WO2014017369A1 - ハイブリッド基板の製造方法及びハイブリッド基板 - Google Patents
ハイブリッド基板の製造方法及びハイブリッド基板 Download PDFInfo
- Publication number
- WO2014017369A1 WO2014017369A1 PCT/JP2013/069487 JP2013069487W WO2014017369A1 WO 2014017369 A1 WO2014017369 A1 WO 2014017369A1 JP 2013069487 W JP2013069487 W JP 2013069487W WO 2014017369 A1 WO2014017369 A1 WO 2014017369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- silicon
- hybrid
- sapphire substrate
- heat treatment
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
Definitions
- the present invention relates to a method for manufacturing a hybrid substrate having a semiconductor layer on a support substrate, and a hybrid substrate manufactured by the manufacturing method.
- sapphire having a high insulating property, high thermal conductivity, and low loss in the high frequency region is used as a support substrate, and a hybrid substrate such as a silicon-on-sapphire (SOS) substrate is used as a device in the high frequency region.
- SOS silicon-on-sapphire
- Non-patent document 1 As a manufacturing method of SOS, it is well known to heteroepitaxially grow silicon on a sapphire substrate, but this method has a defect that many defects due to a difference in lattice constant between sapphire and silicon occur (for example, Non-patent document 1).
- the SOS has a problem that the metal concentration of the sapphire substrate itself used as the support substrate, particularly the Fe concentration on the substrate surface is high.
- the Fe concentration in a typical sapphire substrate is 1 ⁇ 10 11 to 1 ⁇ 10 12 atoms / cm 2 , but the value required for a semiconductor line using a silicon wafer or the like is 1 ⁇ 10 10 atoms / cm 2 . It is 1 to 2 digits higher than that. For this reason, the SOS having the above metal concentration contaminates the semiconductor production line, and therefore has a problem that it cannot be introduced into the semiconductor production line.
- the SOS produced by the bonding method has a problem in that there are many defects caused by the bonding method, such as voids in the silicon film and defects in the form of OSF (Oxidation Induced Stacking Fault).
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a hybrid substrate that can be introduced into a semiconductor manufacturing line, and a hybrid substrate manufactured by the manufacturing method.
- the present inventors have been able to significantly remove metal impurities on the surface of the sapphire by heat-treating the sapphire substrate in a reducing atmosphere, particularly preferably in an atmosphere containing hydrogen. I found.
- a sapphire substrate subjected to the above heat treatment is used for the production of an SOS substrate by the bonding method, the number of defects on the silicon thin film after transfer of the silicon thin film is remarkably reduced as compared with the case where a substrate not subjected to the heat treatment is used.
- the present invention was also found.
- a method of heat-treating a sapphire substrate in an atmosphere containing hydrogen is known, for example, to perform a process before epitaxial growth of a nitride semiconductor layer directly on a sapphire substrate.
- Japanese Patent Laying-Open No. 2004-111848 (patent) Document 2 Japanese Patent Laying-Open No. 2004-111848
- the hydrogen heat treatment is effective in reducing the metal impurity concentration.
- there is no description about manufacturing an SOS substrate using a sapphire substrate subjected to the above heat treatment as a support substrate and there is an effect in reducing the number of defects in the silicon layer formed on the support substrate at this time. There is no description or suggestion.
- a technique for heat-treating a bonded substrate in a hydrogen atmosphere after hybridization for example, in SOI (Silicon On Insulator) or the like is used for planarization of a silicon layer or the like.
- SOI Silicon On Insulator
- the effect of reducing the number of defects in the silicon layer was not recognized.
- metal impurities of the sapphire substrate can be removed, and if necessary, the silicon thin film after bonding can be removed. The number of defects can be reduced.
- the present invention provides the following method for manufacturing a hybrid substrate and a hybrid substrate.
- Ions are implanted from the surface of the semiconductor substrate to form an ion implantation region, and the ion implanted surface of the semiconductor substrate and the surface of the support substrate are bonded directly or through an insulating film, and then the ion implantation is performed.
- a method for manufacturing a hybrid substrate wherein a semiconductor substrate is peeled off in a region to obtain a hybrid substrate having a semiconductor layer on a support substrate,
- a method for manufacturing a hybrid substrate comprising: heat-treating the support substrate in a reducing atmosphere in advance, and then bonding the substrate to the semiconductor substrate.
- the semiconductor substrate is made of any material selected from the group consisting of silicon, silicon-germanium, silicon carbide, germanium, gallium nitride, zinc oxide, and gallium arsenide. ] The manufacturing method of the hybrid substrate in any one of.
- the support substrate is made of any material selected from the group consisting of silicon, silicon carbide, silicon nitride, sapphire, diamond, aluminum nitride, gallium nitride, zinc oxide, quartz, and borosilicate glass.
- the support substrate is preliminarily heat-treated in a reducing atmosphere and bonded to the semiconductor substrate, a hybrid substrate that can be introduced into a semiconductor production line after removing metal impurities from the support substrate can be manufactured.
- the number of defects on the surface of the semiconductor layer can be reduced.
- FIG. 4F is a cross-sectional view of the hybrid substrate.
- the method for manufacturing a hybrid substrate according to the present invention includes a step of implanting hydrogen ions (rare gas ions) into a silicon substrate (step 1), a heat treatment step of a sapphire substrate in a hydrogen atmosphere (step 2), Silicon substrate and / or sapphire substrate surface activation treatment step (step 3), silicon substrate and sapphire substrate bonding step (step 4), visible light irradiation, peeling treatment step (step 5), silicon layer thinning step (step 4) Processing is performed in the order of step 6).
- hydrogen ions ultraviolet gas ions
- a silicon substrate is used as a substrate (semiconductor substrate) for forming a semiconductor layer by transfer
- the present invention is not limited thereto, and silicon-germanium, silicon carbide, germanium is used as the semiconductor substrate.
- a material made of any material selected from the group consisting of gallium nitride, zinc oxide, and gallium arsenide can be used.
- the single crystal silicon substrate (hereinafter, also referred to as a silicon substrate) 1 which is a semiconductor substrate is not particularly limited, but is obtained by slicing a single crystal grown by the Czochralski (CZ) method, for example.
- CZ Czochralski
- those having a diameter of 100 to 300 mm, a conductivity type of P type or N type, and a resistivity of about 10 ⁇ ⁇ cm can be mentioned.
- a thin insulating film 2 on the surface of the silicon substrate 1 in advance. This is because if ion implantation is performed through the insulating film 2, an effect of suppressing channeling of implanted ions can be obtained.
- the insulating film 2 include a silicon oxide film, an aluminum oxide film, and a silicon nitride film. A silicon oxide film having a thickness of 50 to 500 nm is preferable.
- the silicon oxide film can be formed by a general thermal oxidation method.
- the formation method of the ion implantation region 3 is not particularly limited, and for example, a predetermined dose of hydrogen ions or rare gas ions with an implantation energy capable of forming the ion implantation region 3 at a desired depth from the surface of the silicon substrate 1.
- the implantation energy can be 50 to 100 keV
- the implantation dose can be 2 ⁇ 10 16 to 1 ⁇ 10 17 / cm 2 .
