WO2014104535A1 - Compound for organic optoelectronic device, organic light-emitting diode including same, and display apparatus including said organic light-emitting diode - Google Patents
Compound for organic optoelectronic device, organic light-emitting diode including same, and display apparatus including said organic light-emitting diode Download PDFInfo
- Publication number
- WO2014104535A1 WO2014104535A1 PCT/KR2013/008219 KR2013008219W WO2014104535A1 WO 2014104535 A1 WO2014104535 A1 WO 2014104535A1 KR 2013008219 W KR2013008219 W KR 2013008219W WO 2014104535 A1 WO2014104535 A1 WO 2014104535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substituted
- unsubstituted
- group
- organic
- compound
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/32—Stacked devices having two or more layers, each emitting at different wavelengths
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- a compound for an organic optoelectronic device, an organic light emitting device including the same, and a display device including the organic light emitting device is provided.
- An organic optoelectric device refers to a device requiring charge exchange between an electrode and an organic material using holes or electrons.
- Organic optoelectronic devices can be divided into two types according to the operation principle.
- an exciton is formed in the organic layer by photons introduced into the device from an external light source, and the exciton is separated into electrons and holes, and these electrons and holes are transferred to different electrodes.
- the second is an electronic device in which holes or electrons are injected into an organic semiconductor forming an interface with electrodes by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
- organic optoelectronic devices include organic optoelectronic devices, organic light emitting devices, organic solar cells, organic photo conductor drums, and organic transistor posts, all of which are used to inject or transport holes or electrons to drive the device. Injection or transport materials, or luminescent materials.
- OLEDs organic light emitting diodes
- organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
- Such an organic light emitting device converts electrical energy into light by applying an electric current to the organic light emitting material, and is generally functional between an anode and a cathode. It has a structure in which an organic layer is inserted. Where the organic layer is
- the organic light emitting device is often composed of a multi-layer structure composed of different materials, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
- the material used as the organic material layer in the organic light emitting device may be classified into a light emitting material and a charge transport material, such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to a function.
- a charge transport material such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to a function.
- the light emitting materials may be classified into blue, green, and red light emitting materials, and yellow and orange light emitting materials required to achieve better natural colors according to light emission colors.
- the maximum emission wavelength is shifted to a long wavelength due to the intermolecular interaction, and the color purity decreases or the efficiency of the device decreases due to the decay effect.
- the host / dopant system can be used as a light emitting material.
- the organic layer of the material such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or dopant in the light emitting material
- the back should be supported by a stable and efficient material.
- the development of a stable and efficient organic material layer for an organic light emitting device has not been made yet, and therefore, development of new materials is continuously required. The need for such material development is
- the low molecular weight organic light emitting diode is manufactured in the form of a thin film by vacuum deposition method, so the efficiency and lifespan performance is good, and the high molecular weight organic light emitting diode uses the inkjet or spin coating method, and the initial investment cost is low. Large area has an advantage.
- Both low molecular weight organic light emitting diodes and high molecular weight organic light emitting diodes are attracting attention as next-generation displays because they have advantages such as self-luminous, high speed response, wide viewing angle, ultra-thin, high definition, durability, and wide driving temperature range.
- advantages such as self-luminous, high speed response, wide viewing angle, ultra-thin, high definition, durability, and wide driving temperature range.
- LCD liquid crystal display
- the cyan is good, and since it does not need a backlight, the thickness and weight can be reduced to 1/3 level of LCD.
- the response speed is 1000 times faster than LCD, it is possible to realize perfect video without afterimage. Therefore, it is expected to be spotlighted as an optimal display in line with the recent multimedia era, and based on these advantages, it has achieved rapid technological development of 80 times since its first development in the late 1980s : more than 100 times of life, and recently, 40 inches. Increasingly, the size of organic light emitting diode panels is being announced rapidly.
- An organic light emitting device including the compound for an organic optoelectronic device and a display device including the organic light emitting device are provided.
- a compound for an organic optoelectronic device is provided.
- Ar 1 , ⁇ 2 , ⁇ 1, ⁇ 2 and R 1 to R 3 are as defined in the following detailed description.
- an anode In one embodiment of the present invention, an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode
- At least one of the organic thin film layer provides an organic light emitting device comprising the compound for the organic optoelectronic device.
- a display device including the organic light emitting diode is provided.
- the organic optoelectronic device including the compound for an organic optoelectronic device has excellent electrochemical and thermal stability, excellent life characteristics, and low
- FIG. 1 and 2 are cross-sectional views showing various embodiments of an organic light emitting device that may be manufactured using a compound for an organic optoelectronic device according to an embodiment of the present invention.
- substituted means that at least one hydrogen in a substituent or compound is a hydrogen, halogen, hydroxy, amino, substituted or unsubstituted C1 to C30 amine group, nitro group, substituted or unsubstituted.
- C1 such as a ring C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, pullouro group, trifluoromethyl group, etc.
- C10 tripolouroalkyl group or cyano group To C10 tripolouroalkyl group or cyano group.
- substituted halogen, hydroxy, amino, substituted or unsubstituted C1 to C20 amine group, nitro group, substituted or unsubstituted C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to Two adjacent substituents among C1 to C10 trifluorouroalkyl groups such as a C30 cycloalkyl group, a C6 to C30 aryl group, a C1 to C20 alkoxy group, a fluoro group, and a trifluoromethyl group or a cyano group may be fused to form a ring. have.
- hetero means containing 1 to 3 heteroatoms selected from the group consisting of N, 0, S, and P in one functional group, and the remainder is carbon.
- an "alkyl group” means an aliphatic hydrocarbon group.
- the alkyl group may be any unsaturated “saturated alkyl group” which contains any double or triple bonds.
- the alkyl group may be an alkyl group that is C1 to C20. More specifically, the alkyl group may be a C1 to C10 alkyl group or a C1 to C6 alkyl group.
- a C1 to C4 alkyl group means that the alkyl chain contains 1 to 4 carbon atoms, with methyl, ethyl, propyl, iso-propyl, ⁇ -butyl, iso-butyl, sec-butyl and t-butyl Selected from the group consisting of:
- alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, nucleosil group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclonucleus It means a real pillar.
- aryl group means that all the elements of the cyclic substituent have P—orbital And a substituent in which these P-orbitals form conjugates, and include monocyclic or fused ring polycyclic (ie, rings that divide adjacent pairs of carbon atoms) functional groups.
- Heteroaryl group means containing 1 to 3 hetero atoms selected from the group consisting of N, O, S, and P in the aryl group, and the rest are carbon. When the heteroaryl group is a fused ring, each ring may include 1 to 3 heteroatoms.
- the hole property refers to a property of having a conduction property along the HOMO level to facilitate the injection and movement of the hole formed in the anode into the light emitting layer. More specifically, it may be similar to the property of repelling electrons.
- the electronic property refers to a property that has conductive properties along the LUMO level, thereby facilitating injection of electrons formed in the cathode into the light emitting layer and movement in the light emitting layer. More specifically, it may be similar to the property of attracting electrons.
- formula (1) represented by the following formula (1)
- the compound for organic optoelectronic devices can be provided.
- Ar 1 and Ar 2 are independently of each other, a substituted or unsubstituted C6 to C30 aryl group or a substituted or unsubstituted C2 to C30 heteroaryl group
- L 1 and L 2 are independently from each other, substituted Or a ⁇ C6 alkenylene group in C2, a substituted or unsubstituted C2 to C6 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heteroarylene group, or a combination thereof
- nl and ⁇ 2 are each independently 0 to An integer of any one of 5 and at least one of AT 1 or Ar 2 is a substituted or unsubstituted C2 to C30 heteroaryl group
- At least one of L 1 or L 2 is a substituted or unsubstituted C2 to C30 heteroarylene group
- R 1 to R 3 are independently of each other, hydrogen, hydrogen,
- a heterocyclothiol group a substituted or unsubstituted C1 to C20 uraide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
- the compound represented by Chemical Formula 1 may have a core structure including three fused rings including a hetero atom. In the case of such a core structure, it may have high heat resistance and electron mobility may be improved.
- the compound for an organic optoelectronic device represented by the formula (1) is a variety of other substituents to the substituents substituted in the core portion and the core portion
- the introduction can lead to compounds having various energy band gaps.
- the hole transfer ability or electron transfer ability is enhanced to have an excellent effect in terms of efficiency and driving voltage, and excellent in electrochemical and thermal stability. It is possible to improve the life characteristics when driving the device.
- a substituted or unsubstituted C6 to C30 aryl group and / or a substituted or unsubstituted C2 to C30 heteroaryl group is a substituted or unsubstituted phenyl group, substituted or unsubstituted naph Tyl group, substituted or unsubstituted anthracenyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted or unsubstituted P-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted chrysenyl group, substituted or unsubstituted
- Triphenylenyl group substituted or unsubstituted perylenyl group, substituted or unsubstituted indenyl group, substituted or unsubstituted furanyl group, substituted or unsubstituted thiophenyl group, substituted or unsubstituted pyrrolyl group, substituted or unsubstituted Substituted pyrazolyl group, substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted oxazolyl group, substituted or unsubstituted thiazolyl group, substituted or unsubstituted oxadiazoleyl group , Substituted or unsubstituted thiadiazolyl group, substituted or unsubstituted pyridyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted
- the conjugation length can be determined, from which the triplet energy bend 3 ⁇ 4 can be adjusted. Through this, it is possible to realize the characteristics of the material required in the organic optoelectronic device.
- triplet energy bandgap can be adjusted by changing the binding position of olso, para and meta.
- L 1 and L 2 are a substituted or unsubstituted phenylene group, substituted Or an unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted anthracenylene group, a substituted or unsubstituted phenanthrylene group, a substituted or unsubstituted pyrene Nylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted P-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted peryleneyl group.
- L 'and L 2 may be, independently of each other, a phenylene group.
- L 1 to L 3 is a phenylene group
- both core portions may be bonded to an oth, meta, or para based on the phenylene group.
- L 1 and L 2 may be independently a substituted or unsubstituted pyrimidinylene group.
- L 1 and L 2 may have high heat resistance, and electron mobility may be improved.
- L 1 is a substituted or unsubstituted C2 to C30 heteroarylene group
- ⁇ may be an integer of any one of 1 to 5. However, it is not limited thereto.
- Ar 2 may be a substituted or unsubstituted C6 to C30 aryl group, and Ax 1 may be a substituted or unsubstituted C2 to C30 heteroaryl group. That is, the electronic properties of the entire compound can be controlled by adjusting the substituents of A ⁇ 1 and Ar 2 . More specifically, it is possible to improve the driving voltage in the device by reducing the energy difference between adjacent layers by controlling HOMO and LUMO energy, dipole moment, and molecular weight of all compounds.
- Ax 1 and Ar 2 may be each independently a substituted or unsubstituted C6 to C30 fused aryl group or a substituted or unsubstituted C2 to C30 fused heteroaryl group.
- the heat resistance of the molecule may be improved due to the fused ring, and at the same time, the electron mobility may be improved.
- Ar 1 may be a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted phenanthrenyl group.
- At least one of the said Ar 1 and Ar 2 has an electronic characteristic substitution Or an unsubstituted C2 to C30 heteroaryl group.
- the substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties may be substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted tetrazolyl.
- Benzimidazolyl group substituted or unsubstituted benzotriazolyl group, substituted or unsubstituted pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted pyrazinyl Groups, substituted or unsubstituted pyridazinyl groups, substituted or unsubstituted purinyl groups, substituted or unsubstituted quinolinyl groups, substituted or unsubstituted isoquinolinyl groups, substituted or unsubstituted phthalazinyl groups, substituted Or unsubstituted naphpyridinyl group, substituted or unsubstituted quinoxalinyl group, substituted or unsubstituted quinazolinyl group, substituted or unsubstituted acridinyl group, substituted or unsubsti
- the substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties may be substituted or unsubstituted pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted.
- electron mobility may be improved while having an appropriate energy band gap, thereby improving efficiency and lifespan of the device.
- the substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties may be represented by any one of the following Formulas E-1 to E-5. However, this is not limited.
- the compound for an organic optoelectronic device may be It can be either. However, it is not limited thereto.
- an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode, wherein at least one layer of the organic thin film layer comprises the compound for the organic optoelectronic device An organic optoelectronic device is provided.
- the compound for an organic optoelectronic device is used in an organic thin film layer
- the organic thin film insect may be an electron injection layer or an electron transport layer.
- the organic optoelectronic device may be an organic light emitting device, an organic photoelectric device, an organic solar cell, an organic transistor, an organic photosensitive drum, or an organic memory device.
- the organic optoelectronic device may be an organic light emitting device.
- 1 to 5 are cross-sectional views of an organic light emitting device including a compound for an organic optoelectronic device according to an embodiment of the present invention.
- the organic light emitting diodes 100 and 200 have a structure including an anode 120, a cathode 110 and at least one organic thin film layer 105 interposed between the anode and the cathode.
- the anode 120 includes a cathode material, and a material having a large work function is preferable as the anode material so that hole injection can be smoothly performed into an organic thin film.
- the positive electrode material may include metals such as nickel, platinum, banana, chromium, copper, zinc, and gold or alloys thereof, zinc oxide, phosphate oxide, tin oxide ( ⁇ ⁇ ), indium zinc oxide ( Metal oxides such as IZO), and combinations of metals and oxides such as ZnO and A1 or Sn0 2 and Sb; poly (3-methylthiophene), poly (3,4- (ethylene-1) , 2-dioxy) thiophene Xpolyehtylenedioxythiophene (PEDT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto. More specifically, a transparent electrode containing nO (indiumtinoxide) may be used as the anode.
- the negative electrode 110 includes a negative electrode material, and the negative electrode material is generally a material having a small work function to facilitate electron injection into the organic thin film layer.
- the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, rhythm, yttrium, litope, gadolinium, aluminum, silver, tin, lead, cesium, barium, or alloys thereof, and LiF / Al. Multi-layered materials such as, Li0 2 / Al, LiF / Ca, LiF / Al, and BaF 2 / Ca, but are not limited thereto. More specifically, the cathode such as aluminum Metal electrodes can be used.
- FIG. 1 illustrates an organic light emitting device 100 in which only a light emitting layer 130 exists as an organic thin film layer 105.
- the organic thin film layer 105 may exist only as a light emitting layer 130.
