WO2014086813A1 - Verfahren zur oxidativen dehydrierung von n-butenen zu butadien - Google Patents

Verfahren zur oxidativen dehydrierung von n-butenen zu butadien Download PDF

Info

Publication number
WO2014086813A1
WO2014086813A1 PCT/EP2013/075453 EP2013075453W WO2014086813A1 WO 2014086813 A1 WO2014086813 A1 WO 2014086813A1 EP 2013075453 W EP2013075453 W EP 2013075453W WO 2014086813 A1 WO2014086813 A1 WO 2014086813A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
butenes
butadiene
gas
reactor
Prior art date
Application number
PCT/EP2013/075453
Other languages
English (en)
French (fr)
Inventor
Philipp GRÜNE
Wolfgang RÜTTINGER
Oliver HAMMEN
Christian Walsdorff
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2015545988A priority Critical patent/JP2016500333A/ja
Priority to EA201591092A priority patent/EA201591092A1/ru
Priority to KR1020157017618A priority patent/KR20150091387A/ko
Priority to EP13814454.8A priority patent/EP2928603A1/de
Priority to CN201380071781.7A priority patent/CN104955569A/zh
Publication of WO2014086813A1 publication Critical patent/WO2014086813A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8878Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/55Cylinders or rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the invention relates to a catalyst, in particular a coated catalyst for the oxidative dehydrogenation of n-butenes to butadiene, to its use and to a process for the oxidative dehydrogenation of n-butenes to butadiene.
  • Butadiene is an important basic chemical and is used, for example, for the production of synthetic rubbers (butadiene homopolymers, styrene-butadiene rubber or nitrile rubbers).
  • thermoplastic terpolymers acrylonitrile-butadiene-styrene copolymers
  • Butadiene is further converted to sulfolane, chloroprene and 1, 4-hexamethylenediamine (over 1, 4-dichlorobutene and adiponitrile).
  • sulfolane sulfolane
  • chloroprene 1, 4-hexamethylenediamine
  • 4-dichlorobutene and adiponitrile By dimerization of butadiene, vinylcyclohexene can also be produced, which can be dehydrogenated to styrene.
  • Butadiene can be prepared by thermal cracking (steam cracking) of saturated hydrocarbons, usually starting from naphtha as the raw material. Steam cracking of naphtha produces a hydrocarbon mixture of methane, ethane, ethene, acetylene, propane, propene, propyne, allenes, butanes, butenes, butadiene, butynes, methylalls, Cs and higher hydrocarbons.
  • Butadiene can also be obtained by oxidative dehydrogenation of n-butenes (1-butene and / or 2-butene).
  • n-butenes 1,3-butene and / or 2-butene
  • any n-butenes containing mixture can be used.
  • a fraction containing n-butenes (1-butene and / or 2-butene) as a main component and obtained from the C 4 fraction of a naphtha cracker by separating butadiene and isobutene can be used.
  • gas mixtures which comprise 1-butene, cis-2-butene, trans-2-butene or mixtures thereof and which have been obtained by dimerization of ethylene can also be used as starting gas.
  • n-butenes containing gas mixtures obtained by catalytic fluid cracking (FCC) can be used as the starting gas.
  • Gas mixtures containing n-butenes, which are used as the starting gas in the oxidative dehydrogenation of n-butenes to butadiene can also be prepared by non-oxidative dehydrogenation of n-butane-containing gas mixtures.
  • WO2005 / 063658 discloses a process for producing butadiene from n-butane by the steps
  • This process is characterized by a particularly effective utilization of raw materials. Thus, losses of the raw material n-butane are minimized by recycling unreacted n-butane into the dehydrogenation.
  • the coupling of non-oxidative catalytic dehydrogenation and oxidative dehydrogenation achieves a high butadiene yield.
  • the process is characterized by high selectivity as compared to the production of butadiene by cracking. There are no by-products. It eliminates the costly separation of butadiene from the product gas mixture of the cracking process.
  • WO2009 / 124945 discloses a shell catalyst for the oxidative dehydrogenation of 1-butene and / or 2-butene to butadiene, which is obtainable from a catalyst precursor comprising
  • X 2 Si and / or Al
  • X 3 Li, Na, K, Cs and / or Rb,
  • y a number which is determined on the assumption of charge neutrality by the valency and frequency of the elements other than oxygen, and (ii) at least one pore-forming agent.
  • Steatite balls with a diameter of 2 to 3 mm are used as carrier bodies for the coated catalysts.
  • WO 2010/137595 discloses a multimetal oxide catalyst for the oxidative dehydrogenation of alkenes to dienes comprising at least molybdenum, bismuth and cobalt, of the general formula
  • X is at least one member selected from the group consisting of magnesium (Mg), calcium (Ca), zinc (Zn), cerium (Ce) and samarium (Sm).
  • Y is at least one element from the group consisting of sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and thallium (Tl).
  • Z is at least one element selected from the group consisting of boron (B), phosphorus (P), arsenic (As) and tungsten (W).
  • a catalyst of the composition
  • coke precursors can be formed, which can eventually lead to coking and deactivation of the catalyst and to deposits and blockages in pipes and components behind the oxydehydrogenation reactor (ODH reactor).
  • coke precursors are, for example, styrene, anthraquinone and fluorenone.
  • the object of the invention is to provide a process for the oxidative dehydrogenation of n-butenes to butadiene, in which less coke precursors are formed.
  • a catalyst which is obtainable from a catalyst precursor comprising a catalytically active, molybdenum and at least one further metal-containing multimetal oxide of the general formula (I) Moi2BiaFebCOcNidCr e X 1 fX 2 gOx which has the following meaning:
  • X 1 W, Sn, Mn, La, Ce, Ge, Ti, Zr, Hf, Nb, P, Si, Sb, Al, Cd and / or Mg;
  • X 2 Li, Na, K, Cs and / or Rb,
  • a 0.1 to 7, preferably 0.3 to 1.5;
  • b 0 to 5, preferably 2 to 4;
  • c 0 to 10, preferably 3 to 10;
  • e 0 to 5, preferably 0.1 to 2;
  • f 0 to 24, preferably 0.1 to 2;
  • g 0 to 2, preferably 0.01 to 1;
  • x a number determined by the valence and frequency of the elements other than oxygen in (I); characterized in that the catalyst is in the form of a hollow cylinder, wherein the inner diameter is 0.2 to 0.8 times the outer diameter and the length is 0.5 to 2.5 times the outer diameter, and that the catalyst precursor is not a pore-forming agent contains.
  • coke precursors are pressure dependent.
  • the formation of certain coke precursors such as styrene, anthraquinone and fluorenone increases at pressures at the reactor inlet above 1, 3 bar absolutely disproportionately strong.
  • the catalysts used in the invention have a particularly low pressure drop, so that the total oxidative dehydrogenation can be carried out at a lower pressure.
  • the use of pore formers can improve the transport properties in the catalyst grain.
  • the conditions of the thermal aftertreatment must be closely monitored to prevent too rapid decomposition of the pore-forming agent.
  • the abrasion resistance of a catalyst can be greatly reduced by the use of a pore-forming agent. Attrition of the catalyst can accumulate in the reactor bed causing a large increase in pressure loss.
  • the catalyst according to the invention may be a solid material catalyst or a shell catalyst. If it is a shell catalyst, it has a carrier body (a) and a shell (b) containing the catalytically active, molybdenum and at least one further metal-containing multimetal oxide of the general formula (I).
  • the shell (b) of the catalyst precursor contains no pore-forming agent.
  • Preferred catalysts have the dimensions outside diameter x inside diameter x length (4 to 10 mm) x (2 to 8 mm) x (2 to 10 mm). Particularly preferred catalysts have the dimensions outside diameter x inside diameter x length (5 to 8 mm) x (3 to 5 mm) x (2 to 6 mm).
  • the support body (a) preferably has the dimensions outside diameter x inside diameter x length (4 to 10 mm) x (2 to 8 mm) x (2 to 10 mm).
  • the carrier body has the dimensions outer diameter x inner diameter x length (5 to 8 mm) x (3 to 5 mm) x (2 to 6 mm).
  • the layer thickness D of the shell (b) of a molybdenum and at least one further metal-containing multimetal oxide mass is generally from 5 to 1000 ⁇ m. Preferred are 10 to 800 ⁇ , more preferably 50 to 600 ⁇ and most preferably 80 to 500 ⁇ .
  • the cross-sectional loading indicates the mass flow of educt gas relative to the cross-sectional area of the reactor tubes.
  • the cross-sectional load is usually 1 -5 kg / (m 2 s) and the pressure loss 20-400 mbar per meter of bed length.
  • a bed of catalyst At a cross-sectional load of 3 kg / (m 2 s), a bed length of 5 m and a gas velocity of 2 m / s, a bed of catalyst generally has a pressure drop of 100 to 2000 mbar, preferably from 250 to 1500 mbar and more preferably from 350 to 1000 mbar.
  • the quotient f / dp is then generally 333-6667 nr 1 , preferably 833-5000 nr 1 and even more preferably 1 167-3333 nr 1 .
  • Catalysts suitable for oxydehydrogenation are generally based on a Mo-Bi-O-containing multimetal oxide system, which generally additionally contains iron.
  • the catalyst system contains further additional components from FIG. 1. to 15th group of the periodic table, such as potassium, cesium, magnesium, zirconium, chromium, nickel, cobalt, cadmium, tin, lead, germanium, lanthanum, manganese, tungsten, phosphorus, cerium, aluminum or silicon.
  • Iron-containing ferrites have also been proposed as catalysts.
  • the multimetal oxide contains cobalt and / or nickel. In a further preferred embodiment, the multimetal oxide contains chromium. In a further preferred embodiment, the multimetal oxide contains manganese.
  • Mo-Bi-Fe-O-containing multimetal oxides are Mo-Bi-Fe-Cr-O or Mo-Bi-Fe-Zr-O-containing multimetal oxides. Preferred systems are described, for example, in US Pat. No. 4,547,615 (Moi2BiFeo, i Ni 8 ZrCr3Ko, 2 Ox and Moi2BiFeo, i Ni 8 AICr 3 Ko, 20x), US 4,424,141
  • Particularly preferred catalytically active, molybdenum and at least one further metal-containing multimetal oxides have the general formula (Ia):
  • X 1 Si, Mn and / or Al
  • X 2 Li, Na, K, Cs and / or Rb,
  • y a number determined on the assumption of charge neutrality by the valence and frequency of the elements other than oxygen in (1a).
  • the stoichiometric coefficient a in formula (Ia) is preferably 0.4 ⁇ a 1, more preferably 0.4 ⁇ 0.95.
  • the value for the variable b is preferably in the range 1 ⁇ b ⁇ 5 and particularly preferably in the range 2 ⁇ b ⁇ 4.
  • the sum of the stoichiometric coefficients c + d is preferably in the range 4 ⁇ c + d 8, and particularly preferably in the Range 6 S c + ds 8.
  • the stoichiometric coefficient e is preferably in the range 0.1 ⁇ e S 2, and particularly preferably in the range 0.2 ⁇ e ⁇ 1.
  • the stoichiometric coefficient g is suitably> 0.
  • Coated catalysts according to the invention with catalytically active oxide compositions whose molar ratio of Co / Ni is at least 2: 1, preferably at least 3: 1 and particularly preferably at least 4: 1, are advantageous. The best is only Co.
  • the coated catalyst is prepared by applying to the support by means of a binder a layer containing the molybdenum and at least one further metal-containing multimetal, drying the coated support (shell catalyst precursor) dry and thermally treated.
  • the multimetal oxide containing layer of the shell catalyst precursor does not contain pore formers such as malonic acid, melamine, nonylphenol ethoxylate, stearic acid, glucose, starch, fumaric acid and succinic acid prior to the final thermal treatment.
  • pore formers such as malonic acid, melamine, nonylphenol ethoxylate, stearic acid, glucose, starch, fumaric acid and succinic acid prior to the final thermal treatment.
  • finely divided, molybdenum and at least one further metal-containing multimetal oxides are basically obtainable by producing an intimate dry mixture of starting compounds of the elemental constituents of the catalytically active oxide composition and the intimate dry mixture calcined at a temperature of 150 to 650 ° C.
  • suitable finely divided multimetal oxide compositions For the preparation of suitable finely divided multimetal oxide compositions one starts from known starting compounds of the elemental constituents of the desired multimetal oxide composition in the respective stoichiometric ratio, and produces as intimately as possible, preferably finely divided, dry mixture, which is then subjected to a thermal treatment (calcination) ,
  • the sources can either already be oxides, or those compounds which can be converted into oxides by heating, at least in the presence of oxygen.
  • suitable starting compounds are, in particular, halides, nitrates, formates, oxalates, acetates, carbonates or hydroxides.
  • Suitable starting compounds of molybdenum are also its oxo compounds (molybdate) or the acids derived therefrom.
  • Suitable starting compounds of Bi, Cr, Fe and Co are in particular their nitrates.
  • the intimate mixing of the starting compounds can in principle be carried out in dry form or in the form of aqueous solutions or suspensions.
  • an aqueous suspension may be prepared by combining a solution containing at least molybdenum and an aqueous solution containing the remaining metals. Alkali metals or alkaline earth metals can be present in both solutions.
  • a precipitation is carried out, which leads to the formation of a suspension.
  • the temperature of the precipitation may be higher than room temperature, preferably from 30 ° C to 95 ° C, and more preferably from 35 ° C to 80 ° C.
  • the suspension may then be aged at elevated temperature for a period of time.
  • the aging period is generally between 0 and 24 hours, preferably between 0 and 12 hours, and more preferably between 0 and 8 hours.
  • the temperature of aging is generally between 20 ° C and 99 ° C, preferably between 30 ° C and 90 ° C, and more preferably between
  • the pH of the mixed solutions or suspension is generally between pH 1 and pH 12, preferably between pH 2 and pH 11 and more preferably between pH 3 and pH 10.
  • the drying step may be generally carried out by evaporation, spray drying or freeze drying or the like.
  • the drying is carried out by spray drying.
  • the suspension is sprayed at elevated temperature with a spray head whose temperature is generally 120 ° C. to 300 ° C., and the dried product is collected at a temperature of> 60 ° C.
  • the residual moisture, determined by drying the spray powder at 120 ° C, is generally less than 20 wt .-%, preferably less than 15 wt.% And particularly preferably less than 12 wt.%.
  • the spray powder is transferred in a further step in a shaped body.
  • Suitable shaping aids are, for example, water, boron trifluoride or graphite.
  • lubricants are, for example, water, boron trifluoride or graphite.
  • Based on the mass to be molded into the catalyst precursor body in general ⁇ 10% by weight, usually ⁇ 6% by weight, often ⁇ 4% by weight of shaping assistant is added. Usually, the aforementioned additional amount is> 0.5 wt .-%.
  • Slip aid preferred according to the invention is graphite.
  • the calcination of the Katalysatorvortechnikvortechnikrform stresses is usually carried out at temperatures exceeding 350 ° C. Normally, however, the temperature of 650 ° C is not exceeded during the thermal treatment.
  • the temperature of 600 ° C. preferably the temperature of 550 ° C. and particularly preferably the temperature of 500 ° C.
  • the temperature of 380 ° C. advantageously the temperature of 400 ° C., with particular advantage the temperature of 420 ° C. and very particularly preferably the temperature of 440 ° C. exceeded.
  • the thermal treatment can be used in its temporal chen process also be divided into several sections.
  • a thermal treatment at a temperature of 150 to 350 ° C, preferably from 220 to 280 ° C, and then a thermal treatment at a temperature of 400 to 600 ° C, preferably from 430 to 550 ° C are performed.
  • the thermal treatment of the catalyst precursor body takes several hours (usually more than 5 h) to complete. Often, the total duration of the thermal treatment extends to more than 10 hours. Treatment times of 45 hours and 35 hours are usually not exceeded within the scope of the thermal treatment of the catalyst precursor molding. Often the total treatment time is less than 30 h.
  • 500 ° C are not exceeded in the thermal treatment of the Katalysatorfor headphonesrform stresses and the treatment time in the temperature window of> 400 ° C extends to 5 to 30 h.
  • the calcination of the catalyst precursor moldings may be carried out both under inert gas and under an oxidative atmosphere, e.g. Air (mixture of inert gas and oxygen) and also under reducing atmosphere (for example mixture of inert gas, NH 3, CO and / or H 2 or methane).
  • an oxidative atmosphere e.g. Air (mixture of inert gas and oxygen) and also under reducing atmosphere (for example mixture of inert gas, NH 3, CO and / or H 2 or methane).
  • the thermal treatment can also be carried out under vacuum.
  • the thermal treatment of the catalyst precursor moldings in a variety of furnace types such. heated Um Kunststoffsch, Hordenöfen, rotary kilns, belt calciner or shaft furnaces are performed.
  • the thermal treatment of the catalyst precursor shaped bodies preferably takes place in a belt calcination device, as recommended by DE-A 10046957 and WO 02/24620.
  • the thermal treatment of the catalyst precursor moldings below 350 ° C usually pursues the thermal decomposition of the sources of elemental constituents of the desired catalyst contained in the catalyst precursor moldings. Often, in the process according to the invention, this decomposition phase takes place during the heating to temperatures ⁇ 350.degree.
  • the catalytically active multimetal oxide composition may contain chromium oxide.
  • suitable starting materials are, in particular, halides, nitrates, formates, oxalates, acetates, carbonates and / or hydroxides.
  • the thermal decomposition of chromium (III) compounds to chromium (III) oxide occurs independently of the presence or absence of oxygen, mainly between 70-430 ° C over several chromium (VI) -containing intermediates (see, for example, J. Therm. Anal. Cal., 72, 2003, 135 and Env. See, Tech. 47, 2013, 5858).
  • chromium (VI) oxide is not required for the catalytic oxydehydrogenation of alkenes to dienes, especially butenes to butadiene. Due to the toxicity and environmental harmfulness of Cr (VI) oxide, the active composition should therefore be substantially free of chromium (VI) oxide.
  • Chromium (VI) oxide content largely depends on calcination conditions, in particular the highest temperature in the calcination step and of its holding time. Here, the higher the temperature is and the longer the holding time, the lower the content of chromium (VI) oxide.
  • the obtained from the calcination shaped body of catalytically active multimetal oxide can be used as a solid catalyst.
  • the shaped body of multimetal oxide composition can furthermore be converted by grinding into a finely divided powder for the preparation of a shell catalyst, which is then applied to the outer surface with the aid of a liquid binder a carrier body can be applied.
  • the fineness of the catalytically active oxide mass to be applied to the surface of the carrier body is of course adapted to the desired shell thickness. Production of coated catalysts
  • Suitable carrier materials for shell-type catalysts according to the invention are porous or preferably non-porous aluminum oxides, silicon dioxide, zirconium dioxide, silicon carbide or silicates such as magnesium or aluminum silicate (for example C 220 steatite from CeramTec).
  • the materials of the carrier bodies are chemically inert.
  • the support materials may be porous or non-porous.
  • the support material is not porous (total volume of the pores, based on the volume of the support body, preferably -i 1 vol .-%).
  • Preferred hollow cylinders as support bodies have a length of 2 to 10 mm and an outer diameter of 4 to 10 mm.
  • the wall thickness is moreover preferably 1 to 4 mm.
  • Particularly preferred annular carrier bodies have a length of 2 to 6 mm, an outer diameter of 5 to 8 mm and a wall thickness of 1 to 2 mm.
  • An example are rings of geometry 7 mm ⁇ 4 mm ⁇ 3 mm (outer diameter ⁇ inner diameter ⁇ length) as the carrier body.
  • the layer thickness D of a molybdenum and at least one further metal containing Muletetalloxidmasse is usually from 5 to 1000 ⁇ . Preference is given to 10 to 800 ⁇ , more preferably 50 to 600 ⁇ and most preferably 80 to 500 ⁇ .
  • the application of the molybdenum and at least one further metal-containing multimetal oxide to the surface of the carrier body can be carried out according to the methods described in the prior art, for example as described in US-A 2006/0205978 and EP-A 0 714 700.
  • the finely divided masses are applied to the surface of the carrier body with the aid of a liquid binder.
  • a liquid binder e.g. Water, an organic solvent or a solution of an organic substance (e.g., an organic solvent) in water or in an organic solvent.
  • the liquid binder used is particularly advantageously a solution consisting of 20 to 95% by weight of water and 5 to 80% by weight of an organic compound.
  • the organic fraction of the abovementioned liquid binders is preferably from 5 to 50% by weight and more preferably from 8 to 30% by weight.
  • liquid binders are solutions which consist of 20 to 95% by weight of water and 5 to 80% by weight of glycerol.
  • the glycerol content in these aqueous solutions is from 5 to 50% by weight and more preferably from 8 to 35% by weight.
  • the application of the molybdenum-containing finely divided multimetal oxide can be carried out by dispersing the finely divided mass of molybdenum-containing multimetal oxide dispersed in the liquid binder and spraying the resulting suspension on moving and optionally hot carrier body, as described in DE-A 1642921, DE -A 2106796 and DE-A 2626887. After completion of spraying, as described in DE-A 2909670, by passing hot air, the moisture content of the resulting coated catalysts can be reduced.
  • the carrier body is first moistened with the liquid binder, and subsequently the finely divided mass of multimetal oxide is applied to the surface of the carrier body moistened with the binder by rolling the moistened carrier body in the finely divided mass.