- Hydrogen ions to be implanted are hydrogen ions (H + ) having a dose of 2 ⁇ 10 16 to 1 ⁇ 10 17 (atoms / cm 2 ), or 1 ⁇ 10 16 to 5 ⁇ 10 16 (atoms / cm 2 ).
- a hydrogen molecular ion (H 2 + ) having a dose amount of 1 to 5 is preferable.
- the depth from the surface of the ion-implanted substrate to the ion-implanted region 3 corresponds to the desired thickness of the silicon thin film provided on the sapphire substrate that is the support substrate. Is about 300 to 500 nm, more preferably about 400 nm. Further, the thickness of the ion implantation region 3 (that is, the ion distribution thickness) is such that it can be easily peeled off by mechanical impact or the like, and is preferably about 200 to 400 nm, more preferably about 300 nm.
- the sapphire substrate 4 is previously heat-treated in a reducing atmosphere (FIGS. 1B and 1C).
- the support substrate is silicon, silicon carbide, silicon nitride, diamond, aluminum nitride, gallium nitride, zinc oxide, quartz. And any material selected from the group consisting of borosilicate glass can be used.
- the sapphire substrate 4 is an insulating transparent substrate serving as a support substrate (handle substrate) for the hybrid substrate, and the ion implantation region 3 of the silicon substrate 1 to which light in the visible light region (wavelength 400 to 700 nm) is bonded. It is desirable that the energy loss is small before reaching the value, and the transmittance in the visible light region is preferably 70% or more (FIG. 1B).
- a sapphire substrate whose crystal orientation is an R plane (1102) may be used.
- the reducing atmosphere is, for example, a reducing gas composed of a gas species selected from carbon monoxide, hydrogen sulfide, sulfur dioxide, hydrogen, formaldehyde, or a combination thereof, or a mixed gas of the reducing gas and an inert gas.
- a reducing gas composed of a gas species selected from carbon monoxide, hydrogen sulfide, sulfur dioxide, hydrogen, formaldehyde, or a combination thereof, or a mixed gas of the reducing gas and an inert gas.
- an atmosphere containing at least hydrogen that is, an atmosphere made of only hydrogen or an inert gas containing hydrogen, more preferably an atmosphere made of only hydrogen is preferable.
- the lower limit of the heat treatment temperature is preferably 700 ° C. or higher, more preferably 900 ° C. or higher, and particularly preferably 1000 ° C. or higher. If the heat treatment temperature is lower than 700 ° C., the metal removal effect on the surface of the sapphire substrate 4 may be insufficient.
- the upper limit of the heat treatment temperature is preferably less than 1250 ° C, more preferably 1100 ° C or less. If the heat treatment temperature is 1250 ° C. or higher, the number of defects on the surface of the silicon thin film of the hybrid substrate increases conversely, which may make it unsuitable as a hybrid substrate.
- the heat treatment time is preferably 10 seconds to 12 hours, more preferably 1 minute to 1 hour. If the heat treatment time is shorter than 10 seconds, metal removal on the surface of the sapphire substrate 4 may be insufficient, or the number of defects on the silicon thin film surface of the hybrid substrate may be insufficiently reduced. May increase.
- a tube furnace, an epi-growth furnace, an RTA (Rapid Thermal Annealing) furnace, or the like can be used as long as it can introduce hydrogen to obtain a reducing atmosphere, and is not particularly limited.
- the metal concentration on the surface of the sapphire substrate 4 can be reduced from the beginning (FIG. 1C). Further, the surface roughness of the sapphire substrate 4 at this time hardly changes, and the bonding with the silicon substrate 1 does not become difficult. Further, when the heat treatment temperature is 700 to 1100 ° C., the number of defects on the surface of the silicon thin film of the hybrid substrate, which will be described later, can be reduced as compared with the prior art. This heat treatment caused a microscopic shape change on the surface of the sapphire substrate 4, which is thought to be due to an increase and / or uniformity of the adhesion force of bonding, and further removal of particles and other deposits. The reason is not well understood.
- activation is achieved by exposing highly reactive dangling bonds (dangling bonds) to the substrate surface, or by adding OH groups to the dangling bonds. It is performed by processing or processing by ion beam irradiation.
- the silicon substrate 1 and / or the sapphire substrate 4 When processing with plasma, for example, the silicon substrate 1 and / or the sapphire substrate 4 is placed in a vacuum chamber, and after introducing a plasma gas, the surface is exposed to high-frequency plasma of about 100 W for about 5 to 10 seconds.
- Plasma treatment As the plasma gas, when processing the silicon substrate 1, when oxidizing the surface, plasma of oxygen gas, when not oxidizing, hydrogen gas, argon gas, or a mixed gas thereof or a mixture of hydrogen gas and helium gas Gas etc. can be mentioned.
- hydrogen gas, argon gas, a mixed gas thereof, a mixed gas of hydrogen gas and helium gas, or the like is used. By this treatment, organic substances on the surface of the silicon substrate 1 and / or the sapphire substrate 4 are oxidized and removed, and the OH groups on the surface are increased and activated.
- the ion beam irradiation process is a process of irradiating the silicon substrate 1 and / or the sapphire substrate 4 with an ion beam using a gas used in the plasma process to sputter the surface, exposing unbonded hands on the surface. It is possible to increase the binding force.
- the ion-implanted surface of the silicon substrate 1 is bonded to the surface of the sapphire substrate 4 after heat treatment (FIG. 1D). At this time, it is preferable to bond together while heating to about 150 to 200 ° C.
- this bonded body is referred to as a bonded substrate 5.
- the insulating film (silicon oxide film) 2 of the silicon substrate 1 may be thinned or removed by etching or polishing before being bonded to the sapphire substrate 4.
- heat is applied to the bonded substrate 5 to perform heat treatment (second heat treatment).
- second heat treatment By this heat treatment, the bond between the silicon substrate 1 and the sapphire substrate 4 is strengthened.
- the heat treatment at this time selects a temperature at which the bonded substrate 5 is not damaged by the influence (thermal stress) of the difference in thermal expansion between the silicon substrate 1 and the sapphire substrate 4.
- the heat treatment temperature is preferably 300 ° C. or lower, more preferably 150 to 250 ° C., and further preferably 150 to 200 ° C.
- the heat treatment time is, for example, 1 to 24 hours.
- Visible light is light having a maximum wavelength in the range of 400 to 700 nm, and may be either coherent or incoherent light.
- the wavelength region is preferably 400 to 700 nm, more preferably 500 to 600 nm. .
- the laser light When laser light is irradiated as visible light, the laser light passes through the sapphire substrate 4 and is hardly absorbed, so it reaches the silicon substrate 1 without heating the sapphire substrate 4.
- the reached laser beam selectively heats only the vicinity of the bonding interface between the silicon substrate 1 and the sapphire substrate 4, particularly the ion-implanted region 3 which is amorphized by, for example, hydrogen ion implantation.
- the ion implantation region 3 of the bonded substrate 5 is exfoliated along the ion implantation region 3 embrittled by applying an impact such as a mechanical impact from the outside, and a part of the silicon substrate 1 is semiconductor
- a silicon thin film 6 (a silicon oxide film is used and has a silicon oxide film if it is not removed) is transferred to the sapphire substrate 4 to form a wafer 7. That is, the silicon thin film 6 bonded to the sapphire substrate 4 is peeled from the silicon substrate 1 to form an SOI layer (semiconductor layer).