- FIG. 2 is a two-layered organic light emitting layer 105 including a light emitting layer 230 including an electron transport layer and a hole transport layer 140.
- the organic thin film layer 105 may be a two-layer type including the light emitting layer 230 and the hole transport layer 140.
- the light emitting layer 130 functions as an electron transporting layer, and holes
- the transport layer 140 functions to improve the bonding property and the hole transporting property with the transparent electrode such as ⁇ .
- the organic thin film layer 105 of FIG. 1 and FIG. 2 may further include an electron injection layer, an auxiliary electron transport layer, an electron transport layer, a hole transport layer, an auxiliary hole transport layer, a hole injection layer, and a combination thereof. .
- the organic thin film layer 105 the organic thin film layer 105), the light emitting layer 130,
- the hole transport layer 140 which is not shown but may further include an electron injection layer, auxiliary electron transport layer, electron transport layer, hole injection layer, auxiliary hole transport layer, hole transport layer, any one selected from the group consisting of One contains the said organic optoelectronic device material.
- the organic light emitting device described above includes a dry film method such as vacuum evaporation, sputtering, plasma plating and silver plating after forming an anode on a substrate; Or spin gating, dipping,
- the organic thin film layer After forming the organic thin film layer by a wet film method such as flow coating (flow coating), it can be produced by forming a cathode thereon.
- a wet film method such as flow coating (flow coating)
- a display device including the organic optoelectronic device is provided.
- ⁇ As a positive electrode, ⁇ was used at a thickness of 1000 A, and as a negative electrode, aluminum (A1) was used at a thickness of 1000 A.
- the anode is cut in a glass substrate having a sheet resistance value of 15 n / cm 2 to a size of 50 mm X 50 mm X 0.7 mm in acetone, isopropyl alcohol and pure water Ultrasonic cleaning was performed for 5 minutes each, followed by UV ozone cleaning for 30 minutes.
- Liq is vacuum deposited to a thickness of 0.5 nm as an electron injection layer on the electron transport layer, and A1 is vacuum deposited to a thickness of 100 nm to form a Liq / Al electrode.
- An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 2 instead of using the compound prepared in Example 1 as an electron transport layer.
- Example 11
- An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 3 as an electron transport layer, instead of using the compound prepared in Example 1.
- An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound fire prepared in Example 4 instead of using the compound prepared in Example 1 as the electron transport layer.
- An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 5 as an electron transport layer, instead of using the compound prepared in Example 1.
- An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 6 instead of using the compound prepared in Example 1 as an electron transport layer.
- An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 7 instead of using the compound prepared in Example 1 as an electron transport layer.
- An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 8 instead of using the compound prepared in Example 1 as an electron transport layer. Comparative Example 1
- An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound represented by Chemical Formula R-1 as an electron transport layer, instead of using the compound prepared in Example 1.
- the voltage from 0V to 10V
- the voltage from 0V to 10V
- the current efficiency (cd / A) and power efficiency (lm ⁇ V) of the same brightness (1000 cd / m2) are obtained using the brightness, current density, and voltage measured from (1) and (2).
- organic light emitting device 110 the cathode
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The present invention relates to a compound for an organic optoelectronic device, to an organic light-emitting diode including same, and to a display apparatus including said organic light-emitting diode, and provides a compound for an organic optoelectronic device represented by chemical formula 1.
Description
【명세서】 【Specification】
【발명의 명 칭】 [Name of invention]
유기 광전자소자용 화합물, 이 를 포함하는 유기 발광소자 및 상기 유기발광소자를 포함하는 표시장치 A compound for an organic optoelectronic device, an organic light emitting device including the same, and a display device including the organic light emitting device
【기술분야】 Technical Field
.유기 광전자소자용 화합물, 이를 포함하는 유기 발광소자 및 상기 유기 발광소자를 포함하는 표시장치에 관한 것 이다. A compound for an organic optoelectronic device, an organic light emitting device including the same, and a display device including the organic light emitting device.
【배경기술】 Background Art
유기 광전자소자 (organic optoelectric device)라 함은 정공 또는 전자를 이용한 전극과 유기물 사이에서의 전하 교류를 필요로 하는 소자를 의미 한다. An organic optoelectric device refers to a device requiring charge exchange between an electrode and an organic material using holes or electrons.
유기 광전자소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 액시톤 (exciton)이 형성 되고 이 액시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되 어 Organic optoelectronic devices can be divided into two types according to the operation principle. First, an exciton is formed in the organic layer by photons introduced into the device from an external light source, and the exciton is separated into electrons and holes, and these electrons and holes are transferred to different electrodes.
전류원 (전압원)으로 사용되는 형 태의 전자소자이 다. An electronic device of the type used as a current source (voltage source).
둘째는 2 개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기물 반도체에 정공 또는 전자를 주입 하고, 주입 된 전자와 정공에 의 하여 동작하는 형 태의 전자소자이 다. The second is an electronic device in which holes or electrons are injected into an organic semiconductor forming an interface with electrodes by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
유기 광전자소자의 예로는 유기 광전소자, 유기 발광소자, 유기 태양전지 , 유기 감광체 드럼 (organic photo conductor drum), 유기트랜지스터 둥이 있으며, 이들은 모두 소자의 구동을 위 하여 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 또는 발광 물질을 필요로 한다. Examples of organic optoelectronic devices include organic optoelectronic devices, organic light emitting devices, organic solar cells, organic photo conductor drums, and organic transistor posts, all of which are used to inject or transport holes or electrons to drive the device. Injection or transport materials, or luminescent materials.
특히 , 유기 발광소자 (organic light emitting diode, OLED)는 최근 평판 디스플레이 (flat panel display)의 수요가 증가함에 따라 주목받고 있다. In particular, organic light emitting diodes (OLEDs) are attracting attention as the demand for flat panel displays increases.
일반적으로 유기 발광 현상이 란 유기 물질을 이용하여 전기에너지를 빛에 너지로 전환시 켜주는 현상을 말한다. In general, organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
이 러한 유기발광소자는 유기발광재료에 전류를 가하여 전기에너지를 빛으로 전환시 키 는 소자로서 통상 양극 (anode)과 음극 (cathode) 사이에 기능성
유기물 층이 삽입된 구조로 이루어져 있다. 여기서 유기물층은 Such an organic light emitting device converts electrical energy into light by applying an electric current to the organic light emitting material, and is generally functional between an anode and a cathode. It has a structure in which an organic layer is inserted. Where the organic layer is
유기발광소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. In order to increase the efficiency and stability of the organic light emitting device is often composed of a multi-layer structure composed of different materials, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
이러한 유기발광소자의 구조에서 두 전극사이에 전압을 걸어주게 되면 양극에서는 정공 (hole)이, 음극에서는 전자 (electron)가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만나 재결합 (recombination)에 의해 에너지가 높은 여기자를 형성하게 된다. 이때 형성된 여기자가 다시 바닥상태 (ground state)로 이동하면서 특정한 파장을 갖는 빛이 발생하게 된다. 최근에는, 형광 발광물질뿐 아니라 인광 발광물질도 유기발광소자의 발광물질로사용될 수 있음이 알려졌으며, 이러한 인광 발광은 바닥상태에서 여기상태 (excited state)로 전자가 전이한 후, 계간 전이 (intersystem crossing)를 통해 단일항 여기자가삼중항 여기자로 비발광 전이된 다음, 삼중항 여기자가 바닥상태로 전이하면서 발광하는 메카니즘으로 이루어진다. When the voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer in the anode and electrons in the cathode, and the injected holes and electrons meet and recombine by recombination. High energy excitons are formed. At this time, the excitons formed move to the ground state, and light having a specific wavelength is generated. Recently, it has been known that not only fluorescent light emitting materials but also phosphorescent light emitting materials can be used as light emitting materials of organic light emitting devices. Such phosphorescent light emission is generated by inter-system transition after electrons are transferred from the ground state to the excited state. It is composed of a mechanism in which singlet excitons are non-luminescent transition into triplet excitons, and then triplet excitons are emitted to the ground state.
상기한 바와 같이 유기발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다. As described above, the material used as the organic material layer in the organic light emitting device may be classified into a light emitting material and a charge transport material, such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to a function.
또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광재료와보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다. In addition, the light emitting materials may be classified into blue, green, and red light emitting materials, and yellow and orange light emitting materials required to achieve better natural colors according to light emission colors.
한편, 발광 재료로서 하나의 물질만사용하는 경우 분자간 상호 작용에 의하여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율과 안정성을 증가시키기 위하여 발광 재료로서 호스트 /도판트 계를사용할 수 있다. On the other hand, when only one material is used as the light emitting material, the maximum emission wavelength is shifted to a long wavelength due to the intermolecular interaction, and the color purity decreases or the efficiency of the device decreases due to the decay effect. In order to increase luminous efficiency and stability through the host / dopant system can be used as a light emitting material.
유기발광소자가 전술한 우수한 특징들을 층분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광 재료 중 호스트 및 /또는 도판트 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야
하며, 아직까지 안정하고 효율적인 유기발광소자용 유기물층 재료의 개발이 층분히 이루어지지 않은 상태이며, 따라서 새로운 재료의 개발이 계속 요구되고 있다. 이와 같은 재료 개발의 필요성은 전술한 다른 In order for the organic light emitting device to fully exhibit the above-described excellent features, the organic layer of the material, such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or dopant in the light emitting material The back should be supported by a stable and efficient material. In addition, the development of a stable and efficient organic material layer for an organic light emitting device has not been made yet, and therefore, development of new materials is continuously required. The need for such material development is
유기광전자소자에서도 마찬가지이다. The same applies to organic optoelectronic devices.
또한, 저분자 유기발광소자는 진공 증착법에 의해 박막의 형태로 소자를 제조하므로 효율 및 수명성능이 좋으며, 고분자 유기발광소자는 잉크젯 (Inkjet) 또는 스핀코팅 (spin coating)법을 사용하여 초기 투자비가 적고 대면적화가 유리한 장점이 있다. In addition, the low molecular weight organic light emitting diode is manufactured in the form of a thin film by vacuum deposition method, so the efficiency and lifespan performance is good, and the high molecular weight organic light emitting diode uses the inkjet or spin coating method, and the initial investment cost is low. Large area has an advantage.
저분자 유기발광소자 및 고분자 유기발광소자는 모두 자체발광, 고속웅답, 광시야각, 초박형, 고화질, 내구성, 넓은 구동온도범위 등의 장점을 가지고 있어 차세대 디스플레이로 주목을 받고 있다. 특히 기존의 LCD(liquid crystaldisplay)와 비교하여 자체발광형으로서 어두운 곳이나 외부의 빛이 들어와도 시안성이 좋으며, 백라이트가 필요 없어 LCD의 1/3수준으로 두께 및 무게를 줄일 수 있다. Both low molecular weight organic light emitting diodes and high molecular weight organic light emitting diodes are attracting attention as next-generation displays because they have advantages such as self-luminous, high speed response, wide viewing angle, ultra-thin, high definition, durability, and wide driving temperature range. In particular, compared to conventional LCD (liquid crystal display), as a self-luminous type, even in the dark or outside light, the cyan is good, and since it does not need a backlight, the thickness and weight can be reduced to 1/3 level of LCD.
또한, 웅답속도가 LCD에 비해 1000배 이상 빠른 마이크로 초 단위여서 잔상이 없는 완벽한 동영상을 구현할수 있다. 따라서, 최근 본격적인 멀티미디어 시대에 맞춰 최적의 디스플레이로 각광받을 것으로 기대되며, 이러한 장점을 바탕으로 1980년대 후반 최초 개발 이후 효을 80배: 수명 100배 이상에 이르는 급격한 기술발전을 이루어 왔고, 최근에는 40인치 유기발광소자 패널이 발표되는 둥 대형화가 급속히 진행되고 있다. In addition, because the response speed is 1000 times faster than LCD, it is possible to realize perfect video without afterimage. Therefore, it is expected to be spotlighted as an optimal display in line with the recent multimedia era, and based on these advantages, it has achieved rapid technological development of 80 times since its first development in the late 1980s : more than 100 times of life, and recently, 40 inches. Increasingly, the size of organic light emitting diode panels is being announced rapidly.
대형화를 위해서는 발광 효율의 증대 및 소자의 수명 향상이 In order to increase the size, increase in luminous efficiency and lifespan of the device
수반되어야 한다. 이를 위해 안정하고 효율적인 유기발광소자용 유기물층 재료의 개발이 필요하다. It must be accompanied. To this end, it is necessary to develop a stable and efficient organic material layer for an organic light emitting device.
【발명의 내용】 [Content of invention]
【해결하려는 과제】 [Problem to solve]
고효율, 장수명 등의 특성을 가지는 유기광전자소자를 제공할 수 있는 유기광전자소자용 화합물을 제공하는 것이다. It is to provide a compound for an organic optoelectronic device capable of providing an organic optoelectronic device having characteristics such as high efficiency and long life.
상기 유기광전자소자용 화합물을 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치를 제공하는 것이다.
【과제의 해결 수단】 An organic light emitting device including the compound for an organic optoelectronic device and a display device including the organic light emitting device are provided. [Measures of problem]
본 발명의 일 구현예에서는, 하기 화학식 1로 표시되는 In one embodiment of the present invention, represented by the following formula (1)
유기광전자소자용 화합물을 제공한다. Provided is a compound for an organic optoelectronic device.
[화학식 1] [Formula 1]
상기 화학식 1에서, Ar1, Ατ2, ΐΛΐΛη1,η2 및 R1 내지 R3은 하기 상세한 설명에서 정의한 바와 같다. In Formula 1, Ar 1 , Ατ 2 , ΐΛΐΛη1, η2 and R 1 to R 3 are as defined in the following detailed description.
본 발명의 다 * 일 구현예에서는, 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 In one embodiment of the present invention, an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode
유기발광소자에 있어서, 상기 유기박막층 중 적어도 어느 한층은 상기 유기광전자소자용 화합물을 포함하는 것인 유기발광소자를 제공한다. In the organic light emitting device, at least one of the organic thin film layer provides an organic light emitting device comprising the compound for the organic optoelectronic device.
본 발명의 또 다른 일 구현예에서는, 상기 유기발광소자를 포함하는 표시장치를 제공한다. In another embodiment of the present invention, a display device including the organic light emitting diode is provided.