  • the process described above is preferably repeated several times, d. H. the base-coated carrier body is moistened again and then coated by contact with dry finely divided mass.
  • the carrier bodies to be coated are filled into a preferably tilted rotary container (for example a turntable or coating pan) which rotates (the angle of inclination is generally 30 to 90 °).
  • the rotating rotary container guides the hollow-cylindrical carrier bodies under two metering devices arranged at a certain distance one after the other.
  • the first of the two metering devices is expediently a nozzle, through which the carrier bodies rolling in the rotating turntable are sprayed with the liquid binder to be used and moistened in a controlled manner.
  • the second metering device is located outside of the atomizing cone of the sprayed liquid binder and serves to supply the finely divided mass, for example via a vibrating trough.
  • the controlled moistened carrier body absorb the supplied active powder, which compacts by the rolling motion on the outer surface of the cylindrical carrier body to form a coherent shell.
  • the base body coated in this way again passes through the spray nozzle in the course of the subsequent revolution, being moisturized in a controlled manner in order to terschul another layer of finely divided mass to be able to accommodate, etc.
  • An intermediate drying is not required in the rule.
  • the removal of the liquid binder may take place, partially or completely, by the final supply of heat, for example by the action of hot gases, such as N 2 or air.
  • hot gases such as N 2 or air.
  • the temperatures necessary to effect the removal of the coupling agent are below the highest calcination temperature of the catalyst, generally between 200 ° C and 600 ° C.
  • the catalyst is heated to 240 ° C to 500 ° C, and more preferably to temperatures between 260 ° C and 400 ° C.
  • Primer may take several hours.
  • the catalyst is generally heated to the stated temperature between 0.5 and 24 hours in order to remove the adhesion promoter.
  • the time is between 1.5 and 8 hours, and more preferably between 2 and 6 hours.
  • a flow around the catalyst with a gas can accelerate the removal of the adhesion promoter.
  • the gas is preferably air or nitrogen, and more preferably air.
  • the removal of the adhesion promoter can be carried out, for example, in a gas-flowed oven or in a suitable drying apparatus, for example a belt dryer.
  • Oxidative dehydrogenation (oxydehydrogenation, ODH)
  • the present invention also provides for the use of the solid material catalysts and shell catalysts according to the invention in a process for the oxidative dehydrogenation of 1-butene and / or 2-butene to butadiene.
  • the catalysts according to the invention are notable for high activity, but in particular also for high selectivity with regard to the formation of 1,3-butadiene from 1-butene and 2-butene.
  • the invention also provides a process for the oxidative dehydrogenation of n-butenes to butadiene, in which a n-butenes containing starting gas mixture mixed with an oxygen-containing gas and optionally additional inert gas or water vapor and in a fixed bed reactor at a temperature of 220 to 490 ° C.
  • X 2 Li, Na, K, Cs and / or Rb,
  • a 0.4 to 5, preferably 0.5 to 2;
  • b 0 to 5, preferably 2 to 4;
  • c 0 to 10, preferably 3 to 10;
  • e 0 to 10, preferably 0.1 to 4;
  • f 0 to 24, preferably 0.1 to 2;
  • g 0 to 2, preferably 0.01 to 1;
  • x a number determined by the valence and frequency of the elements other than oxygen in (I); characterized in that the catalyst is in the form of a hollow cylinder, wherein the inner diameter is 0.2 to 0.8 times the outer diameter and the length is 0.5 to 2.5 times the outer diameter, and that the catalyst precursor contains no pore-forming agent.
  • the solid material and shell catalysts used according to the invention are characterized by a low pressure loss. This allows the oxidative dehydrogenation to be operated at a low pressure, thereby counteracting the formation of coke precursors and coke deposits on the catalyst and work-up.
  • the reactor inlet pressure is ⁇ 3 bar (g), preferably ⁇ 2 bar (g) and more preferably ⁇ 1, 5 (g) bar.
  • the reactor outlet pressure is ⁇ 2.8 bar (g), preferably ⁇ 1.8 bar (g) and more preferably ⁇ 1.3 (g) bar. The higher this value is, the greater the space-time yield of the reaction can be because a larger amount of reaction gas can be introduced into the reactor.
  • the reactor inlet pressure is at least 0.01 bar (g), preferably at least 0.1 bar (g) and more preferably 0.5 bar (g).
  • the reactor outlet pressure is at least 0.01 bar (g), preferably at least 0.1 bar (g) and more preferably 0.2 bar (g). The lower the value, the lower the formation of coke precursors and coke deposits on the catalyst and work-up.
  • the pressure loss over the entire catalyst bed is generally 0.01 to 2 bar (g), preferably 0.1 to 1, 5 bar, more preferably 0.4 to 1, 0 bar.
  • the reaction temperature of the oxydehydrogenation is generally controlled by a heat exchange medium located around the reaction tubes.
  • liquid heat exchange agents come z.
  • ionic liquids or Heat transfer oils can be used.
  • the temperature of the heat exchange medium is between 220 to 490 ° C and preferably between 300 to 450 ° C and more preferably between 350 and 420 ° C.
  • the temperature in certain sections of the interior of the reactor during the reaction may be higher than that of the heat exchange medium and a so-called hotspot is formed.
  • the location and height of the hotspot is determined by the reaction conditions, but it may also be regulated by the dilution ratio of the catalyst layer or the flow rate of mixed gas.
  • the difference between hotspot temperature and the temperature of the heat exchange medium is generally between 1 -150 ° C, preferably between 10-100 ° C and more preferably between 20-80 ° C.
  • the temperature at the end of the catalyst bed is generally between 0-100 ° C, preferably between 0.1-50 ° C, more preferably between 1 -25 ° C above the temperature of the heat exchange medium.
  • the oxydehydrogenation can be carried out in all fixed-bed reactors known from the prior art, such as, for example, in the hearth furnace, in the fixed bed tube or tubular reactor or in the plate heat exchanger reactor.
  • a tube bundle reactor is preferred.
  • the oxidative dehydrogenation is carried out using the catalysts of the invention in fixed bed tubular reactors or fixed bed bundle reactors.
  • the reaction tubes are (as well as the other elements of the tube bundle reactor) usually made of steel.
  • the wall thickness of the reaction tubes is typically 1 to 3 mm. Their inner diameter is usually (uniformly) at 10 to 50 mm or 15 to 40 mm, often 20 to 30 mm.
  • the number of reaction tubes accommodated in the tube bundle reactor is generally at least 1000, or 3000, or 5000, preferably at least 10,000. Frequently, the number of reaction tubes accommodated in the tube bundle reactor is 15,000 to 30,000 or 40,000 or 50 000. Tube bundle reactors with a number of reaction tubes above 50,000 tend to be the exception.
  • the length of the reaction tubes normally extends to a few meters, typical is a reaction tube length in the range of 1 to 8 m, often 2 to 7 m, often 2.5 to 6 m.
  • thermal tubes serve primarily for the purpose of monitoring and controlling the reaction temperature along the reaction tubes, representative of all working tubes.
  • the thermal tubes normally contain, in addition to the fixed catalyst bed, a thermal sleeve fed only with a temperature sensor and centered therethrough in the thermal tube.
  • the number of thermal tubes in a tube bundle reactor is much smaller than the number of working tubes. Normally, the number of thermal tubes is ⁇ 20.
  • the catalyst layer configured in the reactor as described above may consist of a single layer or of 2 or more layers. These layers may be pure catalyst or diluted with a material that does not react with the source gas or components of the product gas of the reaction.
  • the catalyst layers may consist of solid material or supported shell catalysts.
  • n-butenes 1, butene and / or cis- / trans-2-butene
  • a butene-containing gas mixture can be used. Such can be obtained, for example, by non-oxidative dehydrogenation of n-butane. It is also possible to use a fraction containing n-butenes (1-butene and / or 2-butene) as the main component and from the C 4 fraction of naphtha cracking by separating butadiene and isobutene.
  • gas mixtures which comprise pure 1-butene, cis-2-butene, trans-2-butene or mixtures thereof and which have been obtained by dimerization of ethylene can also be used as starting gas.
  • n-butenes containing gas mixtures obtained by catalytic fluid cracking can be used as the starting gas.
  • the starting gas mixture containing n-butenes is obtained by non-oxidative dehydrogenation of n-butane.
  • n-butane dehydrogenation a gas mixture is obtained which, in addition to butadiene 1-butene, 2-butene and unreacted n-butane, contains minor constituents. Common secondary constituents are hydrogen, water vapor, nitrogen, CO and CO2, methane, ethane, ethene, propane and propene.
  • the composition of the gaseous mixture leaving the first dehydrogenation zone can vary widely depending on the mode of dehydrogenation.
  • the product gas mixture has a comparatively high content of water vapor and carbon oxides.
  • the product gas mixture of the non-oxidative dehydrogenation has a comparatively high content of hydrogen.
  • the product gas stream of the non-oxidative n-butane dehydrogenation typically contains 0.1 to 15% by volume of butadiene, 1 to 15% by volume of 1-butene, 1 to 25% by volume of 2-butene (cis / trans) 2-butene), 20 to 70% by volume of n-butane, 1 to 70% by volume of steam, 0 to 10% by volume of low-boiling hydrocarbons (methane, ethane, ethene, propane and propene), 0.1 to 40% by volume of hydrogen, 0 to 70% by volume of nitrogen and 0 to 5% by volume of carbon oxides.
  • the product gas stream of the non-oxidative dehydrogenation can be fed to the oxidative dehydrogenation without further workup.
  • any impurities may exist in a range in which the effect of the present invention is not inhibited be.
  • n-butenes (1-butene and cis- / trans-2-butene)
  • impurities saturated and unsaturated, branched and unbranched hydrocarbons such.
  • methane, ethane, ethene, acetylene, propane, propene, propyne, n-butane, isobutane, isobutene, n-pentane and dienes such as 1, 2-butadiene may be mentioned.
  • the amounts of impurities are generally 70% or less, preferably 30% or less, more preferably 10% or less, and most preferably 1% or less.
  • the concentration of linear monoolefins having 4 or more carbon atoms (n-butenes and higher homologs) in the starting gas is not particularly limited; it is generally 35.00-99.99 vol.%, preferably 71.00-99.0 vol.%, and more preferably 75.00-95.0 vol.%.
  • a gas mixture which has a molar oxygen: n-butenes ratio of at least 0.5. Preference is given to operating at an oxygen: n-butenes ratio of 0.55 to 10.
  • the starting material gas can be mixed with oxygen or an oxygen-containing gas, for example air, and, if appropriate, additional inert gas or steam. The resulting oxygen-containing gas mixture is then fed to the oxydehydrogenation.
  • the molecular oxygen-containing gas of the present invention is a gas generally comprising more than 10% by volume, preferably more than 15% by volume, and more preferably more than 20% by volume of molecular oxygen, and specifically, it is preferably air.
  • the upper limit of the content of molecular oxygen is generally 50% by volume or less, preferably 30% by volume or less, and more preferably 25% by volume or less.
  • any inert gases may be present in a range in which the effect of the present invention is not inhibited. Possible inert gases include nitrogen, argon, neon, helium, CO, CO2 and water.
  • the amount of inert gases for nitrogen is generally 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less. In the case of components other than nitrogen, it is generally 10% by volume or less, preferably 1% by volume or less. If this amount becomes too large, it becomes increasingly difficult to supply the reaction with the required oxygen.
  • inert gases such as nitrogen and also water (as water vapor) may be contained.
  • Nitrogen is present to adjust the oxygen concentration and to prevent the formation of an explosive gas mixture, the same applies to water vapor.
  • Water vapor is also present to control the coking of the catalyst and to dissipate the heat of reaction.
  • water (as water vapor) and nitrogen are mixed in the mixed gas and introduced into the reactor.
  • a proportion of 0.2-5.0 (by volume), preferably 0.5-4, and more preferably 0.8-2.5, based on the introduction amount of the aforementioned starting gas is preferably introduced.
  • preference is given to a proportion of 0.1-8.0 (volume fraction), preferably 0.5-5.0, and more preferably 0.8-3.0 based on the introduction amount of the aforementioned starting gas.
  • the content of the starting gas containing the hydrocarbons in the mixed gas is generally 4.0% by volume or more, preferably 6.0% by volume or more, and still more preferably 8.0% by volume or more.
  • the upper limit is 20 vol% or less, preferably 16.0 vol% or less, and more preferably 13.0 vol% or less.
  • the residence time in the reactor in the present invention is not particularly limited, but the lower limit is generally 0.3 s or more, preferably 0.7 s or more, and still more preferably 1.0 s or more.
  • the upper limit is 5.0 seconds or less, preferably 3.5 seconds or less, and more preferably 2.5 seconds or less.
  • the ratio of flow rate of mixed gas, based on the amount of catalyst inside the reactor, is 500-8000 hr.sup.- 1 , preferably 800-4000 hr.sup.- 1 and even more preferably 1200-3500 hr.sup.- 1 .
  • the butene load of the catalyst (expressed in terms of (g catalyst * hour) is generally 0.1 -5.0 hl -1 , preferably 0.2-3.0 hl -1 , and even more preferably 0, in stable operation , 25-1, 0 hl -1
  • the volume and mass of the catalyst refer to the complete catalyst consisting of support and active mass
  • the volume change factor describes the flow difference from reactor inlet to outlet and is based on the flow rate of starting gas at the reactor inlet and the flow rate of product gas on It is expedient to determine it by the ratio of the volume concentration of an inert constituent, ie a constituent which is not reacted in any form in the reactor (for example Ar or N 2), of the reaction gas at the reactor inlet and reactor outlet , 15, preferably 1 - 1, 1, and particularly preferably 1, 01 -1, 08 amount.
  • the product gas stream leaving the oxidative dehydrogenation generally contains, in addition to butadiene, still unreacted n-butane and iso-butane, 2-butene and water vapor. As minor constituents it generally contains carbon monoxide, carbon dioxide, oxygen, nitrogen, methane, ethane, ethene, propane and propene, optionally hydrogen and oxygen-containing hydrocarbons, so-called oxygenates. In general, it contains only small amounts of 1-butene and isobutene.
  • the product gas stream leaving the oxidative dehydrogenation can be 1 to 40% by volume of butadiene, 20 to 80% by volume of n-butane, 0 to 5% by volume of isobutane, 0.5 to 40% by volume of 2 Butene, 0 to 5% by volume of 1-butene, 0 to 70% by volume of steam, 0 to 10% by volume of low-boiling hydrocarbons (methane, ethane, ethene, propane and propene), 0 to 40% by volume of hydrogen, 0 up to 30 vol.% oxygen, 0 to 70 vol.% nitrogen, 0 to 10 vol.% carbon oxides and 0 to 10 vol.% oxygenates.
  • butadiene 20 to 80% by volume of n-butane, 0 to 5% by volume of isobutane, 0.5 to 40% by volume of 2 Butene, 0 to 5% by volume of 1-butene, 0 to 70% by volume of steam, 0 to 10% by volume of low-bo
  • Oxygenates may be, for example, formaldehyde, furan, acetic acid, maleic anhydride, formic acid, methacrolein, methacrylic acid, crotonaldehyde, crotonic acid, propionic acid, acrylic acid, methyl vinyl ketone, styrene, benzaldehyde, benzoic acid, phthalic anhydride, fluorenone, anthraquinone and butyraldehyde.
  • oxygenates can further oligomerize and dehydrogenate on the catalyst surface and in the workup, forming deposits containing carbon, hydrogen and oxygen, hereinafter referred to as coke. These deposits can, for the purpose of cleaning and regeneration, lead to interruptions in the operation of the process and are therefore undesirable.
  • Typical coke precursors include styrene, fluorenone and anthraquinone.
  • the product gas stream at the reactor exit is characterized by a temperature near the temperature at the end of the catalyst bed.
  • the product gas stream is then brought to a temperature of 150-400 ° C, preferably 160-300 ° C, more preferably 170-250 ° C.
  • heat exchanger It is possible to isolate the conduit through which the product gas stream flows to maintain the temperature in the desired range, but use of a heat exchanger is preferred.
  • This heat exchanger system is arbitrary as long as the temperature of the product gas can be maintained at the desired level with this system.
  • a heat exchanger there may be mentioned spiral heat exchangers, plate heat exchangers, double tube heat exchangers, multi-tube heat exchangers, boiler spiral heat exchangers, shell-shell heat exchangers, liquid-liquid contact heat exchangers, air heat exchangers, direct-contact heat exchangers and finned tube heat exchangers.
  • the heat exchanger system should preferably have two or more heat exchangers. If two or more intended heat exchangers are arranged in parallel, and thus a distributed cooling of the product gas obtained in the heat exchangers is made possible, the amount of high-boiling by-products that accumulate in the heat exchangers, and thus their operating time can be extended. As an alternative to the above-mentioned method, the two or more intended heat exchangers may be arranged in parallel. The product gas is supplied to one or more, but not all, heat exchangers, which are replaced after a certain period of operation of other heat exchangers.
  • the cooling can be continued, a portion of the heat of reaction recovered and in parallel, the deposited in one of the heat exchangers high-boiling by-products can be removed.
  • a solvent as long as it is capable of dissolving the high-boiling by-products, can be used without restriction, and as examples thereof, an aromatic hydrocarbon solvent, such as an aromatic hydrocarbon solvent may be used.
  • an aromatic hydrocarbon solvent such as an aromatic hydrocarbon solvent may be used.
  • toluene, xylene, etc. and an alkaline aqueous solvent, such as.
  • the aqueous solution of sodium hydroxide can be used. If the product gas stream contains more than just traces of oxygen, a process step can be used to remove residual oxygen from the product gas stream.
  • the residual oxygen can have a disturbing effect insofar as it can cause butadiene peroxide formation in downstream process steps and can act as an initiator for polymerization reactions.
  • Unstabilized 1,3-butadiene can form dangerous butadiene peroxides in the presence of oxygen.
  • the peroxides are viscous liquids. Their density is higher than that of butadiene. Moreover, since they are only slightly soluble in liquid 1,3-butadiene, they settle on the bottoms of storage containers. Despite their relatively low chemical reactivity, the peroxides are very unstable compounds that can spontaneously decompose at temperatures between 85 and 110 ° C. A special danger exists in the high
  • the oxygen removal is carried out immediately after the oxidative dehydrogenation.
  • a catalytic combustion stage is carried out for this purpose, in which oxygen is reacted with hydrogen added in this stage in the presence of a catalyst. As a result, a reduction in the oxygen content is achieved down to a few traces.
  • the product gas of the 02 removal stage is now brought to an identical temperature level as described for the area behind the ODH reactor.
  • the cooling of the compressed gas is carried out with heat exchangers, which may for example be designed as a tube bundle, spiral or plate heat exchanger.
  • the dissipated heat is preferably used for heat integration in the process.
  • a large part of the high-boiling secondary components and the water can be separated from the product gas stream by cooling.
  • This separation is preferably carried out in a quench.
  • This quench can consist of one or more stages.
  • a method is used in which the product gas is brought directly into contact with the cooling medium and thereby cooled.
  • the cooling medium is not particularly limited, but preferably, water or an alkaline aqueous solution is used.
  • the cooling temperature of the product gas differs depending on the type of temperature of the product gas obtained from the reactor outlet and the cooling medium. In general, depending on the presence and temperature level of a heat exchanger, the product gas can reach a temperature of 100-440 ° C., preferably 140-300 ° C., particularly preferably 170-240 ° C., before the quench inlet.
  • the product gas inlet into the quench must be designed to minimize or prevent clogging due to deposits on and directly in front of the gas inlet.
  • the product gas is brought into contact with the cooling medium in the 1st quench stage. In this case, the cooling medium can be introduced through a nozzle in order to achieve the most efficient possible mixing with the product gas.
  • the quench stage can be used in the quench stage.
  • the coolant inlet into the quench must be designed to minimize or prevent clogging by deposits near the coolant inlet.
  • the product gas in the first quenching stage is cooled to 5-180 ° C, preferably to 30-130 ° C and even more preferably to 60-90 ° C.
  • the temperature of the coolant medium at the inlet may generally be 25-200 ° C, preferably 40-120 ° C, particularly preferably 50-90 ° C.
  • the pressure in the first quenching step is not particularly limited, but is generally 0.01 to 4 bar (g), preferably 0.1 to 2 bar (g), and more preferably 0.2 to 1 bar (g).
  • the cooling medium used in the cooling tower is often used in a circulating manner, which can lead to blockages due to solid precipitation if the production of conjugated dienes continues continuously.
