WO2014068725A1 - 車両の走行制御装置 - Google Patents

車両の走行制御装置 Download PDF

Info

Publication number
WO2014068725A1
WO2014068725A1 PCT/JP2012/078233 JP2012078233W WO2014068725A1 WO 2014068725 A1 WO2014068725 A1 WO 2014068725A1 JP 2012078233 W JP2012078233 W JP 2012078233W WO 2014068725 A1 WO2014068725 A1 WO 2014068725A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
brake
traveling
determination value
inertial
Prior art date
Application number
PCT/JP2012/078233
Other languages
English (en)
French (fr)
Inventor
黒木 錬太郎
琢也 平井
正記 光安
種甲 金
昌樹 松永
健明 鈴木
隆行 小暮
由香里 岡村
佐藤 彰洋
木下 裕介
康成 木戸
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/439,385 priority Critical patent/US9409576B2/en
Priority to JP2014544140A priority patent/JP6003999B2/ja
Priority to PCT/JP2012/078233 priority patent/WO2014068725A1/ja
Priority to EP12887368.4A priority patent/EP2915712B1/en
Priority to CN201280076794.9A priority patent/CN104755341B/zh
Publication of WO2014068725A1 publication Critical patent/WO2014068725A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/069Engine braking signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/108Gear
    • F16D2500/1081Actuation type
    • F16D2500/1085Automatic transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3101Detection of a brake actuation by a sensor on the brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3125Driving resistance, i.e. external factors having an influence in the traction force, e.g. road friction, air resistance, road slope
    • F16D2500/3127Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3165Using the moment of inertia of a component as input for the control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50287Torque control
    • F16D2500/5029Reducing drag torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50676Optimising drive-train operating point, e.g. selecting gear ratio giving maximum fuel economy, best performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/5085Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/50858Selecting a Mode of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/21Providing engine brake control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a vehicle travel control device, and in particular, in a vehicle capable of coasting traveling in a state where the engine braking force is lower than engine braking traveling, while ensuring an amplifying operation of the braking force during brake operation.
  • the present invention relates to a technology for further improving fuel consumption.
  • the engine brake is more effective than the engine brake travel for engine brake travel where the engine brake is applied by the driven rotation of the engine while the engine and wheels are connected. Inertia running with reduced power is considered.
  • the device described in Patent Document 1 is an example, and (a) two types of inertial traveling, that is, a first inertial traveling that travels with the engine stopped and (b) a second inertial traveling that travels while the engine is rotated.
  • a control mode has been proposed.
  • the first inertia traveling is a free-run inertia traveling in which the clutch is released to disconnect the engine from the wheel and the fuel supply to the engine is stopped to stop the rotation.
  • the second inertia traveling is a second inertia traveling. It is a neutral inertia running that is operated by supplying fuel to the engine with the engine released and disconnected from the wheel. One of these inertial runnings is executed under certain conditions without any particular distinction.
  • Patent Document 1 Although there is no description in Patent Document 1, there is a difference in brake performance between the first inertia traveling and the second inertia traveling where the engine states are different. However, in the technique of Patent Document 1, the first inertia traveling and the second inertia traveling are canceled without being distinguished, and it is still improved in order to improve the fuel consumption while ensuring the braking force at the time of the brake operation. There was room for. That is, the vehicle is generally provided with a brake booster that amplifies the braking force by using the negative pressure generated by the rotation of the engine, but in the first inertia traveling where the engine stops, the negative pressure is applied to the brake booster.
  • a brake booster that amplifies the braking force by using the negative pressure generated by the rotation of the engine, but in the first inertia traveling where the engine stops, the negative pressure is applied to the brake booster.
  • the brake booster In the second inertial running with the engine rotated, the brake booster is sequentially filled with negative pressure, whereas the braking force amplification action decreases with repeated operation of the brake. Amplifying action of braking force can be obtained continuously. Although the characteristics of the brake performance are different in this way, if the execution condition is determined according to one of the characteristics, the amplification effect of the brake force can be secured, but the fuel efficiency improvement effect is restricted, or the fuel efficiency is improved. There exists a subject that the amplification effect
  • the present invention has been made against the background of the above circumstances.
  • the object of the present invention is to provide a vehicle capable of inertial traveling that travels with a lower engine braking force than that of engine braking.
  • the purpose is to further improve fuel efficiency while ensuring the amplification effect of the braking force.
  • the first invention provides (a) a vehicle using an engine, a brake operation member operated in accordance with a driver's required brake amount, and a negative pressure generated by the rotation of the engine.
  • a brake booster that amplifies the force
  • (b) ⁇ ⁇ ⁇ ⁇ engine brake travel that travels by applying engine brake by driven rotation of the engine while the engine and wheels are connected, and engine brake travel
  • the vehicle travel control device that is capable of coasting traveling with the engine braking force reduced, and the braking request amount is included as a condition for terminating the coasting, (c) as the coasting, A first inertia traveling that travels with the engine stopped, and a second inertia traveling that travels while the engine is rotated, (D) ⁇ ⁇ If the required brake amount becomes equal to or greater than a predetermined first determination value ⁇ during the execution of the first inertia running, the first inertia is executed. When the travel is terminated and (e) the second required inertial travel
  • the first determination value ⁇ and the second determination value ⁇ are both set according to the gradient of the road surface. It is characterized in that a small value is determined in comparison with.
  • the first determination value ⁇ and the second determination value ⁇ are both set according to a road surface gradient, and the vehicle has an upward gradient. Is characterized in that a large value is determined as compared with a flat road.
  • a fourth aspect of the present invention in the vehicle travel control apparatus according to any one of the first to third aspects of the present invention, when the required brake amount becomes equal to or greater than the first determination value ⁇ during the first inertial traveling, The vehicle is shifted to inertial running, and when the required brake amount becomes equal to or greater than the second determination value ⁇ during the second inertial running, the engine brake running is resumed.
  • a sixth aspect of the present invention is the vehicle travel control apparatus according to any one of the first to fifth aspects of the present invention.
  • the first inertial traveling disconnects the engine from the wheel and stops supplying fuel to the engine.
  • the second inertia traveling is a neutral inertia traveling that operates by supplying fuel to the engine in a state where the engine is separated from the wheel. To do.
  • the engine In the neutral coasting mode, the engine is operated by fuel supply, so the fuel efficiency is worse than that in free-run coasting mode.
  • the engine braking force is almost zero because the engine is disconnected from the wheels.
  • the distance traveled by the vehicle becomes longer and the frequency of re-acceleration decreases, so that the fuel consumption can be improved as a whole compared to engine braking.
  • a seventh aspect of the present invention is the travel control device for a vehicle according to any one of the first to fifth aspects of the present invention.
  • the first inertial travel disconnects the engine from the wheel and stops supplying fuel to the engine.
  • the crankshaft In the cylinder idle inertia running, the crankshaft is driven and rotated according to the vehicle speed or the like, but when the piston is stopped, the engine braking force is reduced by the amount of loss due to the pumping action (rotation resistance). Further, even when the intake / exhaust valve is stopped in the closed state or the open state, the loss due to the pumping action is reduced as compared with the case where the intake and exhaust valves are opened and closed in synchronization with the crankshaft, and the engine braking force is reduced.
  • the brake booster is activated by the pumping action of these cylinders. Negative pressure is supplied to the brake, and the braking force can be amplified.
  • both the first inertial traveling that travels with the engine stopped as the inertial traveling and the second inertial traveling that travels while rotating the engine are executed, and the engine stops rotating.
  • the first inertia traveling that travels in this manner is terminated when the required brake amount becomes equal to or larger than the first determination value ⁇ . For this reason, when the rotation of the engine is restored, a braking force amplifying action is appropriately obtained by the brake booster, and the required braking amount reaches the first determination value ⁇ while securing the vehicle braking force by the brake operation. Since the first inertia traveling is executed and the engine rotation is stopped, an excellent fuel efficiency improvement effect is obtained.
  • the brake booster amplifies the braking force appropriately by the engine rotation.
  • fuel efficiency superior to that of engine braking can be obtained while securing the vehicle braking force by the brake operation.
  • the first inertial traveling in which excellent fuel efficiency is obtained by traveling with the engine stopped, is executed until the required brake amount reaches the first determination value ⁇ , and the traveling is performed while the engine is rotated.
  • the second inertial travel in which the braking force amplification effect by the brake booster is appropriately obtained is executed until the second determination value ⁇ larger than the first determination value ⁇ is reached.
  • the fuel efficiency can be further improved as a whole while appropriately securing the vehicle braking force by the brake operation.
  • the first determination value ⁇ and the second determination value ⁇ are both smaller values than the flat road (substantially horizontal road surface) when the vehicle is descending.
  • the first inertial running is performed.
  • the braking force amplifying action by the brake booster can be quickly obtained, and the second inertial traveling can be quickly terminated, so that a large engine braking force by the engine braking can be quickly obtained.
  • a large vehicle braking force can be ensured on a downward slope.
  • the first determination value ⁇ and the second determination value ⁇ are both larger values when compared with a flat road (substantially horizontal road surface) in the case of an ascending slope. Since the request is relatively small, the travel distance by the first inertia traveling or the second inertia traveling is increased while the vehicle braking force by the brake operation is secured, and the fuel consumption is further improved.
  • the required brake amount becomes equal to or greater than the first determination value ⁇ during the first inertia traveling
  • the second inertia traveling is performed, and the required brake amount during the second inertia traveling is the second determination value.
  • it becomes ⁇ or more it will return to engine brake travel, and it will be possible to obtain the braking force amplification effect by the brake booster according to the required brake amount, and also to obtain a large engine brake force by engine brake travel Therefore, the fuel consumption can be further improved while the vehicle braking force is appropriately secured.
  • the fifth aspect of the invention not only returns to engine braking when the brake demand amount becomes equal to or greater than the second determination value ⁇ during the second inertia traveling, but also the brake request amount during the first inertia traveling is the first determination value. Even when the value exceeds ⁇ , the engine brake driving is resumed, so that a large engine braking force due to engine braking and an increase in the braking force by the brake booster associated with the engine rotation can be obtained quickly. Can be secured appropriately.
  • a sixth aspect of the invention is a case where free-run inertia traveling is executed as the first inertia traveling and neutral inertia traveling is executed as second inertia traveling, and the seventh invention is a free-run inertia traveling as the first inertia traveling. And the cylinder inertia coasting is performed as the second inertia traveling. In both cases, the engine braking force becomes smaller than the engine braking traveling, and the traveling distance by the inertia traveling becomes longer and the fuel consumption is improved. Can be made.
  • FIG. 6 is an example of a time chart showing changes in the operating state of each part when switching from free-running inertia traveling to neutral inertia traveling according to the flowchart of FIG. 5 and then switching to engine brake traveling; It is an example of the time chart which shows the change of the operation state of each part at the time of switching from free run inertia running to engine brake running according to the flowchart of FIG. It is an example of the time chart which shows the change of the operating state of each part at the time of switching from neutral inertia running to engine brake running according to the flowchart of FIG. It is a figure explaining the other Example of this invention, and is a figure explaining three driving modes performed by the vehicle drive device of FIG. It is a figure explaining another Example of this invention, and is a flowchart explaining another example of the operation
  • the present invention is applied to a vehicle including at least an engine as a driving force source, and is preferably applied to an engine-driven vehicle.
  • the hybrid vehicle includes an electric motor or a motor generator as a driving force source in addition to the engine. It can also be applied to.
  • the engine is an internal combustion engine that generates power by burning fuel.
  • the brake operation member operated by the driver in accordance with the brake request amount is, for example, a brake pedal that is stepped on by the driver, and the brake request amount is a stepping operation force, a stepping stroke, or the like.
