WO2014069469A1 - Production method for positive electrode active material - Google Patents
Production method for positive electrode active material Download PDFInfo
- Publication number
- WO2014069469A1 WO2014069469A1 PCT/JP2013/079294 JP2013079294W WO2014069469A1 WO 2014069469 A1 WO2014069469 A1 WO 2014069469A1 JP 2013079294 W JP2013079294 W JP 2013079294W WO 2014069469 A1 WO2014069469 A1 WO 2014069469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- sulfate
- active material
- electrode active
- carbonate
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing a positive electrode active material.
- Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
- a positive electrode active material of a lithium ion secondary battery a positive electrode active material (LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4, etc.) made of a composite oxide containing Li and a transition metal element .)It has been known.
- a lithium ion secondary battery using LiCoO 2 as a positive electrode active material and using a lithium alloy, graphite, carbon fiber, or the like as a negative electrode can be widely used as a battery having a high energy density because a high voltage of about 4 V can be obtained.
- LiCoO 2 LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4, etc.
- the lithium ion secondary battery has a discharge capacity per unit mass (hereinafter simply referred to as “discharge capacity”) and characteristics that make it difficult to reduce the discharge capacity and the average discharge voltage after repeated charge / discharge cycles (hereinafter referred to as “discharge capacity”). It is also called “cycle characteristics”).
- the positive electrode active material having a high discharge capacity is a positive electrode made of a complex oxide (hereinafter also referred to as “Li-rich positive electrode active material”) having a high Li ratio to a transition metal element such as the following positive electrode active material (i). Active materials are attracting attention.
- a positive electrode active material satisfying Ni y / 2 Mn 2x / 3 + y / 2 (x + y ⁇ 1, 0 ⁇ y and 1/3 ⁇ x ⁇ 2/3) Patent Document 1).
- the positive electrode active material (i) tends to elute Mn into the electrolytic solution by coming into contact with a decomposition product generated from the electrolytic solution by charging at a high voltage. For this reason, the crystal structure of the positive electrode active material (i) tends to be unstable, and sufficient cycle characteristics cannot be obtained. Therefore, the following method (ii) has been proposed as a method for obtaining a Li-rich positive electrode active material having excellent cycle characteristics.
- Lithium transition metal composite oxide containing Li and Co, Ni, and Mn obtained by the carbonate coprecipitation step and the firing step is added to the aluminum nitrate solution, mixed, homogenized, and then fluorinated.
- a method of coating the surface of the lithium transition metal composite oxide with aluminum fluoride by adding ammonium and baking the solid content obtained by filtration (Patent Document 2).
- the production process becomes complicated because the production process of the positive electrode active material increases.
- the present invention provides a method for producing a positive electrode active material capable of easily producing a positive electrode active material having excellent discharge capacity and cycle characteristics.
- the gist of the present invention is as follows.
- a method for producing a positive electrode active material comprising the following steps (I) and (II).
- the pH of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed is 7 to 12, The manufacturing method of the positive electrode active material of description.
- the proportion of Al contained in the coprecipitation compound is 0.01 to 5 mol% with respect to the total number of moles of the transition metal element (X) and the number of moles of Al. The method for producing a positive electrode active material according to the above (1) or (2).
- the number of moles of Li contained in lithium carbonate is 1.1 times or more with respect to the total number of moles of the transition metal element (X).
- the manufacturing method of the positive electrode active material as described in any one of 7).
- a to e are 0.1 ⁇ a ⁇ 0.6, 0.095 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.3, 0.28 ⁇ d ⁇ 0, respectively. .85, 0.9 ⁇ b + c + d ⁇ 1.05, 0.0001 ⁇ e ⁇ 0.05, f is a numerical value determined by the valences of Li, Ni, Co, Mn and Al.
- a positive electrode active material having excellent discharge capacity and cycle characteristics can be easily produced.
- Li represents a lithium element.
- Ni, Co, Mn, Al, etc. also indicate each element.
- the method for producing a positive electrode active material of the present invention is a method for producing a positive electrode active material containing Li, at least one transition metal element (X) selected from the group consisting of Ni, Co, and Mn, and Al. .
- the manufacturing method of the positive electrode active material of this invention has the following process (I) and process (II).
- step (I) in the production method of the present invention, sulfate (A), Al sulfate and carbonate (B) are mixed in an aqueous solution state. You may use an additive further as needed. Thereby, the coprecipitation compound containing transition metal element (X) and Al precipitates.
- the aspect in which the sulfate (A), the Al sulfate and the carbonate (B) are mixed in the state of an aqueous solution is such that the sulfate (A), the Al sulfate and the carbonate (B) are mixed. If it is in the state of aqueous solution, it will not specifically limit.
- an aqueous solution of sulfate (A), an aqueous solution of Al sulfate, and an aqueous solution of carbonate (B) are added to the reaction vessel. It is preferable to add continuously. Furthermore, since sulfate (A) and Al sulfate can be mixed more uniformly, after preparing an aqueous solution containing sulfate (A) and Al sulfate, sulfate (A) and Al sulfate are included. More preferably, the aqueous solution and the carbonate (B) aqueous solution are continuously added.
- the aqueous solution of sulfate (A) may be two or more types of aqueous solutions separately containing two or more types of sulfate (A). It is good also as 1 type of aqueous solution containing the sulfate (A). Moreover, you may use together the aqueous solution containing 1 type of sulfates (A), and the aqueous solution containing 2 or more types of sulfates (A).
- the pH of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed is preferably 7 to 12, and more preferably 7.5 to 10. If the pH is within the above range, a single-phase carbonate coprecipitated compound tends to precipitate.
- the sulfate (A) is at least one sulfate selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate.
- Ni sulfate include nickel sulfate (II) hexahydrate, nickel sulfate (II) heptahydrate, nickel sulfate (II) ammonium hexahydrate, and the like.
- Examples of the sulfate of Co include cobalt (II) sulfate heptahydrate and cobalt (II) ammonium sulfate hexahydrate.
- Mn include manganese sulfate (II) pentahydrate, manganese sulfate (II) ammonium hexahydrate, and the like.
- a sulfate (A) may be used individually by 1 type, and may use 2 or more types together.
- the sulfate (A) preferably contains Ni sulfate and Mn sulfate from the viewpoint of easily obtaining a lithium ion secondary battery having a high discharge capacity.
- Ni sulfate, Co sulfate and Mn It is more preferable to use a combination of sulfates. That is, it is preferable to precipitate a coprecipitation compound containing Ni and Mn as the transition metal element (X), and it is more preferable to precipitate a coprecipitation compound containing Ni, Co and Mn as the transition metal element (X). That is, the coprecipitation compound is preferably a carbonate containing Ni and Mn as the transition metal element (X), and more preferably a carbonate containing Ni, Co and Mn as the transition metal element (X).
- Examples of the sulfate of Al include anhydrous aluminum sulfate (III), aluminum sulfate (III), 14 to 18 hydrate, aluminum sulfate (III) potassium, dodecahydrate, and the like.
- the carbonate (B) is at least one selected from the group consisting of sodium carbonate and potassium carbonate. Carbonate (B) serves as a pH adjuster for coprecipitation of Ni, Co and Mn. As the carbonate (B), either sodium carbonate or potassium carbonate may be used alone, or sodium carbonate and potassium carbonate may be used in combination.
- the ratio of the number of moles of Ni contained in the sulfate of Ni is preferably 9.5 to 50 mol%, and 14.2 to 45 mol% with respect to the total number of moles (100 mol%) of the transition metal element (X) and Al. Is more preferable, and 19 to 40 mol% is particularly preferable. If the ratio of the amount of Ni is not less than the lower limit value, a positive electrode active material exhibiting a high discharge voltage can be obtained. If the ratio of the amount of Ni is not more than the upper limit value, a positive electrode active material exhibiting a high discharge capacity can be obtained.
- the ratio of the number of moles of Co contained in the sulfate of Co is preferably 0 to 30 mol%, more preferably 0 to 20 mol%, based on the total number of moles of transition metal element (X) and Al (100 mol%). 0 to 15 mol% is particularly preferable. When the proportion of the amount of Co is not more than the upper limit value, a positive electrode active material exhibiting excellent cycle characteristics can be obtained.
- the ratio of the number of moles of Mn contained in the sulfate of Mn is preferably 28.5 to 85 mol%, more preferably 38 to 80 mol% with respect to the total number of moles (100 mol%) of the transition metal element (X) and Al. Preferably, 38 to 70 mol% is particularly preferable.
- the ratio of the amount of Mn is not less than the lower limit value, a positive electrode active material exhibiting a high discharge capacity can be obtained. If the ratio of the amount of Mn is not more than the upper limit value, a positive electrode active material exhibiting a high discharge voltage can be obtained.
- the proportion of the number of moles of Al contained in the sulfate of Al is preferably 0.01 to 5 mol%, preferably 0.1 to 5 mol%, based on the total number of moles (100 mol%) of the transition metal element (X) and Al. Is more preferable, and 0.1 to 2 mol% is particularly preferable.
- the proportion of the amount of Al is not less than the lower limit value, a positive electrode active material exhibiting excellent cycle characteristics can be obtained. If the ratio of the amount of Al is not more than the upper limit value, the impurity phase is difficult to be produced.
- the concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is preferably from 0.1 to 3 mol / kg, more preferably from 0.5 to 2.5 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. If the said density
- the concentration of Al in the aqueous solution of Al sulfate is preferably 0.001 to 0.15 mol / kg, and more preferably 0.005 to 0.125 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. If the concentration is not more than the upper limit, the Al sulfate can be sufficiently dissolved. When the aqueous solution containing both the sulfate (A) and the Al sulfate is used, it is preferable that the respective concentrations of the sulfate (A) and the Al sulfate are within the above ranges.
- the coprecipitated compound obtained in step (I) is preferably a coprecipitated carbonate containing Ni, Mn and Al, or a coprecipitated carbonate containing Ni, Co, Mn and Al.
- the concentration of carbonate (B) in the aqueous solution of carbonate (B) is preferably from 0.1 to 2 mol / kg, more preferably from 0.5 to 2 mol / kg. If the density
- the solvent used for the aqueous solution of the sulfate (A), Al sulfate and carbonate (B) is water as long as the sulfate (A), Al sulfate and carbonate (B) are in a range that dissolves.
- an aqueous medium containing components other than water in addition to water examples include methanol, ethanol, 1-propanol, 2-propanol, polyol and the like.
- the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
- the proportion of components other than water in the aqueous medium is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, particularly preferably 0 to 1% by mass, and most preferably not contained. If the ratio of components other than water is not more than the upper limit value, it is excellent in terms of environment, handleability, and cost.
- the stirring blade include a stirring blade such as an anchor type, a propeller type, and a paddle type.
- the temperature of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed in the state of an aqueous solution is 20 to 80 ° C. because the coprecipitate compound is likely to precipitate. Preferably, it is 25 to 60 ° C.
- the sulfate (A), the sulfate of Al, and the carbonate (B) are mixed in the state of an aqueous solution, from the point of suppressing the oxidation of the precipitated coprecipitated compound, in a nitrogen atmosphere or argon It is preferable to perform the mixing under an atmosphere, and it is particularly preferable to perform the mixing under a nitrogen atmosphere from the viewpoint of cost.
- ammonia or an ammonium salt may be used in order to adjust the pH and the solubility of the transition metal element (X).
- ammonium salts include ammonium chloride, ammonium sulfate, and ammonium nitrate.
- the ammonia or ammonium salt is preferably supplied to the mixed solution simultaneously with the supply of the sulfate (A) and the sulfate of Al.
- the preferred ranges of the respective proportions of Ni, Co and Mn in the obtained coprecipitated compound are the same as the preferred ranges of the respective proportions of Ni, Co and Mn in the sulfate (A) and the sulfate of Al. It is. Thereby, an appropriate particle diameter and a spherical coprecipitation compound are easy to be obtained.
- the preferable range of the ratio of Al to the total amount of transition metal element (X) and Al in the obtained coprecipitation compound is the above-mentioned sulfate (A) and transition metal element (X) in the sulfate of Al.
- the preferred range of the proportion of Al in the sulfate of Al with respect to the total amount of Al is obtained.
- the particle size (D50) of the coprecipitated compound is preferably 4 to 20 ⁇ m, more preferably 5 to 18 ⁇ m, and particularly preferably 6 to 15 ⁇ m.
- the particle diameter (D50) means a particle diameter at a point of 50% in a cumulative volume distribution curve with a total volume of 100% of a particle size distribution obtained on a volume basis, that is, a volume-based cumulative 50% diameter.
- the particle size (D50) of the coprecipitated compound is measured in the same manner as the particle size (D50) of the positive electrode active material described later.
- the specific surface area of the coprecipitated compound is preferably 50 ⁇ 300m 2 / g, more preferably 100 ⁇ 250m 2 / g.
- the specific surface area of the coprecipitation compound is within the above range, the specific surface area of the positive electrode active material described later can be easily controlled within a preferable range, and a positive electrode active material exhibiting a high discharge capacity can be easily obtained.
- the specific surface area of the coprecipitated compound is measured in the same manner as the specific surface area of the positive electrode active material described later.
- the step (I) preferably has a step of removing the aqueous solution by filtration or centrifugation after the coprecipitation compound is precipitated.
- a pressure filter, a vacuum filter, a centrifugal classifier, a filter press, a screw press, a rotary dehydrator, or the like can be used as filtration or centrifugation.
- the obtained coprecipitated compound is preferably washed to remove impurity ions.
- Examples of the coprecipitation compound washing method include a method of repeating pressure filtration and dispersion in distilled water.
- the obtained coprecipitated compound is preferably dried.
- the drying temperature of the coprecipitation compound is preferably 60 to 200 ° C, more preferably 80 to 130 ° C. If the said drying temperature is more than a lower limit, a coprecipitation compound can be dried in a short time. If the said drying temperature is below an upper limit, it can suppress that a coprecipitation compound oxidizes.
- the drying time of the coprecipitated compound is preferably 1 to 300 hours, more preferably 5 to 120 hours.
- step (II) the coprecipitated compound obtained in step (I) and lithium carbonate are mixed and baked at 500 to 1000 ° C.
- the method of mixing the coprecipitation compound and lithium carbonate include a method using a rocking mixer, a nauta mixer, a spiral mixer, a cutter mill, a V mixer, and the like.
- the number of moles of Li contained in the lithium carbonate is preferably 1.1 times or more with respect to the total number of moles of the transition metal element (X) contained in the coprecipitation compound. If the said ratio is more than a lower limit, a high discharge capacity will be obtained.
- the number of moles of the total amount of Li contained in lithium carbonate is more preferably 1.1 to 1.6 times, and more preferably 1.1 to 1.4 times the total number of moles of the transition metal element (X). A ratio of 2 times or less is particularly preferable. When the ratio is within the range, a high discharge capacity can be obtained.
- An electric furnace, a continuous firing furnace, a rotary kiln or the like can be used for the firing apparatus. Since the coprecipitated compound is oxidized during firing, the firing is preferably performed in the air, and particularly preferably performed while supplying air.
- the air supply rate is preferably 10 to 200 mL / min, more preferably 40 to 150 mL / min per liter of the furnace internal volume.
- the firing temperature is 500 to 1000 ° C., preferably 600 to 1000 ° C., and particularly preferably 800 to 950 ° C. When the firing temperature is within the above range, a positive electrode active material with high crystallinity can be obtained.
- the firing time is preferably 4 to 40 hours, and more preferably 4 to 20 hours.
- the firing may be one-stage firing at 500 to 1000 ° C., or two-stage firing in which main firing is performed at 700 to 1000 ° C. after preliminary firing at 400 to 700 ° C.
- two-stage firing is preferable because Li easily diffuses uniformly into the positive electrode active material.
- the temperature for temporary firing is preferably 400 to 700 ° C, more preferably 500 to 650 ° C.
- the temperature of the main firing in the case of two-stage firing is preferably 700 to 1000 ° C., and more preferably 800 to 950 ° C.
- the positive electrode active material produced by the production method of the present invention is particulate.
- the particle shape of the positive electrode active material is not particularly limited, and examples thereof include a spherical shape, a needle shape, and a plate shape. Especially, since the filling property of a positive electrode active material becomes high at the time of manufacture of a positive electrode, the particle shape of a positive electrode active material has a more preferable spherical shape.
- the particle diameter (D50) of the positive electrode active material obtained by the production method of the present invention is preferably 4 to 20 ⁇ m, more preferably 5 to 18 ⁇ m, and particularly preferably 6 to 15 ⁇ m. When the particle diameter (D50) is within the above range, a high discharge capacity can be obtained.
- the particle diameter (D50) is measured by the method described in the examples.
- the positive electrode active material is preferably secondary particles in which primary particles having a particle diameter (D50) of 10 to 500 nm are aggregated. As a result, when a lithium ion secondary battery is manufactured, the electrolyte is easily spread between the positive electrode active materials in the positive electrode.
- the specific surface area of the positive electrode active material is preferably 0.1 ⁇ 15m 2 / g, more preferably 2 ⁇ 10m 2 / g, particularly preferably 4 ⁇ 8m 2 / g. If the specific surface area is not less than the lower limit, a high discharge capacity can be obtained. If the specific surface area is not more than the upper limit, excellent cycle characteristics can be obtained. The specific surface area is measured by the method described in Examples.
- the compound (1) represented by the following Formula (1) is preferable.
- a to e are 0.1 ⁇ a ⁇ 0.6, 0.095 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.3, 0.28 ⁇ d ⁇ 0, respectively.
- f is a numerical value determined by the valences of Li, Ni, Co, Mn, and Al.
- a of the compound (1) becomes a positive electrode active material having a high initial discharge capacity and initial discharge voltage, 0.1 ⁇ a ⁇ 0.4 is more preferable.
- b is more preferably 0.142 ⁇ b ⁇ 0.45, and particularly preferably 0.19 ⁇ b ⁇ 0.4, for the same reason as a.
- c of the compound (1) is more preferably 0 ⁇ c ⁇ 0.2, and particularly preferably 0 ⁇ c ⁇ 0.15.
- d of the compound (1) is more preferably 0.38 ⁇ d ⁇ 0.85, and particularly preferably 0.38 ⁇ d ⁇ 0.7.
- E of compound (1) is more preferably 0.001 ⁇ e ⁇ 0.05, and particularly preferably 0.001 ⁇ e ⁇ 0.02, since both the initial discharge capacity and the cycle characteristics can be achieved.
- the positive electrode active material obtained by the production method of the present invention can be used for forming a positive electrode for a lithium ion secondary battery in a lithium ion secondary battery.
- the lithium ion secondary battery using the positive electrode active material obtained by the production method of the present invention and the positive electrode for the lithium ion secondary battery have known forms except that the positive electrode active material obtained by the production method of the present invention is used. Can be used without restriction.
- As a lithium ion secondary battery what has a positive electrode for lithium ion secondary batteries, a negative electrode, and a nonaqueous electrolyte is mentioned, for example.