  • the recycle stream of the cooling medium in liters per hour based on the mass flow of butadiene in grams per hour can generally be 0.0001 -5 l / g, preferably 0.001-1 l / g and particularly preferably 0.002-0.2 l / g.
  • the redemption of by-products of the ODH reaction, for example acetic acid, MSA, etc. in a cooling medium such as water is better at elevated pH than at low pH. Since the dissolution of by-products such as the above-mentioned pH of, for example, water lowers, the pH can be kept constant or increased by adding an alkaline medium. In general, the pH in the bottom of the first quenching stage is maintained between 2-14, preferably between 3-13, more preferably between 4-12.
  • the temperature of the cooling medium in the bottom can generally be 27-210.degree. C., preferably 45-130.degree. C., particularly preferably 55-95.degree. Since the loading of the cooling medium with secondary components increases over time, a portion of the loaded cooling medium can be withdrawn from circulation and the circulating volume can be kept constant by adding unladen cooling medium.
  • the ratio of effluent amount and added amount depends on the vapor loading of the product gas and the product gas temperature at the end of the first quenching stage. When the cooling medium is water, the amount of addition in the first quenching stage is generally lower than the discharge amount.
  • the cooled and depleted in secondary components product gas stream can now be fed to a second quenching stage. In this he can now be brought into contact again with a cooling medium.
  • the product gas is cooled to 5-100 ° C, preferably 15-85 ° C and even more preferably 30-70 ° C, to the gas exit of the second quench stage.
  • the cooling Medium can be supplied in countercurrent to the product gas.
  • the temperature of the coolant medium at the coolant inlet may be 5-100 ° C, preferably 15-85 ° C, particularly preferably 30-70 ° C.
  • the pressure in the second quenching stage is not particularly limited, but is generally 0.01 to 4 bar (g), preferably 0.1 to 2 bar (g), and more preferably 0.2 to 1 bar (g).
  • the cooling medium used in the cooling tower is often used in a circulating manner so that blockages due to solid precipitation can occur if the production of conjugated dienes is continued continuously.
  • the recycle flow of the cooling medium in liters per hour based on the mass flow of butadiene in grams per hour may generally be 0.0001 -5 l / g, preferably 0.0001 -1 l / g and more preferably 0.002-0.2 l / g.
  • the redemption of by-products of the ODH reaction, for example acetic acid, MSA, etc. in a cooling medium such as water is better at elevated pH than at low pH.
  • the pH can be kept constant or increased by adding an alkaline medium.
  • the pH in the bottom of the second quenching stage is kept between 1 and 14, preferably between 2 and 12, particularly preferably between 3 and 1.
  • the more basic the better the redemption of some by-products.
  • very high pH values lead to the dissolution of by-products such as CO2 and thus to a very high consumption of the alkaline medium.
  • the temperature of the cooling medium in the bottom can generally be 20-210 ° C., preferably 35-120 ° C., particularly preferably 45-85 ° C. Since the loading of the cooling medium with secondary components increases over time, a portion of the loaded cooling medium can be withdrawn from circulation and the circulating amount can be kept constant by adding unladen cooling medium.
  • the ratio of effluent amount and addition amount depends on the vapor loading of the product gas and the product gas temperature at the end of the first quenching stage. When the cooling medium is water, the amount of addition in the first quenching stage is generally larger than the discharge amount.
  • internals in the second quenching stage may be present.
  • Such internals include, for example, bell, centrifugal and / or sieve trays, structured packing columns, e.g. B.
  • Sheet metal packings with a specific surface area of 100 to 1000 m2 / m3 such as Mellapak® 250 Y, and packed columns.
  • the cycles of the two quench stages can be both separated from each other and also connected to each other.
  • the desired temperature of the circulating streams can be adjusted by means of suitable heat exchangers.
  • suitable structural measures such as the installation of a demister, can be taken.
  • high-boiling substances which are not separated from the product gas in the quench by further structural measures, such as gas Washes, are removed from the product gas.
  • a gas stream is obtained in which n-butane, 1-butene, 2-butenes, butadiene, optionally oxygen, hydrogen, water vapor, small amounts of methane, ethane, ethene, propane and propene, isobutane, carbon oxides and inert gases remain , Furthermore, traces of high-boiling components can remain in this product gas stream, which were not quantitatively separated in the quench.
  • the product gas stream from the quench is compressed in at least one first compression stage and subsequently cooled, with at least one condensate stream comprising water condensing out and a gas stream containing n-butane, 1-butene, 2-butenes, butadiene, optionally hydrogen, water vapor, in small amounts Methane, ethane, ethene, propane and propene, iso-butane, carbon oxides and inert gases, optionally oxygen and hydrogen remains.
  • the compression can be done in one or more stages. Overall, a pressure in the range of 1, 0 to 4.0 bar (absolute) is compressed to a pressure in the range of 3.5 to 20 bar (absolute).
  • the condensate stream can therefore also comprise a plurality of streams in the case of multistage compression.
  • the condensate stream is generally at least 80 wt .-%, preferably at least 90 wt .-% of water and also contains minor amounts of low boilers, C4 hydrocarbons, oxygenates and carbon oxides.
  • Suitable compressors are, for example, turbo, rotary piston and reciprocating compressors.
  • the compressors can be driven, for example, with an electric motor, an expander or a gas or steam turbine.
  • Typical compression ratios (outlet pressure: inlet pressure) per compressor stage are between 1, 5 and 3.0, depending on the design.
  • the cooling of the compressed gas is carried out with heat exchangers, which may for example be designed as a tube bundle, spiral or plate heat exchanger.
  • coolant cooling water or heat transfer oils are used in the heat exchangers.
  • air cooling is preferably used using blowers.
  • the butadiene, butene, butane, inert gases and optionally carbon oxides, oxygen, hydrogen and low-boiling hydrocarbons (methane, ethane, ethene, propane, propene) and small amounts of oxygenates containing stream is fed as output stream of further treatment.
  • the separation of the low-boiling secondary constituents from the product gas stream can be carried out by customary separation processes such as distillation, membrane process, absorption or adsorption.
  • the product gas mixture can be passed through a membrane which is generally designed as a tube and which is permeable only to molecular hydrogen.
  • the thus separated molecular hydrogen can be used, if necessary, at least partially in a dehydrogenation or other recycling be supplied, for example, be used to generate electrical energy in fuel cells.
  • the carbon dioxide contained in the product gas stream can be separated by CO2 gas scrubbing.
  • the carbon dioxide gas scrubber may be preceded by a separate combustion stage in which carbon monoxide is selectively oxidized to carbon dioxide.
  • the non-condensable or low-boiling gas constituents such as hydrogen, oxygen, carbon oxides, the easily boiling hydrocarbons (methane, ethane, ethene, propane, propene) and inert gas, such as, if appropriate, nitrogen in an absorption / desorption Cycle separated by means of a high-boiling absorbent, wherein a C4 product gas stream is obtained, which consists essentially of the C4 hydrocarbons.
  • the C4 product gas stream consists of at least 80% by volume, preferably at least 90% by volume, more preferably at least 95% by volume, of the C4 hydrocarbons, essentially n-butane, 2-butene and butadiene.
  • the product gas stream after prior removal of water is contacted with an inert absorbent and the C4 hydrocarbons are absorbed in the inert absorbent, wherein C4 hydrocarbons laden absorbent and the other gas constituents containing exhaust gas are obtained.
  • the C4 hydrocarbons are released from the absorbent again.
  • the absorption stage can be carried out in any suitable absorption column known to the person skilled in the art. Absorption can be accomplished by simply passing the product gas stream through the absorbent. But it can also be done in columns or in rotational absorbers. It can be used in cocurrent, countercurrent or cross flow. Preferably, the absorption is carried out in countercurrent. Suitable absorption columns are z. B.
  • tray columns with bell, centrifugal and / or sieve tray columns with structured packings, eg. B. Sheet metal packings with a specific surface area of 100 to 1000 m 2 / m 3 as Mellapak® 250 Y, and packed columns.
  • structured packings eg. B. Sheet metal packings with a specific surface area of 100 to 1000 m 2 / m 3 as Mellapak® 250 Y, and packed columns.
  • trickle and spray towers, graphite block absorbers, surface absorbers such as thick-film and thin-layer absorbers, as well as rotary columns, dishwashers, cross-flow scrubbers and rotary scrubbers are also suitable.
  • an absorption column is fed in the lower region of the butadiene, butene, butane, and / or nitrogen and optionally oxygen, hydrogen and / or carbon dioxide-containing material stream.
  • the solvent and optionally water-containing material stream is abandoned.
  • Inert adsorbents used in the absorption stage are generally high-boiling non-polar solvents in which the C4-hydrocarbon mixture to be separated off has a pronounced lent higher solubility than the other gas components to be separated off.
  • Suitable absorbents are relatively nonpolar organic solvents, for example aliphatic Cs to Cis alkanes, or aromatic hydrocarbons, such as the paraffin-derived middle oil fractions, toluene or bulky groups, or mixtures of these solvents, such as 1,2-dimethyl phthalate may be added.
  • Suitable absorbers are also esters of benzoic acid and phthalic acid with straight-chain d-Cs-alkanols, as well as so-called heat transfer oils, such as biphenyl and diphenyl ether, their chlorinated derivatives and triaryl alkenes.
  • a suitable absorbent is a mixture of biphenyl and diphenyl ether, preferably in the azeotropic composition, examples game as the commercially available Diphyl ®. Often, this solvent mixture contains di-methyl phthalate in an amount of 0.1 to 25 wt .-%.
  • Suitable absorbents are octanes, nonanes, decanes, undecanes, dodecanes, tridecanes, tetradecanes, pentadecanes, hexadecanes, heptadecanes and octadecanes, or fractions obtained from refinery streams, which contain the linear alkanes as main components.
  • the solvent used for the absorption is an alkane mixture such as tetradecane (technical C14-C17 cut).
  • an offgas stream is withdrawn, which is essentially inert gas, carbon oxides, optionally butane, butenes, such as 2-butenes and butadiene, optionally oxygen, hydrogen and low-boiling hydrocarbons (for example methane, ethane, ethene, propane, propene) and contains water vapor.
  • This stream can be partially fed to the ODH reactor or 02 removal reactor.
  • the inlet flow of the ODH reactor can be adjusted to the desired C4 hydrocarbon content.
  • the loaded with C4 hydrocarbons solvent stream is passed into a desorption column.
  • the desorption step is carried out by relaxation and / or heating of the loaded solvent.
  • the preferred process variant is the addition of stripping steam and / or the supply of live steam in the bottom of the desorber.
  • the solvent depleted of C4 hydrocarbons may be fed as a mixture together with the condensed vapor (water) to a phase separation, so that the water is separated from the solvent. All apparatuses known to the person skilled in the art are suitable for this purpose. It is also possible to use the separated water from the solvent to produce the stripping steam.
  • the absorbent regenerated in the desorption stage is returned to the absorption stage.
  • the separation is generally not quite complete, so that in the C4 product gas stream - depending on the type of separation - still small amounts or even traces of other gas components, in particular the heavy boiling hydrocarbons, may be present.
  • the volume flow reduction also caused by the separation relieves the subsequent process steps.
  • the C 4 product gas stream consisting essentially of n-butane, butenes, such as 2-butenes and butadiene generally contains from 20 to 80% by volume of butadiene, from 20 to 80% by volume of n-butane, from 0 to 10% by volume. % 1 -butene, and 0 to 50% by volume of 2-butenes, the total amount being 100% by volume. Furthermore, small amounts of iso-butane may be included.
  • the C 4 product gas stream may then be separated by an extractive distillation into a stream consisting essentially of n-butane and 2-butene and a stream consisting of butadiene.
  • the stream consisting essentially of n-butane and 2-butene can be wholly or partly recycled to the C 4 feed of the ODH reactor. Since the butene isomers of this recycle stream consist essentially of 2-butenes and these 2-butenes are generally dehydrogenated oxidatively slower to butadiene than 1-butene, this recycle stream may undergo a catalytic isomerization process prior to delivery to the ODH reactor. In this catalytic process, the isomer distribution can be adjusted according to the isomer distribution present in the thermodynamic equilibrium.
  • the extractive distillation may, for example, as described in "petroleum and coal - natural gas - petrochemistry", Volume 34 (8), pages 343 to 346 or “Ullmann's Encyclopedia of Industrial Chemistry", Volume 9, 4th edition 1975, pages 1 to 18, be performed.
  • the C 4 - product gas stream with an extractant preferably an N-methylpyrrolidone
  • the extraction zone is generally carried out in the form of a wash column which contains trays, fillers or packings as internals. This generally has 30 to 70 theoretical plates, so that a sufficiently good release effect is achieved.
  • the washing column in the column head preferably has a backwashing zone. This backwash zone is used to recover the extractant contained in the gas phase by means of a liquid hydrocarbon reflux, to which the top fraction is condensed beforehand.
  • the mass ratio extractant to C 4 product gas stream in the feed of the extraction zone is generally from 10: 1 to 20: 1.
  • the extractive distillation is preferably carried out at a bottom temperature in the range from 100 to 250 ° C., in particular at a temperature in the range from 110 to 210 ° C., a top temperature in the range from 10 to 100 ° C., in particular in the range from 20 to 70 ° C. ° C and a pressure in the range of 1 to 15 bar, in particular operated in the range of 3 to 8 bar.
  • the extractive distillation column preferably has from 5 to 70 theoretical plates.
  • Suitable extractants are butyrolactone, nitriles such as acetonitrile, propionitrile, methoxypropionitrile, ketones such as acetone, furfural, N-alkyl-substituted lower aliphatic acid amides such as dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, N-formylmorpholine, N-alkyl-substituted cyclic acid amides (lactams) such as N Alkylpyrrolidones, especially N- Methyl pyrrolidone (NMP).
  • NMP N- Methyl pyrrolidone
  • alkyl-substituted lower aliphatic acid amides or N-alkyl-substituted cyclic acid amides are used.
  • Particularly advantageous are dimethylformamide, acetonitrile, furfural and in particular NMP.
  • Particularly suitable is NMP, preferably in aqueous solution, preferably with 0 to 20 wt .-% water, particularly preferably with 7 to 10 wt .-% water, in particular with 8.3 wt .-% water.
  • the overhead product stream of the extractive distillation column contains essentially butane and butenes and in small amounts of butadiene and is taken off in gaseous or liquid form.
  • the stream consisting essentially of n-butane and 2-butene contains from 50 to 100% by volume of n-butane, from 0 to 50% by volume of 2-butene and from 0 to 3% by volume of further constituents, such as isobutane, Isobutene, propane, propene and Cs + hydrocarbons.
  • a stream containing the extractant, water, butadiene and in small amounts butene and butane is obtained, which is fed to a distillation column. In this will be recovered overhead or as a side take butadiene.
  • an extractant and water-containing stream is obtained, wherein the composition of the extractant and water-containing stream corresponds to the composition as it is added to the extraction.
  • the extractant and water-containing stream is preferably returned to the extractive distillation.
  • the extraction solution is transferred to a desorption zone, wherein the butadiene is desorbed from the extraction solution.
  • the desorption zone can be designed, for example, in the form of a wash column which has 2 to 30, preferably 5 to 20 theoretical stages and, if appropriate, a backwashing zone with, for example, 4 theoretical stages. This backwash zone is used to recover the extractant contained in the gas phase by means of a liquid hydrocarbon reflux, to which the top fraction is condensed beforehand.
  • a liquid hydrocarbon reflux to which the top fraction is condensed beforehand.
  • the distillation is preferably carried out at a bottom temperature in the range of 100 to 300 ° C, in particular in the range of 150 to 200 ° C and a top temperature in the range of 0 to 70 ° C, in particular in the range of 10 to 50 ° C.
  • the pressure in the distillation column is preferably in the range of 1 to 10 bar. In general, in the desorption zone, reduced pressure and / or elevated temperature prevails over the extraction zone.
  • the product stream obtained at the top of the column generally contains 90 to 100% by volume of butadiene, 0 to 10% by volume of 2-butene and 0 to 10% by volume of n-butane and isobutane.
  • a further distillation according to the prior art can be carried out.
  • the invention is further illustrated by the following examples. Examples
  • the original temperature was kept at 60 ° C.
  • the gas inlet temperature of the spray tower was 300 ° C, the gas outlet temperature 1 10 ° C.
  • the powder obtained had a particle size (d 50) of less than 40 ⁇ m.
  • the resulting powder was mixed with 1 wt .-% graphite, compacted twice with 9 bar pressing pressure and comminuted through a sieve with a mesh size of 0.8 mm.
  • the split was again mixed with 2% by weight graphite and the mixture mixed with a Kilian S100
  • the calcined tablets were ground to a powder.
  • the nozzle was installed in such a way that the spray cone wetted the support body carried in the drum in the upper half of the unrolling section
  • the finely powdered precursor material was introduced into the drum via a powder screw, the point at which the powder was added within the rolling line, but the powder addition was dosed so that a uniform distribution of the powder on the Ob
  • the resulting coated catalyst from the precursor material and the carrier body was dried in a drying oven at 300 ° C. for 3 hours.
  • the Miniplant reactor was a salt bath reactor having a length of 500 cm and an inner diameter of 29.7 mm and a thermowell having an outer diameter of 6 mm.
  • the reaction tube was charged with the catalyst.
  • On a catalyst chair sat a 10 cm long debris consisting of 60 g steatite rings of geometry 7 mm x 4 mm x 7 mm (outer diameter x inner diameter x length).
  • This was followed by 2710 g of an undiluted coated catalyst (bed height 384 cm, 2552 ml bulk volume in the reactor) in the form of hollow cylinders of the dimensions 7 mm ⁇ 4 mm ⁇ 3 mm (outside diameter ⁇ inside diameter ⁇ length).
  • the catalyst bed was followed by an 85 cm long feed consisting of 487 g of steatite rings of geometry 7 mm ⁇ 4 mm ⁇ 7 mm (outer diameter ⁇ inner diameter ⁇ length).
  • the reaction tube was tempered over its entire length with a circulating salt bath at a temperature Tsaizbad of 390 ° C.
  • the reaction starting gas mixture was a mixture of a total of 8% by volume of 1%, cis-2 and trans-2-butenes, 2% by volume of butanes (n- and isobutane), 8.5% by volume of oxygen, 12% by volume of water and 69.5% by volume of nitrogen were used.
  • the load on the reaction tube was 5520 Nl / h of total gas.
  • the salt bath temperature was constant at 390 ° C.
  • the hotspot temperature averaged around 439 ° C and was in the front third of the catalyst bed.
  • the temperature at the end of the bed averaged around 397 ° C.
  • Pressure was measured at the reactor inlet (pi) and at the reactor outlet (P2).
  • the yield of 1,3-butadiene, based on all butenes, and the formation of styrene, anthraquinone and fluorenone in% by volume, based also on all butenes, were determined by gas chromatography.
  • the yield of the component X is calculated as follows
  • Trial 1 As can be seen from Table 1, the formation of the coke precursors styrene, anthraquinone and fluorenone increases markedly above 1.3 bar with increasing pressure. The increase (12.5 to 21, 2%) is disproportionate, since the yield of butadiene only increases moderately (4.6%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft einen Katalysator, der erhältlich ist aus einem Katalysator-Vorläufer umfassend ein katalytisch aktives, Molybdän und mindestens ein weiteres Metall enthaltendes Multimetalloxid der allgemeinen Formel (I) Mo12BiaFebCocNidCreX1 fX2 gOx, in der die Variablen nachfolgende Bedeutung aufweisen: X1 = W, Sn, Mn, La, Ce, Ge, Ti, Zr, Hf, Nb, P, Si, Sb, Al, Cd und/oder Mg; X2 = Li, Na, K, Cs und/oder Rb, a = 0,1 bis 7, vorzugsweise 0,3 bis 1,5; b = 0 bis 5, vorzugsweise 2 bis 4; c = 0 bis 10, vorzugsweise 3 bis 10; d = 0 bis 10; e = 0 bis 5, vorzugsweise 0,1 bis 2; f = 0 bis 24, vorzugsweise 0,1 bis 2; g = 0 bis 2, vorzugsweise 0,01 bis 1; und x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (I) bestimmt wird, dadurch gekennzeichnet, dass der Katalysator die Form eines Hohlzylinders aufweist, wobei der Innendurchmesser das 0,2 bis 0,8-fache des Außendurchmessers und die Länge das 0,5 bis 2,5-fache des Außendurchmessers ist, und dass der Katalysatorvorläufer keinen Porenbildner enthält.

