WO2013190641A1 - ハイブリッド車両の動力伝達装置及びハイブリッドシステム - Google Patents

ハイブリッド車両の動力伝達装置及びハイブリッドシステム Download PDF

Info

Publication number
WO2013190641A1
WO2013190641A1 PCT/JP2012/065659 JP2012065659W WO2013190641A1 WO 2013190641 A1 WO2013190641 A1 WO 2013190641A1 JP 2012065659 W JP2012065659 W JP 2012065659W WO 2013190641 A1 WO2013190641 A1 WO 2013190641A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
power transmission
transmission
electrical machine
rotating electrical
Prior art date
Application number
PCT/JP2012/065659
Other languages
English (en)
French (fr)
Inventor
春哉 加藤
田端 淳
達也 今村
松原 亨
北畑 剛
健太 熊崎
康博 日浅
塩入 広行
寛之 柴田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014521130A priority Critical patent/JP5904279B2/ja
Priority to US14/409,760 priority patent/US9649926B2/en
Priority to CN201280074133.2A priority patent/CN104395122B/zh
Priority to PCT/JP2012/065659 priority patent/WO2013190641A1/ja
Priority to DE112012006555.7T priority patent/DE112012006555B4/de
Publication of WO2013190641A1 publication Critical patent/WO2013190641A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2035Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing
    • Y10S903/91Orbital, e.g. planetary gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio

Definitions

  • the present invention relates to a power transmission device and a hybrid system for a hybrid vehicle using an engine and a rotating electric machine as a power source.
  • One engaging portion of the clutch is connected to the rotation shaft of the engine and the carrier of the first planetary gear mechanism, and the other engaging portion is connected to the ring gear of the first planetary gear mechanism.
  • the carrier and the sun gear are respectively connected to the sun gear and the ring gear of the second planetary gear mechanism.
  • the sun gear of the first planetary gear mechanism and the ring gear of the second planetary gear mechanism are connected to the carrier of the power distribution mechanism.
  • the first brake is capable of stopping the rotation of the ring gear of the first planetary gear mechanism and the other engaging portion of the clutch.
  • the second brake is capable of stopping the rotation of the carrier of the second planetary gear mechanism.
  • the underdrive mode (UD mode) at the middle load and the high load is set by engaging the clutch and releasing each brake, and at the light load by releasing the clutch and the second brake and engaging the first brake.
  • the overdrive mode (OD mode) is set, and the reverse mode is set by releasing the clutch and the first brake and engaging the second brake.
  • the engine and the second rotating electric machine are used as power sources, but the output of the first rotating electric machine is not transmitted to the drive wheels. Therefore, in order to use the engine and the two rotating electric machines as power sources, it is preferable to adopt a configuration suitable for this.
  • a configuration suitable for this depending on the configuration, when the engine is started during running of an electric vehicle (EV) using only the output of the rotating electrical machine, there is a risk of generating vibration (shift shock) after the start.
  • EV electric vehicle
  • shift shock vibration
  • a power transmission device for a hybrid vehicle is connected to a transmission device having a first power transmission element to which a rotating shaft of an engine is connected, and to a second power transmission element of the transmission device.
  • a differential having a plurality of rotational elements capable of differential rotation, including a rotating element connected to the rotating shaft of the first rotating electrical machine, and a rotating element connected to the rotating shaft of the second rotating electrical machine and the driving wheel.
  • a neutral state where power cannot be transmitted between the first power transmission element and the second power transmission element, or a state where power can be transmitted between the first power transmission element and the second power transmission element.
  • the neutral state Speed change A first step of controlling the device so that power can be transmitted between the first power transmission element and the second power transmission element, a second step of increasing the rotational speed of the first rotating electrical machine, And a third step of performing start control of the engine whose rotational speed is increased as the rotational speed of the single rotating electrical machine increases.
  • a power transmission device for a hybrid vehicle includes a first rotating element connected to a rotating shaft of an engine and a second rotating element connected to a rotating shaft of a first rotating electrical machine.
  • a differential device having a plurality of rotational elements capable of differential rotation, a first power transmission element to which a third rotational element of the differential device is connected, a rotating shaft of the second rotating electrical machine, and a drive wheel.
  • a transmission having a second power transmission element and a neutral state where power cannot be transmitted between the first power transmission element and the second power transmission element, or between the first power transmission element and the second power transmission element.
  • a transmission adjusting device capable of controlling the transmission device to a state where power can be transmitted between them, and at least one power of the first and second rotating electrical machines being transmitted to the drive wheels during the EV traveling.
  • Newt when starting A first step of controlling the transmission in the state to be capable of transmitting power between the first power transmission element and the second power transmission element, and a second step of increasing the rotational speed of the first rotating electrical machine.
  • a control device having a step and a third step of performing start control of the engine whose rotational speed is increased as the rotational speed of the first rotating electrical machine is increased.
  • the engine start control in the third step is ignition control for the engine.
  • a hybrid system includes an engine, a first rotating electrical machine, a second rotating electrical machine, and a first power transmission element to which the rotating shaft of the engine is connected.
  • the differential gear having a plurality of rotational elements capable of differential rotation, and at least one power of the first and second rotating electrical machines is transmitted to the drive wheels for EV travel.
  • the transmission is controlled by the first power transmission element.
  • the shift adjusting device that controls the power to be transmitted to and from the element, or after the transmission is controlled to the power transmittable state or to the state
  • the rotating electrical machine control device that increases the rotational speed of the first rotating electrical machine during control and the engine is started during the EV traveling, the rotational speed is increased as the rotational speed of the first rotating electrical machine increases.
  • an engine control device for performing start control of the engine.
  • a hybrid system includes an engine, a first rotating electrical machine, a second rotating electrical machine, a first rotating element to which a rotating shaft of the engine is connected, and the first rotating machine.
  • a differential device having a plurality of rotational elements capable of differential rotation including a second rotational element connected to a rotating shaft of an electric machine, and a first power transmission element to which a third rotational element of the differential device is connected
  • a transmission having a second power transmission element to which a rotating shaft and drive wheels of the second rotating electrical machine are connected, and at least one of the first and second rotating electrical machines is transmitted to the drive wheels to transmit EV.
  • the transmission When traveling, the transmission is controlled to a neutral state in which power cannot be transmitted between the first power transmission element and the second power transmission element, and the engine is started during the EV traveling, the transmission
  • the first power transmission element and the front A shift adjustment device that controls power transmission to and from the second power transmission element, and when the engine is started during EV traveling, after the transmission is controlled to be in a state capable of power transmission or
  • a rotating electrical machine control device that increases the rotational speed of the first rotating electrical machine during the control to the state, and when the engine is started during the EV traveling, the rotational speed increases as the rotational speed of the first rotating electrical machine increases.
  • an engine control device that performs start control of the engine whose number is increased.
  • the starting control of the engine whose rotational speed is increased as the rotational speed of the first rotating electrical machine is increased is ignition control for the engine.
  • the control to a state in which power transmission between the first power transmission element and the second power transmission element is possible is the transmission of the transmission. It is desirable that the shift control is performed to shift the gear to a target gear ratio or a target gear after completion of starting of the engine in the apparatus.
  • the transmission device completes the shift to the target gear ratio or the target gear stage until the start of the engine is completed.
  • the speed change device performs a shift to the target speed ratio or the target gear position according to at least one of a vehicle speed, an accelerator operation amount, a throttle opening, or an accelerator operation speed.
  • the transmission when the required vehicle driving force changes at the time of starting the engine, the transmission includes a new target gear ratio or a new target gear position after completion of starting the engine according to the changed required vehicle driving force. It is desirable to shift to
  • control device increases the output torque of the engine when the target gear ratio or the shift to the target gear stage is not completed at the time of starting the engine.
  • the transmission performs a shift to the target gear ratio or the target shift stage when the required vehicle driving force is greater than or equal to a predetermined value, and when the required vehicle driving force is smaller than the predetermined value, It is desirable not to perform the shift to the ratio or the target shift stage.
  • the power transmission device and the hybrid system for a hybrid vehicle according to the present invention execute a shift of the transmission when the engine is started and generate a shock accompanying the shift when the engine is started. Occurrence can be suppressed.
  • FIG. 1 is a skeleton diagram showing a configuration of a power transmission device and a hybrid system for a hybrid vehicle according to the present invention.
  • FIG. 2 is an input / output relationship diagram of the embodiment.
  • FIG. 3 is a diagram illustrating an operation engagement table of the power transmission device and the hybrid system of the hybrid vehicle according to the embodiment.
  • FIG. 4 is a collinear diagram related to the single motor EV mode.
  • FIG. 5 is a collinear diagram related to the both-motor EV mode.
  • FIG. 6 is a collinear diagram related to the HV high mode.
  • FIG. 7 is a collinear diagram related to the HV low mode.
  • FIG. 8 is a diagram showing a theoretical transmission efficiency line.
  • FIG. 1 is a skeleton diagram showing a configuration of a power transmission device and a hybrid system for a hybrid vehicle according to the present invention.
  • FIG. 2 is an input / output relationship diagram of the embodiment.
  • FIG. 3 is a diagram illustrating an operation
  • FIG. 9 is a diagram for explaining the EV traveling area and the HV traveling area.
  • FIG. 10 is a flowchart for explaining the operation at the time of starting the engine during EV traveling in the embodiment.
  • FIG. 11 is a time chart for explaining the operation at the time of starting the engine during EV traveling in the embodiment.
  • FIG. 12 is a diagram illustrating an example of the correction amount.
  • FIG. 13 is a time chart for explaining the operation at the time of engine start during EV traveling in Modification 1.
  • FIG. 14 is a flowchart for explaining the operation at the time of engine start during EV traveling in the third modification.
  • FIG. 15 is a time chart for explaining the operation at the time of engine start during EV traveling in Modification 3.
  • FIG. 16 is a diagram illustrating an example of the predetermined opening.
  • FIG. 17 is a diagram illustrating an example of the engine torque increase amount.
  • FIG. 18 is a skeleton diagram illustrating a configuration of a power transmission device and a hybrid system of a hybrid vehicle according to a fourth modification.
  • FIG. 19 is a diagram illustrating an operation engagement table of the power transmission device and the hybrid system of the hybrid vehicle according to the fourth modification.
  • reference numeral 100 in FIG. 1 indicates a hybrid vehicle on which the hybrid system 1-1 is mounted.
  • the hybrid system 1-1 includes an engine ENG, a first rotating electrical machine MG1, and a second rotating electrical machine MG2 as power sources.
  • the engine ENG is an engine such as an internal combustion engine or an external combustion engine that outputs mechanical power (engine torque) from an engine rotation shaft (crankshaft) 11.
  • the operation of the engine ENG is controlled by an electronic control device (hereinafter referred to as “engine ECU”) 91 as an engine control device shown in FIG.
  • engine ECU 91 controls the output torque of the engine ENG (hereinafter referred to as “engine torque”) by performing, for example, opening control of an electronic throttle valve, ignition control by output of an ignition signal, fuel injection control, and the like. To do.
  • the first rotating electrical machine MG1 and the second rotating electrical machine MG2 have a function as an electric motor (motor) at the time of powering drive and a function as an electric generator (generator) at the time of regenerative driving (motor / generator). It is.
  • the operations of the first and second rotating electrical machines MG1 and MG2 are controlled by an electronic control device (hereinafter referred to as “MG ECU”) 92 as the rotating electrical machine control device shown in FIG.
  • the first and second rotating electrical machines MG1, MG2 are connected to a secondary battery (not shown) via an inverter (not shown), and are connected to respective rotating shafts (MG1 rotating shaft 12, MG2 rotating shaft 13).
  • the input mechanical energy (rotational torque) can be converted into electrical energy and stored in the secondary battery.
  • first and second rotating electrical machines MG1 and MG2 use mechanical energy supplied from the secondary battery or electrical energy generated by the other rotating electrical machine (second and first rotating electrical machines MG2 and MG1).
  • (Rotational torque) can be converted and output as mechanical power (output torque) from the respective rotary shafts (MG1 rotary shaft 12 and MG2 rotary shaft 13).
  • the MGECU 92 adjusts the current value supplied to the first rotating electrical machine MG1 and the second rotating electrical machine MG2, and outputs the output torque of the first rotating electrical machine MG1 (hereinafter referred to as “MG1 torque”) or the second rotation. Controls the output torque of electric machine MG2 (hereinafter referred to as “MG2 torque”).
  • the hybrid system 1-1 is provided with a power transmission device capable of transmitting power between the respective power sources and transmitting power between the respective power sources and the drive wheels W. ing.
  • the power transmission device includes a transmission 20 and a differential device 30 connected in series.
  • the illustrated hybrid system 1-1 is a multi-shaft type in which the engine rotation shaft 11 and the MG1 rotation shaft 12 are arranged concentrically, and the MG2 rotation shaft 13 is arranged in parallel with a space therebetween. It is.
  • the transmission 20 is disposed on the engine ENG side
  • the differential device 30 is disposed on the first rotating electrical machine MG1 side.
  • the transmission 20 can shift the rotation input from the engine ENG and transmit it to the differential device 30 side, or can shift the rotation input from the differential device 30 and transmit it to the engine ENG.
  • the transmission 20 is connected to an engine ENG, and is connected to a first power transmission element responsible for power transmission with the engine ENG and a differential device 30, and transmits power to and from the differential device 30.
  • the first power transmission element is a rotating shaft (first rotating shaft) connected to the engine ENG or a rotating element described later.
  • the second power transmission element is a rotating shaft (second rotating shaft) connected to the differential device 30 or a rotating element described later.
  • the transmission 20 illustrated here includes a planetary gear mechanism composed of a plurality of rotating elements capable of differential rotation.
  • a single pinion type, a double pinion type, a Ravigneaux type, or the like can be applied as the planetary gear mechanism.
  • the illustrated transmission 20 is a differential having one single-pinion type planetary gear mechanism, and includes a sun gear S1, a ring gear R1, a plurality of pinion gears P1, and a carrier C1 as its rotating elements.
  • one of sun gear S 1, ring gear R 1, and carrier C 1 is connected to engine ENG, and the remaining one is connected to differential device 30.
  • the engine ENG is connected to the carrier C1.
  • the carrier C1 is coupled to the engine rotation shaft 11 via a rotation shaft (first rotation shaft) 21 so that the carrier C1 can rotate integrally with the engine rotation shaft 11. Therefore, in this illustration, the carrier C1 or the rotating shaft 21 is the first power transmission element.
  • the differential device 30 is coupled to the ring gear R1.
  • the ring gear R1 is the second power transmission element described above, and is connected so that it can rotate integrally with one of the rotating elements of the differential device 30 (here, carrier C2 as will be described later). To do.
  • the hybrid system 1-1 is provided with a speed change adjusting device 40 that changes the speed ratio or speed of the speed change device 20.
  • the transmission 20 illustrated here has two shift stages, high and low, and the shift adjusting apparatus 40 switches between the high speed side and the low speed side and switches to the neutral state.
  • the shift adjustment device 40 includes two engagement devices that adjust the rotation state and the stop state of a predetermined rotation element in the transmission device 20.
  • a clutch CL1 and a brake BK1 are provided as an engagement device.
  • the clutch CL1 and the brake BK1 are controlled by the HVECU 90, which will be described later, in the engagement operation or the release operation.
  • the clutch CL1 is a clutch device that connects or releases the sun gear S1 and the carrier C1.
  • the clutch CL1 may be configured as, for example, a friction engagement type so-called friction clutch device or a meshing type clutch device.