【발명의 효과】 【Effects of the Invention】
상기 유기광전자소자용 화합물을 포함하는 유기광전자소자는 우수한 전기화학적 및 열적 안정성을 가지고 수명 특성이 우수하며, 낮은 The organic optoelectronic device including the compound for an organic optoelectronic device has excellent electrochemical and thermal stability, excellent life characteristics, and low
구동전압에서도 높은 발광효율을 가질 수 있다. It can have a high luminous efficiency even at the driving voltage.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1 및 도 2는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 이용하여 제조될 수 있는 유기발광소자에 대한 다양한 구현예들을 나타내는 단면도이다. 1 and 2 are cross-sectional views showing various embodiments of an organic light emitting device that may be manufactured using a compound for an organic optoelectronic device according to an embodiment of the present invention.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본
발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, whereby the present invention is not limited thereto. The invention is only defined by the scope of the claims which follow.
본 명세서에서 "치환 "이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 증수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 풀루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리폴루오로알킬기 또는 시아노기로 치환된 것을 의미한다. As used herein, unless otherwise defined, "substituted" means that at least one hydrogen in a substituent or compound is a hydrogen, halogen, hydroxy, amino, substituted or unsubstituted C1 to C30 amine group, nitro group, substituted or unsubstituted. C1, such as a ring C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, pullouro group, trifluoromethyl group, etc. To C10 tripolouroalkyl group or cyano group.
또한 상기 치환된 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리폴루오로알킬기 또는 시아노기 중 인접한 두 개의 치환기가 융합되어 고리를 형성할 수도 있다. In addition, the substituted halogen, hydroxy, amino, substituted or unsubstituted C1 to C20 amine group, nitro group, substituted or unsubstituted C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to Two adjacent substituents among C1 to C10 trifluorouroalkyl groups such as a C30 cycloalkyl group, a C6 to C30 aryl group, a C1 to C20 alkoxy group, a fluoro group, and a trifluoromethyl group or a cyano group may be fused to form a ring. have.
본 명세서에서 "헤테로"란 별도의 정의가 없는 한, 하나의 작용기 내에 N,0,S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다. As used herein, unless otherwise defined, "hetero" means containing 1 to 3 heteroatoms selected from the group consisting of N, 0, S, and P in one functional group, and the remainder is carbon.
본 명세서에서 "알킬 (alkyl)기"이란 별도의 정의가 없는 한, 지방족 탄화수소기를 의미한다. 알킬기는 어떠한 이중결합이나 삼중결합을 포함하고 밌지 않은 "포화 알킬 (saturated alkyl)기 ' '일 수 있다. As used herein, unless otherwise defined, an "alkyl group" means an aliphatic hydrocarbon group. The alkyl group may be any unsaturated "saturated alkyl group" which contains any double or triple bonds.
알킬기는 C1 내지 C20인 알킬기일 수 있다. 보다 구체적으로 알킬기는 C1 내지 C10 알킬기 또는 C1 내지 C6 알킬기일 수도 있다. 예를 들어, C1 내지 C4 알킬기는 알킬쇄에 1 내지 4 개의 탄소원자가포함되는 것을 의미하며, 메틸, 에틸, 프로필, 이소-프로필 ,η-부틸, 이소-부틸, sec-부틸 및 t-부틸로 이루어진 군에서 선택됨을 나타낸다. The alkyl group may be an alkyl group that is C1 to C20. More specifically, the alkyl group may be a C1 to C10 alkyl group or a C1 to C6 alkyl group. For example, a C1 to C4 alkyl group means that the alkyl chain contains 1 to 4 carbon atoms, with methyl, ethyl, propyl, iso-propyl, η-butyl, iso-butyl, sec-butyl and t-butyl Selected from the group consisting of:
상기 알킬기는 구체적인 예를 들어 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, t-부틸기, 펜틸기, 핵실기, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로핵실기 둥을 의미한다. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, nucleosil group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclonucleus It means a real pillar.
"아릴 (aryl)기"는 환형인 치환기의 모든 원소가 P—오비탈을 가지고
있으며 , 이들 P-오비 탈이 공액 (conjugation)을 형성하고 있는 치환기를 의미 한하고, 모노시클릭 또는 융합 고리 폴리시클릭 (즉, 탄소원자들의 인접 한 쌍들을 나눠 가지는 고리) 작용기를 포함한다. An "aryl group" means that all the elements of the cyclic substituent have P—orbital And a substituent in which these P-orbitals form conjugates, and include monocyclic or fused ring polycyclic (ie, rings that divide adjacent pairs of carbon atoms) functional groups.
"헤 테로아릴 (heteroaryl)기 "는 아릴기 내에 N, ᄋ, S 및 P로 이루어진 군에서 선택되는 헤 테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미 한다. 상기 헤 테로아릴기가 융합고리 인 경우, 각각의 고리마다 상기 헤테로 원자를 1 내지 3개 포함할 수 있다. "Heteroaryl group" means containing 1 to 3 hetero atoms selected from the group consisting of N, O, S, and P in the aryl group, and the rest are carbon. When the heteroaryl group is a fused ring, each ring may include 1 to 3 heteroatoms.
본 명세서 에서, 정공 특성 이 란, HOMO 준위를 따라 전도 특성을 가져 양극에서 형성된 정공의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 의미 한다. 보다 구체적으로, 전자를 밀어내는 특성과도 유사할 수 있다. In the present specification, the hole property refers to a property of having a conduction property along the HOMO level to facilitate the injection and movement of the hole formed in the anode into the light emitting layer. More specifically, it may be similar to the property of repelling electrons.
또한 전자 특성 이 란, LUMO 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 의미 한다. 보다 구체적으로 전자를 당기 는 특성과도 유사할 수 있다. 본 발명 의 일 구현예에서는, 하기 화학식 1로 표시되는 In addition, the electronic property refers to a property that has conductive properties along the LUMO level, thereby facilitating injection of electrons formed in the cathode into the light emitting layer and movement in the light emitting layer. More specifically, it may be similar to the property of attracting electrons. In one embodiment of the present invention, represented by the following formula (1)
유기 광전자소자용 화합물을 제공할 수 있다. The compound for organic optoelectronic devices can be provided.
상기 화학식 1에서, Ar1 및 Ar2는 서로 독립적으로, 치환 또는 비 치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기 이고, L1 및 L2은 서로 독립적으로, 치환 또는 비치환된 C2 내 ^ C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키 닐렌기 , 치환 또는 비치환된 C6 내지 C30 아릴렌기 , 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고 , nl 및 η2는 서로 독립적으로 0 내지
5 중 어느 하나의 정수이고 , AT1 또는 Ar2 증 적어도 어느 하나가 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이거나; L1 또는 L2 중 적어도 어느 하나가 치환또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, R1 내지 R3은 서로 독립적으로, 수소, 증수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 In Formula 1, Ar 1 and Ar 2 are independently of each other, a substituted or unsubstituted C6 to C30 aryl group or a substituted or unsubstituted C2 to C30 heteroaryl group, L 1 and L 2 are independently from each other, substituted Or a ^ C6 alkenylene group in C2, a substituted or unsubstituted C2 to C6 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heteroarylene group, or a combination thereof And nl and η2 are each independently 0 to An integer of any one of 5 and at least one of AT 1 or Ar 2 is a substituted or unsubstituted C2 to C30 heteroaryl group; At least one of L 1 or L 2 is a substituted or unsubstituted C2 to C30 heteroarylene group, R 1 to R 3 are independently of each other, hydrogen, hydrogen, halogen, cyano, hydroxyl, amino, Substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 hetero Aryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted Or an unsubstituted C2 to C20 alkoxycarbonyl group, a substituted or unsubstituted C2 to C20 acyloxy group, a substituted or unsubstituted C2 to C20
아실아미노기 , 치환또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기 , 치환또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환또는 비치환된 C1 내지 C20 술파모일아미노기, 치환또는.비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티을기, 치환 또는 비치환된 C1 내지 C20 Acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthiyl group, substituted or unsubstituted C1 to C20
헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. A heterocyclothiol group, a substituted or unsubstituted C1 to C20 uraide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
상기 화학식 1로 표시되는 화합물은 헤테로 원자를 포함하는 세 개의 융합 고리를 포함하는 코어 구조를 가질 수 있다. 이러한코어 구조의 경우, 높은 내열성을 가질 수 있으며, 전자 이동도가 개선될 수 있다. The compound represented by Chemical Formula 1 may have a core structure including three fused rings including a hetero atom. In the case of such a core structure, it may have high heat resistance and electron mobility may be improved.
또한, 상기 화학식 1로 표시되는 유기광전자소자용 화합물은 코어 부분과 코어 부분에 치환된 치환기에 다양한 또 다른 치환기를 In addition, the compound for an organic optoelectronic device represented by the formula (1) is a variety of other substituents to the substituents substituted in the core portion and the core portion
도입함으로써 다양한 에너지 밴드 갭을 갖는 화합물이 될 수 있다. The introduction can lead to compounds having various energy band gaps.
상기 화합물의 치환기에 따라 적절한 에너지 준위를 가지는 화합물을 유기광전자소자에 사용함으로써, 정공전달 능력 또는 전자전달 능력이 강화되어 효을 및 구동전압 면에서 우수한 효과를 가지고, 전기화학적 및 열적 안정성이 뛰어나 유기광전자소자 구동시 수명 특성을 향상시킬 수 있다.
보다 구체적으로, 본 발명의 일 구현예에서, 치환 또는 비치환된 C6 내지 C30 아릴기 및 /또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환또는 비치환된 바이페닐일기, 치환 또는 비치환된 P-터페닐기, 치환 또는 비치환된 m- 터페닐기, 치환또는 비치환된 크리세닐기, 치환 또는 비치환된 By using a compound having an appropriate energy level in the organic optoelectronic device according to the substituent of the compound, the hole transfer ability or electron transfer ability is enhanced to have an excellent effect in terms of efficiency and driving voltage, and excellent in electrochemical and thermal stability. It is possible to improve the life characteristics when driving the device. More specifically, in one embodiment of the present invention, a substituted or unsubstituted C6 to C30 aryl group and / or a substituted or unsubstituted C2 to C30 heteroaryl group is a substituted or unsubstituted phenyl group, substituted or unsubstituted naph Tyl group, substituted or unsubstituted anthracenyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted or unsubstituted P-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted chrysenyl group, substituted or unsubstituted
트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환또는 비치환된 인데닐기, 치환또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환또는 비치환된 티아졸일기, 치환또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환또는 비치환된 피리미디닐기, 치환또는 비치환된 Triphenylenyl group, substituted or unsubstituted perylenyl group, substituted or unsubstituted indenyl group, substituted or unsubstituted furanyl group, substituted or unsubstituted thiophenyl group, substituted or unsubstituted pyrrolyl group, substituted or unsubstituted Substituted pyrazolyl group, substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted oxazolyl group, substituted or unsubstituted thiazolyl group, substituted or unsubstituted oxadiazoleyl group , Substituted or unsubstituted thiadiazolyl group, substituted or unsubstituted pyridyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted
피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 밴조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기 , 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환또는 비치환된 아크리디닐기, 치환또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환또는 비치환된 페녹사진일기 또는 이들의 조합일 수 있으나, 이에 제한되지는 않는다. Pyrazinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted banjofuranyl group, substituted or unsubstituted benzothiophenyl group, substituted or unsubstituted benzimidazolyl group, substituted or unsubstituted indolyl group, substituted Or unsubstituted quinolinyl group, substituted or unsubstituted isoquinolinyl group, substituted or unsubstituted quinazolinyl group, substituted or unsubstituted quinoxalinyl group, substituted or unsubstituted naphthyridinyl group, substituted or unsubstituted Benzoxazineyl group, substituted or unsubstituted benzthiazinyl group, substituted or unsubstituted acridinyl group, substituted or unsubstituted phenazineyl group, substituted or unsubstituted phenothiazineyl group, substituted or unsubstituted phenoxazine It may be a diary or a combination thereof, but is not limited thereto.
또한, 상기 Li 및 L2를 선택적으로 조절하여 화합물 전체의 In addition, by selectively adjusting the L i and L 2 of the entire compound
공액 (conjugation) 길이를 결정할 수 있으며, 이로부터 삼중항 (triplet) 에너지 벤드 ¾을 조절할 수 있다. 이를 통해 유기광전자소자에서 필요로 하는 재료의 특성을 구현해 낼 수 있다. 또한, 올소, 파라, 메타의 결합위치 변경을 통해서도 삼중항 에너지 밴드갭을 조절할 수 있다ᅳ The conjugation length can be determined, from which the triplet energy bend ¾ can be adjusted. Through this, it is possible to realize the characteristics of the material required in the organic optoelectronic device. In addition, triplet energy bandgap can be adjusted by changing the binding position of olso, para and meta.
상기 L1 및 L2의 구체적인 예로는 치환 또는 비치환된 페닐렌기, 치환
또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 나프틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트릴렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 P-터페닐기, 치환또는 비치환된 m-터페닐기, 치환 또는 비치환된 페릴레닐기 둥이다. Specific examples of the L 1 and L 2 are a substituted or unsubstituted phenylene group, substituted Or an unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted anthracenylene group, a substituted or unsubstituted phenanthrylene group, a substituted or unsubstituted pyrene Nylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted P-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted peryleneyl group.
보다 구체적으로, 상기 L' 및 L2은 서로 독립적으로, 페닐렌기일 수 있다. 상기 L1 내지 L3가 페닐렌기인 경우, 상기 페닐렌기를 기준으로 양측 코어 부분은 오쓰, 메타 또는 파라로 결합될 수 있다. More specifically, L 'and L 2 may be, independently of each other, a phenylene group. When the L 1 to L 3 is a phenylene group, both core portions may be bonded to an oth, meta, or para based on the phenylene group.
보다 구체적으로, 상기 L1 및 L2은 서로 독립적으로, 치환 또는 비치환된 피리미디닐렌기일 수 있다. 상기 L1 및 L2가 치환 또는 비치환된 피리미디닐렌기인 경우, 높은 내열성을 가질 수 있으며, 전자 이동도가 개선될 수 있다. More specifically, L 1 and L 2 may be independently a substituted or unsubstituted pyrimidinylene group. When L 1 and L 2 are substituted or unsubstituted pyrimidinylene groups, they may have high heat resistance, and electron mobility may be improved.
보다 구체적으로, 상기 L1은 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고 ,ηΐ은 1 내지 5 중 어느 하나의 정수일 수 있다. 다만, 이에 제한되는 것은 아니다. More specifically, L 1 is a substituted or unsubstituted C2 to C30 heteroarylene group, ηΐ may be an integer of any one of 1 to 5. However, it is not limited thereto.