Description

Verfahren zur oxidativen Dehydrierung von n-Butenen zu Butadien Beschreibung Die Erfindung betrifft einen Katalysator, insbesondere einen Schalenkatalysator zur oxidativen Dehydrierung von n-Butenen zu Butadien, dessen Verwendung sowie ein Verfahren zur oxidativen Dehydrierung von n-Butenen zu Butadien.
Butadien ist eine bedeutende Grundchemikalie und wird beispielsweise zur Herstellung von Synthesekautschuken (Butadien-Homopolymere, Styrol-Butadien-Kautschuk oder Nitril-
Kautschuk) oder zur Herstellung von thermoplastischen Terpolymeren (Acrylnitril-Butadien- Styrol-Copolymere) eingesetzt. Butadien wird ferner zu Sulfolan, Chloropren und 1 ,4-Hexa- methylendiamin (über 1 ,4-Dichlorbuten und Adipinsäuredinitril) umgesetzt. Durch Dimerisierung von Butadien kann ferner Vinylcyclohexen erzeugt werden, welches zu Styrol dehydriert werden kann.
Butadien kann durch thermische Spaltung (Steam-Cracken) gesättigter Kohlenwasserstoffe hergestellt werden, wobei üblicherweise von Naphtha als Rohstoff ausgegangen wird. Beim Steam-Cracken von Naphtha fällt ein Kohlenwasserstoff-Gemisch aus Methan, Ethan, Ethen, Acetylen, Propan, Propen, Propin, Allen, Butanen, Butenen, Butadien, Butinen, Methylallen, Cs- und höheren Kohlenwasserstoffen an.
Butadien kann auch durch oxidative Dehydrieung von n-Butenen (1 -Buten und/oder 2-Buten) erhalten werden. Als Ausgangsgasgemisch für die oxidative Dehydrierung von n-Butenen zu Butadien kann jedes beliebige n-Butene enthaltende Gemisch benutzt werden. Beispielsweise kann eine Fraktion verwendet werden, die als Hauptbestandteil n-Butene (1 -Buten und/oder 2- Buten) enthält und aus der C4-Fraktion eines Naphtha-Crackers durch Abtrennen von Butadien und Isobuten erhalten wurde. Des Weiteren können auch Gasgemische als Ausgangsgas eingesetzt werden, die 1 -Buten, cis-2-Buten, trans-2-Buten oder deren Gemische umfassen und durch Dimerisierung von Ethylen erhalten wurden. Ferner können als Ausgangsgas n-Butene enthaltende Gasgemische eingesetzt werden, die durch katalytisches Wirbelschichtcracken (Fluid Catalytic Cracking, FCC) erhalten wurden. n-Butene enthaltende Gasgemische, die als Ausgangsgas in der oxidativen Dehydrierung von n-Butenen zu Butadien eingesetzt werden, können auch durch nicht-oxidative Dehydrierung von n-Butan enthaltenden Gasgemischen hergestellt werden. WO2005/063658 offenbart ein Verfahren zur Herstellung von Butadien aus n-Butan mit den Schritten
A) Bereitstellung eines n-Butan enthaltenden Einsatzgasstroms a;
B) Einspeisung des n-Butan enthaltenden Einsatzgasstroms a in mindestens eine erste De- hydrierzone und nicht-oxidative katalytische Dehydrierung von n-Butan, wobei ein Produkt- gasstrom b enthaltend n-Butan, 1 -Buten, 2-Buten, Butadien, Wasserstoff, leichtsiedende Nebenbestandteile und gegebenenfalls Wasserdampf erhalten wird;
C) Einspeisung des Produktgasstroms b der nicht-oxidativen katalytischen Dehydrierung und eines sauerstoffhaltigen Gases in mindestens eine zweite Dehydrierzone und oxidative Dehydrierung von 1 -Buten und 2-Buten, wobei ein Produktgasstrom c enthaltend n-Butan, 2-Buten, Butadien, Wasserstoff, leichtsiedende Nebenbestandteile und Wasserdampf erhalten wird, welcher einen höheren Gehalt an Butadien als der Produktgasstrom b aufweist; D) Abtrennung von Wasserstoff, der leichtsiedenden Nebenbestandteile und von Wasserdampf, wobei ein C4-Produktgasstrom d im Wesentlichen bestehend aus n-Butan, 2-Buten und Butadien erhalten wird;
E) Trennung des C4-Produktgasstroms d in einen im Wesentlichen aus n-Butan und 2-Buten bestehenden Rückführstrom e1 und einen im Wesentlichen aus Butadien bestehenden Stroms e2 durch Extraktivdestillation und Rückführung des Stroms e1 in die erste Dehydrierzone.
Dieses Verfahren zeichnet sich durch eine besonders effektive Ausnutzung der Rohstoffe aus. So werden Verluste des Rohstoffs n-Butan durch Rückführung von nicht umgesetztem n-Butan in die Dehydrierung minimiert. Durch die Koppelung von nicht-oxidativer katalytischer Dehydrierung und oxidativer Dehydrierung wird eine hohe Butadien-Ausbeute erzielt. Das Verfahren ist im Vergleich zur Erzeugung von Butadien durch Cracken durch eine hohe Selektivität gekennzeichnet. Es fallen keine Koppelprodukte an. Es entfällt die aufwendige Abtrennung von Butadien aus dem Produktgasgemisch des Crackprozesses.
WO2009/124945 offenbart einen Schalenkatalysator für die oxidative Dehydrierung von 1 -Buten und/oder 2-Buten zu Butadien, der erhältlich ist aus einem Katalysator-Vorläufer umfassend
(a) einen Trägerköper,
(b) eine Schale enthaltend (i) ein katalytisch aktives, Molybdän und mindestens ein weiteres Metall enthaltendes Multimetalloxid der allgemeinen Formel
Moi2BiaCrbX1cFedX2eX3fOy mit
X1 = Co und/oder Ni,
X2 = Si und/oder AI,
X3 = Li, Na, K, Cs und/oder Rb,
0,2 < a < 1 ,
0 < b < 2,
2 < c < 10, 0,5 < d < 10,
0 < e < 10,
0 < f < 0,5 und
y = eine Zahl, die unter der Voraussetzung der Ladungsneutralität durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente bestimmt wird, und (ii) mindestens einen Porenbildner.
Als Trägerkörper für die Schalenkatalysatoren werden Steatitkugeln mit einem Durchmesser von 2 bis 3 mm eingesetzt.
WO 2010/137595 offenbart einen Multimetalloxidkatalysator für die oxidative Dehydrierung von Alkenen zu Dienen, der zumindest Molybdän, Bismut und Cobalt umfasst, der allgemeinen Formel
MoaBibCOcNidFeeXfYgZhSiiOj
In dieser Formel ist X mindestens ein Element aus der Gruppe bestehend aus Magnesium (Mg), Calcium (Ca), Zink (Zn), Cer (Ce) und Samarium (Sm). Y ist mindestens ein Element aus der Gruppe bestehend aus Natrium (Na), Kalium (K), Rubidium (Rb), Cäsium (Cs) und Thallium (Tl). Z ist mindestens ein Element aus der Gruppe bestehend aus Bor (B), Phosphor (P), Arsen (As) und Wolfram (W). a-j stehen für den Atomanteil des jeweiligen Elements, wobei a=12, b = 0,5-7, c = 0-10, d = 0-10, (wobei c+d = 1-10), e = 0,05-3, f = 0-2, g = 0,04-2, h = 0-3 und i = 5-48 sind. Über die Geometrie der Katalysatorformkörper werden keine näheren Angaben ge- macht. In den Ausführungsbeispielen wird ein Katalysator der Zusammensetzung
Moi2Bi5Co2,5Ni2,5Feo,4 ao,35Bo,2Ko,o8Si24 in Form von Tabletten mit einem Durchmesser von 5 mm und einer Höhe von 4 mm in der oxidativen Dehydrierung von n-Butenen zu Butadien eingesetzt. Bei der oxidativen Dehydrierung von n-Butenen zu Butadien können Koksvorläufer gebildet werden, die schließlich zur Verkokung und Deaktivierung des Katalysators und zu Ablagerungen und Verstopfungen in Leitungen und Bauteilen hinter dem Oxidehydrierungsreaktor (ODH- Reaktor) führen können. Solche Koksvorläufer sind beispielsweise Styrol, Anthrachinon und Fluorenon.
Aufgabe der Erfindung ist es, ein Verfahren zur oxidativen Dehydrierung von n-Butenen zu Butadien bereit zu stellen, bei dem weniger Koksvorläufer gebildet werden.
Gelöst wird die Aufgabe durch einen Katalysator, der erhältlich ist aus einem Katalysator- Vorläufer umfassend ein katalytisch aktives, Molybdän und mindestens ein weiteres Metall enthaltendes Multime- talloxid der allgemeinen Formel (I) Moi2BiaFebCOcNidCreX1fX2gOx der die Variablen nachfolgende Bedeutung aufweisen:
X1 = W, Sn, Mn, La, Ce, Ge, Ti, Zr, Hf, Nb, P, Si, Sb, AI, Cd und/oder Mg;
X2 = Li, Na, K, Cs und/oder Rb,
a = 0,1 bis 7, vorzugsweise 0,3 bis 1 ,5;
b = 0 bis 5, vorzugsweise 2 bis 4;
c = 0 bis 10, vorzugsweise 3 bis 10;
d = 0 bis 10;
e = 0 bis 5, vorzugsweise 0,1 bis 2;
f = 0 bis 24, vorzugsweise 0,1 bis 2;
g = 0 bis 2, vorzugsweise 0,01 bis 1 ; und
x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (I) bestimmt wird; dadurch gekennzeichnet, dass der Katalysator die Form eines Hohlzylinders aufweist, wobei der Innendurchmesser das 0,2 bis 0,8-fache des Außendurchmessers und die Länge das 0,5 bis 2,5-fache des Außendurchmessers ist, und dass der Katalysatorvorläufer keinen Porenbildner enthält.
Es wurde überraschender Weise gefunden, dass die Bildung von Koksvorläufern druckabhängig ist. So nimmt die Bildung bestimmter Koksvorläufer wie Styrol, Anthrachinon und Fluorenon bei Drücken am Reaktoreingang oberhalb von 1 ,3 bar absolut überproportional stark zu. Die erfindungsgemäß verwendeten Katalysatoren weisen einen besonders geringen Druckverlust auf, so dass die oxidative Dehydrierung insgesamt bei einem niedrigeren Druck durchgeführt werden kann. Der Einsatz von Porenbildnern kann die Transporteigenschaften im Katalysatorkorn verbessern. Er führt aber zu einem stark erhöhten Aufwand in der Katalysatorproduktion, weil eventuell zusätzliche Prozessschritte eingeführt werden müssen. Weiterhin müssen die Bedingungen der thermischen Nachbehandlung genau überwacht werden, um eine zu schnelle Zersetzung des Porenbildners zu verhindern. Außerdem kann die Abriebsfestigkeit eines Katalysators durch den Einsatz eines Porenbildners stark verringert werden. Abrieb des Katalysators kann sich im Reaktorbett ansammeln und zu einem starken Anstieg des Druckverlusts führen.
Der erfindungsgemäße Katalysator kann ein Vollmaterialkatalysator oder ein Schalenkatalysator sein. Falls er ein Schalenkatalysator ist, weist er einen Trägerkörper (a) und eine Schale (b) enthaltend das katalytisch aktive, Molybdän und mindestens ein weiteres Metall enthaltende Multimetalloxid der allgemeinen Formel (I) auf. Die Schale (b) des Katalysator-Vorläufers enthält keinen Porenbildner. Bevorzugte Katalysatoren weisen die Abmessungen Außendurchmesser x Innendurchmesser x Länge (4 bis 10 mm) x (2 bis 8 mm) x (2 bis 10 mm) auf. Besonders bevorzugte Katalysatoren weisen die Abmessungen Außendurchmesser x Innendurchmesser x Länge (5 bis 8 mm) x (3 bis 5 mm) x (2 bis 6 mm) auf.
Ist der Katalysator ein Schalenkatalysator, so weist der Trägerkörper (a) bevorzugt die Abmessungen Außendurchmesser x Innendurchmesser x Länge (4 bis 10 mm) x (2 bis 8 mm) x (2 bis 10 mm) auf. Besonders bevorzugte weist der Trägerkörper die Abmessungen Außendurchmesser x Innendurchmesser x Länge (5 bis 8 mm) x (3 bis 5 mm) x (2 bis 6 mm) auf. Die Schichtdi- cke D der Schale (b) aus einer Molybdän und mindestens ein weiteres Metall enthaltenden Mul- timetalloxidmasse liegt in der Regel bei 5 bis 1000 μηη. Bevorzugt sind 10 bis 800 μηη, besonders bevorzugt 50 bis 600 μηη und ganz besonders bevorzugt 80 bis 500 μηη.
Der Druckverlust einer Katalysatorschüttung kann über folgende Beziehung charakterisiert wer- den
dp Gv wobei fder Druckverlustbeiwert ist, c/ die charakteristische Länge der Schüttungspartikel, Ap der Druckverlust über die Schüttung, / die Länge der Schüttung, v die Gasgeschwindigkeit und G die Querschnittsbelastung. Die Querschnittsbelastung gibt den Massenstrom an Eduktgas bezogen auf die Querschnittsfläche der Reaktorrohre an. Die Querschnittbelastung beträgt in der Regel 1 -5 kg/(m2s) und der Druckverlust 20-400 mbar pro Meter Schüttungslänge. Bei einer Querschnittsbelastung von 3 kg/(m2s), einer Schüttungslänge von 5 m und einer Gasgeschwindigkeit von 2 m/s weist eine Schüttung des Katalysators im Allgemeinen einen Druckverlust von 100 bis 2000 mbar, bevorzugt von 250 bis 1500 mbar und besonders bevorzugt von 350 bis 1000 mbar auf. Der Quotient f/dp beträgt dann im Allgemeinen 333-6667 nr1, bevorzugt 833- 5000 nr1 und noch mehr bevorzugt 1 167-3333 nr1.
Für die Oxidehydrierung geeignete Katalysatoren basieren im Allgemeinen auf einem Mo-Bi-O- haltigen Multimetalloxidsystem, das in der Regel zusätzlich Eisen enthält. Im Allgemeinen enthält das Katalysatorsystem noch weitere zusätzliche Komponenten aus der 1 . bis 15. Gruppe des Periodensystems, wie beispielsweise Kalium, Cäsium, Magnesium, Zirkon, Chrom, Nickel, Cobalt, Cadmium, Zinn, Blei, Germanium, Lanthan, Mangan, Wolfram, Phosphor, Cer, Aluminium oder Silizium. Auch eisenhaltige Ferrite wurden als Katalysatoren vorgeschlagen.
In einer bevorzugten Ausführungsform enthält das Multimetalloxid Cobalt und/oder Nickel. In einer weiteren bevorzugten Ausführungsform enthält das Multimetalloxid Chrom. In einer weiteren bevorzugten Ausführungsform enthält das Multimetalloxid Mangan. Beispiele für Mo-Bi-Fe-O-haltige Multimetalloxide sind Mo-Bi-Fe-Cr-O- oder Mo-Bi-Fe-Zr-O- haltige Multimetalloxide. Bevorzugte Systeme sind beispielsweise beschrieben in US 4,547,615 (Moi2BiFeo,i Ni8ZrCr3Ko,2Ox und Moi2BiFeo,i Ni8AICr3Ko,20x), US 4,424,141
(Moi2BiFe3Co4,5Ni2,5Po,5Ko,iOx + Si02), DE-A 25 30 959 (Moi2BiFe3Co4,5Ni2,5Cro,5Ko,iOx,
Moi3,75BiFe3Co4,5Ni2,5Geo,5Ko,80x, Moi2BiFe3Co4,5Ni2,5Mno,5Ko,iOx und
Moi2BiFe3Co4,5Ni2,5Lao,5K0,iOx), US 3,91 1 ,039 (Moi2BiFe3Co4,5Ni2,5Sno,5Ko,iOx), DE-A 25 30 959 und DE-A 24 47 825 (Moi2BiFe3Co4,5Ni2,5Wo,5Ko,iOx).
Geeignete Multimetalloxide und deren Herstellung sind weiterhin beschrieben in US 4,423,281 (Moi2BiNi8Pbo,5Cr3Ko,20x und Moi2BibNi7AI3Cro,5Ko,50x), US 4,336,409 (Moi2BiNi6Cd2Cr3Po,5Ox), DE-A 26 00 128 (Moi2BiNio,5Cr3Po,5Mg7,5Ko,iOx + Si02) und DE-A 24 40 329
(Moi2BiCo4,5Ni2,5Cr3Po,5Ko,iOx).
Besonders bevorzugte katalytisch aktive, Molybdän und mindestens ein weiteres Metall enthaltende Multimetalloxide weisen die allgemeine Formel (la) auf:
Moi2BiaFebCOcNidCreX1fX2gOy (la), mit
X1 = Si, Mn und/oder AI,
X2 = Li, Na, K, Cs und/oder Rb,
0,2 < a < 1 ,
0,5 < b < 10,
0 < c < 10,
0 < d < 10,
2 < c + d < 10
0 < e < 2,
0 < f < 10
0 < g < 0,5
y = eine Zahl, die unter der Voraussetzung der Ladungsneutralität durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (la) bestimmt wird.
Bevorzugt sind Katalysatoren, deren katalytisch aktive Oxidmasse von den beiden Metallen Co und Ni nur Co aufweist (d = 0). Bevorzugte ist X1 Si und/oder Mn und X2 ist vorzugsweise K, Na und/oder Cs, besonders bevorzugt ist X2 = K.
Der stochiometrische Koeffizient a in Formel (la) beträgt vorzugsweise 0,4 < a ^ 1 , besonders bevorzugt 0,4 < a ^ 0,95. Der Wert für die Variable b liegt vorzugsweise im Bereich 1 < b ^ 5 und besonders bevorzugt im Bereich 2 < b ^ 4. Die Summe der stöchiometrischen Koeffizienten c + d liegt bevorzugt im Bereich 4 < c + d £ 8, und besonders bevorzugt im Bereich 6 S c + d s 8. Der stochiometrische Koeffizient e liegt bevorzugt im Bereich 0,1 < e S 2, und besonders bevorzugt im Bereich 0,2 < e ^ 1. Der stochiometrische Koeffizient g ist zweckmäßigerweise > 0. Bevorzugt ist 0,01 < g < 0,5 und besonders bevorzugt gilt 0,05 ^ g ^ 0,2. Der Wert für den stochiometrischen Koeffizienten des Sauerstoffs, y, ergibt sich aus der Wertigkeit und Häufigkeit der Kationen unter der Voraussetzung der Ladungsneutralität. Günstig sind erfindungsgemäße Schalenkatalysatoren mit katalytisch aktiven Oxidmassen, deren molares Verhältnis von Co/Ni wenigstens 2:1 , bevorzugt wenigstens 3:1 und besonders bevorzugt we- nigstens 4:1 beträgt. Am besten liegt nur Co vor.
Der Schalenkatalysator wird hergestellt, indem man auf den Trägerkörper mittels eines Bindemittels eine Schicht enthaltend das Molybdän und mindestens ein weiteres Metall enthaltende Multimetalloxid aufbringt, den beschichteten Trägerkörper (Schalenkatalysator-Vorläufer) trock- net und thermisch behandelt.
Die das Multimetalloxid enthaltende Schicht des Schalenkatalysator-Vorläufers enthält vor der abschließenden thermischen Behandlung keine Porenbildner wie Malonsäure, Melamin, Nonylphenolethoxylat, Stearinsäure, Glucose, Stärke, Fumarsäure und Bernsteinsäure.
Erfindungsgemäß zu verwendende feinteilige, Molybdän und mindestens ein weiteres Metall enthaltende Multimetalloxide sind grundsätzlich dadurch erhältlich, dass man von Ausgangsverbindungen der elementaren Konstituenten der katalytisch aktiven Oxidmasse ein inniges Trockengemisch erzeugt und das innige Trockengemisch bei einer Temperatur von 150 bis 650 °C kalziniert.
Herstellung des Katalysators
Herstellung der Multimetalloxidmassen
Zur Herstellung von geeigneten feinteiligen Multimetalloxidmassen geht man von bekannten Ausgangsverbindungen der von Sauerstoff verschiedenen elementaren Konstituenten der gewünschten Multimetalloxidmasse im jeweiligen stochiometrischen Verhältnis aus, und erzeugt aus diesen ein möglichst inniges, vorzugsweise feinteiliges Trockengemisch, welches dann ei- ner thermischen Behandlung (Kalzination) unterworfen wird. Dabei kann es sich bei den Quellen entweder bereits um Oxide handeln, oder um solche Verbindungen, die durch Erhitzen, wenigstens in Anwesenheit von Sauerstoff, in Oxide überführbar sind. Neben den Oxiden kommen daher als Ausgangsverbindungen vor allem Halogenide, Nitrate, Formiate, Oxalate, Acetate, Carbonate oder Hydroxide in Betracht.
Geeignete Ausgangsverbindungen des Molybdäns sind auch dessen Oxoverbindungen (Molyb- date) oder die von diesen abgeleiteten Säuren.
Geeignete Ausgangsverbindungen von Bi, Cr, Fe und Co sind insbesondere deren Nitrate.
Das innige Vermischen der Ausgangsverbindungen kann prinzipiell in trockener Form oder in Form der wässrigen Lösungen oder Suspensionen erfolgen. Eine wässrige Suspension kann beispielsweise durch das Vereinigen einer Lösung, die wenigstens Molybdän enthält, und einer wässrigen Lösung, die die übrigen Metalle enthält, hergestellt werden. Alkalimetalle oder Erdalkalimetalle können in beiden Lösungen vorliegen. Durch Vereinigen der Lösungen wird eine Fällung durchgeführt, die zur Bildung einer Suspension führt. Die Temperatur der Fällung kann höher als Raumtemperatur, bevorzugt von 30 °C bis 95 °C, und besonders bevorzugt von 35 °C bis 80 °C, sein. Die Suspension kann danach über einen gewissen Zeitraum bei erhöhter Temperatur gealtert werden. Der Alterungszeitraum liegt im Allgemeinen zwischen 0 und 24 Stunden, bevorzugt zwischen 0 und 12 Stunden, und besonders bevorzugt zwischen 0 und 8 Stunden. Die Temperatur der Alterung ist im Allgemeinen zwischen 20 °C und 99 °C, bevorzugt zwischen 30 °C und 90 °C, und besonders bevorzugt zwischen
35 °C und 80 °C. Während der Fällung und Alterung der Suspension wird diese im Allgemeinen durch Rühren gemischt. Der pH Wert der gemischten Lösungen oder Suspension liegt im Allgemeinen zwischen pH 1 und pH 12, bevorzugt zwischen pH 2 und pH 1 1 und besonders bevorzugt zwischen pH 3 und pH 10.
Durch Entfernen des Wassers wird ein Feststoff herstellt der eine innige Mischung der zugegebenen Metallkomponenten darstellt. Der Trocknungsschritt kann im Allgemeinen durch Eindampfen, Sprühtrocknen oder Gefriertrocknen oder dergleichen durchgeführt werden. Bevorzugt erfolgt die Trocknung durch Sprühtrocknen. Die Suspension wird hierzu bei erhöhter Tem- peratur mit einem Sprühkopf, dessen Temperatur sich im Allgemeinen bei 120 °C bis 300 °C befindet, zerstäubt und das getrocknete Produkt bei einer Temperatur von >60 °C gesammelt. Die Restfeuchte, bestimmt durch Trocknung des Sprühpulvers bei 120 °C, beträgt im Allgemeinen weniger als 20 Gew.-%, bevorzugt weniger als 15 Gew. % und besonders bevorzugt weniger als 12 Gew. %.
Herstellung von Vollmaterialkatalysatoren
Das Sprühpulver wird in einem weiteren Schritt in einen Formkörper überführt. Als Formungshilfsmittel (Gleitmittel) kommen z.B. Wasser, Bortrifluorid oder Graphit in Betracht. Bezogen auf die zum Katalysatorvorläuferformkörper zu formende Masse werden in der Regel ^ 10 Gew.-%, meist < 6 Gew.-%, vielfach < 4 Gew.- % an Formungshilfsmittel zugesetzt. Üblicherweise beträgt die vorgenannte Zusatzmenge >0,5 Gew.-%. Erfindungsgemäß bevorzugtes Gleithilfsmittel ist Graphit. Die Kalzinierung des Katalysatorvorläuferformkörpers erfolgt in der Regel bei Temperaturen, die 350 °C überschreiten. Normalerweise wird im Rahmen der thermischen Behandlung die Temperatur von 650 °C jedoch nicht überschritten. Erfindungsgemäß vorteilhaft wird im Rahmen der thermischen Behandlung die Temperatur von 600 °C, bevorzugt die Temperatur von 550 °C und besonders bevorzugt die Temperatur von 500 °C nicht überschritten. Ferner wird beim er- findungsgemäßen Verfahren im Rahmen der thermischen Behandlung des Katalysatorvorläuferformkörpers vorzugsweise die Temperatur von 380 °C, mit Vorteil die Temperatur von 400 °C, mit besonderem Vorteil die Temperatur von 420 °C und ganz besonders bevorzugt die Temperatur von 440 °C überschritten. Dabei kann die thermische Behandlung in ihrem zeitli- chen Ablauf auch in mehrere Abschnitte gegliedert sein. Beispielsweise kann zunächst eine thermische Behandlung bei einer Temperatur von 150 bis 350 °C, vorzugsweise von 220 bis 280 °C, und daran anschließend eine thermische Behandlung bei einer Temperatur von 400 bis 600 °C, vorzugsweise von 430 bis 550 °C durchgeführt werden. Normalerweise nimmt die thermische Behandlung des Katalysatorvorläuferformkörpers mehrere Stunden (meist mehr als 5 h) in Anspruch. Häufig erstreckt sich die Gesamtdauer der thermischen Behandlung auf mehr als 10 h. Meist werden im Rahmen der thermischen Behandlung des Katalysatorvorläuferformkörpers Behandlungsdauern von 45 h bzw. 35 h nicht überschritten. Oft liegt die Gesamtbe- handlungsdauer unterhalb von 30 h. Vorzugsweise werden bei der thermischen Behandlung des Katalysatorvorläuferformkörpers 500 °C nicht überschritten und die Behandlungsdauer im Temperaturfenster von >400 °C erstreckt sich auf 5 bis 30 h.