  • the clutch CL1 performs an engagement operation or a release operation by hydraulic drive or electric drive, and includes a first engagement member that rotates together with the sun gear S1, and a second engagement that rotates together with the carrier C1. And a joint member.
  • the clutch CL1 exemplified here is operated by a supply hydraulic pressure adjusted by a hydraulic pressure adjusting device (not shown).
  • the clutch CL1 connects the sun gear S1 and the carrier C1 by controlling the first engagement member and the second engagement member to be engaged.
  • the clutch CL1 in the half-engaged state allows relative rotation of the sun gear S1 and the carrier C1 within a range where the first engagement member and the second engagement member are slid and are not rotated together.
  • the fully engaged clutch CL1 integrates the sun gear S1 and the carrier C1, and disables relative rotation therebetween. Therefore, the clutch CL1 can be inhibited from differential operation of the planetary gear mechanism in the transmission 20 by controlling the clutch CL1 to the fully engaged state.
  • the clutch CL1 controls the first engagement member and the second engagement member to be in a released state, thereby disconnecting the connection between the sun gear S1 and the carrier C1 and allowing the relative rotation thereof. Therefore, the clutch CL1 can allow differential rotation of each rotating element in the transmission 20 by controlling the clutch CL1 to the released state.
  • the brake BK1 is a brake device that restricts the rotation of the sun gear S1.
  • the brake BK1 may be configured as a friction engagement type or a meshing type as in the clutch CL1.
  • the brake BK1 is engaged or disengaged by hydraulic drive or electric drive.
  • the brake BK1 is connected to the first engagement member that rotates integrally with the sun gear S1 and the vehicle body (for example, a case of a power transmission device). And a fixed second engaging member.
  • the brake BK1 exemplified here is operated by a supply hydraulic pressure adjusted by a hydraulic pressure adjusting device (not shown).
  • the brake BK1 controls the rotation of the sun gear S1 by connecting the sun gear S1 to the vehicle body side by controlling the first engagement member and the second engagement member to be engaged.
  • the brake BK1 in the semi-engaged state regulates within a range in which the rotation of the sun gear S1 is not stopped while sliding the first engagement member with respect to the second engagement member.
  • the fully engaged brake BK1 prohibits the rotation of the sun gear S1.
  • the brake BK1 controls the first engagement member and the second engagement member to be in a released state, thereby disconnecting the connection between the sun gear S1 and the vehicle body and allowing the sun gear S1 to rotate.
  • the transmission 20 is in a neutral state when both the clutch CL1 and the brake BK1 are in a released state.
  • the neutral state is a state in which power cannot be transmitted between the first rotating shaft 21 and the second rotating shaft (that is, between the carrier C1 and the ring gear R1) between the input and output of the transmission 20 in this example. Say that. In this neutral state, the engine ENG and the differential device 30 are disconnected, and power transmission therebetween is cut off.
  • the power transmission between the carrier C1 and the ring gear R1 (between the engine ENG and the differential device 30) is achieved by engaging one of the clutch CL1 and the brake BK1. Can be connected. Therefore, when one of the clutch CL1 and the brake BK1 is engaged, power transmission between the engine ENG and the drive wheels W becomes possible, so that traveling using the power of the engine ENG is performed. And engine brakes can be generated.
  • the transmission 20 performs differential rotation with the sun gear S1 fixed (rotation stopped) by releasing the clutch CL1 and engaging the brake BK1. At this time, the transmission 20 increases the rotation speed of the engine ENG input to the carrier C1 and outputs it from the ring gear R1. That is, the transmission 20 is in an overdrive (OD) state in which the gear ratio is smaller than 1 by releasing the clutch CL1 and engaging the brake BK1.
  • OD overdrive
  • the transmission 20 is in a state of prohibiting differential rotation in which all the rotating elements rotate together by engaging the clutch CL1 and releasing the brake BK1, and between input and output ( The carrier C1 and the ring gear R1) are directly connected.
  • the transmission 20 has a gear ratio of 1, and outputs the rotation of the engine ENG input to the carrier C1 from the ring gear R1 at a constant speed without increasing or decreasing the speed.
  • a high speed gear stage (high speed stage) is configured by disengaging the clutch CL1 and engaging the brake BK1, and a low speed gear shifting is achieved by engaging the clutch CL1 and releasing the brake BK1.
  • a stage (low speed stage) is formed.
  • the differential device 30 has a plurality of rotating elements capable of differential rotation, and includes a planetary gear mechanism including the respective rotating elements.
  • a single pinion type, a double pinion type, a Ravigneaux type, or the like can be applied as the planetary gear mechanism.
  • the illustrated differential device 30 includes one single-pinion type planetary gear mechanism, and includes a sun gear S2, a ring gear R2, a plurality of pinion gears P2, and a carrier C2 as its rotating elements.
  • one of the sun gear S2, the ring gear R2, and the carrier C2 is connected to the engine ENG via the transmission 20, and the remaining one is connected to the first rotating electrical machine MG1.
  • the last one is connected to the second rotating electrical machine MG2 and the drive wheels W.
  • the ring gear R1 of the transmission 20 is connected to the carrier C2, the first rotating electrical machine MG1 is connected to the sun gear S2, and the second rotating electrical machine MG2 and the drive wheels W are connected to the ring gear R2.
  • the carrier C ⁇ b> 2 is a rotating element connected to the ring gear R ⁇ b> 1 so as to rotate integrally with the ring gear R ⁇ b> 1 of the transmission 20, and constitutes a power transmission element with the transmission 20.
  • the sun gear S2 is a rotating element that is coupled so as to rotate integrally with the MG1 rotating shaft 12, and constitutes a power transmission element with the first rotating electrical machine MG1.
  • the ring gear R2 is a rotating element connected to the second rotating electrical machine MG2 and the driving wheel W through the following gear group and the like, and constitutes a power transmission element between the second rotating electrical machine MG2 and the driving wheel W. .
  • the counter drive gear 51 that is concentrically arranged and can rotate integrally is connected to the ring gear R2 of the differential device 30.
  • the counter drive gear 51 is in mesh with a counter driven gear 52 having a rotating shaft arranged in parallel.
  • the counter driven gear 52 is in mesh with a reduction gear 53 having a rotating shaft arranged so as to be shifted in parallel.
  • the reduction gear 53 is fixed on the axis of the MG2 rotation shaft 13. Therefore, power is transmitted between the counter driven gear 52 and the second rotating electrical machine MG2 via the reduction gear 53.
  • the reduction gear 53 has a smaller diameter than the counter driven gear 52, and reduces the rotation of the second rotating electrical machine MG ⁇ b> 2 and transmits it to the counter driven gear 52.
  • the counter driven gear 52 is fixed on the axis of the counter shaft 54.
  • this exemplary hybrid vehicle 100 is assumed to be an FF (Front engine Front drive) vehicle, an RR (Rear engine Rear drive) vehicle, an FF vehicle, or an RR vehicle-based four-wheel drive vehicle.
  • a drive pinion gear 55 is fixed on the counter shaft 54.
  • the counter driven gear 52 and the drive pinion gear 55 can rotate together via the counter shaft 54.
  • the drive pinion gear 55 is in mesh with the diff ring gear 57 of the differential device 56.
  • the differential device 56 is coupled to the drive wheels W via left and right drive shafts 58.
  • the hybrid system 1-1 can be made compact by disposing the drive pinion gear 55 and the differential ring gear 57 (that is, the differential device 56) between the second rotating electrical machine MG2 and the reduction gear 53. it can.
  • the overall gear ratio (in other words, the system gear ratio of the hybrid system 1-1) is determined from the gear ratio of the transmission device 20 and the gear ratio of the differential device 30.
  • the system gear ratio is a ratio between input and output in one power transmission device including the transmission device 20 and the differential device 30, and is a ratio of the input side rotational speed to the output side rotational speed of the power transmission device.
  • Ratio reduction ratio
  • the ratio of the rotational speed of the carrier C1 of the transmission 20 to the rotational speed of the ring gear R2 of the differential device 30 is the system speed ratio. Therefore, in this power transmission device, the width of the gear ratio becomes wider than that of the differential device 30 alone constituting the function as a transmission.
  • an integrated ECU (hereinafter referred to as "HVECU") 90 that controls the engine ECU 91 and the MGECU 92 and performs integrated control of the system is provided. These constitute the control device of this system.
  • the HVECU 90 is connected to various sensors such as a vehicle speed sensor, an accelerator opening sensor, an MG1 rotational speed sensor, an MG2 rotational speed sensor, an output shaft rotational speed sensor, and a battery sensor.
  • the HVECU 90 uses the various sensors to determine the vehicle speed, the accelerator opening, the rotational speed of the first rotating electrical machine MG1 (MG1 rotational speed), the rotational speed of the second rotating electrical machine MG2 (MG2 rotational speed), the output shaft of the power transmission device ( For example, the rotational speed of the ring gear R2 of the differential device 30), the SOC (State of Charge) of the secondary battery, and the like are acquired.
  • the HVECU 90 calculates a required driving force, a required power, a required torque, and the like for the hybrid vehicle 100 based on the acquired information. For example, the HVECU 90 calculates the required engine torque, the required MG1 torque, and the required MG2 torque based on the calculated required vehicle driving force. The HVECU 90 transmits the requested engine torque to the engine ECU 91 to be output to the engine ENG, and transmits the requested MG1 torque and the requested MG2 torque to the MGECU 92 to be output to the first rotating electrical machine MG1 and the second rotating electrical machine MG2.
  • the HVECU 90 controls the clutch CL1 and the brake BK1 based on a travel mode described later. At that time, the HVECU 90 outputs the command value (PbCL1) of the supply hydraulic pressure to the clutch CL1 and the command value (PbBK1) of the supply hydraulic pressure to the brake BK1 to the hydraulic pressure adjusting device.
  • the hydraulic pressure adjusting device controls the supply hydraulic pressure according to the command values PbCL1, PbBK1, and engages or disengages the clutch CL1 and the brake BK1.
  • an electric vehicle (EV) traveling mode and a hybrid (HV) traveling mode are set, and the hybrid vehicle 100 can travel in any one of the traveling modes.
  • the EV traveling mode is a traveling mode in which at least one of the first and second rotating electrical machines MG1, MG2 is transmitted to the drive wheels W.
  • the HV traveling mode is a traveling mode capable of performing traveling in which only the power of the engine ENG is transmitted to the driving wheels W and traveling in which the power of the second rotating electrical machine MG2 is transmitted to the driving wheels W in addition to the power of the engine ENG. That's it.
  • FIG. 3 shows an operation engagement table of the hybrid system 1-1 for each travel mode.
  • the circle represents the engaged state
  • the blank represents the released state.
  • the triangle mark indicates that the brake BK1 is disengaged when the clutch CL1 is engaged, and the brake BK1 is engaged when the clutch CL1 is disengaged.
  • “G” indicates that the operating state as a generator is mainly used
  • “M” indicates the operating state as an electric motor. Represents becoming the main.
  • the EV travel mode is divided into a single motor EV mode that uses only the second rotating electrical machine MG2 as a power source, and a dual motor EV mode that uses both the first and second rotating electrical machines MG1 and MG2 as power sources.
  • the single motor EV mode is selected during low load operation, and the dual motor EV mode is selected when higher load operation is required.
  • the HVECU 90 In the single motor EV mode, when the secondary battery can be charged based on the SOC, the HVECU 90 does not necessarily require power consumption by the engine brake, and thus releases both the clutch CL1 and the brake BK1. As a result, the planetary gear mechanism of the transmission 20 is in a neutral state, and each rotating element can perform differential rotation. In this case, the HVECU 90 causes the hybrid vehicle 100 to generate a vehicle driving force in the forward direction by causing the MGECU 92 to output the positive MG2 torque corresponding to the required vehicle driving force to the second rotating electrical machine MG2 in the positive rotation.
  • the forward rotation is the rotation direction of the MG2 rotation shaft 13 and the ring gear R2 of the differential device 30 during forward movement.
  • FIG. 4 shows an alignment chart at the time of forward movement.
  • the HVECU 90 attempts to reduce drag loss by operating the first rotating electrical machine MG1 as a generator. Specifically, the HVECU 90 reduces the drag loss of the first rotating electrical machine MG1 by applying a slight torque to the first rotating electrical machine MG1 to generate electric power and performing feedback control of this MG1 rotational speed to 0 rotation.
  • the first rotating electrical machine MG1 when the first rotating electrical machine MG1 can be maintained at 0 rotation without applying torque to the first rotating electrical machine MG1, reduction of drag loss of the first rotating electrical machine MG1 without applying torque to the first rotating electrical machine MG1. Should be achieved. Further, in order to reduce the drag loss of the first rotating electrical machine MG1, the first rotating electrical machine MG1 may be set to 0 rotation by utilizing the cogging torque or the d-axis lock of the first rotating electrical machine MG1.
  • the d-axis lock refers to controlling the first rotating electrical machine MG1 to 0 rotation by supplying a current that generates a magnetic field for fixing the rotor from the inverter to the first rotating electrical machine MG1.
  • the ring gear R1 of the transmission 20 together with the carrier C2 also rotates forward.
  • the sun gear S1 is idled in a negative rotation
  • the carrier C1 is stopped, and the engine ENG is rotated at 0 rotation. No. Therefore, at the time of this forward movement, the regeneration amount of the first rotating electrical machine MG1 can be increased. Further, at the time of the forward movement, traveling with the engine ENG stopped is possible. Further, during this forward movement, drag loss due to rotation of the engine ENG during EV traveling does not occur, so that fuel consumption (electricity cost) can be improved.
  • both the clutch CL1 and the brake BK1 are released, and the second rotating electrical machine MG2 outputs a negative MG2 torque corresponding to the required vehicle driving force in a negative rotation.
  • the driving force in the reverse direction is generated in the hybrid vehicle 100.
  • the HVECU 90 reduces the drag loss of the first rotating electrical machine MG1 in the same manner as when moving forward.
  • the engine brake is also used in the above driving state in order to discharge the secondary battery. That's fine. Therefore, in this case, as shown in FIG. 3, by engaging only one of the clutch CL1 and the brake BK1, the engine ENG is brought into a rotating state and the engine brake is generated. At that time, the HVECU 90 increases the engine speed under the control of the first rotating electrical machine MG1.
  • the HVECU 90 causes the first rotating electrical machine MG1 and the second rotating electrical machine MG2 to output MG1 torque and MG2 torque corresponding to the required vehicle driving force.
  • the MG1 torque can be output from the ring gear R2.
  • the first rotating electrical machine MG1 can output negative MG2 torque by negative rotation, thereby outputting positive rotation torque from the ring gear R2.
  • negative rotation torque can be output from the ring gear R2.
  • the first rotating electrical machine MG1 and the second rotating electrical machine MG2 are engaged by engaging the clutch CL1 and the brake BK1 together and fixing the carrier C1 of the transmission 20. You may make it drive
  • HV driving mode In the HV traveling mode, traveling is performed by transmitting only the engine torque or the engine torque and the MG2 torque to the drive shaft 58 while taking a reaction force with the first rotating electrical machine MG1.
  • the engine torque transmitted to the drive shaft 58 at that time is so-called engine direct torque, and is mechanically transmitted from the engine ENG to the drive shaft 58 without passing through an electrical path.
  • the HV traveling mode includes a traveling mode in which the transmission 20 is switched to a high speed (hereinafter referred to as “HV high mode”) and a traveling mode in which the transmission 20 is switched to a low speed (hereinafter referred to as “HV low mode”). Mode ”)).