  • the brake hydraulic pressure generated via the brake booster by mechanical or electrical control corresponding to the required brake amount can be used as the required brake amount.
  • a connecting / disconnecting device for connecting and disconnecting power transmission between the engine and the wheel is arranged between the engine and the wheel so that the engine can be disconnected from the wheel.
  • a friction engagement type clutch or brake is preferably used, but various connecting / disconnecting devices can be employed such that the reaction force can be electrically controlled to interrupt connection of power transmission.
  • An automatic transmission equipped with a plurality of clutches and brakes and capable of being neutral can be used.
  • engine braking In engine braking, all cylinders of the engine are driven to rotate to generate engine braking force with rotational resistance such as pumping loss and friction torque.
  • the engine is fuel cut (F / F) where fuel supply is stopped.
  • the first inertia traveling is, for example, a free-run inertia traveling in which the engine is disconnected from the wheel by a connecting / disconnecting device and the fuel supply to the engine is stopped to stop the engine rotation.
  • the second inertial traveling is, for example, neutral inertial traveling in which a fuel is supplied to the engine in a state where the engine is disconnected from the wheel by the connecting / disconnecting device, or the engine and the wheel are connected to the engine by the connecting / disconnecting device.
  • the cylinder pause inertia traveling may be performed such as stopping the fuel supply and stopping the operation of at least one of the pistons and the intake / exhaust valves of some of the cylinders.
  • the engine For neutral inertia running, for example, it is desirable to operate the engine in an idle state where the amount of fuel supply is substantially minimum, but it may be operated in a state other than the idle state.
  • the stop of the piston and the intake / exhaust valve in the cylinder deactivation inertia traveling can be mechanically performed by, for example, closing a clutch mechanism disposed between the crankshaft and the piston.
  • the intake / exhaust valve for example, when an electromagnetic intake / exhaust valve that can be controlled to be opened / closed independently of the rotation of the crankshaft is used, the operation thereof may be stopped.
  • the stop positions of the intake / exhaust valves are appropriately determined such that, for example, any position where the valve is closed is appropriate, but the valve is stopped at a position where the valve is open.
  • the present invention can also be applied to the case where the neutral inertia traveling and the cylinder deactivation inertia traveling are performed together as the second inertia traveling.
  • the second determination value ⁇ may be the same value or a different value.
  • the second inertia traveling is performed while the engine is rotated and the engine braking force is reduced compared to the engine braking traveling, and negative pressure can be supplied to the brake booster by the rotation of the engine.
  • the cylinder deactivation inertia traveling is configured such that a part of the plurality of cylinders is deactivated, and the remaining cylinders are operated with the pistons and intake / exhaust valves in synchronization with the rotation of the crankshaft. For example, in the case of an 8-cylinder engine, only half of the 4 cylinders are deactivated and the remaining 4 cylinders are operated, or only 6 cylinders are deactivated and the remaining 2 cylinders are activated.
  • the present invention relates to the end determination of the first inertia traveling and the second inertia traveling, and the execution conditions (start conditions) of these inertia traveling are appropriately determined. For example, when the output request amount such as the accelerator operation amount is 0 (accelerator OFF) for a predetermined time or longer, when the brake request amount is less than the first determination value ⁇ , execution of the first inertial running is started. It is determined that the execution of the second inertial running is started when it is equal to or larger than the first determination value ⁇ and smaller than the second determination value ⁇ .
  • the first inertia traveling since the power can be generated by the alternator or the like by the rotation of the engine, the first inertia traveling is restricted according to the necessity of the electric energy, such as when the remaining amount of the battery is equal to or less than the predetermined amount.
  • the second inertia traveling may be executed even if it is less than the determination value ⁇ . Even when the engine water temperature is equal to or lower than the predetermined temperature, the second inertia traveling (neutral inertia traveling) can be executed even when the engine water temperature is lower than the first determination value ⁇ for warming up.
  • the second inertia traveling can be executed even if the oil pressure is less than the first determination value ⁇ according to the necessity of the hydraulic pressure.
  • the second inertia traveling that can obtain the amplifying action of the braking force by the brake booster can be executed even if it is less than the first determination value ⁇ .
  • the first inertia traveling when the execution of the first inertia traveling or the second inertia traveling is started in accordance with the execution condition as described above, the first inertia traveling is the second inertia at least with respect to the required brake amount. It is configured to be terminated when the required brake amount is smaller than the travel. Other control end conditions may be defined. Then, when the required brake amount becomes equal to or greater than the first determination value ⁇ during the execution of the first inertia traveling, the first inertia traveling is terminated, for example, the second inertia traveling or the engine braking traveling is restored. However, it is possible to shift to another driving mode.
  • the second inertial traveling is terminated, and for example, the engine is configured to return to engine braking. It is also possible to shift to the running mode.
  • the first determination value ⁇ and the second determination value ⁇ are set according to the road surface gradient. However, when the other inventions are implemented, they need to be set according to the gradient. There may be a constant value.
  • the first determination value ⁇ and the second determination value ⁇ may be set in consideration of the vehicle state such as the remaining battery level, the engine water temperature, and the necessity of hydraulic pressure. Only one of the first determination value ⁇ and the second determination value ⁇ may be variable. These variable settings may be such that the determination values ⁇ and ⁇ are continuously changed or may be changed step by step including two steps, and are determined in advance by a data map, an arithmetic expression, or the like.
  • FIG. 1 is a schematic configuration diagram showing a main part of a control system together with a skeleton diagram of a vehicle drive device 10 to which the present invention is preferably applied.
  • the vehicle drive device 10 includes an engine 12 that is an internal combustion engine such as a gasoline engine or a diesel engine that generates power by combustion of fuel as a driving force source, and the output of the engine 12 is differential from the automatic transmission 16. It is transmitted to the left and right wheels 20 via the gear unit 18.
  • a power transmission device such as a damper device or a torque converter is provided between the engine 12 and the automatic transmission 16, but a motor generator that functions as a driving force source may be provided.
  • the engine 12 includes an engine control device 30 having various devices necessary for output control of the engine 12, such as an electronic throttle valve and a fuel injection device, and a cylinder deactivation device.
  • the electronic throttle valve controls the amount of intake air
  • the fuel injection device controls the amount of fuel supplied.
  • the driver's required output amount is the accelerator pedal operation amount (accelerator operation amount). It is controlled according to ⁇ acc.
  • the fuel injection device can stop the fuel supply (fuel cut F / C) even when the vehicle is running, such as when the accelerator operation amount ⁇ acc is 0 and the accelerator is OFF.
  • the cylinder deactivation device is capable of mechanically separating and stopping a part or all of the intake and exhaust valves of a plurality of cylinders such as 8 cylinders from the crankshaft by a clutch mechanism or the like. Is also stopped at the position where the valve is closed. As a result, the pumping loss when the engine 12 is driven and rotated in the fuel cut state is reduced, and the engine braking force is reduced, so that the traveling distance of inertial traveling can be extended. Instead of stopping the intake / exhaust valve, the piston may be separated from the crankshaft and stopped.
  • the automatic transmission 16 is a stepped automatic transmission such as a planetary gear type in which a plurality of gear stages having different transmission gear ratios e are established depending on the disengagement state of a plurality of hydraulic friction engagement devices (clutch and brake).
  • the shift control is performed by an electromagnetic hydraulic control valve, a switching valve or the like provided in the hydraulic control device 32.
  • the clutch C ⁇ b> 1 functions as an input clutch of the automatic transmission 16, and is similarly engaged and released by the hydraulic control device 32.
  • the clutch C1 corresponds to a connection / disconnection device that connects or disconnects the engine 12 and the wheel 20.
  • a continuously variable transmission such as a belt type may be used instead of the stepped transmission.
  • the wheel 20 is provided with a wheel brake 34, and a braking force is generated according to the brake operation force (stepping force) Brk of the brake pedal 40 that is stepped on by the driver.
  • the brake operation force Brk corresponds to the required brake amount.
  • the brake hydraulic pressure is mechanically generated from the brake master cylinder 44 via the brake booster 42 according to the brake operation force Brk, and the brake hydraulic pressure is controlled by the brake hydraulic pressure. Power is generated.
  • the brake booster 42 amplifies the brake operation force Brk using the negative pressure generated by the rotation of the engine 12 so that the brake hydraulic pressure output from the brake master cylinder 44 is amplified and a large braking force can be obtained.
  • the brake pedal 40 corresponds to a brake operation member.
  • the vehicle drive device 10 configured as described above includes an electronic control device 50.
  • the electronic control unit 50 includes a so-called microcomputer having a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in advance in the ROM while using a temporary storage function of the RAM. Do.
  • the electronic control device 50 is supplied with a signal representing the brake operation force Brk from the brake operation amount sensor 60 and a signal representing the accelerator operation amount ⁇ acc from the accelerator operation amount sensor 62. Further, a signal representing the rotational speed (engine rotational speed) NE of the engine 12 is supplied from the engine rotational speed sensor 64, and a signal representing the road surface gradient ⁇ is supplied from the road surface gradient sensor 66.
  • the road surface gradient sensor 66 is a G (acceleration) sensor or the like
  • the road surface gradient ⁇ can also be obtained by calculation from the output of the engine 12 and the change in the vehicle speed V.
  • the electronic control device 50 functionally includes an engine brake traveling means 52, a free-run inertia traveling means 54, a neutral inertia traveling means 56, and a travel mode switching control means 58.
  • the engine brake travel means 52, the free-run inertia travel means 54, and the neutral inertia travel means 56 are for executing the three types of travel modes shown in FIG. 2, respectively, and the engine brake travel means 52 executes the engine brake travel. .
  • the engine brake travels while maintaining the connected state of the engine 12 and the wheel 20 when the accelerator is OFF. When all the cylinders of the engine 12 are driven and rotated, the engine brake is caused by pumping loss or friction torque. appear.
  • the engine 12 may be in a fuel cut state in which the fuel supply is stopped, but in this embodiment, the engine 12 is controlled to an idling state in which a minimum amount of fuel is supplied in the same manner as when the accelerator is OFF.
  • a predetermined gear is established according to the vehicle speed V or the like, and the clutch C1 is held in the engaged state.
  • the engine 12 is driven to rotate at a predetermined rotational speed determined according to the vehicle speed V and the gear ratio e, and an engine braking force having a magnitude corresponding to the rotational speed is generated.
  • Negative pressure supply indicates whether or not negative pressure is supplied (filled) to the negative pressure tank of the brake booster 42.
  • Negative pressure decreases (approaches atmospheric pressure), and the amplification effect on the brake operating force Brk decreases.
  • the free-run coasting means 54 performs free-run coasting when the accelerator is OFF.
  • the clutch C1 is released to disconnect the engine 12 from the wheel 20, and fuel cut F / C for stopping the fuel supply to the engine 12 is performed, and the engine 12 is stopped in rotation. .
  • the engine braking force becomes smaller than that of the engine braking and the clutch C1 is released, so that the engine braking force becomes substantially 0. Therefore, the running resistance is reduced and the running distance by inertia running is increased. , Fuel economy can be improved.
  • the amplifying action of the brake operation force Brk by the brake booster 42 using the negative pressure generated by the engine rotation is reduced. In this embodiment, this free-run inertia traveling is executed as the first inertia traveling.
  • the neutral inertia traveling means 56 performs neutral inertia traveling when the accelerator is OFF. Neutral coasting travels while the clutch C1 is released and the engine 12 is disconnected from the wheel 20, while fuel is supplied to the engine 12 to operate in an idling state (self-rotating). Also in this case, the engine braking force becomes smaller than that of the engine braking and the clutch C1 is disengaged, so the engine braking force becomes substantially 0. Therefore, the running resistance is reduced and the running distance by inertia running is increased. Fuel consumption can be improved.
  • the brake operation force Brk is appropriately amplified by the brake booster 42 using the negative pressure generated by the engine rotation, and the vehicle braking force by the brake operation is ensured.