Die Kalzinierung der Katalysatorvorläuferformkörper kann sowohl unter Inertgas als auch unter einer oxidativen Atmosphäre wie z.B. Luft (Gemisch aus Inertgas und Sauerstoff) sowie auch unter reduzierender Atmosphäre (z.B. Gemisch aus Inertgas, NH3, CO und/oder H2 oder Methan) erfolgen. Selbstredend kann die thermische Behandlung auch unter Vakuum ausgeführt werden. Prinzipiell kann die thermische Behandlung der Katalysatorvorläuferformkörper in den unterschiedlichsten Ofentypen wie z.B. beheizbare Umluftkammern, Hordenöfen, Drehrohröfen, Bandkalzinierer oder Schachtöfen durchgeführt werden. Bevorzugt erfolgt die thermische Behandlung der Katalysatorvorläuferformkörper in einer Bandkalziniervorrichtung, wie sie die DE- A 10046957 und die WO 02/24620 empfehlen. Die thermische Behandlung der Katalysatorvorläuferformkörper unterhalb von 350 °C verfolgt in der Regel die thermische Zersetzung der in den Katalysatorvorläuferformkörpern enthaltenen Quellen der elementaren Konstituenten des angestrebten Katalysators. Häufig erfolgt beim erfindungsgemäßen Verfahren diese Zersetzungsphase im Rahmen des Aufheizens auf Temperaturen < 350 °C.
Die katalytisch aktive Multimetalloxidmasse kann Chromoxid enthalten. Als Ausgangsstoffe kommen neben den Oxiden vor allem Halogenide, Nitrate, Formiate, Oxalate, Acetate, Carbo- nate und/oder Hydroxide in Betracht. Die thermische Zersetzung von Chrom(lll)verbindungen zu Chrom(lll)oxid erfolgt unabhängig von der An- oder Abwesenheit von Sauerstoff, hauptsächlich zwischen 70-430 °C über mehrere Chrom(VI)-haltige Zwischenstufen (siehe zum Beispiel J. Therm. Anal. Cal., 72, 2003, 135 und Env. Sei. Tech. 47, 2013, 5858). Die Anwesenheit von Chrom(VI)oxid ist für die katalytische Oxydehydrierung von Alkenen zu Dienen, speziell von Butenen zu Butadien, nicht erforderlich. Auf Grund der Toxizität und Umweltschädlichkeit von Cr(VI)oxid soll die Aktivmasse daher weitgehend frei von Chrom(VI)oxid sein. Der
Chrom(VI)oxid-Gehalt hängt weitgehend von Kalzinationsbedingungen ab, insbesondere der höchsten Temperatur im Kalzinierschritt ab und von dessen Haltedauer. Hier gilt, dass je höher die Temperatur ist und je länger die Haltedauer, desto geringer ist der Gehalt an Chrom(VI)oxid. Der nach der Kalzination erhaltene Formkörper aus katalytisch aktiver Multimetalloxidmasse kann als Vollmaterialkatalysator eingesetzt werden. Der Formkörper aus Multimetalloxidmasse kann weiterhin zur Herstellung eines Schalenkatalysators durch Mahlen in ein feinteiliges Pulver überführt werden, das dann mit Hilfe eines flüssigen Bindemittels auf die äußere Oberfläche eines Trägerkörpers aufgebracht werden kann. Die Feinheit der auf die Oberfläche des Trägerkörpers aufzubringenden katalytisch aktiven Oxidmasse wird dabei selbstredend an die gewünschte Schalendicke angepasst. Herstellung von Schalenkatalysatoren
Für erfindungsgemäße Schalenkatalysatoren geeignete Trägermaterialien sind poröse oder bevorzugt unporöse Aluminiumoxide, Siliciumdioxid, Zirkondioxid, Siliciumcarbid oder Silikate wie Magnesium- oder Aluminiumsilikat (z.B. Steatit des Typs C 220 der Fa. CeramTec). Die Materialien der Trägerkörper sind chemisch inert.
Die Trägermaterialien können porös oder nicht porös sein. Vorzugsweise ist das Trägermaterial nicht porös (Gesamtvolumen der Poren, bezogen auf das Volumen des Trägerkörpers, vorzugsweise -i 1 Vol.-%).
Bevorzugte Hohlzylinder als Trägerkörper weisen eine Länge von 2 bis 10 mm und einen Außendurchmesser von 4 bis 10 mm auf. Die Wanddicke liegt darüber hinaus vorzugsweise bei 1 bis 4 mm. Besonders bevorzugte ringförmige Trägerkörper besitzen eine Länge von 2 bis 6 mm, einen Außendurchmesser von 5 bis 8 mm und eine Wanddicke von 1 bis 2 mm. Ein Bei- spiel sind Ringe der Geometrie 7 mm x 4 mm x 3 mm (Außendurchmesser x Innendurchmesser x Länge) als Trägerkörper.
Die Schichtdicke D aus einer Molybdän und mindestens ein weiteres Metall enthaltenden Mul- timetalloxidmasse liegt in der Regel bei 5 bis 1000 μηη. Bevorzugt sind 10 bis 800 μηη, beson- ders bevorzugt 50 bis 600 μηη und ganz besonders bevorzugt 80 bis 500 μηη.
Das Aufbringen des Molybdän und mindestens ein weiteres Metall enthaltenden Multime- talloxids auf die Oberfläche des Trägerkörpers kann entsprechend den im Stand der Technik beschriebenen Verfahren erfolgen, beispielsweise wie in US-A 2006/0205978 sowie EP-A 0 714 700 beschrieben.
Im Allgemeinen werden die feinteiligen Massen auf die Oberfläche des Trägerkörpers mit Hilfe eines flüssigen Bindemittels aufgebracht. Als flüssiges Bindemittel kommt z.B. Wasser, ein organisches Lösungsmittel oder eine Lösung einer organischen Substanz (z.B. eines organischen Lösungsmittels) in Wasser oder in einem organischen Lösungsmittel in Betracht.
Besonders vorteilhaft wird als flüssiges Bindemittel eine Lösung bestehend aus 20 bis 95 Gew.-% Wasser und 5 bis 80 Gew.-% einer organischen Verbindung verwendet. Vorzugsweise beträgt der organische Anteil an den vorgenannten flüssigen Bindemitteln 5 bis 50 Gew.-% und besonders bevorzugt 8 bis 30 Gew.-%.
Bevorzugt sind generell solche organischen Bindemittel bzw. Bindemittelanteile, deren Siedepunkt oder Sublimationstemperatur bei Normaldruck (1 atm) > 100 °C, vorzugsweise > 150 °C beträgt. Ganz besonders bevorzugt liegt der Siedepunkt oder Sublimationspunkt solcher organischen Bindemittel bzw. Bindemittelanteile bei Normaldruck gleichzeitig unterhalb der im Rahmen der Herstellung des Molybdän enthaltenden feinteiligen Multimetalloxids angewandten höchsten Kalzinationstemperatur. Üblicherweise liegt diese höchste Kalzinationstemperatur bei < 600 °C, häufig bei < 500 °C.
Besonders bevorzugte flüssige Bindemittel sind Lösungen, die aus 20 bis 95 Gew.-% Wasser und 5 bis 80 Gew.-% Glycerin bestehen. Vorzugsweise beträgt der Glycerinanteil in diesen wässrigen Lösungen 5 bis 50 Gew.-% und besonders bevorzugt 8 bis 35 Gew.-%.
Das Aufbringen des Molybdän enthaltenden feinteiligen Multimetalloxids kann in der Weise erfolgen, dass man die feinteilige Masse aus Molybdän enthaltendem Multimetalloxid in dem flüssigen Bindemittel dispers verteilt und die dabei resultierende Suspension auf bewegte und gegebenenfalls heiße Trägerkörper aufsprüht, wie beschrieben in DE-A 1642921 , DE-A 2106796 und die DE-A 2626887. Nach Beendigung des Aufsprühens kann, wie in DE-A 2909670 beschrieben, durch Überleiten von heißer Luft der Feuchtigkeitsgehalt der resultierenden Schalenkatalysatoren verringert werden.
Bevorzugt wird man aber die Trägerkörper zunächst mit dem flüssigen Bindemittel befeuchten und nachfolgend die feinteilige Masse aus Multimetalloxid dadurch auf die Oberfläche des mit Bindemittel angefeuchteten Trägerkörpers aufbringen, dass man die befeuchteten Trägerkörper in der feinteiligen Masse wälzt. Zur Erzielung der gewünschten Schichtdicke wird das vorstehend beschriebene Verfahren vorzugsweise mehrmals wiederholt, d. h. der grundbeschichtete Trägerkörper wird wiederum befeuchtet und dann durch Kontakt mit trockener feinteiliger Masse beschichtet.
Für eine Durchführung des Verfahrens im technischen Maßstab empfiehlt sich die Anwendung des in der DE-A 2909671 offenbarten Verfahrens, jedoch vorzugsweise unter Verwendung der in der EP-A 714700 empfohlenen Bindemittel. D.h., die zu beschichtenden Trägerkörper wer- den in einen vorzugsweise geneigten (der Neigungswinkel beträgt in der Regel 30 bis 90°) rotierenden Drehbehälter (z.B. Drehteller oder Dragierkessel) gefüllt. Der rotierende Drehbehälter führt die hohlzylindrischen Trägerkörper unter zwei in bestimmtem Abstand aufeinander folgend angeordneten Dosiervorrichtungen hindurch. Die erste der beiden Dosiervorrichtungen ist zweckmäßiger Weise eine Düse, durch die die im rotierenden Drehteller rollenden Trägerkörper mit dem zu verwendenden flüssigen Bindemittel besprüht und kontrolliert befeuchtet werden. Die zweite Dosiervorrichtung befindet sich außerhalb des Zerstäubungskegels des eingesprühten flüssigen Bindemittels und dient dazu, die feinteilige Masse zuzuführen, beispielsweise über eine Schüttelrinne. Die kontrolliert befeuchteten Trägerkörper nehmen das zugeführte Aktivmassenpulver auf, das sich durch die rollende Bewegung auf der äußeren Oberfläche der zylin- derförmigen Trägerkörper zu einer zusammenhängenden Schale verdichtet.
Bei Bedarf durchläuft der so grundbeschichtete Trägerkörper im Verlauf der darauf folgenden Umdrehung wiederum die Sprühdüse, wird dabei kontrolliert befeuchtet, um im Verlauf der Wei- terbewegung eine weitere Schicht feinteiliger Masse aufnehmen zu können usw.. Eine Zwischentrocknung ist in der Regel nicht erforderlich. Die Entfernung des flüssigen Bindemittels kann, teilweise oder vollständig, durch abschließende Wärmezufuhr, z.B. durch Einwirkung von heißen Gasen, wie N2 oder Luft, erfolgen. Ein besonderer Vorzug der vorstehend beschriebe- nen Ausführungsform des Verfahrens besteht darin, dass in einem Arbeitsgang Schalenkatalysatoren mit schichtförmig aus zwei oder mehr unterschiedlichen Massen bestehenden Schalen hergestellt werden können. Bemerkenswerterweise bewirkt das Verfahren dabei sowohl eine voll befriedigende Haftung der aufeinander folgenden Schichten aneinander, als auch der Grundschicht auf der Oberfläche des Trägerkörpers. Dies gilt auch im Fall von ringförmigen Trägerkörpern.
Die Temperaturen, die notwendig sind um das Entfernen des Haftvermittlers zu bewirken, liegen unterhalb der höchsten Kalzinationstemperatur des Katalysators, im Allgemeinen zwischen 200 °C und 600 °C. Bevorzugt wird der Katalysator auf 240 °C bis 500 °C erhitzt, und beson- ders bevorzugt auf Temperaturen zwischen 260 °C und 400 °C. Die Zeit zum Entfernen des
Haftvermittlers kann mehrere Stunden betragen. Der Katalysator wird im Allgemeinen zwischen 0.5 und 24 Stunden auf die genannte Temperatur erhitzt um den Haftvermittler zu entfernen. Bevorzugt ist die Zeit zwischen 1.5 und 8 Stunden, und besonders bevorzugt zwischen 2 und 6 Stunden. Eine Umströmung des Katalysators mit einem Gas kann das Entfernen des Haftver- mittlers beschleunigen. Das Gas ist bevorzugt Luft oder Stickstoff, und besonders bevorzugt Luft. Das Entfernen des Haftvermittlers kann zum Beispiel in einem gasdurchströmten Ofen oder in einer geeigneten Trocknungsapparatur, beispielsweise einem Bandtrockner, erfolgen.
Oxidative Dehydrierung (Oxidehydrierung, ODH)
Gegenstand der vorliegenden Erfindung ist auch die Verwendung der erfindungsgemäßen Vollmaterialkatalysatoren und Schalenkatalysatoren in einem Verfahren zur oxidativen Dehydrierung von 1 -Buten und/oder 2-Buten zu Butadien. Die erfindungsgemäßen Katalysatoren zeichnen sich durch eine hohe Aktivität, insbesondere aber auch durch eine hohe Selektivität bezüglich der Bildung von 1 ,3-Butadien aus 1 -Buten und 2-Buten aus.
Gegenstand der Erfindung ist auch ein Verfahren zur oxidativen Dehydrierung von n-Butenen zu Butadien, bei dem ein n-Butene enthaltendes Ausgangsgasgemisch mit einem Sauerstoff enthaltenden Gas und gegebenenfalls zusätzlichem Inertgas oder Wasserdampf gemischt und in einem Festbettreaktor bei einer Temperatur von 220 bis 490 °C mit einem in einem Katalysatorfestbett angeordneten Katalysator in Kontakt gebracht wird, wobei der Katalysator erhältlich ist aus einem Katalysator-Vorläufer umfassend ein katalytisch aktives, Molybdän und mindestens ein weiteres Metall enthaltendes Multimetalloxid der allgemeinen Formel (I) Moi2BiaFebCOcNidCreX1fX2gOx (I), in der die Variablen nachfolgende Bedeutung aufweisen: X1 = W, Sn, Mn, La, Ce, Ge, Ti, Zr, Hf, Nb, P, Si, Sb, AI, Cd und/oder Mg;
X2 = Li, Na, K, Cs und/oder Rb,
a = 0,4 bis 5, vorzugsweise 0,5 bis 2;
b = 0 bis 5, vorzugsweise 2 bis 4;
c = 0 bis 10, vorzugsweise 3 bis 10;
d = 0 bis 10;
e = 0 bis 10, vorzugsweise 0,1 bis 4;
f = 0 bis 24, vorzugsweise 0,1 bis 2;
g = 0 bis 2, vorzugsweise 0,01 bis 1 ; und
x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (I) bestimmt wird; dadurch gekennzeichnet, dass der Katalysator die Form eines Hohlzylinders aufweist, wobei der Innendurchmesser das 0,2 bis 0,8-fache des Außendurchmessers und die Länge das 0,5 bis 2,5-fache des Außendurchmessers beträgt, und dass der Katalysator-Vorläufer keinen Porenbildner enthält.
Die erfindungsgemäß verwendeten Vollmaterial- und Schalenkatalysatoren zeichnen sich durch einen geringen Druckverlust aus. Dadurch kann die oxidative Dehydrierung bei einem niedrigen Druck betrieben werden, wodurch der Bildung von Koks-Vorläufern und Koksablagerungen am Katalysator und in der Aufarbeitung entgegengewirkt wird. Im Allgemeinen liegt der Reaktoreingangsdruck bei < 3 bar (ü), bevorzugt < 2 bar (ü) und besonders bevorzugt < 1 ,5 (ü) bar. Im Allgemeinen liegt der Reaktorausgangsdruck bei < 2,8 bar (ü), bevorzugt < 1 ,8 bar (ü) und besonders bevorzugt < 1 ,3 (ü) bar. Je höher dieser Wert liegt, desto größer kann die Raum-Zeit- Ausbeute der Reaktion liegen weil eine größere Menge an Reaktionsgas in den Reaktor eingeleitet werden kann. Man wählt einen Reaktoreingangsdruck, der ausreicht, die in der Anlage und der nachfolgenden Aufarbeitung vorhandenen Strömungswiderstände bis zu einer eventuellen Kompressionsstufe zu überwinden. Im Allgemeinen beträgt der Reaktoreingangsdruck mindestens 0,01 bar (ü), bevorzugt mindestens 0,1 bar (ü) und besonders bevorzugt 0,5 bar (ü). Im Allgemeinen beträgt der Reaktorausgangsdruck mindestens 0.01 bar (ü), bevorzugt mindestens 0,1 bar (ü) und besonders bevorzugt 0,2 bar (ü). Je geringer der Wert ist, desto geringer ist die Bildung von Koks-Vorläufern und Koksablagerungen am Katalysator und in der Aufarbeitung. Der Druckverlust über die gesamte Katalysatorschüttung beträgt im Allgemeinen 0,01 bis 2 bar (ü), bevorzugt 0,1 bis 1 ,5 bar, besonders bevorzugt 0,4 bis 1 ,0 bar. Je geringer der Wert ist, desto geringer ist die Bildung von Koks-Vorläufern und Koksablagerungen am Katalysator und in der Aufarbeitung. Die Reaktionstemperatur der Oxidehydrierung wird im Allgemeinen durch ein Wärmeaustauschmittel, welches sich um die Reaktionsrohre herum befindet, kontrolliert. Als solche flüssige Wärmeaustauschmittel kommen z. B. Schmelzen von Salzen wie Kaliumnitrat, Kaliumnitrit, Natriumnitrit und/oder Natriumnitrat sowie Schmelzen von Metallen wie Natrium, Quecksilber und Legierungen verschiedener Metalle in Betracht. Aber auch ionische Flüssigkeiten oder Wärmeträgeröle sind einsetzbar. Die Temperatur des Wärmeaustauschmittels liegt zwischen 220 bis 490 °C und bevorzugt zwischen 300 bis 450 °C und besonders bevorzugt zwischen 350 und 420 °C. Auf Grund der Exothermie der ablaufenden Reaktionen kann die Temperatur in bestimmten Abschnitten des Reaktorinneren während der Reaktion höher liegen als diejenige des Wärmeaustauschmittels und es bildet sich ein so genannter Hotspot aus. Die Lage und Höhe des Hotspots ist durch die Reaktionsbedingungen festgelegt, aber sie kann auch durch das Verdünnungsverhältnis der Katalysatorschicht oder den Durchfluss an Mischgas reguliert werden. Die Differenz zwischen Hotspot-Temperatur und der Temperatur des Wärmeaustauschmittels liegt im Allgemeinen zwischen 1 -150 °C, bevorzugt zwischen 10-100 °C und besonders bevorzugt zwischen 20-80 °C. Die Temperatur am Ende des Katalysatorbettes liegt im Allgemeinen zwischen 0-100 °C, vorzugsweise zwischen 0,1 -50 °C, besonders bevorzugt zwischen 1 -25 °C oberhalb der Temperatur des Wärmeaustauschmittels.
Die Oxidehydrierung kann in allen aus dem Stand der Technik bekannten Festbettreaktoren durchgeführt werden, wie beispielsweise im Hordenofen, im Festbettrohr- oder -Rohrbündelreaktor oder im Plattenwärmetauscherreaktor. Ein Rohrbündelreaktor ist bevorzugt. Vorzugsweise wird die oxidative Dehydrierung unter Verwendung der erfindungsgemäßen Katalysatoren in Festbettrohrreaktoren oder Festbettrohrbündelreaktoren durchgeführt. Die Reaktionsrohre werden (ebenso wie die anderen Elemente des Rohrbündelreaktors) in der Regel aus Stahl gefertigt. Die Wanddicke der Reaktionsrohre beträgt typischerweise 1 bis 3 mm. Ihr Innendurchmesser liegt in der Regel (einheitlich) bei 10 bis 50 mm oder bei 15 bis 40 mm, häufig bei 20 bis 30 mm. Die im Rohrbündelreaktor untergebrachte Anzahl an Reaktionsrohren beläuft sich in der Regel wenigstens auf 1000, oder 3000, oder 5000, vorzugsweise auf wenigstens 10 000. Häufig beträgt die Anzahl der im Rohrbündelreaktor untergebrachten Reaktionsrohre 15 000 bis 30 000 bzw. bis 40 000 oder bis 50 000. Rohrbündelreaktoren mit einer oberhalb von 50 000 liegenden Anzahl von Reaktionsrohren bilden eher die Ausnahme.
Die Länge der Reaktionsrohre erstreckt sich im Normalfall auf wenige Meter, typisch ist eine Reaktionsrohrlänge im Bereich von 1 bis 8 m, häufig 2 bis 7 m, vielfach 2,5 bis 6 m.
Innerhalb der Reaktionsrohre wird normalerweise zwischen Arbeitsrohren und Thermorohren differenziert. Während die Arbeitsrohre diejenigen Reaktionsrohre sind, in denen die durchzuführende Partialoxidation im eigentlichen Sinne durchgeführt wird, dienen Thermorohre in erster Linie dem Zweck, stellvertretend für alle Arbeitsrohre die Reaktionstemperatur längs der Reaktionsrohre zu verfolgen und zu steuern. Zu diesem Zweck enthalten die Thermorohre normalerweise zusätzlich zum Katalysatorfestbett eine lediglich mit einem Temperaturfühler beschickte, im Thermorohr längs desselben zentriert geführte Thermohülse. Im Regelfall ist die Anzahl der Thermorohre in einem Rohrbündelreaktor sehr viel kleiner als die Anzahl der Arbeitsrohre. Normalerweise beträgt die Anzahl der Thermorohre ^ 20. Weiterhin kann die Katalysatorschicht, die im Reaktor eingerichtet ist, wie oben beschrieben, aus einer einzelnen Schicht oder aus 2 oder mehr Schichten bestehen. Diese Schichten können aus reinem Katalysator bestehen oder mit einem Material verdünnt sein, das nicht mit dem Ausgangsgas oder Komponenten aus dem Produktgas der Reaktion reagiert. Weiterhin können die Katalysatorschichten aus Vollmaterial oder geträgerten Schalenkatalysatoren bestehen.
Als Ausgangsgas können reine n-Butene (1 -Buten und/oder cis-/trans-2-Buten), aber auch ein Butene enthaltendes Gasgemisch eingesetzt werden. Ein solches kann beispielsweise durch nicht-oxidative Dehydrierung von n-Butan erhalten werden. Es kann auch eine Fraktion ver- wendet werden, die als Hauptbestandteil n-Butene (1 -Buten und/oder 2-Buten) enthält, und aus der C4-Fraktion des Naphtha-Crackens durch Abtrennen von Butadien und Isobuten erhalten wurde. Des Weiteren können auch Gasgemische als Ausgangsgas eingesetzt werden, die reines 1 -Buten, cis-2-Buten, trans-2-Buten oder Mischungen daraus umfassen, und durch Dimeri- sierung von Ethylen erhalten wurden. Ferner können als Ausgangsgas n-Butene enthaltende Gasgemische eingesetzt werden, die durch katalytisches Wirbelschichtkracken (Fluid Catalytic Cracking, FCC) erhalten wurden. In einer Ausführungsform des erfindungsgemäßen Verfahrens wird das n-Butene enthaltende Ausgangsgasgemisch durch nicht-oxidative Dehydrierung von n- Butan erhalten. Durch die Kopplung einer nicht-oxidativen katalytischen Dehydrierung mit der oxidativen Dehydrierung der gebildeten n-Butene kann eine hohe Ausbeute an Butadien, bezo- gen auf eingesetztes n-Butan, erhalten werden.
Bei der nicht-oxidativen katalytischen n-Butan-Dehydrierung wird ein Gasgemisch erhalten, das neben Butadien 1 -Buten, 2-Buten und nicht umgesetztem n-Butan Nebenbestandteile enthält. Übliche Nebenbestandteile sind Wasserstoff, Wasserdampf, Stickstoff, CO und CO2, Methan, Ethan, Ethen, Propan und Propen. Die Zusammensetzung des die erste Dehydrierzone verlassenden Gasgemischs kann abhängig von der Fahrweise der Dehydrierung stark variieren. So weist bei Durchführung der Dehydrierung unter Einspeisung von Sauerstoff und zusätzlichem Wasserstoff das Produktgasgemisch einen vergleichsweise hohen Gehalt an Wasserdampf und Kohlenstoffoxiden auf. Bei Fahrweisen ohne Einspeisung von Sauerstoff weist das Produktgas- gemisch der nicht-oxidativen Dehydrierung einen vergleichsweise hohen Gehalt an Wasserstoff auf.
Der Produktgasstrom der nicht-oxidativen n-Butan-Dehydrierung enthält typischerweise 0,1 bis 15 Vol.-% Butadien, 1 bis 15 Vol.-% 1 -Buten, 1 bis 25 Vol.-% 2-Buten (cis/trans-2-Buten), 20 bis 70 Vol.-% n-Butan, 1 bis 70 Vol.-% Wasserdampf, 0 bis 10 Vol.-% leichtsiedende Kohlenwasserstoffe (Methan, Ethan, Ethen, Propan und Propen), 0,1 bis 40 Vol.-% Wasserstoff, 0 bis 70 Vol.-% Stickstoff und 0 bis 5 Vol.-% Kohlenstoffoxide.
Der Produktgasstrom der nicht-oxidativen Dehydrierung kann ohne weitere Aufarbeitung der oxidativen Dehydrierung zugeführt werden.
Weiterhin können in dem Ausgangsgas der Oxidehydrierung beliebige Verunreinigungen in einem Bereich, in dem die Wirkung der vorliegenden Erfindung nicht gehemmt wird, vorhanden sein. Bei der Herstellung von Butadien aus n-Butenen (1 -Buten und cis-/trans-2-Buten) können als Verunreinigungen gesättigte und ungesättigte, verzweigte und unverzweigte Kohlenwasserstoffe, wie z. B. Methan, Ethan, Ethen, Acetylen, Propan, Propen, Propin, n-Butan, iso-Butan, iso-Buten, n-Pentan sowie Diene wie 1 ,2-Butadien genannt werden. Die Mengen an Verunreini- gungen betragen im Allgemeinen 70 % oder weniger, vorzugsweise 30 % oder weniger, weiter bevorzugt 10 % oder weniger und besonders bevorzugt 1 % oder weniger. Die Konzentration an linearen Monoolefinen mit 4 oder mehr Kohlenstoffatomen (n-Butene und höherer Homologe) im Ausgangsgas ist nicht besonders eingeschränkt; sie beträgt im Allgemeinen 35,00- 99,99 Vol.-%, vorzugsweise 71 ,00-99,0 Vol.-% und noch mehr bevorzugt 75,00-95,0 Vol.-%.