- the shape of the lithium ion secondary battery is not particularly limited, and shapes such as a coin shape, a sheet shape (film shape), a folded shape, a wound type bottomed cylindrical shape, and a button shape can be appropriately selected according to the application.
- Examples of the positive electrode for a lithium ion secondary battery include a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector.
- Examples of the positive electrode current collector include an aluminum foil and a stainless steel foil.
- the positive electrode active material layer is a layer including the positive electrode active material obtained by the above-described production method of the present invention, a conductive material, and a binder. Furthermore, other components such as a thickener may be included as necessary. Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black. A conductive material may be used individually by 1 type, and may use 2 or more types together.
- binder examples include fluorine-based resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyolefins (polyethylene, polypropylene, etc.), and polymers having unsaturated bonds (styrene / butadiene rubber, isoprene rubber, butadiene rubber, etc.) ), Acrylic acid polymers (acrylic acid copolymers, methacrylic acid copolymers, etc.).
- a binder may be used individually by 1 type and may use 2 or more types together.
- a positive electrode active material may be used individually by 1 type, and may use 2 or more types together.
- thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and polyvinylpyrrolidone.
- a thickener may be used individually by 1 type and may use 2 or more types together.
- Examples of a method for producing a positive electrode for a lithium ion secondary battery include the following methods.
- a positive electrode active material, a conductive material, and a binder are dissolved or dispersed in a medium to obtain a slurry, or a positive electrode active material, a conductive material, and a binder are kneaded with a medium to obtain a kneaded product.
- the positive electrode active material layer is formed by coating the obtained slurry or kneaded material on the positive electrode current collector.
- the negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
- the negative electrode current collector include metal foils such as nickel foil and copper foil.
- the negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential.
- an oxide mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. Carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds and the like.
- iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, and other oxides and other nitrides may be used as the negative electrode active material.
- Examples of the carbon material for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and glassy carbons.
- Organic polymer compound fired bodies obtained by firing and polymerizing organic polymer compounds (phenol resin, furan resin, etc.) at an appropriate temperature, carbon fibers, activated carbon, carbon blacks and the like.
- Examples of the metal of Group 14 of the periodic table include Si and Sn. Among these, Si is preferable as the metal of Group 14 of the periodic table.
- the negative electrode is obtained, for example, by preparing a slurry by mixing a negative electrode active material with an organic solvent, applying the prepared slurry to a negative electrode current collector, drying, and pressing.
- non-aqueous electrolyte examples include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in an organic solvent, a solid electrolyte containing an electrolyte salt, a solid electrolyte obtained by mixing or dissolving an electrolyte salt in a polymer electrolyte, a polymer compound, and the like. Or a gel electrolyte etc. are mentioned.
- organic solvent known organic solvents for non-aqueous electrolytes can be employed, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, Examples thereof include ⁇ -butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetic acid ester, butyric acid ester, and propionic acid ester.
- the organic solvent is preferably a cyclic carbonate such as propylene carbonate, or a chain carbonate such as dimethyl carbonate or diethyl carbonate.
- An organic solvent may be used individually by 1 type, and may use 2 or more types together.
- any material having lithium ion conductivity may be used, and either an inorganic solid electrolyte or a polymer solid electrolyte may be used.
- the inorganic solid electrolyte include lithium nitride and lithium iodide.
- the polymer solid electrolyte include an electrolyte containing an electrolyte salt and a polymer compound that dissolves the electrolyte salt.
- the polymer compound that dissolves the electrolyte salt include ether polymer compounds (poly (ethylene oxide), cross-linked poly (ethylene oxide), etc.), poly (methacrylate) ester polymer compounds, and acrylate polymer compounds. Etc.
- the matrix of the gel electrolyte may be any matrix that absorbs the non-aqueous electrolyte and gels, and various polymer compounds can be used.
- the polymer compound include fluorine-based polymer compounds (poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), etc.), polyacrylonitrile, a copolymer of polyacrylonitrile, an ether-based compound, and the like.
- high molecular compounds polyethylene oxide, polyethylene oxide copolymers, and crosslinked products of the copolymers, etc.).
- Examples of the monomer copolymerized with polyethylene oxide as the copolymer include methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
- a fluorine-based polymer compound is particularly preferable among the polymer compounds from the viewpoint of stability against redox reaction.
- electrolyte salt known ones used in lithium ion secondary batteries can be used, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, and the like.
- the specific surface areas of the coprecipitated compound and the positive electrode active material were measured by a BET (Brunauer, Emmett, Teller) method using a specific surface area measuring device (device name: HM model-1208) manufactured by Mountec.
- composition analysis (Ni, Co, Mn, Al)
- the composition analysis of the coprecipitated compound was performed with a plasma emission analyzer (manufactured by SII Nanotechnology, model name: SPS3100H).
- the obtained positive electrode sheet was punched into a circular shape with a diameter of 18 mm as a positive electrode, and a stainless steel simple sealed cell type lithium ion secondary battery was assembled in an argon glove box.
- a stainless steel plate having a thickness of 1 mm was used as the negative electrode current collector, and a metal lithium foil having a thickness of 500 ⁇ m was formed on the negative electrode current collector to form a negative electrode.
- porous polypropylene having a thickness of 25 ⁇ m was used as the separator.
- a solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a mass ratio of 1: 1 so that the concentration was 1 mol / dm 3 was used as an electrolytic solution.
- the obtained lithium ion secondary battery was connected to a charge / discharge evaluation device (manufactured by Toyo System Co., Ltd., device name: TOSCAT-3000), charged to 4.6 V with a load current of 0.1 C / g of active material, The activation treatment was performed by discharging to 2 V at a load current of 0.1 C per 1 g of the substance.
- the charge / discharge cycle which charges to 4.5V with the load current of 1C per 1g of active material, and discharges to 2V with the load current of 1C per 1g of active material was repeated 100 times.
- 1C means the amount of current that can discharge the theoretical capacity of the positive electrode in one hour.
- the charge capacity, discharge capacity, and average discharge voltage during the activation treatment were set as the initial charge capacity, discharge capacity, and average discharge voltage, respectively.
- the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 3rd cycle was defined as the discharge capacity retention rate.
- distilled water is put into a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and stirred with a paddle type stirring blade, the aqueous sulfate solution is stirred at a rate of 5.0 g / min for 6 hours.
- the coprecipitation compound containing Ni, Co, Mn, and Al was precipitated.
- an aqueous carbonate solution pH adjusting solution
- Example 2 Example 1 except that the ratio of the number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound in the step (II) was changed as shown in Table 1. Similarly, a positive electrode active material was obtained. Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
- step (I) nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate are used without using aluminum sulfate (III)
- a positive electrode active material was obtained in the same manner as in Example 1 except that the amount of (II) pentahydrate was changed so that the molar ratio of Ni, Co and Mn was as shown in Table 1.
- Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
- step (I) nickel (II) sulfate hexahydrate, cobalt sulfate (II) heptahydrate, manganese sulfate (II) pentahydrate and aluminum sulfate (III)
- a coprecipitated compound was obtained in the same manner as in Example 1, except that the molar ratio of Ni, Co, Mn and Al was as shown in Table 1.
- Example 1 except that the ratio of the number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound was changed to 1.13 in the step (II).
- Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
- Example 5 As in Example 4, except that the ratio of the number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound was changed to 1.15 in step (II). Thus, a positive electrode active material was obtained. Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
- step (I) nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate are used without using aluminum sulfate (III)
- a positive electrode active material was obtained in the same manner as in Example 5 except that the amount of (II) pentahydrate was changed so that the molar ratio of Ni, Co and Mn was as shown in Table 1.
- Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
- Li / X in Table 1 is the ratio (mol times) of the number of moles of Li contained in lithium carbonate to the total number of moles of transition metal element (X) contained in the coprecipitation compound in step (II). means.
- the “efficiency” in the initial characteristics of the lithium ion secondary battery is the ratio of the discharge capacity to the initial charge capacity.
- the lithium ion secondary batteries of Examples 1, 2, 4, and 5 had a higher discharge capacity retention rate and excellent cycle characteristics than the lithium ion secondary batteries of Examples 3 and 6. .
- the positive electrode active material for lithium ion secondary batteries which is excellent in cycling characteristics with the simple method with few processes is obtained.
- the positive electrode active material can be suitably used for forming a positive electrode for a lithium ion secondary battery used for electronic devices such as mobile phones and small and light lithium ion secondary batteries for vehicles.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Provided is a production method for a positive electrode active material, capable of readily producing a positive electrode active material having excellent cycle characteristics even when same is a Li-rich positive electrode active material. The production method for positive electrode active materials has: a step in which at least one type of sulfate (A) selected from a group comprising a Ni sulfate, a Co sulfate, and a Mn sulfate, an Al sulfate, and at least one type of carbonate (B) selected from a group comprising sodium carbonate and potassium carbonate are mixed in an aqueous salutation state, and a co-precipitation compound including at least one type of transition metal element (X) selected from a group comprising Ni, Co, and Mn, and Al is obtained; and a step in which the co-precipitation compound and lithium carbonate are mixed, and baked at 500-1,000°C.
Description
本発明は、正極活物質の製造方法に関する。
The present invention relates to a method for producing a positive electrode active material.
携帯電話、ノート型パソコン等の携帯型電子機器等には、リチウムイオン二次電池が広く使用されている。リチウムイオン二次電池の正極活物質としては、Liと遷移金属元素を含む複合酸化物からなる正極活物質(LiCoO2、LiNiO2、LiNi0.8Co0.2O2、LiMn2O4等。)が知られている。例えば、正極活物質としてLiCoO2を用い、負極としてリチウム合金、グラファイト、カーボンファイバー等を用いたリチウムイオン二次電池は、約4Vの高い電圧が得られるため、高エネルギー密度を有する電池として広く使用されている。
Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers. As a positive electrode active material of a lithium ion secondary battery, a positive electrode active material (LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4, etc.) made of a composite oxide containing Li and a transition metal element .)It has been known. For example, a lithium ion secondary battery using LiCoO 2 as a positive electrode active material and using a lithium alloy, graphite, carbon fiber, or the like as a negative electrode can be widely used as a battery having a high energy density because a high voltage of about 4 V can be obtained. Has been.
携帯型電子機器用、車載用等のリチウムイオン二次電池には、小型化、軽量化が求められている。そのため、リチウムイオン二次電池は、単位質量あたりの放電容量(以下、単に「放電容量」という。)、および、充放電サイクルを繰り返した後に放電容量および平均放電電圧を低下させ難い特性(以下、「サイクル特性」ともいう。)のさらなる向上が求められている。
Small size and light weight are required for lithium ion secondary batteries for portable electronic devices and in-vehicle use. Therefore, the lithium ion secondary battery has a discharge capacity per unit mass (hereinafter simply referred to as “discharge capacity”) and characteristics that make it difficult to reduce the discharge capacity and the average discharge voltage after repeated charge / discharge cycles (hereinafter referred to as “discharge capacity”). It is also called “cycle characteristics”).
放電容量の高い正極活物質としては、下記の正極活物質(i)のような遷移金属元素に対するLi比が高い複合酸化物(以下、「Liリッチ系正極活物質」ともいう。)からなる正極活物質が注目されている。
(i)α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含み、前記固溶体が含有するLiおよび遷移金属元素の組成比が、組成式Li1+1/3xCo1-x-yNiy/2Mn2x/3+y/2(x+y≦1、0≦y、かつ、1/3<x≦2/3)を満たす正極活物質(特許文献1)。 The positive electrode active material having a high discharge capacity is a positive electrode made of a complex oxide (hereinafter also referred to as “Li-rich positive electrode active material”) having a high Li ratio to a transition metal element such as the following positive electrode active material (i). Active materials are attracting attention.
(I) including a solid solution of a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure, wherein the composition ratio of Li and transition metal element contained in the solid solution is a composition formula Li 1 + 1 / 3x Co 1-xy A positive electrode active material satisfying Ni y / 2 Mn 2x / 3 + y / 2 (x + y ≦ 1, 0 ≦ y and 1/3 <x ≦ 2/3) (Patent Document 1).
(i)α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含み、前記固溶体が含有するLiおよび遷移金属元素の組成比が、組成式Li1+1/3xCo1-x-yNiy/2Mn2x/3+y/2(x+y≦1、0≦y、かつ、1/3<x≦2/3)を満たす正極活物質(特許文献1)。 The positive electrode active material having a high discharge capacity is a positive electrode made of a complex oxide (hereinafter also referred to as “Li-rich positive electrode active material”) having a high Li ratio to a transition metal element such as the following positive electrode active material (i). Active materials are attracting attention.
(I) including a solid solution of a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure, wherein the composition ratio of Li and transition metal element contained in the solid solution is a composition formula Li 1 + 1 / 3x Co 1-xy A positive electrode active material satisfying Ni y / 2 Mn 2x / 3 + y / 2 (x + y ≦ 1, 0 ≦ y and 1/3 <x ≦ 2/3) (Patent Document 1).
しかし、正極活物質(i)は、高電圧での充電によって電解液から生じた分解物と接触することでMnが電解液中に溶出しやすい。そのため、正極活物質(i)の結晶構造が不安定になりやすく、充分なサイクル特性が得られない。
そこで、優れたサイクル特性を有するLiリッチ系正極活物質を得る方法として、以下の方法(ii)が提案されている。 However, the positive electrode active material (i) tends to elute Mn into the electrolytic solution by coming into contact with a decomposition product generated from the electrolytic solution by charging at a high voltage. For this reason, the crystal structure of the positive electrode active material (i) tends to be unstable, and sufficient cycle characteristics cannot be obtained.
Therefore, the following method (ii) has been proposed as a method for obtaining a Li-rich positive electrode active material having excellent cycle characteristics.
そこで、優れたサイクル特性を有するLiリッチ系正極活物質を得る方法として、以下の方法(ii)が提案されている。 However, the positive electrode active material (i) tends to elute Mn into the electrolytic solution by coming into contact with a decomposition product generated from the electrolytic solution by charging at a high voltage. For this reason, the crystal structure of the positive electrode active material (i) tends to be unstable, and sufficient cycle characteristics cannot be obtained.
Therefore, the following method (ii) has been proposed as a method for obtaining a Li-rich positive electrode active material having excellent cycle characteristics.
(ii)炭酸塩共沈工程および焼成工程によって得られた、Liと、Co、NiおよびMnとを含むリチウム遷移金属複合酸化物を、硝酸アルミニウム溶液に加えて混合し、均質化した後にフッ化アンモニウムを加え、濾過して得られた固形分を焼成することで、前記リチウム遷移金属複合酸化物の表面にフッ化アルミニウムをコーティングする方法(特許文献2)。しかし、方法(ii)は、正極活物質の製造工程が増えるため、製造が煩雑になる。
(Ii) Lithium transition metal composite oxide containing Li and Co, Ni, and Mn obtained by the carbonate coprecipitation step and the firing step is added to the aluminum nitrate solution, mixed, homogenized, and then fluorinated. A method of coating the surface of the lithium transition metal composite oxide with aluminum fluoride by adding ammonium and baking the solid content obtained by filtration (Patent Document 2). However, in the method (ii), the production process becomes complicated because the production process of the positive electrode active material increases.
本発明は、優れた放電容量およびサイクル特性を有する正極活物質を簡便に製造できる、正極活物質の製造方法を提供する。
The present invention provides a method for producing a positive electrode active material capable of easily producing a positive electrode active material having excellent discharge capacity and cycle characteristics.
本発明は、以下の構成を要旨とするものである。
(1)下記の工程(I)および工程(II)を有することを特徴とする正極活物質の製造方法。
(I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩(A)と、
Alの硫酸塩と、
炭酸ナトリウムおよび炭酸カリウムからなる群から選ばれる少なくとも1種の炭酸塩(B)とを、
水溶液の状態で混合して、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)とAlとを含む共沈化合物を得る工程。
(II)前記共沈化合物と炭酸リチウムとを混合し、500~1000℃で焼成する工程。
(2)前記工程(I)において、硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを混合する際の混合液のpHが7~12である、上記(1)に記載の正極活物質の製造方法。
(3)前記工程(I)において、共沈化合物に含まれるAlの割合が、前記遷移金属元素(X)のモル数およびAlのモル数の合計モル数に対して、0.01~5mol%である、上記(1)または(2)に記載の正極活物質の製造方法。 The gist of the present invention is as follows.
(1) A method for producing a positive electrode active material, comprising the following steps (I) and (II).
(I) at least one sulfate (A) selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate;
Al sulfate and
At least one carbonate (B) selected from the group consisting of sodium carbonate and potassium carbonate,
A step of mixing in the state of an aqueous solution to obtain a coprecipitated compound containing Al and at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn.
(II) A step of mixing the coprecipitated compound and lithium carbonate and baking at 500 to 1000 ° C.
(2) In the step (I), the pH of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed is 7 to 12, The manufacturing method of the positive electrode active material of description.
(3) In the step (I), the proportion of Al contained in the coprecipitation compound is 0.01 to 5 mol% with respect to the total number of moles of the transition metal element (X) and the number of moles of Al. The method for producing a positive electrode active material according to the above (1) or (2).
(1)下記の工程(I)および工程(II)を有することを特徴とする正極活物質の製造方法。
(I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩(A)と、
Alの硫酸塩と、
炭酸ナトリウムおよび炭酸カリウムからなる群から選ばれる少なくとも1種の炭酸塩(B)とを、
水溶液の状態で混合して、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)とAlとを含む共沈化合物を得る工程。
(II)前記共沈化合物と炭酸リチウムとを混合し、500~1000℃で焼成する工程。
(2)前記工程(I)において、硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを混合する際の混合液のpHが7~12である、上記(1)に記載の正極活物質の製造方法。
(3)前記工程(I)において、共沈化合物に含まれるAlの割合が、前記遷移金属元素(X)のモル数およびAlのモル数の合計モル数に対して、0.01~5mol%である、上記(1)または(2)に記載の正極活物質の製造方法。 The gist of the present invention is as follows.
(1) A method for producing a positive electrode active material, comprising the following steps (I) and (II).
(I) at least one sulfate (A) selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate;
Al sulfate and
At least one carbonate (B) selected from the group consisting of sodium carbonate and potassium carbonate,
A step of mixing in the state of an aqueous solution to obtain a coprecipitated compound containing Al and at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn.
(II) A step of mixing the coprecipitated compound and lithium carbonate and baking at 500 to 1000 ° C.
(2) In the step (I), the pH of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed is 7 to 12, The manufacturing method of the positive electrode active material of description.
(3) In the step (I), the proportion of Al contained in the coprecipitation compound is 0.01 to 5 mol% with respect to the total number of moles of the transition metal element (X) and the number of moles of Al. The method for producing a positive electrode active material according to the above (1) or (2).
