WO (1) | WO2014208493A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170918A1 (en) * | 2016-03-31 | 2017-10-05 | 東レ株式会社 | Trichoderma fungus having mutant-type bxl1 gene and method for producing xylooligosaccharide and glucose by using same |
WO2017170917A1 (en) * | 2016-03-31 | 2017-10-05 | 東レ株式会社 | Method for producing protein |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59173079A (en) * | 1983-03-18 | 1984-09-29 | Agency Of Ind Science & Technol | Recovery of cellulase |
JPS61162180A (en) * | 1985-01-10 | 1986-07-22 | Agency Of Ind Science & Technol | Recovery of cellulase |
WO2011115039A1 (en) * | 2010-03-15 | 2011-09-22 | 東レ株式会社 | Manufacturing method for sugar solution and device for same |
WO2012118171A1 (en) * | 2011-03-03 | 2012-09-07 | 東レ株式会社 | Method for producing sugar solution |
WO2012133495A1 (en) * | 2011-03-29 | 2012-10-04 | 東レ株式会社 | Method for producing sugar solution |
WO2013172446A1 (en) * | 2012-05-18 | 2013-11-21 | 東レ株式会社 | Method for producing sugar solution |
WO2014007189A1 (en) * | 2012-07-03 | 2014-01-09 | 東レ株式会社 | Method for producing sugar solution |
JP2014042511A (en) * | 2012-08-29 | 2014-03-13 | Oji Holdings Corp | Enzymatic saccharification method of lignocellulose-containing biomass |
JP2014064563A (en) * | 2012-09-04 | 2014-04-17 | Toray Ind Inc | Method for producing sugar liquid |
WO2014129489A1 (en) * | 2013-02-20 | 2014-08-28 | 東レ株式会社 | Sugar-solution production method |
-
2014
- 2014-06-23 WO PCT/JP2014/066534 patent/WO2014208493A1/en active Application Filing
- 2014-06-23 JP JP2014552412A patent/JPWO2014208493A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59173079A (en) * | 1983-03-18 | 1984-09-29 | Agency Of Ind Science & Technol | Recovery of cellulase |
JPS61162180A (en) * | 1985-01-10 | 1986-07-22 | Agency Of Ind Science & Technol | Recovery of cellulase |
WO2011115039A1 (en) * | 2010-03-15 | 2011-09-22 | 東レ株式会社 | Manufacturing method for sugar solution and device for same |
WO2012118171A1 (en) * | 2011-03-03 | 2012-09-07 | 東レ株式会社 | Method for producing sugar solution |
WO2012133495A1 (en) * | 2011-03-29 | 2012-10-04 | 東レ株式会社 | Method for producing sugar solution |
WO2013172446A1 (en) * | 2012-05-18 | 2013-11-21 | 東レ株式会社 | Method for producing sugar solution |
WO2014007189A1 (en) * | 2012-07-03 | 2014-01-09 | 東レ株式会社 | Method for producing sugar solution |
JP2014042511A (en) * | 2012-08-29 | 2014-03-13 | Oji Holdings Corp | Enzymatic saccharification method of lignocellulose-containing biomass |
JP2014064563A (en) * | 2012-09-04 | 2014-04-17 | Toray Ind Inc | Method for producing sugar liquid |
WO2014129489A1 (en) * | 2013-02-20 | 2014-08-28 | 東レ株式会社 | Sugar-solution production method |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170918A1 (en) * | 2016-03-31 | 2017-10-05 | 東レ株式会社 | Trichoderma fungus having mutant-type bxl1 gene and method for producing xylooligosaccharide and glucose by using same |
WO2017170917A1 (en) * | 2016-03-31 | 2017-10-05 | 東レ株式会社 | Method for producing protein |
JPWO2017170917A1 (en) * | 2016-03-31 | 2018-04-05 | 東レ株式会社 | Protein production method |
JP2018117620A (en) * | 2016-03-31 | 2018-08-02 | 東レ株式会社 | Protein production method |
JPWO2017170918A1 (en) * | 2016-03-31 | 2019-02-07 | 東レ株式会社 | Trichoderma fungus having mutant BXL1 gene and method for producing xylooligosaccharide and glucose using the same |
US10590497B2 (en) | 2016-03-31 | 2020-03-17 | Toray Industries, Inc. | Trichoderma fungus having mutant-type BXL1 gene and method of producing xylooligosaccharide and glucose by using same |
JP7007645B2 (en) | 2016-03-31 | 2022-02-10 | 東レ株式会社 | Trichoderma fungus having a mutant BXL1 gene and a method for producing xylooligosaccharide and glucose using it. |
US11453899B2 (en) | 2016-03-31 | 2022-09-27 | Toray Industries, Inc. | Method of producing protein |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014208493A1 (en) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6565684B2 (en) | Method for producing sugar solution | |
US9909158B2 (en) | Method of producing sugar solution including washing with aqueous alkaline and inorganic salt solutions | |
JP6597311B2 (en) | Production method of sugar solution and xylooligosaccharide | |
EP2548966A1 (en) | Manufacturing method for sugar solution and device for same | |
JP6458498B2 (en) | Method for producing sugar solution | |
JP6447126B2 (en) | Method for producing sugar solution | |
WO2012133495A1 (en) | Method for producing sugar solution | |
JP2014064563A (en) | Method for producing sugar liquid | |
WO2014208493A1 (en) | Method for producing sugar solution | |
US10041100B2 (en) | Method of producing sugar solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014552412 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14818217 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14818217 Country of ref document: EP Kind code of ref document: A1 |