  • the HV high mode capable of reducing power circulation is selected when traveling at a high vehicle speed
  • the HV low mode is selected when traveling at a medium to low vehicle speed.
  • FIG. 6 shows an alignment chart in the HV high mode.
  • FIG. 7 shows an alignment chart in the HV low mode.
  • the differential device 30 is basically in a state where differential rotation can be performed, and the state of the shift stage of the transmission 20 is controlled by controlling the state (engaged state or released state) of the clutch CL1 and the brake BK1. Switching takes place.
  • the HVECU 90 switches the transmission device 20 to a high speed stage by releasing the clutch CL1 and engaging the brake BK1, and controls the engine ENG to output at an increased speed.
  • the HVECU 90 switches the transmission 20 to the low speed stage by engaging the clutch CL1 and releasing the brake BK1, and performs control so that the rotation of the engine ENG is output at a constant speed. .
  • HV mode is used when going backwards.
  • the first rotating electrical machine MG1 is operated as a generator
  • the second rotating electrical machine MG2 is operated as an electric motor
  • the second rotating electrical machine MG2 is rotated in a direction opposite to that during forward travel.
  • the HVECU 90 executes coordinated shift control for simultaneously shifting the transmission 20 and the differential 30 when switching between the HV high mode and the HV low mode.
  • the transmission ratio of either the transmission 20 or the differential 30 is increased and the other transmission ratio is decreased.
  • the HVECU 90 when switching from the HV high mode to the HV low mode, the HVECU 90 is synchronized with the shift to the low speed stage of the transmission 20 so that the system speed ratio in the switching process is kept constant.
  • the gear ratio is changed to the high gear side.
  • the HVECU 90 when switching from the HV low mode to the HV high mode, the HVECU 90 is synchronized with the shift to the high speed stage of the transmission 20 so that the system speed ratio in the switching process is kept constant.
  • the gear ratio of 30 is changed to the low gear side.
  • the HVECU 90 continuously changes the system speed ratio to the low gear side by, for example, speed ratio control of the differential device 30 after switching to the HV low mode.
  • the HVECU 90 continuously changes the system speed ratio to the high gear side by, for example, speed ratio control of the differential device 30.
  • the gear ratio control of the differential device 30 is performed by controlling the number of rotations of the first rotating electrical machine MG1 and the second rotating electrical machine MG2, for example.
  • the transmission 20, the differential 30, the first rotating electrical machine MG1, the clutch CL1, and the brake BK1 constitute a transmission system in the entire system. For this reason, these configurations can be operated as an electric continuously variable transmission in which the system speed ratio is continuously changed by electrically controlling the rotation of the first rotating electrical machine MG1.
  • FIG. 8 is a diagram showing a theoretical transmission efficiency line in the HV traveling mode, and shows a theoretical transmission efficiency line when switching between the HV high mode and the HV low mode.
  • the horizontal axis represents the system transmission ratio
  • the vertical axis represents the theoretical transmission efficiency in the HV traveling mode.
  • the theoretical transmission efficiency line is used. For example, if the speed ratio is the same, a high efficiency travel mode of the HV high mode and the HV low mode is selected.
  • the theoretical transmission efficiency is 1.0 when the power input to the power transmission device is all mechanically transmitted to the counter drive gear 51 without passing through an electrical path.
  • the theoretical transmission efficiency in the HV low mode is 1.0 when the system speed ratio is the speed ratio ⁇ 1.
  • This gear ratio ⁇ 1 is a system gear ratio ( ⁇ 1 ⁇ 1) on the overdrive side.
  • the theoretical transmission efficiency of the HV high mode is 1.0 when the system speed ratio is ⁇ 2.
  • the speed ratio ⁇ 2 is a speed ratio ( ⁇ 2 ⁇ 1) on the higher gear side than the speed ratio ⁇ 1.
  • the system speed ratio is the speed ratio ⁇ 1 or the speed ratio ⁇ 2
  • the electric path due to the reaction force of the first rotating electrical machine MG1 becomes 0, and the counter drive gear 51 is transmitted from the engine ENG only by mechanical power transmission.
  • Power can be transmitted to
  • the speed ratio ⁇ 1 is also referred to as “first mechanical transmission speed ratio ⁇ 1”.
  • the speed ratio ⁇ 2 is also referred to as “second mechanical transmission speed ratio ⁇ 2”.
  • the theoretical transmission efficiency of the HV traveling mode decreases as the system speed ratio becomes a value on the low gear side with respect to the first mechanical transmission speed ratio ⁇ 1.
  • the theoretical transmission efficiency decreases as the system transmission ratio becomes a value on the high gear side with respect to the second mechanical transmission transmission ratio ⁇ 2.
  • the theoretical transmission efficiency is curved to the low efficiency side in the region of the gear ratio between the first machine transmission gear ratio ⁇ 1 and the second machine transmission gear ratio ⁇ 2.
  • the power transmission device of the hybrid system 1-1 has two mechanical points (first mechanical transmission speed ratio ⁇ 1 and second mechanical transmission speed ratio ⁇ 2) on the higher gear side than the system speed ratio of 1.
  • this power transmission device by including the transmission 20, the clutch CL1, and the brake BK1, a mechanical point (first mechanical transmission gear ratio ⁇ 1) when the engine ENG is directly connected to the carrier C2 of the differential device 30 is provided. ), Another mechanical point (second mechanical transmission gear ratio ⁇ 2) can be generated on the high gear side. Therefore, in the hybrid system 1-1, in the HV traveling mode, the transmission efficiency when operating in the high gear can be improved, and the fuel efficiency during traveling at a high vehicle speed can be improved.
  • FIG. 9 shows an example of a correspondence relationship between the vehicle speed, the requested vehicle driving force, and the travel mode.
  • EV traveling is performed mainly when the vehicle speed is low and the required vehicle driving force is low.
  • the EV traveling region is narrowed to a lower load as the vehicle speed increases.
  • the transmission 20 is controlled to an overdrive state (high speed) by disengaging the clutch CL1 and engaging the brake BK1, thereby improving fuel efficiency in HV driving.
  • the clutch CL1 is engaged and the brake BK1 is released.
  • the transmission 20 is controlled to be in a directly connected state (low speed stage) and is caused to travel HV. Even when the vehicle speed is high and the required vehicle driving force is low, the transmission 20 is controlled to be in a directly connected state as the vehicle speed decreases.
  • the HVECU 90 starts the stopped engine ENG when switching from the EV travel mode to the HV travel mode. For example, the HVECU 90 requests the engine ECU 91 to start the engine ENG when it is determined that switching from the EV travel mode to the HV travel mode is necessary due to an increase in the required vehicle driving force or an increase in the vehicle speed.
  • the engine after completion of engine start corresponding to the HV traveling mode is determined.
  • the target gear stage (target gear ratio) of the transmission 20 is determined.
  • a high speed stage (overdrive state) by releasing the clutch CL1 and engaging the brake BK1 is required as the target speed stage (target speed ratio) of the transmission 20 after completion of engine start. (Arrows a and b in FIG. 9).
  • a low speed stage (directly connected state) by engagement of the clutch CL1 and release of the brake BK1 is required as a target speed stage (target speed ratio) of the transmission 20 after completion of engine start. (Arrows c and d in FIG. 9).
  • the transmission 20 When the current EV travel is in the single motor EV mode (no engine brake is required), the transmission 20 is currently in the neutral state, and thus shifts to the target gear position (target gear ratio) corresponding to the HV travel mode after switching. Further, when the current EV travel is the single motor EV mode when the engine brake is used together, the transmission 20 is currently in the high speed or low speed stage, so that it depends on the current gear position and the HV travel mode after switching. If the target gear stage (target gear ratio) is different, the gear is shifted to the target gear stage (target gear ratio).
  • the transmission 20 is in a state in which the clutch CL1 and the brake BK1 are both engaged, and therefore the target gear stage (target gear ratio) corresponding to the HV traveling mode after switching. ).
  • the shift control of the transmission 20 is performed after the start of the engine ENG is completed, so that after the occurrence of a shock accompanying the engine start control, the transmission 20
  • the engine start control includes engine ENG such as engine speed increase control, intake air amount control by throttle valve opening control, fuel injection control, ignition control by spark plug, etc.
  • the speed change operation of the transmission 20 after starting the engine may cause a greater shock than the speed change operation while the engine is stopped.
  • the engagement operation of the clutch CL1 and the brake BK1 is required. Therefore, when switching from the dual motor EV mode that performs the release operation of the clutch CL1, etc.
  • the shift shock is greater than
  • the HVECU 90 of the present embodiment shifts the transmission 20 to the target gear stage (target gear ratio) after completion of engine start in the transmission 20 when the engine is started during EV traveling.
  • target gear stage target gear ratio
  • the HVECU 90 of the present embodiment shifts the transmission 20 to the target gear stage (target gear ratio) after completion of engine start in the transmission 20 when the engine is started during EV traveling.
  • the time when the engine ENG is requested to start in accordance with the driver's accelerator operation or the like that is, after the engine ENG start request is detected and it is determined that the engine ENG needs to be started
  • the ignition finishes It is said at the time of starting.
  • the HVECU 90 starts the engine ENG after starting the shift to the target gear stage (target gear ratio) after completion of the engine start in the transmission 20.
  • the transmission 20 is under engine start control of the clutch CL1 or the brake BK1 to be engaged according to the target shift speed (target gear ratio) (that is, until the engine ENG has been started). ) At least half-engaged.
  • the shock is most likely to occur when the first engagement member and the second engagement member of the clutch CL1 or the brake BK1 in the released state come into contact with each other, and the supply hydraulic pressure is reduced after the half engagement state. This is because even if it is raised, it is difficult for a shock to occur.
  • the transmission device 20 half-engages the clutch CL1 or the brake BK1 to be engaged according to the target gear stage (target gear ratio) during engine start control in order to suppress the occurrence of the two-stage shock with higher accuracy. It is desirable to complete the shift during engine start control.
  • the HVECU 90 determines whether or not the engine ENG needs to be started during the EV traveling (step ST1).
  • this step ST1 it is determined that starting of the engine ENG is necessary when switching from the EV traveling mode to the HV traveling mode is requested, and it is determined that starting of the engine ENG is not necessary when switching is not requested. .
  • this determination is based on the accelerator depression amount by the driver, such as the accelerator opening ⁇ , the throttle opening according to the driver's accelerator operation or the driving request at the time of automatic driving control (during execution of cruise control, etc.) Alternatively, it is executed based on the required vehicle driving force according to the accelerator depression amount and the throttle opening.
  • the accelerator opening ⁇ gradually increases with the accelerator operation of the driver during EV traveling, and the engine ENG starts when the accelerator opening ⁇ increases to a predetermined opening ⁇ 1. Is determined to be necessary. If the HVECU 90 does not determine that the engine ENG needs to be started, the HVECU 90 proceeds to step ST8 and continues the EV travel.
  • the HVECU 90 sets the target gear position of the transmission 20 after the engine is started (after the travel mode is switched) by using the values used in the determination in step ST1 (the accelerator depression amount, the requested vehicle driving force, etc.). Let This setting may be executed together with the determination in step ST1, for example.
  • the target shift stage set here is temporarily set and may be changed according to the accelerator opening change rate ⁇ / t described below.
  • the HVECU 90 determines whether or not the accelerator opening change rate ⁇ / t is greater than a predetermined value A (step ST2). In step ST2, the determination may be made based on the accelerator depression operation speed instead of the accelerator opening change rate ⁇ / t.
  • the accelerator opening change rate ⁇ / t when the accelerator opening change rate ⁇ / t is small, the accelerator opening ⁇ is significantly larger than that at the determination in step ST2, and the required vehicle driving force can be increased more than when the engine ENG is required to be started. It is considered that the nature is low.
  • the accelerator opening change rate ⁇ / t when the accelerator opening change rate ⁇ / t is large, the accelerator opening ⁇ is significantly larger than that at the determination in step ST2, and the required vehicle driving force is greater than that at the time of determining whether the engine ENG needs to be started. Is likely to increase significantly. For example, in the case of switching of the arrow a in FIG.
  • the required vehicle driving force is significantly increased as compared to the present state, so that the target shift stage of the transmission 20 after the engine start is directly connected from the high speed stage in the overdrive state. It may be necessary to change to the lower speed stage. Therefore, in this example, the determination in step ST2 is performed, and it is determined whether or not the target gear position of the transmission 20 after starting the engine may remain set when determining whether or not the engine ENG needs to be started. For this reason, the predetermined value A may be set, for example, from the viewpoint of whether the required vehicle driving force increases significantly as the target gear position of the transmission 20 changes. In this example, when the vehicle speed is lower than in the case of the switching of the arrow a in FIG.
  • the predetermined value A may be set to a larger value as the vehicle speed is higher in the high vehicle speed range.
  • the step ST4 described later is performed. Then, the target gear position of the transmission 20 is determined. On the other hand, when the HVECU 90 determines that the accelerator opening change rate ⁇ / t is larger than the predetermined value A, the accelerator depression amount is further increased, and the target gear position of the transmission 20 may be changed. Then, a correction amount of a value (required vehicle driving force or the like) used when determining the target gear position of the transmission 20 is calculated (step ST3).
  • the correction amount is set so that the larger the accelerator opening change rate ⁇ / t is, the larger the correction amount is, as shown in FIG.
  • This correction amount may be a correction value added to a value used when determining the target gear position of the transmission 20 after the engine is started, or may be a correction coefficient multiplied to the value.
  • the HVECU 90 determines the target gear position of the transmission 20 after the engine is started (after the travel mode is switched) (step ST4).
  • step ST4 if the accelerator opening change rate ⁇ / t is equal to or less than the predetermined value A, the target shift stage set when determining whether or not the engine ENG needs to be started is determined as the target shift stage of the transmission 20 after starting the engine. . Further, when the correction amount is calculated in step ST3, the value used when determining the target gear position of the transmission 20 is corrected with this correction amount, and the transmission after the engine is started based on the corrected value. 20 target shift speeds are determined. For example, when the required vehicle driving force at the time of determining whether the engine ENG needs to be started is corrected, the HVECU 90 compares the corrected required vehicle driving force with the current vehicle speed against the map of FIG.
  • the HVECU 90 determines the high speed stage as the target gear stage of the transmission 20 after starting the engine.
  • the HVECU 90 determines the low gear as the target gear of the transmission 20 after starting the engine.
  • the HVECU 90 determines whether or not the speed change of the transmission 20 is necessary (step ST5).
  • the determined target shift speed may be the same as the actual shift speed during EV travel. Therefore, in this example, the target shift speed determined in step ST4 is compared with the actual shift speed during EV traveling to determine whether or not the transmission 20 needs to be shifted. In the time chart of FIG. 11, since a shift from the neutral state to the overdrive state is required, it is determined that the shift is necessary.
  • step ST7 When the HVECU 90 determines that the shift is not necessary, the HVECU 90 proceeds to step ST7 to be described later, and executes start control of the engine ENG. Since this exemplary engine ENG is a gasoline engine, in this case, the ignition control that is performed last among the various controls in the engine start control is executed. On the other hand, when the HVECU 90 determines that a shift is necessary, the HVECU 90 starts shifting to the target shift stage of the transmission 20 (step ST6).
  • step ST6 based on the target shift speed, control is started so that only one of the clutch CL1 and the brake BK1 is engaged.