(4)前記工程(I)において、硫酸塩(A)の水溶液中における遷移金属元素(X)の濃度が、0.1~3mol/kgである、上記(1)~(3)のいずれか一項に記載の正極活物質の製造方法。
(5)前記工程(I)において、Alの硫酸塩の水溶液中におけるAlの濃度が、0.001~0.15mol/kgである、上記(1)~(4)のいずれか一項に記載の正極活物質の製造方法。
(6)前記工程(I)において、炭酸塩(B)の水溶液中における炭酸塩(B)の濃度が、0.1~2mol/kgである、上記(1)~(5)のいずれか一項に記載の正極活物質の製造方法。 (4) Any of the above (1) to (3), wherein the concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is 0.1 to 3 mol / kg in the step (I) The manufacturing method of the positive electrode active material of one term.
(5) The process according to any one of (1) to (4), wherein in the step (I), the concentration of Al in the aqueous solution of Al sulfate is 0.001 to 0.15 mol / kg. Of manufacturing positive electrode active material.
(6) Any one of the above (1) to (5), wherein in the step (I), the concentration of the carbonate (B) in the aqueous solution of the carbonate (B) is 0.1 to 2 mol / kg. The manufacturing method of the positive electrode active material of description.
(5)前記工程(I)において、Alの硫酸塩の水溶液中におけるAlの濃度が、0.001~0.15mol/kgである、上記(1)~(4)のいずれか一項に記載の正極活物質の製造方法。
(6)前記工程(I)において、炭酸塩(B)の水溶液中における炭酸塩(B)の濃度が、0.1~2mol/kgである、上記(1)~(5)のいずれか一項に記載の正極活物質の製造方法。 (4) Any of the above (1) to (3), wherein the concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is 0.1 to 3 mol / kg in the step (I) The manufacturing method of the positive electrode active material of one term.
(5) The process according to any one of (1) to (4), wherein in the step (I), the concentration of Al in the aqueous solution of Al sulfate is 0.001 to 0.15 mol / kg. Of manufacturing positive electrode active material.
(6) Any one of the above (1) to (5), wherein in the step (I), the concentration of the carbonate (B) in the aqueous solution of the carbonate (B) is 0.1 to 2 mol / kg. The manufacturing method of the positive electrode active material of description.
(7)前記工程(I)における共沈化合物の粒子径(D50)が4~20μmであり、比表面積が50~300m2/gである、上記(1)~(6)のいずれか一項に記載の正極活物質の製造方法。
(8)前記工程(II)において、炭酸リチウムに含まれるLiのモル数が、前記遷移金属元素(X)の合計モル数に対して、1.1倍以上である、上記(1)~(7)のいずれか一項に記載の正極活物質の製造方法。
(9)得られる正極活物質が下式(1)で表される化合物(1)である、上記(1)~(8)のいずれか一項に記載の正極活物質の製造方法。
Li1+aNibCocMndAleO2+f ・・・(1)
(ただし、前記式(1)中、a~eはそれぞれ0.1≦a≦0.6、0.095≦b≦0.5、0≦c≦0.3、0.28≦d≦0.85、0.9≦b+c+d≦1.05、0.0001≦e≦0.05である。fはLi、Ni、Co、MnおよびAlの価数によって決定される数値である。) (7) Any one of (1) to (6) above, wherein the particle size (D50) of the coprecipitated compound in the step (I) is 4 to 20 μm and the specific surface area is 50 to 300 m 2 / g. The manufacturing method of the positive electrode active material of description.
(8) In the step (II), the number of moles of Li contained in lithium carbonate is 1.1 times or more with respect to the total number of moles of the transition metal element (X). The manufacturing method of the positive electrode active material as described in any one of 7).
(9) The method for producing a positive electrode active material according to any one of (1) to (8), wherein the obtained positive electrode active material is a compound (1) represented by the following formula (1).
Li 1 + a Ni b Co c Mn d Al e O 2 + f (1)
(In the formula (1), a to e are 0.1 ≦ a ≦ 0.6, 0.095 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.3, 0.28 ≦ d ≦ 0, respectively. .85, 0.9 ≦ b + c + d ≦ 1.05, 0.0001 ≦ e ≦ 0.05, f is a numerical value determined by the valences of Li, Ni, Co, Mn and Al.)
(8)前記工程(II)において、炭酸リチウムに含まれるLiのモル数が、前記遷移金属元素(X)の合計モル数に対して、1.1倍以上である、上記(1)~(7)のいずれか一項に記載の正極活物質の製造方法。
(9)得られる正極活物質が下式(1)で表される化合物(1)である、上記(1)~(8)のいずれか一項に記載の正極活物質の製造方法。
Li1+aNibCocMndAleO2+f ・・・(1)
(ただし、前記式(1)中、a~eはそれぞれ0.1≦a≦0.6、0.095≦b≦0.5、0≦c≦0.3、0.28≦d≦0.85、0.9≦b+c+d≦1.05、0.0001≦e≦0.05である。fはLi、Ni、Co、MnおよびAlの価数によって決定される数値である。) (7) Any one of (1) to (6) above, wherein the particle size (D50) of the coprecipitated compound in the step (I) is 4 to 20 μm and the specific surface area is 50 to 300 m 2 / g. The manufacturing method of the positive electrode active material of description.
(8) In the step (II), the number of moles of Li contained in lithium carbonate is 1.1 times or more with respect to the total number of moles of the transition metal element (X). The manufacturing method of the positive electrode active material as described in any one of 7).
(9) The method for producing a positive electrode active material according to any one of (1) to (8), wherein the obtained positive electrode active material is a compound (1) represented by the following formula (1).
Li 1 + a Ni b Co c Mn d Al e O 2 + f (1)
(In the formula (1), a to e are 0.1 ≦ a ≦ 0.6, 0.095 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.3, 0.28 ≦ d ≦ 0, respectively. .85, 0.9 ≦ b + c + d ≦ 1.05, 0.0001 ≦ e ≦ 0.05, f is a numerical value determined by the valences of Li, Ni, Co, Mn and Al.)
本発明の正極活物質の製造方法によれば、優れた放電容量およびサイクル特性を有する正極活物質を簡便に製造できる。
According to the method for producing a positive electrode active material of the present invention, a positive electrode active material having excellent discharge capacity and cycle characteristics can be easily produced.
本明細書において、Liはリチウム元素を示す。また、Ni、Co、Mn、Al等も同様に各元素を示す。
In this specification, Li represents a lithium element. Similarly, Ni, Co, Mn, Al, etc. also indicate each element.
<正極活物質の製造方法>
本発明の正極活物質の製造方法は、Liと、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)と、Alとを含む正極活物質を製造する方法である。本発明の正極活物質の製造方法は、下記の工程(I)および工程(II)を有する。 <Method for producing positive electrode active material>
The method for producing a positive electrode active material of the present invention is a method for producing a positive electrode active material containing Li, at least one transition metal element (X) selected from the group consisting of Ni, Co, and Mn, and Al. . The manufacturing method of the positive electrode active material of this invention has the following process (I) and process (II).
本発明の正極活物質の製造方法は、Liと、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)と、Alとを含む正極活物質を製造する方法である。本発明の正極活物質の製造方法は、下記の工程(I)および工程(II)を有する。 <Method for producing positive electrode active material>
The method for producing a positive electrode active material of the present invention is a method for producing a positive electrode active material containing Li, at least one transition metal element (X) selected from the group consisting of Ni, Co, and Mn, and Al. . The manufacturing method of the positive electrode active material of this invention has the following process (I) and process (II).
[工程(I)]
本発明の製造方法における工程(I)では、硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを、水溶液の状態で混合する。必要に応じてさらに添加剤を用いてもよい。これにより、遷移金属元素(X)とAlとを含む共沈化合物が析出する。
硫酸塩(A)とAlの硫酸塩と炭酸塩(B)とを、水溶液の状態で混合する態様は、硫酸塩(A)とAlの硫酸塩と炭酸塩(B)とが、混合の際に水溶液の状態であれば特に限定されない。具体的には、共沈化合物が析出しやすく、かつ粒子径を制御しやすいことから、反応槽に硫酸塩(A)の水溶液、Alの硫酸塩の水溶液、および炭酸塩(B)の水溶液を連続的に添加することが好ましい。さらに、硫酸塩(A)とAlの硫酸塩がより均一に混合できることから、硫酸塩(A)およびAlの硫酸塩を含む水溶液を調製した後、硫酸塩(A)およびAlの硫酸塩を含む水溶液と炭酸塩(B)の水溶液とを連続的に添加することがより好ましい。反応槽には、予めイオン交換水、純水、蒸留水等を入れておくことが好ましく、さらに炭酸塩(B)や後述する添加剤等を用いてpHを制御しておくことがより好ましい。
硫酸塩(A)を2種以上使用する場合、硫酸塩(A)の水溶液としては、2種以上の硫酸塩(A)のそれぞれを別々に含む2種以上の水溶液としてもよく、2種以上の硫酸塩(A)を含む1種の水溶液としてもよい。また、1種の硫酸塩(A)を含む水溶液と、2種以上の硫酸塩(A)を含む水溶液とを併用してもよい。炭酸塩(B)を2種使用する場合も同様である。
硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを混合する際の混合液のpHは、7~12が好ましく、7.5~10がより好ましい。前記pHが前記範囲内であれば、単相の炭酸塩の共沈化合物が析出しやすい。 [Step (I)]
In step (I) in the production method of the present invention, sulfate (A), Al sulfate and carbonate (B) are mixed in an aqueous solution state. You may use an additive further as needed. Thereby, the coprecipitation compound containing transition metal element (X) and Al precipitates.
The aspect in which the sulfate (A), the Al sulfate and the carbonate (B) are mixed in the state of an aqueous solution is such that the sulfate (A), the Al sulfate and the carbonate (B) are mixed. If it is in the state of aqueous solution, it will not specifically limit. Specifically, since the coprecipitation compound is easy to precipitate and the particle diameter is easy to control, an aqueous solution of sulfate (A), an aqueous solution of Al sulfate, and an aqueous solution of carbonate (B) are added to the reaction vessel. It is preferable to add continuously. Furthermore, since sulfate (A) and Al sulfate can be mixed more uniformly, after preparing an aqueous solution containing sulfate (A) and Al sulfate, sulfate (A) and Al sulfate are included. More preferably, the aqueous solution and the carbonate (B) aqueous solution are continuously added. It is preferable to put ion exchange water, pure water, distilled water, etc. in the reaction tank in advance, and it is more preferable to control the pH using a carbonate (B), an additive described later, or the like.
When two or more types of sulfate (A) are used, the aqueous solution of sulfate (A) may be two or more types of aqueous solutions separately containing two or more types of sulfate (A). It is good also as 1 type of aqueous solution containing the sulfate (A). Moreover, you may use together the aqueous solution containing 1 type of sulfates (A), and the aqueous solution containing 2 or more types of sulfates (A). The same applies when two types of carbonate (B) are used.
The pH of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed is preferably 7 to 12, and more preferably 7.5 to 10. If the pH is within the above range, a single-phase carbonate coprecipitated compound tends to precipitate.
本発明の製造方法における工程(I)では、硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを、水溶液の状態で混合する。必要に応じてさらに添加剤を用いてもよい。これにより、遷移金属元素(X)とAlとを含む共沈化合物が析出する。
硫酸塩(A)とAlの硫酸塩と炭酸塩(B)とを、水溶液の状態で混合する態様は、硫酸塩(A)とAlの硫酸塩と炭酸塩(B)とが、混合の際に水溶液の状態であれば特に限定されない。具体的には、共沈化合物が析出しやすく、かつ粒子径を制御しやすいことから、反応槽に硫酸塩(A)の水溶液、Alの硫酸塩の水溶液、および炭酸塩(B)の水溶液を連続的に添加することが好ましい。さらに、硫酸塩(A)とAlの硫酸塩がより均一に混合できることから、硫酸塩(A)およびAlの硫酸塩を含む水溶液を調製した後、硫酸塩(A)およびAlの硫酸塩を含む水溶液と炭酸塩(B)の水溶液とを連続的に添加することがより好ましい。反応槽には、予めイオン交換水、純水、蒸留水等を入れておくことが好ましく、さらに炭酸塩(B)や後述する添加剤等を用いてpHを制御しておくことがより好ましい。
硫酸塩(A)を2種以上使用する場合、硫酸塩(A)の水溶液としては、2種以上の硫酸塩(A)のそれぞれを別々に含む2種以上の水溶液としてもよく、2種以上の硫酸塩(A)を含む1種の水溶液としてもよい。また、1種の硫酸塩(A)を含む水溶液と、2種以上の硫酸塩(A)を含む水溶液とを併用してもよい。炭酸塩(B)を2種使用する場合も同様である。
硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを混合する際の混合液のpHは、7~12が好ましく、7.5~10がより好ましい。前記pHが前記範囲内であれば、単相の炭酸塩の共沈化合物が析出しやすい。 [Step (I)]
In step (I) in the production method of the present invention, sulfate (A), Al sulfate and carbonate (B) are mixed in an aqueous solution state. You may use an additive further as needed. Thereby, the coprecipitation compound containing transition metal element (X) and Al precipitates.
The aspect in which the sulfate (A), the Al sulfate and the carbonate (B) are mixed in the state of an aqueous solution is such that the sulfate (A), the Al sulfate and the carbonate (B) are mixed. If it is in the state of aqueous solution, it will not specifically limit. Specifically, since the coprecipitation compound is easy to precipitate and the particle diameter is easy to control, an aqueous solution of sulfate (A), an aqueous solution of Al sulfate, and an aqueous solution of carbonate (B) are added to the reaction vessel. It is preferable to add continuously. Furthermore, since sulfate (A) and Al sulfate can be mixed more uniformly, after preparing an aqueous solution containing sulfate (A) and Al sulfate, sulfate (A) and Al sulfate are included. More preferably, the aqueous solution and the carbonate (B) aqueous solution are continuously added. It is preferable to put ion exchange water, pure water, distilled water, etc. in the reaction tank in advance, and it is more preferable to control the pH using a carbonate (B), an additive described later, or the like.
When two or more types of sulfate (A) are used, the aqueous solution of sulfate (A) may be two or more types of aqueous solutions separately containing two or more types of sulfate (A). It is good also as 1 type of aqueous solution containing the sulfate (A). Moreover, you may use together the aqueous solution containing 1 type of sulfates (A), and the aqueous solution containing 2 or more types of sulfates (A). The same applies when two types of carbonate (B) are used.
The pH of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed is preferably 7 to 12, and more preferably 7.5 to 10. If the pH is within the above range, a single-phase carbonate coprecipitated compound tends to precipitate.
硫酸塩(A)は、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩である。
Niの硫酸塩としては、硫酸ニッケル(II)・六水和物、硫酸ニッケル(II)・七水和物、硫酸ニッケル(II)アンモニウム・六水和物等が挙げられる。
Coの硫酸塩としては、硫酸コバルト(II)・七水和物、硫酸コバルト(II)アンモニウム・六水和物等が挙げられる。
Mnの硫酸塩としては、硫酸マンガン(II)・五水和物、硫酸マンガン(II)アンモニウム・六水和物等が挙げられる。 The sulfate (A) is at least one sulfate selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate.
Examples of Ni sulfate include nickel sulfate (II) hexahydrate, nickel sulfate (II) heptahydrate, nickel sulfate (II) ammonium hexahydrate, and the like.
Examples of the sulfate of Co include cobalt (II) sulfate heptahydrate and cobalt (II) ammonium sulfate hexahydrate.
Examples of the sulfate of Mn include manganese sulfate (II) pentahydrate, manganese sulfate (II) ammonium hexahydrate, and the like.
Niの硫酸塩としては、硫酸ニッケル(II)・六水和物、硫酸ニッケル(II)・七水和物、硫酸ニッケル(II)アンモニウム・六水和物等が挙げられる。
Coの硫酸塩としては、硫酸コバルト(II)・七水和物、硫酸コバルト(II)アンモニウム・六水和物等が挙げられる。
Mnの硫酸塩としては、硫酸マンガン(II)・五水和物、硫酸マンガン(II)アンモニウム・六水和物等が挙げられる。 The sulfate (A) is at least one sulfate selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate.
Examples of Ni sulfate include nickel sulfate (II) hexahydrate, nickel sulfate (II) heptahydrate, nickel sulfate (II) ammonium hexahydrate, and the like.
Examples of the sulfate of Co include cobalt (II) sulfate heptahydrate and cobalt (II) ammonium sulfate hexahydrate.
Examples of the sulfate of Mn include manganese sulfate (II) pentahydrate, manganese sulfate (II) ammonium hexahydrate, and the like.
硫酸塩(A)は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
硫酸塩(A)としては、放電容量が高いリチウムイオン二次電池が得られやすい点から、Niの硫酸塩およびMnの硫酸塩を含むことが好ましく、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩を併用することがより好ましい。すなわち、遷移金属元素(X)としてNiおよびMnを含む共沈化合物を析出させることが好ましく、遷移金属元素(X)としてNi、CoおよびMnを含む共沈化合物を析出させることがより好ましい。すなわち、共沈化合物は、遷移金属元素(X)としてNiおよびMnを含む炭酸塩であることが好ましく、遷移金属元素(X)としてNi、CoおよびMnを含む炭酸塩であることがより好ましい。 A sulfate (A) may be used individually by 1 type, and may use 2 or more types together.
The sulfate (A) preferably contains Ni sulfate and Mn sulfate from the viewpoint of easily obtaining a lithium ion secondary battery having a high discharge capacity. Ni sulfate, Co sulfate and Mn It is more preferable to use a combination of sulfates. That is, it is preferable to precipitate a coprecipitation compound containing Ni and Mn as the transition metal element (X), and it is more preferable to precipitate a coprecipitation compound containing Ni, Co and Mn as the transition metal element (X). That is, the coprecipitation compound is preferably a carbonate containing Ni and Mn as the transition metal element (X), and more preferably a carbonate containing Ni, Co and Mn as the transition metal element (X).
硫酸塩(A)としては、放電容量が高いリチウムイオン二次電池が得られやすい点から、Niの硫酸塩およびMnの硫酸塩を含むことが好ましく、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩を併用することがより好ましい。すなわち、遷移金属元素(X)としてNiおよびMnを含む共沈化合物を析出させることが好ましく、遷移金属元素(X)としてNi、CoおよびMnを含む共沈化合物を析出させることがより好ましい。すなわち、共沈化合物は、遷移金属元素(X)としてNiおよびMnを含む炭酸塩であることが好ましく、遷移金属元素(X)としてNi、CoおよびMnを含む炭酸塩であることがより好ましい。 A sulfate (A) may be used individually by 1 type, and may use 2 or more types together.
The sulfate (A) preferably contains Ni sulfate and Mn sulfate from the viewpoint of easily obtaining a lithium ion secondary battery having a high discharge capacity. Ni sulfate, Co sulfate and Mn It is more preferable to use a combination of sulfates. That is, it is preferable to precipitate a coprecipitation compound containing Ni and Mn as the transition metal element (X), and it is more preferable to precipitate a coprecipitation compound containing Ni, Co and Mn as the transition metal element (X). That is, the coprecipitation compound is preferably a carbonate containing Ni and Mn as the transition metal element (X), and more preferably a carbonate containing Ni, Co and Mn as the transition metal element (X).