  • the fuel consumption is consumed by operating the engine 12 in the idling state, the distance of inertial traveling is longer than that in engine braking traveling, so the frequency of re-acceleration is reduced and the fuel consumption is improved as a whole.
  • this neutral inertia traveling is executed as the second inertia traveling.
  • the travel mode switching control means 58 switches the three travel modes of the engine brake travel, the free-run inertia travel, and the neutral inertia travel.
  • the brake operation force Brk for example, (a) to (c) in FIG. are switched according to the case classification (execution condition).
  • the division may be determined including at least the brake operation force Brk, and the execution may be started or ended according to conditions other than the brake operation force Brk.
  • (a) indicates that when the brake operation force Brk is less than the first determination value ⁇ , free-run inertia is performed including when the brake is OFF (non-operation), and the second determination value is greater than or equal to the first determination value ⁇ .
  • the first determination value ⁇ is an upper limit value for executing the free-run inertia running.
  • the second determination value ⁇ is an upper limit value for executing the neutral inertia running.
  • the neutral inertia running is terminated.
  • the first determination value ⁇ is smaller than the second determination value ⁇ , and when the brake pedal 40 is depressed, the free-run inertia traveling is terminated with a brake operation force Brk smaller than the neutral inertia traveling.
  • (b) is the same as (a) in that when the brake operating force Brk is less than the first judgment value ⁇ , the free-run inertia running including when the brake is OFF is the same, but the neutral inertia running is the second judgment value. It is different in that it is executed when it is less than ⁇ , including when the brake is OFF. In this case, if it is less than the first determination value ⁇ , free-run inertia running and neutral inertia running are executed according to predetermined cases.
  • neutral inertia traveling power can be generated by an alternator or the like by rotation of the engine 12, so that free run inertia traveling is limited according to the necessity of electric energy, such as when the remaining amount of the battery is below a predetermined amount, and the first determination value ⁇ If it is less than that, neutral coasting is executed.
  • the neutral inertia running is executed even when the engine water temperature is lower than the first determination value ⁇ for warming up.
  • various execution conditions are set, such as neutral inertia running even when the oil pressure is less than the first criterion value ⁇ . can do.
  • the third determination value ⁇ which is the lower limit value of neutral inertia running
  • the determination values ⁇ and ⁇ may be set in advance, but may be set with the road surface gradient ⁇ as a parameter as shown in FIG. 4, for example. That is, when the road surface gradient is negative, since a large braking force is generally required as compared with a substantially horizontal flat road ( ⁇ 0), the determination values ⁇ and ⁇ are reduced to reduce the braking operation force Brk. From the free running inertia traveling to the neutral inertia traveling, the amplifying action of the brake operating force Brk by the brake booster 42 can be appropriately obtained, or the engine braking traveling can be returned to obtain a large engine braking force. . Conversely, when the road slope is positive, the demand for braking force is low compared to a substantially horizontal flat road ( ⁇ 0).
  • the judgment values ⁇ and ⁇ are increased to achieve free-run inertia running and neutral inertia. Fuel consumption can be further improved by widening the running range of travel.
  • Such determination values ⁇ and ⁇ are determined in advance by a data map, an arithmetic expression, or the like.
  • the road gradient ⁇ may be set as a parameter, similarly to the determination values ⁇ and ⁇ .
  • FIG. 5 is a flowchart relating to the operation when the running mode switching control means 58 performs the end determination of the free-run inertia traveling and the neutral inertia traveling and switches to another traveling mode.
  • step S1 it is determined whether or not any of free-running inertial traveling and neutral inertial traveling is being performed. If any inertial traveling is being performed, the type of inertial traveling is determined in step S2. Whether or not this inertia traveling is being executed and the type of inertia traveling can be determined from, for example, the state of the engine 12 and the state of the clutch C1 shown in FIG. Also good.
  • step S3 the case is classified according to whether or not it is free-run inertia traveling. In the case of free-run inertia traveling, step S4 and subsequent steps are executed, and in the case of neutral inertia traveling, step S7 and subsequent steps are executed.
  • step S4 it is determined whether or not the brake is operated using the brake operation force Brk or the like. If the brake is not operated, the process is terminated and the process from step S1 is repeated. If the brake is operated, step S5 is performed. Execute. In step S5, it is determined whether or not the brake operating force Brk is greater than or equal to the first determination value ⁇ . If Brk ⁇ , the process ends. If Brk ⁇ ⁇ , the engine 12 is restarted in step S6. This completes the free-run inertial running. The processing after step S6 differs depending on the case classification of (a) to (c) ⁇ in FIG.
  • FIG. 6 is an example of a time chart showing the change in the operating state of each part when shifting from free-run inertia running to neutral inertia running, and is a case of (a) in FIG. (c) Even under the conditions, the control is performed as shown in FIG. 6 under certain conditions.
  • a time t1 in FIG. 6 is a time when the accelerator is turned off, and after a predetermined time has elapsed (time t2), the clutch C1 is released (OFF) and the fuel is cut to start free-run inertia running.
  • the time t3 is the time when the brake operating force Brk is equal to or greater than the first determination value ⁇ , the determination in step S5 is YES (positive), and the engine 12 is restarted. Transition. Thereafter, step S1 and the subsequent steps in FIG. 5 are repeatedly executed, so that the end of the neutral inertia traveling is determined.
  • FIG. 7 shows a case where the engine 12 is restarted in the step S6 and coasting is ended as it is to return to the engine brake traveling.
  • FIG. 7 (b) or (c) Control is performed as shown in FIG. Times t1 to t3 are the same as in FIG. 6, but when the engine rotational speed NE is substantially stabilized near the idle rotational speed NEidle (time t4), the clutch C1 is engaged (ON) to return to engine braking.
  • step S3 determines whether or not the brake operation force Brk is equal to or greater than the second determination value ⁇ . If Brk ⁇ , the process ends. If Brk ⁇ ⁇ , the clutch C1 is engaged in step S9. Then, the neutral inertia traveling is terminated and the engine brake traveling is resumed.
  • the time t4 in FIG. 6 is a time when the brake operation force Brk is equal to or greater than the second determination value ⁇ , the determination in step S8 is YES, and the clutch C1 is engaged.
  • FIG. 8 shows a case where the neutral inertia running is executed from the beginning of the inertia running, and the control is performed as shown in FIG. 8 under a certain condition in the case of (b) in FIG.
  • a time t1 in FIG. 8 is a time when the accelerator is turned off, and the neutral inertia running is started by releasing the clutch C1 after a predetermined time has elapsed (time t2).
  • the engine 12 is maintained in an idling state accompanying the accelerator OFF.
  • the time t3 is the time when the brake operating force Brk is equal to or greater than the second determination value ⁇ , the determination in step S8 is YES, and the clutch C1 is engaged.
  • the neutral inertia traveling is terminated and the engine brake traveling is resumed.
  • both free-run inertia traveling that travels while the engine 12 is stopped as inertia traveling and neutral inertia traveling that travels while the engine 12 is rotated are executed.
  • the free-run inertia running in which the engine 12 is stopped rotating is terminated when the brake operation force Brk becomes equal to or larger than the first determination value ⁇ , and the engine 12 is restarted in step S6.
  • the brake booster 42 can appropriately amplify the brake operation force Brk, the vehicle braking force by the brake operation is ensured, and the brake operation force Brk is determined by the first determination value ⁇ .
  • the free-run inertia running is executed and the rotation of the engine 12 is stopped, so that an excellent fuel efficiency improvement effect is obtained.
  • the neutral inertia running that runs while the engine 12 is rotated is executed until the brake operation force Brk reaches a relatively large second determination value ⁇ , and therefore the brake operation force Brk by the brake booster 42 is amplified by the engine rotation.
  • the free-run inertia running in which excellent fuel efficiency is obtained by running with the engine 12 stopped is executed until the brake operation force Brk reaches the first determination value ⁇ , and the engine 12 is rotated. Since the neutral inertia running in which the amplifying action of the brake operation force Brk by the brake booster 42 is appropriately obtained by running as it is running is executed until the second judgment value ⁇ larger than the first judgment value ⁇ is reached, the free-run inertia Compared with the case where only one of the traveling and the neutral inertia traveling is executed, the overall fuel consumption can be further improved while ensuring the vehicle braking force by the brake operation.
  • first determination value ⁇ and the second determination value ⁇ are both smaller values than the flat road in the case of a downward slope, amplification by the brake booster 42 is performed when the free-run coasting is terminated. The action can be obtained quickly, and the neutral inertia running is terminated, so that a large engine braking force by the engine braking can be obtained quickly, and a large vehicle braking force can be secured on a downward slope.
  • both the first determination value ⁇ and the second determination value ⁇ are uphill, the values are larger than those on a flat road.
  • the range of execution of free-running inertia traveling and neutral inertia traveling is widened while securing the vehicle braking force, and the traveling distance by such inertia traveling becomes longer, thereby further improving fuel efficiency.
  • free-run inertia traveling is performed as the first inertia traveling, and neutral inertia traveling is performed as the second inertia traveling.
  • the clutch C1 is released and the engine braking force becomes substantially zero. Since the engine braking force is remarkably reduced as compared with traveling, the traveling distance by inertial traveling is increased and fuel efficiency is improved.
  • neutral coasting the engine 12 is operated in an idling state, resulting in poor fuel efficiency.
  • the distance traveled by coasting is increased and the frequency of re-acceleration is reduced, so the fuel efficiency is sufficiently improved compared to engine braking. be able to.
  • the neutral inertia traveling is executed as the second inertia traveling.
  • the cylinder resting inertia traveling may be executed instead of the neutral inertia traveling. That is, instead of the neutral inertia traveling means 56, cylinder deactivation inertia traveling means is provided so that cylinder deactivation inertia traveling is executed.
  • the fuel supply to the engine 12 is stopped (fuel cut F / C) while the engagement state of the clutch C1 is maintained and the engine 12 and the wheel 20 are connected, and the engine control device 30
  • the cylinder deactivation device stops the intake / exhaust valves of a part (for example, half) of the plurality of cylinders at a position where they are closed.
  • the crankshaft is driven to rotate in accordance with the vehicle speed V and the gear stage of the automatic transmission 16, but the intake and exhaust valves are stopped in a closed state, so that the crankshaft is opened and closed in synchronization with the crankshaft.
  • the loss due to the pumping action is reduced, and the engine braking force is reduced as compared with engine braking.
  • the engine braking force is larger than that of the neutral inertia traveling, and the travel distance due to the inertia traveling is relatively short.
  • the engine 12 since the engine 12 is only fuel-cut and driven to rotate, the fuel efficiency is neutral inertia. Efficiencies similar to or better than running can be obtained. Further, in cylinder deactivation, only a part of the cylinders and a negative pressure is generated by the pumping action for the remaining cylinders, and the amplifying action of the brake operating force Brk by the brake booster 42 is obtained as in the neutral inertia running.
  • the clutch C1 is engaged to rotate the engine 12 and the cylinder deactivation device closes the intake and exhaust valves of some cylinders. It may be stopped at the valve position. Also, when returning from cylinder deactivation inertia traveling to engine braking, the intake / exhaust valves stopped by the cylinder deactivation device are released, and these intake / exhaust valves are connected to the crankshaft so as to be opened and closed. At the same time, fuel injection to the engine 12 may be resumed and operated in an idling state.
  • the execution condition for executing the cylinder deactivation inertia traveling and the second determination value ⁇ of the brake operation force Brk for ending the cylinder deactivation inertia traveling may be the same as in the above embodiment, but different values are set. May be. Further, as the second inertia traveling, the neutral inertia traveling and the cylinder deactivation inertia traveling may be executed separately for each case.
  • the engine 12 is restarted in step S6 when the determination in step S5 in the flowchart of FIG. 5 is YES.
  • a configuration as shown in FIG. That is, if the determination in step S5 is YES, it is determined in step S11 whether or not the second inertia traveling (neutral inertia traveling or cylinder deactivation inertia traveling) can be performed according to the execution condition. Then, it shifts to the second inertial running. If the second inertia traveling is not possible, step S13 is executed, the engine 12 is restarted, the clutch C1 is engaged, and the engine brake traveling is immediately resumed. In this case, substantially the same effects as those of the above embodiment can be obtained.
  • Vehicle drive device 12 Engine 20: Wheel 40: Brake pedal (brake operation member) 42: Brake booster 50: Electronic control device 52: Engine brake travel means 54: Free-run inertia travel means (first inertia travel) 56: Neutral inertial traveling means (second inertial traveling) 58: Traveling mode switching control means 60: Brake operation amount sensor 66: Road surface gradient sensor Brk: Brake operation force (required brake amount) ⁇ : Road surface gradient ⁇ : First determination Value ⁇ : Second judgment value