상기 Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기이고, 상기 Ax1은 치환 또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있다. 즉 ,Ατ1 및 Ar2의 치환기를 조절하여 전체 화합물의 전자 특성을 제어할 수 있다. 보다 구체적으로 전체 화합물의 HOMO 및 LUMO 에너지 및 다이폴 모먼트 (dipole moment), 분자량 둥올 조절하여 인접한 층과의 에너지 차이를 줄여 소자내 구동전압을 개선시킬 수 있다. Ar 2 may be a substituted or unsubstituted C6 to C30 aryl group, and Ax 1 may be a substituted or unsubstituted C2 to C30 heteroaryl group. That is, the electronic properties of the entire compound can be controlled by adjusting the substituents of Aτ 1 and Ar 2 . More specifically, it is possible to improve the driving voltage in the device by reducing the energy difference between adjacent layers by controlling HOMO and LUMO energy, dipole moment, and molecular weight of all compounds.
보다 구체적으로, 상기 Ax1 및 Ar2는 서로 독립적으로, 치환 또는 비치환된 C6 내지 C30융합 아릴기 또는 치환 또는 비치환된 C2 내지 C30 융합 헤테로아릴기일 수 있다. 이러한 경우, 융합 고리로 인해 분자의 내열성이 개선될 수 있으며 , 이와 동시에 전자 이동도도 개선될 수 있다. 보다 구체적인 예를 들어, 상기 Ar1은 치환또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기 또는 치환또는 비치환된 페난트레닐기일 수 있다. 다만, 이에 제한되는 것은 아니다. More specifically, Ax 1 and Ar 2 may be each independently a substituted or unsubstituted C6 to C30 fused aryl group or a substituted or unsubstituted C2 to C30 fused heteroaryl group. In such a case, the heat resistance of the molecule may be improved due to the fused ring, and at the same time, the electron mobility may be improved. More specifically, Ar 1 may be a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted phenanthrenyl group. However, it is not limited thereto.
상기 Ar1 및 Ar2 중 적어도 어느 하나는, 전자 특성올 가지는, 치환
또는 비치환된 C2 내지 C30 헤테로아릴기일 수 있다. At least one of the said Ar 1 and Ar 2 has an electronic characteristic substitution Or an unsubstituted C2 to C30 heteroaryl group.
보다 구체적인 예를 들어, 상기 전자 특성을 가지는, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는, 치환 또는 비치환된 이미다졸릴기, 치환 또는 비치환된 트리아졸릴기, 치환 또는 비치환된 테트라졸릴기, 치환 또는 비치환된 옥사다이아졸릴기, 치환 또는 비치환된 옥사트리아졸릴기, 치환 또는 비치환된 싸이아트리아졸릴기, 치환 또는 비치환된 More specifically, for example, the substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties may be substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted tetrazolyl. Groups, substituted or unsubstituted oxadiazolyl groups, substituted or unsubstituted oxatriazolyl groups, substituted or unsubstituted thiatazolyl groups, substituted or unsubstituted
벤즈이미다졸릴기, 치환 또는 비치환된 벤조트리아졸릴기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 퓨리닐기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 프탈라지닐기, 치환 또는 비치환된 나프피리디닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페난트롤리닐기, 또는 치환 또는 비치환된 페나지닐기인일 수 있다. 다만, 이에 제한되는 것은 아니다. Benzimidazolyl group, substituted or unsubstituted benzotriazolyl group, substituted or unsubstituted pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted pyrazinyl Groups, substituted or unsubstituted pyridazinyl groups, substituted or unsubstituted purinyl groups, substituted or unsubstituted quinolinyl groups, substituted or unsubstituted isoquinolinyl groups, substituted or unsubstituted phthalazinyl groups, substituted Or unsubstituted naphpyridinyl group, substituted or unsubstituted quinoxalinyl group, substituted or unsubstituted quinazolinyl group, substituted or unsubstituted acridinyl group, substituted or unsubstituted phenanthrolinyl group, or substituted or unsubstituted It may be a phenazinyl group phosphorus. However, it is not limited thereto.
다만, 보다 구체적인 예를 들어, 상기 전자 특성을 가지는, 치환 또는 비치환된 C2 내지 C30 해테로아릴기는, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 퀴놀리닐기, 또는 치환 또는 비치환된 이소퀴놀리닐기일 수 있다. 이러한 경우, 적절한 에너지 밴드갭 (energy band gap)을 가지면서 전자 이동도가 향상되어 소자의 효율 및 수명이 개선될 수 있다. However, more specifically, for example, the substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties may be substituted or unsubstituted pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted. Triazinyl group, a substituted or unsubstituted quinolinyl group, or a substituted or unsubstituted isoquinolinyl group. In this case, electron mobility may be improved while having an appropriate energy band gap, thereby improving efficiency and lifespan of the device.
보다 구체적인 예를 들어, 상기 전자 특성을 가지는, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 하기 화학식 E-1 내지 E-5 중 어느 하나로 표시될 수 있다. 다만,이에 제한되는 것은 아니다. More specifically, for example, the substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties may be represented by any one of the following Formulas E-1 to E-5. However, this is not limited.
[화학식 E-1] [화학식 E— 2] [화학식 E-3] [화학식 E-4] [화학식 E-5]
[Formula E-1] [Formula E— 2] [Formula E-3] [Formula E-4] [Formula E-5]
구체적인 예를 들어, 상기 유기광전자소자용 화합물은 하기 화합물 중
어느 하나일 수 있다. 다만, 이에 제한되는 것은 아니다. As a specific example, the compound for an organic optoelectronic device may be It can be either. However, it is not limited thereto.
lnv-92 lnv-96
lnv-92 lnv-96
SISI
본 발명 의 다른 일 구현예에서는, 양극, 음극 및 상기 양극과 음극 사이에 개재되는 한 층 이상의 유기 박막층을 포함하고, 상기 유기 박막층 중 적어도 어느 한 층은 상기 유기 광전자소자용 화합물을 포함하는 것 인 유기 광전자소자를 제공한다. In another embodiment of the present invention, an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode, wherein at least one layer of the organic thin film layer comprises the compound for the organic optoelectronic device An organic optoelectronic device is provided.
상기 유기 광전자소자용 화합물은 유기 박막층에 사용되어 The compound for an organic optoelectronic device is used in an organic thin film layer
유기 광전자소자의 수명 특성 , 효율 특성 , 전기화학적 안정성 및 열적
안정성을 향상시키며, 구동전압을 낮출 수 있다. Life Characteristics, Efficiency Characteristics, Electrochemical Stability and Thermal Properties of Organic Optoelectronic Devices It can improve the stability and lower the driving voltage.
상기 유기박막충은 구체적으로, 전자주입층 또는 전자수송층일 수 있다. Specifically, the organic thin film insect may be an electron injection layer or an electron transport layer.
상기 유기광전자소자는 유기발광소자, 유기광전소자, 유기태양전지, 유기트랜지스터, 유기 감광체 드럼 또는 유기메모리소자일 수 있다. The organic optoelectronic device may be an organic light emitting device, an organic photoelectric device, an organic solar cell, an organic transistor, an organic photosensitive drum, or an organic memory device.
보다 구체적으로, 상기 유기광전자소자는 유기발광소자일 수 있다. 도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함하는 유기발광소자의 단면도이다. More specifically, the organic optoelectronic device may be an organic light emitting device. 1 to 5 are cross-sectional views of an organic light emitting device including a compound for an organic optoelectronic device according to an embodiment of the present invention.
. 도 1 및 도 2를 참조하면, 본 발명의 일 구현예에 따른 . 1 and 2, according to one embodiment of the present invention
유기발광소자 (100 및 200)는 양극 (120), 음극 (110) 및 이 양극과 음극사이에 개재된 적어도 1층의 유기박막층 (105)을 포함하는 구조를 갖는다. The organic light emitting diodes 100 and 200 have a structure including an anode 120, a cathode 110 and at least one organic thin film layer 105 interposed between the anode and the cathode.
상기 양극 (120)은 양극 물질을 포함하며, 이 양극 물질로는 통상 유기박막충으로 정공주입이 원활할 수 있도록 일 함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 니켈, 백금, 바나듬, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금을 들 수 있고, 아연산화물, 인듬산화물, 인듬주석산화물 (ΠΌ), 인듐아연산화물 (IZO)과 같은 금속 산화물을 들 수 있고, ZnO와 A1또는 Sn02와 Sb와 같은 금속과 산화물의 조합을 들 수 있고, 폴리 (3-메틸티오펜), 폴리 (3,4- (에틸렌 -1,2- 디옥시)티오펜 Xpolyehtylenedioxythiophene: PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등을 들 수 있으나, 이에 한정되는 것은 아니다. 보다 구체적으로, 상기 양극으로 nO(indiumtinoxide)를 포함하는 투명전극을 사용할 수 있다. The anode 120 includes a cathode material, and a material having a large work function is preferable as the anode material so that hole injection can be smoothly performed into an organic thin film. Specific examples of the positive electrode material may include metals such as nickel, platinum, banana, chromium, copper, zinc, and gold or alloys thereof, zinc oxide, phosphate oxide, tin oxide (Π 듬), indium zinc oxide ( Metal oxides such as IZO), and combinations of metals and oxides such as ZnO and A1 or Sn0 2 and Sb; poly (3-methylthiophene), poly (3,4- (ethylene-1) , 2-dioxy) thiophene Xpolyehtylenedioxythiophene (PEDT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto. More specifically, a transparent electrode containing nO (indiumtinoxide) may be used as the anode.
상기 음극 (110)은 음극 물질을 포함하여, 이 음극 물질로는 통상 유기박막층으로 전자주입이 용이하도록 일 함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듬, 이트륨, 리톱, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금을 들 수 있고, LiF/Al,Li02/Al,LiF/Ca, LiF/Al 및 BaF2/Ca과 같은 다층 구조 물질 둥을 들 수 있으나, 이에 한정되는 것은 아니다. 보다 구체적으로, 상기 음극으로 알루미늄 등과 같은
금속전극을 사용할 수 있다. The negative electrode 110 includes a negative electrode material, and the negative electrode material is generally a material having a small work function to facilitate electron injection into the organic thin film layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, rhythm, yttrium, litope, gadolinium, aluminum, silver, tin, lead, cesium, barium, or alloys thereof, and LiF / Al. Multi-layered materials such as, Li0 2 / Al, LiF / Ca, LiF / Al, and BaF 2 / Ca, but are not limited thereto. More specifically, the cathode such as aluminum Metal electrodes can be used.
먼저 도 1을 참조하면, 도 1은 유기박막층 (105)으로서 발광층 (130)만이 존재하는 유기 발광소자 (100)를 나타낸 것으로, 상기 유기 박막층 (105)은 발광층 (130)만으로 존재할 수 있다. First, referring to FIG. 1, FIG. 1 illustrates an organic light emitting device 100 in which only a light emitting layer 130 exists as an organic thin film layer 105. The organic thin film layer 105 may exist only as a light emitting layer 130.
도 2를 참조하면, 도 2는 유기 박막층 (105)으로서 전자수송층을 포함하는 발광층 (230)과 정공수송층 (140)이 존재하는 2층형 Referring to FIG. 2, FIG. 2 is a two-layered organic light emitting layer 105 including a light emitting layer 230 including an electron transport layer and a hole transport layer 140.
유기 발광소자 (200)를 나타낸 것으로, 도 2에 나타난 바와 같이 , As an organic light emitting device 200 is shown, as shown in FIG.
유기 박막층 (105)은 발광층 (230) 및 정공 수송층 (140)을 포함하는 2층형 일 수 있다. 이 경우 발광층 (130)은 전자 수송층의 기능을 하며 , 정공 The organic thin film layer 105 may be a two-layer type including the light emitting layer 230 and the hole transport layer 140. In this case, the light emitting layer 130 functions as an electron transporting layer, and holes
수송층 (140)은 ΠΌ와 같은 투명전극과의 접합성 및 정공수송성을 향상시 키 는 기능을 한다. The transport layer 140 functions to improve the bonding property and the hole transporting property with the transparent electrode such as πΌ.
도 1 및 도 2의 유기박막층 (105)는 도시하지는 않았지 만 전자주입층, 보조전자수송층, 전자수송층, 정공수송층, 보조정공수송층, 정공주입층 및 이들의 조합층을 추가로 더 포함할 수 있다. Although not shown, the organic thin film layer 105 of FIG. 1 and FIG. 2 may further include an electron injection layer, an auxiliary electron transport layer, an electron transport layer, a hole transport layer, an auxiliary hole transport layer, a hole injection layer, and a combination thereof. .
상기 도 1 및 도 2에서 상기 유기 박막층 (105)을 이루는), 발광층 (130, 1 and 2, the organic thin film layer 105), the light emitting layer 130,
230), 정공 수송층 (140), 도시하지는 않았지만 추가로 포함할 수 있는 전자주입층, 보조전자수송층, 전자수송층, 정공주입층, 보조정공수송층, 정공수송층 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나는 상기 유기광전자소자용 재료를 포함한다. 230), the hole transport layer 140, which is not shown but may further include an electron injection layer, auxiliary electron transport layer, electron transport layer, hole injection layer, auxiliary hole transport layer, hole transport layer, any one selected from the group consisting of One contains the said organic optoelectronic device material.
상기 에서 설명 한 유기발광소자는, 기판에 양극을 형성 한 후, 진공증착법 (evaporation), 스퍼 터 링 (sputtering), 플라즈마 도금 및 이은도금과 같은 건식성 막법 ; 또는 스핀코팅 (spin gating), 침지 법 (dipping), The organic light emitting device described above includes a dry film method such as vacuum evaporation, sputtering, plasma plating and silver plating after forming an anode on a substrate; Or spin gating, dipping,
유동코팅 법 (flow coating)과 같은 습식성 막법 등으로 유기 박막층을 형성 한 후, 그 위에 음극을 형성하여 제조할 수 있다. After forming the organic thin film layer by a wet film method such as flow coating (flow coating), it can be produced by forming a cathode thereon.
본 발명의 또 다른 일 구현예에서는, 상기 유기광전자소자를 포함하는 표시장치를 제공한다. In another embodiment of the present invention, a display device including the organic optoelectronic device is provided.