Zur Durchführung der oxidativen Dehydrierung bei Vollumsatz von Butenen wird ein Gasgemisch benötigt, welches ein molares Sauerstoff : n-Butene-Verhältnis von mindestens 0,5 aufweist. Bevorzugt wird bei einem Sauerstoff : n-Butene-Verhältnis von 0,55 bis 10 gearbeitet. Zur Einstellung dieses Wertes kann das Ausgangsstoffgas mit Sauerstoff oder einem sauerstoffhal- tigern Gas, beispielsweise Luft, und gegebenenfalls zusätzlichem Inertgas oder Wasserdampf vermischt werden. Das erhaltene sauerstoffhaltige Gasgemisch wird dann der Oxidehydrierung zugeführt.
Das erfindungsgemäße molekularen Sauerstoff enthaltende Gas ist ein Gas, das im Allgemeinen mehr als 10 Vol.-%, vorzugsweise mehr als 15 Vol.-% und noch mehr bevorzugt mehr als 20 Vol.-% molekularen Sauerstoff umfasst und konkret ist dies vorzugsweise Luft. Die Obergrenze für den Gehalt an molekularem Sauerstoff beträgt im Allgemeinen 50 Vol.-% oder weniger, vorzugsweise 30 Vol.-% oder weniger und noch mehr bevorzugt 25 Vol.-% oder weniger. Darüber hinaus können in dem molekularen Sauerstoff enthaltenden Gas beliebige Inertgase in einem Bereich, in dem die Wirkung der vorliegenden Erfindung nicht gehemmt wird, vorhanden sein. Als mögliche Inertgase können Stickstoff, Argon, Neon, Helium, CO, CO2 und Wasser genannt werden. Die Menge an Inertgase beträgt für Stickstoff im Allgemeinen 90 Vol.-% oder weniger, vorzugsweise 85 Vol.-% oder weniger und noch mehr bevorzugt 80 Vol.-% oder weniger. Im Falle anderer Bestandteile als Stickstoff beträgt sie im Allgemeinen 10 Vol.-% oder weniger, vorzugsweise 1 Vol.-% oder weniger. Wird diese Menge zu groß, wird es immer schwieriger, die Reaktion mit dem erforderlichen Sauerstoff zu versorgen.
Ferner können zusammen mit dem Mischgas aus Ausgangsgas und dem molekularen Sauerstoff enthaltenden Gas auch inerte Gase wie Stickstoff und weiterhin Wasser (als Wasser- dampf) enthalten sein. Stickstoff ist zur Einstellung der Sauerstoffkonzentration und zur Verhinderung der Ausbildung eines explosionsfähigen Gasgemischs vorhanden, das gleiche gilt für Wasserdampf. Wasserdampf ist ferner zur Kontrolle des Verkokens des Katalysators und zur Abfuhr der Reaktionswärme vorhanden. Vorzugsweise werden Wasser (als Wasserdampf) und Stickstoff in das Mischgas eingemischt und in den Reaktor eingeleitet. Beim Einleiten von Was- serdampf in den Reaktor wird vorzugsweise ein Anteil von 0,2-5,0 (Volumenanteil) vorzugsweise 0,5-4 und noch mehr bevorzugt 0,8-2,5 bezogen auf die Einleitungsmenge an vorgenanntem Ausgangsgas eingeleitet. Beim Einleiten von Stickstoffgas in den Reaktor wird vorzugswei- se ein Anteil von 0,1-8,0 (Volumenanteil), vorzugsweise mit 0,5-5,0 und noch mehr bevorzugt 0,8-3,0 bezogen auf die Einleitungsmenge an vorgenanntem Ausgangsgas eingeleitet.
Der Anteil des die Kohlenwasserstoffe enthaltenden Ausgangsgases im Mischgas beträgt im Allgemeinen 4,0 Vol.-% oder mehr, vorzugsweise 6,0 Vol.-% oder mehr und noch mehr bevorzugt 8,0 Vol.-% oder mehr. Andererseits liegt die Obergrenze bei 20 Vol.-% oder weniger, vorzugsweise bei 16,0 Vol.-% oder weniger und noch mehr bevorzugt bei 13,0 Vol.-% oder weniger. Um die Bildung von explosiven Gasgemischen sicher zu vermeiden, wird vor dem Erhalt des Mischgases zunächst Stickstoffgas in das Ausgangsgas oder in das molekularen Sauerstoff enthaltende Gas eingeleitet, das Ausgangsgas und das molekularen Sauerstoff enthaltende Gas wird gemischt und so das Mischgas erhalten, und dieses Mischgas wird nun vorzugsweise eingeleitet.
Während des stabilen Betriebs ist die Verweildauer im Reaktor in der vorliegenden Erfindung nicht besonders eingeschränkt, aber die Untergrenze beträgt im Allgemeinen 0,3 s oder mehr, vorzugsweise 0,7 s oder mehr und noch mehr bevorzugt 1 ,0 s oder mehr. Die Obergrenze beträgt 5,0 s oder weniger, vorzugsweise 3,5 s oder weniger und noch mehr bevorzugt 2,5 s oder weniger. Das Verhältnis von Durchfluss an Mischgas bezogen auf die Katalysatormenge im Reaktorinnern beträgt 500-8000 hr1, vorzugsweise 800-4000 hr1 und noch mehr bevorzugt 1200-3500 hr1. Die Last des Katalysators an Butenen (ausgedrückt in gßutene (g Katalysator *Stunde) beträgt im Allgemeinen im stabilen Betrieb 0,1 -5,0 hl-1, vorzugsweise 0,2-3,0 hl-1, und noch mehr bevorzugt 0,25-1 ,0 hl-1. Volumen und Masse des Katalysators beziehen sich auf den kompletten Katalysator bestehend aus Träger und Aktivmasse. Der Volumenänderungsfaktor beschreibt die Durchflussdifferenz von Reaktoreinlass zu Auslass und ist vom Durchfluss an Ausgangsgas am Reaktoreinlass und vom Durchfluss an Produktgas am Reaktorauslass abhängig. Zweckmäßigerweise lässt er sich durch das Verhältnis der Volumenkonzentration eines inerten Bestandteils, also eines Bestandteils, welcher in keiner Form im Reaktor umgesetzt wird (zum Beispiel Ar oder N2), des Reaktionsgases am Reaktoreingang und Reaktorausgang bestimmen. Der Volumenänderungsfaktor kann 1 -1 ,15, vorzugsweise 1 - 1 ,1 , und besonders bevorzugt 1 ,01 -1 ,08 betragen.
Aufarbeitung des Produktgasstroms Der die oxidative Dehydrierung verlassende Produktgasstrom enthält neben Butadien im Allgemeinen noch nicht umgesetztes n-Butan und iso-Butan, 2-Buten und Wasserdampf. Als Nebenbestandteile enthält er im Allgemeinen Kohlenmonoxid, Kohlendioxid, Sauerstoff, Stickstoff, Methan, Ethan, Ethen, Propan und Propen, gegebenenfalls Wasserstoff sowie sauerstoffhaltige Kohlenwasserstoffe, sogenannte Oxygenate. Im Allgemeinen enthält er nur noch geringe Antei- le an 1 -Buten und iso-Buten.
Beispielsweise kann der die oxidative Dehydrierung verlassende Produktgasstrom 1 bis 40 Vol.- % Butadien, 20 bis 80 Vol.-% n-Butan, 0 bis 5 Vol.-% iso-Butan, 0,5 bis 40 Vol.-% 2-Buten, 0 bis 5 Vol.-% 1 -Buten, 0 bis 70 Vol.-% Wasserdampf, 0 bis 10 Vol.-% leichtsiedende Kohlenwasserstoffe (Methan, Ethan, Ethen, Propan und Propen), 0 bis 40 Vol.-% Wasserstoff, 0 bis 30 vol.-% Sauerstoff, 0 bis 70 Vol.-% Stickstoff, 0 bis 10 Vol.-% Kohlenstoffoxide und 0 bis 10 Vol.- % Oxygenate aufweisen. Oxygenate können beispielsweise Formaldehyd, Furan, Essigsäure, Maleinsäureanhydrid, Ameisensäure, Methacrolein, Methacrylsäure, Crotonaldehyd, Crotonsäu- re, Propionsäure, Acrylsäure, Methylvinylketon, Styrol, Benzaldehyd, Benzoesäure, Phthalsäu- reanhydrid, Fluorenon, Anthrachinon und Butyraldehyd sein.
Einige der Oxygenate können auf der Katalysatoroberfläche und in der Aufarbeitung weiter oli- gomerisieren und dehydrieren und dabei Kohlenstoff, Wasserstoff und Sauerstoff enthaltende Ablagerungen, im Folgenden als Koks bezeichnet, bilden. Diese Ablagerungen können, zwecks Reinigung und Regeneration, zu Unterbrechungen im Betrieb des Verfahrens führen und sind daher unerwünscht. Typische Koks-Vorläufer umfassen Styrol, Fluorenon und Anthrachinon. Der Produktgasstrom am Reaktorausgang ist durch eine Temperatur nahe der Temperatur am Ende des Katalysatorbetts charakterisiert. Der Produktgasstrom wird dann auf eine Temperatur von 150 - 400 °C, bevorzugt 160 - 300 °C, besonders bevorzugt 170 - 250 °C gebracht. Es ist möglich, die Leitung, durch die der Produktgasstrom fließt, um die Temperatur im gewünschten Bereich zu halten, zu isolieren, jedoch ist ein Einsatz eines Wärmetauschers bevorzugt. Dieses Wärmetauschersystem ist beliebig, solange mit diesem System die Temperatur des Produktgases auf dem gewünschten Niveau gehalten werden kann. Als Beispiel eines Wärmetauschers können Spiralwärmetauscher, Plattenwärmetauscher, Doppelrohrwärmetauscher, Multirohr- wärmetauscher, Kessel-Spiralwärmetauscher, Kessel-Mantelwärmetauscher, Flüssigkeit- Flüssigkeit-Kontakt-Wärmetauscher, Luft-Wärmetauscher, Direktkontaktwärmetauscher sowie Rippenrohrwärmetauscher genannt werden. Da, während die Temperatur des Produktgases auf die gewünschte Temperatur eingestellt wird, ein Teil der hochsiedenden Nebenprodukte, die im Produktgas enthalten sind, ausfallen kann, sollte daher das Wärmetauschersystem vorzugsweise zwei oder mehr Wärmetauscher aufweisen. Falls dabei zwei oder mehr vorgesehene Wärmetauscher parallel angeordnet sind, und so eine verteilte Kühlung des gewonnenen Produkt- gases in den Wärmetauschern ermöglicht wird, nimmt die Menge an hochsiedenden Nebenprodukten, die sich in den Wärmetauschern ablagern, ab und so kann ihre Betriebsdauer verlängert werden. Als Alternative zu der oben genannten Methode können die zwei oder mehr vorgesehenen Wärmetauscher parallel angeordnet sein. Das Produktgas wird einem oder mehreren, nicht aber allen, Wärmetauschern zugeführt, welche nach einer gewissen Betriebsdauer von anderen Wärmetauschern abgelöst werden. Bei dieser Methode kann die Kühlung fortgesetzt werden, ein Teil der Reaktionswärme zurückgewonnen und parallel dazu können die in einem der Wärmetauscher abgelagerten hochsiedenden Nebenprodukte entfernt werden. Als ein oben genanntes organisches Lösungsmittel kann ein Lösungsmittel, solange es in der Lage ist, die hochsiedenden Nebenprodukte aufzulösen, uneingeschränkt verwendet werden, und als Beispiele dazu können ein aromatisches Kohlenwasserstofflösungsmittel, wie z. B. Toluol, Xylen etc. sowie ein alkalisches wässriges Lösungsmittel, wie z. B. die wässrige Lösung von Natriumhydroxid, verwendet werden. Enthält der Produktgasstrom mehr als nur geringfügige Spuren Sauerstoff, so kann eine Verfahrensstufe zur Entfernung von Rest-Sauerstoff aus dem Produktgasstrom durchgeführt werden. Der Rest-Sauerstoff kann sich insoweit als störend auswirken, als er in nachgelagerten Verfahrensschritten eine Butadienperoxidbildung hervorrufen kann und als Initiator für Polymerisati- onsreaktionen wirken kann. Unstabilisiertes 1 ,3-Butadien kann in Gegenwart von Sauerstoff gefährliche Butadienperoxide bilden. Die Peroxide sind viskose Flüssigkeiten. Ihre Dichte ist höher als die von Butadien. Da sie außerdem nur wenig in flüssigem 1 ,3-Butadien löslich sind, setzen sie sich auf den Böden von Lagerbehältern ab. Trotz ihrer relativ geringen chemischen Reaktivität sind die Peroxide sehr instabile Verbindungen, die sich bei Temperaturen zwischen 85 und 1 10 °C spontan zersetzen können. Eine besondere Gefahr besteht in der hohen
Schlagempfindlichkeit der Peroxide, die mit der Brisanz eines Sprengstoffes explodieren. Die Gefahr der Polymerbildung ist insbesondere bei der destillativen Abtrennung von Butadien gegeben und kann dort zu Ablagerungen von Polymeren (Bildung von so genanntem "Popcorn") in den Kolonnen führen. Vorzugsweise wird die Sauerstoffentfernung unmittelbar nach der oxidati- ven Dehydrierung durchgeführt. Im Allgemeinen wird hierzu eine katalytische Verbrennungsstufe durchgeführt, in der Sauerstoff mit in dieser Stufe zugesetztem Wasserstoff in Gegenwart eines Katalysators umgesetzt wird. Hierdurch wird eine Verringerung des Sauerstoffgehalts bis auf geringe Spuren erreicht.
Das Produktgas der 02-Entfernungsstufe wird nun auf ein identisches Temperaturniveau gebracht wie es für den Bereich hinter dem ODH-Reaktor beschrieben worden ist. Die Abkühlung des verdichteten Gases erfolgt mit Wärmetauschern, die beispielsweise als Rohrbündel-, Spiraloder Plattenwärmetauscher ausgeführt sein können. Die dabei abgeführte Wärme wird bevorzugt zur Wärmeintegration im Verfahren genutzt.
Anschließend können aus dem Produktgasstrom durch Abkühlung ein Großteil der hochsiedenden Nebenkomponenten und des Wassers abgetrennt werden. Diese Abtrennung erfolgt dabei vorzugsweise in einem Quench. Dieser Quench kann aus einer oder mehreren Stufen bestehen. Vorzugsweise wird ein Verfahren eingesetzt, bei dem das Produktgas direkt mit dem Kühlmedium in Kontakt gebracht und dadurch gekühlt wird. Das Kühlmedium ist nicht besonders eingeschränkt, aber vorzugsweise wird Wasser oder eine alkalische wässrige Lösung verwendet.
Bevorzugt ist ein zweistufiger Quench. Die Kühlungstemperatur des Produktgases unterschei- det sich je nach Art der Temperatur des aus dem Reaktorauslass erhaltenen Produktgases und des Kühlmediums. Im Allgemeinen kann das Produktgas je nach Vorliegen und Temperaturniveau eines Wärmetauschers vor dem Quencheingang eine Temperatur von 100-440 °C, bevorzugt 140-300 °C, insbesondere bevorzugt 170-240 °C erreichen. Der Produktgaseinlass in den Quench muss so ausgelegt sein, dass ein Verstopfen durch Ablagerungen am und direkt vor dem Gaseinlass minimiert oder verhindert wird. Das Produktgas wird in der 1. Quenchstufe mit dem Kühlmedium in Kontakt gebracht. Hierbei kann das Kühlmedium durch eine Düse eingebracht werden, um eine möglichst effiziente Durchmischung mit dem Produktgas zu erreichen. Zum gleichen Zweck können in der Quenchstufe Einbauten, wie zum Beispiel weitere Düsen, eingebracht werden, durch die das Produktgas und das Kühlmedium gemeinsam passieren müssen. Der Kühlmitteleinlass in den Quench muss so ausgelegt sein, dass ein Verstopfen durch Ablagerungen im Bereich des Kühlmitteleinlasses minimiert oder verhindert wird. Im Allgemeinen wird das Produktgas in der ersten Quenchstufe auf 5-180 °C, vorzugsweise auf 30-130 °C und noch mehr bevorzugt auf 60-90 °C gekühlt. Die Temperatur des Kühlmittelmediums am Einlass kann im Allgemeinen 25-200 °C, bevorzugt 40-120 °C, insbesondere bevorzugt 50-90 °C betragen. Der Druck in der ersten Quenchstufe ist nicht besonders eingeschränkt, beträgt aber im Allgemeinen 0,01 -4 bar (ü), bevorzugt 0.1 -2 bar (ü) und besonders bevorzugt 0.2-1 bar (ü). Wenn viel hochsiedende Nebenprodukte im Produktgas vorhanden sind, kommt es leicht zu Polymerisation unter den hochsiedenden Nebenprodukten oder zu Ablagerungen von festen Nebenprodukten, die durch hochsiedende Nebenprodukte in diesem Arbeitsschritt verursacht werden. Das im Kühlturm eingesetzt Kühlmedium wird häufig zirkulierend eingesetzt, sodass es zu Blockaden durch feste Niederschläge kommen kann, wenn die Herstellung von konjugierten Dienen kontinuierlich fortgesetzt wird. Der Kreislaufstrom des Kühlmediums in Liter pro Stunde bezogen auf den Massenstrom an Butadien in Gramm pro Stunde kann im Allgemeinen 0.0001 -5 l/g, bevorzugt 0.001 -1 l/g und besonders bevorzugt 0.002-0.2 l/g betragen. Die Einlösung von Nebenprodukten der ODH-Reaktion, zum Beispiel Essigsäure, MSA, etc. in einem Kühlmedium wie zum Beispiel Wasser gelingt bei erhöhtem pH-Wert besser als bei niedrigem pH-Wert. Da das Einlösen von Nebenprodukten wie den oben genannten pH-Wert von zum Beispiel Wasser erniedrigt, kann der pH-Wert durch Zugabe eines alkalischen Mediums konstant gehalten oder erhöht werden. Im Allgemeinen wird der pH-Wert im Sumpf der ersten Quenchstufe zwischen 2-14, bevorzugt zwischen 3-13, besonders bevorzugt zwischen 4-12 gehalten. Je saurer der Wert, desto weniger alkalisches Medium muss zugeführt werden. Je basischer, desto besser gelingt die Einlösung einiger Nebenprodukte. Jedoch führen sehr hohe pH-Werte zum Einlösen von Nebenprodukten wie CO2 und damit zu einem sehr hohen Verbrauch des alkalischen Mediums. Die Temperatur des Kühlmediums im Sumpf kann im Allge- meinen 27-210 °C, bevorzugt 45-130 °C, insbesondere bevorzugt 55-95 °C betragen. Da die Beladung des Kühlmediums mit Nebenkomponenten im Laufe der Zeit zunimmt, kann ein Teil des beladenen Kühlmediums aus dem Umlauf abgezogen werden und die Umlaufmenge durch Zugabe von unbeladenem Kühlmedium konstant gehalten werden. Das Verhältnis von Ablaufmenge und Zugabemenge hängt von der Dampfbeladung des Produktgases und der Produkt- gastemperatur am Ende der erste Quenchstufe ab. Wenn das Kühlmedium Wasser ist, ist die Zugabemenge in der ersten Quenchstufe im Allgemeinen geringer als die Ablaufmenge.
Der abgekühlte und an Nebenkomponenten abgereicherte Produktgasstrom kann nun einer zweiten Quenchstufe zugeführt werden. In dieser kann er nun erneut mit einem Kühlmedium in Kontakt gebracht werden.
Im Allgemeinen wird das Produktgas bis zum Gasausgang der zweiten Quenchstufe auf 5- 100 °C, vorzugsweise auf 15-85 °C und noch mehr bevorzugt auf 30-70 °C gekühlt. Das Kühl- mittel kann im Gegenstrom zum Produktgas zugeführt werden. In diesem Fall kann die Temperatur des Kühlmittelmediums am Kühlmitteleinlass 5-100 °C, bevorzugt 15-85 °C, insbesondere bevorzugt 30-70 °C betragen. Der Druck in der zweiten Quenchstufe ist nicht besonders eingeschränkt, beträgt aber im Allgemeinen 0,01 -4 bar (ü), bevorzugt 0,1 -2 bar (ü) und besonders bevorzugt 0,2-1 bar (ü). Das im Kühlturm eingesetzte Kühlmedium wird häufig zirkulierend eingesetzt, sodass es zu Blockaden durch feste Niederschläge kommen kann, wenn die Herstellung von konjugierten Dienen kontinuierlich fortgesetzt wird. Der Kreislaufstrom des Kühlmediums in Liter pro Stunde bezogen auf den Massenstrom an Butadien in Gramm pro Stunde kann im Allgemeinen 0,0001 -5 l/g, bevorzugt 0,0001 -1 l/g und besonders bevorzugt 0,002-0.2 l/g betragen.
Die Einlösung von Nebenprodukten der ODH-Reaktion, zum Beispiel Essigsäure, MSA, etc. in einem Kühlmedium wie zum Beispiel Wasser gelingt bei erhöhtem pH-Wert besser als bei niedrigem pH-Wert. Da das Einlösen von Nebenprodukten wie den oben genannten pH-Wert von zum Beispiel Wasser erniedrigt, kann der pH-Wert durch Zugabe eines alkalischen Mediums konstant gehalten oder erhöht werden. Im Allgemeinen wird der pH-Wert im Sumpf der zweiten Quenchstufe zwischen 1 -14, bevorzugt zwischen 2-12, besonders bevorzugt zwischen 3-1 1 gehalten. Je saurer der Wert, desto weniger alkalisches Medium muss zugeführt werden. Je basischer, desto besser gelingt die Einlösung einiger Nebenprodukte. Jedoch führen sehr hohe pH-Werte zum Einlösen von Nebenprodukten wie CO2 und damit zu einem sehr hohen Verbrauch des alkalischen Mediums. Die Temperatur des Kühlmediums im Sumpf kann im Allgemeinen 20-210 °C, bevorzugt 35-120 °C, insbesondere bevorzugt 45-85 °C betragen. Da die Beladung des Kühlmediums mit Nebenkomponenten im Laufe der Zeit zunimmt, kann ein Teil des beladenen Kühlmediums aus dem Umlauf abgezogen werden und die Umlaufmenge durch Zugabe von unbeladenem Kühlmedium konstant gehalten werden. Das Verhältnis von Ablaufmenge und Zugabemenge hängt von der Dampfbeladung des Produktgases und der Produktgastemperatur am Ende der ersten Quenchstufe ab. Wenn das Kühlmedium Wasser ist, ist die Zugabemenge in der ersten Quenchstufe im Allgemeinen größer als die Ablaufmenge.
Um einen möglichst guten Kontakt von Produktgas und Kühlmedium zu erreichen können Einbauten in der zweiten Quenchstufe vorhanden sein. Solche Einbauten umfassen zum Beispiel Glocken-, Zentrifugal- und/oder Siebböden, Kolonnen mit strukturierten Packungen, z. B.
Blechpackungen mit einer spezifischen Oberfläche von 100 bis 1000 m2/m3 wie Mellapak® 250 Y, und Füllkörperkolonnen.
Die Umläufe der beiden Quenchstufen können sowohl voneinander getrennt als auch miteinander verbunden sein. Die gewünschte Temperatur der Umlaufströme kann über geeignete Wärmetauscher eingestellt werden. Um den Mitriss von flüssigen Bestandteilen aus dem Quench in die Abgasleitung zu minimieren, können geeignete bauliche Maßnahmen, wie zum Beispiel der Einbau eines Demisters, getroffen werden. Weiterhin können hochsiedende Substanzen, welche im Quench nicht vom Produktgas abgetrennt werden durch weitere bauliche Maßnahmen, wie beispielsweise Gas- Wäschen, aus dem Produktgas entfernt werden. Es wird ein Gasstrom erhalten, in welchem n- Butan, 1 -Buten, 2-Butene, Butadien, gegebenenfalls Sauerstoff, Wasserstoff, Wasserdampf, in geringen Mengen Methan, Ethan, Ethen, Propan und Propen, iso-Butan, Kohlenstoffoxide und Inertgase verbleibt. Weiterhin können in diesem Produktgasstrom Spuren von hochsiedenden Komponenten verbleiben, welche im Quench nicht quantitativ abgetrennt wurden.
Anschließend wird der Produktgasstrom aus dem Quench in mindestens einer ersten Kompressionsstufe komprimiert und nachfolgend abgekühlt, wobei mindestens ein Kondensatstrom enthaltend Wasser auskondensiert und ein Gasstrom enthaltend n-Butan, 1 -Buten, 2-Butene, Butadien, gegebenenfalls Wasserstoff, Wasserdampf, in geringen Mengen Methan, Ethan, Ethen, Propan und Propen, iso-Butan, Kohlenstoffoxide und Inertgase, gegebenenfalls Sauerstoff und Wasserstoff verbleibt. Die Kompression kann ein- oder mehrstufig erfolgen. Insgesamt wird von einem Druck im Bereich von 1 ,0 bis 4,0 bar (absolut) auf einen Druck im Bereich von 3,5 bis 20 bar (absolut) komprimiert. Nach jeder Kompressionsstufe folgt eine Abkühlstufe, in der der Gasstrom auf eine Temperatur im Bereich von 15 bis 60 °C abgekühlt wird. Der Kondensatstrom kann somit bei mehrstufiger Kompression auch mehrere Ströme umfassen. Der Kondensatstrom besteht im Allgemeinen zu mindestens 80 Gew.-%, vorzugsweise zu mindestens 90 Gew.-% aus Wasser und enthält daneben in geringem Umfang Leichtsieder, C4- Kohlenwasserstoffe, Oxygenate und Kohlenstoffoxide.