  • the shift control of the transmission 20 is started by starting to increase the BK1 hydraulic pressure.
  • the BK1 hydraulic pressure exceeds a predetermined value, the engaging members of the brake BK1 actually start to engage with each other, and thus the speed change operation of the transmission 20 actually starts with this engagement.
  • the BK1 hydraulic pressure is further increased when the brake BK1 shifts from the half-engaged state to the fully-engaged state.
  • step ST7 the ignition control that is performed last among the various controls in the engine start control is executed.
  • the HVECU 90 thus increases the rotational speed of the first rotating electrical machine MG1 after the transmission 20 is controlled to be in a state where power can be transmitted, and the rotational speed increases with an increase in the rotational speed of the first rotating electrical machine MG1.
  • ignition control is performed.
  • the increase in the rotational speed of the first rotating electrical machine MG1 starts at least after the clutch CL1 or the brake BK1 is in a half-engaged state. That is, the increase in the rotational speed may be started after the clutch CL1 or the brake BK1 is completely engaged.
  • the HVECU 90 performs the first operation before the engagement (that is, during the control to the state where the transmission 20 can transmit power). You may start raising the rotation speed of rotary electric machine MG1. In this case, since the rotation speed of the engine ENG is increased by the rotation of the first rotating electrical machine MG1 when the transmission 20 is in a state where power can be transmitted, the engine ENG with the increased rotation speed is Ignition control is performed when the engine speed rises to a speed at which ignition is possible.
  • the HVECU 90 ignites the engine ENG and adjusts the MG1 torque and the MG2 torque so as to suppress fluctuations in the vehicle driving force accompanying the generation of the engine torque.
  • the MG1 rotational speed is stopped at the engine ignition rotational speed, and negative MG1 torque is generated in the first rotating electrical machine MG1, and the MG2 torque of the second rotating electrical machine MG2 is decreased while being positive.
  • the current shift speed (speed ratio) of the transmission 20 is the target shift speed (target speed) after the engine start is completed. If it is different from the gear ratio, the gear shift to the target gear stage (target gear ratio) is started, and then the engine speed is increased by the MG1 torque to the engine speed that can be ignited. A shift to the target gear stage (target gear ratio) after the engine start is completed is executed. For this reason, in this hybrid system 1-1 and the power transmission device, the shift shock of the transmission 20 is generated at the same time as the shock accompanying the start of the engine ENG, so each shock occurs twice in succession. Generation of a two-stage shock can be avoided.
  • the hybrid system 1-1 and the power transmission device since the transmission 20 is shifted when the engine is started, the shift shock is smaller than when the transmission 20 is shifted immediately after the engine is started. Therefore, the hybrid system 1-1 and the power transmission device can suppress the number of shocks generated and the magnitude of the shock between when the engine start request is made and immediately after the engine start. Therefore, in the hybrid system 1-1 and the power transmission device, the engine start and the shift of the transmission 20 to the target gear stage (target gear ratio) after completion of the engine start are completed in a short time while reducing the shock. Therefore, the required vehicle driving force can be generated with better responsiveness than shifting the transmission 20 immediately after the engine is started, and deterioration of drivability can be suppressed.
  • the engine speed is increased by the first rotating electrical machine MG1, but when the engine speed has already increased to a speed that can be ignited, the first rotating electrical machine MG1 It is desirable not to execute the increase in the rotational speed for raising the engine rotational speed. For example, this can improve fuel consumption (electric cost).
  • the clutch CL1 or the brake BK1 when the clutch CL1 or the brake BK1 is in the half-engaged state, the engine speed of the first rotating electrical machine MG1 is increased before the clutch CL1 or the brake BK1 is completely engaged (that is, before the shift of the transmission 20 is completed). It is desirable to start lifting.
  • this shift line is obtained by experiments and simulations based on the viewpoints of engine start (shock associated with engine ENG start) and gear shift of transmission 20 (shift shock, responsiveness until completion of shift, etc.). Can do.
  • the accelerator pedal is stepped on exceeding a predetermined opening ⁇ 2 (> ⁇ 1), and the required vehicle driving force is increased, so that the target shift stage after completion of engine start during the shift is the high speed stage.
  • ⁇ 2 > ⁇ 1
  • the HVECU 90 responds to the accelerator opening ⁇ as described above when the accelerator opening ⁇ becomes the predetermined opening ⁇ 2 or when the required vehicle driving force has a magnitude corresponding to the predetermined opening ⁇ 2. Based on the requested vehicle driving force and the correction amount corresponding to the accelerator opening change rate ⁇ / t, a target shift stage after completion of engine start of the transmission 20 is determined, and the new target shift stage and the current target shift stage are determined. It is determined that the target gear stage has been changed from the high speed stage to the low speed stage. Thus, the HVECU 90 releases the brake BK1 during the engagement operation before full engagement by decreasing the BK1 hydraulic pressure according to the high speed stage and increasing the CL1 hydraulic pressure according to the low speed stage, and The released clutch CL1 is engaged. In the hybrid system 1-1, the first rotating electrical machine MG ⁇ b> 1 and the second rotating electrical machine MG ⁇ b> 2 continue to take a reaction force so far as in the above-described embodiment.
  • the CL1 oil pressure is increased when it is determined that the target shift speed is changed, but the BK1 oil pressure is not immediately decreased, and the BK1 oil pressure is maintained at the magnitude at the time of the change determination.
  • the accelerator pedal may be returned immediately after the accelerator pedal is depressed, and the target gear position may be changed again.
  • the brake BK1 is Engagement, that is, shifting to a high speed stage can be performed with good responsiveness. The holding of the BK1 hydraulic pressure is continued until the accelerator pedal is fully depressed.
  • the HVECU 90 determines that the change to the low speed stage is confirmed, and decreases the BK1 hydraulic pressure.
  • the brake BK1 changes from the half-engaged state to the released state at a predetermined hydraulic pressure as the BK1 hydraulic pressure decreases.
  • the hybrid system 1-1 raises the rotation of the first rotating electrical machine MG1 in the positive direction even when the clutch CL1 is still in the half-engaged state.
  • the rotation of the engine ENG is lifted.
  • the positive MG1 torque is increased and output to the first rotating electrical machine MG1, and the MG2 torque is increased by the reaction force so that the second rotating electrical machine MG2 receives the reaction force.
  • the HVECU 90 ignites the engine ENG and adjusts the MG1 torque and the MG2 torque so as to suppress fluctuations in the vehicle driving force accompanying the generation of the engine torque. To do.
  • the MG1 rotational speed is stopped at the engine ignition rotational speed, and negative MG1 torque is generated in the first rotating electrical machine MG1, and the MG2 torque of the second rotating electrical machine MG2 is decreased while being positive.
  • the clutch CL1 is fully engaged, and the shift to the target gear stage after the engine start of the transmission 20 is completed.
  • the hybrid system 1-1 and the power transmission device when the target gear position (target gear ratio) after completion of the engine start is changed during the shift of the transmission 20, the current shift is stopped immediately. Since the shift to the new target shift stage (target shift ratio) is started, the shift can be executed when the engine is started. Therefore, even in this case, the hybrid system 1-1 and the power transmission device generate the shift shock of the transmission 20 at the same time as the shock accompanying the start of the engine ENG. Can be avoided. Also in this hybrid system 1-1 and the power transmission device, since the transmission 20 is shifted when the engine is started, the shift shock is smaller than when the transmission 20 is shifted immediately after the engine is started.
  • the hybrid system 1-1 and the power transmission device are configured so that the engine start request is made after the engine start request is made even if the target gear stage (target gear ratio) after completion of the engine start is changed during the transmission 20 shift.
  • the number of shock occurrences and the magnitude of the shock immediately before the start can be suppressed to a low level, and further deterioration of drivability can be suppressed.
  • the gear shift to the new target gear stage (target gear ratio) of the transmission 20 may not be completed before the ignition of the engine ENG.
  • the occurrence of a shift shock immediately after the engine is started can be suppressed by operating the clutch CL1 to at least a half-engaged state before the ignition of the engine ENG.
  • the target shift speed (target shift speed) is determined only when the required vehicle driving force is larger than a predetermined value when determining the change of the target shift speed (target shift ratio). Change the gear ratio. Therefore, in the hybrid system 1-1 and the power transmission device, if the required vehicle driving force is larger than a predetermined value, the target gear stage (target gear ratio) is allowed to be changed during the shift of the transmission 20 at the time of engine start. If the required vehicle driving force is less than or equal to the predetermined value, the change of the target gear stage (target gear ratio) during the gear shift is prohibited.
  • the predetermined value is a required vehicle driving force when the shift shock immediately after the engine is started is allowable, and a maximum value may be set.
  • the required vehicle driving force of the shift line indicated by the broken line in FIG. 9 may be used as the predetermined value.
  • the term “allowed” refers to a condition that, for example, a shock does not cause the driver to feel uncomfortable.
  • the hybrid system 1-1 shifts the transmission 20 to a new target gear stage (target gear ratio) after the change when the engine is started. As a result, the hybrid system 1-1 can finish the engine start and the shift of the transmission 20 in a short time, and thus avoids the occurrence of a large shift shock immediately after the engine is started and the required vehicle driving force is reduced. Output responsiveness can be improved.
  • the hybrid system 1-1 continues the shift of the original target gear stage (target gear ratio) at the time of engine start, and after this shift is completed, To a target speed (target speed ratio).
  • whether or not it is necessary to change to a new target gear stage (target gear ratio) is determined based on the magnitude of the required vehicle driving force, but the determination may be made based on the accelerator opening ⁇ , for example. Good. That is, in this hybrid system 1-1, if the accelerator opening ⁇ is larger than the predetermined opening ⁇ 3 (accelerator opening ⁇ corresponding to the predetermined value of the required vehicle driving force), the transmission 20 at the time of engine start-up If the change of the target gear stage (target gear ratio) is allowed during the shift and the accelerator opening ⁇ is equal to or smaller than the predetermined opening ⁇ 3, the change of the target gear stage (target gear ratio) during the gear shift is prohibited. Good.
  • the transmission 20 when the required vehicle driving force is larger than the predetermined value described above or when the accelerator opening ⁇ is larger than the predetermined opening ⁇ 3, the transmission 20 is operated at the target shift after completion of the engine start.
  • the target shift stage target shift after completion of engine start after completion of engine start
  • the transmission device 20 may be shifted to a ratio. In this case, if the required vehicle driving force is greater than a predetermined value, the output responsiveness of the required vehicle driving force can be improved while avoiding the occurrence of a large shift shock immediately after the engine is started.
  • the transmission 20 is not shifted when the engine is started, and the shift to the target gear stage (target gear ratio) is performed after the completion of the engine start. It is possible to avoid the occurrence of a large shift shock immediately after.
  • the HVECU 90 determines whether the target gear position of the transmission 20 is the low speed stage or the high speed stage (step ST11). In the time chart of FIG. 15, the target gear position after the completion of engine start is changed from the high speed stage to the low speed stage.
  • the HVECU 90 determines whether or not the engine ENG is being started (step ST12).
  • starting refers to a state in which the engine speed at the time of starting the engine is greater than zero. Therefore, if it is determined that the engine is being started, if the transmission 20 has already entered the speed change operation and the transmission 20 during EV traveling is in the neutral state, the clutch CL1 or the brake BK1 is at least half-engaged. It turns out that it is.
  • step ST14 the shift to the target shift stage is started. However, if the shift of the transmission 20 has started and the clutch CL1 or the brake BK1 is in a half-engaged state, The shifting operation is continued.
  • step ST13 the HVECU 90 determines whether or not the accelerator opening ⁇ is larger than the predetermined opening ⁇ 4 (> ⁇ 1) (step ST13).
  • the determination in step ST13 is for observing whether or not there is a change in the target shift stage of the transmission 20 during the shift.
  • the predetermined opening ⁇ 4 may be determined according to the vehicle speed.
  • This predetermined opening degree ⁇ 4 is determined based on the vehicle speed from the map of FIG. 16, for example.
  • the transmission 20 is shifted at the time of engine start with a smaller accelerator opening ⁇ as the vehicle speed is lower.
  • the determination is made based on the accelerator opening degree ⁇ .
  • the same determination may be performed using the requested vehicle driving force corresponding to the accelerator opening degree ⁇ .
  • the HVECU 90 changes to the target gear position of the transmission 20 during shifting. Since there is not, it progresses to step ST15 mentioned later.
  • step ST14 when the accelerator opening ⁇ is larger than the predetermined opening ⁇ 4 or the required vehicle driving force is larger than a predetermined value, the HVECU 90 performs a shift to the target gear position of the transmission 20 (step ST14).
  • step ST14 when the determination in step ST13 is made, the speed is changed to a new target shift stage after the change.
  • the HVECU 90 determines whether or not the engine speed has increased to an ignitable speed (step ST15). That is, here, it is determined whether or not the engine speed is equal to or higher than the speed that allows the engine power to be increased.
  • the HVECU 90 once ends this calculation process.
  • the HVECU 90 increases the engine torque (step ST16). At this time, if the engine ENG is not yet ignited, the engine torque is increased after the engine ENG is ignited.
  • the engine torque increase amount that can guarantee the inertia torque during the shift is calculated, and the engine power corresponding to this is output.
  • the engine torque increase amount increases as the vehicle speed increases as shown in FIG. This is because the higher the vehicle speed, the greater the change in the number of revolutions required for shifting (such as the rotational difference between the first engaging member and the second engaging member in the brake BK1 or clutch CL1), and the shifting time is not significantly delayed. This is because a large engine torque is required.
  • the amount of increase in engine torque is greater at the low speed stage than at the high speed stage.
  • the engine torque increase amount may be zero when the vehicle speed is close to the shift line (for example, the shift line from the overdrive state to the direct connection state shown by the broken line in FIG. 17).
  • the increase in the engine torque is started with the ignition of the engine ENG, for example, and is continued until the clutch CL1 approaches full engagement.
  • the engine torque is increased until the CL1 hydraulic pressure is increased from the half-engaged state toward the complete engagement.
  • the new gear after the change is changed.
  • the engine torque at the time of shifting is increased, so that the output responsiveness of the requested vehicle driving force after the gear shifting is improved. be able to.
  • the engine torque is increased during the shift of the transmission 20, even if the target shift stage (target transmission ratio) is not changed. Shortening can be achieved, and the output responsiveness of the requested vehicle driving force after this shift can be improved.
  • the hybrid system 1-2 includes an engine ENG, a first rotating electrical machine MG1, and a second rotating electrical machine MG2 as power sources, and further includes a transmission 20, a differential device 30, and a transmission.
  • a power transmission device having an adjustment device 40 is provided.
  • Each power source is the same as that of the hybrid system 1-1.
  • the power transmission device has the following structural differences with respect to the power transmission device of the hybrid system 1-1.
  • the power transmission device of the hybrid system 1-2 is different in the arrangement of the transmission device 20 and the differential device 30 connected in series, their connection form, and the like.
  • the transmission 20 includes a planetary gear mechanism (specifically, a single pinion type planetary gear mechanism) including a plurality of rotating elements capable of differential rotation.
  • the sun gear S1 is connected to the brake BK1 of the transmission adjusting device 40.
  • the clutch CL1 of the speed change adjusting device 40 is interposed between the sun gear S1 and the carrier C1.
  • the carrier C1 is connected to the differential device 30 and becomes a second power transmission element that bears power transmission to and from the differential device 30.