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 エンジンブレーキ走行よりもエンジンブレーキ力を低下させた状態で走行する惰性走行が可能な車両において、ブレーキ操作時のブレーキ力の増幅作用を確保しつつ燃費を一層向上させることを目的とする。 エンジン12を回転停止させて走行することで優れた燃費効率が得られるフリーラン惰性走行は、ブレーキ操作力Brkが第1判定値αに達するまで実行され、エンジン12を回転させたまま走行することでブレーキブースタ42によるブレーキ操作力Brkの増幅作用が適切に得られるニュートラル惰性走行は、第1判定値αよりも大きい第2判定値βに達するまで実行されるため、フリーラン惰性走行およびニュートラル惰性走行の何れか一方だけを実行する場合に比較して、ブレーキ操作による車両制動力を確保しつつ全体として燃費を一層向上させることができる。

Description

車両の走行制御装置
 本発明は車両の走行制御装置に係り、特に、エンジンブレーキ走行よりもエンジンブレーキ力を低下させた状態で走行する惰性走行が可能な車両において、ブレーキ操作時のブレーキ力の増幅作用を確保しつつ燃費を一層向上させる技術に関するものである。
 エンジンと車輪とを連結したままそのエンジンの被駆動回転によりエンジンブレーキを効かせて走行するエンジンブレーキ走行に対して、走行距離を延ばして燃費を改善するために、そのエンジンブレーキ走行よりもエンジンブレーキ力を低下させて走行する惰性走行が考えられている。特許文献1に記載の装置はその一例で、(a) エンジンを回転停止させて走行する第1の惰性走行、および(b) エンジンを回転させたまま走行する第2の惰性走行の2種類の制御モードが提案されている。具体的には、第1の惰性走行は、クラッチを解放してエンジンを車輪から切り離すとともに、エンジンに対する燃料供給を停止して回転停止させるフリーラン惰性走行で、第2の惰性走行は、クラッチを解放してエンジンを車輪から切り離した状態でエンジンに燃料を供給して作動させるニュートラル惰性走行である。そして、これらの惰性走行は、特に区別されることなく何れか一方が一定の条件下で実行される。
特開2002-227885号公報
 ところで、上記特許文献1では、ブレーキペダルの操作量すなわちブレーキ要求量が所定値以上になると、上記2種類の惰性走行を区別することなく、その惰性走行の制御モードが解除されるようになっている。すなわち、ブレーキペダルの操作は運転者の減速要求を意味しているため、惰性走行からエンジンブレーキ走行へ復帰させている。
 特許文献1には記載がないが、エンジンの状態が異なる第1の惰性走行と第2の惰性走行ではブレーキの性能に違いがある。しかしながら、特許文献1の技術では第1の惰性走行と第2の惰性走行とが区別されることなく解除されており、ブレーキ操作時の制動力を確保しつつ燃費の向上を図る上で未だ改善の余地があった。すなわち、車両には一般にエンジンの回転により発生する負圧を利用してブレーキ力を増幅するブレーキブースタが備えられているが、エンジンの回転が停止する第1の惰性走行では、ブレーキブースタに負圧を充填することができず、ブレーキの繰り返し操作でブレーキ力の増幅作用が低下するのに対し、エンジンを回転させたままの第2の惰性走行ではブレーキブースタに逐次負圧が充填されるため、ブレーキ力の増幅作用が継続して得られる。このようにブレーキ性能の特性が相違するのに、何れか一方の特性に合わせて実行条件を定めると、ブレーキ力の増幅作用は確保できるが燃費向上効果が制約される、或いは燃費は良くなるがブレーキ力の増幅作用が低下する、といった課題がある。つまり、第1の惰性走行および第2の惰性走行は、ブレーキ力の増幅作用および燃費に関して一長一短の特性を有するため、両方の惰性走行を実行する場合はその使い分けが重要になる。
 本発明は以上の事情を背景として為されたもので、その目的とするところは、エンジンブレーキ走行よりもエンジンブレーキ力を低下させた状態で走行する惰性走行が可能な車両において、ブレーキ操作時のブレーキ力の増幅作用を確保しつつ燃費を一層向上させることにある。
 かかる目的を達成するために、第1発明は、(a) エンジンと、運転者のブレーキ要求量に応じて操作されるブレーキ操作部材と、前記エンジンの回転により発生する負圧を利用してブレーキ力を増幅するブレーキブースタと、を備えており、(b) 前記エンジンと車輪とを連結したままそのエンジンの被駆動回転によりエンジンブレーキを効かせて走行するエンジンブレーキ走行、およびそのエンジンブレーキ走行よりもエンジンブレーキ力を低下させた状態で走行する惰性走行が可能で、その惰性走行を終了する条件として前記ブレーキ要求量が含まれている車両の走行制御装置において、(c) 前記惰性走行として、前記エンジンを回転停止させて走行する第1の惰性走行、および前記エンジンを回転させたまま走行する第2の惰性走行を、それぞれ予め定められた実行条件に従って実行する一方、(d) 前記第1の惰性走行の実行中に前記ブレーキ要求量が予め定められた第1判定値α以上になったらその第1の惰性走行が終了させられ、(e) 前記第2の惰性走行の実行中に前記ブレーキ要求量が前記第1判定値αよりも大きい予め定められた第2判定値β以上になったらその第2の惰性走行が終了させられることを特徴とする。
 第2発明は、第1発明の車両の走行制御装置において、前記第1判定値αおよび前記第2判定値βは、何れも路面の勾配に応じて設定され、下り勾配の場合には平坦路に比べて小さな値が定められることを特徴とする。
 第3発明は、第1発明または第2発明の車両の走行制御装置において、前記第1判定値αおよび前記第2判定値βは、何れも路面の勾配に応じて設定され、上り勾配の場合には平坦路に比べて大きな値が定められることを特徴とする。
 第4発明は、第1発明~第3発明の何れかの車両の走行制御装置において、前記第1の惰性走行中に前記ブレーキ要求量が前記第1判定値α以上になったら前記第2の惰性走行へ移行し、その第2の惰性走行中に前記ブレーキ要求量が前記第2判定値β以上になったら前記エンジンブレーキ走行に復帰することを特徴とする。
 第5発明は、第1発明~第3発明の何れかの車両の走行制御装置において、(a) 前記第1の惰性走行中に前記ブレーキ要求量が前記第1判定値α以上になったら前記エンジンブレーキ走行に復帰し、(b) 前記第2の惰性走行中に前記ブレーキ要求量が前記第2判定値β以上になったら前記エンジンブレーキ走行に復帰することを特徴とする。
 第6発明は、第1発明~第5発明の何れかの車両の走行制御装置において、(a) 前記第1の惰性走行は、前記エンジンを前記車輪から切り離すとともに該エンジンに対する燃料供給を停止して回転停止させるフリーラン惰性走行で、(b) 前記第2の惰性走行は、前記エンジンを前記車輪から切り離した状態でそのエンジンに燃料を供給して作動させるニュートラル惰性走行であることを特徴とする。
 上記ニュートラル惰性走行では、燃料供給によりエンジンが作動させられるため、それだけフリーラン惰性走行に比較して燃費が悪くなるものの、エンジンが車輪から切り離されているためエンジンブレーキ力は略0で、惰性走行による走行距離が長くなって再加速の頻度が少なくなるため、全体としてエンジンブレーキ走行に比較して燃費を向上させることができる。
 第7発明は、第1発明~第5発明の何れかの車両の走行制御装置において、(a) 前記第1の惰性走行は、前記エンジンを前記車輪から切り離すとともにそのエンジンに対する燃料供給を停止して回転停止させるフリーラン惰性走行で、(b) 前記第2の惰性走行は、前記エンジンと前記車輪とを連結したままそのエンジンに対する燃料供給を停止するとともに、そのエンジンの複数の気筒の中の一部の気筒のピストンおよび吸排気弁の少なくとも一方の動作を停止させる気筒休止惰性走行であることを特徴とする。
 上記気筒休止惰性走行では、クランク軸が車速等に応じて被駆動回転させられるが、ピストンが停止させられる場合にはポンピング作用によるロス(回転抵抗)が無い分だけエンジンブレーキ力が低減される。また、吸排気弁が閉弁状態や開弁状態で停止させられる場合も、クランク軸に同期して開閉させられる場合に比較してポンピング作用によるロスが小さくなり、エンジンブレーキ力が低減される。
 また、この第7発明では、エンジンの複数の気筒の一部の気筒が休止させられるだけで、残りの気筒はクランク軸に同期して開閉させられるため、それ等の気筒によるポンピング作用でブレーキブースタに負圧が供給され、ブレーキ力を増幅することができる。
 このような車両の走行制御装置においては、惰性走行としてエンジンを回転停止させて走行する第1の惰性走行およびエンジンを回転させたまま走行する第2の惰性走行が共に実行され、エンジンを回転停止させて走行する第1の惰性走行は、ブレーキ要求量が比較的小さい第1判定値α以上になったら終了させられる。このため、エンジンの回転復帰に伴ってブレーキブースタによるブレーキ力の増幅作用が適切に得られるようになり、ブレーキ操作による車両制動力を確保しつつ、ブレーキ要求量が第1判定値αに達するまでは第1の惰性走行が実行されてエンジンの回転が停止させられるため、優れた燃費向上効果が得られる。
 一方、エンジンを回転させたまま走行する第2の惰性走行は、ブレーキ要求量が比較的大きい第2判定値βに達するまで実行されるため、エンジン回転によりブレーキブースタによるブレーキ力の増幅作用が適切に得られ、ブレーキ操作による車両制動力を確保しつつ、エンジンブレーキ走行よりも優れた燃費が得られる。
 このように、エンジンを回転停止させて走行することで優れた燃費効率が得られる第1の惰性走行は、ブレーキ要求量が第1判定値αに達するまで実行され、エンジンを回転させたまま走行することでブレーキブースタによるブレーキ力の増幅作用が適切に得られる第2の惰性走行は、第1判定値αよりも大きい第2判定値βに達するまで実行されるため、第1の惰性走行および第2の惰性走行の何れか一方だけを実行する場合に比較して、ブレーキ操作による車両制動力を適切に確保しつつ全体として燃費を一層向上させることができる。
 第2発明では、第1判定値αおよび第2判定値βが、何れも下り勾配の場合には平坦路(略水平な路面)に比べて小さな値とされるため、第1の惰性走行が終了させられることによりブレーキブースタによるブレーキ力の増幅作用が速やかに得られるようになるとともに、第2の惰性走行が終了させられることによりエンジンブレーキ走行による大きなエンジンブレーキ力が速やかに得られるようになり、下り勾配で大きな車両制動力を確保できる。
 第3発明では、第1判定値αおよび第2判定値βが、何れも上り勾配の場合には平坦路(略水平な路面)に比べて大きな値とされるが、上り勾配では制動力に対する要求が比較的小さいため、ブレーキ操作による車両制動力を確保しつつ、第1の惰性走行や第2の惰性走行による走行距離が長くなって燃費が一層向上する。
 第4発明は、第1の惰性走行中にブレーキ要求量が第1判定値α以上になったら第2の惰性走行へ移行し、その第2の惰性走行中にブレーキ要求量が第2判定値β以上になったらエンジンブレーキ走行に復帰する場合で、ブレーキ要求量に応じてブレーキブースタによるブレーキ力の増幅作用が得られるようになり、更にエンジンブレーキ走行による大きなエンジンブレーキ力が得られるようになるため、車両制動力を適切に確保しつつ燃費を一層向上させることができる。
 第5発明は、第2の惰性走行中にブレーキ要求量が第2判定値β以上になったらエンジンブレーキ走行に復帰するだけでなく、第1の惰性走行中にブレーキ要求量が第1判定値α以上になった場合もエンジンブレーキ走行に復帰するため、エンジンブレーキ走行による大きなエンジンブレーキ力や、そのエンジン回転に伴うブレーキブースタによるブレーキ力の増幅作用が速やかに得られるようになり、車両制動力を適切に確保できる。
 第6発明は、第1の惰性走行としてフリーラン惰性走行が実行され、第2の惰性走行としてニュートラル惰性走行が実行される場合で、第7発明は、第1の惰性走行としてフリーラン惰性走行が実行され、第2の惰性走行として気筒休止惰性走行が実行される場合であり、何れもエンジンブレーキ走行に比較してエンジンブレーキ力が小さくなり、惰性走行による走行距離が長くなって燃費を向上させることができる。
本発明が好適に適用される車両用駆動装置の骨子図に、制御系統の要部を併せて示した概略構成図である。 図1の車両用駆動装置によって実行される3つの走行モードを説明する図である。 図1の車両用駆動装置によって実行されるフリーラン惰性走行およびニュートラル惰性走行のブレーキ操作力Brkに対する実行領域の違いを説明する図である。 図3の判定値α、βを路面勾配Φに応じて設定する際のデータマップの一例を示す図である。 図1の電子制御装置によって実行される惰性走行の終了判定に関する作動を説明するフローチャートである。 図5のフローチャートに従ってフリーラン惰性走行からニュートラル惰性走行へ切り換えられ、更にエンジンブレーキ走行へ切り換えられた場合の各部の作動状態の変化を示すタイムチャートの一例である。 図5のフローチャートに従ってフリーラン惰性走行からエンジンブレーキ走行へ切り換えられた場合の各部の作動状態の変化を示すタイムチャートの一例である。 図5のフローチャートに従ってニュートラル惰性走行からエンジンブレーキ走行へ切り換えられた場合の各部の作動状態の変化を示すタイムチャートの一例である。 本発明の他の実施例を説明する図で、図1の車両用駆動装置によって実行される3つの走行モードを説明する図である。 本発明の更に別の実施例を説明する図で、図5のステップS5以下の作動の別の例を説明するフローチャートである。
 本発明は、駆動力源として少なくともエンジンを備えている車両に適用され、エンジン駆動車両に好適に適用されるが、エンジンの他に電動モータやモータジェネレータを駆動力源として備えているハイブリッド車両などにも適用され得る。エンジンは、燃料の燃焼で動力を発生する内燃機関などである。ブレーキ要求量に応じて運転者によって操作されるブレーキ操作部材は、例えば運転者によって足踏み操作されるブレーキペダルで、ブレーキ要求量は踏込み操作力や踏込みストロークなどである。そのブレーキ要求量に対応して機械的または電気制御でブレーキブースタを介して発生させられるブレーキ油圧などを、ブレーキ要求量として用いることもできる。
 エンジンと車輪との間には、それ等の間の動力伝達を接続遮断する断接装置が配設され、エンジンを車輪から切り離すことができるように構成される。断接装置としては、摩擦係合式のクラッチやブレーキが好適に用いられるが、電気的に反力を制御して動力伝達を接続遮断することもできるなど、種々の断接装置を採用できる。複数のクラッチやブレーキを備えていてニュートラルが可能な自動変速機を利用することもできる。