Geeignete Verdichter sind beispielsweise Turbo-, Drehkolben- und Hubkolbenverdichter. Die Verdichter können beispielsweise mit einem Elektromotor, einem Expander oder einer Gasoder Dampfturbine angetrieben werden. Typische Verdichtungsverhältnisse (Austrittsdruck : Eintrittsdruck) pro Verdichterstufe liegen je nach Bauart zwischen 1 ,5 und 3,0. Die Abkühlung des verdichteten Gases erfolgt mit Wärmetauschern, die beispielsweise als Rohrbündel-, Spiraloder Plattenwärmetauscher ausgeführt sein können. Als Kühlmittel kommen in den Wärmetauschern dabei Kühlwasser oder Wärmeträgeröle zum Einsatz. Daneben wird bevorzugt Luftkühlung unter Einsatz von Gebläsen eingesetzt. Der Butadien, Butene, Butan, Inertgase und gegebenenfalls Kohlenstoffoxide, Sauerstoff, Wasserstoff sowie leicht siedende Kohlenwasserstoffe (Methan, Ethan, Ethen, Propan, Propen) und geringe Mengen von Oxygenaten enthaltende Stoffstrom wird als Ausgangsstrom der weiteren Aufbereitung zugeführt. Die Abtrennung der leicht siedenden Nebenbestandteile aus dem Produktgasstrom kann durch übliche Trennverfahren wie Destillation, Membranverfahren, Absorption oder Adsorption erfolgen.
Zur Abtrennung von eventuell im Produktgasstrom enthaltenen Wasserstoffs kann das Produkt- gasgemisch, gegebenenfalls nach erfolgter Kühlung, beispielsweise in einem Wärmetauscher, über eine in der Regel als Rohr ausgebildete Membran geleitet werden, die lediglich für molekularen Wasserstoff durchlässig ist. Der so abgetrennte molekulare Wasserstoff kann bei Bedarf zumindest teilweise in einer Dehydrierung eingesetzt oder aber einer sonstigen Verwertung zugeführt werden, beispielsweise zur Erzeugung elektrischer Energie in Brennstoffzellen eingesetzt werden.
Das in dem Produktgasstrom enthaltene Kohlendioxid kann durch C02-Gaswäsche abgetrennt werden. Der Kohlendioxid-Gaswäsche kann eine gesonderte Verbrennungsstufe vorgeschaltet werden, in der Kohlenmonoxid selektiv zu Kohlendioxid oxidiert wird.
In einer bevorzugten Ausführungsform des Verfahrens werden die nicht kondensierbaren oder leicht siedenden Gasbestandteile wie Wasserstoff, Sauerstoff, Kohlenstoffoxide, die leicht sie- denden Kohlenwasserstoffe (Methan, Ethan, Ethen, Propan, Propen) und Inertgas wie gegebenenfalls Stickstoff in einem Absorptions-/Desorptions-Zyklus mittels eines hoch siedenden Absorptionsmittels abgetrennt, wobei ein C4-Produktgasstrom erhalten wird, der im Wesentlichen aus den C4-Kohlenwasserstoffen besteht. Im Allgemeinen besteht der C4-Produktgasstrom zu mindestens 80 Vol.-%, bevorzugt zu mindestens 90 Vol.-%, besonders bevorzugt zu mindes- tens 95 Vol.-% aus den C4-Kohlenwasserstoffen, im Wesentlichen n-Butan, 2-Buten und Butadien.
Dazu wird in einer Absorptionsstufe der Produktgasstrom nach vorheriger Wasserabtrennung mit einem inerten Absorptionsmittel in Kontakt gebracht und werden die C4-Kohlenwasserstoffe in dem inerten Absorptionsmittel absorbiert, wobei mit C4-Kohlenwasserstoffen beladenes Absorptionsmittel und ein die übrigen Gasbestandteile enthaltendes Abgas erhalten werden. In einer Desorptionsstufe werden die C4-Kohlenwasserstoffe aus dem Absorptionsmittel wieder freigesetzt. Die Absorptionsstufe kann in jeder beliebigen, dem Fachmann bekannten geeigneten Absorptionskolonne durchgeführt werden. Die Absorption kann durch einfaches Durchleiten des Produktgasstroms durch das Absorptionsmittel erfolgen. Sie kann aber auch in Kolonnen oder in Rotationsabsorbern erfolgen. Dabei kann im Gleichstrom, Gegenstrom oder Kreuzstrom gearbeitet werden. Bevorzugt wird die Absorption im Gegenstrom durchgeführt. Geeignete Absorp- tionskolonnen sind z. B. Bodenkolonnen mit Glocken-, Zentrifugal- und/oder Siebboden, Kolonnen mit strukturierten Packungen, z. B. Blechpackungen mit einer spezifischen Oberfläche von 100 bis 1000 m2/m3 wie Mellapak® 250 Y, und Füllkörperkolonnen. Es kommen aber auch Riesel- und Sprühtürme, Graphitblockabsorber, Oberflächenabsorber wie Dickschicht und Dünnschichtabsorber sowie Rotationskolonnen, Tellerwäscher, Kreuzschleierwäscher und Rotati- onswäscher in Betracht.
In einer Ausführungsform wird einer Absorptionskolonne im unteren Bereich der Butadien, Buten, Butan, und/oder Stickstoff und gegebenenfalls Sauerstoff, Wasserstoff und/oder Kohlendioxid enthaltende Stoffstrom zugeführt. Im oberen Bereich der Absorptionskolonne wird der Lösungsmittel und ggf. Wasser enthaltende Stoffstrom aufgegeben.
In der Absorptionsstufe eingesetzte inerte Absorptionsmittel sind im Allgemeinen hochsiedende unpolare Lösungsmittel, in denen das abzutrennende C4-Kohlenwasserstoff-Gemisch eine deut- lieh höhere Löslichkeit als die übrigen abzutrennenden Gasbestandteile aufweist. Geeignete Absorptionsmittel sind vergleichsweise unpolare organische Lösungsmittel, beispielsweise aliphatische Cs- bis Cis-Alkane, oder aromatische Kohlenwasserstoffe wie die Mittelölfraktionen aus der Paraffindestillation, Toluol oder Ether mit sperrigen Gruppen, oder Gemische dieser Lösungsmittel, wobei diesen ein polares Lösungsmittel wie 1 ,2-Dimethylphthalat zugesetzt sein kann. Geeignete Absorptionsmittel sind weiterhin Ester der Benzoesäure und Phthalsäure mit geradkettigen d-Cs-Alkanolen, sowie sogenannte Wärmeträgeröle, wie Biphenyl und Diphe- nylether, deren Chlorderivate sowie Triarylalkene. Ein geeignetes Absorptionsmittel ist ein Gemisch aus Biphenyl und Diphenylether, bevorzugt in der azeotropen Zusammensetzung, bei- spielsweise das im Handel erhältliche Diphyl®. Häufig enthält dieses Lösungsmittelgemisch Di- methylphthalat in einer Menge von 0,1 bis 25 Gew.-%.
Geeignete Absorptionsmittel sind Octane, Nonane, Decane, Undecane, Dodecane, Tridecane, Tetradecane, Pentadecane, Hexadecane, Heptadecane und Octadecane oder aus Raffinerie- strömen gewonnene Fraktionen, die als Hauptkomponenten die genannten linearen Alkane enthalten.
In einer bevorzugten Ausführungsform wird als Lösungsmittel für die Absorption ein Alkange- misch wie Tetradekan (technischer C14-C17 Schnitt) eingesetzt.
Am Kopf der Absorptionskolonne wird ein Abgasstrom abgezogen, der im wesentlichen Inertgas, Kohlenstoffoxide, gegebenenfalls Butan, Butene, wie 2-Butene und Butadien, ggf. Sauerstoff, Wasserstoff und leicht siedende Kohlenwasserstoffe (zum Beispiel Methan, Ethan, Ethen, Propan, Propen) und Wasserdampf enthält. Dieser Stoffstrom kann teilweise dem ODH-Reaktor oder dem 02-Entfernungsreaktor zugeführt werden. Damit lässt sich zum Beispiel der Eintrittsstrom des ODH-Reaktors auf den gewünschten C4-Kohlenwasserstoffgehalt einstellen.
Der mit C4-Kohlenwasserstoffen beladene Lösungsmittelstrom wird in eine Desorptionskolonne geleitet. Erfindungsgemäß sind alle dem Fachmann bekannten Kolonneneinbauten für diesen Zweck geeignet. In einer Verfahrensvariante wird der Desorptionsschritt durch Entspannung und/oder Erhitzen des beladenen Lösungsmittels durchgeführt. Bevorzugte Verfahrensvariante ist die Zugabe von Strippdampf und/oder die Zufuhr von Frischdampf im Sumpf des Desorbers. Das von C4-Kohlenwasserstoffen abgereicherte Lösungsmittel kann als Gemisch gemeinsam mit dem kondensierten Dampf (Wasser) einer Phasentrennung zugeführt werden, so dass das Wasser vom Lösungsmittel abgeschieden wird. Alle dem Fachmann bekannten Apparate sind hierfür geeignet. Möglich ist zudem die Nutzung des vom Lösungsmittel abgetrennten Wassers zur Erzeugung des Strippdampfes.
Bevorzugt werden 70 bis 100 Gew.-% Lösungsmittel und 0 bis 30 Gew.-% Wasser, besonders bevorzugt 80 bis 100 Gew.-% Lösungsmittel und 0 bis 20 Gew.-% Wasser, insbesondere 85 bis 95 Gew.-% Lösungsmittel und 5 bis 15 Gew.-% Wasser eingesetzt. Das in der Desorptionsstufe regenerierte Absorptionsmittel wird in die Absorptionsstufe zurückgeführt. Die Abtrennung ist im Allgemeinen nicht ganz vollständig, so dass in dem C4-Produktgasstrom - je nach Art der Abtrennung - noch geringe Mengen oder auch nur Spuren der weiteren Gasbestandteile, insbesondere der schwer siedenden Kohlenwasserstoffe, vorliegen können. Die durch die Abtrennung auch bewirkte Volumenstromverringerung entlastet die nachfolgenden Verfahrensschritte.
Der im Wesentlichen aus n-Butan, Butenen, wie 2-Butenen und Butadien bestehende C4- Produktgasstrom enthält im Allgemeinen 20 bis 80 Vol.-% Butadien, 20 bis 80 Vol.-% n-Butan, 0 bis 10 Vol.-% 1 -Buten, und 0 bis 50 Vol.-% 2-Butene, wobei die Gesamtmenge 100 Vol.-% ergibt. Weiterhin können geringe Mengen an Iso-Butan enthalten sein.
Der C4-Produktgasstrom kann anschließend durch eine Extraktivdestillation in einen im Wesentlichen aus n-Butan und 2-Buten bestehenden Strom und einen aus Butadien bestehenden Strom getrennt werden. Der im Wesentlichen aus n-Butan und 2-Buten bestehende Strom kann ganz oder teilweise dem C4-Feed des ODH-Reaktors rückgeführt werden. Da die Buten- Isomere dieses Rückführstroms im Wesentlichen aus 2-Butenen bestehen und diese 2-Butene im Allgemeinen langsamer zu Butadien oxidativ dehydriert werden als 1 -Buten, kann dieser Rückführstrom vor der Zuführung in den ODH-Reaktor einen katalytischen Isomerisierungspro- zess durchlaufen. In diesem katalytischen Prozess kann die Isomerenverteilung entsprechend der im thermodynamischen Gleichgewicht vorliegenden Isomerenverteilung eingestellt werden.
Die Extraktivdestillation kann beispielsweise, wie in„Erdöl und Kohle - Erdgas - Petrochemie", Band 34 (8), Seiten 343 bis 346 oder„Ullmanns Enzyklopädie der Technischen Chemie", Band 9, 4. Auflage 1975, Seiten 1 bis 18 beschrieben, durchgeführt werden. Hierzu wird der C4- Produktgasstrom mit einem Extraktionsmittel, vorzugsweise einem N-Methylpyrrolidon
(NMP)/Wasser-Gemisch, in einer Extraktionszone in Kontakt gebracht. Die Extraktionszone ist im Allgemeinen in Form einer Waschkolonne ausgeführt, welche Böden, Füllkörper oder Packungen als Einbauten enthält. Diese weist im Allgemeinen 30 bis 70 theoretische Trennstufen auf, damit eine hinreichend gute Trennwirkung erzielt wird. Vorzugsweise weist die Waschko- lonne im Kolonnenkopf eine Rückwaschzone auf. Diese Rückwaschzone dient zur Rückgewinnung des in der Gasphase enthaltenen Extraktionsmittels mit Hilfe eines flüssigen Kohlenwasserstoffrücklaufs, wozu die Kopffraktion zuvor kondensiert wird. Das Massenverhältnis Extraktionsmittel zu C4-Produktgasstrom im Zulauf der Extraktionszone beträgt im Allgemeinen 10 : 1 bis 20 : 1 . Die Extraktivdestillation wird vorzugsweise bei einer Sumpftemperatur im Bereich von 100 bis 250 °C, insbesondere bei einer Temperatur im Bereich von 1 10 bis 210 °C, einer Kopftemperatur im Bereich von 10 bis 100-°C, insbesondere im Bereich von 20 bis 70-°C und einem Druck im Bereich von 1 bis 15 bar, insbesondere im Bereich von 3 bis 8 bar betrieben. Die Ex- traktivdestillationskolonne weist vorzugsweise 5 bis 70 theoretische Trennstufen auf. Geeignete Extraktionsmittel sind Butyrolacton, Nitrile wie Acetonitril, Propionitril, Methoxypropio- nitril, Ketone wie Aceton, Furfural, N-alkylsubstituierte niedere aliphatische Säureamide wie Dimethylformamid, Diethylformamid, Dimethylacetamid, Diethylacetamid, N-Formylmorpholin, N-alkylsubstituierte zyklische Säureamide (Lactame) wie N-Alkylpyrrolidone, insbesondere N- Methylpyrrolidon (NMP). Im Allgemeinen werden alkylsubstituierte niedere aliphatische Säu- reamide oder N-alkylsubstituierte zyklische Säureamide verwendet. Besonders vorteilhaft sind Dimethylformamid, Acetonitril, Furfural und insbesondere NMP. Es können jedoch auch Mischungen dieser Extraktionsmittel untereinander, z.B. von NMP und Acetonitril, Mischungen dieser Extraktionsmittel mit Co-Lösungsmitteln und/oder tert.-Butyl- ether, z.B. Methyl-tert.-butylether, Ethyl-tert.-butylether, Propyl-tert.-butylether, n- oder iso-Butyl- tert.-butylether eingesetzt werden. Besonders geeignet ist NMP, bevorzugt in wässriger Lösung, vorzugsweise mit 0 bis 20 Gew.-% Wasser, besonders bevorzugt mit 7 bis 10 Gew.-% Wasser, insbesondere mit 8,3 Gew.-% Wasser.
Der Kopfproduktstrom der Extraktivdestillationskolonne enthält im Wesentlichen Butan und Bu- tene und in geringen Mengen Butadien und wird gasförmig oder flüssig abgezogen. Im Allgemeinen enthält der im Wesentlichen aus n-Butan und 2-Buten bestehende Strom 50 bis 100 Vol.-% n-Butan, 0 bis 50 Vol.-% 2-Buten und 0 bis 3 Vol.-% weitere Bestandteile wie Isobutan, Isobuten, Propan, Propen und Cs+-Kohlenwasserstoffe.
Am Sumpf der Extraktivdestillationskolonne wird ein das Extraktionsmittel, Wasser, Butadien und in geringen Anteilen Butene und Butan enthaltender Stoffstrom gewonnen, der einer Destil- lationskolonne zugeführt wird. In dieser wird über Kopf oder als Seitenabzug Butadien gewonnen werden. Am Sumpf der Destillationskolonne fällt ein Extraktionsmittel und Wasser enthaltender Stoffstrom an, wobei die Zusammensetzung des Extraktionsmittel und Wasser enthaltenden Stoffstroms der Zusammensetzung entspricht, wie sie der Extraktion zugegeben wird. Der Extraktionsmittel und Wasser enthaltende Stoffstrom wird bevorzugt in die Extraktivdestilla- tion zurückgeleitet.
Die Extraktionslösung wird in eine Desorptionszone überführt, wobei aus der Extraktionslösung das Butadien desorbiert wird. Die Desorptionszone kann beispielsweise in Form einer Waschkolonne ausgeführt sein, die 2 bis 30, bevorzugt 5 bis 20 theoretische Stufen und gegebenen- falls eine Rückwaschzone mit beispielsweise 4 theoretischen Stufen aufweist. Diese Rückwaschzone dient zur Rückgewinnung des in der Gasphase enthaltenen Extraktionsmittels mit Hilfe eines flüssigen Kohlenwasserstoffrücklaufs, wozu die Kopffraktion zuvor kondensiert wird. Als Einbauten sind Packungen, Böden oder Füllkörper vorgesehen. Die Destillation wird vorzugsweise bei einer Sumpftemperatur im Bereich von 100 bis 300 °C, insbesondere im Bereich von 150 bis 200 °C und einer Kopftemperatur im Bereich von 0 bis 70 °C, insbesondere im Bereich von 10 bis 50 °C durchgeführt. Der Druck in der Destillationskolonne liegt dabei vorzugsweise im Bereich von 1 bis 10 bar. Im Allgemeinen herrscht in der Desorptionszone gegenüber der Extraktionszone verminderter Druck und/oder eine erhöhte Temperatur. Der am Kolonnenkopf gewonnene Wertproduktstrom enthält im Allgemeinen 90 bis 100 Vol.-% Butadien, 0 bis 10 Vol.-% 2-Buten und 0 bis 10 Vol.-% n-Butan und iso-Butan. Zur weiteren Aufreinigung des Butadiens kann eine weitere Destillation nach dem Stand der Technik durchgeführt werden. Die Erfindung wird durch die nachstehenden Beispiele näher erläutert. Beispiele
Katalysatorsynthese:
Es wurden 2 Lösungen A und B hergestellt. Lösung A:
In einem 10 I-Edelstahltopf wurden 3200g Wasser vorgelegt. Unter Rühren mittels eines Anker- rührers wurden 5,2 g einer KOH Losung (32 Gew. % KOH) zum vorgelegten Wasser zugegeben. Die Lösung wurde auf 60 °C erwärmt. Nun wurden 1066 g einer Ammoniumheptamolyb- datlösung ((Ν Η4)6Μθ7θ24*4 h O, 54 Gew. % Mo) portionsweise über einen Zeitraum von 10 Mi- nuten zugegeben. Die erhaltene Suspension wurde noch 10 Minuten nachgerührt.
Lösung B:
In einem 5 I-Edelstahltopf wurden 1771 g einer Kobalt(ll)nitratlösung (12,3 Gew.-% Co) vorgelegt und unter Rühren (Ankerrührer) auf 60 °C erhitzt. Nun wurden 645 g einer Ei- sen(lll)nitratlösung (13,7 Gew.-% Fe) über einen Zeitraum von 10 Minuten portionsweise unter Aufrechterhaltung der Temperatur zugegeben. Die entstandene Lösung wurde 10 min nachgerührt. Nun wurden 619 g einer Bismutnitratlösung (10,7 Gew.-% Bi) unter Aufrechterhaltung der Temperatur zugegeben. Nach weiteren 10 Minuten Nachrühren wurden 109 g Chrom(lll)nitrat portionsweise fest zugegeben und die entstandene dunkelrote Lösung 10 min weitergerührt.
Unter Beibehaltung der 60 °C wurde innerhalb von 15 min die Lösung B zur Lösung A mittels Schlauchpumpe zu gepumpt. Während der Zugabe und danach wurde mittels eines Intensivmischers (Ultra-Turrax) gerührt. Nach vollendeter Zugabe wurde noch 5 min weitergerührt. Die erhaltene Suspension wurde in einem Sprühturm der Fa. NIRO (Sprühkopf-Nr. FOA1 ,
Drehzahl 25000 U/min) Ober einen Zeitraum von 1 ,5 h sprühgetrocknet. Dabei wurde die Vorlagetemperatur bei 60 °C gehalten. Die Gaseingangstemperatur des Sprühturmes betrug 300°C, die Gasausgangstemperatur 1 10 °C. Das erhaltene Pulver hatte eine Partikelgröße (dso) kleiner 40 μηη.
Das erhaltene Pulver wurde mit 1 Gew.-% Graphit vermischt, zweimal mit 9 bar Pressdruck kompaktiert und durch ein Sieb mit Maschenweite 0.8 mm zerkleinert. Der Split wurde wiederum mit 2 Gew.-% Graphit vermengt und die Mischung mit einer Kilian S100
Tablettenpresse in Ringe 5 x 2 x 3 mm (Außendurchmesser x Innendurchmesser x Länge) ge- presst. Der erhaltene Katalysatorvorläufer wurde chargenweise (500 g) in einem Umluftofen der Firma Heraeus, DE (Typ K, 750/2 S, Innenvolumen 55 I) kalziniert. Folgendes Programm wurde dafür verwendet:
- Auheizen in 72 min auf 130 °C, 72 min halten
- Auheizen in 36 min auf 190 °C, 72 min halten
- Auheizen in 36 min auf 220 °C, 72 min halten
- Auheizen in 36 min auf 265 °C, 72 min halten
- Auheizen in 93 min auf 380 °C, 187 min halten
- Auheizen in 93 min auf 430 °C, 187 min halten
- Auheizen in 93 min auf 490 °C, 467 min halten
Nach der Kalzination wurde der Katalysator der berechneten Stöchiometrie
Mo12Co7Fe3Bio.6K008Cro.5Ox erhalten.
Die kalzinierten Tabletten wurden zu einem Pulver vermählen.
Mit der Vorläufermasse wurden Trägerkörper (Steatitringe mit Abmessungen 7 x 4 x 3 mm (Außendurchmesser x Innendurchmesser x Länge) beschichtet. Dazu wurde der Träger in einer Dragiertrommel (2 I Innenvolumen, Neigungswinkel der Trommelmittelachse gegen die Horizontale = 30°) vorgelegt. Die Trommel wurde in Rotation versetzt (25 U/min). Über eine mit Druck- luft betriebenen Zerstäuberdüse wurden über ca. 30 min hinweg ca. 32 ml flüssiges Bindemittel (Mischung Glycerin : Wasser 1 :3) auf den Träger gesprüht (Sprühluft 500 Nl/h). Die Düse war dabei derart installiert, dass der Sprühkegel die in der Trommel beförderten Trägerkörper in der oberen Hälfte der Abrollstrecke benetzte. Die feinpulvrige Vorläufermasse wurde über eine Pulverschnecke in die Trommel eingetragen, wobei der Punkt der Pulverzugabe innerhalb der Ab- rollstrecke, aber unterhalb des Sprühkegels lag. Die Pulverzugabe wurde dabei so dosiert, dass eine gleichmäßige Verteilung des Pulvers auf der Oberfläche entstand. Nach Abschluss der Beschichtung wurde der entstandene Schalenkatalysator aus Vorläufermasse und dem Trägerkörper in einem Trockenschrank bei 300 °C für 3 Stunden getrocknet. Reaktor:
In einem Miniplant-Reaktor wurden Dehydrierungsversuche durchgeführt. Der Miniplant- Reaktor war ein Salzbadreaktor mit einer Länge von 500 cm und einem Innendurchmesser von 29,7 mm und einer Thermohülse mit einem Außendurchmesser von 6 mm. Das Reaktionsrohr war mit dem Katalysator beschickt. Auf einem Katalysatorstuhl saß eine 10 cm lange Nachschüttung bestehend aus 60 g Steatitringen der Geometrie 7 mm x 4 mm x 7 mm (Außendurchmesser x Innendurchmesser x Länge). Auf diese folgten 2710 g eines unverdünnten Schalenkatalysator (Schütthöhe 384 cm, 2552 ml Schüttvolumen im Reaktor) in Form von Hohlzylindern der Abmessungen 7 mm x 4 mm x 3 mm (Außendurchmesser x Innendurchmes- ser x Länge). An die Katalysatorschüttung schloss sich eine 85 cm lange Vorschüttung bestehend aus 487 g Steatitringen der Geometrie 7 mm x 4 mm x 7 mm (Außendurchmesser x Innendurchmesser x Länge) an. Das Reaktionsrohr wurde auf seiner gesamten Länge mit einem es umfließenden Salzbad mit einer Temperatur Tsaizbad von 390 °C temperiert. Als Reaktions-Ausgangsgasgemisch wurde ein Gemisch aus insgesamt 8 Vol.-% 1 -, cis-2- und trans-2-Butenen, 2 Vol.-% Butane (n- und isoButan), 8,5 Vol.-% Sauerstoff, 12 Vol.-% Wasser und 69,5 Vol.-% Stickstoff eingesetzt. Die Be- lastung des Reaktionsrohres betrug 5520 Nl/h Gesamtgas. Die Salzbadtemperatur lag dabei konstant bei 390 °C. Die Hotspottemperatur lag im Durchschnitt bei circa 439 °C und befand sich im vorderen Drittel der Katalysatorschüttung. Die Temperatur am Ende der Schüttung lag im Durchschnitt bei circa 397 °C. Eine Druckmessung erfolgte am Reaktoreingang (pi) und am Reaktorausgang (P2) .
Im Produktgasstrom wurde gaschromatographisch die Ausbeute an 1 ,3-Butadien, bezogen auf alle Butene, sowie die Bildung von Styrol, Anthrachinon und Fluorenon in Vol.-% ebenfalls bezogen auf alle Butene bestimmt. Die Ausbeute der Komponente X berechnet sich wie folgt ein
Ausbeutet) = [X]aus ' Av°l ~ [X]
[Butene]ei wobei [X]ein und [X]aus die Volumenkonzentrationen der Komponente X am Reaktoreingang bzw. -ausgang, Z , den Volumenänderungsfaktor und [Butenejein die Summe der Volumenkonzentrationen aller Butenisomere am Reaktoreingang darstellen.
Die Ergebnisse sind in Tabelle 1 wiedergegeben.
Tabelle 1
P1 [bar] P2 [bar] Ausbeute Ausbeute Ausbeute Ausbeute
Styrol Anthrachinon Fluorenon Butadien
[Vol.-%] [Vol.-%] [Vol.-%] [Vol.-%]
Versuch 1 1 ,295 0,560 0,059 0,0188 0,0748 76,432
Versuch 2 1 ,327 0,601 0,066 0,0208 0,0798 78,243
Zunahme
gegenüber 0,032 0,041 1 1 ,2 % 10,1 % 6,5 % 2,3 % Versuch 1
(absolut
bzw. in %)
Versuch 3 1 ,374 0,658 0,073 0,0228 0,0848 80,054
Zunahme
(absolut 0,079 0,097 21 ,2 % 19,2 % 12,5 % 4,6 % bzw. in %)
gegenüber
Versuch 1 Wie Tabelle 1 zu entnehmen ist, nimmt die Bildung der Koksvorläufer Styrol, Anthrachinon und Fluorenon oberhalb von 1 ,3 bar mit steigendem Druck deutlich zu. Der Anstieg (12,5 bis 21 ,2 %) ist überproportional, da die Ausbeute an Butadien nur mäßig zunimmt (4,6 %).