- the peeling is preferably performed by cleaving from one end to the other end of the bonded substrate 5 along the ion implantation region 3.
- one surface of the bonded substrate 5, for example, the surface on the silicon substrate 1 side is heated to cause a temperature difference with the sapphire substrate 4,
- a large stress is generated between the two substrates by rapid expansion on the silicon substrate 1 side, and peeling is caused in the ion implantation region 3 by this stress.
- a method of performing peeling by mechanical impact a method of applying an impact by spraying a fluid such as a gas or a liquid ejected in a jet form from the side surface of the silicon substrate 1, or the tip of the blade is moved to the ion implantation region 3.
- a method of applying an impact by pressing against an area near the surface For example, a method of applying an impact by pressing against an area near the surface.
- the reinforcing material is preferably selected from the group consisting of a protective tape, an electrostatic chuck and a vacuum chuck. More securely by peeling off by attaching a protective tape to the silicon substrate 1 side to prevent cracking on the silicon substrate 1 side, or by bringing the silicon substrate 1 side into close contact with an electrostatic chuck or vacuum chuck. Can be peeled off.
- the protective tape is not particularly limited to the material, thickness, and the like, and dicing tape, BG tape, and the like used in the semiconductor manufacturing process can be used.
- the electrostatic chuck is not particularly limited, and examples thereof include ceramic electrostatic chucks such as silicon carbide and aluminum nitride.
- the vacuum chuck is not particularly limited, and examples thereof include porous chucks such as porous polyethylene and alumina.
- a method of performing peeling by vibration impact there is a method of causing separation in the ion implantation region 3 by applying a vibration impact with ultrasonic waves oscillated from a diaphragm of an ultrasonic oscillator.
- Step 6 Silicon layer thinning (ion implantation damage layer removal) step
- the layer which has been damaged by the ion implantation and causes crystal defects is removed.
- the ion-implanted damage layer is preferably removed by wet etching or dry etching.
- the wet etching such as KOH solution, NH 4 OH solution, NaOH solution, CsOH solution, ammonia water (28 mass%), hydrogen peroxide (30-35 wt%), SC-l solution consisting of water (balance) , EDP (ethylenediamine pyrocatechol) solution, TMAH (4-methyl ammonium hydroxide) solution, and hydrazine solution may be used.
- dry etching for example, reactive gas etching in which the silicon thin film 6 on the sapphire substrate 4 is exposed to etching in a fluorine-based gas, or reactivity in which the silicon thin film 6 is etched by ionizing and radicalizing the fluorine-based gas by plasma. Examples include ion etching.
- the region to be removed in this step is at least the entire ion-implanted damage layer of the silicon thin film 6 related to crystal defects, and the thickness of the surface layer of the silicon thin film 6 is preferably 120 nm or more, more preferably 150 nm or more. It is.
- the thickness of the silicon thin film 6 on the sapphire substrate 4 is 100 to 400 nm.
- the surface of the silicon thin film 6 on the sapphire substrate 4 is mirror finished.
- the silicon thin film 6 is subjected to chemical mechanical polishing (CMP polishing) and finished to a mirror surface.
- CMP polishing chemical mechanical polishing
- a conventionally known CMP polishing used for planarization of a silicon wafer or the like may be used.
- the CMP polishing may also serve as the removal of the ion implantation damage layer.
- the metal substrate of the sapphire substrate 4 (support substrate) is removed, and the hybrid substrate 8 that can be input to the semiconductor production line can be manufactured.
- the number of defects on the surface of the silicon thin film 6 can be reduced.
- Example 1 A hybrid substrate was manufactured according to the manufacturing process shown in FIG. Note that the bonding of the silicon substrate 1 and the heat-treated sapphire substrate 4 and the transfer of the silicon thin film 6 (silicon thin film formation) were in accordance with the method described in JP 2010-278337 A (Patent Document 1). Specifically, it is as follows.
- Step 1 Hydrogen ions were applied at 57 keV and a dose of 6.0 ⁇ 10 16 atoms / cm 2 on a silicon substrate 1 having an outer diameter of 150 mm ⁇ and a thickness of 625 ⁇ m, on which a silicon oxide film was previously grown as an insulating film 2 to a thickness of 200 nm. Injected.
- Step 2 An R-plane sapphire substrate 4 having an outer diameter of 150 mm ⁇ and a thickness of 0.6 mm was used as a support substrate. This sapphire substrate 4 was placed in a pancake-type furnace, made into an atmosphere containing only hydrogen, and then heat treated by holding at 1000 ° C. for 10 minutes.
- the metal concentration on the surface of the sapphire substrate 4 after the heat treatment was measured for typical metal elements Fe and Ni detected by a TRXF (Total Reflection X-ray Fluorescence) method (the detection lower limit concentration is 0.6 ⁇ 10 10 atoms / cm 2 ). As a result, both of the target elements Fe and Ni were below the detection limit (0.6 ⁇ 10 10 atoms / cm 2 ) (DL (Detection Limit)). Further, as the surface roughness of the sapphire substrate 4, the surface roughness Rms (Root Mean Square) of a region of 5 ⁇ m ⁇ 5 ⁇ m in length and width was measured by an atomic force microscope (AFM (Atomic Force Microscope)) and found to be 0.13 nm. It was.
- TRXF Total Reflection X-ray Fluorescence
- Step 3 With respect to the silicon substrate 1 and the heat-treated sapphire substrate 4, an ion beam activation treatment was performed on each bonding surface.
- Step 4 Next, the surface of the silicon substrate 1 on the ion implantation side and the sapphire substrate 4 were bonded to each other by heating to 150 ° C. to obtain a bonded substrate 5 as a bonded body. Next, the bonded substrate 5 was heat-treated at 225 ° C. for 24 hours.
- Step 5 Next, while the bonded substrate 5 was heated to 200 ° C., green laser light having a wavelength of 532 nm was irradiated from the sapphire substrate 4 side.
- Step 6 After irradiating the entire surface of the bonded substrate 5 with the laser beam, a mechanical impact was applied to the ion implantation region 3 in the vicinity of the bonded interface, and the wafer 7 was transferred to the sapphire substrate 4 by peeling. .
- Step 6 the silicon thin film 6 on the wafer 7 was thinned to a thickness of 200 nm by CMP to obtain a hybrid substrate 8 as an SOS substrate.
- the obtained hybrid substrate 8 was immersed in 50% by mass hydrogen fluoride for 10 minutes and rinsed with pure water, and then the number of defects on the surface of the silicon thin film 6 was counted by a defect inspection apparatus (manufactured by KURABO). There were 323 pieces.
- Example 1 For comparison, SC-1 (NH 4 OH + H 2 O 2 + H 2 O) + SC-2 (HCl + H 2 ) without heat-treating the sapphire substrate 4 having the same specifications used in Example 1 (without performing step 2).
- a hybrid substrate 8 was fabricated in the same manner as in Example 1 except that the substrate was washed with O 2 + H 2 O).
- Fe was 1.3 ⁇ 10 11 atoms / cm 2 and Ni was 6.0 ⁇ 10 10 atoms. / Cm 2 .