 エンジンブレーキ走行は、エンジンの全部の気筒が被駆動回転させられることによりポンピングロスやフリクショントルク等の回転抵抗でエンジンブレーキ力を発生させるもので、エンジンは燃料供給が停止されるフューエルカット(F/C)状態であっても良いし、所定量の燃料が供給されるアイドリング状態等の作動状態であっても良い。アイドリング状態の場合でも、車速等に応じた回転速度で被駆動回転させられることにより、エンジンブレーキ力が発生する。
 第1の惰性走行は、例えば断接装置によりエンジンを車輪から切り離すとともにエンジンに対する燃料供給を停止してエンジン回転を停止させるフリーラン惰性走行などである。また、第2の惰性走行は、例えば断接装置によりエンジンを車輪から切り離した状態でエンジンに燃料を供給して作動させるニュートラル惰性走行や、断接装置によりエンジンと車輪とを連結したままエンジンに対する燃料供給を停止するとともに、複数の気筒の中の一部の気筒のピストンおよび吸排気弁の少なくとも一方の動作を停止させる気筒休止惰性走行などである。ニュートラル惰性走行は、例えば燃料の供給量が略最少のアイドル状態でエンジンを作動させることが望ましいが、アイドル状態以外で作動させるようにしても良い。気筒休止惰性走行におけるピストンや吸排気弁の停止は、例えばクランク軸との間に配設されたクラッチ機構を遮断することにより機械的に行うことができる。吸排気弁については、例えばクランク軸の回転と独立に開閉制御できる電磁式等の吸排気弁が用いられる場合、その作動を停止させれば良い。吸排気弁の停止位置は、例えば何れも閉弁状態となる位置が適当であるが、何れも開弁状態となる位置で停止させるなど、適宜定められる。第2の惰性走行として、ニュートラル惰性走行および気筒休止惰性走行が場合分けして共に実行される場合にも、本発明は適用され得る。その場合の第2判定値βは同じ値でも異なる値でも良い。
 上記第2の惰性走行は、エンジンを回転させたまま、エンジンブレーキ力をエンジンブレーキ走行に比べて低下させた状態で走行するもので、エンジンの回転によりブレーキブースタに負圧を供給できるものである。したがって、上記気筒休止惰性走行は、複数の気筒の一部が休止させられ、残りの気筒はクランク軸の回転に同期してピストンおよび吸排気弁が作動させられるように構成される。例えば8気筒エンジンの場合、半分の4気筒だけ休止して残りの4気筒を作動させたり、6気筒だけ休止して残りの2気筒を作動させたりするように構成される。なお、全部の気筒を休止させて惰性走行を実行する場合、ブレーキブースタによるブレーキ力の増幅作用が低下するため、第1の惰性走行と同様に、前記第1判定値α等の比較的小さいブレーキ要求量で終了してエンジンブレーキ走行へ復帰させることが望ましい。
 本発明は、第1の惰性走行および第2の惰性走行の終了判定に関するもので、それ等の惰性走行の実行条件(開始条件)については適宜定められる。例えばアクセル操作量等の出力要求量が0(アクセルOFF)の状態が一定時間以上継続した場合に、ブレーキ要求量が第1判定値α未満の時には第1の惰性走行の実行を開始し、第1判定値α以上で第2判定値β未満の時には第2の惰性走行の実行を開始するように定められる。また、第2の惰性走行ではエンジンの回転でオルタネータ等により発電できるため、バッテリーの残量が所定量以下の場合など電気エネルギーの必要性に応じて第1の惰性走行を制限し、上記第1判定値α未満でも第2の惰性走行が実行されるようにしても良い。エンジン水温が所定温度以下の場合も、暖機のために第1判定値α未満でも第2の惰性走行(ニュートラル惰性走行)が実行されるようにすることができる。エンジン回転に伴ってオイルポンプが機械的に駆動される場合には、油圧の必要性に応じて第1判定値α未満でも第2の惰性走行が実行されるようにすることができる。路面が下り勾配の場合には、第1判定値α未満でも、ブレーキブースタによるブレーキ力の増幅作用が得られる第2の惰性走行が実行されるようにすることができる。
 本発明は、上記のような実行条件に従って第1の惰性走行または第2の惰性走行の実行が開始された場合に、少なくともブレーキ要求量に関しては、第1の惰性走行の方が第2の惰性走行よりもブレーキ要求量が小さい段階で終了させられるように構成される。他の制御終了条件が定められても良い。そして、第1の惰性走行の実行時にブレーキ要求量が第1判定値α以上になると、その第1の惰性走行が終了させられ、例えば第2の惰性走行へ移行したりエンジンブレーキ走行に復帰したりするように構成されるが、他の走行モードへ移行することも可能である。また、第2の惰性走行の実行時にブレーキ要求量が第2判定値β以上になると、その第2の惰性走行が終了させられ、例えばエンジンブレーキ走行に復帰するように構成されるが、他の走行モードへ移行することも可能である。
 第2発明、第3発明では、上記第1判定値αおよび第2判定値βが路面の勾配に応じて設定されるが、他の発明の実施に際しては、必ずしも勾配に応じて設定される必要はなく、一定値であっても良い。路面勾配以外にも、例えばバッテリーの残量やエンジン水温、油圧の必要性などの車両状態を考慮して第1判定値αや第2判定値βが設定されるようにしても良い。第1判定値αおよび第2判定値βの何れか一方だけ可変としても良い。これ等の可変設定は、判定値α、βを連続的に変化させるものでも、2段階を含めて段階的に変化させるものでも良く、予めデータマップや演算式等によって定められる。
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
 図1は、本発明が好適に適用される車両用駆動装置10の骨子図に、制御系統の要部を併せて示した概略構成図である。車両用駆動装置10は、燃料の燃焼で動力を発生するガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン12を駆動力源として備えており、そのエンジン12の出力は自動変速機16から差動歯車装置18を介して左右の車輪20に伝達される。エンジン12と自動変速機16との間には、ダンパ装置やトルクコンバータ等の動力伝達装置が設けられているが、駆動力源として機能するモータジェネレータを配設することもできる。
 エンジン12は、電子スロットル弁や燃料噴射装置などのエンジン12の出力制御に必要な種々の機器や気筒休止装置等を有するエンジン制御装置30を備えている。電子スロットル弁は吸入空気量を制御するもので、燃料噴射装置は燃料の供給量を制御するものであり、基本的には運転者の出力要求量であるアクセルペダルの操作量(アクセル操作量)θacc に応じて制御される。燃料噴射装置は、車両走行中であってもアクセル操作量θacc が0のアクセルOFF時等に燃料供給を停止(フューエルカットF/C)することができる。気筒休止装置は、例えば8気筒等の複数の気筒の一部または全部の吸排気弁を、クラッチ機構等によりクランク軸から機械的に切り離して停止させることかできるもので、例えば給排気弁を何れも閉弁状態となる位置で停止させる。これにより、上記フューエルカット状態でエンジン12が被駆動回転させられる際のポンピングロスが低減され、エンジンブレーキ力が低下して惰性走行の走行距離を延ばすことができる。なお、吸排気弁を停止させる代わりにピストンをクランク軸から切り離して停止させるようにしても良い。
 自動変速機16は、複数の油圧式摩擦係合装置(クラッチやブレーキ)の係合解放状態によって変速比eが異なる複数のギヤ段が成立させられる遊星歯車式等の有段の自動変速機で、油圧制御装置32に設けられた電磁式の油圧制御弁や切換弁等によって変速制御が行われる。クラッチC1は自動変速機16の入力クラッチとして機能するもので、同じく油圧制御装置32によって係合解放制御される。このクラッチC1は、エンジン12と車輪20との間を接続したり遮断したりする断接装置に相当する。上記自動変速機16として、有段変速機の代わりにベルト式等の無段変速機を用いることもできる。
 車輪20にはホイールブレーキ34が備えられており、運転者によって足踏み操作されるブレーキペダル40のブレーキ操作力(踏力)Brkに応じて制動力が発生させられる。ブレーキ操作力Brkはブレーキ要求量に相当し、本実施例ではそのブレーキ操作力Brkに応じて機械的にブレーキブースタ42を介してブレーキマスターシリンダ44からブレーキ油圧が発生させられ、そのブレーキ油圧によって制動力が発生させられる。ブレーキブースタ42は、エンジン12の回転により発生する負圧を利用してブレーキ操作力Brkを増幅するもので、ブレーキマスターシリンダ44から出力されるブレーキ油圧が増幅され、大きな制動力が得られるようになる。ブレーキペダル40はブレーキ操作部材に相当する。
 以上のように構成された車両用駆動装置10は、電子制御装置50を備えている。電子制御装置50は、CPU、ROM、RAM、及び入出力インターフェースなどを有する所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行う。電子制御装置50には、ブレーキ操作量センサ60から前記ブレーキ操作力Brkを表す信号が供給されるとともに、アクセル操作量センサ62からアクセル操作量θacc を表す信号が供給される。また、エンジン回転速度センサ64からエンジン12の回転速度(エンジン回転速度)NEを表す信号が供給され、路面勾配センサ66から路面の勾配Φを表す信号が供給される。この他、各種の制御に必要な種々の情報が供給されるようになっている。路面勾配センサ66はG(加速度)センサなどであるが、エンジン12の出力および車速Vの変化などから計算によって路面勾配Φを求めることもできる。
 上記電子制御装置50は、機能的にエンジンブレーキ走行手段52、フリーラン惰性走行手段54、ニュートラル惰性走行手段56、走行モード切換制御手段58を備えている。エンジンブレーキ走行手段52、フリーラン惰性走行手段54、ニュートラル惰性走行手段56は、それぞれ図2に示す3種類の走行モードを実行するためのもので、エンジンブレーキ走行手段52はエンジンブレーキ走行を実行する。エンジンブレーキ走行は、アクセルOFF時にエンジン12と車輪20との連結状態を維持したまま走行するもので、エンジン12の全部の気筒が被駆動回転させられることによりポンピングロスやフリクショントルクなどでエンジンブレーキが発生する。エンジン12は、燃料供給を停止したフューエルカット状態でも良いが、本実施例ではアクセルOFF時と同様に最少量の燃料が供給されるアイドリング状態に制御される。また、自動変速機16は、車速V等に応じて所定のギヤ段が成立させられ、クラッチC1は係合状態に保持される。これにより、エンジン12は車速Vおよび変速比eに応じて定まる所定の回転速度で被駆動回転させられ、その回転速度に応じた大きさのエンジンブレーキ力が発生させられる。また、エンジン12が所定の回転速度で被駆動回転させられるため、そのエンジン回転により発生する負圧を利用したブレーキブースタ42によるブレーキ操作力Brkの増幅作用が適切に得られて、ブレーキ操作による車両制動力が十分に得られる。図2の「負圧供給」は、このブレーキブースタ42の負圧タンクに対する負圧の供給(充填)の有無で、負圧供給無しの場合には、ブレーキペダル40の繰り返し操作によって負圧タンク内の負圧が低下(大気圧に接近)し、ブレーキ操作力Brkに対する増幅作用が低下する。
 フリーラン惰性走行手段54は、アクセルOFF時にフリーラン惰性走行を行う。フリーラン惰性走行は、クラッチC1を解放してエンジン12を車輪20から切り離すとともに、そのエンジン12に対する燃料供給を停止するフューエルカットF/Cを行い、エンジン12の回転を停止させた状態で走行する。この場合には、エンジンブレーキ力が上記エンジンブレーキ走行よりも小さくなり、クラッチC1が解放されることからエンジンブレーキ力は略0になるため、走行抵抗が小さくなって惰性走行による走行距離が長くなり、燃費を向上させることができる。一方、エンジン12の回転が停止させられることから、そのエンジン回転により発生する負圧を利用したブレーキブースタ42によるブレーキ操作力Brkの増幅作用が低下する。本実施例では、このフリーラン惰性走行が第1の惰性走行として実行される。
 ニュートラル惰性走行手段56は、アクセルOFF時にニュートラル惰性走行を行う。ニュートラル惰性走行は、クラッチC1を解放してエンジン12を車輪20から切り離す一方、そのエンジン12に燃料を供給してアイドリング状態で作動(自力回転)させた状態で走行する。この場合も、エンジンブレーキ力が前記エンジンブレーキ走行よりも小さくなり、クラッチC1が解放されることからエンジンブレーキ力は略0になるため、走行抵抗が小さくなって惰性走行による走行距離が長くなり、燃費を向上させることができる。一方、エンジン12はアイドリング状態で回転させられるため、そのエンジン回転により発生する負圧を利用したブレーキブースタ42によるブレーキ操作力Brkの増幅作用が適切に得られ、ブレーキ操作による車両制動力が確保される。エンジン12がアイドリング状態で作動させられることで燃費が消費されるが、エンジンブレーキ走行に比較して惰性走行の距離が長くなるため再加速の頻度が少なくなり、全体として燃費が向上する。本実施例では、このニュートラル惰性走行が第2の惰性走行として実行される。
 走行モード切換制御手段58は、上記エンジンブレーキ走行、フリーラン惰性走行、およびニュートラル惰性走行の3種類の走行モードを切り換えるもので、ブレーキ操作力Brkに関して、例えば図3の(a) ~(c) の何れかに示す場合分け(実行条件)に従って切り換える。この場合分けは、少なくともブレーキ操作力Brkを含んで定められれば良く、ブレーキ操作力Brk以外の条件に従って実行を開始したり終了したりしても良い。
 図3の(a) は、ブレーキ操作力Brkが第1判定値α未満の時にはブレーキOFF(非操作)時を含めてフリーラン惰性走行を実行し、第1判定値α以上で第2判定値β未満の時にはニュートラル惰性走行を実行し、第2判定値β以上の時にはエンジンブレーキ走行を実行する。第1判定値αは、フリーラン惰性走行を実行する上限値で、この第1判定値α以上になるとフリーラン惰性走行は終了させられる。また、第2判定値βは、ニュートラル惰性走行を実行する上限値で、この第2判定値β以上になるとニュートラル惰性走行は終了させられる。第1判定値αは第2判定値βよりも小さく、ブレーキペダル40が踏込み操作された場合、フリーラン惰性走行はニュートラル惰性走行よりも小さなブレーキ操作力Brkで実行が終了させられる。