  • the carrier C1 since the engine ENG is connected to the differential device 30, the carrier C1 also functions as a first power transmission element that bears power transmission to the engine ENG.
  • the ring gear R1 of the transmission 20 serves as an output of the power transmission device including the transmission 20 and the differential device 30, and the second rotating electrical machine MG2 and the driving wheels are connected via the counter drive gear 51 and the like. Connected to W.
  • the ring gear R1 rotates integrally with the counter drive gear 51.
  • the differential device 30 includes a planetary gear mechanism (specifically, a single pinion type planetary gear mechanism) including a plurality of rotating elements capable of differential operation. Also in this example, the sun gear S2 is connected to the MG1 rotation shaft 12.
  • a planetary gear mechanism specifically, a single pinion type planetary gear mechanism
  • the carrier C2 is connected to the engine ENG, and the carrier C2 and the engine rotation shaft 11 can be rotated together.
  • the ring gear R2 is connected to the carrier C1 of the transmission 20, and the ring gear R2 and the carrier C1 can be rotated together.
  • FIG. 19 shows an operation engagement table of the hybrid system 1-2.
  • the circles and the like are the same as those in FIG.
  • both the clutch CL1 and the brake BK1 may be released, and the vehicle may be driven only by the power of the second rotating electrical machine MG2, or both the clutch CL1 and the brake BK1 are engaged.
  • the carrier C ⁇ b> 1 of the transmission 20 may be fixed to run with power from both the first rotating electrical machine MG ⁇ b> 1 and the second rotating electrical machine MG ⁇ b> 2.
  • the hybrid system 1-2 uses the HV high mode and the HV low mode in accordance with the vehicle speed. Therefore, since the hybrid system 1-2 also has two mechanical points, in this HV traveling mode, the transmission efficiency when operating in high gear can be improved, and the fuel efficiency during traveling at high vehicle speeds can be improved. Can be improved.
  • the clutch CL1 In the HV high mode, the clutch CL1 is disengaged and the brake BK1 is engaged, so that the transmission 20 is switched to the high speed stage, and the engine ENG is controlled to increase in speed and output.
  • the clutch CL1 In the HV low mode, the clutch CL1 is engaged and the brake BK1 is released, so that the transmission 20 is switched to the low speed stage and the rotation of the engine ENG is output at a constant speed.
  • the hybrid system 1-2 when the mode is switched between the HV high mode and the HV low mode, the coordinated shift control is performed in which the transmission 20 and the differential 30 are simultaneously shifted. Therefore, this hybrid system 1-2 can be operated as an electric continuously variable transmission in which the system speed ratio is continuously changed by electrically controlling the rotation of the first rotating electrical machine MG1.
  • the first rotating electrical machine MG1 is operated as a generator and the second rotating electrical machine MG2 is operated as an electric motor, and the second rotating electrical machine MG2 is rotated in the opposite direction to that during forward travel.
  • the two-stage transmission 20 is illustrated, but the transmission 20 may have three or more stages, and is a continuously variable transmission. It may be.
  • the transmission 20 may have a plurality of shift stages configured by, for example, a combination of a plurality of planetary gear mechanisms and an engagement device (brake or clutch).
  • a stepped automatic transmission may be used.
  • the transmission 20 may be, for example, a belt type or a ball planetary type. Regardless of which form of transmission 20 is applied, its input / output shafts are respectively a first power transmission element and a second power transmission element.
  • the hybrid vehicles 100 and 101 that perform charging by regenerative operation using the power of the engine ENG and the like are illustrated, but the embodiment and modification 1-4 described above.
  • the technology may be applied to a plug-in hybrid vehicle that can be charged by an external power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 エンジン回転軸(11)が接続されたキャリア(C1)を有する変速装置(20)と、変速装置(20)のリングギヤ(R1)とMG1回転軸(12)とMG2回転軸(13)及び駆動輪(W)とに個別に接続された複数の回転要素を有する差動装置(30)と、キャリア(C1)とリングギヤ(R1)との間で動力伝達できないニュートラル状態又はその間で動力伝達可能な状態へと変速装置(20)を制御可能な変速調整装置(40)と、EV走行中にエンジン(ENG)を始動させる場合に、ニュートラル状態の変速装置(20)をキャリア(C1)とリングギヤ(R1)との間で動力伝達可能な状態に制御する第1工程と、第1回転電機(MG1)の回転数を上昇させる第2工程と、第1回転電機(MG1)の回転数の上昇に伴い回転数が持ち上げられたエンジン(ENG)の始動制御を行う第3工程と、を有するHVECU(90)と、を備えること。

Description

ハイブリッド車両の動力伝達装置及びハイブリッドシステム
 本発明は、機関と回転電機を動力源として用いるハイブリッド車両の動力伝達装置及びハイブリッドシステムに関する。
 従来、この種のハイブリッドシステムとしては、機関と2つの回転電機と動力分配機構(遊星歯車機構)とを備えたものが知られている。このハイブリッドシステムにおいては、動力分配機構の夫々の回転要素に、機関の回転軸と第1回転電機の回転軸と第2回転電機の回転軸及び駆動輪とが接続される。下記の特許文献1には、その機関の回転軸と動力分配機構の回転要素との間に、一対の第1及び第2の遊星歯車機構からなる差動装置とクラッチと2つのブレーキとを介在させたハイブリッドシステムが開示されている。その差動装置は、機関の回転を変速させる変速装置として用いられている。クラッチは、一方の係合部が機関の回転軸と第1遊星歯車機構のキャリアとに接続され、他方の係合部が第1遊星歯車機構のリングギヤに接続されている。その第1遊星歯車機構においては、キャリアとサンギヤとが夫々に第2遊星歯車機構のサンギヤとリングギヤとに接続されている。その第1遊星歯車機構のサンギヤと第2遊星歯車機構のリングギヤは、動力分配機構のキャリアに接続されている。第1ブレーキは、第1遊星歯車機構のリングギヤとクラッチの他方の係合部の回転を停止させることができるものである。第2ブレーキは、第2遊星歯車機構のキャリアの回転を停止させることができるものである。このハイブリッドシステムでは、クラッチの係合及び各ブレーキの解放によって中負荷と高負荷時のアンダードライブモード(UDモード)となり、クラッチ及び第2ブレーキの解放及び第1ブレーキの係合によって軽負荷時のオーバードライブモード(ODモード)となり、クラッチ及び第1ブレーキの解放及び第2ブレーキの係合によって後退モードとなる。
特開2009-190694号公報
 ところで、従来のハイブリッドシステムにおいては、機関と第2回転電機とを動力源として利用するが、第1回転電機の出力は駆動輪に伝達されない。これ故、機関と2つの回転電機とを夫々に動力源として用いる為には、これに適した構成にすることが好ましい。しかしながら、その構成如何では、回転電機の出力だけを用いた電気自動車(EV)走行中に機関を始動させた場合、その始動後に振動(変速ショック)を発生させる虞がある。
 そこで、本発明は、かかる従来例の有する不都合を改善し、振動の発生を抑えたEV走行中の機関始動が可能なハイブリッド車両の動力伝達装置及びハイブリッドシステムを提供することを、その目的とする。
 上記目的を達成する為、本発明に係るハイブリッド車両の動力伝達装置は、機関の回転軸が接続された第1動力伝達要素を有する変速装置と、前記変速装置の第2動力伝達要素に接続された回転要素と第1回転電機の回転軸に接続された回転要素と第2回転電機の回転軸及び駆動輪に接続された回転要素とを含む差動回転可能な複数の回転要素を有する差動装置と、前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達できないニュートラル状態又は当該第1動力伝達要素と当該第2動力伝達要素との間で動力伝達可能な状態へと前記変速装置を制御可能な変速調整装置と、前記第1及び第2の回転電機の内の少なくとも1つの動力を前記駆動輪に伝えるEV走行中に前記機関を始動させる場合に、ニュートラル状態の前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達可能な状態に制御する第1工程と、前記第1回転電機の回転数を上昇させる第2工程と、該第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御を行う第3工程と、を有する制御装置と、を備えることを特徴としている。
 また、上記目的を達成する為、本発明に係るハイブリッド車両の動力伝達装置は、機関の回転軸が接続された第1回転要素と第1回転電機の回転軸が接続された第2回転要素とを含む差動回転可能な複数の回転要素を有する差動装置と、前記差動装置の第3回転要素が接続された第1動力伝達要素と第2回転電機の回転軸及び駆動輪が接続された第2動力伝達要素を有する変速装置と、前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達できないニュートラル状態又は当該第1動力伝達要素と当該第2動力伝達要素との間で動力伝達可能な状態へと前記変速装置を制御可能な変速調整装置と、前記第1及び第2の回転電機の内の少なくとも1つの動力を前記駆動輪に伝えるEV走行中に前記機関を始動させる場合に、ニュートラル状態の前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達可能な状態に制御する第1工程と、前記第1回転電機の回転数を上昇させる第2工程と、該第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御を行う第3工程と、を有する制御装置と、を備えることを特徴としている。
 その第3工程における前記機関の始動制御は、該機関への点火制御であることが望ましい。
 また、上記目的を達成する為、本発明に係るハイブリッドシステムは、機関と、第1回転電機と、第2回転電機と、前記機関の回転軸が接続された第1動力伝達要素を有する変速装置と、前記変速装置の第2動力伝達要素に接続された回転要素と前記第1回転電機の回転軸に接続された回転要素と前記第2回転電機の回転軸及び駆動輪に接続された回転要素とを含む差動回転可能な複数の回転要素を有する差動装置と、前記第1及び第2の回転電機の内の少なくとも1つの動力を前記駆動輪に伝えてEV走行する場合に、前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達できないニュートラル状態に制御し、該EV走行中に前記機関を始動させる場合、前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達可能な状態に制御する変速調整装置と、前記EV走行中に前記機関を始動させる場合、前記変速装置が前記動力伝達可能な状態に制御された後又は当該状態への制御中に、前記第1回転電機の回転数を上昇させる回転電機制御装置と、前記EV走行中に前記機関を始動させる場合、前記第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御を行う機関制御装置と、を備えることを特徴としている。