- Example 1 both Fe and Ni are below the lower limit of detection (0.6 ⁇ 10 10 atoms / cm 2 ) of this measurement, and in Example 1, the heat treatment of the sapphire substrate 4 (10 minutes at 1000 ° C. in a hydrogen atmosphere). It was found that the metal impurities were significantly removed by the heat treatment. Further, the surface roughness Rms of Comparative Example 1 is 0.12 nm. Compared with Example 1, there is no significant difference between the presence and absence of heat treatment of the sapphire substrate 4, and this heat treatment is performed between the silicon substrate 1 and the sapphire substrate 4. It was found that it does not affect the pasting. Moreover, the number of defects on the surface of the silicon thin film 6 in the obtained hybrid substrate was 525 per wafer. In Example 1, the number of defects on the surface of the silicon thin film 6 was greatly reduced by heat treatment of the sapphire substrate 4 in Example 1 (heat treatment at 1000 ° C. for 10 minutes in a hydrogen atmosphere) in Example 1.
- Example 2 In Example 1, as Step 2, the sapphire substrate 4 was subjected to a heat treatment at 1000 ° C. for 20 minutes in an atmosphere of 50 vol% hydrogen + 50 vol% Ar, and the hybrid substrate 8 was fabricated in the same manner as in Example 1 except that.
- the detection lower limit 0.6 ⁇ 10 10 atoms / cm 2
- the surface roughness Rms of Example 2 was 0.12 nm, which was similar to that of Comparative Example 1 without heat treatment.
- the number of defects on the surface of the silicon thin film 6 in the obtained hybrid substrate 8 was 82 per wafer. It was found that the number of defects was greatly reduced as compared to Example 1, and the effect of reducing the number of defects was obtained depending on the processing time.
- Example 3 In Example 1, as Step 2, the sapphire substrate 4 was subjected to a heat treatment at 1000 ° C. for 60 minutes in an atmosphere of hydrogen alone, and the hybrid substrate 8 was fabricated in the same manner as in Example 1 except that. When the surface metal concentration and the surface roughness of the sapphire substrate 4 after the cleaning were evaluated, the detection lower limit (0.6 ⁇ 10 10 atoms / cm 2 ) or less. Further, the surface roughness Rms of Example 3 was 0.12 nm, which was almost the same as that of Comparative Example 1 without heat treatment. The number of defects on the surface of the silicon thin film 6 in the obtained hybrid substrate 8 was 54 per wafer. The number of defects was further reduced as compared with Example 2, and it was found that there was an effect of reducing the number of defects depending on the processing time.
- Example 4 In Example 1, as Step 2, the sapphire substrate 4 was subjected to a heat treatment at 700 ° C. for 10 minutes in an atmosphere of hydrogen alone, and the hybrid substrate 8 was fabricated in the same manner as in Example 1 except that.
- the surface metal concentration and the surface roughness of the sapphire substrate 4 after the cleaning were evaluated, with respect to the metal concentration, Fe was 0.3 ⁇ 10 11 atoms / cm 2 and Ni was 1.0 ⁇ 10 10 atoms. / Cm 2 .
- the metal impurities were not completely removed, the metal impurities were reduced as compared with Comparative Example 1, and the effect of removing the metal impurities was recognized.
- Example 4 was 0.12 nm, which was almost the same as that of Comparative Example 1 without heat treatment. Moreover, the number of defects on the surface of the silicon thin film 6 in the obtained hybrid substrate 8 was 487 per wafer. The number of defects was slightly reduced as compared with Comparative Example 1. That is, although an effect of reducing the metal concentration was seen, a great effect was not seen in reducing the number of defects.
- Example 5 In Example 1, as Step 2, the sapphire substrate 4 was subjected to a heat treatment at 900 ° C. for 60 minutes in an atmosphere containing only hydrogen, and a hybrid substrate 8 was fabricated in the same manner as in Example 1 except that.
- the detection lower limit 0.6 ⁇ 10 10 atoms / cm 2
- the surface roughness Rms of Example 5 was 0.13 nm, which was similar to that of Comparative Example 1 without heat treatment.
- the number of defects on the surface of the silicon thin film 6 in the obtained hybrid substrate 8 was 279 per wafer, which was reduced to about half of the number of defects in Comparative Example 1.
- Example 6 In Example 1, as Step 2, the sapphire substrate 4 was heat-treated at 1100 ° C. for 10 minutes in an atmosphere containing only hydrogen, and the hybrid substrate 8 was fabricated in the same manner as in Example 1 except that. When the surface metal concentration and the surface roughness of the sapphire substrate 4 after the cleaning were evaluated, the detection lower limit (0.6 ⁇ 10 10 atoms / cm 2 ) or less. Further, the surface roughness Rms of Example 6 was 0.11 nm, which was similar to that of Comparative Example 1 without heat treatment. In addition, the number of defects on the surface of the silicon thin film 6 in the obtained hybrid substrate 8 was 305 per wafer, which was similar to that in Example 1.
- Example 7 In Example 1, as Step 2, the sapphire substrate 4 was heat-treated at 1250 ° C. for 10 minutes in an atmosphere containing only hydrogen, and the hybrid substrate 8 was fabricated in the same manner as in Example 1 except that.
- the detection lower limit 0.6 ⁇ 10 10 atoms / cm 2
- the surface roughness Rms of Example 7 was 0.11 nm, which was similar to that of Comparative Example 1 without heat treatment.
- the number of defects on the surface of the silicon thin film 6 in the obtained hybrid substrate 8 was 3400 per wafer, which was significantly higher than that of Comparative Example 1.
- Example 2 In order to confirm the difference in the effect of reducing the number of defects in the silicon thin film 6 between the case where the heat treatment in the hydrogen atmosphere is performed on the single sapphire substrate 4 before bonding and the case where it is performed on the hybrid substrate after bonding, a comparison is made.
- the hybrid substrate manufactured in Example 1 was heat-treated at 1000 ° C. for 10 minutes in an atmosphere containing only hydrogen.
- the number of defects on the surface of the silicon thin film in the hybrid substrate after this heat treatment was evaluated by the same method as in Example 1, the number of defects exceeded 10,000 per wafer.
- the heat treatment after bonding does not have the effect of reducing the number of defects, and in order to obtain the effect of reducing the number of defects on the silicon thin film surface of the hybrid substrate together with the effect of removing the metal impurities, before bonding the sapphire substrate 4. It was found that it was necessary to heat-treat in an atmosphere containing hydrogen in advance.