 (b) は、ブレーキ操作力Brkが第1判定値α未満の時にはブレーキOFF時を含めてフリーラン惰性走行を実行する点は(a) と同じであるが、ニュートラル惰性走行が第2判定値β未満の時にブレーキOFF時を含めて実行される点が相違する。この場合、第1判定値α未満ではフリーラン惰性走行およびニュートラル惰性走行が予め定められた場合分けに従って実行される。例えば、ニュートラル惰性走行ではエンジン12の回転でオルタネータ等により発電できるため、バッテリーの残量が所定量以下の場合など電気エネルギーの必要性に応じてフリーラン惰性走行を制限し、第1判定値α未満でもニュートラル惰性走行が実行されるようにする。エンジン水温が所定温度以下の場合も、暖機のために第1判定値α未満でもニュートラル惰性走行が実行されるようにする。エンジン回転に伴ってオイルポンプが機械的に駆動される場合には、油圧の必要性に応じて第1判定値α未満でもニュートラル惰性走行が実行されるようにするなど、種々の実行条件を設定することができる。この場合、第1判定値α未満でフリーラン惰性走行を実行中にブレーキ操作力Brkがその第1の判定値α以上になったら、ニュートラル惰性走行へ切り換えることが望ましいが、そのままエンジンブレーキ走行へ移行するようにしても良い。
 (c) は上記(b) と略同じであるが、ニュートラル惰性走行の実行下限値である第3判定値γが、ブレーキOFFのブレーキ操作力Brk=0とは別個に定められている場合で、第1判定値αよりも小さな値が設定されている。この場合、第3判定値γ未満では、前記バッテリー残量やエンジン水温、油圧の必要性などに拘らずフリーラン惰性走行を実行し、第3判定値γ以上になったら必要に応じてニュートラル惰性走行へ切り換えるようにすれば良いが、フリーラン惰性走行を実行することなく第3判定値γ以上になったらニュートラル惰性走行を実行するようにしても良い。
 上記判定値αおよびβは、予め一定の値が定められても良いが、例えば図4に示すように路面勾配Φをパラメータとして設定されるようにしても良い。すなわち、路面勾配が負の下り勾配では、略水平な平坦路(Φ≒0)に比較して一般に大きな制動力が要求されるため、判定値αやβを小さくして、小さなブレーキ操作力Brkでフリーラン惰性走行からニュートラル惰性走行へ移行し、ブレーキブースタ42によるブレーキ操作力Brkの増幅作用が適切に得られるようにし、或いはエンジンブレーキ走行に復帰して大きなエンジンブレーキ力が得られるようにする。逆に、路面勾配が正の上り勾配では、略水平な平坦路(Φ≒0)に比較して制動力に対する要求が低いため、判定値αやβを大きくしてフリーラン惰性走行やニュートラル惰性走行の実行範囲を広くして燃費を一層向上させることができる。このような判定値α、βは、予めデータマップや演算式等によって定められる。判定値γについても、判定値α、βと同様に路面勾配Φをパラメータとして設定されるようにしても良い。
 図5は、上記走行モード切換制御手段58によってフリーラン惰性走行およびニュートラル惰性走行の終了判定を行い、他の走行モードへ切り換える際の作動に関するフローチャートである。ステップS1では、フリーラン惰性走行およびニュートラル惰性走行の何れかを実行中か否かを判断し、何れかの惰性走行を実行中であればステップS2で惰性走行の種類を判断する。この惰性走行を実行中か否かや惰性走行の種類は、例えば図2に示すエンジン12の状態やクラッチC1の状態から判断することができるが、惰性走行の種類を表すフラグなどで判断しても良い。そして、ステップS3でフリーラン惰性走行か否かによって場合分けし、フリーラン惰性走行の場合にはステップS4以下を実行し、ニュートラル惰性走行の場合にはステップS7以下を実行する。
 ステップS4では、ブレーキ操作されているか否かをブレーキ操作力Brkなどで判断し、ブレーキ操作されていない場合はそのまま終了してステップS1以下を繰り返すが、ブレーキ操作されている場合にはステップS5を実行する。ステップS5では、ブレーキ操作力Brkが前記第1判定値α以上か否かを判断し、Brk<αであればそのまま終了するが、Brk≧αの場合にはステップS6でエンジン12を再始動することによりフリーラン惰性走行を終了する。ステップS6以降の処理は、前記図3の(a) ~(c) の場合分けによって異なる。
 図6は、フリーラン惰性走行からニュートラル惰性走行へ移行する場合の各部の作動状態の変化を示すタイムチャートの一例で、図3の(a) の場合であるが、図3の(b) 、(c) でも一定の条件下で図6に示すように制御される。図6の時間t1は、アクセルOFFになった時間で、一定時間経過後(時間t2)にクラッチC1が解放(OFF)されるとともにフューエルカットされてフリーラン惰性走行が開始される。また、時間t3は、ブレーキ操作力Brkが第1判定値α以上になり、ステップS5の判断がYES(肯定)になってエンジン12が再始動させられた時間であり、これによりニュートラル惰性走行へ移行する。その後は、図5のステップS1以下が繰り返し実行されることにより、そのニュートラル惰性走行の終了判定が行われる。
 図7は、前記ステップS6でエンジン12を再始動してそのまま惰性走行を終了し、エンジンブレーキ走行に復帰する場合で、図3の(b) または(c) の場合に一定の条件下で図7に示すように制御される。時間t1~t3は図6と同じであるが、エンジン回転速度NEがアイドル回転速度NEidle付近で略安定したら(時間t4)、クラッチC1を係合(ON)させてエンジンブレーキ走行に復帰する。
 図5に戻って、前記ステップS3の判断がNO(否定)の場合、すなわちニュートラル惰性走行を実行中の場合には、ステップS7でブレーキ操作されているか否かをブレーキ操作力Brkなどで判断する。そして、ブレーキ操作されていない場合はそのまま終了してステップS1以下を繰り返すが、ブレーキ操作されている場合にはステップS8を実行する。ステップS8では、ブレーキ操作力Brkが前記第2判定値β以上か否かを判断し、Brk<βであればそのまま終了するが、Brk≧βの場合にはステップS9でクラッチC1を係合し、ニュートラル惰性走行を終了してエンジンブレーキ走行に復帰する。前記図6の時間t4は、ブレーキ操作力Brkが第2判定値β以上になり、ステップS8の判断がYESになってクラッチC1が係合させられた時間である。
 図8は、惰性走行の開始当初よりニュートラル惰性走行が実行された場合で、前記図3の(b) の場合に一定の条件下で図8に示すように制御される。図8の時間t1は、アクセルOFFになった時間で、一定時間経過後(時間t2)にクラッチC1が解放されることによりニュートラル惰性走行が開始される。エンジン12は、アクセルOFFに伴うアイドリング状態が維持される。また、時間t3は、ブレーキ操作力Brkが第2判定値β以上になり、ステップS8の判断がYESになってクラッチC1が係合させられた時間である。これにより、ニュートラル惰性走行が終了させられてエンジンブレーキ走行に復帰する。
 このように、本実施例の車両用駆動装置10においては、惰性走行としてエンジン12を回転停止させて走行するフリーラン惰性走行およびエンジン12を回転させたまま走行するニュートラル惰性走行が共に実行され、エンジン12を回転停止させて走行するフリーラン惰性走行は、ブレーキ操作力Brkが比較的小さい第1判定値α以上になったら終了させられ、ステップS6でエンジン12が再始動させられる。このエンジン12の回転復帰により、ブレーキブースタ42によるブレーキ操作力Brkの増幅作用が適切に得られるようになり、ブレーキ操作による車両制動力が確保されるとともに、ブレーキ操作力Brkが第1判定値αに達するまではフリーラン惰性走行が実行されてエンジン12の回転が停止させられるため、優れた燃費向上効果が得られる。
 一方、エンジン12を回転させたまま走行するニュートラル惰性走行は、ブレーキ操作力Brkが比較的大きい第2判定値βに達するまで実行されるため、エンジン回転によりブレーキブースタ42によるブレーキ操作力Brkの増幅作用が得られることでブレーキ操作による車両制動力を確保しつつ、エンジンブレーキ走行よりも優れた燃費が得られる。
 このように、エンジン12を回転停止させて走行することで優れた燃費効率が得られるフリーラン惰性走行は、ブレーキ操作力Brkが第1判定値αに達するまで実行され、エンジン12を回転させたまま走行することでブレーキブースタ42によるブレーキ操作力Brkの増幅作用が適切に得られるニュートラル惰性走行は、第1判定値αよりも大きい第2判定値βに達するまで実行されるため、フリーラン惰性走行およびニュートラル惰性走行の何れか一方だけを実行する場合に比較して、ブレーキ操作による車両制動力を確保しつつ全体として燃費を一層向上させることができる。
 また、第1判定値αおよび第2判定値βが、何れも下り勾配の場合には平坦路に比べて小さな値とされるため、フリーラン惰性走行が終了させられることによりブレーキブースタ42による増幅作用が速やかに得られるようになるとともに、ニュートラル惰性走行が終了させられることによりエンジンブレーキ走行による大きなエンジンブレーキ力が速やかに得られるようになり、下り勾配で大きな車両制動力を確保できる。
 また、第1判定値αおよび第2判定値βが、何れも上り勾配の場合には平坦路に比べて大きな値とされるが、上り勾配では制動力に対する要求が比較的小さいため、ブレーキ操作による車両制動力を確保しつつフリーラン惰性走行やニュートラル惰性走行の実行範囲が広くなり、それ等の惰性走行による走行距離が長くなって燃費が一層向上する。
 また、図6のタイムチャートに示すようにフリーラン惰性走行中にブレーキ操作力Brkが第1判定値α以上になったらニュートラル惰性走行へ移行し、そのニュートラル惰性走行中にブレーキ操作力Brkが第2判定値β以上になったらエンジンブレーキ走行に復帰する場合には、ブレーキ操作力Brkに応じてブレーキブースタ42によるブレーキ操作力Brkの増幅作用が得られるようになり、更にエンジンブレーキ走行による大きなエンジンブレーキ力が得られるようになるため、車両制動力を適切に確保しつつ燃費を一層向上させることができる。
 また、図7に示すように、フリーラン惰性走行中にブレーキ操作力Brkが第1判定値α以上になったら直ちにエンジンブレーキ走行に復帰する場合には、エンジンブレーキ走行による大きなエンジンブレーキ力や、そのエンジン回転に伴うブレーキブースタ42によるブレーキ操作力Brkの増幅作用が速やかに得られるようになり、大きな車両制動力が確保される。
 また、第1の惰性走行としてフリーラン惰性走行が実行され、第2の惰性走行としてニュートラル惰性走行が実行されるが、何れもクラッチC1が解放されてエンジンブレーキ力が略0になり、エンジンブレーキ走行に比較してエンジンブレーキ力が格段に小さくなるため、惰性走行による走行距離が長くなって燃費が向上する。ニュートラル惰性走行ではエンジン12がアイドリング状態で作動させられるため燃費が悪くなるものの、惰性走行による走行距離が長くなって再加速の頻度が少なくなるため、エンジンブレーキ走行に比べて十分に燃費を改善することができる。
 次に、本発明の他の実施例を説明する。
 前記実施例では第2の惰性走行としてニュートラル惰性走行を実行するが、図9に示すように、そのニュートラル惰性走行の代わりに気筒休止惰性走行を実行するようにしても良い。すなわち、前記ニュートラル惰性走行手段56の代わりに気筒休止惰性走行手段を設け、気筒休止惰性走行が実行されるようにする。気筒休止惰性走行は、クラッチC1の係合状態を維持してエンジン12と車輪20とを連結したまま、エンジン12に対する燃料供給を停止(フューエルカットF/C)するとともに、前記エンジン制御装置30の気筒休止装置により複数の気筒の中の一部(例えば半分)の気筒の吸排気弁が何れも閉弁状態となる位置で停止させる。この場合、クランク軸が車速Vや自動変速機16のギヤ段に応じて被駆動回転させられるが、吸排気弁が閉弁状態で停止させられるため、クランク軸に同期して開閉させられる場合に比較してポンピング作用によるロスが小さくなり、エンジンブレーキ走行よりもエンジンブレーキ力が低減される。これにより惰性走行による走行距離が長くなり、燃費が向上する。また、複数の気筒の一部の気筒が休止させられるだけで、残りの気筒はクランク軸に同期して吸排気弁が開閉させられるため、それ等の気筒によるポンピング作用でブレーキブースタ42に負圧が供給され、ブレーキ操作力Brkの増幅作用が得られる。
 したがって、前記ニュートラル惰性走行に比較してエンジンブレーキ力が大きく、惰性走行による走行距離は比較的短くなるが、エンジン12はフューエルカットされて被駆動回転させられるだけであるため、燃費としてはニュートラル惰性走行と同程度或いは同等以上の効率が得られる。また、気筒休止は一部の気筒だけで残りの気筒についてはポンピング作用により負圧が発生させられ、ニュートラル惰性走行と同様にブレーキブースタ42によるブレーキ操作力Brkの増幅作用が得られる。これにより、前記実施例においてニュートラル惰性走行に代えて気筒休止惰性走行を実行するようにしても、前記実施例と同様の作用効果が得られる。その場合に、フリーラン惰性走行から気筒休止惰性走行へ移行する際には、クラッチC1を係合させてエンジン12を被駆動回転させるとともに、気筒休止装置により一部の気筒の吸排気弁を閉弁位置で停止させれば良い。また、気筒休止惰性走行からエンジンブレーキ走行に復帰する際には、気筒休止装置による吸排気弁の停止を解除し、それ等の吸排気弁をクランク軸に連結して開閉駆動されるようにするとともに、エンジン12に対する燃料噴射を再開してアイドリング状態で作動させれば良い。
 上記気筒休止惰性走行を実行する実行条件や、気筒休止惰性走行の実行を終了するブレーキ操作力Brkの第2判定値βは、前記実施例と同じであっても良いが、異なる値を設定しても良い。また、第2の惰性走行として、ニュートラル惰性走行および気筒休止惰性走行が場合分けして共に実行されるようにしても良い。
 また、前記実施例では、図5のフローチャートのステップS5の判断がYESになった場合にステップS6でエンジン12が再始動させられるが、例えば図10に示すように構成することもできる。すなわち、ステップS5の判断がYESになったら、ステップS11で第2の惰性走行(ニュートラル惰性走行または気筒休止惰性走行)の実行が可能か否かを実行条件に従って判断し、可能であればステップS12でその第2の惰性走行へ移行する。また、第2の惰性走行が不可の場合にはステップS13を実行し、エンジン12を再始動するとともにクラッチC1を係合させて直ちにエンジンブレーキ走行に復帰する。この場合も実質的に前記実施例と同様の作用効果が得られる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
 10:車両用駆動装置  12:エンジン  20:車輪  40:ブレーキペダル(ブレーキ操作部材)  42:ブレーキブースタ  50:電子制御装置  52:エンジンブレーキ走行手段  54:フリーラン惰性走行手段(第1の惰性走行)  56:ニュートラル惰性走行手段(第2の惰性走行)  58:走行モード切換制御手段  60:ブレーキ操作量センサ  66:路面勾配センサ  Brk:ブレーキ操作力(ブレーキ要求量)  Φ:路面勾配  α:第1判定値  β:第2判定値