실시 예 Example
이 하에서 는 본 발명 의 구체적 인 실시 예들을 제시 한다. 다만, 하기에 기 재된 실시 예들은 본 발명을 구체적으로 예시하거 나 설명하기 위 한 것에
블과하며 , 이로서 본 발명 이 제한되어서는 아니된다. Hereinafter, specific embodiments of the present invention are presented. However, the embodiments described below are intended to specifically illustrate or explain the present invention. The present invention should not be limited thereby.
본 발명 의 화합물에서 출발물질 (예를 들어 , 화학식 A 내지 D)의
반응식을 다음과 같다. Of starting materials (eg, formulas A to D) in the compounds of the present invention The scheme is as follows.
[반응식] [Scheme]
【합성 예 11 화학식 ίΑᅵ의 합성 Synthesis Example 11 Synthesis of Chemical Formula
등근 바닥 플라스크에 tetralone 50 g (342.0206 mmol) 과 1- Naphthaldehyde 53.41 g (342.0206 mmol), Sodium hydroxide 20.52 g (513.0309 mmol) 을 Ethanol 1000 m l 넣은 후 12시 간 상온에서 교반 한다. 반웅 종료 후 생성된 고체를 filter 하고 Ethanol로 Washing/건조 하여 화학식 (1) 71 g (Yield 73%)을 획득 하였다. 50 g (342.0206 mmol) of tetralone, 53.41 g (342.0206 mmol) of 1-Naphthaldehyde, and 20.52 g (513.0309 mmol) of sodium hydroxide were added to the back-bottom flask and stirred at room temperature for 12 hours. After the reaction, the resulting solid was filtered and washed / dried with ethanol to obtain the formula (1) 71 g (Yield 73%).
통근 바닥 플라스크에 화학식 (1) 71 g (249.69 mmol) 과 4- Bromobenzamidine hydrochloride 58.8 g (249.69 mmol), Sodium hydroxide 29.96 g (709.07 mmol)을 Ethanol 1L 에 넣은 후 12시 간 동안 환류 교반 한다. 반웅 종료 후 생성된 고체를 filter 하고 Ethan이로 Washing 건조 하여 화학식 (2) 50 g (43% yield)을 획득 하였다. 71 g (249.69 mmol) of Chemical Formula (1), 58.8 g (249.69 mmol) of 4-Bromobenzamidine hydrochloride, and 29.96 g (709.07 mmol) of sodium hydroxide were added to 1 L of Ethanol, followed by stirring under reflux for 12 hours. After the reaction was completed, the resulting solid was filtered and washed with ethanol to obtain 50 g (43% yield) of Chemical Formula (2).
상기 합성에서 얻어진 화학식 (2) 50 g (107.907 mmol) 과 2,3-Dichloro- 5,6-dicyano-/?-benzoquinone 73.5 g (323.72 mmol)을 넣은 푸 monochlorobenzene 500 ml에 현탁 시 킨 후 12시간 동안 환류 교반 한다. 반응 종료 후 상온으로 냉각 시키고 Silicagel Filter 하여 여 액을 농축 하고 Toluene에 재결정 하여 목적 화합물인 화합물 (A) 43 g (yield 86%) 을 획득 하였다. 50 hours (107.907 mmol) of formula (2) obtained in the synthesis and 73.5 g (323.72 mmol) of 2,3-dichloro-5,6-dicyano-/?-Benzoquinone were suspended in 500 ml of fu monochlorobenzene for 12 hours. While stirring at reflux. After completion of the reaction, the reaction mixture was cooled to room temperature, concentrated through a silica gel filter, and recrystallized from toluene to obtain 43 g (yield 86%) of the target compound (A).
calcd. C62H40N6: C, 72.89; H, 3.71 ; N, 6.07; found: C, 72.78; H, 3.57; N, 5.91calcd. C 62 H 40 N 6 : C, 72.89; H, 3.71; N, 6.07; found: C, 72.78; H, 3.57; N, 5.91
합성예 1에서 합성한 화학식 (A)의 합성에서 1 -Naphthaldehyde 대신 2-Naphthaldehyde를 사용한 것을 제외하고는 동일하게 합성을 진행 하여 목적 화합물인 화학식 (B)41 g 을 획득 하였다. Synthesis of Formula (A) synthesized in Synthesis Example 1 except that 2-Naphthaldehyde was used instead of 1-Naphthaldehyde was synthesized in the same manner to obtain 41 g of the target compound (B).
calcd. C62H40N6: C, 72.89; H, 3.71; N, 6.07; found: C, 72.51; H, 3.94; N, 6.21calcd. C 62 H 40 N 6 : C, 72.89; H, 3.71; N, 6.07; found: C, 72.51; H, 3.94; N, 6.21
합성예 1에서 합성한 화학식 (A)의 합성에서 1 -Naphthaldehyde 대신 4-Bromobenzaldehyde 및 4-Bromobenzamidine 대신 Benzamidine을 사용한 것을 제외하고는 동일하게 합성을 진행 하여 목적 화합물인 화학식 (C)23g 을 획득 하였다. Except for using 4-Bromobenzaldehyde and 4-Bromobenzamidine instead of 1 -Naphthaldehyde and Benzamidine instead of 4-Bromobenzamidine in the synthesis of the formula (A) synthesized in Synthesis Example 1 to obtain the target compound of formula (C) 23g.
calcd. C62H40N6: C, 70.09; H, 3.68; N, 6.81; found: C, 69.89; H, 3.72; N, 6.86 ί합성예 4ᅵ 화학식 ( 의 합성 calcd. C 62 H 40 N 6 : C, 70.09; H, 3.68; N, 6.81; found: C, 69.89; H, 3.72; N, 6.86 ί Synthesis Example 4 ᅵ Synthesis of
합성예 3에서 합성한 화학식 (C)의 합성에서 Benzamidine 대신 4- Bromobenzamidine 을 사용한 것을 제외하고는 동일하게 합성을 진행 하여 목적 화합물인 화학식 (D)25g 을 획득 하였다. Synthesis of Chemical Formula (C) synthesized in Synthesis Example 3, except that 4-Bromobenzamidine was used instead of Benzamidine, the synthesis was carried out in the same manner to obtain the target compound of Formula (D) 25g.
calcd. C62H40N6: C, 58.81; H, 2.88; N, 5.71; found: C, 58.62; H, 2.76; N, 5.93 ί합성예 51 화학식 (E)의 합성 calcd. C 62 H 40 N 6 : C, 58.81; H, 2.88; N, 5.71; found: C, 58.62; H, 2.76; N, 5.93 ί Synthesis Example 51 Synthesis of Formula (E)
합성 예 3에서 합성 한 화합물 (C) 20 g (48.62 mmol) 을 Tetrahydrofbran 400 ml에 현탁 시 킨 후 -78 °C를 유지 시 킨다. 상기 온도에서 n-BuLi(2.5M in Hex) 3.73 g (58.35 mmol)을 천천히 반웅액에 적하 시 킨 후 -78 °C 에서 1시간 및 상온에서 1시간 동안 교반한다. 다시 -78°C 로 유지 시 킨 후 Ν,Ν- dimethylformamide 10.66 g (145.86 mmol)을 첨가 한 후 상온에서 12시간 교반한다. 반웅 종료 후 증류수 200 ml를 첨 가 하여 1시간 교반 하고 추출 및 유기층을 농축 하고 Silicagel Columm Chromatography 하여 목적 화합물인 화합물 (E) 11 g (Yield : 63%) 을 획득 하였다. 20 g (48.62 mmol) of the compound (C) synthesized in Synthesis Example 3 were suspended in 400 ml of Tetrahydrofbran, and kept at -78 ° C. At this temperature, 3.73 g (58.35 mmol) of n-BuLi (2.5M in Hex) was slowly added dropwise to the reaction mixture, followed by stirring at -78 ° C for 1 hour and at room temperature for 1 hour. After maintaining it at -78 ° C, 10.66 g (145.86 mmol) of Ν, Ν-dimethylformamide was added and stirred at room temperature for 12 hours. After completion of reaction, 200 ml of distilled water was added, the mixture was stirred for 1 hour, the extract was extracted, the organic layer was concentrated, and Silicagel Columm Chromatography was performed to obtain 11 g (Yield: 63%) of the target compound (E).
calcd. C62H40N6: C, 83.31; H, 4.47; N, 7.77; found: C, 83.18; H, 4.53; N, 7.39 (유기광전자소자용 화합물의 제조) calcd. C 62 H 40 N 6 : C, 83.31; H, 4. 47; N, 7.77; found: C, 83.18; H, 4.53; N, 7.39 (Preparation of Compound for Organic Optoelectronic Devices)
실시 예 l: Inv-17로 표시되는 화합물의 합성 Example l Synthesis of Compound Represented by Inv-17
[반웅식 1] [Banungsik 1]
화학식 (A) 14.49 g (31.4078 mmol), 3-피리 딘 보론산 (pyridine boronic acid(Aldrich社) 4.63 g (37.6894 mmol), 14.49 g (31.4078 mmol) of formula (A), 4.63 g (37.6894 mmol) of 3-pyridine boronic acid (Aldrich),
테트라키스 (트리 페닐포스핀)팔라듬 (OXtetrakis(triphenylphosphine)palladum(O)) 1.09 g (0.9422 mmol), 포타슘 카보네이트 (potassium carbonate) 8.68 g (62.8156 mmol) 을 THF 160 ml 증류수 80 ml에 현탁 시 킨 후 12시간 동안 환류 교반 하였다. 반응 종료 후 생성물을 추출 및 농축하고 실리카겔 컬럼 1.09 g (0.9422 mmol) of tetrakis (triphenylphosphine) palladum (O) and 8.68 g (62.8156 mmol) of potassium carbonate were suspended in 80 ml of THF 160 ml After stirring for 12 hours at reflux. After the reaction was completed, the product was extracted and concentrated, and the silica gel column
크로마토그래프로 분리 한 후 틀투엔으로 재결정하여 목적 화합물인 Inv-17 11 g (76% yield) 을 획득 하였다. After separation with chromatograph and recrystallized with teltuene to obtain the target compound Inv-17 11 g (76% yield).
calcd. C62H40N6: C, 86.25; H, 4.61 ; N, 9.14; found: C, 85.93; H, 4.82; N, 9.55 실시 예 2: Inv-18로 표시되는 화합물의 합성 calcd. C 62 H 40 N 6 : C, 86.25; H, 4.61; N, 9.14; found: C, 85.93; H, 4. 82; N, 9.55 Example 2: Synthesis of Compound Represented by Inv-18
[반응식 2]
Scheme 2
화학식 (A) 7.35 g (15.9315 mmol), 8-퀴놀린 보론산 (quinoline boronic acid) 3.31 g (19.1178 mmol), 7.35 g (15.9315 mmol) of formula (A), 3.31 g (19.1178 mmol) of 8-quinoline boronic acid,
테트라키스 (트리 페닐포스핀)팔라듐 (OXtetrakis(triphenylphosphine)palladum(O)) 0.55 g (0.4779 mmol), 포타슘 카보네 이트 (potassium carbonate) 4.40 g (31.8630 mmol) 을 THF 150 ml 증류수 70 ml에 현탁 시 킨 후 12시 간 동안 환류 교반 하였다. 반웅 종료 후 생성물을 추출 및 농축하고 실리카 ¾ 컬럼 0.55 g (0.4779 mmol) of tetrakis (triphenylphosphine) palladum (O), 4.40 g (31.8630 mmol) of potassium carbonate, suspended in 70 ml of THF 150 ml After stirring, reflux was stirred for 12 hours. After the reaction was completed, the product was extracted and concentrated, and the silica ¾ column
크로마토그래프로 분리 한 후 틀루엔으로 재결정하여 목적 화합물인 Inv-18 4.5 g (55% yield)을 획득 하였다. After separation with chromatograph and recrystallized with toluene to obtain 4.5 g (55% yield) of the target compound Inv-18.
calcd. C62H40N6: C, 87.21; H, 4.55; N, 8.25; found: C, 87.1 1; H, 4.63; N, 8.17 실시 예 3: Inv-33으로 표시되는 화합물의 합성 calcd. C 62 H 40 N 6 : C, 87.21; H, 4.55; N, 8.25; found: C, 87.1 1; H, 4.63; N, 8.17 Example 3: Synthesis of Compound Represented by Inv-33
[반웅식 3] [Banungsik 3]
화학식 (B) 14.49 g (31.4078 mmol), 3-피 리 딘 보론산 (pyridine boronic acid) 4.63 g (37.6894 mmol), 14.49 g (31.4078 mmol) of formula (B), 4.63 g (37.6894 mmol) of 3-pyridine boronic acid,
테트라키스 (트리페닐포스핀)팔라듐 (OXtetrakis(triphenylphosphine)palladum(O)) 1.09 g (0.9422 mmol), 포타슘 카보네 이트 (potassium carbonate) 8.68 g (62.8156 mmol) 을 THF 160 ml 증류수 SO ml에 현탁 시 킨 후 12시간 동안 환류 교반 하였다. 반응 종료 후 상온으로 냉각시 킨 후 생성된 고체를 분리하고 증류수 및 메틸알코올로 세 척 하였다. 상기 고체를 모노클로로벤젠 130 ml에 가열 용해 시 킨 후 숯 (charcoal)을 첨가 시 킨 후 30분간 가열 교반 하였다. 상기
반응액을 실리카켈로 고온 분리하여, 여액에서 생성된 고체를 분리하고 메틸알코올로 세척하여 목적 화합물인 Inv-336.12 g(42%yield)을 획득 하였다. calcd. C62H40N6: C, 86.25; H, 4.61; N, 9.14; found: C, 85.98; H, 4.49; N, 9.35 실시예 4:Inv-34로 표시되는화합물의 합성 1.09 g (0.9422 mmol) of tetrakis (triphenylphosphine) palladum (O), 8.68 g (62.8156 mmol) of potassium carbonate suspended in 160 ml of THF 160 ml distilled water After stirring, reflux was stirred for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, and the produced solid was separated and washed with distilled water and methyl alcohol. The solid was heated and dissolved in 130 ml of monochlorobenzene and charcoal was added thereto, followed by heating and stirring for 30 minutes. remind The reaction solution was separated by high temperature with silica gel, and the solid produced in the filtrate was separated and washed with methyl alcohol to obtain Inv-336.12 g (42% yield) of the target compound. calcd. C 62 H 40 N 6 : C, 86.25; H, 4.61; N, 9.14; found: C, 85.98; H, 4. 49; N, 9.35 Example 4: Synthesis of Compound Represented by Inv-34
[반웅식 4] [Banungsik 4]
화학식 (B) 10 g (21.6755 mmol), 8-퀴놀린 보론산 (quinoline boronic acid) 4.12 g (23.8431 mmol), 10 g (21.6755 mmol) of formula (B), 4.12 g (23.8431 mmol) of 8-quinoline boronic acid,
테트라키스 (트리페닐포소핀)팔라듬 (0)(tet kis(triphenylphosphine)paUadum(0)) 1.25 g (1.0838 mmol), 포타슘 카보네이트 (potassium carbonate) 6.00 g (43.3510 mmol) 을 THF200ml증류수 100 ml에 현탁 시킨 후 12시간 동안 환류 교반 하였다. 반웅 종료 후 상온으로 넁각시킨 후 생성된 고체를 분리하고 증류수 및 메틸알코을로 세척 하였다. 상기 고체를 모노클로로벤젠 100 m l 가열 용해 시킨 후 숯 (charcoal)을 첨가 하여 30분간 가열 교반 하였다. 상기 반응액을 실리카켈로 고온 분리한 후, 메틸 알코을 400 ml를 첨가하여 1 시간 교반 한 후, 생성된 고체를 분리하고 메틸알코을로 세척하여 목적 화합물인 Inv-347.1 g(64%yield)을 획득 하였다. 1.25 g (1.0838 mmol) of tetrakis (triphenylphosphine) paUadum (0) and 6.00 g (43.3510 mmol) of potassium carbonate are suspended in 100 ml of THF 200 ml. After stirring for 12 hours at reflux. After completion of reaction, the reaction mixture was cooled to room temperature, and the produced solid was separated and washed with distilled water and methyl alcohol. After dissolving the solid in 100 ml of monochlorobenzene, charcoal was added and the mixture was heated and stirred for 30 minutes. After the reaction solution was separated by high temperature with silica gel, 400 ml of methyl alcohol was added and stirred for 1 hour, and then the resulting solid was separated and washed with methyl alcohol to obtain Inv-347.1 g (64% yield) as a target compound. It was.