- Silicon substrate 1 Silicon substrate 2 Insulating film (silicon oxide film) 3 Ion implantation region 4 Sapphire substrate 5 Bonded substrate (joint) 6 Silicon thin film 7 Wafer 8 Hybrid substrate (SOS substrate)
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Element Separation (AREA)
Abstract
Description
また、貼り合わせ法で作製したSOSにおいては、シリコン膜のボイドやOSF(Oxidation induced Stacking Fault;酸化誘起積層欠陥)状の欠陥等の、貼り合わせ法に起因する欠陥が多いという問題があった。
なお、サファイア基板を、水素を含む雰囲気で熱処理する手法は、例えばサファイア基板上に直接窒化物半導体層をエピタキシャル成長する前に処理することが知られており、例えば特開2004-111848号公報(特許文献2)に記載されている。しかしながら、水素熱処理が金属不純物濃度の減少に効果があることについては言及されていない。更に、上記熱処理を施したサファイア基板を支持基板に用いてSOS基板を製造することについては記載されておらず、このときに支持基板上に形成したシリコン層の欠陥数低減に効果があることについて記載も示唆も認められない。
また、ハイブリッド化した後、つまり貼り合わせ基板を水素雰囲気で熱処理する技術は、例えばSOI(Silicon On Insulator)等においては、シリコン層の平坦化等で用いられているが、本発明者らが検討したところ、ハイブリッド化したSOSを水素を含む雰囲気で熱処理を施しても、シリコン層の欠陥数低減の効果は認められなかった。
即ち、貼り合わせを行う前にサファイア基板を水素を含む雰囲気で熱処理することが重要であり、このことにより初めて、サファイア基板の金属不純物を除去でき、かつ必要に応じて貼り合わせ後のシリコン薄膜の欠陥数を低減することができるものである。これらの効果は、本発明により初めて見出されたものである。
〔1〕 半導体基板の表面からイオンを注入してイオン注入領域を形成し、上記半導体基板のイオン注入した表面と支持基板の表面とを直接又は絶縁膜を介して貼り合わせた後、上記イオン注入領域で半導体基板を剥離させて支持基板上に半導体層を有するハイブリッド基板を得るハイブリッド基板の製造方法であって、
上記支持基板を予め還元性雰囲気中で熱処理した後に上記半導体基板と貼り合わせることを特徴とするハイブリッド基板の製造方法。
〔2〕 上記支持基板の熱処理温度は、900℃以上であることを特徴とする〔1〕に記載のハイブリッド基板の製造方法。
〔3〕 上記支持基板の熱処理温度は、1100℃以下であることを特徴とする〔1〕又は〔2〕に記載のハイブリッド基板の製造方法。
〔4〕 上記還元性雰囲気は、水素又は水素を含む不活性ガス雰囲気であることを特徴とする〔1〕~〔3〕のいずれかに記載のハイブリッド基板の製造方法。
〔5〕 上記半導体基板は、シリコン、シリコン-ゲルマニウム、炭化ケイ素、ゲルマニウム、窒化ガリウム、酸化亜鉛、ガリウム砒素からなる群から選ばれるいずれかの材料からなることを特徴とする〔1〕~〔4〕のいずれかに記載のハイブリッド基板の製造方法。
〔6〕 上記支持基板は、シリコン、炭化ケイ素、窒化ケイ素、サファイア、ダイヤモンド、窒化アルミニウム、窒化ガリウム、酸化亜鉛、石英及びホウ珪酸ガラスからなる群から選ばれるいずれかの材料からなることを特徴とする〔1〕~〔5〕のいずれかに記載のハイブリッド基板の製造方法。
〔7〕 〔1〕~〔6〕のいずれかに記載のハイブリッド基板の製造方法により得られたハイブリッド基板。
本発明に係るハイブリッド基板の製造方法は、図1に示すように、シリコン基板への水素イオン(希ガスイオン)注入工程(工程1)、サファイア基板の水素雰囲気下の熱処理工程(工程2)、シリコン基板及び/又はサファイア基板の表面活性化処理工程(工程3)、シリコン基板とサファイア基板の貼り合わせ工程(工程4)、可視光照射、剥離処理工程(工程5)、シリコン層薄化工程(工程6)の順に処理を行うものである。
まず、単結晶シリコン基板(ドナー基板)1の表面から水素イオン又は希ガス(即ち、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン)イオンを注入し、基板中に層状のイオン注入領域(イオン注入層ともいう)3を形成する(図1(a))。
次に、サファイア基板4を予め還元性雰囲気中で熱処理する(図1(b)、(c))。
なお、ここでは支持基板としてサファイア基板を用いた例を示すが、本発明はこれに限定されず、支持基板として、シリコン、炭化ケイ素、窒化ケイ素、ダイヤモンド、窒化アルミニウム、窒化ガリウム、酸化亜鉛、石英及びホウ珪酸ガラスからなる群から選ばれるいずれかの材料からなるものを用いることができる。
熱処理後で貼り合わせの前に、シリコン基板1のイオン注入された表面と、熱処理後のサファイア基板4の表面との双方もしくは片方に表面活性化処理を施す。
次に、シリコン基板1のイオン注入された表面と熱処理後のサファイア基板4の表面とを貼り合わせる(図1(d))。このとき、150~200℃程度に加熱しながら貼り合わせるとよい。以下、この接合体を貼り合わせ基板5という。シリコン基板1のイオン注入面とサファイア基板の表面の少なくとも一方が活性化処理されていると、より強く接合できる。なお、シリコン基板1の絶縁膜(シリコン酸化膜)2を、サファイア基板4と貼り合わせる前に、エッチングや研磨等により、薄くあるいは除去してもよい。
次に、貼り合わせ基板5におけるシリコン基板1のイオン注入領域3に向けて可視光を照射し、アニールを施す。このとき、透明なサファイア基板4側から照射するとよい。また、可視光は、400~700nmの範囲に極大波長を有する光であり、コヒーレント、インコヒーレントのいずれの光でもよく、波長領域が好ましく400~700nm、より好ましくは500~600nmのレーザー光がよい。
次に、ウェハ7のサファイア基板4上のシリコン薄膜6表層において、上記イオン注入によりダメージを受けて結晶欠陥を生じている層を除去する。
図1に示す製造工程に従って、ハイブリッド基板を作製した。なお、シリコン基板1と熱処理を施したサファイア基板4の貼り合わせ及びシリコン薄膜6の転写(シリコン薄膜形成)は、特開2010-278337号公報(特許文献1)記載の方法に従った。具体的には次の通りである。
(工程2)支持基板として、外径150mmφ、厚さ0.6mmのR面サファイア基板4を用いた。このサファイア基板4をパンケーキ型の炉内に配置し、水素のみの雰囲気とした後、1000℃で10分保持することで熱処理を行った。熱処理後のサファイア基板4表面の金属濃度はTRXF(Total Reflection X-ray Fluorescence)法で検出される代表的な金属元素Fe、Niについて測定した(その検出下限濃度は0.6×1010atoms/cm2である)。その結果、対象元素Fe、Niのいずれも検出限界(0.6×1010atoms/cm2)以下(DL(Detection Limit))であった。
また、サファイア基板4の表面粗さとして、原子間力顕微鏡(AFM(Atomic Force Microscope))によって縦横5μm×5μmの領域の表面粗さRms(Root Mean Square)を測定したところ、0.13nmであった。
(工程3)上記シリコン基板1及び熱処理を施したサファイア基板4について、それぞれの貼り合せ面にイオンビーム活性化処理を行った。
(工程4)次いで、上記シリコン基板1のイオン注入側の面とサファイア基板4とを150℃に加熱して貼り合せることにより接合体である貼り合わせ基板5を得た。次いで、貼り合わせ基板5を225℃で24時間熱処理を行った。
(工程5)次に、貼り合わせ基板5を200℃に加熱しながらサファイア基板4側から波長532nmのグリーンレーザー光を照射した。貼り合わせ基板5全面に該レーザー光を照射した後、貼り合せ界面近傍のイオン注入領域3に機械的衝撃を加え、剥離することで、シリコン薄膜6をサファイア基板4に転写したウェハ7を作製した。
(工程6)最後に、ウェハ7上のシリコン薄膜6をCMP研磨で厚さ200nmまで薄化することによりSOS基板であるハイブリッド基板8を得た。得られたハイブリッド基板8を50質量%フッ化水素に10分間浸漬し、純水でリンスした後に、シリコン薄膜6表面の欠陥数を欠陥検査装置(KURABO社製)によってカウントしたところ、1ウェハで323個であった。
比較のため、実施例1で用いた同じ仕様のサファイア基板4を熱処理せずに(工程2を行わずに)、SC-1(NH4OH+H2O2+H2O)+SC-2(HCl+H2O2+H2O)で洗浄して用い、それ以外は実施例1と同様にしてハイブリッド基板8を作製した。
なお、上記洗浄後のサファイア基板4の表面金属濃度及び表面粗さの評価を行ったところ、金属濃度に関し、Feは1.3×1011atoms/cm2、Niは6.0×1010atoms/cm2であった。実施例1では、Fe及びNi共に本測定の検出下限値(0.6×1010atoms/cm2)以下となっており、実施例1ではサファイア基板4の熱処理(水素雰囲気下1000℃で10minの熱処理)によって金属不純物が大幅に除去されたことが分かった。また、比較例1の表面粗さRmsは、0.12nmであり、実施例1と比較すると、サファイア基板4の熱処理有り無しで顕著な違いは無く、本熱処理がシリコン基板1とサファイア基板4との貼り合わせに影響を及ぼさないことが分かった。