 また、上記目的を達成する為、本発明に係るハイブリッドシステムは、機関と、第1回転電機と、第2回転電機と、前記機関の回転軸が接続された第1回転要素と前記第1回転電機の回転軸が接続された第2回転要素とを含む差動回転可能な複数の回転要素を有する差動装置と、前記差動装置の第3回転要素が接続された第1動力伝達要素と前記第2回転電機の回転軸及び駆動輪が接続された第2動力伝達要素を有する変速装置と、前記第1及び第2の回転電機の内の少なくとも1つの動力を前記駆動輪に伝えてEV走行する場合に、前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達できないニュートラル状態に制御し、該EV走行中に前記機関を始動させる場合、前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達可能な状態に制御する変速調整装置と、前記EV走行中に前記機関を始動させる場合、前記変速装置が前記動力伝達可能な状態に制御された後又は当該状態への制御中に、前記第1回転電機の回転数を上昇させる回転電機制御装置と、前記EV走行中に前記機関を始動させる場合、前記第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御を行う機関制御装置と、を備えることを特徴としている。
 前記第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御は、該機関への点火制御であることが望ましい。
 ここで、EV走行中に前記機関を始動させる場合の前記第1動力伝達要素と前記第2動力伝達要素との間での動力伝達が可能な状態への制御とは、前記変速装置を当該変速装置における前記機関の始動完了後の目標変速比又は目標変速段へと変速させる変速制御であることが望ましい。
 また、前記変速装置は、前記機関の始動完了までに前記目標変速比又は前記目標変速段への変速を完了させることが望ましい。
 また、前記変速装置は、車速、アクセル操作量、スロットル開度又はアクセル操作速度の内の少なくとも1つに応じた前記目標変速比又は前記目標変速段への変速を行うことが望ましい。
 また、前記変速装置は、前記機関の始動時に要求車両駆動力が変化した場合、該変化後の要求車両駆動力に応じた前記機関の始動完了後の新たな目標変速比又は新たな目標変速段への変速を行うことが望ましい。
 また、前記制御装置は、前記機関の始動時に前記目標変速比又は前記目標変速段への変速が完了しない場合、該機関の出力トルクを増加させることが望ましい。
 また、前記変速装置は、要求車両駆動力が所定値以上の場合、前記目標変速比又は前記目標変速段への変速を行い、前記要求車両駆動力が前記所定値よりも小さい場合、前記目標変速比又は前記目標変速段への変速を行わないことが望ましい。
 本発明に係るハイブリッド車両の動力伝達装置及びハイブリッドシステムは、機関始動時に変速装置の変速を実行して、機関始動時に変速に伴うショックを発生させるので、機関始動後の変速動作による2段ショックの発生を抑えることができる。
図1は、本発明に係るハイブリッド車両の動力伝達装置及びハイブリッドシステムの構成を示すスケルトン図である。 図2は、実施例の入出力関係図である。 図3は、実施例のハイブリッド車両の動力伝達装置及びハイブリッドシステムの作動係合表を示す図である。 図4は、単独モータEVモードに係る共線図である。 図5は、両モータEVモードに係る共線図である。 図6は、HVハイモードに係る共線図である。 図7は、HVローモードに係る共線図である。 図8は、理論伝達効率線を示す図である。 図9は、EV走行領域とHV走行領域とを説明する図である。 図10は、実施例におけるEV走行中のエンジン始動時の動作を説明するフローチャートである。 図11は、実施例におけるEV走行中のエンジン始動時の動作を説明するタイムチャートである。 図12は、補正量の一例を示す図である。 図13は、変形例1におけるEV走行中のエンジン始動時の動作を説明するタイムチャートである。 図14は、変形例3におけるEV走行中のエンジン始動時の動作を説明するフローチャートである。 図15は、変形例3におけるEV走行中のエンジン始動時の動作を説明するタイムチャートである。 図16は、所定開度の一例を示す図である。 図17は、エンジントルク増加量の一例を示す図である。 図18は、変形例4のハイブリッド車両の動力伝達装置及びハイブリッドシステムの構成を示すスケルトン図である。 図19は、変形例4のハイブリッド車両の動力伝達装置及びハイブリッドシステムの作動係合表を示す図である。
 以下に、本発明に係るハイブリッド車両の動力伝達装置及びハイブリッドシステムの実施例を図面に基づいて詳細に説明する。尚、この実施例によりこの発明が限定されるものではない。
[実施例]
 本発明に係るハイブリッド車両の動力伝達装置及びハイブリッドシステムの実施例を図1から図19に基づいて説明する。
 図1の符号1-1は、本実施例のハイブリッドシステムを示す。また、図1の符号100は、このハイブリッドシステム1-1が搭載されたハイブリッド車両を示す。
 ハイブリッドシステム1-1は、エンジンENGと第1回転電機MG1と第2回転電機MG2とを動力源として備える。
 エンジンENGは、エンジン回転軸(クランクシャフト)11から機械的な動力(エンジントルク)を出力する内燃機関や外燃機関等の機関である。このエンジンENGは、その動作が図2に示す機関制御装置としての電子制御装置(以下、「エンジンECU」と云う。)91によって制御される。そのエンジンECU91は、例えば、電子スロットル弁の開度制御、点火信号の出力による点火制御、燃料の噴射制御等を行って、エンジンENGの出力トルク(以下、「エンジントルク」と云う。)を制御する。
 第1回転電機MG1と第2回転電機MG2は、力行駆動時の電動機(モータ)としての機能と、回生駆動時の発電機(ジェネレータ)としての機能と、を有する電動発電機(モータ/ジェネレータ)である。これら第1及び第2の回転電機MG1,MG2は、その動作が図2に示す回転電機制御装置としての電子制御装置(以下、「MGECU」と云う。)92によって制御される。第1及び第2の回転電機MG1,MG2は、インバータ(図示略)を介して二次電池(図示略)に接続されており、夫々の回転軸(MG1回転軸12、MG2回転軸13)に入力された機械エネルギ(回転トルク)を電気エネルギに変換して、二次電池に蓄電させることができる。また、第1及び第2の回転電機MG1,MG2は、二次電池から供給された電気エネルギ又は他方の回転電機(第2及び第1の回転電機MG2,MG1)が生成した電気エネルギを機械エネルギ(回転トルク)に変換し、夫々の回転軸(MG1回転軸12、MG2回転軸13)から機械的な動力(出力トルク)として出力することができる。MGECU92は、例えば、第1回転電機MG1や第2回転電機MG2に対して供給する電流値を調整し、第1回転電機MG1の出力トルク(以下、「MG1トルク」と云う。)や第2回転電機MG2の出力トルク(以下、「MG2トルク」と云う。)を制御する。
 更に、このハイブリッドシステム1-1には、その各動力源の相互間における動力伝達、そして、夫々の動力源と駆動輪Wとの間で動力伝達を行うことが可能な動力伝達装置が設けられている。その動力伝達装置は、直列接続された変速装置20と差動装置30とを備える。この例示のハイブリッドシステム1-1は、エンジン回転軸11とMG1回転軸12とを同心に配置し、且つ、これらに対して間隔を空けて平行にMG2回転軸13を配置した複軸式のものである。このハイブリッドシステム1-1は、エンジンENG側に変速装置20が配置され、第1回転電機MG1側に差動装置30が配置されている。
 変速装置20は、エンジンENGから入力された回転を変速して差動装置30側に伝える又は差動装置30から入力された回転を変速してエンジンENGに伝えることができる。この変速装置20は、エンジンENGが接続され、このエンジンENGとの間の動力伝達を担う第1動力伝達要素と、差動装置30が接続され、この差動装置30との間の動力伝達を担う第2動力伝達要素と、を有する。その第1動力伝達要素とは、エンジンENGに接続される回転軸(第1回転軸)又は後述する回転要素のことである。また、第2動力伝達要素とは、差動装置30に接続される回転軸(第2回転軸)又は後述する回転要素のことである。
 ここで例示する変速装置20は、差動回転が可能な複数の回転要素からなる遊星歯車機構を備える。その遊星歯車機構としては、シングルピニオン型のもの、ダブルピニオン型のもの、ラビニヨ型のもの等を適用可能である。この例示の変速装置20は、シングルピニオン型の遊星歯車機構を1つ備えた差動装置であり、その回転要素としてのサンギヤS1とリングギヤR1と複数のピニオンギヤP1とキャリアC1とを有する。この変速装置20においては、そのサンギヤS1とリングギヤR1とキャリアC1の内の1つがエンジンENGに接続され、その残りの内の1つが差動装置30に接続される。この例示では、エンジンENGをキャリアC1に連結する。そのキャリアC1は、エンジン回転軸11と一体になって回転できるように当該エンジン回転軸11に対して回転軸(第1回転軸)21を介して連結されている。従って、この例示では、そのキャリアC1又は回転軸21が第1動力伝達要素となる。また、この例示では、リングギヤR1に差動装置30を連結する。そのリングギヤR1は、上述した第2動力伝達要素であり、差動装置30の各回転要素の内の1つ(ここでは後述するようにキャリアC2)に対して一体になって回転できるように接続する。
 ハイブリッドシステム1-1には、この変速装置20の変速比又は変速段を変更する変速調整装置40が設けられている。ここで例示する変速装置20は、高低2段の変速段を有するものであり、その変速調整装置40によって高速側と低速側の変速段の切り替えやニュートラル状態への切り替えが行われる。従って、その変速調整装置40は、変速装置20における所定の回転要素の回転状態や停止状態を調整する2つの係合装置を備える。この例示では、クラッチCL1とブレーキBK1とが係合装置として設けられている。そのクラッチCL1とブレーキBK1は、その係合動作又は解放動作が後述するHVECU90によって制御される。
 クラッチCL1は、サンギヤS1とキャリアC1とを連結又は解放させるクラッチ装置である。このクラッチCL1は、例えば、摩擦係合式の所謂摩擦クラッチ装置又は噛み合い式のクラッチ装置として構成すればよい。このクラッチCL1は、油圧駆動又は電動によって係合動作又は解放動作を行うものであり、サンギヤS1と一体になって回転する第1係合部材と、キャリアC1と一体になって回転する第2係合部材と、を有する。ここで例示するクラッチCL1は、油圧調整装置(図示略)が調整した供給油圧によって動作する。
 このクラッチCL1は、第1係合部材と第2係合部材とを係合状態に制御することで、サンギヤS1とキャリアC1とを連結させる。半係合状態のクラッチCL1は、第1係合部材と第2係合部材とを滑らせながら、これらを一体回転させない範囲内でサンギヤS1とキャリアC1の相対回転を許容する。完全係合状態のクラッチCL1は、サンギヤS1とキャリアC1とを一体化させ、この相互間の相対回転を不能にする。従って、このクラッチCL1は、完全係合状態に制御することで、変速装置20における遊星歯車機構の差動動作を禁止することができる。一方、このクラッチCL1は、第1係合部材と第2係合部材とを解放状態に制御することで、サンギヤS1とキャリアC1との連結を切り離し、これらの相対回転を許容する。従って、このクラッチCL1は、解放状態に制御することで、変速装置20における各回転要素の差動回転を許容することができる。
 ブレーキBK1は、サンギヤS1の回転を規制するブレーキ装置である。このブレーキBK1は、クラッチCL1と同じように、摩擦係合式のもの又は噛み合い式のものとして構成すればよい。このブレーキBK1は、油圧駆動又は電動によって係合動作又は解放動作を行うものであり、サンギヤS1と一体になって回転する第1係合部材と、車体側(例えば動力伝達装置のケース等)に固定した第2係合部材と、を有する。ここで例示するブレーキBK1は、油圧調整装置(図示略)が調整した供給油圧によって動作する。
 このブレーキBK1は、第1係合部材と第2係合部材とを係合状態に制御することで、サンギヤS1を車体側に連結して、サンギヤS1の回転を規制する。半係合状態のブレーキBK1は、第1係合部材を第2係合部材に対して滑らせながら、サンギヤS1の回転を停止させない範囲内で規制する。完全係合状態のブレーキBK1は、サンギヤS1の回転を禁止する。一方、このブレーキBK1は、第1係合部材と第2係合部材とを解放状態に制御することで、サンギヤS1と車体側との連結を切り離し、サンギヤS1の回転を許容する。
 変速装置20は、そのクラッチCL1とブレーキBK1とが共に解放状態にあるときにニュートラル状態となる。そのニュートラル状態とは、この例示における変速装置20の入出力間である第1回転軸21と第2回転軸との間(つまりキャリアC1とリングギヤR1との間)で動力伝達を行えない状態のことを云う。このニュートラル状態では、エンジンENGと差動装置30とが切断され、この間の動力伝達が遮断された状態になる。
 一方、この変速装置20においては、クラッチCL1とブレーキBK1の内の何れか一方を係合させることで、キャリアC1とリングギヤR1との間(エンジンENGと差動装置30との間)の動力伝達が可能な接続状態になる。従って、クラッチCL1とブレーキBK1の内の一方を係合させた際には、エンジンENGと駆動輪Wとの間での動力伝達が可能になるので、エンジンENGの動力を用いた走行を行うことができ、また、エンジンブレーキを発生させることができる。
 例えば、この変速装置20は、クラッチCL1を解放させると共にブレーキBK1を係合させることで、サンギヤS1が固定(回転停止)された状態での差動回転を行うものとなる。その際、この変速装置20は、キャリアC1に入力されたエンジンENGの回転を増速させてリングギヤR1から出力する。つまり、この変速装置20は、クラッチCL1の解放とブレーキBK1の係合とによって、変速比が1よりも小さいオーバドライブ(OD)状態となる。
 これに対して、この変速装置20は、クラッチCL1を係合させると共にブレーキBK1を解放させることで、全ての回転要素が一体になって回転する差動回転の禁止状態になり、入出力間(キャリアC1とリングギヤR1との間)が直結状態となる。その際、この変速装置20は、変速比が1となり、キャリアC1に入力されたエンジンENGの回転を増速も減速もさせることなく、等速でリングギヤR1から出力する。
 この様に、この変速装置20においては、クラッチCL1の解放とブレーキBK1の係合によって高速側の変速段(高速段)が構成され、クラッチCL1の係合とブレーキBK1の解放によって低速側の変速段(低速段)が構成されることになる。このハイブリッドシステム1-1では、変速装置20の変速比が1以下なので、必ずしも第1回転電機MG1の高トルク化を図る必要がない。
 差動装置30は、差動回転が可能な複数の回転要素を有するものであり、その夫々の回転要素からなる遊星歯車機構を備える。その遊星歯車機構としては、シングルピニオン型のもの、ダブルピニオン型のもの、ラビニヨ型のもの等を適用可能である。この例示の差動装置30は、シングルピニオン型の遊星歯車機構を1つ備えており、その回転要素としてのサンギヤS2とリングギヤR2と複数のピニオンギヤP2とキャリアC2とを有する。この差動装置30においては、そのサンギヤS2とリングギヤR2とキャリアC2の内の1つが変速装置20を介してエンジンENGに接続され、その残りの内の1つが第1回転電機MG1に接続され、最後の1つが第2回転電機MG2と駆動輪Wとに接続される。この例示では、変速装置20のリングギヤR1をキャリアC2に連結し、第1回転電機MG1をサンギヤS2に連結し、第2回転電機MG2と駆動輪WをリングギヤR2に連結する。ここで、キャリアC2は、変速装置20のリングギヤR1と一体になって回転できるよう当該リングギヤR1に対して連結された回転要素であり、変速装置20との間の動力伝達要素を成す。また、サンギヤS2は、MG1回転軸12に対して一体になって回転できるように連結された回転要素であり、第1回転電機MG1との間の動力伝達要素を成す。また、リングギヤR2は、下記の歯車群等を介して第2回転電機MG2や駆動輪Wに連結された回転要素であり、第2回転電機MG2や駆動輪Wとの間の動力伝達要素を成す。
 この差動装置30のリングギヤR2には、同心に配置された一体回転可能なカウンタドライブギヤ51が接続されている。そのカウンタドライブギヤ51は、平行にずらして配置された回転軸を有するカウンタドリブンギヤ52と噛み合い状態にある。カウンタドリブンギヤ52は、平行にずらして配置された回転軸を有するリダクションギヤ53と噛み合い状態にある。そのリダクションギヤ53は、MG2回転軸13の軸上に固定されている。従って、カウンタドリブンギヤ52と第2回転電機MG2との間においては、そのリダクションギヤ53を介して動力伝達が行われる。例えば、リダクションギヤ53は、カウンタドリブンギヤ52よりも小径であり、第2回転電機MG2の回転を減速してカウンタドリブンギヤ52に伝達する。
 また、カウンタドリブンギヤ52は、カウンタシャフト54の軸上に固定されている。ここで、この例示のハイブリッド車両100は、FF(Front engine Front drive)車、RR(Rear engine Rear drive)車又はFF車若しくはRR車ベースの四輪駆動車と仮定する。これが為、そのカウンタシャフト54の軸上には、ドライブピニオンギヤ55が固定されている。カウンタドリブンギヤ52とドライブピニオンギヤ55は、カウンタシャフト54を介して一体になって回転することができる。そのドライブピニオンギヤ55は、差動装置56のデフリングギヤ57と噛み合い状態にある。差動装置56は、左右の駆動軸58を介して駆動輪Wに連結されている。例えば、このハイブリッドシステム1-1は、そのドライブピニオンギヤ55とデフリングギヤ57(つまり差動装置56)を第2回転電機MG2とリダクションギヤ53との間に配置することで、コンパクト化を図ることができる。