Claims (7)

  1.  エンジンと、運転者のブレーキ要求量に応じて操作されるブレーキ操作部材と、前記エンジンの回転により発生する負圧を利用してブレーキ力を増幅するブレーキブースタと、を備えており、
     前記エンジンと車輪とを連結したまま該エンジンの被駆動回転によりエンジンブレーキを効かせて走行するエンジンブレーキ走行、および該エンジンブレーキ走行よりもエンジンブレーキ力を低下させた状態で走行する惰性走行が可能で、該惰性走行を終了する条件として前記ブレーキ要求量が含まれている車両の走行制御装置において、
     前記惰性走行として、前記エンジンを回転停止させて走行する第1の惰性走行、および前記エンジンを回転させたまま走行する第2の惰性走行を、それぞれ予め定められた実行条件に従って実行する一方、
     前記第1の惰性走行の実行中に前記ブレーキ要求量が予め定められた第1判定値以上になったら該第1の惰性走行が終了させられ、
     前記第2の惰性走行の実行中に前記ブレーキ要求量が前記第1判定値よりも大きい予め定められた第2判定値以上になったら該第2の惰性走行が終了させられる
     ことを特徴とする車両の走行制御装置。
  2.  前記第1判定値および前記第2判定値は、何れも路面の勾配に応じて設定され、下り勾配の場合には平坦路に比べて小さな値が定められる
     ことを特徴とする請求項1に記載の車両の走行制御装置。
  3.  前記第1判定値および前記第2判定値は、何れも路面の勾配に応じて設定され、上り勾配の場合には平坦路に比べて大きな値が定められる
     ことを特徴とする請求項1または2に記載の車両の走行制御装置。
  4.  前記第1の惰性走行中に前記ブレーキ要求量が前記第1判定値以上になったら前記第2の惰性走行へ移行し、該第2の惰性走行中に前記ブレーキ要求量が前記第2判定値以上になったら前記エンジンブレーキ走行に復帰する
     ことを特徴とする請求項1~3の何れか1項に記載の車両の走行制御装置。
  5.  前記第1の惰性走行中に前記ブレーキ要求量が前記第1判定値以上になったら前記エンジンブレーキ走行に復帰し、
     前記第2の惰性走行中に前記ブレーキ要求量が前記第2判定値以上になったら前記エンジンブレーキ走行に復帰する
     ことを特徴とする請求項1~3の何れか1項に記載の車両の走行制御装置。
  6.  前記第1の惰性走行は、前記エンジンを前記車輪から切り離すとともに該エンジンに対する燃料供給を停止して回転停止させるフリーラン惰性走行で、
     前記第2の惰性走行は、前記エンジンを前記車輪から切り離した状態で該エンジンに燃料を供給して作動させるニュートラル惰性走行である
     ことを特徴とする請求項1~5の何れか1項に記載の車両の走行制御装置。
  7.  前記第1の惰性走行は、前記エンジンを前記車輪から切り離すとともに該エンジンに対する燃料供給を停止して回転停止させるフリーラン惰性走行で、
     前記第2の惰性走行は、前記エンジンと前記車輪とを連結したまま該エンジンに対する燃料供給を停止するとともに、該エンジンの複数の気筒の中の一部の気筒のピストンおよび吸排気弁の少なくとも一方の動作を停止させる気筒休止惰性走行である
     ことを特徴とする請求項1~5の何れか1項に記載の車両の走行制御装置。
PCT/JP2012/078233 2012-10-31 2012-10-31 車両の走行制御装置 WO2014068725A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/439,385 US9409576B2 (en) 2012-10-31 2012-10-31 Vehicle travel controller
JP2014544140A JP6003999B2 (ja) 2012-10-31 2012-10-31 車両の走行制御装置
PCT/JP2012/078233 WO2014068725A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置
EP12887368.4A EP2915712B1 (en) 2012-10-31 2012-10-31 Vehicle travel controller
CN201280076794.9A CN104755341B (zh) 2012-10-31 2012-10-31 车辆的行驶控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078233 WO2014068725A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Publications (1)