また、得られたハイブリッド基板におけるシリコン薄膜6表面の欠陥数は、1ウェハで525個であった。実施例1では1ウェハで323個であり、実施例1におけるサファイア基板4の熱処理(水素雰囲気下1000℃で10minの熱処理)によってシリコン薄膜6表面の欠陥数が大きく減少することが分かった。
実施例1において、工程2として、サファイア基板4について水素50vol%+Ar50vol%の雰囲気下で1000℃で20分の熱処理を行い、それ以外は実施例1と同様にしてハイブリッド基板8を作製した。
なお、上記洗浄後のサファイア基板4の表面金属濃度及び表面粗さの評価を行ったところ、金属濃度に関し、実施例1と同様に、Fe及びNi共に本測定の検出下限値(0.6×1010atoms/cm2)以下となった。また、実施例2の表面粗さRmsは、0.12nmであり、熱処理なしの比較例1と同程度であった。
また、得られたハイブリッド基板8におけるシリコン薄膜6表面の欠陥数は、1ウェハで82個であった。実施例1よりも欠陥数は大きく減少しており、処理時間によって欠陥数低下の効果があることが分かった。
実施例1において、工程2として、サファイア基板4について水素のみの雰囲気下で1000℃で60分の熱処理を行い、それ以外は実施例1と同様にしてハイブリッド基板8を作製した。
なお、上記洗浄後のサファイア基板4の表面金属濃度及び表面粗さの評価を行ったところ、金属濃度に関し、実施例1と同様に、Fe及びNi共に本測定の検出下限値(0.6×1010atoms/cm2)以下となった。また、実施例3の表面粗さRmsは、0.12nmであり、熱処理なしの比較例1と同程度であった。
また、得られたハイブリッド基板8におけるシリコン薄膜6表面の欠陥数は、1ウェハで54個であった。実施例2よりも欠陥数は更に減少しており、処理時間によって欠陥数低下の効果があることが分かった。
実施例1において、工程2として、サファイア基板4について水素のみの雰囲気下で700℃で10分の熱処理を行い、それ以外は実施例1と同様にしてハイブリッド基板8を作製した。
なお、上記洗浄後のサファイア基板4の表面金属濃度及び表面粗さの評価を行ったところ、金属濃度に関し、Feは0.3×1011atoms/cm2、Niは1.0×1010atoms/cm2であった。金属不純物は完全に除去されていなかったが、比較例1よりも減少しており、金属不純物除去の効果が認められた。また、実施例4の表面粗さRmsは、0.12nmであり、熱処理なしの比較例1と同程度であった。
また、得られたハイブリッド基板8におけるシリコン薄膜6表面の欠陥数は、1ウェハで487個であった。欠陥数は比較例1よりも若干減少していた。即ち、金属濃度減少の効果は見られたものの、欠陥数減少には大きな効果は見られなかった。
実施例1において、工程2として、サファイア基板4について水素のみの雰囲気下で900℃で60分の熱処理を行い、それ以外は実施例1と同様にしてハイブリッド基板8を作製した。
なお、上記洗浄後のサファイア基板4の表面金属濃度及び表面粗さの評価を行ったところ、金属濃度に関し、実施例1と同様に、Fe及びNi共に本測定の検出下限値(0.6×1010atoms/cm2)以下となった。また、実施例5の表面粗さRmsは、0.13nmであり、熱処理なしの比較例1と同程度であった。
また、得られたハイブリッド基板8におけるシリコン薄膜6表面の欠陥数は、1ウェハで279個であり、比較例1の欠陥数の半分程度まで減少していた。
実施例1において、工程2として、サファイア基板4について水素のみの雰囲気下で1100℃で10分の熱処理を行い、それ以外は実施例1と同様にしてハイブリッド基板8を作製した。
なお、上記洗浄後のサファイア基板4の表面金属濃度及び表面粗さの評価を行ったところ、金属濃度に関し、実施例1と同様に、Fe及びNi共に本測定の検出下限値(0.6×1010atoms/cm2)以下となった。また、実施例6の表面粗さRmsは、0.11nmであり、熱処理なしの比較例1と同程度であった。
また、得られたハイブリッド基板8におけるシリコン薄膜6表面の欠陥数は、1ウェハで305個であり、実施例1と同程度であった。
実施例1において、工程2として、サファイア基板4について水素のみの雰囲気下で1250℃で10分の熱処理を行い、それ以外は実施例1と同様にしてハイブリッド基板8を作製した。
なお、上記洗浄後のサファイア基板4の表面金属濃度及び表面粗さの評価を行ったところ、金属濃度に関し、実施例1と同様に、Fe及びNi共に本測定の検出下限値(0.6×1010atoms/cm2)以下となった。また、実施例7の表面粗さRmsは、0.11nmであり、熱処理なしの比較例1と同程度であった。
また、得られたハイブリッド基板8におけるシリコン薄膜6表面の欠陥数は、1ウェハで3400個であり、比較例1よりも著しく増加していた。工程2の熱処理温度としてある温度を超えるとそれ以上温度が増加しても金属不純物除去の効果は変わらないが、シリコン薄膜6表面の欠陥数を減らす効果については熱処理温度に上限値があることが分かった。
以上の結果を表1に示す。
水素雰囲気での熱処理を、貼り合わせ前のサファイア基板4単体で行った場合と、貼り合せ後のハイブリッド基板について行った場合とで、シリコン薄膜6の欠陥数低減効果の差異を確認するため、比較例1で作製したハイブリッド基板を水素のみの雰囲気下1000℃で10分の熱処理を行った。この熱処理後のハイブリッド基板におけるシリコン薄膜表面の欠陥数を実施例1と同じ方法で評価したところ、1ウェハで10000個を超える欠陥数であった。即ち、貼り合せを行った後の熱処理では欠陥数低減の効果はなく、金属不純物除去の効果と共にハイブリッド基板のシリコン薄膜表面の欠陥数低減の効果を得るためには、サファイア基板4を貼り合せる前に予め水素を含む雰囲気で熱処理することが必要であることが分かった。
2 絶縁膜(シリコン酸化膜)
3 イオン注入領域
4 サファイア基板
5 貼り合わせ基板(接合体)
6 シリコン薄膜
7 ウェハ
8 ハイブリッド基板(SOS基板)
Claims (7)
- 半導体基板の表面からイオンを注入してイオン注入領域を形成し、上記半導体基板のイオン注入した表面と支持基板の表面とを直接又は絶縁膜を介して貼り合わせた後、上記イオン注入領域で半導体基板を剥離させて支持基板上に半導体層を有するハイブリッド基板を得るハイブリッド基板の製造方法であって、
上記支持基板を予め還元性雰囲気中で熱処理した後に上記半導体基板と貼り合わせることを特徴とするハイブリッド基板の製造方法。 - 上記支持基板の熱処理温度は、900℃以上であることを特徴とする請求項1に記載のハイブリッド基板の製造方法。
- 上記支持基板の熱処理温度は、1100℃以下であることを特徴とする請求項1又は2に記載のハイブリッド基板の製造方法。
- 上記還元性雰囲気は、水素又は水素を含む不活性ガス雰囲気であることを特徴とする請求項1~3のいずれか1項に記載のハイブリッド基板の製造方法。
- 上記半導体基板は、シリコン、シリコン-ゲルマニウム、炭化ケイ素、ゲルマニウム、窒化ガリウム、酸化亜鉛、ガリウム砒素からなる群から選ばれるいずれかの材料からなることを特徴とする請求項1~4のいずれか1項に記載のハイブリッド基板の製造方法。
- 上記支持基板は、シリコン、炭化ケイ素、窒化ケイ素、サファイア、ダイヤモンド、窒化アルミニウム、窒化ガリウム、酸化亜鉛、石英及びホウ珪酸ガラスからなる群から選ばれるいずれかの材料からなることを特徴とする請求項1~5のいずれか1項に記載のハイブリッド基板の製造方法。
- 請求項1~6のいずれか1項に記載のハイブリッド基板の製造方法により得られたハイブリッド基板。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/416,724 US9837301B2 (en) | 2012-07-25 | 2013-07-18 | Method for producing hybrid substrates, and hybrid substrate |
KR1020157002050A KR102104147B1 (ko) | 2012-07-25 | 2013-07-18 | 하이브리드 기판의 제조 방법 및 하이브리드 기판 |
CN201380039179.5A CN104488080B (zh) | 2012-07-25 | 2013-07-18 | 混合基板的制造方法和混合基板 |
JP2014526881A JP6160617B2 (ja) | 2012-07-25 | 2013-07-18 | ハイブリッド基板の製造方法及びハイブリッド基板 |
EP13823207.9A EP2879176B1 (en) | 2012-07-25 | 2013-07-18 | Method for producing hybrid substrates, and hybrid substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-164656 | 2012-07-25 | ||
JP2012164656 | 2012-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014017369A1 true WO2014017369A1 (ja) | 2014-01-30 |