Alの硫酸塩としては、例えば、無水硫酸アルミニウム(III)、硫酸アルミニウム(III)・十四~十八水和物、硫酸アルミニウム(III)カリウム・十二水和物等が挙げられる。
Examples of the sulfate of Al include anhydrous aluminum sulfate (III), aluminum sulfate (III), 14 to 18 hydrate, aluminum sulfate (III) potassium, dodecahydrate, and the like.
炭酸塩(B)は、炭酸ナトリウムおよび炭酸カリウムからなる群から選ばれる少なくとも1種である。炭酸塩(B)は、Ni、CoおよびMnを共沈させるためのpH調整剤としての役割を果たす。
炭酸塩(B)は、炭酸ナトリウムまたは炭酸カリウムの一方を単独で使用してもよく、炭酸ナトリウムおよび炭酸カリウムを併用してもよい。 The carbonate (B) is at least one selected from the group consisting of sodium carbonate and potassium carbonate. Carbonate (B) serves as a pH adjuster for coprecipitation of Ni, Co and Mn.
As the carbonate (B), either sodium carbonate or potassium carbonate may be used alone, or sodium carbonate and potassium carbonate may be used in combination.
炭酸塩(B)は、炭酸ナトリウムまたは炭酸カリウムの一方を単独で使用してもよく、炭酸ナトリウムおよび炭酸カリウムを併用してもよい。 The carbonate (B) is at least one selected from the group consisting of sodium carbonate and potassium carbonate. Carbonate (B) serves as a pH adjuster for coprecipitation of Ni, Co and Mn.
As the carbonate (B), either sodium carbonate or potassium carbonate may be used alone, or sodium carbonate and potassium carbonate may be used in combination.
Niの硫酸塩に含まれるNiのモル数の割合は、遷移金属元素(X)およびAlの合計モル数(100mol%)に対して、9.5~50mol%が好ましく、14.2~45mol%がより好ましく、19~40mol%が特に好ましい。前記Niの量の割合が下限値以上であれば、高い放電電圧を示す正極活物質が得られる。前記Niの量の割合が上限値以下であれば、高い放電容量を示す正極活物質が得られる。
The ratio of the number of moles of Ni contained in the sulfate of Ni is preferably 9.5 to 50 mol%, and 14.2 to 45 mol% with respect to the total number of moles (100 mol%) of the transition metal element (X) and Al. Is more preferable, and 19 to 40 mol% is particularly preferable. If the ratio of the amount of Ni is not less than the lower limit value, a positive electrode active material exhibiting a high discharge voltage can be obtained. If the ratio of the amount of Ni is not more than the upper limit value, a positive electrode active material exhibiting a high discharge capacity can be obtained.
Coの硫酸塩に含まれるCoのモル数の割合は、遷移金属元素(X)およびAlの合計モル数(100mol%)に対して、0~30mol%が好ましく、0~20mol%がより好ましく、0~15mol%が特に好ましい。前記Coの量の割合が上限値以下であれば、優れたサイクル特性を示す正極活物質が得られる。
The ratio of the number of moles of Co contained in the sulfate of Co is preferably 0 to 30 mol%, more preferably 0 to 20 mol%, based on the total number of moles of transition metal element (X) and Al (100 mol%). 0 to 15 mol% is particularly preferable. When the proportion of the amount of Co is not more than the upper limit value, a positive electrode active material exhibiting excellent cycle characteristics can be obtained.
Mnの硫酸塩に含まれるMnのモル数の割合は、遷移金属元素(X)およびAlの合計モル数(100mol%)に対して、28.5~85mol%が好ましく、38~80mol%がより好ましく、38~70mol%が特に好ましい。前記Mnの量の割合が下限値以上であれば、高い放電容量を示す正極活物質が得られる。前記Mnの量の割合が上限値以下であれば、高い放電電圧を示す正極活物質が得られる。
The ratio of the number of moles of Mn contained in the sulfate of Mn is preferably 28.5 to 85 mol%, more preferably 38 to 80 mol% with respect to the total number of moles (100 mol%) of the transition metal element (X) and Al. Preferably, 38 to 70 mol% is particularly preferable. When the ratio of the amount of Mn is not less than the lower limit value, a positive electrode active material exhibiting a high discharge capacity can be obtained. If the ratio of the amount of Mn is not more than the upper limit value, a positive electrode active material exhibiting a high discharge voltage can be obtained.
Alの硫酸塩に含まれるAlのモル数の割合は、遷移金属元素(X)およびAlの合計モル数(100mol%)に対して、0.01~5mol%が好ましく、0.1~5mol%がより好ましく、0.1~2mol%が特に好ましい。前記Alの量の割合が下限値以上であれば、優れたサイクル特性を示す正極活物質が得られる。前記Alの量の割合が上限値以下であれば、不純物相が出にくくなる。
The proportion of the number of moles of Al contained in the sulfate of Al is preferably 0.01 to 5 mol%, preferably 0.1 to 5 mol%, based on the total number of moles (100 mol%) of the transition metal element (X) and Al. Is more preferable, and 0.1 to 2 mol% is particularly preferable. When the proportion of the amount of Al is not less than the lower limit value, a positive electrode active material exhibiting excellent cycle characteristics can be obtained. If the ratio of the amount of Al is not more than the upper limit value, the impurity phase is difficult to be produced.
硫酸塩(A)の水溶液中における遷移金属元素(X)の濃度は、0.1~3mol/kgが好ましく、0.5~2.5mol/kgがより好ましい。前記濃度が下限値以上であれば、生産性が高い。前記濃度が上限値以下であれば、硫酸塩(A)を充分に溶解させられる。
硫酸塩(A)を含む水溶液を2種以上使用する場合は、それぞれの水溶液について遷移金属元素(X)の濃度を前記範囲内とすることが好ましい。 The concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is preferably from 0.1 to 3 mol / kg, more preferably from 0.5 to 2.5 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. If the said density | concentration is below an upper limit, a sulfate (A) can fully be dissolved.
When using 2 or more types of aqueous solution containing a sulfate (A), it is preferable to make the density | concentration of a transition metal element (X) into the said range about each aqueous solution.
硫酸塩(A)を含む水溶液を2種以上使用する場合は、それぞれの水溶液について遷移金属元素(X)の濃度を前記範囲内とすることが好ましい。 The concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is preferably from 0.1 to 3 mol / kg, more preferably from 0.5 to 2.5 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. If the said density | concentration is below an upper limit, a sulfate (A) can fully be dissolved.
When using 2 or more types of aqueous solution containing a sulfate (A), it is preferable to make the density | concentration of a transition metal element (X) into the said range about each aqueous solution.
Alの硫酸塩の水溶液中におけるAlの濃度は、0.001~0.15mol/kgが好ましく、0.005~0.125mol/kgがより好ましい。前記濃度が下限値以上であれば、生産性が高い。前記濃度が上限値以下であれば、Alの硫酸塩を充分に溶解させられる。
硫酸塩(A)とAlの硫酸塩の両方を含む水溶液とする場合は、硫酸塩(A)とAlの硫酸塩のそれぞれの濃度を前記範囲とすることが好ましい。
工程(I)で得られる共沈化合物としては、Ni、MnおよびAlを含む共沈炭酸塩であるか、又はNi、Co、MnおよびAlを含む共沈炭酸塩であることが好ましい。 The concentration of Al in the aqueous solution of Al sulfate is preferably 0.001 to 0.15 mol / kg, and more preferably 0.005 to 0.125 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. If the concentration is not more than the upper limit, the Al sulfate can be sufficiently dissolved.
When the aqueous solution containing both the sulfate (A) and the Al sulfate is used, it is preferable that the respective concentrations of the sulfate (A) and the Al sulfate are within the above ranges.
The coprecipitated compound obtained in step (I) is preferably a coprecipitated carbonate containing Ni, Mn and Al, or a coprecipitated carbonate containing Ni, Co, Mn and Al.
硫酸塩(A)とAlの硫酸塩の両方を含む水溶液とする場合は、硫酸塩(A)とAlの硫酸塩のそれぞれの濃度を前記範囲とすることが好ましい。
工程(I)で得られる共沈化合物としては、Ni、MnおよびAlを含む共沈炭酸塩であるか、又はNi、Co、MnおよびAlを含む共沈炭酸塩であることが好ましい。 The concentration of Al in the aqueous solution of Al sulfate is preferably 0.001 to 0.15 mol / kg, and more preferably 0.005 to 0.125 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. If the concentration is not more than the upper limit, the Al sulfate can be sufficiently dissolved.
When the aqueous solution containing both the sulfate (A) and the Al sulfate is used, it is preferable that the respective concentrations of the sulfate (A) and the Al sulfate are within the above ranges.
The coprecipitated compound obtained in step (I) is preferably a coprecipitated carbonate containing Ni, Mn and Al, or a coprecipitated carbonate containing Ni, Co, Mn and Al.
炭酸塩(B)の水溶液中における炭酸塩(B)の濃度は、0.1~2mol/kgが好ましく、0.5~2mol/kgがより好ましい。前記炭酸塩(B)の濃度が前記範囲内であれば、共沈化合物が析出しやすい。
硫酸塩(B)を含む水溶液を2種以上使用する場合は、それぞれの水溶液について硫酸塩(B)の濃度を前記範囲内とすることが好ましい。 The concentration of carbonate (B) in the aqueous solution of carbonate (B) is preferably from 0.1 to 2 mol / kg, more preferably from 0.5 to 2 mol / kg. If the density | concentration of the said carbonate (B) is in the said range, a coprecipitation compound will precipitate easily.
When using 2 or more types of aqueous solution containing a sulfate (B), it is preferable to make the density | concentration of a sulfate (B) into the said range about each aqueous solution.
硫酸塩(B)を含む水溶液を2種以上使用する場合は、それぞれの水溶液について硫酸塩(B)の濃度を前記範囲内とすることが好ましい。 The concentration of carbonate (B) in the aqueous solution of carbonate (B) is preferably from 0.1 to 2 mol / kg, more preferably from 0.5 to 2 mol / kg. If the density | concentration of the said carbonate (B) is in the said range, a coprecipitation compound will precipitate easily.
When using 2 or more types of aqueous solution containing a sulfate (B), it is preferable to make the density | concentration of a sulfate (B) into the said range about each aqueous solution.
硫酸塩(A)、Alの硫酸塩および炭酸塩(B)の水溶液に使用する溶媒としては、硫酸塩(A)、Alの硫酸塩および炭酸塩(B)が溶解する範囲であれば、水のみであってもよく、水に加えて水以外の成分を含む水性媒体であってもよい。
前記水以外の成分としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、ポリオール等が挙げられる。ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリン等が挙げられる。
水性媒体中の水以外の成分の割合は、0~20質量%が好ましく、0~10質量%がより好ましく、0~1質量%が特に好ましく、含まないことが最も好ましい。前記水以外の成分の割合が上限値以下であれば、環境面、取扱い性、コストの点で優れている。 The solvent used for the aqueous solution of the sulfate (A), Al sulfate and carbonate (B) is water as long as the sulfate (A), Al sulfate and carbonate (B) are in a range that dissolves. Or an aqueous medium containing components other than water in addition to water.
Examples of the component other than water include methanol, ethanol, 1-propanol, 2-propanol, polyol and the like. Examples of the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
The proportion of components other than water in the aqueous medium is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, particularly preferably 0 to 1% by mass, and most preferably not contained. If the ratio of components other than water is not more than the upper limit value, it is excellent in terms of environment, handleability, and cost.
前記水以外の成分としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、ポリオール等が挙げられる。ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリン等が挙げられる。
水性媒体中の水以外の成分の割合は、0~20質量%が好ましく、0~10質量%がより好ましく、0~1質量%が特に好ましく、含まないことが最も好ましい。前記水以外の成分の割合が上限値以下であれば、環境面、取扱い性、コストの点で優れている。 The solvent used for the aqueous solution of the sulfate (A), Al sulfate and carbonate (B) is water as long as the sulfate (A), Al sulfate and carbonate (B) are in a range that dissolves. Or an aqueous medium containing components other than water in addition to water.
Examples of the component other than water include methanol, ethanol, 1-propanol, 2-propanol, polyol and the like. Examples of the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
The proportion of components other than water in the aqueous medium is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, particularly preferably 0 to 1% by mass, and most preferably not contained. If the ratio of components other than water is not more than the upper limit value, it is excellent in terms of environment, handleability, and cost.
硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを、水溶液の状態で混合する際は、反応槽中で撹拌しながら行うことが好ましい。
撹拌装置としては、例えば、スリーワンモータ等が挙げられる。撹拌翼としては、例えば、アンカー型、プロペラ型、パドル型等の撹拌翼が挙げられる。 When the sulfate (A), the sulfate of Al, and the carbonate (B) are mixed in the state of an aqueous solution, it is preferably performed while stirring in the reaction vessel.
As a stirring apparatus, a three-one motor etc. are mentioned, for example. Examples of the stirring blade include a stirring blade such as an anchor type, a propeller type, and a paddle type.
撹拌装置としては、例えば、スリーワンモータ等が挙げられる。撹拌翼としては、例えば、アンカー型、プロペラ型、パドル型等の撹拌翼が挙げられる。 When the sulfate (A), the sulfate of Al, and the carbonate (B) are mixed in the state of an aqueous solution, it is preferably performed while stirring in the reaction vessel.
As a stirring apparatus, a three-one motor etc. are mentioned, for example. Examples of the stirring blade include a stirring blade such as an anchor type, a propeller type, and a paddle type.
硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを、水溶液の状態で混合する際の混合液の温度は、共沈化合物が析出しやすいことから、20~80℃が好ましく、25~60℃がより好ましい。
また、硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを、水溶液の状態で混合する際は、析出した共沈化合物の酸化を抑制する点から、窒素雰囲気下またはアルゴン雰囲気下で混合を行うことが好ましく、コストの面から、窒素雰囲気下で混合を行うことが特に好ましい。 The temperature of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed in the state of an aqueous solution is 20 to 80 ° C. because the coprecipitate compound is likely to precipitate. Preferably, it is 25 to 60 ° C.
In addition, when the sulfate (A), the sulfate of Al, and the carbonate (B) are mixed in the state of an aqueous solution, from the point of suppressing the oxidation of the precipitated coprecipitated compound, in a nitrogen atmosphere or argon It is preferable to perform the mixing under an atmosphere, and it is particularly preferable to perform the mixing under a nitrogen atmosphere from the viewpoint of cost.
また、硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを、水溶液の状態で混合する際は、析出した共沈化合物の酸化を抑制する点から、窒素雰囲気下またはアルゴン雰囲気下で混合を行うことが好ましく、コストの面から、窒素雰囲気下で混合を行うことが特に好ましい。 The temperature of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed in the state of an aqueous solution is 20 to 80 ° C. because the coprecipitate compound is likely to precipitate. Preferably, it is 25 to 60 ° C.
In addition, when the sulfate (A), the sulfate of Al, and the carbonate (B) are mixed in the state of an aqueous solution, from the point of suppressing the oxidation of the precipitated coprecipitated compound, in a nitrogen atmosphere or argon It is preferable to perform the mixing under an atmosphere, and it is particularly preferable to perform the mixing under a nitrogen atmosphere from the viewpoint of cost.
添加剤としては、例えば、pHや遷移金属元素(X)の溶解度を調整するために、アンモニア、またはアンモニウム塩を用いてもよい。アンモニウム塩としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム等が挙げられる。
アンモニアまたはアンモニウム塩は、硫酸塩(A)およびAlの硫酸塩の供給と同時に混合液に供給されることが好ましい。 As the additive, for example, ammonia or an ammonium salt may be used in order to adjust the pH and the solubility of the transition metal element (X). Examples of ammonium salts include ammonium chloride, ammonium sulfate, and ammonium nitrate.
The ammonia or ammonium salt is preferably supplied to the mixed solution simultaneously with the supply of the sulfate (A) and the sulfate of Al.
アンモニアまたはアンモニウム塩は、硫酸塩(A)およびAlの硫酸塩の供給と同時に混合液に供給されることが好ましい。 As the additive, for example, ammonia or an ammonium salt may be used in order to adjust the pH and the solubility of the transition metal element (X). Examples of ammonium salts include ammonium chloride, ammonium sulfate, and ammonium nitrate.
The ammonia or ammonium salt is preferably supplied to the mixed solution simultaneously with the supply of the sulfate (A) and the sulfate of Al.
得られた共沈化合物中のNi、CoおよびMnのそれぞれの割合の好ましい範囲は、前述の硫酸塩(A)およびAlの硫酸塩中のNi、CoおよびMnのそれぞれの割合の好ましい範囲と同じである。これにより、適度な粒子径および球形の共沈化合物が得られやすい。
また、得られた共沈化合物中の遷移金属元素(X)およびAlの合計量に対するAlの割合の好ましい範囲は、前述の硫酸塩(A)およびAlの硫酸塩中の遷移金属元素(X)およびAlの合計量に対する、Alの硫酸塩中のAlの割合の好ましい範囲と同じである。これにより、優れたサイクル特性を示す正極活物質が得られる。 The preferred ranges of the respective proportions of Ni, Co and Mn in the obtained coprecipitated compound are the same as the preferred ranges of the respective proportions of Ni, Co and Mn in the sulfate (A) and the sulfate of Al. It is. Thereby, an appropriate particle diameter and a spherical coprecipitation compound are easy to be obtained.
The preferable range of the ratio of Al to the total amount of transition metal element (X) and Al in the obtained coprecipitation compound is the above-mentioned sulfate (A) and transition metal element (X) in the sulfate of Al. And the preferred range of the proportion of Al in the sulfate of Al with respect to the total amount of Al. Thereby, the positive electrode active material which shows the outstanding cycling characteristics is obtained.
また、得られた共沈化合物中の遷移金属元素(X)およびAlの合計量に対するAlの割合の好ましい範囲は、前述の硫酸塩(A)およびAlの硫酸塩中の遷移金属元素(X)およびAlの合計量に対する、Alの硫酸塩中のAlの割合の好ましい範囲と同じである。これにより、優れたサイクル特性を示す正極活物質が得られる。 The preferred ranges of the respective proportions of Ni, Co and Mn in the obtained coprecipitated compound are the same as the preferred ranges of the respective proportions of Ni, Co and Mn in the sulfate (A) and the sulfate of Al. It is. Thereby, an appropriate particle diameter and a spherical coprecipitation compound are easy to be obtained.
The preferable range of the ratio of Al to the total amount of transition metal element (X) and Al in the obtained coprecipitation compound is the above-mentioned sulfate (A) and transition metal element (X) in the sulfate of Al. And the preferred range of the proportion of Al in the sulfate of Al with respect to the total amount of Al. Thereby, the positive electrode active material which shows the outstanding cycling characteristics is obtained.