Claims

Patentansprüche
Katalysator, der erhältlich ist aus einem Katalysator-Vorläufer umfassend ein katalytisch aktives, Molybdän und mindestens ein weiteres Metall enthaltendes Multi- metalloxid der allgemeinen Formel (I)
Moi2BiaFebCOcNidCreX1fX2gOx (I), in der die Variablen nachfolgende Bedeutung aufweisen:
X1 = W, Sn, Mn, La, Ce, Ge, Ti, Zr, Hf, Nb, P, Si, Sb, AI, Cd und/oder Mg;
X2 = Li, Na, K, Cs und/oder Rb,
a = 0,1 bis 7, vorzugsweise 0,3 bis 1 ,5;
b = 0 bis 5, vorzugsweise 2 bis 4;
c = 0 bis 10, vorzugsweise 3 bis 10;
d = 0 bis 10;
e = 0 bis 5, vorzugsweise 0,1 bis 2;
f = 0 bis 24, vorzugsweise 0,1 bis 2;
g = 0 bis 2, vorzugsweise 0,01 bis 1 ; und
x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen
Elemente in (I) bestimmt wird, dadurch gekennzeichnet, dass der Katalysator die Form eines Hohlzylinders aufweist, wobei der Innendurchmesser das 0,2 bis 0,8-fache des Außendurchmessers und die Länge das 0,5 bis 2,5-fache des Außendurchmessers ist, und dass der Katalysatorvorläufer keinen Porenbildner enthält.
Katalysator nach Anspruch 1 , dadurch gekennzeichnet, dass er ein Vollmaterialkatalysa tor ist.
Katalysator nach Anspruch 1 , dadurch gekennzeichnet, dass er ein Schalenkatalysator mit einem Trägerkörper (a) und einer Schale (b) ist.
Katalysator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass er die Ab messungen Außendurchmesser x Innendurchmesser x Länge (4 bis 10 mm) x (2 bis 8 mm) x (2 bis 10 mm) aufweist. 5. Katalysator nach Anspruch 4, dadurch gekennzeichnet, dass er die Abmessungen Außendurchmesser x Innendurchmesser x Länge (6 bis 8 mm) x (3 bis 5 mm) x (2 bis 6 mm) aufweist. Katalysator nach Anspruch 3, dadurch gekennzeichnet, dass der Trägerkörper (a) die Abmessungen Außendurchmesser x Innendurchmesser x Länge (4 bis 10 mm) x (2 bis 8 mm) x (2 bis 10 mm) aufweist.
Katalysator nach Anspruch 6, dadurch gekennzeichnet, dass der Trägerkörper (a) die Abmessungen Außendurchmesser x Innendurchmesser x Länge (6 bis 8 mm) x (3 bis 5 mm) x (2 bis 6 mm) aufweist.
Katalysator nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Schale (b) eine Schichtdicke D von 50 bis 600 μηη aufweist.
Katalysator nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Molybdän und mindestens ein weiteres Metall enthaltende Multimetalloxid die allgemeine Formel (la) aufweist:
Moi2BiaFebCOcNidCreX1fX2gOy (la), mit
X1 = Si und/oder AI,
X2 = Li, Na, K, Cs und/oder Rb,
0,2 < a < 1 ,
0,5 < b < 10,
0 < c < 10,
0 < d < 10,
2 < c + d < 10
0 < e < 2,
0 < f < 10
0 < g < 0,5
y = eine Zahl, die unter der Voraussetzung der Ladungsneutralität durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (la) bestimmt wird.
0. Verfahren zur oxidativen Dehydrierung von n-Butenen zu Butadien, bei dem ein n-Butene enthaltendes Ausgangsgasgemisch mit einem Sauerstoff enthaltenden Gas gemischt und in einem Festbettreaktor bei einer Temperatur von 220 bis 490 °C mit einem in einem Katalysatorfestbett angeordneten Schalenkatalysator nach einem der Ansprüche 1 bis 10 in Kontakt gebracht wird.
1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Festbettreaktor ein Festbettrohrreaktor oder Festbettrohrbündelreaktor ist.
12. Verfahren nach einem der Ansprüche 10 oder 1 1 , dadurch gekennzeichnet, dass das n- Butene enthaltende Ausgangsgasgemisch durch nicht-oxidative Dehydrierung von n- Butan erhalten wird.
Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, dass das n-Butene enthaltende Ausgangsgasgemisch aus der C4-Fraktion eines Naphtha-Crackers erhalten wird.
14. Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, dass das n-Butene ent- haltende Ausgangsgasgemisch durch Dimerisierung von Ethylen erhalten wird.
15. Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, dass das n-Butene enthaltende Ausgangsgasgemisch durch katalytisches Wirbelschichtcracken (Fluid Catalytic Cracking, FCC) erhalten wird.
16. Verwendung eines Katalysators nach einem der Ansprüche 1 bis 9 zur oxidativen Dehydrierung von n-Butenen zu Butadien.
PCT/EP2013/075453 2012-12-06 2013-12-04 Verfahren zur oxidativen dehydrierung von n-butenen zu butadien WO2014086813A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015545988A JP2016500333A (ja) 2012-12-06 2013-12-04 n−ブテン類からブタジエンへの酸化的脱水素化法
EA201591092A EA201591092A1 (ru) 2012-12-06 2013-12-04 Способ окислительного дегидрирования н-бутена в бутадиен
KR1020157017618A KR20150091387A (ko) 2012-12-06 2013-12-04 n-부텐의 부타디엔으로의 산화성 탈수소화 방법
EP13814454.8A EP2928603A1 (de) 2012-12-06 2013-12-04 Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
CN201380071781.7A CN104955569A (zh) 2012-12-06 2013-12-04 将正丁烯氧化脱氢成丁二烯的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12195846.6 2012-12-06
EP12195846 2012-12-06

Publications (1)

Publication Number Publication Date
WO2014086813A1 true WO2014086813A1 (de) 2014-06-12

Family

ID=47290770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/075453 WO2014086813A1 (de) 2012-12-06 2013-12-04 Verfahren zur oxidativen dehydrierung von n-butenen zu butadien

Country Status (6)

Country Link
EP (1) EP2928603A1 (de)
JP (1) JP2016500333A (de)
KR (1) KR20150091387A (de)
CN (1) CN104955569A (de)
EA (1) EA201591092A1 (de)
WO (1) WO2014086813A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143783A1 (ja) * 2015-03-09 2016-09-15 三菱化学株式会社 共役ジエンの製造方法
WO2016177764A1 (de) * 2015-05-06 2016-11-10 Basf Se Verfahren zur herstellung chrom enthaltender katalysatoren für die oxidehydrierung von n-butenen zu butadien unter vermeidung von cr(vi)-intermediaten
EP2945923B1 (de) * 2013-01-15 2017-03-15 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
JP2017529374A (ja) * 2014-09-26 2017-10-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 酸化的脱水素化によりn−ブテン類から1,3−ブタジエンを製造するための方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105175207B (zh) * 2015-10-16 2017-03-22 安徽工业大学 用Bi/Mo/Co/La/Fe五组分复合氧化物催化剂移动床合成1,3‑丁二烯的方法
CN107970945A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 用于丁烯氧化脱氢制丁二烯的催化剂及其工艺方法
CN107970954B (zh) * 2016-10-21 2023-01-31 中国石油化工股份有限公司 用于丁烯氧化脱氢制丁二烯的催化剂及其制备方法
CN107973690A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 用于丁烯氧化脱氢制丁二烯的催化剂及其方法
JP7196155B2 (ja) 2018-03-06 2022-12-26 株式会社Eneosマテリアル 1,3-ブタジエンの製造方法
EP4417308A1 (de) * 2022-11-23 2024-08-21 LG Chem, Ltd. Katalysator zur oxidativen dehydrierung und herstellungsverfahren dafür

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438217A (en) * 1982-01-06 1984-03-20 Nippin Shokubai Kagako Kogyo Co., Ltd. Catalyst for oxidation of propylene
DE4442346A1 (de) * 1994-11-29 1996-05-30 Basf Ag Verfahren zur Herstellung eines Katalysators, bestehend aus einem Trägerkörper und einer auf der Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Oxidmasse
US5989412A (en) * 1996-04-08 1999-11-23 Catalysts & Chemicals Industries Co., Ltd. Hydrodemetallizing catalyst for hydrocarbon oil and process of hydrodemetallizing hydrocarbon oil therewith
WO2005063658A1 (de) * 2003-12-30 2005-07-14 Basf Aktiengesellschaft Verfahren zur herstellung von butadien
WO2009124945A2 (de) * 2008-04-09 2009-10-15 Basf Se Schalenkatalysatoren enthaltend ein molybdän, bismut und eisen enthaltendes multimetalloxid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066528B (zh) * 2001-11-08 2010-09-29 三菱化学株式会社 复合氧化物催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438217A (en) * 1982-01-06 1984-03-20 Nippin Shokubai Kagako Kogyo Co., Ltd. Catalyst for oxidation of propylene
US4438217B1 (de) * 1982-01-06 1990-01-09 Nippon Shokubai Kagak Kogyo Co
DE4442346A1 (de) * 1994-11-29 1996-05-30 Basf Ag Verfahren zur Herstellung eines Katalysators, bestehend aus einem Trägerkörper und einer auf der Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Oxidmasse
US5989412A (en) * 1996-04-08 1999-11-23 Catalysts & Chemicals Industries Co., Ltd. Hydrodemetallizing catalyst for hydrocarbon oil and process of hydrodemetallizing hydrocarbon oil therewith
WO2005063658A1 (de) * 2003-12-30 2005-07-14 Basf Aktiengesellschaft Verfahren zur herstellung von butadien
WO2009124945A2 (de) * 2008-04-09 2009-10-15 Basf Se Schalenkatalysatoren enthaltend ein molybdän, bismut und eisen enthaltendes multimetalloxid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945923B1 (de) * 2013-01-15 2017-03-15 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
JP2017529374A (ja) * 2014-09-26 2017-10-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 酸化的脱水素化によりn−ブテン類から1,3−ブタジエンを製造するための方法
WO2016143783A1 (ja) * 2015-03-09 2016-09-15 三菱化学株式会社 共役ジエンの製造方法
KR20170128271A (ko) * 2015-03-09 2017-11-22 미쯔비시 케미컬 주식회사 공액 디엔의 제조 방법
US10370309B2 (en) 2015-03-09 2019-08-06 Mitsubishi Chemical Corporation Method for producing conjugated diene
KR102472467B1 (ko) 2015-03-09 2022-11-30 미쯔비시 케미컬 주식회사 공액 디엔의 제조 방법
WO2016177764A1 (de) * 2015-05-06 2016-11-10 Basf Se Verfahren zur herstellung chrom enthaltender katalysatoren für die oxidehydrierung von n-butenen zu butadien unter vermeidung von cr(vi)-intermediaten

Also Published As

Publication number Publication date
EP2928603A1 (de) 2015-10-14
KR20150091387A (ko) 2015-08-10
CN104955569A (zh) 2015-09-30
EA201591092A1 (ru) 2015-11-30
JP2016500333A (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
EP2928849B1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP2928603A1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP1546074B1 (de) Verfahren zur herstellung von wenigstens einem partiellen oxidations- und/oder ammoxidationsprodukt des propylens
EP3019458B1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP3063112B1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
WO2006075025A1 (de) Verfahren zur herstellung von butadien aus n-butan
EP2945923B1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
DE10245585A1 (de) Verfahren zur Herstellung von wenigstens einem partiellen Oxidations- und/oder Ammoxidationsprodukt des Propylens
EP3180298B1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
DE10246119A1 (de) Verfahren zur Herstellung von wenigstens einem partiellen Oxidations- und/oder Ammoxidationsprodukt des Propylens
EP3022168A1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien
WO2014086768A1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP3274320B1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
EP2928601A1 (de) Katalysator und verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP1881952B1 (de) Verfahren zur herstellung wenigstens eines zielproduktes durch partielle oxidation und/oder ammoxidation von propylen
DE102005010111A1 (de) Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte partielle Gasphasenoxidation von Propylen
WO2016151074A1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
DE102005009885A1 (de) Verfahren zur Herstellung von Acrolein oder Acrylsäure oder deren Gemisch durch heterogen katalysierte partielle Gasphasenoxidation von Propylen
WO2018178005A1 (de) Verfahren zum abfahren und regenerieren eines reaktors zur oxidativen dehydrierung von n-butenen
US20140163291A1 (en) Process for the Oxidative Dehydrogenation of N-Butenes to Butadiene
EP2928602A1 (de) Schalenkatalysator zur oxidativen dehydrierung von n-butenen zu butadien
WO2015007841A1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien
US20140163289A1 (en) Coated Catalyst for the Oxidative Dehydrogenation of N-Butenes to Butadiene
WO2016177764A1 (de) Verfahren zur herstellung chrom enthaltender katalysatoren für die oxidehydrierung von n-butenen zu butadien unter vermeidung von cr(vi)-intermediaten
WO2018095776A1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine wässrige wäsche des c4-produktgasstroms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13814454

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015545988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157017618

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013814454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013814454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201591092

Country of ref document: EA