Family
ID=49997183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069487 WO2014017369A1 (ja) | 2012-07-25 | 2013-07-18 | ハイブリッド基板の製造方法及びハイブリッド基板 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9837301B2 (ja) |
EP (1) | EP2879176B1 (ja) |
JP (1) | JP6160617B2 (ja) |
KR (1) | KR102104147B1 (ja) |
CN (1) | CN104488080B (ja) |
TW (1) | TWI595561B (ja) |
WO (1) | WO2014017369A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013229544A (ja) * | 2012-03-29 | 2013-11-07 | Kyocera Corp | 複合基板 |
KR20160114544A (ko) * | 2015-03-24 | 2016-10-05 | 소이텍 | 기판 표면 상의 금속 오염을 감소시키는 방법 |
WO2016194978A1 (ja) * | 2015-06-02 | 2016-12-08 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
WO2016194976A1 (ja) * | 2015-06-02 | 2016-12-08 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
WO2016194977A1 (ja) * | 2015-06-02 | 2016-12-08 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
JP2017188550A (ja) * | 2016-04-05 | 2017-10-12 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
CN107615449A (zh) * | 2015-06-02 | 2018-01-19 | 信越化学工业株式会社 | 具备氧化物单晶薄膜的复合晶片的制造方法 |
JP2021522682A (ja) * | 2018-04-27 | 2021-08-30 | グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. | 半導体ドナー基板からの層移転を容易にする光アシスト板状体形成 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6165127B2 (ja) * | 2014-12-22 | 2017-07-19 | 三菱重工工作機械株式会社 | 半導体装置及び半導体装置の製造方法 |
US9890033B2 (en) * | 2015-04-06 | 2018-02-13 | Honeywell International Inc. | Silicon-on-sapphire device with minimal thermal strain preload and enhanced stability at high temperature |
DE102016100565B4 (de) * | 2016-01-14 | 2022-08-11 | Infineon Technologies Ag | Verfahren zum herstellen einer halbleitervorrichtung |
DE102017203996B4 (de) | 2016-03-11 | 2024-05-29 | Sumco Corporation | p-n-Übergangssiliziumwafer-Herstellungsverfahren |
WO2020027075A1 (ja) | 2018-08-01 | 2020-02-06 | 京セラ株式会社 | 複合基板、圧電素子および複合基板の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004111848A (ja) | 2002-09-20 | 2004-04-08 | Kyocera Corp | サファイア基板とそれを用いたエピタキシャル基板およびその製造方法 |
JP2005019872A (ja) * | 2003-06-27 | 2005-01-20 | Hitachi Cable Ltd | 窒化物半導体の製造方法及び半導体ウエハ並びに半導体デバイス |
WO2010137587A1 (ja) * | 2009-05-29 | 2010-12-02 | 信越化学工業株式会社 | 表面欠陥密度が少ないsos基板 |
WO2011077608A1 (ja) * | 2009-12-25 | 2011-06-30 | パナソニック株式会社 | 半導体装置、高周波集積回路、高周波無線通信システムおよび半導体装置の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3609661B2 (ja) * | 1999-08-19 | 2005-01-12 | 株式会社東芝 | 半導体発光素子 |
JPWO2005027217A1 (ja) | 2003-09-08 | 2007-11-08 | 株式会社Sumco | Soiウェーハおよびその製造方法 |
FR2896619B1 (fr) | 2006-01-23 | 2008-05-23 | Soitec Silicon On Insulator | Procede de fabrication d'un substrat composite a proprietes electriques ameliorees |
JP5389627B2 (ja) | 2008-12-11 | 2014-01-15 | 信越化学工業株式会社 | ワイドバンドギャップ半導体を積層した複合基板の製造方法 |
JP2011077608A (ja) | 2009-09-29 | 2011-04-14 | Alps Electric Co Ltd | アンテナ装置 |
-
2013
- 2013-07-18 KR KR1020157002050A patent/KR102104147B1/ko active IP Right Grant
- 2013-07-18 JP JP2014526881A patent/JP6160617B2/ja active Active
- 2013-07-18 EP EP13823207.9A patent/EP2879176B1/en active Active
- 2013-07-18 US US14/416,724 patent/US9837301B2/en active Active
- 2013-07-18 WO PCT/JP2013/069487 patent/WO2014017369A1/ja active Application Filing
- 2013-07-18 CN CN201380039179.5A patent/CN104488080B/zh active Active
- 2013-07-24 TW TW102126451A patent/TWI595561B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004111848A (ja) | 2002-09-20 | 2004-04-08 | Kyocera Corp | サファイア基板とそれを用いたエピタキシャル基板およびその製造方法 |
JP2005019872A (ja) * | 2003-06-27 | 2005-01-20 | Hitachi Cable Ltd | 窒化物半導体の製造方法及び半導体ウエハ並びに半導体デバイス |
WO2010137587A1 (ja) * | 2009-05-29 | 2010-12-02 | 信越化学工業株式会社 | 表面欠陥密度が少ないsos基板 |
JP2010278337A (ja) | 2009-05-29 | 2010-12-09 | Shin-Etsu Chemical Co Ltd | 表面欠陥密度が少ないsos基板 |
WO2011077608A1 (ja) * | 2009-12-25 | 2011-06-30 | パナソニック株式会社 | 半導体装置、高周波集積回路、高周波無線通信システムおよび半導体装置の製造方法 |
Non-Patent Citations (1)
Title |
---|
YOSHII ET AL., JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 21, no. 21-1, 1982, pages 175 - 179 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013229544A (ja) * | 2012-03-29 | 2013-11-07 | Kyocera Corp | 複合基板 |
KR20160114544A (ko) * | 2015-03-24 | 2016-10-05 | 소이텍 | 기판 표면 상의 금속 오염을 감소시키는 방법 |