共沈化合物の粒子径(D50)は、4~20μmが好ましく、5~18μmがより好ましく、6~15μmが特に好ましい。共沈化合物の粒子径が前記範囲内であれば、後述する正極活物質の粒子径を好ましい範囲に制御しやすく、充分な電池特性を示す正極活物質が得られやすい。
なお、粒子径(D50)は、体積基準で求めた粒度分布の、全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径を意味する。共沈化合物の粒子径(D50)は、後述する正極活物質の粒子径(D50)と同様にして測定される。 The particle size (D50) of the coprecipitated compound is preferably 4 to 20 μm, more preferably 5 to 18 μm, and particularly preferably 6 to 15 μm. When the particle size of the coprecipitation compound is within the above range, the particle size of the positive electrode active material described later can be easily controlled within a preferable range, and a positive electrode active material exhibiting sufficient battery characteristics can be easily obtained.
The particle diameter (D50) means a particle diameter at a point of 50% in a cumulative volume distribution curve with a total volume of 100% of a particle size distribution obtained on a volume basis, that is, a volume-based cumulative 50% diameter. The particle size (D50) of the coprecipitated compound is measured in the same manner as the particle size (D50) of the positive electrode active material described later.
なお、粒子径(D50)は、体積基準で求めた粒度分布の、全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径を意味する。共沈化合物の粒子径(D50)は、後述する正極活物質の粒子径(D50)と同様にして測定される。 The particle size (D50) of the coprecipitated compound is preferably 4 to 20 μm, more preferably 5 to 18 μm, and particularly preferably 6 to 15 μm. When the particle size of the coprecipitation compound is within the above range, the particle size of the positive electrode active material described later can be easily controlled within a preferable range, and a positive electrode active material exhibiting sufficient battery characteristics can be easily obtained.
The particle diameter (D50) means a particle diameter at a point of 50% in a cumulative volume distribution curve with a total volume of 100% of a particle size distribution obtained on a volume basis, that is, a volume-based cumulative 50% diameter. The particle size (D50) of the coprecipitated compound is measured in the same manner as the particle size (D50) of the positive electrode active material described later.
共沈化合物の比表面積は、50~300m2/gが好ましく、100~250m2/gがより好ましい。共沈化合物の比表面積が前記範囲内であれば、後述する正極活物質の比表面積を好ましい範囲に制御しやすく、高い放電容量を示す正極活物質が得られやすい。
共沈化合物の比表面積は、後述する正極活物質の比表面積と同様にして測定される。 The specific surface area of the coprecipitated compound is preferably 50 ~ 300m 2 / g, more preferably 100 ~ 250m 2 / g. When the specific surface area of the coprecipitation compound is within the above range, the specific surface area of the positive electrode active material described later can be easily controlled within a preferable range, and a positive electrode active material exhibiting a high discharge capacity can be easily obtained.
The specific surface area of the coprecipitated compound is measured in the same manner as the specific surface area of the positive electrode active material described later.
共沈化合物の比表面積は、後述する正極活物質の比表面積と同様にして測定される。 The specific surface area of the coprecipitated compound is preferably 50 ~ 300m 2 / g, more preferably 100 ~ 250m 2 / g. When the specific surface area of the coprecipitation compound is within the above range, the specific surface area of the positive electrode active material described later can be easily controlled within a preferable range, and a positive electrode active material exhibiting a high discharge capacity can be easily obtained.
The specific surface area of the coprecipitated compound is measured in the same manner as the specific surface area of the positive electrode active material described later.
工程(I)は、共沈化合物が析出した後に、濾過、または遠心分離によって水溶液を取り除く工程を有することが好ましい。濾過または遠心分離としては、加圧濾過機、減圧濾過機、遠心分級機、フィルタープレス、スクリュープレス、回転型脱水機等を用いることができる。
得られた共沈化合物は、不純物イオンを取り除くために、洗浄することが好ましい。共沈化合物の洗浄方法としては、例えば、加圧濾過と蒸留水への分散を繰り返す方法等が挙げられる。 The step (I) preferably has a step of removing the aqueous solution by filtration or centrifugation after the coprecipitation compound is precipitated. As filtration or centrifugation, a pressure filter, a vacuum filter, a centrifugal classifier, a filter press, a screw press, a rotary dehydrator, or the like can be used.
The obtained coprecipitated compound is preferably washed to remove impurity ions. Examples of the coprecipitation compound washing method include a method of repeating pressure filtration and dispersion in distilled water.
得られた共沈化合物は、不純物イオンを取り除くために、洗浄することが好ましい。共沈化合物の洗浄方法としては、例えば、加圧濾過と蒸留水への分散を繰り返す方法等が挙げられる。 The step (I) preferably has a step of removing the aqueous solution by filtration or centrifugation after the coprecipitation compound is precipitated. As filtration or centrifugation, a pressure filter, a vacuum filter, a centrifugal classifier, a filter press, a screw press, a rotary dehydrator, or the like can be used.
The obtained coprecipitated compound is preferably washed to remove impurity ions. Examples of the coprecipitation compound washing method include a method of repeating pressure filtration and dispersion in distilled water.
得られた共沈化合物は乾燥することが好ましい。特に、洗浄を行う場合は、洗浄を行った後に共沈化合物を乾燥することが好ましい。
共沈化合物の乾燥温度は、60~200℃が好ましく、80~130℃がより好ましい。前記乾燥温度が下限値以上であれば、共沈化合物を短時間で乾燥できる。前記乾燥温度が上限値以下であれば、共沈化合物が酸化することを抑制できる。
共沈化合物の乾燥時間は、1~300時間が好ましく、5~120時間がより好ましい。 The obtained coprecipitated compound is preferably dried. In particular, when washing is performed, it is preferable to dry the coprecipitation compound after washing.
The drying temperature of the coprecipitation compound is preferably 60 to 200 ° C, more preferably 80 to 130 ° C. If the said drying temperature is more than a lower limit, a coprecipitation compound can be dried in a short time. If the said drying temperature is below an upper limit, it can suppress that a coprecipitation compound oxidizes.
The drying time of the coprecipitated compound is preferably 1 to 300 hours, more preferably 5 to 120 hours.
共沈化合物の乾燥温度は、60~200℃が好ましく、80~130℃がより好ましい。前記乾燥温度が下限値以上であれば、共沈化合物を短時間で乾燥できる。前記乾燥温度が上限値以下であれば、共沈化合物が酸化することを抑制できる。
共沈化合物の乾燥時間は、1~300時間が好ましく、5~120時間がより好ましい。 The obtained coprecipitated compound is preferably dried. In particular, when washing is performed, it is preferable to dry the coprecipitation compound after washing.
The drying temperature of the coprecipitation compound is preferably 60 to 200 ° C, more preferably 80 to 130 ° C. If the said drying temperature is more than a lower limit, a coprecipitation compound can be dried in a short time. If the said drying temperature is below an upper limit, it can suppress that a coprecipitation compound oxidizes.
The drying time of the coprecipitated compound is preferably 1 to 300 hours, more preferably 5 to 120 hours.
[工程(II)]
工程(II)では、工程(I)で得られた共沈化合物と、炭酸リチウムとを混合し、500~1000℃で焼成する。
共沈化合物と炭酸リチウムとを混合する方法は、例えば、ロッキングミキサ、ナウタミキサ、スパイラルミキサ、カッターミル、Vミキサ等を使用する方法等が挙げられる。 [Step (II)]
In step (II), the coprecipitated compound obtained in step (I) and lithium carbonate are mixed and baked at 500 to 1000 ° C.
Examples of the method of mixing the coprecipitation compound and lithium carbonate include a method using a rocking mixer, a nauta mixer, a spiral mixer, a cutter mill, a V mixer, and the like.
工程(II)では、工程(I)で得られた共沈化合物と、炭酸リチウムとを混合し、500~1000℃で焼成する。
共沈化合物と炭酸リチウムとを混合する方法は、例えば、ロッキングミキサ、ナウタミキサ、スパイラルミキサ、カッターミル、Vミキサ等を使用する方法等が挙げられる。 [Step (II)]
In step (II), the coprecipitated compound obtained in step (I) and lithium carbonate are mixed and baked at 500 to 1000 ° C.
Examples of the method of mixing the coprecipitation compound and lithium carbonate include a method using a rocking mixer, a nauta mixer, a spiral mixer, a cutter mill, a V mixer, and the like.
工程(II)において、炭酸リチウムに含まれるLiのモル数は、共沈化合物に含まれる遷移金属元素(X)の合計モル数に対して、1.1倍以上であることが好ましい。前記割合が下限値以上であれば、高い放電容量が得られる。
炭酸リチウムに含まれるLiの合計量のモル数は、遷移金属元素(X)の合計モル数に対して、1.1倍以上1.6倍以下がより好ましく、1.1倍以上1.4倍以下が特に好ましい。前記割合が前記範囲内であれば、高い放電容量が得られる。 In the step (II), the number of moles of Li contained in the lithium carbonate is preferably 1.1 times or more with respect to the total number of moles of the transition metal element (X) contained in the coprecipitation compound. If the said ratio is more than a lower limit, a high discharge capacity will be obtained.
The number of moles of the total amount of Li contained in lithium carbonate is more preferably 1.1 to 1.6 times, and more preferably 1.1 to 1.4 times the total number of moles of the transition metal element (X). A ratio of 2 times or less is particularly preferable. When the ratio is within the range, a high discharge capacity can be obtained.
炭酸リチウムに含まれるLiの合計量のモル数は、遷移金属元素(X)の合計モル数に対して、1.1倍以上1.6倍以下がより好ましく、1.1倍以上1.4倍以下が特に好ましい。前記割合が前記範囲内であれば、高い放電容量が得られる。 In the step (II), the number of moles of Li contained in the lithium carbonate is preferably 1.1 times or more with respect to the total number of moles of the transition metal element (X) contained in the coprecipitation compound. If the said ratio is more than a lower limit, a high discharge capacity will be obtained.
The number of moles of the total amount of Li contained in lithium carbonate is more preferably 1.1 to 1.6 times, and more preferably 1.1 to 1.4 times the total number of moles of the transition metal element (X). A ratio of 2 times or less is particularly preferable. When the ratio is within the range, a high discharge capacity can be obtained.
焼成装置には、電気炉、連続焼成炉、ロータリーキルン等を使用できる。焼成時に共沈化合物は酸化されることから、焼成は大気下で行うことが好ましく、空気を供給しながら行うことが特に好ましい。
空気の供給速度は、炉の内容積1Lあたり、10~200mL/分が好ましく、40~150mL/分がより好ましい。
焼成時に空気を供給することで、共沈化合物中の遷移金属元素(X)が充分に酸化され、結晶性が高く、かつ目的とする結晶相を有する正極活物質が得られる。 An electric furnace, a continuous firing furnace, a rotary kiln or the like can be used for the firing apparatus. Since the coprecipitated compound is oxidized during firing, the firing is preferably performed in the air, and particularly preferably performed while supplying air.
The air supply rate is preferably 10 to 200 mL / min, more preferably 40 to 150 mL / min per liter of the furnace internal volume.
By supplying air at the time of firing, the transition metal element (X) in the coprecipitation compound is sufficiently oxidized, and a positive electrode active material having high crystallinity and having a target crystal phase is obtained.
空気の供給速度は、炉の内容積1Lあたり、10~200mL/分が好ましく、40~150mL/分がより好ましい。
焼成時に空気を供給することで、共沈化合物中の遷移金属元素(X)が充分に酸化され、結晶性が高く、かつ目的とする結晶相を有する正極活物質が得られる。 An electric furnace, a continuous firing furnace, a rotary kiln or the like can be used for the firing apparatus. Since the coprecipitated compound is oxidized during firing, the firing is preferably performed in the air, and particularly preferably performed while supplying air.
The air supply rate is preferably 10 to 200 mL / min, more preferably 40 to 150 mL / min per liter of the furnace internal volume.
By supplying air at the time of firing, the transition metal element (X) in the coprecipitation compound is sufficiently oxidized, and a positive electrode active material having high crystallinity and having a target crystal phase is obtained.
焼成温度は、500~1000℃であり、600~1000℃が好ましく、800~950℃が特に好ましい。焼成温度が、前記範囲内であれば、結晶性の高い正極活物質が得られる。
焼成時間は、4~40時間が好ましく、4~20時間がより好ましい。 The firing temperature is 500 to 1000 ° C., preferably 600 to 1000 ° C., and particularly preferably 800 to 950 ° C. When the firing temperature is within the above range, a positive electrode active material with high crystallinity can be obtained.
The firing time is preferably 4 to 40 hours, and more preferably 4 to 20 hours.
焼成時間は、4~40時間が好ましく、4~20時間がより好ましい。 The firing temperature is 500 to 1000 ° C., preferably 600 to 1000 ° C., and particularly preferably 800 to 950 ° C. When the firing temperature is within the above range, a positive electrode active material with high crystallinity can be obtained.
The firing time is preferably 4 to 40 hours, and more preferably 4 to 20 hours.
焼成は、500~1000℃での1段焼成でもよく、400~700℃の仮焼成を行った後に、700~1000℃で本焼成を行う2段焼成でもよい。なかでも、Liが正極活物質中に均一に拡散しやすいことから2段焼成が好ましい。
2段焼成の場合の仮焼成の温度は、400~700℃が好ましく、500~650℃がより好ましい。また、2段焼成の場合の本焼成の温度は、700~1000℃が好ましく、800~950℃がより好ましい。 The firing may be one-stage firing at 500 to 1000 ° C., or two-stage firing in which main firing is performed at 700 to 1000 ° C. after preliminary firing at 400 to 700 ° C. Among these, two-stage firing is preferable because Li easily diffuses uniformly into the positive electrode active material.
In the case of the two-stage firing, the temperature for temporary firing is preferably 400 to 700 ° C, more preferably 500 to 650 ° C. Further, the temperature of the main firing in the case of two-stage firing is preferably 700 to 1000 ° C., and more preferably 800 to 950 ° C.
2段焼成の場合の仮焼成の温度は、400~700℃が好ましく、500~650℃がより好ましい。また、2段焼成の場合の本焼成の温度は、700~1000℃が好ましく、800~950℃がより好ましい。 The firing may be one-stage firing at 500 to 1000 ° C., or two-stage firing in which main firing is performed at 700 to 1000 ° C. after preliminary firing at 400 to 700 ° C. Among these, two-stage firing is preferable because Li easily diffuses uniformly into the positive electrode active material.
In the case of the two-stage firing, the temperature for temporary firing is preferably 400 to 700 ° C, more preferably 500 to 650 ° C. Further, the temperature of the main firing in the case of two-stage firing is preferably 700 to 1000 ° C., and more preferably 800 to 950 ° C.
[正極活物質]
本発明の製造方法により製造される正極活物質は粒子状である。正極活物質の粒子形状は、特に限定されず、例えば、球状、針状、板状等が挙げられる。なかでも、正極の製造時に正極活物質の充填性が高くなることから、正極活物質の粒子形状は球状がより好ましい。 [Positive electrode active material]
The positive electrode active material produced by the production method of the present invention is particulate. The particle shape of the positive electrode active material is not particularly limited, and examples thereof include a spherical shape, a needle shape, and a plate shape. Especially, since the filling property of a positive electrode active material becomes high at the time of manufacture of a positive electrode, the particle shape of a positive electrode active material has a more preferable spherical shape.
本発明の製造方法により製造される正極活物質は粒子状である。正極活物質の粒子形状は、特に限定されず、例えば、球状、針状、板状等が挙げられる。なかでも、正極の製造時に正極活物質の充填性が高くなることから、正極活物質の粒子形状は球状がより好ましい。 [Positive electrode active material]
The positive electrode active material produced by the production method of the present invention is particulate. The particle shape of the positive electrode active material is not particularly limited, and examples thereof include a spherical shape, a needle shape, and a plate shape. Especially, since the filling property of a positive electrode active material becomes high at the time of manufacture of a positive electrode, the particle shape of a positive electrode active material has a more preferable spherical shape.
本発明の製造方法により得られる正極活物質の粒子径(D50)は、4~20μmが好ましく、5~18μmがより好ましく、6~15μmが特に好ましい。前記粒子径(D50)が前記範囲内であれば、高い放電容量が得られる。
粒子径(D50)は、実施例に記載の方法で測定される。 The particle diameter (D50) of the positive electrode active material obtained by the production method of the present invention is preferably 4 to 20 μm, more preferably 5 to 18 μm, and particularly preferably 6 to 15 μm. When the particle diameter (D50) is within the above range, a high discharge capacity can be obtained.
The particle diameter (D50) is measured by the method described in the examples.
粒子径(D50)は、実施例に記載の方法で測定される。 The particle diameter (D50) of the positive electrode active material obtained by the production method of the present invention is preferably 4 to 20 μm, more preferably 5 to 18 μm, and particularly preferably 6 to 15 μm. When the particle diameter (D50) is within the above range, a high discharge capacity can be obtained.
The particle diameter (D50) is measured by the method described in the examples.
正極活物質は、粒子径(D50)が10~500nmの一次粒子が凝集した二次粒子であることが好ましい。これにより、リチウムイオン二次電池を製造したときに、電解液が正極における正極活物質間に充分に行き渡りやすくなる。
The positive electrode active material is preferably secondary particles in which primary particles having a particle diameter (D50) of 10 to 500 nm are aggregated. As a result, when a lithium ion secondary battery is manufactured, the electrolyte is easily spread between the positive electrode active materials in the positive electrode.
正極活物質の比表面積は、0.1~15m2/gが好ましく、2~10m2/gがより好ましく、4~8m2/gが特に好ましい。比表面積が下限値以上であれば、高い放電容量が得られる。前記比表面積が上限値以下であれば、優れたサイクル特性が得られる。
前記比表面積は、実施例に記載の方法で測定される。 The specific surface area of the positive electrode active material is preferably 0.1 ~ 15m 2 / g, more preferably 2 ~ 10m 2 / g, particularly preferably 4 ~ 8m 2 / g. If the specific surface area is not less than the lower limit, a high discharge capacity can be obtained. If the specific surface area is not more than the upper limit, excellent cycle characteristics can be obtained.
The specific surface area is measured by the method described in Examples.
前記比表面積は、実施例に記載の方法で測定される。 The specific surface area of the positive electrode active material is preferably 0.1 ~ 15m 2 / g, more preferably 2 ~ 10m 2 / g, particularly preferably 4 ~ 8m 2 / g. If the specific surface area is not less than the lower limit, a high discharge capacity can be obtained. If the specific surface area is not more than the upper limit, excellent cycle characteristics can be obtained.
The specific surface area is measured by the method described in Examples.