calcd. C62H40N6: C, 87.21; H, 4.55; N, 8.25; found: C, 87.63; H, 4.79; N, 8.04 실시예 5:Inv39로표시되는화합물의 합성 calcd. C 62 H 40 N 6 : C, 87.21; H, 4.55; N, 8.25; found: C, 87.63; H, 4.79; N, 8.04 Example 5: Synthesis of Compound Represented by Inv39
[반웅식 5] [Banungsik 5]
화학식 (B) 8.7 g (18.8577 mmol), 3-퀴놀린 보론산 (quinoline boronic acid, Ruiyuan Group), 3.91 g (22.6292 mmol), 8.7 g (18.8577 mmol) of formula (B), 3-quinoline boronic acid (Ruiyuan Group), 3.91 g (22.6292 mmol),
테트라키스 (트리페 닐포스핀)팔라듐 (O)(tetrakis(triphenylphosphine)palladum(0)) 0.65 g (0.5657 mmol), 포타슴 카보네이트 (potassium carbonate) 5.21 g (37.7154 mmol)을 THF 170 ml 증류수 80 ml에 현탁 시 킨 후 12시간 동안 환류 교반 하였다. 반응 종료 후 상온으로 냉각시 킨 후 생성 된 고체를 분리하고 증류수 및 메틸알코을로 세척 하였다. 상기 고체를 0.65 g (0.5657 mmol) of tetrakis (triphenylphosphine) palladum (0), 5.21 g (37.7154 mmol) of potassium carbonate, 80 ml of THF 170 ml After suspension, the mixture was stirred under reflux for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, and the resulting solid was separated and washed with distilled water and methyl alcohol. The solid
0-디클로로벤젠 (dichlorobenzene) 240 ml에 가열 용해 시 킨 후 숯 (charcoal)을 첨가 하여 30분간 가열 교반 하였다. 상기 반응액을 실리카켈로 고온 분리하여 , 상온으로 냉각 시 킨 후 생성된 고체를 분리 한 후 메틸알코을로 세척하여 목적 화합물인 Inv-39 7.1 g (74% yield)을 획득 하였다. After heat dissolving in 240 ml of 0-dichlorobenzene, charcoal was added and the mixture was heated and stirred for 30 minutes. The reaction solution was separated by high temperature with silica gel, cooled to room temperature, and then the resulting solid was separated and washed with methyl alcohol to obtain 7.1 g (74% yield) of Inv-39 as a target compound.
calcd. C62H40N6: C, 87.21 ; H, 4.55; N, 8.25; found: C, 87.52; H, 4.36; N, 8.12 실시 예 6: Inv-102로 표시되는 화합물의, 합성 calcd. C 62 H 40 N 6 : C, 87.21; H, 4.55; N, 8.25; found: C, 87.52; H, 4. 36; N, 8.12 Example 6: Synthesis of Compound Represented by Inv-102
화학식 (c) 20 g (48.6275 mmol), 8-퀴놀린 보론산 (quinoline boronic acid) 10.09 g (58.3530 mmol), 20 g (48.6275 mmol) of formula (c), 10.09 g (58.3530 mmol) of 8-quinoline boronic acid,
테트라키스 (트리 페 닐포스핀)팔라듬 (OXtetrakis(triphenylphosphine)palladum(O)) 1.7 g (1.4588 mmol), 포타슘 카보네이트 (potassium carbonate) 13.44 g (97.2550 mmol) 을 THF 250 ml 증류수 80 ml에 현탁 시 킨 후 12시 간 동안 환류 교반 하였다. 반웅 종료 후 상온으로 냉각시 킨 후 생성 된 고체를 분리하고 증류수 및 메틸알코올로 세척 하였다. 상기 고체를 모노클로로벤젠 300 ml에 가열 용해 시킨 후 숯 (charcoal)을 첨가 하여 30분간 가열 교반 하였다. 상기 반웅액을 실리카겔로 고온 분리 한 뒤 상온으로 냉각 시 킨 후 생성된 고체를 분리 한 후 메틸알코올로 세 척하여 목적 화합물인 Inv-102 17.89 g (80% yield)을 획 득
하였다. 1.7 g (1.4588 mmol) of tetrakis (triphenylphosphine) palladum (O) and 13.44 g (97.2550 mmol) of potassium carbonate are suspended in 80 ml of THF 250 ml After stirring, reflux was stirred for 12 hours. After the reaction was completed, the mixture was cooled to room temperature, and the resulting solid was separated and washed with distilled water and methyl alcohol. After dissolving the solid in 300 ml of monochlorobenzene, charcoal was added, followed by heating and stirring for 30 minutes. The reaction mixture was separated by high temperature with silica gel, cooled to room temperature, separated from solids and washed with methyl alcohol to obtain 17.89 g (80% yield) of Inv-102 as a target compound. It was.
calcd. C62H40N6: C, 86.25; H, 4.61; N, 9.14; found: C, 86.17; H, 4.34; N, 9.02 실시예 7:Inv-106로 표시되는화합물의 합성 calcd. C 62 H 40 N 6 : C, 86.25; H, 4.61; N, 9.14; found: C, 86.17; H, 4. 34; N, 9.02 Example 7: Synthesis of Compound Represented by Inv-106
반웅식 7] Banungsik 7]
화학식 (D) 10 g (20.4003 mmol), 8-퀴놀린 보론산 (quinoline boronic acid) 8.47 g (48.9606 mmol), 10 g (20.4003 mmol) of formula (D), 8.47 g (48.9606 mmol) of 8-quinoline boronic acid,
테트라키스 (트리페닐포스핀)팔라듬 (O)(tetrakis(triphenylphosphine)palladum(0)) 2.36 g (2.0400 mmol), 포타슘 카보네이트 (potassium carbonate) 11.3 g (81.6012 mmol) 을 THF 200 ml증류수 100 m l 현탁 시킨 후 12시간 동안 환류 교반 하였다. 반웅 종료 후 상온으로 냉각시킨 후 생성된 고체를 분리하고 증류수 및 메틸알코올로 세척 하였다. 상기 고체를 2.36 g (2.0400 mmol) of tetrakis (triphenylphosphine) palladum (0), 11.3 g (81.6012 mmol) of potassium carbonate, suspended 100 ml of THF 100 ml After stirring for 12 hours at reflux. After the reaction was completed, the mixture was cooled to room temperature, and the produced solid was separated and washed with distilled water and methyl alcohol. The solid
0-디클로로벤젠 300 ml에 가열 용해 시킨 후 숯 (charcoal)을 첨가 하여 30분간 가열 교반 하였다. 상기 반웅액을 실리카겔로 고온 분리한 뒤 상온으로 냉각 시킨 후 생성된 고체를 분리한 후 메틸알코을로 세척하여 목적 화합물인 Inv-1069.65 g(81%yield)을 획득 하였다. After heat dissolving in 300 ml of 0-dichlorobenzene, charcoal was added, followed by heating and stirring for 30 minutes. The reaction solution was separated by high temperature with silica gel, cooled to room temperature, and the resulting solid was separated and washed with methyl alcohol to obtain Inv-1069.65 g (81% yield) as a target compound.
calcd. C62H40N6: C, 85.98; H, 4.47; N, 9.55; found: C, 85.81; H, 4.35; N, 9.62 실시예 8:Inv-131로 표시되는화합물의 합성 calcd. C 62 H 40 N 6 : C, 85.98; H, 4. 47; N, 9.55; found: C, 85.81; H, 4. 35; N, 9.62 Example 8: Synthesis of Compound Represented by Inv-131
[반응식 8] Scheme 8
화학식 (E) 8.31 g (23.0570 mmol),N-페닐 -o-페닐렌디아민 4.25 g (23.0570 mmol) 을 틀루엔 120 ml 및 아세트산 30 m l 현탁 시킨 후 48시간 동안 환류 교반 하였다. 반웅 종료 후 농축 하고 실리카겔 컬럼 크로마토그래피로 분리하여 목적 화합물인 Inv-1315.1 g(42%Yield)을 획득 하였다. 8.31 g (23.0570 mmol) of formula (E), 4.25 g (23.0570 mmol) of N-phenyl-o-phenylenediamine were suspended in 120 ml of toluene and 30 ml of acetic acid, followed by stirring under reflux for 48 hours. After completion of reaction, the resultant was concentrated and separated by silica gel column chromatography to obtain Inv-1315.1 g (42% Yield) as a target compound.
calcd. C62H40N6: C, 84.71; H, 4.61; N, 10.68; found: C, 84.69; H, 4.67; N, 10.47 calcd. C 62 H 40 N 6 : C, 84.71; H, 4.61; N, 10.68; found: C, 84.69; H, 4.67; N, 10.47
(유기발광소자의 제조) (Manufacture of organic light emitting device)
실시예 9 Example 9
양극으로는 ΠΌ를 1000 A의 두께로사용하였고, 음극으로는 알루미늄 (A1) 을 1000 A의 두께로사용하였다. As a positive electrode, πΌ was used at a thickness of 1000 A, and as a negative electrode, aluminum (A1) was used at a thickness of 1000 A.
구체적으로, 유기발광소자의 제조방법을 설명하면, 양극은 15n/cm2의 면저항 값을 가진 ΠΌ 유리 기판을 50 mm X 50 mm X 0.7 mm의 크기로 잘라서 아세톤과 이소프로필알코올과 순수 물 속에서 각 5 분 동안 초음파 세정한 후, 30 분 동안 UV 오존 세정하여 사용하였다. Specifically, the method of manufacturing the organic light emitting device, the anode is cut in a glass substrate having a sheet resistance value of 15 n / cm 2 to a size of 50 mm X 50 mm X 0.7 mm in acetone, isopropyl alcohol and pure water Ultrasonic cleaning was performed for 5 minutes each, followed by UV ozone cleaning for 30 minutes.
상기 유리 기판 상부에 정공주입층으로서 ΝΙ,ΝΙ'- (비페닐 -4,4'- 디일)비스 (N1- (나프탈렌 -2-일) -Ν4,Ν4-다이페닐벤젠 -1,4-다이아민) 65 nm을 증착하였고, 이어서 정공수송층으로 Ν,Ν'-다이 (1-나프틸) -Ν,Ν'-다이페닐벤지딘 40mn을 증착하였다. ΝΙ, ΝΙ '-(biphenyl-4,4'-diyl) bis (N1- (naphthalen-2-yl) -Ν4, Ν4-diphenylbenzene-1,4-diamond as a hole injection layer on the glass substrate Min) 65 nm was deposited, followed by depositing 40mn of Ν, Ν'-di (1-naphthyl) -Ν, Ν'-diphenylbenzidine as the hole transport layer.
발광층으로서 Ν,Ν,Ν',Ν'-테트라키스 (3,4-다이메틸페닐)크라이센 -6,12- 다이아민 4% 및 9-(3- (나프탈렌 -1-일)페닐) -10- (나프탈렌 -2-일)안트라센 96%를 25 nm의 두께로 증착하였다. Ν, Ν, Ν ′, Ν′-tetrakis (3,4-dimethylphenyl) crysen-6,12-diamine 4% and 9- (3- (naphthalen-1-yl) phenyl) -10 as light emitting layer -(Naphthalen-2-yl) anthracene 96% was deposited to a thickness of 25 nm.
이어서, 전자수송층으로서 상기 실시예 1에서 제조된 화합물 30 nm을증착하였다. Subsequently, 30 nm of the compound prepared in Example 1 was deposited as an electron transport layer.
상기 전자수송층 상부에 전자주입층으로서 Liq를 0.5 nm의 두께로 진공 증착하고, A1를 100 nm의 두께로 진공 증착하여, Liq/Al 전극을 Liq is vacuum deposited to a thickness of 0.5 nm as an electron injection layer on the electron transport layer, and A1 is vacuum deposited to a thickness of 100 nm to form a Liq / Al electrode.
형성하였다. Formed.
실시예 10 Example 10
전자수송층으로 실시예 1에서 제조된 화합물을 사용한 것을 대신하여 실시예 2에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시예 9과 동일하게 실시하여 유기발광소자를 제작하였다.
실시예 11 An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 2 instead of using the compound prepared in Example 1 as an electron transport layer. Example 11
전자수송층으로 실시예 1에서 제조된 화합물올 사용한 것을 대신하여, 실시예 3에서 제조된 화합물을사용한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 유기발광소자를 제작하였다. An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 3 as an electron transport layer, instead of using the compound prepared in Example 1.