Publication Number Publication Date
WO2014068725A1 true WO2014068725A1 (ja) 2014-05-08

Family

ID=50626692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078233 WO2014068725A1 (ja) 2012-10-31 2012-10-31 車両の走行制御装置

Country Status (5)

Country Link
US (1) US9409576B2 (ja)
EP (1) EP2915712B1 (ja)
JP (1) JP6003999B2 (ja)
CN (1) CN104755341B (ja)
WO (1) WO2014068725A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105172783A (zh) * 2014-06-09 2015-12-23 丰田自动车株式会社 车辆的控制装置以及车辆的控制方法
WO2016021005A1 (ja) * 2014-08-06 2016-02-11 日産自動車株式会社 車両の制御装置および車両の制御方法
JP2016044699A (ja) * 2014-08-20 2016-04-04 トヨタ自動車株式会社 車両制御装置及び車両制御方法
JP2016141288A (ja) * 2015-02-03 2016-08-08 トヨタ自動車株式会社 車両制御装置
WO2016147783A1 (ja) * 2015-03-17 2016-09-22 ジヤトコ株式会社 車両制御装置、及び車両の制御方法
JP2017137986A (ja) * 2016-02-05 2017-08-10 トヨタ自動車株式会社 車両制御装置
CN107407353A (zh) * 2015-02-25 2017-11-28 株式会社电装 控制车辆的惯性行驶的车辆控制装置
JP2017223154A (ja) * 2016-06-15 2017-12-21 マツダ株式会社 車両の制御装置
EP3954917A1 (en) * 2015-02-25 2022-02-16 Denso Corporation Vehicle control device for controlling inertia operation of vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379958B (zh) 2012-06-20 2018-04-24 丰田自动车株式会社 车辆的控制装置
CN104520602B (zh) * 2012-08-08 2017-09-12 丰田自动车株式会社 车辆的行驶控制装置
JP5741551B2 (ja) 2012-10-24 2015-07-01 トヨタ自動車株式会社 車両の走行制御装置
DE112012007072B4 (de) 2012-10-31 2021-07-15 Toyota Jidosha Kabushiki Kaisha Fahrzeugfahrsteuergerät
WO2014068724A1 (ja) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
WO2014068722A1 (ja) 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
US10221942B2 (en) 2013-05-07 2019-03-05 Toyota Jidosha Kabushiki Kaisha Shift control device for vehicle
JP6064868B2 (ja) * 2013-11-08 2017-01-25 トヨタ自動車株式会社 車両の制御装置
JP6206455B2 (ja) * 2015-07-08 2017-10-04 トヨタ自動車株式会社 車両の制御装置
JP6553469B2 (ja) * 2015-09-29 2019-07-31 日立オートモティブシステムズ株式会社 車両制御装置
CN108430850B (zh) * 2016-01-25 2021-01-15 日产自动车株式会社 车辆的滑行停止控制方法及控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227885A (ja) 2001-02-06 2002-08-14 Hino Motors Ltd クラッチ制御装置
JP2011173475A (ja) * 2010-02-23 2011-09-08 Toyota Motor Corp 車両制御システム
WO2011135725A1 (ja) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 車両制御システム
JP2012047054A (ja) * 2010-08-24 2012-03-08 Toyota Motor Corp 車両走行制御装置
WO2012111062A1 (ja) * 2011-02-14 2012-08-23 トヨタ自動車株式会社 車両制御装置
JP2012164277A (ja) * 2011-02-09 2012-08-30 Toyota Motor Corp 運転評価提供装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69714682T2 (de) 1996-10-25 2003-04-03 Aisin Aw Co Stufenlos regelbares Getriebe
JP3376892B2 (ja) 1996-10-25 2003-02-10 アイシン・エィ・ダブリュ株式会社 無段変速機
JP2005226701A (ja) 2004-02-12 2005-08-25 Nissan Diesel Motor Co Ltd 車両の制御装置
JP2007126092A (ja) 2005-11-07 2007-05-24 Nissan Motor Co Ltd ハイブリッド車両のコースティング走行時制動力制御装置
JP5177162B2 (ja) 2010-03-30 2013-04-03 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置
JP5652090B2 (ja) * 2010-09-30 2015-01-14 トヨタ自動車株式会社 車両制御装置
US9073549B2 (en) 2011-12-20 2015-07-07 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
CN104379958B (zh) 2012-06-20 2018-04-24 丰田自动车株式会社 车辆的控制装置
CN104520602B (zh) 2012-08-08 2017-09-12 丰田自动车株式会社 车辆的行驶控制装置
JP5741551B2 (ja) 2012-10-24 2015-07-01 トヨタ自動車株式会社 車両の走行制御装置
WO2014068722A1 (ja) 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
DE112012007072B4 (de) 2012-10-31 2021-07-15 Toyota Jidosha Kabushiki Kaisha Fahrzeugfahrsteuergerät
US10221942B2 (en) 2013-05-07 2019-03-05 Toyota Jidosha Kabushiki Kaisha Shift control device for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227885A (ja) 2001-02-06 2002-08-14 Hino Motors Ltd クラッチ制御装置
JP2011173475A (ja) * 2010-02-23 2011-09-08 Toyota Motor Corp 車両制御システム
WO2011135725A1 (ja) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 車両制御システム
JP2012047054A (ja) * 2010-08-24 2012-03-08 Toyota Motor Corp 車両走行制御装置
JP2012164277A (ja) * 2011-02-09 2012-08-30 Toyota Motor Corp 運転評価提供装置
WO2012111062A1 (ja) * 2011-02-14 2012-08-23 トヨタ自動車株式会社 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2915712A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105172783A (zh) * 2014-06-09 2015-12-23 丰田自动车株式会社 车辆的控制装置以及车辆的控制方法
CN105172783B (zh) * 2014-06-09 2017-09-12 丰田自动车株式会社 车辆的控制装置以及车辆的控制方法
CN106574670A (zh) * 2014-08-06 2017-04-19 日产自动车株式会社 车辆的控制装置及车辆的控制方法
JPWO2016021005A1 (ja) * 2014-08-06 2017-05-25 日産自動車株式会社 車両の制御装置および車両の制御方法
WO2016021005A1 (ja) * 2014-08-06 2016-02-11 日産自動車株式会社 車両の制御装置および車両の制御方法
US10173683B2 (en) 2014-08-06 2019-01-08 Nissan Motor Co., Ltd. Vehicle control device and vehicle control method
JP2016044699A (ja) * 2014-08-20 2016-04-04 トヨタ自動車株式会社 車両制御装置及び車両制御方法
JP2016141288A (ja) * 2015-02-03 2016-08-08 トヨタ自動車株式会社 車両制御装置
EP3954916A1 (en) * 2015-02-25 2022-02-16 Denso Corporation Vehicle control device for controlling inertia operation of vehicle
EP3591249A3 (en) * 2015-02-25 2020-09-02 Denso Corporation Vehicle control device for controlling inertia operation of vehicle
EP3954917A1 (en) * 2015-02-25 2022-02-16 Denso Corporation Vehicle control device for controlling inertia operation of vehicle
CN107407353A (zh) * 2015-02-25 2017-11-28 株式会社电装 控制车辆的惯性行驶的车辆控制装置
EP3798462A3 (en) * 2015-02-25 2021-06-30 Denso Corporation Vehicle control device for controlling inertia operation of vehicle
EP3263941A4 (en) * 2015-02-25 2018-07-11 Denso Corporation Vehicle control device for controlling coasting travel of vehicle
CN107407353B (zh) * 2015-02-25 2019-06-28 株式会社电装 控制车辆的惯性行驶的车辆控制装置
JP2016172495A (ja) * 2015-03-17 2016-09-29 ジヤトコ株式会社 車両制御装置、及び車両の制御方法
US10501083B2 (en) 2015-03-17 2019-12-10 Jatco Ltd Vehicle control device and vehicle control method
WO2016147783A1 (ja) * 2015-03-17 2016-09-22 ジヤトコ株式会社 車両制御装置、及び車両の制御方法
JP2017137986A (ja) * 2016-02-05 2017-08-10 トヨタ自動車株式会社 車両制御装置
JP2017223154A (ja) * 2016-06-15 2017-12-21 マツダ株式会社 車両の制御装置

Also Published As

Publication number Publication date
JP6003999B2 (ja) 2016-10-05
EP2915712A4 (en) 2017-02-15
US9409576B2 (en) 2016-08-09
CN104755341B (zh) 2017-06-13
US20150274168A1 (en) 2015-10-01
CN104755341A (zh) 2015-07-01
EP2915712A1 (en) 2015-09-09
JPWO2014068725A1 (ja) 2016-09-08
EP2915712B1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
JP6003999B2 (ja) 車両の走行制御装置
JP5741551B2 (ja) 車両の走行制御装置
JP5900640B2 (ja) 車両の走行制御装置
JP5962767B2 (ja) 車両の走行制御装置
JP5900641B2 (ja) 車両の走行制御装置
JP5704148B2 (ja) 車両の走行制御装置
JP5915496B2 (ja) 車両の走行制御装置
JP5724985B2 (ja) 車両の走行制御装置
JP5900642B2 (ja) 車両の走行制御装置
WO2014068720A1 (ja) 車両の走行制御装置
WO2016021005A1 (ja) 車両の制御装置および車両の制御方法
JP5943089B2 (ja) 車両の走行制御装置
JP2014091398A (ja) 車両の走行制御装置
JP5949936B2 (ja) 車両の走行制御装置
JP2014091338A (ja) 車両の走行制御装置
WO2014068399A1 (en) Drive control device and method for vehicle
JP2014092103A (ja) 車両の走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544140

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14439385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012887368

Country of ref document: EP