本発明における正極活物質としては、下式(1)で表される化合物(1)が好ましい。
Li1+aNibCocMndAleO2+f ・・・(1)
ただし、前記式(1)中、a~eはそれぞれ0.1≦a≦0.6、0.095≦b≦0.5、0≦c≦0.3、0.28≦d≦0.85、0.9≦b+c+d≦1.05、0.0001≦e≦0.05であり、fはLi、Ni、Co、MnおよびAlの価数によって決定される数値である。
化合物(1)のaは、初期放電容量および初期放電電圧が高い正極活物質となることから、0.1≦a≦0.4がより好ましい。
化合物(1)のbは、aと同様の理由で、0.142≦b≦0.45がより好ましく、0.19≦b≦0.4が特に好ましい。
化合物(1)のcは、aと同様の理由で、0≦c≦0.2がより好ましく、0≦c≦0.15が特に好ましい。
化合物(1)のdは、aと同様の理由で、0.38≦d≦0.85がより好ましく、0.38≦d≦0.7が特に好ましい。
化合物(1)のeは、初期放電容量とサイクル特性を両立できることから、0.001≦e≦0.05がより好ましく、0.001≦e≦0.02が特に好ましい。 As a positive electrode active material in this invention, the compound (1) represented by the following Formula (1) is preferable.
Li 1 + a Ni b Co c Mn d Al e O 2 + f (1)
In the formula (1), a to e are 0.1 ≦ a ≦ 0.6, 0.095 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.3, 0.28 ≦ d ≦ 0, respectively. 85, 0.9 ≦ b + c + d ≦ 1.05, 0.0001 ≦ e ≦ 0.05, and f is a numerical value determined by the valences of Li, Ni, Co, Mn, and Al.
Since a of the compound (1) becomes a positive electrode active material having a high initial discharge capacity and initial discharge voltage, 0.1 ≦ a ≦ 0.4 is more preferable.
In the compound (1), b is more preferably 0.142 ≦ b ≦ 0.45, and particularly preferably 0.19 ≦ b ≦ 0.4, for the same reason as a.
For the same reason as a, c of the compound (1) is more preferably 0 ≦ c ≦ 0.2, and particularly preferably 0 ≦ c ≦ 0.15.
For the same reason as a, d of the compound (1) is more preferably 0.38 ≦ d ≦ 0.85, and particularly preferably 0.38 ≦ d ≦ 0.7.
E of compound (1) is more preferably 0.001 ≦ e ≦ 0.05, and particularly preferably 0.001 ≦ e ≦ 0.02, since both the initial discharge capacity and the cycle characteristics can be achieved.
Li1+aNibCocMndAleO2+f ・・・(1)
ただし、前記式(1)中、a~eはそれぞれ0.1≦a≦0.6、0.095≦b≦0.5、0≦c≦0.3、0.28≦d≦0.85、0.9≦b+c+d≦1.05、0.0001≦e≦0.05であり、fはLi、Ni、Co、MnおよびAlの価数によって決定される数値である。
化合物(1)のaは、初期放電容量および初期放電電圧が高い正極活物質となることから、0.1≦a≦0.4がより好ましい。
化合物(1)のbは、aと同様の理由で、0.142≦b≦0.45がより好ましく、0.19≦b≦0.4が特に好ましい。
化合物(1)のcは、aと同様の理由で、0≦c≦0.2がより好ましく、0≦c≦0.15が特に好ましい。
化合物(1)のdは、aと同様の理由で、0.38≦d≦0.85がより好ましく、0.38≦d≦0.7が特に好ましい。
化合物(1)のeは、初期放電容量とサイクル特性を両立できることから、0.001≦e≦0.05がより好ましく、0.001≦e≦0.02が特に好ましい。 As a positive electrode active material in this invention, the compound (1) represented by the following Formula (1) is preferable.
Li 1 + a Ni b Co c Mn d Al e O 2 + f (1)
In the formula (1), a to e are 0.1 ≦ a ≦ 0.6, 0.095 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.3, 0.28 ≦ d ≦ 0, respectively. 85, 0.9 ≦ b + c + d ≦ 1.05, 0.0001 ≦ e ≦ 0.05, and f is a numerical value determined by the valences of Li, Ni, Co, Mn, and Al.
Since a of the compound (1) becomes a positive electrode active material having a high initial discharge capacity and initial discharge voltage, 0.1 ≦ a ≦ 0.4 is more preferable.
In the compound (1), b is more preferably 0.142 ≦ b ≦ 0.45, and particularly preferably 0.19 ≦ b ≦ 0.4, for the same reason as a.
For the same reason as a, c of the compound (1) is more preferably 0 ≦ c ≦ 0.2, and particularly preferably 0 ≦ c ≦ 0.15.
For the same reason as a, d of the compound (1) is more preferably 0.38 ≦ d ≦ 0.85, and particularly preferably 0.38 ≦ d ≦ 0.7.
E of compound (1) is more preferably 0.001 ≦ e ≦ 0.05, and particularly preferably 0.001 ≦ e ≦ 0.02, since both the initial discharge capacity and the cycle characteristics can be achieved.
以上説明した本発明の正極活物質の製造方法によれば、特許文献2のような、リチウム遷移金属複合酸化物の表面にフッ化アルミニウムをコーティングする方法に比べて、工程数の少ない簡便な方法で優れたサイクル特性を有する正極活物質を製造できる。
According to the method for producing a positive electrode active material of the present invention described above, a simple method having a smaller number of steps than the method of coating aluminum fluoride on the surface of the lithium transition metal composite oxide as in Patent Document 2. A positive electrode active material having excellent cycle characteristics can be produced.
本発明の製造方法で得られる正極活物質は、リチウムイオン二次電池におけるリチウムイオン二次電池用正極の形成に使用できる。本発明の製造方法で得られる正極活物質を使用するリチウムイオン二次電池およびリチウムイオン二次電池用正極は、本発明の製造方法で得られる正極活物質を使用する以外は、公知の形態を制限なく採用できる。
リチウムイオン二次電池としては、例えば、リチウムイオン二次電池用正極と、負極と、非水電解質とを有するものが挙げられる。リチウムイオン二次電池の形状は、特に限定されず、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択できる。 The positive electrode active material obtained by the production method of the present invention can be used for forming a positive electrode for a lithium ion secondary battery in a lithium ion secondary battery. The lithium ion secondary battery using the positive electrode active material obtained by the production method of the present invention and the positive electrode for the lithium ion secondary battery have known forms except that the positive electrode active material obtained by the production method of the present invention is used. Can be used without restriction.
As a lithium ion secondary battery, what has a positive electrode for lithium ion secondary batteries, a negative electrode, and a nonaqueous electrolyte is mentioned, for example. The shape of the lithium ion secondary battery is not particularly limited, and shapes such as a coin shape, a sheet shape (film shape), a folded shape, a wound type bottomed cylindrical shape, and a button shape can be appropriately selected according to the application.
リチウムイオン二次電池としては、例えば、リチウムイオン二次電池用正極と、負極と、非水電解質とを有するものが挙げられる。リチウムイオン二次電池の形状は、特に限定されず、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択できる。 The positive electrode active material obtained by the production method of the present invention can be used for forming a positive electrode for a lithium ion secondary battery in a lithium ion secondary battery. The lithium ion secondary battery using the positive electrode active material obtained by the production method of the present invention and the positive electrode for the lithium ion secondary battery have known forms except that the positive electrode active material obtained by the production method of the present invention is used. Can be used without restriction.
As a lithium ion secondary battery, what has a positive electrode for lithium ion secondary batteries, a negative electrode, and a nonaqueous electrolyte is mentioned, for example. The shape of the lithium ion secondary battery is not particularly limited, and shapes such as a coin shape, a sheet shape (film shape), a folded shape, a wound type bottomed cylindrical shape, and a button shape can be appropriately selected according to the application.
リチウムイオン二次電池用正極は、例えば、正極集電体と、該正極集電体上に設けられた正極活物質層と、を有するものが挙げられる。
正極集電体としては、例えば、アルミニウム箔、ステンレス鋼箔等が挙げられる。 Examples of the positive electrode for a lithium ion secondary battery include a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector.
Examples of the positive electrode current collector include an aluminum foil and a stainless steel foil.
正極集電体としては、例えば、アルミニウム箔、ステンレス鋼箔等が挙げられる。 Examples of the positive electrode for a lithium ion secondary battery include a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector.
Examples of the positive electrode current collector include an aluminum foil and a stainless steel foil.
正極活物質層は、前記した本発明の製造方法で得られた正極活物質と、導電材と、バインダと、を含む層である。さらに、必要に応じて増粘剤等の他の成分が含まれていてもよい。
導電材としては、例えば、アセチレンブラック、黒鉛、ケッチェンブラック等のカーボンブラック等が挙げられる。導電材は、1種を単独で使用してもよく、2種以上を併用してもよい。
バインダとしては、例えば、フッ素系樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等。)、ポリオレフィン(ポリエチレン、ポリプロピレン等。)、不飽和結合を有する重合体(スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等。)、アクリル酸系重合体(アクリル酸共重合体、メタクリル酸共重合体等。)等が挙げられる。バインダは、1種を単独で使用してもよく、2種以上を併用してもよい。
正極活物質は、1種を単独で使用してもよく、2種以上を併用してもよい。 The positive electrode active material layer is a layer including the positive electrode active material obtained by the above-described production method of the present invention, a conductive material, and a binder. Furthermore, other components such as a thickener may be included as necessary.
Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black. A conductive material may be used individually by 1 type, and may use 2 or more types together.
Examples of the binder include fluorine-based resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyolefins (polyethylene, polypropylene, etc.), and polymers having unsaturated bonds (styrene / butadiene rubber, isoprene rubber, butadiene rubber, etc.) ), Acrylic acid polymers (acrylic acid copolymers, methacrylic acid copolymers, etc.). A binder may be used individually by 1 type and may use 2 or more types together.
A positive electrode active material may be used individually by 1 type, and may use 2 or more types together.
導電材としては、例えば、アセチレンブラック、黒鉛、ケッチェンブラック等のカーボンブラック等が挙げられる。導電材は、1種を単独で使用してもよく、2種以上を併用してもよい。
バインダとしては、例えば、フッ素系樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等。)、ポリオレフィン(ポリエチレン、ポリプロピレン等。)、不飽和結合を有する重合体(スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等。)、アクリル酸系重合体(アクリル酸共重合体、メタクリル酸共重合体等。)等が挙げられる。バインダは、1種を単独で使用してもよく、2種以上を併用してもよい。
正極活物質は、1種を単独で使用してもよく、2種以上を併用してもよい。 The positive electrode active material layer is a layer including the positive electrode active material obtained by the above-described production method of the present invention, a conductive material, and a binder. Furthermore, other components such as a thickener may be included as necessary.
Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black. A conductive material may be used individually by 1 type, and may use 2 or more types together.
Examples of the binder include fluorine-based resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyolefins (polyethylene, polypropylene, etc.), and polymers having unsaturated bonds (styrene / butadiene rubber, isoprene rubber, butadiene rubber, etc.) ), Acrylic acid polymers (acrylic acid copolymers, methacrylic acid copolymers, etc.). A binder may be used individually by 1 type and may use 2 or more types together.
A positive electrode active material may be used individually by 1 type, and may use 2 or more types together.
増粘剤としては、例えば、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン、ポリビニルピロリドン等が挙げられる。増粘剤は1種を単独で使用してもよく、2種以上を併用してもよい。
Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and polyvinylpyrrolidone. A thickener may be used individually by 1 type and may use 2 or more types together.
リチウムイオン二次電池用正極の製造方法としては、例えば、以下に示す方法が挙げられる。正極活物質、導電材およびバインダを、媒体に溶解もしくは分散させてスラリを得るか、または正極活物質、導電材およびバインダを、媒体と混錬して混錬物を得る。次いで、得られたスラリまたは混錬物を正極集電体上に塗工すること等によって正極活物質層を形成させる。
Examples of a method for producing a positive electrode for a lithium ion secondary battery include the following methods. A positive electrode active material, a conductive material, and a binder are dissolved or dispersed in a medium to obtain a slurry, or a positive electrode active material, a conductive material, and a binder are kneaded with a medium to obtain a kneaded product. Next, the positive electrode active material layer is formed by coating the obtained slurry or kneaded material on the positive electrode current collector.
負極は、負極集電体上に、負極活物質を含む負極活物質層が形成されてなる。
負極集電体としては、例えばニッケル箔、銅箔等の金属箔が挙げられる。
負極活物質としては、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、例えば、リチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。また、負極活物質としては、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物およびその他の窒化物等を使用してもよい。 The negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
Examples of the negative electrode current collector include metal foils such as nickel foil and copper foil.
The negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential. For example, an oxide mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. , Carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds and the like. Further, as the negative electrode active material, iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, and other oxides and other nitrides may be used.
負極集電体としては、例えばニッケル箔、銅箔等の金属箔が挙げられる。
負極活物質としては、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、例えば、リチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。また、負極活物質としては、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物およびその他の窒化物等を使用してもよい。 The negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
Examples of the negative electrode current collector include metal foils such as nickel foil and copper foil.
The negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential. For example, an oxide mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. , Carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds and the like. Further, as the negative electrode active material, iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, and other oxides and other nitrides may be used.
負極活物質の炭素材料としては、例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等。)、グラファイト類、ガラス状炭素類、有機高分子化合物(フェノール樹脂、フラン樹脂等。)を適当な温度で焼成して炭素化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類等が挙げられる。
周期表14族の金属としては、例えば、Si、Sn等が挙げられる。なかでも、周期表14族の金属としては、Siが好ましい。 Examples of the carbon material for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and glassy carbons. Organic polymer compound fired bodies obtained by firing and polymerizing organic polymer compounds (phenol resin, furan resin, etc.) at an appropriate temperature, carbon fibers, activated carbon, carbon blacks and the like.
Examples of the metal of Group 14 of the periodic table include Si and Sn. Among these, Si is preferable as the metal of Group 14 of the periodic table.
周期表14族の金属としては、例えば、Si、Sn等が挙げられる。なかでも、周期表14族の金属としては、Siが好ましい。 Examples of the carbon material for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and glassy carbons. Organic polymer compound fired bodies obtained by firing and polymerizing organic polymer compounds (phenol resin, furan resin, etc.) at an appropriate temperature, carbon fibers, activated carbon, carbon blacks and the like.
Examples of the metal of Group 14 of the periodic table include Si and Sn. Among these, Si is preferable as the metal of Group 14 of the periodic table.
負極は、例えば、負極活物質を有機溶媒と混合することによってスラリを調製し、調製したスラリを負極集電体に塗布、乾燥、プレスすることによって得られる。
The negative electrode is obtained, for example, by preparing a slurry by mixing a negative electrode active material with an organic solvent, applying the prepared slurry to a negative electrode current collector, drying, and pressing.
非水電解質としては、例えば、有機溶媒に電解質塩を溶解させた非水電解液、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物等に電解質塩を混合または溶解させた固体状もしくはゲル状電解質等が挙げられる。
Examples of the non-aqueous electrolyte include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in an organic solvent, a solid electrolyte containing an electrolyte salt, a solid electrolyte obtained by mixing or dissolving an electrolyte salt in a polymer electrolyte, a polymer compound, and the like. Or a gel electrolyte etc. are mentioned.
有機溶媒としては、非水電解液用の有機溶媒として公知のものを採用でき、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等が挙げられる。なかでも、電圧安定性の点からは、有機溶媒としては、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類が好ましい。有機溶媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
As the organic solvent, known organic solvents for non-aqueous electrolytes can be employed, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, Examples thereof include γ-butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetic acid ester, butyric acid ester, and propionic acid ester. Among these, from the viewpoint of voltage stability, the organic solvent is preferably a cyclic carbonate such as propylene carbonate, or a chain carbonate such as dimethyl carbonate or diethyl carbonate. An organic solvent may be used individually by 1 type, and may use 2 or more types together.
固体電解質としては、リチウムイオン伝導性を有する材料であればよく、無機固体電解質および高分子固体電解質のいずれを使用してもよい。
無機固体電解質としては、例えば、窒化リチウム、ヨウ化リチウム等が挙げられる。
高分子固体電解質としては、電解質塩と該電解質塩を溶解する高分子化合物を含む電解質が挙げられる。電解質塩を溶解する高分子化合物としては、エーテル系高分子化合物(ポリ(エチレンオキサイド)、ポリ(エチレンオキサイド)の架橋体等。)、ポリ(メタクリレート)エステル系高分子化合物、アクリレート系高分子化合物等が挙げられる。 As the solid electrolyte, any material having lithium ion conductivity may be used, and either an inorganic solid electrolyte or a polymer solid electrolyte may be used.
Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide.
Examples of the polymer solid electrolyte include an electrolyte containing an electrolyte salt and a polymer compound that dissolves the electrolyte salt. Examples of the polymer compound that dissolves the electrolyte salt include ether polymer compounds (poly (ethylene oxide), cross-linked poly (ethylene oxide), etc.), poly (methacrylate) ester polymer compounds, and acrylate polymer compounds. Etc.
無機固体電解質としては、例えば、窒化リチウム、ヨウ化リチウム等が挙げられる。
高分子固体電解質としては、電解質塩と該電解質塩を溶解する高分子化合物を含む電解質が挙げられる。電解質塩を溶解する高分子化合物としては、エーテル系高分子化合物(ポリ(エチレンオキサイド)、ポリ(エチレンオキサイド)の架橋体等。)、ポリ(メタクリレート)エステル系高分子化合物、アクリレート系高分子化合物等が挙げられる。 As the solid electrolyte, any material having lithium ion conductivity may be used, and either an inorganic solid electrolyte or a polymer solid electrolyte may be used.
Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide.
Examples of the polymer solid electrolyte include an electrolyte containing an electrolyte salt and a polymer compound that dissolves the electrolyte salt. Examples of the polymer compound that dissolves the electrolyte salt include ether polymer compounds (poly (ethylene oxide), cross-linked poly (ethylene oxide), etc.), poly (methacrylate) ester polymer compounds, and acrylate polymer compounds. Etc.
ゲル状電解質のマトリックスとしては、前記非水電解液を吸収してゲル化するものであればよく、種々の高分子化合物を使用できる。前記高分子化合物としては、例えば、フッ素系高分子化合物(ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド-co-ヘキサフルオロプロピレン)等。)、ポリアクリロニトリル、ポリアクリロニトリルの共重合体、エーテル系高分子化合物(ポリエチレンオキサイド、ポリエチレンオキサイドの共重合体、ならびに該共重合体の架橋体等。)等が挙げられる。前記共重合体としてポリエチレンオキサイドに共重合させるモノマーとしては、例えば、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等が挙げられる。
ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の点から、前記高分子化合物のうち、特にフッ素系高分子化合物が好ましい。 The matrix of the gel electrolyte may be any matrix that absorbs the non-aqueous electrolyte and gels, and various polymer compounds can be used. Examples of the polymer compound include fluorine-based polymer compounds (poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), etc.), polyacrylonitrile, a copolymer of polyacrylonitrile, an ether-based compound, and the like. And high molecular compounds (polyethylene oxide, polyethylene oxide copolymers, and crosslinked products of the copolymers, etc.). Examples of the monomer copolymerized with polyethylene oxide as the copolymer include methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
As the matrix of the gel electrolyte, a fluorine-based polymer compound is particularly preferable among the polymer compounds from the viewpoint of stability against redox reaction.
ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の点から、前記高分子化合物のうち、特にフッ素系高分子化合物が好ましい。 The matrix of the gel electrolyte may be any matrix that absorbs the non-aqueous electrolyte and gels, and various polymer compounds can be used. Examples of the polymer compound include fluorine-based polymer compounds (poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), etc.), polyacrylonitrile, a copolymer of polyacrylonitrile, an ether-based compound, and the like. And high molecular compounds (polyethylene oxide, polyethylene oxide copolymers, and crosslinked products of the copolymers, etc.). Examples of the monomer copolymerized with polyethylene oxide as the copolymer include methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
As the matrix of the gel electrolyte, a fluorine-based polymer compound is particularly preferable among the polymer compounds from the viewpoint of stability against redox reaction.
電解質塩は、リチウムイオン二次電池に使用されている公知のものが使用でき、例えば、LiClO4、LiPF6、LiBF4、CF3SO3Li等が挙げられる。
As the electrolyte salt, known ones used in lithium ion secondary batteries can be used, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, and the like.
以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1、2、4、5が実施例、例3、6が比較例である。
[粒子径(D50)]
共沈化合物および正極活物質を水中に超音波処理によって充分に分散させ、日機装社製レーザー回折/散乱式粒子径分布測定装置(装置名;MT-3300EX)により測定を行い、頻度分布および累積体積分布曲線を得ることで体積基準の粒度分布を得た。得られた累積体積分布曲線における50%となる点の粒子径を粒子径(D50)とした。また、得られた累積体積分布曲線において、10%となる点の粒子径である粒子径(D10)と、90%となる点の粒子径である粒子径(D90)も算出した。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description. Examples 1, 2, 4, and 5 are examples, and examples 3 and 6 are comparative examples.
[Particle size (D50)]
The coprecipitation compound and the positive electrode active material are sufficiently dispersed in water by ultrasonic treatment, and measured with a laser diffraction / scattering type particle size distribution measuring device (device name: MT-3300EX) manufactured by Nikkiso Co., Ltd., frequency distribution and cumulative volume By obtaining a distribution curve, a volume-based particle size distribution was obtained. The particle diameter at the point of 50% in the obtained cumulative volume distribution curve was defined as the particle diameter (D50). In the obtained cumulative volume distribution curve, a particle diameter (D10) which is a particle diameter at a point of 10% and a particle diameter (D90) which is a particle diameter at a point of 90% were also calculated.
[粒子径(D50)]
共沈化合物および正極活物質を水中に超音波処理によって充分に分散させ、日機装社製レーザー回折/散乱式粒子径分布測定装置(装置名;MT-3300EX)により測定を行い、頻度分布および累積体積分布曲線を得ることで体積基準の粒度分布を得た。得られた累積体積分布曲線における50%となる点の粒子径を粒子径(D50)とした。また、得られた累積体積分布曲線において、10%となる点の粒子径である粒子径(D10)と、90%となる点の粒子径である粒子径(D90)も算出した。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description. Examples 1, 2, 4, and 5 are examples, and examples 3 and 6 are comparative examples.
[Particle size (D50)]
The coprecipitation compound and the positive electrode active material are sufficiently dispersed in water by ultrasonic treatment, and measured with a laser diffraction / scattering type particle size distribution measuring device (device name: MT-3300EX) manufactured by Nikkiso Co., Ltd., frequency distribution and cumulative volume By obtaining a distribution curve, a volume-based particle size distribution was obtained. The particle diameter at the point of 50% in the obtained cumulative volume distribution curve was defined as the particle diameter (D50). In the obtained cumulative volume distribution curve, a particle diameter (D10) which is a particle diameter at a point of 10% and a particle diameter (D90) which is a particle diameter at a point of 90% were also calculated.
[比表面積]
共沈化合物および正極活物質の比表面積は、マウンテック社製比表面積測定装置(装置名;HM model-1208)によりBET(Brunauer,Emmett,Teller)法を用いて測定した。 [Specific surface area]
The specific surface areas of the coprecipitated compound and the positive electrode active material were measured by a BET (Brunauer, Emmett, Teller) method using a specific surface area measuring device (device name: HM model-1208) manufactured by Mountec.
共沈化合物および正極活物質の比表面積は、マウンテック社製比表面積測定装置(装置名;HM model-1208)によりBET(Brunauer,Emmett,Teller)法を用いて測定した。 [Specific surface area]
The specific surface areas of the coprecipitated compound and the positive electrode active material were measured by a BET (Brunauer, Emmett, Teller) method using a specific surface area measuring device (device name: HM model-1208) manufactured by Mountec.
[組成分析(Ni、Co、Mn、Al)]
共沈化合物の組成分析は、プラズマ発光分析装置(SIIナノテクノロジー社製、型式名:SPS3100H)により行った。 [Composition analysis (Ni, Co, Mn, Al)]
The composition analysis of the coprecipitated compound was performed with a plasma emission analyzer (manufactured by SII Nanotechnology, model name: SPS3100H).
共沈化合物の組成分析は、プラズマ発光分析装置(SIIナノテクノロジー社製、型式名:SPS3100H)により行った。 [Composition analysis (Ni, Co, Mn, Al)]
The composition analysis of the coprecipitated compound was performed with a plasma emission analyzer (manufactured by SII Nanotechnology, model name: SPS3100H).
[サイクル特性の評価]
(正極体シートの製造)
各例で得られた正極活物質と、導電材であるアセチレンブラックと、ポリフッ化ビニリデン(バインダ)とを、質量比が80:10:10でN-メチルピロリドンに加え、スラリを調製した。
次いで、該スラリを、厚さ20μmのアルミニウム箔(正極集電体)の片面上にドクターブレードにより塗工し、120℃で乾燥した後、ロールプレス圧延を2回行い、正極体シートを作製した。
(リチウムイオン二次電池の製造)
得られた正極体シートを直径18mmの円形に打ち抜いたものを正極とし、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴングローブボックス内で組み立てた。なお、負極集電体として厚さ1mmのステンレス鋼板を使用し、該負極集電体上に厚さ500μmの金属リチウム箔を形成して負極とした。セパレータには厚さ25μmの多孔質ポリプロピレンを用いた。また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の質量比1:1の混合溶媒に、濃度が1mol/dm3となるようにLiPF6を溶解させた液を電解液として使用した。
(放電容量維持率の測定)
得られたリチウムイオン二次電池を、充放電評価装置(東洋システム社製、装置名:TOSCAT-3000)に接続し、活物質1g当たり0.1Cの負荷電流で4.6Vまで充電し、活物質1g当たり0.1Cの負荷電流にて2Vまで放電して活性化処理を行った。その後、活物質1g当たり1Cの負荷電流で4.5Vまで充電し、活物質1g当たり1Cの負荷電流で2Vまで放電する充放電サイクルを100回繰り返した。なお、1Cとは、正極の理論容量を1時間で放電できる電流量を意味する。
活性化処理時の充電容量、放電容量および平均放電電圧を、それぞれ初期の充電容量、放電容量および平均放電電圧とした。また、3サイクル目の放電容量に対する、100サイクル目の放電容量の割合を放電容量維持率とした。 [Evaluation of cycle characteristics]
(Manufacture of positive electrode sheet)
A positive electrode active material obtained in each example, acetylene black as a conductive material, and polyvinylidene fluoride (binder) were added to N-methylpyrrolidone at a mass ratio of 80:10:10 to prepare a slurry.
Next, the slurry was coated on one side of an aluminum foil (positive electrode current collector) having a thickness of 20 μm with a doctor blade, dried at 120 ° C., and then subjected to roll press rolling twice to produce a positive electrode sheet. .
(Manufacture of lithium ion secondary batteries)
The obtained positive electrode sheet was punched into a circular shape with a diameter of 18 mm as a positive electrode, and a stainless steel simple sealed cell type lithium ion secondary battery was assembled in an argon glove box. A stainless steel plate having a thickness of 1 mm was used as the negative electrode current collector, and a metal lithium foil having a thickness of 500 μm was formed on the negative electrode current collector to form a negative electrode. As the separator, porous polypropylene having a thickness of 25 μm was used. In addition, a solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a mass ratio of 1: 1 so that the concentration was 1 mol / dm 3 was used as an electrolytic solution.
(Measurement of discharge capacity maintenance rate)
The obtained lithium ion secondary battery was connected to a charge / discharge evaluation device (manufactured by Toyo System Co., Ltd., device name: TOSCAT-3000), charged to 4.6 V with a load current of 0.1 C / g of active material, The activation treatment was performed by discharging to 2 V at a load current of 0.1 C per 1 g of the substance. Then, the charge / discharge cycle which charges to 4.5V with the load current of 1C per 1g of active material, and discharges to 2V with the load current of 1C per 1g of active material was repeated 100 times. In addition, 1C means the amount of current that can discharge the theoretical capacity of the positive electrode in one hour.
The charge capacity, discharge capacity, and average discharge voltage during the activation treatment were set as the initial charge capacity, discharge capacity, and average discharge voltage, respectively. The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 3rd cycle was defined as the discharge capacity retention rate.
(正極体シートの製造)
各例で得られた正極活物質と、導電材であるアセチレンブラックと、ポリフッ化ビニリデン(バインダ)とを、質量比が80:10:10でN-メチルピロリドンに加え、スラリを調製した。
次いで、該スラリを、厚さ20μmのアルミニウム箔(正極集電体)の片面上にドクターブレードにより塗工し、120℃で乾燥した後、ロールプレス圧延を2回行い、正極体シートを作製した。
(リチウムイオン二次電池の製造)
得られた正極体シートを直径18mmの円形に打ち抜いたものを正極とし、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴングローブボックス内で組み立てた。なお、負極集電体として厚さ1mmのステンレス鋼板を使用し、該負極集電体上に厚さ500μmの金属リチウム箔を形成して負極とした。セパレータには厚さ25μmの多孔質ポリプロピレンを用いた。また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の質量比1:1の混合溶媒に、濃度が1mol/dm3となるようにLiPF6を溶解させた液を電解液として使用した。
(放電容量維持率の測定)
得られたリチウムイオン二次電池を、充放電評価装置(東洋システム社製、装置名:TOSCAT-3000)に接続し、活物質1g当たり0.1Cの負荷電流で4.6Vまで充電し、活物質1g当たり0.1Cの負荷電流にて2Vまで放電して活性化処理を行った。その後、活物質1g当たり1Cの負荷電流で4.5Vまで充電し、活物質1g当たり1Cの負荷電流で2Vまで放電する充放電サイクルを100回繰り返した。なお、1Cとは、正極の理論容量を1時間で放電できる電流量を意味する。
活性化処理時の充電容量、放電容量および平均放電電圧を、それぞれ初期の充電容量、放電容量および平均放電電圧とした。また、3サイクル目の放電容量に対する、100サイクル目の放電容量の割合を放電容量維持率とした。 [Evaluation of cycle characteristics]
(Manufacture of positive electrode sheet)
A positive electrode active material obtained in each example, acetylene black as a conductive material, and polyvinylidene fluoride (binder) were added to N-methylpyrrolidone at a mass ratio of 80:10:10 to prepare a slurry.
Next, the slurry was coated on one side of an aluminum foil (positive electrode current collector) having a thickness of 20 μm with a doctor blade, dried at 120 ° C., and then subjected to roll press rolling twice to produce a positive electrode sheet. .
(Manufacture of lithium ion secondary batteries)
The obtained positive electrode sheet was punched into a circular shape with a diameter of 18 mm as a positive electrode, and a stainless steel simple sealed cell type lithium ion secondary battery was assembled in an argon glove box. A stainless steel plate having a thickness of 1 mm was used as the negative electrode current collector, and a metal lithium foil having a thickness of 500 μm was formed on the negative electrode current collector to form a negative electrode. As the separator, porous polypropylene having a thickness of 25 μm was used. In addition, a solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a mass ratio of 1: 1 so that the concentration was 1 mol / dm 3 was used as an electrolytic solution.
(Measurement of discharge capacity maintenance rate)
The obtained lithium ion secondary battery was connected to a charge / discharge evaluation device (manufactured by Toyo System Co., Ltd., device name: TOSCAT-3000), charged to 4.6 V with a load current of 0.1 C / g of active material, The activation treatment was performed by discharging to 2 V at a load current of 0.1 C per 1 g of the substance. Then, the charge / discharge cycle which charges to 4.5V with the load current of 1C per 1g of active material, and discharges to 2V with the load current of 1C per 1g of active material was repeated 100 times. In addition, 1C means the amount of current that can discharge the theoretical capacity of the positive electrode in one hour.
The charge capacity, discharge capacity, and average discharge voltage during the activation treatment were set as the initial charge capacity, discharge capacity, and average discharge voltage, respectively. The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 3rd cycle was defined as the discharge capacity retention rate.
[例1]
工程(I):
硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、硫酸マンガン(II)・五水和物および硫酸アルミニウム(III)・十四~十八水和物を、Ni、Co、MnおよびAlのモル比が表1に示すとおりになるように、かつ硫酸塩の合計量が1.5mol/kgとなるように蒸留水に溶解させて、硫酸塩水溶液を2kg調製した。また、炭酸ナトリウム381.2gを蒸留水2018.8gに溶解させ、2.4kgの炭酸塩水溶液(pH調整液)を調製した。
次いで、2Lのバッフル付きガラス製反応槽に蒸留水を入れ、マントルヒータで50℃に加熱し、パドル型の撹拌翼で撹拌しながら、前記硫酸塩水溶液を5.0g/分の速度で6時間添加し、Ni、Co、MnおよびAlを含む共沈化合物を析出させた。なお、前記硫酸塩水溶液の添加中は、反応槽内のpHを8.0に保つように炭酸塩水溶液(pH調整液)を添加して混合した。また、析出反応中は、反応槽内の液量が2Lを超えないように、ろ布を用いて連続的に液の抜き出しを行った。
得られた共沈化合物から不純物イオンを取り除くために、遠心分離と蒸留水への分散を繰り返し、共沈化合物の洗浄を行った。上澄液の電気伝導度が20mS/mとなった時点で洗浄を終了し、120℃で15時間乾燥させて共沈化合物を得た。得られた共沈化合物におけるNi、Co、MnおよびAlの組成分析結果を表1に示す。 [Example 1]
Step (I):
Nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, manganese sulfate (II) pentahydrate and aluminum sulfate (III) 2 kg of an aqueous sulfate solution was prepared by dissolving in distilled water such that the molar ratio of Co, Mn and Al was as shown in Table 1 and the total amount of sulfate was 1.5 mol / kg. . In addition, 381.2 g of sodium carbonate was dissolved in 2018.8 g of distilled water to prepare 2.4 kg of an aqueous carbonate solution (pH adjusting solution).
Subsequently, distilled water is put into a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and stirred with a paddle type stirring blade, the aqueous sulfate solution is stirred at a rate of 5.0 g / min for 6 hours. The coprecipitation compound containing Ni, Co, Mn, and Al was precipitated. During the addition of the aqueous sulfate solution, an aqueous carbonate solution (pH adjusting solution) was added and mixed so that the pH in the reaction vessel was kept at 8.0. During the precipitation reaction, the liquid was continuously extracted using a filter cloth so that the amount of liquid in the reaction tank did not exceed 2 L.
In order to remove impurity ions from the obtained coprecipitated compound, centrifugal separation and dispersion in distilled water were repeated to wash the coprecipitated compound. When the electrical conductivity of the supernatant reached 20 mS / m, the washing was finished and dried at 120 ° C. for 15 hours to obtain a coprecipitated compound. Table 1 shows the composition analysis results of Ni, Co, Mn and Al in the obtained coprecipitation compound.
工程(I):
硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、硫酸マンガン(II)・五水和物および硫酸アルミニウム(III)・十四~十八水和物を、Ni、Co、MnおよびAlのモル比が表1に示すとおりになるように、かつ硫酸塩の合計量が1.5mol/kgとなるように蒸留水に溶解させて、硫酸塩水溶液を2kg調製した。また、炭酸ナトリウム381.2gを蒸留水2018.8gに溶解させ、2.4kgの炭酸塩水溶液(pH調整液)を調製した。
次いで、2Lのバッフル付きガラス製反応槽に蒸留水を入れ、マントルヒータで50℃に加熱し、パドル型の撹拌翼で撹拌しながら、前記硫酸塩水溶液を5.0g/分の速度で6時間添加し、Ni、Co、MnおよびAlを含む共沈化合物を析出させた。なお、前記硫酸塩水溶液の添加中は、反応槽内のpHを8.0に保つように炭酸塩水溶液(pH調整液)を添加して混合した。また、析出反応中は、反応槽内の液量が2Lを超えないように、ろ布を用いて連続的に液の抜き出しを行った。
得られた共沈化合物から不純物イオンを取り除くために、遠心分離と蒸留水への分散を繰り返し、共沈化合物の洗浄を行った。上澄液の電気伝導度が20mS/mとなった時点で洗浄を終了し、120℃で15時間乾燥させて共沈化合物を得た。得られた共沈化合物におけるNi、Co、MnおよびAlの組成分析結果を表1に示す。 [Example 1]
Step (I):
Nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, manganese sulfate (II) pentahydrate and aluminum sulfate (III) 2 kg of an aqueous sulfate solution was prepared by dissolving in distilled water such that the molar ratio of Co, Mn and Al was as shown in Table 1 and the total amount of sulfate was 1.5 mol / kg. . In addition, 381.2 g of sodium carbonate was dissolved in 2018.8 g of distilled water to prepare 2.4 kg of an aqueous carbonate solution (pH adjusting solution).
Subsequently, distilled water is put into a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and stirred with a paddle type stirring blade, the aqueous sulfate solution is stirred at a rate of 5.0 g / min for 6 hours. The coprecipitation compound containing Ni, Co, Mn, and Al was precipitated. During the addition of the aqueous sulfate solution, an aqueous carbonate solution (pH adjusting solution) was added and mixed so that the pH in the reaction vessel was kept at 8.0. During the precipitation reaction, the liquid was continuously extracted using a filter cloth so that the amount of liquid in the reaction tank did not exceed 2 L.
In order to remove impurity ions from the obtained coprecipitated compound, centrifugal separation and dispersion in distilled water were repeated to wash the coprecipitated compound. When the electrical conductivity of the supernatant reached 20 mS / m, the washing was finished and dried at 120 ° C. for 15 hours to obtain a coprecipitated compound. Table 1 shows the composition analysis results of Ni, Co, Mn and Al in the obtained coprecipitation compound.