 このハイブリッドシステム1-1の動力伝達装置においては、変速装置20の変速比と差動装置30の変速比とから全体の変速比(言うなればハイブリッドシステム1-1のシステム変速比)が決まる。このシステム変速比とは、変速装置20と差動装置30とからなる1つの動力伝達装置においての入出力間の比のことであり、この動力伝達装置の出力側回転数に対する入力側回転数の比(減速比)を表したものである。この例示では、差動装置30のリングギヤR2の回転数に対する変速装置20のキャリアC1の回転数の比がシステム変速比となる。従って、この動力伝達装置では、差動装置30だけで変速機としての機能を構成するよりも変速比の幅が広くなる。
 このハイブリッドシステム1-1においては、図2に示すように、エンジンECU91とMGECU92とを統括制御すると共にシステムの統合制御を行う統合ECU(以下、「HVECU」と云う。)90が設けられており、これらによって本システムの制御装置が構成される。
 HVECU90には、車速センサ、アクセル開度センサ、MG1回転数センサ、MG2回転数センサ、出力軸回転数センサ、バッテリセンサ等の各種センサが接続されている。このHVECU90は、その各種センサによって、車速、アクセル開度、第1回転電機MG1の回転数(MG1回転数)、第2回転電機MG2の回転数(MG2回転数)、動力伝達装置の出力軸(例えば差動装置30のリングギヤR2の回転軸)の回転数、二次電池のSOC(State of Charge)等を取得する。
 HVECU90は、取得した情報に基づいて、ハイブリッド車両100に対する要求駆動力、要求パワー、要求トルク等を算出する。このHVECU90は、例えば、算出した要求車両駆動力に基づいて、要求エンジントルク、要求MG1トルク及び要求MG2トルクを算出する。HVECU90は、その要求エンジントルクをエンジンECU91に送信してエンジンENGに出力させると共に、要求MG1トルク及び要求MG2トルクをMGECU92に送信して第1回転電機MG1及び第2回転電機MG2に出力させる。
 また、このHVECU90は、後述する走行モード等に基づいてクラッチCL1とブレーキBK1の制御を行う。その際、HVECU90は、クラッチCL1に対する供給油圧の指令値(PbCL1)とブレーキBK1に対する供給油圧の指令値(PbBK1)を油圧調整装置に出力する。油圧調整装置は、各指令値PbCL1,PbBK1に応じた供給油圧の制御を行い、クラッチCL1とブレーキBK1を係合動作又は解放動作させる。
 このハイブリッドシステム1-1においては、電気自動車(EV)走行モードとハイブリッド(HV)走行モードとが設定されており、その何れかの走行モードでハイブリッド車両100を走行させることができる。
 EV走行モードとは、第1及び第2の回転電機MG1,MG2の内の少なくとも1つの動力を駆動輪Wに伝える走行モードのことである。HV走行モードとは、エンジンENGの動力のみを駆動輪Wに伝える走行と、エンジンENGの動力に加えて第2回転電機MG2の動力も駆動輪Wに伝える走行と、を行うことができる走行モードのことである。
 図3には、その走行モード毎のハイブリッドシステム1-1の作動係合表を示している。その作動係合表のクラッチCL1の欄とブレーキBK1の欄において、丸印は係合状態を表し、空欄は解放状態を表している。また、三角印は、クラッチCL1が係合状態であればブレーキBK1が解放状態となり、クラッチCL1が解放状態であればブレーキBK1が係合状態となることを表している。この作動係合表の第1回転電機MG1の欄と第2回転電機MG2の欄において、「G」は発電機としての作動状態が主となることを表し、「M」は電動機としての作動状態が主となることを表している。
[EV走行モード]
 EV走行モードは、第2回転電機MG2のみを動力源とする単独モータEVモードと、第1及び第2の回転電機MG1,MG2の双方を動力源とする両モータEVモードと、に分けられる。このハイブリッドシステム1-1においては、例えば、低負荷運転時に単独モータEVモードが選択され、これよりも高負荷運転が要求されると両モータEVモードが選択される。
[単独モータEVモード]
 単独モータEVモードにおいて、SOCに基づき二次電池が充電可能な場合、HVECU90は、必ずしもエンジンブレーキによる電力消費を必要としないので、クラッチCL1とブレーキBK1を共に解放させる。これにより、変速装置20は、その遊星歯車機構がニュートラル状態となり、各回転要素が差動回転を行うことができる状態になる。この場合、HVECU90は、MGECU92に対して第2回転電機MG2に正回転で要求車両駆動力に応じた正のMG2トルクを出力させることで、ハイブリッド車両100に前進方向の車両駆動力を発生させる。正回転とは、前進時におけるMG2回転軸13や差動装置30のリングギヤR2の回転方向のことである。図4には、この前進時の共線図を示している。
 ここで、この単独モータEVモード(エンジンブレーキ不要)での前進時には、カウンタドリブンギヤ52の回転に連動してリングギヤR2が正回転するので、差動装置30の差動回転に伴い第1回転電機MG1で引き摺り損失を発生させる可能性がある。これが為、HVECU90は、第1回転電機MG1を発電機として作動させることで、引き摺り損失の低減を図る。具体的に、HVECU90は、第1回転電機MG1に僅かなトルクを掛けて発電させ、このMG1回転数を0回転にフィードバック制御することで、第1回転電機MG1の引き摺り損失を低減させる。また、第1回転電機MG1にトルクを掛けずとも当該第1回転電機MG1を0回転に維持できるときは、第1回転電機MG1にトルクを加えずに当該第1回転電機MG1の引き摺り損失の低減を図ればよい。また、第1回転電機MG1の引き摺り損失を低減する為には、この第1回転電機MG1のコギングトルク又はd軸ロックを利用して、第1回転電機MG1を0回転にしてもよい。d軸ロックとは、回転子を固定するような磁界を発生させる電流をインバータから第1回転電機MG1に供給することで、この第1回転電機MG1を0回転に制御することを云う。
 また、この前進時には、キャリアC2と共に変速装置20のリングギヤR1も正回転する。その際、変速装置20は、クラッチCL1とブレーキBK1とを解放させたニュートラル状態になっているので、サンギヤS1が負回転で空転すると共にキャリアC1が停止し、エンジンENGを0回転のまま連れ回さない。従って、この前進時には、第1回転電機MG1の回生量を大きく取ることができる。また、この前進時には、エンジンENGを停止させた状態での走行が可能になる。また、この前進時には、EV走行中のエンジンENGの回転に伴う引き摺り損失が発生しないので、燃費(電費)を向上させることができる。
 尚、後進時には、二次電池の充電が可能であれば、クラッチCL1とブレーキBK1を共に解放させ、第2回転電機MG2に負回転で要求車両駆動力に応じた負のMG2トルクを出力させることで、ハイブリッド車両100に後進方向の駆動力を発生させる。その際にも、HVECU90は、前進時と同じようにして、第1回転電機MG1の引き摺り損失を低減させる。
 一方、この単独モータEVモードにおいて、SOCが所定値よりも大きく二次電池の充電が禁止される場合には、その二次電池を放電させるべく、上記の駆動時の状態でエンジンブレーキを併用すればよい。これが為、この場合には、図3に示すように、クラッチCL1とブレーキBK1の内の何れか一方だけを係合させることで、エンジンENGを連れ回し状態とし、エンジンブレーキを発生させる。その際、HVECU90は、第1回転電機MG1の制御によりエンジン回転数を上昇させる。
[両モータEVモード]
 両モータEVモードにおいて、HVECU90は、クラッチCL1とブレーキBK1を共に係合させる。これにより、変速装置20においては、クラッチCL1の係合に伴い遊星歯車機構の差動回転が禁止され、且つ、ブレーキBK1の係合に伴いサンギヤS1の回転が禁止されるので、遊星歯車機構の全ての回転要素が停止する。これが為、エンジンENGは、その回転数が0なる。また、リングギヤR1が停止しているので、差動装置30においては、そのリングギヤR1に接続されているキャリアC2も停止し、このキャリアC2が0回転にロックされる。図5には、このときの共線図を示している。
 HVECU90は、第1回転電機MG1と第2回転電機MG2とに要求車両駆動力に応じたMG1トルクとMG2トルクとを出力させる。ここで、このときのキャリアC2は、その回転が禁止されているので、MG1トルクに対する反力を取ることができる。従って、差動装置30においては、MG1トルクをリングギヤR2から出力させることができる。前進時には、第1回転電機MG1に負回転で負のMG2トルクを出力させることで、リングギヤR2から正回転のトルクを出力させることができる。一方、後進時には、第1回転電機MG1に正回転で正のMG2トルクを出力させることで、リングギヤR2から負回転のトルクを出力させることができる。
 尚、後進時には、二次電池の充電が可能であれば、クラッチCL1とブレーキBK1を共に係合させ、変速装置20のキャリアC1を固定することによって、第1回転電機MG1と第2回転電機MG2の双方の動力で走行させてもよい。
[HV走行モード]
 HV走行モードにおいては、第1回転電機MG1で反力を取りながらエンジントルクのみ又はエンジントルクとMG2トルクとを駆動軸58に伝えて走行する。その際に駆動軸58に伝達されるエンジントルクは、所謂エンジン直達トルクと云われるものであり、電気パスを介することなくエンジンENGから駆動軸58に機械的に伝達される。このHV走行モードは、変速装置20が高速段に切り替えられた走行モード(以下、「HVハイモード」と云う。)と、変速装置20が低速段に切り替えられた走行モード(以下、「HVローモード」と云う。)と、に分けられる。この例示のハイブリッドシステム1-1においては、高車速走行時に動力循環の低減が可能なHVハイモードを選択させ、これよりも中低車速で走行しているときにHVローモードを選択させる。図6には、HVハイモードにおける共線図を示している。また、図7には、HVローモードにおける共線図を示している。このHV走行モードでは、基本的に差動装置30が差動回転を行える状態にあり、クラッチCL1とブレーキBK1の状態(係合状態又は解放状態)を制御することで変速装置20の変速段の切り替えが行われる。
 HVハイモードにおいて、HVECU90は、クラッチCL1を解放させると共にブレーキBK1を係合させることで、変速装置20を高速段に切り替え、エンジンENGの回転が増速して出力されるように制御する。一方、HVローモードにおいて、HVECU90は、クラッチCL1を係合させると共にブレーキBK1を解放させることで、変速装置20を低速段に切り替え、エンジンENGの回転が等速のまま出力されるように制御する。
 後進時には、HVローモードを使う。この後進時には、第1回転電機MG1を発電機、第2回転電機MG2を電動機として動作させ、この第2回転電機MG2を前進時とは逆向きに回転させる。
 HVECU90は、そのHVハイモードとHVローモードの切り替えを行う際に、変速装置20と差動装置30とを同時に変速させる協調変速制御を実行する。その協調変速制御においては、変速装置20と差動装置30の内の何れか一方の変速比を増加させ、他方の変速比を減少させる。
 具体的に、HVECU90は、HVハイモードからHVローモードに切り替える場合、切り替え過程におけるシステム変速比が一定に保たれるように、変速装置20の低速段への変速に同期させて差動装置30の変速比をハイギヤ側に変化させる。これに対して、HVECU90は、HVローモードからHVハイモードに切り替える場合、切り替え過程におけるシステム変速比が一定に保たれるように、変速装置20の高速段への変速に同期させて差動装置30の変速比をローギヤ側に変化させる。この様に、このハイブリッドシステム1-1においては、システム変速比の不連続な変化が抑制又は低減されるので、変速に伴うエンジン回転数の調節量が減少され、又は変速に伴うエンジン回転数の調節が不要になる。
 HVECU90は、HVローモードへの切り替え後、例えば差動装置30の変速比制御によってシステム変速比をローギヤ側へと連続的に変化させる。一方、HVECU90は、HVハイモードへの切り替え後、例えば差動装置30の変速比制御によってシステム変速比をハイギヤ側へと連続的に変化させる。その差動装置30の変速比制御は、例えば、第1回転電機MG1や第2回転電機MG2の回転数の制御によって行う。このハイブリッドシステム1-1においては、変速装置20と差動装置30と第1回転電機MG1とクラッチCL1とブレーキBK1とでシステム全体における変速システムが構成される。これが為、これらの構成は、第1回転電機MG1の回転を電気的に制御することで、システム変速比が連続的に変化させられる電気的無段変速機として動作させることができる。
 図8は、HV走行モードの理論伝達効率線を示す図であって、HVハイモードとHVローモードとを切り替える際の理論伝達効率線を示す。本図では、横軸にシステム変速比、縦軸にHV走行モードの理論伝達効率を示す。HV走行モードにおいては、その理論伝達効率線を用い、例えば同一変速比であればHVハイモードとHVローモードの内の高効率の走行モードが選択される。
 理論伝達効率は、その動力伝達装置に入力される動力が電気パスを介さずに機械的な伝達で全てカウンタドライブギヤ51に伝達される場合に最大効率1.0となる。HVローモードの理論伝達効率は、システム変速比が変速比γ1で最大効率1.0となる。この変速比γ1は、オーバドライブ側のシステム変速比(γ1<1)である。また、HVハイモードの理論伝達効率は、システム変速比が変速比γ2で最大効率1.0となる。この変速比γ2は、変速比γ1よりもハイギヤ側の変速比(γ2<γ1)である。システム変速比が変速比γ1又は変速比γ2のときには、第1回転電機MG1(サンギヤS2)の回転数が0になる。これが為、システム変速比が変速比γ1又は変速比γ2のときには、第1回転電機MG1が反力を受けることによる電気パスは0となり、機械的な動力の伝達のみによってエンジンENGからカウンタドライブギヤ51に動力を伝達することができる。以下、その変速比γ1のことを「第1機械伝達変速比γ1」とも云う。また、変速比γ2のことを「第2機械伝達変速比γ2」とも云う。
 図8から明らかなように、このHV走行モードの理論伝達効率は、システム変速比が第1機械伝達変速比γ1よりもローギヤ側の値となるに従い低下する。また、この理論伝達効率は、システム変速比が第2機械伝達変速比γ2よりもハイギヤ側の値となるに従い低下する。また、この理論伝達効率は、第1機械伝達変速比γ1と第2機械伝達変速比γ2との間の変速比の領域において低効率側に湾曲している。
 この様に、このハイブリッドシステム1-1の動力伝達装置は、システム変速比が1よりもハイギヤ側に2つのメカニカルポイント(第1機械伝達変速比γ1と第2機械伝達変速比γ2)を有する。そして、この動力伝達装置では、変速装置20とクラッチCL1とブレーキBK1とを有することで、エンジンENGが差動装置30のキャリアC2に直接連結される場合のメカニカルポイント(第1機械伝達変速比γ1)よりもハイギヤ側に別のメカニカルポイント(第2機械伝達変速比γ2)を発生させることができる。従って、このハイブリッドシステム1-1では、HV走行モードにおいて、ハイギヤで動作しているときの伝達効率を向上させることができ、高車速走行時の燃費を向上させることができる。
 ここで、図9には、車速と要求車両駆動力と走行モードとの対応関係の一例を示している。このハイブリッドシステム1-1では、その図9に示すように、主に低車速で且つ要求車両駆動力が低負荷のときにEV走行を行う。但し、第1回転電機MG1や第2回転電機MG2の出力特性に応じて、車速が高くなるほど、より負荷の低いところまでEV走行の領域が狭まる。その替わり、高車速で且つ要求車両駆動力が低負荷のときには、クラッチCL1の解放とブレーキBK1の係合によって変速装置20をオーバドライブ状態(高速段)に制御して、HV走行で燃費を向上させる。残りの領域(つまり、車速に拘わらず要求車両駆動力が中負荷及び高負荷のとき、中車速で且つ要求車両駆動力が低負荷のとき)では、クラッチCL1の係合とブレーキBK1の解放によって変速装置20を直結状態(低速段)に制御してHV走行させる。尚、高車速で且つ要求車両駆動力が低負荷であっても、車速が低下するほど変速装置20を直結状態に制御している。
 HVECU90は、EV走行モードからHV走行モードへと切り替えるときに、停止中のエンジンENGを始動させる。例えば、HVECU90は、要求車両駆動力の増加や車速の上昇等に伴ってEV走行モードからHV走行モードへの切り替えが必要と判断した場合、エンジンECU91に対してエンジンENGの始動要求を行う。
 そして、このハイブリッドシステム1-1では、車速や要求車両駆動力に基づいて切り替え後のHV走行モード(HVハイモード又はHVローモード)を決めると、そのHV走行モードに応じたエンジン始動完了後の変速装置20の目標変速段(目標変速比)が決まる。HVハイモードへの切り替えの場合には、エンジン始動完了後の変速装置20の目標変速段(目標変速比)としてクラッチCL1の解放とブレーキBK1の係合による高速段(オーバードライブ状態)が要求される(図9の矢印a、b)。また、HVローモードへの切り替えの場合には、エンジン始動完了後の変速装置20の目標変速段(目標変速比)としてクラッチCL1の係合とブレーキBK1の解放による低速段(直結状態)が要求される(図9の矢印c、d)。