JP2016181699A (ja) * | 2015-03-24 | 2016-10-13 | ソイテックSoitec | 基板の表面の金属汚染物を減少させるための方法 |
KR102507136B1 (ko) * | 2015-03-24 | 2023-03-07 | 소이텍 | 기판 표면 상의 금속 오염을 감소시키는 방법 |
JP7160469B2 (ja) | 2015-03-24 | 2022-10-25 | ソイテック | 基板の表面の金属汚染物を減少させるための方法 |
JP2021082828A (ja) * | 2015-03-24 | 2021-05-27 | ソイテックSoitec | 基板の表面の金属汚染物を減少させるための方法 |
CN107615448A (zh) * | 2015-06-02 | 2018-01-19 | 信越化学工业株式会社 | 具备氧化物单晶薄膜的复合晶片的制造方法 |
WO2016194977A1 (ja) * | 2015-06-02 | 2016-12-08 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
JP2016225540A (ja) * | 2015-06-02 | 2016-12-28 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
WO2016194978A1 (ja) * | 2015-06-02 | 2016-12-08 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
WO2016194976A1 (ja) * | 2015-06-02 | 2016-12-08 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
CN107615449A (zh) * | 2015-06-02 | 2018-01-19 | 信越化学工业株式会社 | 具备氧化物单晶薄膜的复合晶片的制造方法 |
JP2016225538A (ja) * | 2015-06-02 | 2016-12-28 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
EP3306644A4 (en) * | 2015-06-02 | 2019-01-23 | Shin-Etsu Chemical Co., Ltd. | METHOD FOR PRODUCING A COMPOSER WELDING WITH OXIDEIN CRYSTAL THIN LAYER |
EP3306642A4 (en) * | 2015-06-02 | 2019-01-23 | Shin-Etsu Chemical Co., Ltd. | METHOD FOR MANUFACTURING COMPOSITE WAFER EQUIPPED WITH MONO-CRYSTALLINE OXIDE THIN FILM |
US11195987B2 (en) | 2015-06-02 | 2021-12-07 | Shin-Etsu Chemical Co., Ltd. | Method for producing composite wafer having oxide single-crystal film |
US10727396B2 (en) | 2015-06-02 | 2020-07-28 | Shin-Etsu Chemical Co., Ltd. | Method for producing composite wafer having oxide single-crystal film |
US10770648B2 (en) | 2015-06-02 | 2020-09-08 | Shin-Etsu Chemical Co., Ltd. | Method for producing composite wafer having oxide single-crystal film |
US10971674B2 (en) | 2015-06-02 | 2021-04-06 | Shin-Etsu Chemical Co., Ltd. | Method for producing composite wafer having oxide single-crystal film |
JP2016225539A (ja) * | 2015-06-02 | 2016-12-28 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
CN107615449B (zh) * | 2015-06-02 | 2021-09-21 | 信越化学工业株式会社 | 具备氧化物单晶薄膜的复合晶片的制造方法 |
US10629440B2 (en) | 2016-04-05 | 2020-04-21 | Shin-Etsu Chemical Co., Ltd. | Method for manufacturing composite wafer provided with oxide single crystal thin film |
WO2017175755A1 (ja) * | 2016-04-05 | 2017-10-12 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
JP2017188550A (ja) * | 2016-04-05 | 2017-10-12 | 信越化学工業株式会社 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
JP2021522682A (ja) * | 2018-04-27 | 2021-08-30 | グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. | 半導体ドナー基板からの層移転を容易にする光アシスト板状体形成 |
JP7160943B2 (ja) | 2018-04-27 | 2022-10-25 | グローバルウェーハズ カンパニー リミテッド | 半導体ドナー基板からの層移転を容易にする光アシスト板状体形成 |
Also Published As
Publication number | Publication date |
---|---|
EP2879176B1 (en) | 2019-12-04 |
KR20150033687A (ko) | 2015-04-01 |
KR102104147B1 (ko) | 2020-04-23 |
CN104488080B (zh) | 2017-06-23 |
US9837301B2 (en) | 2017-12-05 |
EP2879176A1 (en) | 2015-06-03 |
JP6160617B2 (ja) | 2017-07-12 |
JPWO2014017369A1 (ja) | 2016-07-11 |
US20150200129A1 (en) | 2015-07-16 |
CN104488080A (zh) | 2015-04-01 |
TW201421584A (zh) | 2014-06-01 |
TWI595561B (zh) | 2017-08-11 |
EP2879176A4 (en) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6160617B2 (ja) | ハイブリッド基板の製造方法及びハイブリッド基板 | |
KR102599962B1 (ko) | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 | |
KR102658526B1 (ko) | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 | |
JP5926527B2 (ja) | 透明soiウェーハの製造方法 | |
KR102554056B1 (ko) | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 | |
EP2993686B1 (en) | Method for producing hybrid substrate | |
JP6160616B2 (ja) | Sos基板の製造方法及びsos基板 | |
KR20180014702A (ko) | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 | |
JP5953340B2 (ja) | 貼り合わせ基板の製造方法 | |
JP2012054451A (ja) | 貼り合わせ基板の製造方法および半導体基板洗浄液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13823207 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014526881 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14416724 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157002050 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013823207 Country of ref document: EP |