工程(II):
前記共沈化合物に含まれる遷移金属元素(X)の合計モル数に対する、炭酸リチウムに含まれるLiのモル数の比が1.28になるように、前記共沈化合物18gと炭酸リチウム7.31gとを混合した。さらに、電気炉(FO510、ヤマト科学社製)を用いて、炉の内容積1Lあたり大気を133mL/分でフローしながら、600℃で5時間仮焼成し、ついで850℃で16時間本焼成して正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 Process (II):
18 g of the coprecipitated compound and 7.31 g of lithium carbonate so that the ratio of the number of moles of Li contained in the lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitated compound is 1.28. And mixed. Furthermore, using an electric furnace (FO510, manufactured by Yamato Scientific Co., Ltd.), pre-fired at 600 ° C. for 5 hours and then finally fired at 850 ° C. for 16 hours while flowing air at 133 mL / min per 1 L of the furnace volume. Thus, a positive electrode active material was obtained.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
前記共沈化合物に含まれる遷移金属元素(X)の合計モル数に対する、炭酸リチウムに含まれるLiのモル数の比が1.28になるように、前記共沈化合物18gと炭酸リチウム7.31gとを混合した。さらに、電気炉(FO510、ヤマト科学社製)を用いて、炉の内容積1Lあたり大気を133mL/分でフローしながら、600℃で5時間仮焼成し、ついで850℃で16時間本焼成して正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 Process (II):
18 g of the coprecipitated compound and 7.31 g of lithium carbonate so that the ratio of the number of moles of Li contained in the lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitated compound is 1.28. And mixed. Furthermore, using an electric furnace (FO510, manufactured by Yamato Scientific Co., Ltd.), pre-fired at 600 ° C. for 5 hours and then finally fired at 850 ° C. for 16 hours while flowing air at 133 mL / min per 1 L of the furnace volume. Thus, a positive electrode active material was obtained.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
[例2]
工程(II)において、共沈化合物に含まれる遷移金属元素(X)の合計モル数に対する、炭酸リチウムに含まれるLiのモル数の比を表1に示すように変更した以外は、例1と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 2]
Example 1 except that the ratio of the number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound in the step (II) was changed as shown in Table 1. Similarly, a positive electrode active material was obtained.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
工程(II)において、共沈化合物に含まれる遷移金属元素(X)の合計モル数に対する、炭酸リチウムに含まれるLiのモル数の比を表1に示すように変更した以外は、例1と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 2]
Example 1 except that the ratio of the number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound in the step (II) was changed as shown in Table 1. Similarly, a positive electrode active material was obtained.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
[例3]
工程(I)において、硫酸アルミニウム(III)・十四~十八水和物を使用せず、硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物の仕込み量を、Ni、CoおよびMnのモル比が表1に示すとおりとなるように変更した以外は、例1と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 3]
In step (I), nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate are used without using aluminum sulfate (III) A positive electrode active material was obtained in the same manner as in Example 1 except that the amount of (II) pentahydrate was changed so that the molar ratio of Ni, Co and Mn was as shown in Table 1.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
工程(I)において、硫酸アルミニウム(III)・十四~十八水和物を使用せず、硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物の仕込み量を、Ni、CoおよびMnのモル比が表1に示すとおりとなるように変更した以外は、例1と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 3]
In step (I), nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate are used without using aluminum sulfate (III) A positive electrode active material was obtained in the same manner as in Example 1 except that the amount of (II) pentahydrate was changed so that the molar ratio of Ni, Co and Mn was as shown in Table 1.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
[例4]
工程(I)において、硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、硫酸マンガン(II)・五水和物および硫酸アルミニウム(III)・十四~十八水和物を、Ni、Co、MnおよびAlのモル比が表1に示すとおりになるようにする以外は、例1と同様にして、共沈化合物を得た。
工程(II)において、前記共沈化合物に含まれる遷移金属元素(X)の合計モル数に対する、炭酸リチウムに含まれるLiのモル数の比を1.13に変更した以外は、例1と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 4]
In step (I), nickel (II) sulfate hexahydrate, cobalt sulfate (II) heptahydrate, manganese sulfate (II) pentahydrate and aluminum sulfate (III) A coprecipitated compound was obtained in the same manner as in Example 1, except that the molar ratio of Ni, Co, Mn and Al was as shown in Table 1.
As in Example 1, except that the ratio of the number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound was changed to 1.13 in the step (II). Thus, a positive electrode active material was obtained.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
工程(I)において、硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、硫酸マンガン(II)・五水和物および硫酸アルミニウム(III)・十四~十八水和物を、Ni、Co、MnおよびAlのモル比が表1に示すとおりになるようにする以外は、例1と同様にして、共沈化合物を得た。
工程(II)において、前記共沈化合物に含まれる遷移金属元素(X)の合計モル数に対する、炭酸リチウムに含まれるLiのモル数の比を1.13に変更した以外は、例1と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 4]
In step (I), nickel (II) sulfate hexahydrate, cobalt sulfate (II) heptahydrate, manganese sulfate (II) pentahydrate and aluminum sulfate (III) A coprecipitated compound was obtained in the same manner as in Example 1, except that the molar ratio of Ni, Co, Mn and Al was as shown in Table 1.
As in Example 1, except that the ratio of the number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound was changed to 1.13 in the step (II). Thus, a positive electrode active material was obtained.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
[例5]
工程(II)において、前記共沈化合物に含まれる遷移金属元素(X)の合計モル数に対する、炭酸リチウムに含まれるLiのモル数の比を1.15に変更した以外は、例4と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 5]
As in Example 4, except that the ratio of the number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound was changed to 1.15 in step (II). Thus, a positive electrode active material was obtained.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
工程(II)において、前記共沈化合物に含まれる遷移金属元素(X)の合計モル数に対する、炭酸リチウムに含まれるLiのモル数の比を1.15に変更した以外は、例4と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 5]
As in Example 4, except that the ratio of the number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound was changed to 1.15 in step (II). Thus, a positive electrode active material was obtained.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
[例6]
工程(I)において、硫酸アルミニウム(III)・十四~十八水和物を使用せず、硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物の仕込み量を、Ni、CoおよびMnのモル比が表1に示すとおりとなるように変更した以外は、例5と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 6]
In step (I), nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate are used without using aluminum sulfate (III) A positive electrode active material was obtained in the same manner as in Example 5 except that the amount of (II) pentahydrate was changed so that the molar ratio of Ni, Co and Mn was as shown in Table 1.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
工程(I)において、硫酸アルミニウム(III)・十四~十八水和物を使用せず、硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物の仕込み量を、Ni、CoおよびMnのモル比が表1に示すとおりとなるように変更した以外は、例5と同様にして正極活物質を得た。
得られた正極活物質の粒子径(D10、D50、D90)と比表面積を表1に示す。 [Example 6]
In step (I), nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate are used without using aluminum sulfate (III) A positive electrode active material was obtained in the same manner as in Example 5 except that the amount of (II) pentahydrate was changed so that the molar ratio of Ni, Co and Mn was as shown in Table 1.
Table 1 shows the particle diameter (D10, D50, D90) and specific surface area of the obtained positive electrode active material.
表1における「Li/X」は、工程(II)における、共沈化合物に含まれる遷移金属元素(X)の合計モル数に対する、炭酸リチウムに含まれるLiのモル数の比(mol倍)を意味する。また、リチウムイオン二次電池の初期特性における「効率」は、初期の充電容量に対する放電容量の割合である。
“Li / X” in Table 1 is the ratio (mol times) of the number of moles of Li contained in lithium carbonate to the total number of moles of transition metal element (X) contained in the coprecipitation compound in step (II). means. The “efficiency” in the initial characteristics of the lithium ion secondary battery is the ratio of the discharge capacity to the initial charge capacity.
表1に示すように、例1、2、4、5のリチウムイオン二次電池は、例3、6のリチウムイオン二次電池と比較して放電容量維持率が高く、サイクル特性に優れていた。
As shown in Table 1, the lithium ion secondary batteries of Examples 1, 2, 4, and 5 had a higher discharge capacity retention rate and excellent cycle characteristics than the lithium ion secondary batteries of Examples 3 and 6. .
本発明によれば、工程数の少ない簡便な方法でサイクル特性に優れるリチウムイオン二次電池用の正極活物質が得られる。該正極活物質は、携帯電話等の電子機器、車載用の小型・軽量なリチウムイオン二次電池に用いるリチウムイオン二次電池用正極の形成に好適に利用できる。
なお、2012年10月29日に出願された日本特許出願2012-238275号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion secondary batteries which is excellent in cycling characteristics with the simple method with few processes is obtained. The positive electrode active material can be suitably used for forming a positive electrode for a lithium ion secondary battery used for electronic devices such as mobile phones and small and light lithium ion secondary batteries for vehicles.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-238275 filed on October 29, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.
なお、2012年10月29日に出願された日本特許出願2012-238275号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion secondary batteries which is excellent in cycling characteristics with the simple method with few processes is obtained. The positive electrode active material can be suitably used for forming a positive electrode for a lithium ion secondary battery used for electronic devices such as mobile phones and small and light lithium ion secondary batteries for vehicles.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-238275 filed on October 29, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.
Claims (9)
- 下記の工程(I)および工程(II)を有することを特徴とする正極活物質の製造方法。
(I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩(A)と、
Alの硫酸塩と、
炭酸ナトリウムおよび炭酸カリウムからなる群から選ばれる少なくとも1種の炭酸塩(B)とを、
水溶液の状態で混合して、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)とAlとを含む共沈化合物を得る工程。
(II)前記共沈化合物と炭酸リチウムとを混合し、500~1000℃で焼成する工程。 The manufacturing method of the positive electrode active material characterized by having the following process (I) and process (II).
(I) at least one sulfate (A) selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate;
Al sulfate and
At least one carbonate (B) selected from the group consisting of sodium carbonate and potassium carbonate,
A step of mixing in the state of an aqueous solution to obtain a coprecipitated compound containing Al and at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn.
(II) A step of mixing the coprecipitated compound and lithium carbonate and baking at 500 to 1000 ° C. - 前記工程(I)において、硫酸塩(A)と、Alの硫酸塩と、炭酸塩(B)とを混合する際の混合液のpHが7~12である、請求項1に記載の正極活物質の製造方法。 The positive electrode active material according to claim 1, wherein in the step (I), the pH of the mixed solution when the sulfate (A), the sulfate of Al and the carbonate (B) are mixed is 7 to 12. A method for producing a substance.
- 前記工程(I)において、共沈化合物に含まれるAlの割合が、前記遷移金属元素(X)のモル数およびAlのモル数の合計モル数に対して、0.01~5mol%である、請求項1または2に記載の正極活物質の製造方法。 In the step (I), the proportion of Al contained in the coprecipitation compound is 0.01 to 5 mol% with respect to the total number of moles of the transition metal element (X) and the number of moles of Al. The manufacturing method of the positive electrode active material of Claim 1 or 2.
- 前記工程(I)において、硫酸塩(A)の水溶液中における遷移金属元素(X)の濃度が、0.1~3mol/kgである、請求項1~3のいずれか一項に記載の正極活物質の製造方法。 The positive electrode according to any one of claims 1 to 3, wherein in the step (I), the concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is 0.1 to 3 mol / kg. A method for producing an active material.
- 前記工程(I)において、Alの硫酸塩の水溶液中におけるAlの濃度が、0.001~0.15mol/kgである、請求項1~4のいずれか一項に記載の正極活物質の製造方法。 The production of a positive electrode active material according to any one of claims 1 to 4, wherein in the step (I), the concentration of Al in the aqueous solution of Al sulfate is 0.001 to 0.15 mol / kg. Method.
- 前記工程(I)において、炭酸塩(B)の水溶液中における炭酸塩(B)の濃度が、0.1~2mol/kgである、請求項1~5のいずれか一項に記載の正極活物質の製造方法。 The positive electrode active material according to any one of claims 1 to 5, wherein in the step (I), the concentration of the carbonate (B) in the aqueous solution of the carbonate (B) is 0.1 to 2 mol / kg. A method for producing a substance.
- 前記工程(I)における共沈化合物の粒子径(D50)が4~20μmであり、比表面積が50~300m2/gである、請求項1~6のいずれか一項に記載の正極活物質の製造方法。 The positive electrode active material according to any one of claims 1 to 6, wherein the particle size (D50) of the coprecipitated compound in the step (I) is 4 to 20 µm and the specific surface area is 50 to 300 m 2 / g. Manufacturing method.
- 前記工程(II)において、炭酸リチウムに含まれるLiのモル数が、前記遷移金属元素(X)の合計モル数に対して、1.1倍以上である、請求項1~7のいずれか一項に記載の正極活物質の製造方法。 In the step (II), the number of moles of Li contained in the lithium carbonate is 1.1 times or more with respect to the total number of moles of the transition metal element (X). The manufacturing method of the positive electrode active material of description.
- 得られる正極活物質が下式(1)で表される化合物(1)である、請求項1~8のいずれか一項に記載の正極活物質の製造方法。
Li1+aNibCocMndAleO2+f ・・・(1)
(ただし、前記式(1)中、a~eはそれぞれ0.1≦a≦0.6、0.095≦b≦0.5、0≦c≦0.3、0.28≦d≦0.85、0.9≦b+c+d≦1.05、0.0001≦e≦0.05である。fはLi、Ni、Co、MnおよびAlの価数によって決定される数値である。) The method for producing a positive electrode active material according to any one of claims 1 to 8, wherein the obtained positive electrode active material is a compound (1) represented by the following formula (1).
Li 1 + a Ni b Co c Mn d Al e O 2 + f (1)
(In the formula (1), a to e are 0.1 ≦ a ≦ 0.6, 0.095 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.3, 0.28 ≦ d ≦ 0, respectively. .85, 0.9 ≦ b + c + d ≦ 1.05, 0.0001 ≦ e ≦ 0.05, f is a numerical value determined by the valences of Li, Ni, Co, Mn and Al.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014544527A JP6259771B2 (en) | 2012-10-29 | 2013-10-29 | Method for producing positive electrode active material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-238275 | 2012-10-29 | ||
JP2012238275 | 2012-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014069469A1 true WO2014069469A1 (en) | 2014-05-08 |
Family
ID=50627371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079294 WO2014069469A1 (en) | 2012-10-29 | 2013-10-29 | Production method for positive electrode active material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6259771B2 (en) |
WO (1) | WO2014069469A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017119451A1 (en) * | 2016-01-06 | 2017-07-13 | 住友金属鉱山株式会社 | Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery |
US10355276B2 (en) | 2015-06-10 | 2019-07-16 | Sumitomo Chemical Co., Ltd. | Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
US11905184B2 (en) | 2018-11-09 | 2024-02-20 | Basf Corporation | Process for producing lithiated transition metal oxides |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005015282A (en) * | 2003-06-26 | 2005-01-20 | Mitsubishi Chemicals Corp | Method of producing coprecipitated product, and method of producing substitutional lithium transition metal multiple oxide |
JP2006294597A (en) * | 2005-03-17 | 2006-10-26 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolytic liquid secondary battery |
JP2008514534A (en) * | 2004-09-24 | 2008-05-08 | エルジー・ケム・リミテッド | Composite material precursor for aluminum-containing lithium transition metal oxides and method for producing the same |
JP2008293988A (en) * | 2001-04-20 | 2008-12-04 | Gs Yuasa Corporation:Kk | Positive electrode active material and method of manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4604347B2 (en) * | 2000-12-27 | 2011-01-05 | パナソニック株式会社 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
JP2011187174A (en) * | 2010-03-04 | 2011-09-22 | Agc Seimi Chemical Co Ltd | Method for manufacturing positive electrode active material for lithium ion secondary battery |
JP2012142154A (en) * | 2010-12-28 | 2012-07-26 | Sony Corp | Lithium ion secondary battery, power tool, electric vehicle and power storage system |
-
2013
- 2013-10-29 WO PCT/JP2013/079294 patent/WO2014069469A1/en active Application Filing
- 2013-10-29 JP JP2014544527A patent/JP6259771B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008293988A (en) * | 2001-04-20 | 2008-12-04 | Gs Yuasa Corporation:Kk | Positive electrode active material and method of manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery |
JP2005015282A (en) * | 2003-06-26 | 2005-01-20 | Mitsubishi Chemicals Corp | Method of producing coprecipitated product, and method of producing substitutional lithium transition metal multiple oxide |
JP2008514534A (en) * | 2004-09-24 | 2008-05-08 | エルジー・ケム・リミテッド | Composite material precursor for aluminum-containing lithium transition metal oxides and method for producing the same |
JP2006294597A (en) * | 2005-03-17 | 2006-10-26 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolytic liquid secondary battery |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10355276B2 (en) | 2015-06-10 | 2019-07-16 | Sumitomo Chemical Co., Ltd. | Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
US10964944B2 (en) | 2015-06-10 | 2021-03-30 | Sumitomo Chemical Co., Ltd. | Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2017119451A1 (en) * | 2016-01-06 | 2017-07-13 | 住友金属鉱山株式会社 | Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery |
US10790509B2 (en) | 2016-01-06 | 2020-09-29 | Sumitomo Metal Mining Co., Ltd. | Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery |
US11482703B2 (en) | 2016-01-06 | 2022-10-25 | Sumitomo Metal Mining Co., Ltd. | Positive-electrode active material precursor for nonaqueous electrolyte secondary battery and method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery |
US11905184B2 (en) | 2018-11-09 | 2024-02-20 | Basf Corporation | Process for producing lithiated transition metal oxides |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014069469A1 (en) | 2016-09-08 |
JP6259771B2 (en) | 2018-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106252613B (en) | Lithium-containing composite oxide, positive electrode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
WO2014192759A1 (en) | Positive electrode active material | |
JP6089701B2 (en) | Positive electrode active material and method for producing the same | |
JP5621600B2 (en) | Cathode active material for lithium ion secondary battery and method for producing the same | |
WO2012108513A1 (en) | Method for producing positive electrode active material for lithium ion secondary batteries | |
JP2016025041A (en) | Positive electrode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6745929B2 (en) | Method for producing lithium-containing composite oxide, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP6600136B2 (en) | Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2016136463A (en) | Positive electrode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
WO2012121220A1 (en) | Positive electrode active material for lithium ion secondary battery, and process for producing same | |
JP2012169066A (en) | Method for producing cathode active material for lithium ion secondary battery | |
JP2014116162A (en) | Positive electrode active material | |
WO2013154142A1 (en) | Positive electrode active material for lithium-ion secondary cell | |
JPWO2017135416A1 (en) | Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6328096B2 (en) | Method for producing carbonate compound and positive electrode active material | |
JP6345118B2 (en) | Positive electrode active material and method for producing the same | |
JP6259771B2 (en) | Method for producing positive electrode active material | |
JP2014089848A (en) | Positive electrode active material and method for producing the same | |
JP6388573B2 (en) | Method for producing positive electrode active material | |
JP6378676B2 (en) | Carbonate compound, method for producing the same, and method for producing positive electrode active material for lithium ion secondary battery | |
JP2014222582A (en) | Positive electrode active material and lithium ion secondary battery | |
JP2014222583A (en) | Method of producing cathode active material | |
JP2014089826A (en) | Positive electrode active material | |
JP2019081703A (en) | Lithium-containing composite oxide, positive electrode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5610164B2 (en) | Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13851578 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014544527 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13851578 Country of ref document: EP Kind code of ref document: A1 |