실시예 12 Example 12
전자수송층으로 실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 4에서 제조된 화합불을 사용한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 유기발광소자를 제작하였다. An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound fire prepared in Example 4 instead of using the compound prepared in Example 1 as the electron transport layer.
실시예 13 Example 13
전자수송층으로 실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 5에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 유기발광소자를 제작하였다. An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 5 as an electron transport layer, instead of using the compound prepared in Example 1.
실시예 14 Example 14
전자수송층으로 실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 6에서 제조된 화합물을사용한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 유기발광소자를 제작하였다. An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 6 instead of using the compound prepared in Example 1 as an electron transport layer.
실시예 15 Example 15
전자수송층으로 실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 7에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 유기발광소자를 제작하였다. An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 7 instead of using the compound prepared in Example 1 as an electron transport layer.
실시예 16 Example 16
전자수송층으로 실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 8에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시예 9와 동일하게 실시하여 유기발광소자를 제작하였다. - 비교예 1 An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound prepared in Example 8 instead of using the compound prepared in Example 1 as an electron transport layer. Comparative Example 1
전자수송층으로 실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 하기의 화학식 R—1의 화합물을사용하는 것을 제외하고는 상기 실시예 9과 동일하게 실시하여 유기발광소자를 제작하였다. An organic light emitting diode was manufactured according to the same method as Example 9 except for using the compound represented by Chemical Formula R-1 as an electron transport layer, instead of using the compound prepared in Example 1.
(유기발광소자의 성능측정) (Performance Measurement of Organic Light Emitting Diode)
상기 실시예 9 내지 16 및 비교예 1에서 제조된 각각의 Each of the prepared in Examples 9 to 16 and Comparative Example 1
유기발광소자에 대하여 압에 따른 전류밀도 변화, 휘도변화 및 발광효율을 측정하였다. 구체적인 축정방법은 다음과 같고, 그 결과는 하기 표 1에 나타내었다 For the organic light emitting diode, the current density change, luminance change, and luminous efficiency with pressure were measured. Specific accumulation method is as follows, and the results are shown in Table 1 below.
(1) 전압변화에 따른 전류밀도의 변화 측정 (1) Measurement of change in current density according to voltage change
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 For the manufactured organic light emitting device, the voltage from 0V to 10V
상승시키면서 전류-전압계 (Keithley2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다. While increasing, the current value flowing through the unit device was measured using a current-voltmeter (Keithley2400), and the measured current value was divided by the area to obtain a result.
(2) 전압변화에 따른 휘도변화 측정 (2) Measurement of luminance change according to voltage change
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 For the manufactured organic light emitting device, the voltage from 0V to 10V
상승시키면서 휘도계 (Minolta Cs-IOOOA)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다. While raising, the luminance at that time was measured using a luminance meter (Minolta Cs-IOOOA) to obtain a result.
(3) 발광효율 측정 (3) Measurement of luminous efficiency
상기 (1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 밝기 (1000cd/m2)의 전류 효율 (cd/A) 및 전력 효율 (lm八 V)을 The current efficiency (cd / A) and power efficiency (lm 八 V) of the same brightness (1000 cd / m2) are obtained using the brightness, current density, and voltage measured from (1) and (2).
계산하였다. Calculated.
[표 1] TABLE 1
경우 비교예 1에 비해 구동전압은 낮으면서 발광 효율 및 전력 When the driving voltage is lower than in Comparative Example 1, luminous efficiency and power
효율이우수한 것을 알 수 있었다. It was found that the efficiency was excellent.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다론 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있올 The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person skilled in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It can be understood that the
것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
【부호의 설명】 [Explanation of code]
100,200: 유기발광소자 110: 음극 100,200: organic light emitting device 110: the cathode
120: 양극 105: 유기박막층 120: anode 105: organic thin film layer
130: 발광층 140: 정공 수송층 130: light emitting layer 140: hole transport layer
230: 발광층
230: light emitting layer
Claims
【청구항 1】 [Claim 1]
하기 화학식 1로 표시되는 유기광전자소자용 화합물: Compound for an organic optoelectronic device represented by the general formula (1):
상기 화학식 1에서 In Chemical Formula 1
Ar1 및 Ar2는 서로 독립적으로, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환또는 비치환된 C2 내지 C30 헤테로아릴기이고, Ar 1 and Ar 2 are each independently a substituted or unsubstituted C6 to C30 aryl group or a substituted or unsubstituted C2 to C30 heteroaryl group,
L1 및 L2은 서로 독립적으로, 치환 또는 비치환된 C2 내지 C6 알케닐렌기 , 치환 또는 비치환된 C2 내지 C6 알키닐렌기 , 치환 또는 비치환된 C6 내지 .C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, L 1 and L 2 are each independently a substituted or unsubstituted C2 to C6 alkenylene group, a substituted or unsubstituted C2 to C6 alkynylene group, a substituted or unsubstituted C6 to .C30 arylene group, a substituted or unsubstituted C2 to C30 heteroarylene group or a combination thereof,
nl 및 n2는 서로 독립적으로 0 내지 5 중 어느 하나의 정수이고, Ar1 또는 Ar2 중 적어도 어느 하나가 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이거나; L1 또는 L2 중 적어도 어느 하나가 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, nl and n2 are each independently an integer of 0 to 5, and at least one of Ar 1 or Ar 2 is a substituted or unsubstituted C2 to C30 heteroaryl group; At least one of L 1 or L 2 is a substituted or unsubstituted C2 to C30 heteroarylene group,
R1 내지 R3은 서로 독립적으로, 수소, 증수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환또는 비치환된 C3 내7 J C40 실릴옥시기, 치환또는 비치환된 C1 내지 C20 아실기, 치환또는 비치환된
C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 R 1 to R 3 independently of each other, hydrogen, hydrogen, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferrocenyl, substituted or unsubstituted A substituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, a substituted or unsubstituted C1 to C20 alkoxy group, a substituted or unsubstituted C6 to C20 aryl Oxy group, substituted or unsubstituted C3 7 J C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20
아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기 , 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기 , 치환 또는 비치환된 ' C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 초는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기 , 치환 . 또는 비치환된 C1 내지 C20 우레이드기, 치환또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. Acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 Sulfamoylamino groups, substituted or unsubstituted ' C1 to C20 sulfonyl groups, substituted or unsubstituted C1 to C20 alkylthiol groups, substituted seconds are unsubstituted C6 to C20 arylthiol groups, substituted or unsubstituted C1 to C20 hetero Cyclothiol group, substitution. Or an unsubstituted C1 to C20 ureide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
【청구항 2】 [Claim 2]
제 1항에 있어서, The method of claim 1,
상기 Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기이고, 상기 Ar'은 치환또는 비치환된 C2 내지 C30 헤테로아릴기인 것인 유기광전자소자용 화합물. Wherein Ar 2 is a substituted or unsubstituted C6 to C30 aryl group, and Ar ′ is a substituted or unsubstituted C2 to C30 heteroaryl group.
【청구항 3】 [Claim 3]
제 2항에 있어서, The method of claim 2,
상기 L1은 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고 ,nl은 1 내지 5 중 어느 하나의 정수인 것인 유기광전자소자용 화합물. L 1 is a substituted or unsubstituted C2 to C30 heteroarylene group, nl is an organic optoelectronic device compound of any one of 1 to 5.
【청구항 4】 [Claim 4]
제 1항에 있어서, The method of claim 1,
상기 Ar1은 치환또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기 또는 치환 또는 비치환된 페난트레닐기인 것인 Ar 1 is a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted phenanthrenyl group
유기광전자소자용 화합물. Compound for organic optoelectronic device.
【청구항 5】 [Claim 5]
제 1항에 있어서, The method of claim 1,
상기 Ar1 및 Ar2는 서로 독립적으로, 치환 또는 비치환된 C6 내지 C30 융합 아릴기 또는 치환 또는 비치환된 C2 내지 C30 융합 헤테로아릴기인 것인 유기광전자소자용 화합물. Ar 1 and Ar 2 are independently of each other, a substituted or unsubstituted C6 to C30 fused aryl group or a substituted or unsubstituted C2 to C30 fused heteroaryl group compound for an organic optoelectronic device.
【청구항 6】
제 2항에 있어서, [Claim 6] The method of claim 2,
상기 L1은 치환 또는 비치환된 피리디닐렌기인 것인 L 1 is a substituted or unsubstituted pyridinylene group
유기광전자소자용 화합물. Compound for organic optoelectronic device.
【청구항 7】 [Claim 7]
제 1항에 있어서, The method of claim 1,
상기 Ar1 및 Ar2 중 적어도 어느 하나는, 전자 특성을 가지는, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기인 것인 유기광전자소자용 화합물. At least one of Ar 1 and Ar 2 is a compound for an organic optoelectronic device, which has an electronic property, a substituted or unsubstituted C2 to C30 heteroaryl group.
【청구항 8】 [Claim 8]
제 7항에 있어서, The method of claim 7, wherein
상기 전자 특성을 가지는, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는, 치환 '또는 비치환된 이미다졸릴기, 치환 또는 비치환된 트리아졸릴기, 치환 또는 비치환된 테트라졸릴기, 치환 또는 비치환된 옥사다이아졸릴기 , 치환 또는 비치환된 옥사트리아졸릴기, 치환 또는 비치환된 싸이아트리아졸릴기, 치환 또는 비치환된 벤즈이미다졸릴기, 치환 또는 비치환된 벤조트리아졸릴기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 퓨리닐기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 프탈라지닐기, 치환 또는 비치환된 나프피리디닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페난트를리닐기, 또는 치환 또는 비치환된 페나지닐기인 것인 Having the electrical characteristics, a substituted or unsubstituted C2 to C30 heterocyclic aryl group, a substituted 'or unsubstituted imidazolyl group, a substituted or unsubstituted triazolyl group, a substituted or unsubstituted tetrazolyl group, a substituted or unsubstituted A substituted oxadiazolyl group, a substituted or unsubstituted oxtriazolyl group, a substituted or unsubstituted thiatriazolyl group, a substituted or unsubstituted benzimidazolyl group, a substituted or unsubstituted benzotriazolyl group, a substituted Or unsubstituted pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted pyrazinyl group, substituted or unsubstituted pyridazinyl group, substituted or unsubstituted Furinyl groups, substituted or unsubstituted quinolinyl groups, substituted or unsubstituted isoquinolinyl groups, substituted or unsubstituted phthalazinyl groups, substituted or unsubstituted naphpyridinyl groups, substituted or unsubstituted A substituted quinoxalinyl group, a substituted or unsubstituted quinazolinyl group, a substituted or unsubstituted acridinyl group, a substituted or unsubstituted phenanthlinyl group, or a substituted or unsubstituted phenazinyl group
유기광전자소자용 화합물. Compound for organic optoelectronic device.
【청구항 9】 [Claim 9]
제 7항에 있어서, The method of claim 7, wherein
상기 전자 특성을 가지는, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 퀴놀리닐기, 또는 치환 또는 비치환된 이소퀴놀리닐기인 것인
유기광전자소자용 화합물. The substituted or unsubstituted C2 to C30 heteroaryl group having the above electronic properties is substituted or unsubstituted pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted A quinolinyl group or a substituted or unsubstituted isoquinolinyl group Compound for organic optoelectronic device.
【청구항 10】 [Claim 10]
제 7항에 있어서, The method of claim 7, wherein
상기 전자 특성을 가지는, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는 하기 화학식 E-1 내지 E-5 증 어느 하나로 표시되는 것인 유기광전자소자용 화합물: A compound for an organic optoelectronic device, wherein the substituted or unsubstituted C2 to C30 heteroaryl group having the electronic properties is represented by one of the following Formulas E-1 to E-5:
【청구항 11】 [Claim 11]
제 1항에 있어서, The method of claim 1,
상기 유기광전자소자는, 유기광전소자, 유기발광소자, 유기태양전지, 유기트랜지스터 , 유기 감광체 드럼 및 유기메모리소자로 이루어진 군에서 선택되는 어느 하나인 것인 유기광전자소자용 화합물. The organic optoelectronic device is an organic optoelectronic device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photoelectric drum and any one selected from the group consisting of an organic memory device.
【청구항 12】 [Claim 12]
양극, 음극 및 상기 양극과 음극사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서, In an organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode,
상기 유기박막층 증 적어도 어느 한 층은 상기 제 1항에 따른 유기광전자소자용 화합물을 포함하는 것인 유기발광소자. At least one layer of the organic thin film layer is an organic light emitting device comprising the compound for an organic optoelectronic device according to claim 1.
【청구항 13] [Claim 13]
제 12항에 있어서, The method of claim 12,
상기 유기박막층은 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것인 유기발광소자. The organic thin film layer is any one selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer and a combination thereof.
【청구항 14】 [Claim 14]
제 Π항에 있어서, The method of claim Π, wherein
상기 유기광전자소자용 화합물은 전자주입층 또는 전자수송층 내에 포함되는 것인 유기발광소자.
【청구항 15] The compound for an organic optoelectronic device is included in the electron injection layer or the electron transport layer. [Claim 15]
제 12항의 유기 발광소자를 포함하는 표시장
Display panel including the organic light emitting device of claim 12
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0158172 | 2012-12-31 | ||
KR20120158172 | 2012-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014104535A1 true WO2014104535A1 (en) | 2014-07-03 |
Family
ID=51021551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/008219 WO2014104535A1 (en) | 2012-12-31 | 2013-09-11 | Compound for organic optoelectronic device, organic light-emitting diode including same, and display apparatus including said organic light-emitting diode |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20140087996A (en) |
WO (1) | WO2014104535A1 (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3056504A1 (en) | 2015-02-16 | 2016-08-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3061763A1 (en) | 2015-02-27 | 2016-08-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3098229A1 (en) | 2015-05-15 | 2016-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3101021A1 (en) | 2015-06-01 | 2016-12-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3124488A1 (en) | 2015-07-29 | 2017-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3159350A1 (en) | 2015-09-03 | 2017-04-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3205658A1 (en) | 2016-02-09 | 2017-08-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3231809A2 (en) | 2016-04-11 | 2017-10-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3261146A2 (en) | 2016-06-20 | 2017-12-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3261147A1 (en) | 2016-06-20 | 2017-12-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3270435A2 (en) | 2016-06-20 | 2018-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3297051A1 (en) | 2016-09-14 | 2018-03-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3301088A1 (en) | 2016-10-03 | 2018-04-04 | Universal Display Corporation | Condensed pyridines as organic electroluminescent materials and devices |
EP3305796A1 (en) | 2016-10-07 | 2018-04-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3321258A1 (en) | 2016-11-09 | 2018-05-16 | Universal Display Corporation | 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds |
EP3323822A1 (en) | 2016-09-23 | 2018-05-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3345914A1 (en) | 2017-01-09 | 2018-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3354654A2 (en) | 2016-11-11 | 2018-08-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3381927A1 (en) | 2017-03-29 | 2018-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3401318A1 (en) | 2017-05-11 | 2018-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3418286A1 (en) | 2017-06-23 | 2018-12-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3444258A2 (en) | 2017-08-10 | 2019-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3489243A1 (en) | 2017-11-28 | 2019-05-29 | University of Southern California | Carbene compounds and organic electroluminescent devices |
EP3492480A2 (en) | 2017-11-29 | 2019-06-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3492528A1 (en) | 2017-11-30 | 2019-06-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3613751A1 (en) | 2018-08-22 | 2020-02-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3690973A1 (en) | 2019-01-30 | 2020-08-05 | University Of Southern California | Organic electroluminescent materials and devices |
EP3689889A1 (en) | 2019-02-01 | 2020-08-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3715353A1 (en) | 2019-03-26 | 2020-09-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3750897A1 (en) | 2019-06-10 | 2020-12-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3771717A1 (en) | 2019-07-30 | 2021-02-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3778614A1 (en) | 2019-08-16 | 2021-02-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3816175A1 (en) | 2019-11-04 | 2021-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3845545A1 (en) | 2020-01-06 | 2021-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3858945A1 (en) | 2020-01-28 | 2021-08-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN113214167A (en) * | 2020-02-04 | 2021-08-06 | 昱镭光电科技股份有限公司 | Benzoquinazoline compound and organic electroluminescent element |
EP3937268A1 (en) | 2020-07-10 | 2022-01-12 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
CN114315799A (en) * | 2020-09-29 | 2022-04-12 | 江苏三月科技股份有限公司 | Compound containing triazine structure and application thereof |
EP4001287A1 (en) | 2020-11-24 | 2022-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4001286A1 (en) | 2020-11-24 | 2022-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4016659A1 (en) | 2020-11-16 | 2022-06-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4019526A1 (en) | 2018-01-26 | 2022-06-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4039692A1 (en) | 2021-02-03 | 2022-08-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4053137A1 (en) | 2021-03-05 | 2022-09-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4056578A1 (en) | 2021-03-12 | 2022-09-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4059941A1 (en) | 2021-03-15 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4060758A2 (en) | 2021-02-26 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4059915A2 (en) | 2021-02-26 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4075531A1 (en) | 2021-04-13 | 2022-10-19 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
EP4075530A1 (en) | 2021-04-14 | 2022-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4074723A1 (en) | 2021-04-05 | 2022-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4079743A1 (en) | 2021-04-23 | 2022-10-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4086266A1 (en) | 2021-04-23 | 2022-11-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4112701A2 (en) | 2021-06-08 | 2023-01-04 | University of Southern California | Molecular alignment of homoleptic iridium phosphors |
EP4151699A1 (en) | 2021-09-17 | 2023-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4185086A1 (en) | 2017-07-26 | 2023-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4212539A1 (en) | 2021-12-16 | 2023-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4231804A2 (en) | 2022-02-16 | 2023-08-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4242285A1 (en) | 2022-03-09 | 2023-09-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4265626A2 (en) | 2022-04-18 | 2023-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4282863A1 (en) | 2022-05-24 | 2023-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4293001A1 (en) | 2022-06-08 | 2023-12-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4299693A1 (en) | 2022-06-28 | 2024-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4326030A1 (en) | 2022-08-17 | 2024-02-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362631A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362630A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362645A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4369898A1 (en) | 2022-10-27 | 2024-05-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4376583A2 (en) | 2022-10-27 | 2024-05-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4386065A1 (en) | 2022-12-14 | 2024-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090007075A (en) * | 2007-07-13 | 2009-01-16 | 제일모직주식회사 | Compounds for organic electroluminescent device |
KR20090098585A (en) * | 2008-03-14 | 2009-09-17 | (주)그라쎌 | Organic electroluminescent device using the organic electroluminescent compounds |
KR20110027033A (en) * | 2009-09-09 | 2011-03-16 | 에스에프씨 주식회사 | Organic electroluminescent device |
KR20120117693A (en) * | 2011-04-15 | 2012-10-24 | 에스에프씨 주식회사 | New compounds and organic light-emitting diode including the same |
-
2013
- 2013-09-11 WO PCT/KR2013/008219 patent/WO2014104535A1/en active Application Filing
- 2013-10-28 KR KR1020130128702A patent/KR20140087996A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090007075A (en) * | 2007-07-13 | 2009-01-16 | 제일모직주식회사 | Compounds for organic electroluminescent device |
KR20090098585A (en) * | 2008-03-14 | 2009-09-17 | (주)그라쎌 | Organic electroluminescent device using the organic electroluminescent compounds |
KR20110027033A (en) * | 2009-09-09 | 2011-03-16 | 에스에프씨 주식회사 | Organic electroluminescent device |
KR20120117693A (en) * | 2011-04-15 | 2012-10-24 | 에스에프씨 주식회사 | New compounds and organic light-emitting diode including the same |
Cited By (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3056504A1 (en) | 2015-02-16 | 2016-08-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3061763A1 (en) | 2015-02-27 | 2016-08-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3098229A1 (en) | 2015-05-15 | 2016-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3101021A1 (en) | 2015-06-01 | 2016-12-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3124488A1 (en) | 2015-07-29 | 2017-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3159350A1 (en) | 2015-09-03 | 2017-04-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3760635A1 (en) | 2015-09-03 | 2021-01-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3858842A1 (en) | 2016-02-09 | 2021-08-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3205658A1 (en) | 2016-02-09 | 2017-08-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3231809A2 (en) | 2016-04-11 | 2017-10-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4122941A1 (en) | 2016-04-11 | 2023-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3261146A2 (en) | 2016-06-20 | 2017-12-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3920254A1 (en) | 2016-06-20 | 2021-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3843171A1 (en) | 2016-06-20 | 2021-06-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3270435A2 (en) | 2016-06-20 | 2018-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3261147A1 (en) | 2016-06-20 | 2017-12-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3758084A1 (en) | 2016-06-20 | 2020-12-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4349935A2 (en) | 2016-06-20 | 2024-04-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3297051A1 (en) | 2016-09-14 | 2018-03-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3323822A1 (en) | 2016-09-23 | 2018-05-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3301088A1 (en) | 2016-10-03 | 2018-04-04 | Universal Display Corporation | Condensed pyridines as organic electroluminescent materials and devices |
EP3858844A1 (en) | 2016-10-07 | 2021-08-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3305796A1 (en) | 2016-10-07 | 2018-04-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3789379A1 (en) | 2016-11-09 | 2021-03-10 | Universal Display Corporation | 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds |
EP3321258A1 (en) | 2016-11-09 | 2018-05-16 | Universal Display Corporation | 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds |
EP4092036A1 (en) | 2016-11-11 | 2022-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3354654A2 (en) | 2016-11-11 | 2018-08-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3345914A1 (en) | 2017-01-09 | 2018-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4212540A1 (en) | 2017-01-09 | 2023-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3689890A1 (en) | 2017-01-09 | 2020-08-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3381927A1 (en) | 2017-03-29 | 2018-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3985012A1 (en) | 2017-03-29 | 2022-04-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3730506A1 (en) | 2017-03-29 | 2020-10-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3401318A1 (en) | 2017-05-11 | 2018-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4141010A1 (en) | 2017-05-11 | 2023-03-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3418286A1 (en) | 2017-06-23 | 2018-12-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4185086A1 (en) | 2017-07-26 | 2023-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3783006A1 (en) | 2017-08-10 | 2021-02-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3444258A2 (en) | 2017-08-10 | 2019-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3489243A1 (en) | 2017-11-28 | 2019-05-29 | University of Southern California | Carbene compounds and organic electroluminescent devices |
EP3878855A1 (en) | 2017-11-28 | 2021-09-15 | University of Southern California | Carbene compounds and organic electroluminescent devices |
EP3492480A2 (en) | 2017-11-29 | 2019-06-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3492528A1 (en) | 2017-11-30 | 2019-06-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4019526A1 (en) | 2018-01-26 | 2022-06-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4206210A1 (en) | 2018-08-22 | 2023-07-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3613751A1 (en) | 2018-08-22 | 2020-02-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3690973A1 (en) | 2019-01-30 | 2020-08-05 | University Of Southern California | Organic electroluminescent materials and devices |
EP4301117A2 (en) | 2019-02-01 | 2024-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3689889A1 (en) | 2019-02-01 | 2020-08-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3715353A1 (en) | 2019-03-26 | 2020-09-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4134371A2 (en) | 2019-03-26 | 2023-02-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3750897A1 (en) | 2019-06-10 | 2020-12-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4219515A1 (en) | 2019-07-30 | 2023-08-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3771717A1 (en) | 2019-07-30 | 2021-02-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3778614A1 (en) | 2019-08-16 | 2021-02-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3816175A1 (en) | 2019-11-04 | 2021-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3845545A1 (en) | 2020-01-06 | 2021-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4151644A1 (en) | 2020-01-06 | 2023-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4294157A2 (en) | 2020-01-28 | 2023-12-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3858945A1 (en) | 2020-01-28 | 2021-08-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN113214167A (en) * | 2020-02-04 | 2021-08-06 | 昱镭光电科技股份有限公司 | Benzoquinazoline compound and organic electroluminescent element |
EP3937268A1 (en) | 2020-07-10 | 2022-01-12 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
CN114315799B (en) * | 2020-09-29 | 2023-11-14 | 江苏三月科技股份有限公司 | Compound containing triazine structure and application thereof |
CN114315799A (en) * | 2020-09-29 | 2022-04-12 | 江苏三月科技股份有限公司 | Compound containing triazine structure and application thereof |
EP4016659A1 (en) | 2020-11-16 | 2022-06-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4329463A2 (en) | 2020-11-24 | 2024-02-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4001286A1 (en) | 2020-11-24 | 2022-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4001287A1 (en) | 2020-11-24 | 2022-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4039692A1 (en) | 2021-02-03 | 2022-08-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4059915A2 (en) | 2021-02-26 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4060758A2 (en) | 2021-02-26 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4053137A1 (en) | 2021-03-05 | 2022-09-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4056578A1 (en) | 2021-03-12 | 2022-09-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4059941A1 (en) | 2021-03-15 | 2022-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4074723A1 (en) | 2021-04-05 | 2022-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4075531A1 (en) | 2021-04-13 | 2022-10-19 | Universal Display Corporation | Plasmonic oleds and vertical dipole emitters |
EP4401530A2 (en) | 2021-04-14 | 2024-07-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4075530A1 (en) | 2021-04-14 | 2022-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4086266A1 (en) | 2021-04-23 | 2022-11-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4079743A1 (en) | 2021-04-23 | 2022-10-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4112701A2 (en) | 2021-06-08 | 2023-01-04 | University of Southern California | Molecular alignment of homoleptic iridium phosphors |
EP4151699A1 (en) | 2021-09-17 | 2023-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4212539A1 (en) | 2021-12-16 | 2023-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4231804A2 (en) | 2022-02-16 | 2023-08-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4242285A1 (en) | 2022-03-09 | 2023-09-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4265626A2 (en) | 2022-04-18 | 2023-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4282863A1 (en) | 2022-05-24 | 2023-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4293001A1 (en) | 2022-06-08 | 2023-12-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4299693A1 (en) | 2022-06-28 | 2024-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4326030A1 (en) | 2022-08-17 | 2024-02-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362631A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362630A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4362645A2 (en) | 2022-10-27 | 2024-05-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4369898A1 (en) | 2022-10-27 | 2024-05-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4376583A2 (en) | 2022-10-27 | 2024-05-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4386065A1 (en) | 2022-12-14 | 2024-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
Also Published As
Publication number | Publication date |
---|---|
KR20140087996A (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014104535A1 (en) | Compound for organic optoelectronic device, organic light-emitting diode including same, and display apparatus including said organic light-emitting diode | |
JP6633793B2 (en) | Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display device | |
US9604972B2 (en) | Nitrogen-containing heteroaromatic ring compound | |
US9543524B2 (en) | Compounds and organic electronic device using same | |
JP5938397B2 (en) | Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode | |
EP2799515B1 (en) | Compound for organic optoelectric device, organic light-emitting diode including same, and display device including organic light-emitting diode | |
KR101432599B1 (en) | Compound for organic photoelectric device and organic photoelectric device including the same | |
TWI593686B (en) | Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode | |
KR101636864B1 (en) | Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode | |
US20150263294A1 (en) | Compound for organic optoelectronic device, organic light-emitting device including same, and display device including the organic light- emitting diode | |
JP2016111346A (en) | Organic photoelectric element and display device | |
KR101597865B1 (en) | New compounds and organic electronic device using the same | |
TW202136223A (en) | Organic electroluminescent device | |
WO2014104545A1 (en) | Compound for organic optoelectronic device, organic light-emitting element including same, and display apparatus including said organic light-emitting element | |
WO2014104600A1 (en) | Compound for organic optoelectronic device, organic light-emitting device containing same, and display apparatus including said organic light-emitting device | |
WO2016186276A1 (en) | Organic compound, organic optoelectronic element, and display device | |
KR102144164B1 (en) | Organic elecroluminescent device | |
KR20160077735A (en) | An electroluminescent compound and an electroluminescent device comprising the same | |
CN107880045B (en) | Compound for organic photoelectric device, composition for organic photoelectric device, and display device | |
KR20140045154A (en) | Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode | |
TW201332943A (en) | Aromatic amine derivative and organic electroluminescence device using same | |
KR20160133814A (en) | Compound for ORGANIC OPTOELECTRIC DEVICE, ORGANIC OPTOELECTRIC DEVICE AND DISPLAY DEVICE | |
WO2014051244A1 (en) | Compound for organic optoelectronic device, organic light-emitting device including same, and display device including said organic light-emitting device | |
WO2014185592A1 (en) | Compound for organic optoelectric device, organic light-emitting diode including same, display device including organic light-emitting diode | |
KR20130117534A (en) | Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13869066 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13869066 Country of ref document: EP Kind code of ref document: A1 |