 現在のEV走行が単独モータEVモード(エンジンブレーキ不要)の場合、変速装置20は、現状でニュートラル状態なので、切り替え後のHV走行モードに応じた目標変速段(目標変速比)へと変速させる。また、現在のEV走行がエンジンブレーキ併用時の単独モータEVモードの場合、変速装置20は、現状で高速段又は低速段になっているので、現在の変速段と切り替え後のHV走行モードに応じた目標変速段(目標変速比)とが異なる場合、その目標変速段(目標変速比)へと変速させる。また、現在のEV走行が両モータEVモードの場合、変速装置20は、クラッチCL1とブレーキBK1が共に係合している状態なので、切り替え後のHV走行モードに応じた目標変速段(目標変速比)へと変速させる。
 この様に、このハイブリッドシステム1-1においては、EV走行モードからHV走行モードへの切り替えを行う場合、変速装置20の変速を要求されることがある。そして、変速装置20の変速が要求された場合には、エンジンENGの始動が完了してから変速装置20の変速制御を行うことで、エンジン始動制御に伴うショックの発生の後、変速装置20の変速制御に伴うショックが発生すると云う所謂2段ショックを生じさせ、ドライバビリティの悪化を招く虞がある。尚、エンジン始動制御とは、例えばエンジンENGがガソリンエンジンであれば、エンジン回転数の上昇制御、スロットルバルブ開度制御等による吸入空気量制御、燃料噴射制御、点火栓による点火制御等のエンジンENGの始動に要する各種の制御のことを云う。また、エンジン始動後の変速装置20の変速動作は、エンジン停止中の変速動作よりもショックを大きくしてしまう可能性がある。特に、単独モータEVモードからHV走行モードへの切り替えの場合には、クラッチCL1やブレーキBK1の係合動作が必要になるので、クラッチCL1等の解放動作を行う両モータEVモードからの切り替えの場合と比べて、その変速ショックが大きくなる。
 そこで、本実施例のHVECU90には、EV走行中のエンジン始動時に、変速装置20を当該変速装置20におけるエンジン始動完了後の目標変速段(目標変速比)へと変速させる。ここでは、例えば運転者のアクセル操作等に伴いエンジンENGの始動が要求されてから(つまりエンジンENGの始動要求を検知してエンジンENGの始動が必要と判定されてから)点火し終えるまでをエンジン始動時と云う。
 ここで、HVECU90には、例えば、変速装置20におけるエンジン始動完了後の目標変速段(目標変速比)への変速を開始させた後、エンジンENGの始動を開始させる。変速装置20は、2段ショックの発生を抑える為に、その目標変速段(目標変速比)に応じた係合対象のクラッチCL1又はブレーキBK1をエンジン始動制御中(つまりエンジンENGが始動し終えるまで)に少なくとも半係合状態まで動作させることが望ましい。変速装置20においては、解放状態にあるクラッチCL1又はブレーキBK1の第1係合部材と第2係合部材とが接するときに最もショックが発生し易く、半係合状態になってから供給油圧を上昇させたとしてもショックが発生し難いからである。また、変速装置20は、2段ショックの発生をより精度良く抑える為に、目標変速段(目標変速比)に応じた係合対象のクラッチCL1又はブレーキBK1をエンジン始動制御中に半係合させ、エンジン始動制御中に変速を完了させることが望ましい。
 以下、EV走行中にエンジンENGを始動させる際の演算処理動作について、図10のフローチャートと図11のタイムチャートに基づき説明する。
 この例示のハイブリッド車両100は、図11のタイムチャートに示すように、第2回転電機MG2のみが正回転で正のMG2トルクを出力しており、且つ、クラッチCL1の制御油圧(CL1油圧)とブレーキBK1の制御油圧(BK1油圧)とが0でクラッチCL1とブレーキBK1とが共に解放状態なので、ニュートラル状態の変速装置20で且つ第2回転電機MG2の動力による単独モータEVモードで走行している。
 HVECU90は、そのEV走行中にエンジンENGの始動要否を判定する(ステップST1)。
 このステップST1では、EV走行モードからHV走行モードへの切り替えが要求されている場合にエンジンENGの始動が必要と判定し、その切り替えが要求されていない場合にエンジンENGの始動が不要と判定する。つまり、この判定は、アクセル開度θ等の運転者によるアクセル踏み込み量、運転者のアクセル操作又は自動走行制御時(クルーズコントロール等の実行中)の駆動要求に応じたスロットル開度などに基づいて、又はこれらのアクセル踏み込み量やスロットル開度に応じた要求車両駆動力に基づいて実行する。図11のタイムチャートでは、EV走行中の運転者のアクセル操作に伴いアクセル開度θが徐々に大きくなっており、そのアクセル開度θが所定開度θ1まで大きくなったときにエンジンENGの始動が必要と判定される。HVECU90は、エンジンENGの始動が必要と判定しなかった場合、ステップST8に進み、EV走行を継続させる。
 HVECU90には、このステップST1の判定で用いた値(上記のアクセル踏み込み量や要求車両駆動力等)を利用して、エンジン始動後(走行モード切り替え後)の変速装置20の目標変速段を設定させる。この設定は、例えば、ステップST1の判定と共に実行すればよい。尚、ここで設定される目標変速段は、仮設定されたものであり、下記のアクセル開度変化率Δθ/tに応じて変更される場合がある。
 HVECU90は、エンジンENGの始動が必要と判定した場合、アクセル開度変化率Δθ/tが所定値Aよりも大きいのか否かを判定する(ステップST2)。このステップST2では、アクセル開度変化率Δθ/tに替えてアクセル踏み込み操作速度で判定を行ってもよい。
 例えば、アクセル開度変化率Δθ/tが小さいときには、このステップST2の判定時よりも大幅にアクセル開度θが大きくなり、要求車両駆動力がエンジンENGの始動要否判定時よりも大きく増える可能性が低いものと考えられる。これに対して、アクセル開度変化率Δθ/tが大きいときには、このステップST2の判定時よりも大幅にアクセル開度θが大きくなって、要求車両駆動力がエンジンENGの始動要否判定時よりも大きく増える可能性が高いと考えられる。そして、例えば図9の矢印aの切り替えの場合には、要求車両駆動力が今よりも大幅に増えることで、エンジン始動後の変速装置20の目標変速段をオーバドライブ状態の高速段から直結状態の低速段に変更しなければならない場合も有り得る。そこで、この例示では、このステップST2の判定を行い、エンジン始動後の変速装置20の目標変速段がエンジンENGの始動要否判定時に設定されたままで良いのか否かを判断する。これが為、所定値Aは、例えば、変速装置20の目標変速段が変わるほど要求車両駆動力が大幅に増えるのか否かとの観点で設定すればよい。この例示では、図9の矢印aの切り替えの場合よりも低車速のときに、この切り替えよりも少ない要求車両駆動力の増加で変速装置20の目標変速段が高速段から低速段に変わる可能性がある。従って、所定値Aは、高車速域において、車速が高いほど大きい値に設定してもよい。ここで、その様なステップST2の判定の目的があるので、アクセル開度変化率Δθ/tは、少なくともエンジンENGの始動が必要と判定された時点からの最新の値を算出することが望ましい。
 HVECU90は、アクセル開度変化率Δθ/tが所定値A以下であり、これ以上アクセル踏み込み量が大幅に増えないので、変速装置20の目標変速段が変更されないと判断した場合、後述するステップST4に進んで、変速装置20の目標変速段を決定する。一方、このHVECU90は、アクセル開度変化率Δθ/tが所定値Aよりも大きく、更にアクセル踏み込み量が大幅に増えて、変速装置20の目標変速段が変更される虞があると判断した場合、変速装置20の目標変速段を決める際に用いる値(要求車両駆動力等)の補正量を算出する(ステップST3)。
 その補正量は、図12に示すように、アクセル開度変化率Δθ/tが大きいほど大きな値に補正されるように設定する。この補正量は、エンジン始動後の変速装置20の目標変速段を決める際に用いる値に対して加算される補正値でもよく、その値に対して乗算される補正係数でもよい。
 HVECU90は、エンジン始動後(走行モード切り替え後)の変速装置20の目標変速段を決定する(ステップST4)。
 このステップST4では、アクセル開度変化率Δθ/tが所定値A以下であれば、エンジンENGの始動要否判定時に設定された目標変速段をエンジン始動後の変速装置20の目標変速段として決める。また、ステップST3で補正量が演算された場合には、この補正量で変速装置20の目標変速段を決める際に用いる値を補正し、この補正後の値に基づいてエンジン始動後の変速装置20の目標変速段を決める。例えば、HVECU90は、エンジンENGの始動要否判定時における要求車両駆動力が補正された場合、この補正後の要求車両駆動力と現在の車速とを図9のマップに照らし合わせる。そして、その補正後の要求車両駆動力と現在の車速とによってオーバドライブ状態が要求されている場合、HVECU90は、高速段をエンジン始動後の変速装置20の目標変速段に決める。一方、直結状態が要求されている場合、HVECU90は、低速段をエンジン始動後の変速装置20の目標変速段に決める。
 HVECU90は、変速装置20の変速の要否を判定する(ステップST5)。
 例えば、変速装置20は、決定した目標変速段とEV走行中の実際の変速段とが同じ場合もある。この為、この例示では、ステップST4で決定した目標変速段とEV走行中の実際の変速段とを比較して、変速装置20の変速の要否を判定する。図11のタイムチャートでは、ニュートラル状態からオーバドライブ状態への変速が求められているので、変速が必要であると判定される。
 HVECU90は、変速が不要と判定した場合、後述するステップST7に進んで、エンジンENGの始動制御を実行する。この例示のエンジンENGはガソリンエンジンなので、この場合には、エンジン始動制御における各種の制御の内で最後に行われる点火制御を実行する。一方、このHVECU90は、変速が必要と判定した場合、変速装置20の目標変速段への変速を開始させる(ステップST6)。
 このステップST6では、目標変速段に基づいて、クラッチCL1又はブレーキBK1の内の何れか一方のみが係合状態となるように制御が始まる。図11のタイムチャートでは、ニュートラル状態からオーバドライブ状態への変速を行うので、BK1油圧の増加を始めることで、変速装置20の変速制御を開始する。その際には、BK1油圧が所定値を超えたときにブレーキBK1の係合部材同士が実際に係合し始めるので、この係合と共に変速装置20の変速動作が実際に始まる。尚、ここでは、ブレーキBK1が半係合状態から完全係合状態に移る際にBK1油圧を更に増加させている。
 このハイブリッドシステム1-1においては、変速装置20の変速動作が実際に始まり、クラッチCL1又はブレーキBK1が半係合状態になったときに、変速装置20が入出力間(第1動力伝達要素と第2動力伝達要素との間)で動力伝達可能な状態となるので、第1回転電機MG1とエンジンENGとの間及び第2回転電機MG2とエンジンENGとの間の動力伝達が可能になる。これが為、HVECU90は、エンジンENGの始動制御を実行する(ステップST7)。この例示のエンジンENGはガソリンエンジンなので、このステップST7では、エンジン始動制御における各種の制御の内で最後に行われる点火制御を実行する。HVECU90は、この様にして変速装置20が動力伝達可能な状態に制御された後、第1回転電機MG1の回転数を上昇させ、この第1回転電機MG1の回転数の上昇に伴い回転数が持ち上げられたエンジンENGに対して、点火可能な回転数までエンジン回転数が上昇したら点火制御を行う。その際、第1回転電機MG1の回転数の上昇は、少なくともクラッチCL1又はブレーキBK1が半係合状態になってから開始する。つまり、この回転数の上昇は、クラッチCL1又はブレーキBK1が完全係合状態になってから開始してもよい。また、このHVECU90は、クラッチCL1又はブレーキBK1が係合する際のショックが過度に大きくならないのであれば、その係合前(つまり変速装置20における動力伝達可能な状態への制御中)に第1回転電機MG1の回転数を上昇させ始めてもよい。この場合には、変速装置20が動力伝達可能な状態となった際に第1回転電機MG1の回転でエンジンENGの回転数が持ち上げられるので、この回転数が持ち上げられたエンジンENGに対して、点火可能な回転数までエンジン回転数が上昇したら点火制御を行う。
 このハイブリッドシステム1-1においては、変速装置20の変速動作が実際に始まると、第2回転電機MG2の回転が差動装置30や変速装置20等を介してエンジン回転軸11に伝達され、エンジン回転数が上昇し始める。これが為、HVECU90は、第1回転電機MG1で反力を取る。更に、このHVECU90は、出力側(例えば駆動輪Wや差動装置30のリングギヤR2)でトルク変動が生じないように、第2回転電機MG2にも反力を取らせる。図11のタイムチャートでは、その変速装置20の変速動作が開始すると、ブレーキBK1の半係合状態が保持されるようBK1油圧を増加させ、且つ、第1回転電機MG1と第2回転電機MG2に反力を取らせるべく、正のMG1トルクを出力させると共に正のMG2トルクを増大させる。ブレーキBK1が完全係合するまでは、MG1トルクによるエンジン回転数の上昇制御を行わずに、これらのシーケンス制御を実行する。
 図11のタイムチャートでは、ブレーキBK1の完全係合に伴い変速装置20の目標変速段への変速が完了すると、第1回転電機MG1の回転数を正回転で上昇させ、この回転を差動装置30と変速装置20を介してエンジン回転軸11に伝えることで、エンジンENGの回転を持ち上げる。その際には、第1回転電機MG1に正のMG1トルクを増大して出力させると共に、反力を第2回転電機MG2に受け持たせるべく、反力分だけMG2トルクを増大させる。その後、エンジン回転数が点火可能な所定回転数まで上昇したときに、HVECU90は、エンジンENGを点火させると共に、エンジントルクの発生に伴う車両駆動力の変動を抑えるべく、MG1トルクとMG2トルクを調整する。ここでは、MG1回転数をエンジン点火時の回転数で止めて、この第1回転電機MG1に負のMG1トルクを発生させると共に、第2回転電機MG2のMG2トルクを正のまま減少させる。
 この様に、このハイブリッドシステム1-1及び動力伝達装置では、EV走行中にエンジンENGを始動させる際、変速装置20の現状の変速段(変速比)がエンジン始動完了後の目標変速段(目標変速比)と異なるのであれば、その目標変速段(目標変速比)への変速を開始させ、その後点火可能な回転数までMG1トルクでエンジン回転数を上昇させることで、エンジン始動時に変速装置20のエンジン始動完了後の目標変速段(目標変速比)への変速を実行する。これが為、このハイブリッドシステム1-1及び動力伝達装置においては、変速装置20の変速ショックをエンジンENGの始動に伴うショックと同時期に発生させることになるので、夫々のショックが2回続けて起きる2段ショックの発生を回避することができる。また、このハイブリッドシステム1-1及び動力伝達装置では、エンジン始動時に変速装置20を変速させるので、エンジン始動直後に変速装置20を変速させるよりも変速ショックが小さくなる。従って、このハイブリッドシステム1-1及び動力伝達装置は、エンジン始動要求が為されてからエンジン始動直後までの間におけるショックの発生回数やショックの大きさを低く抑えることができる。故に、このハイブリッドシステム1-1及び動力伝達装置では、エンジン始動とエンジン始動完了後の目標変速段(目標変速比)への変速装置20の変速とを短時間で且つショックを低減しつつ終了させることが可能なので、エンジン始動直後に変速装置20を変速させるよりも要求車両駆動力を応答性良く発生させることができ、ドライバビリティの悪化を抑制できる。
 ところで、このハイブリッドシステム1-1では第1回転電機MG1でエンジン回転数を持ち上げているが、そのエンジン回転数が既に点火可能な回転数以上にまで上昇している場合、第1回転電機MG1には、エンジン回転数持ち上げの為の回転数の上昇を実行させないことが望ましい。例えば、これにより燃費(電費)を向上させることができる。
 また、クラッチCL1又はブレーキBK1が半係合状態になっている場合には、これが完全係合する前(つまり変速装置20の変速が完了する前)に第1回転電機MG1でのエンジン回転数の持ち上げを開始させることが望ましい。
[変形例1]
 ところで、その変速装置20の変速の最中に例えば運転者がアクセルペダルを踏み増しすると、エンジン始動完了後の目標変速段(目標変速比)は、踏み増しされたアクセル踏み込み量に応じたものへと変更される場合がある。そして、その目標変速段(目標変速比)が変更された場合には、そのまま今の変速を続けてしまうと、新たな目標変速段(目標変速比)への変速がエンジン始動直後に実行されて、2段ショックを発生させてしまう可能性がある。従って、HVECU90には、変速装置20の変速中に当該変速装置20のエンジン始動完了後の目標変速段(目標変速比)が変更された場合、新たな目標変速段(目標変速比)への変速に素早く切り替えさせることが望ましい。例えば、図9には、その変速中に目標変速段(目標変速比)を変更する場合の変速線の一例を破線で示している。例えば、この変速線は、エンジン始動(エンジンENGの始動に伴うショック等)と変速装置20の変速(変速ショックや変速完了までの応答性等)等の観点に基づいて、実験やシミュレーションで求めることができる。
 図13のタイムチャートには、アクセルペダルが所定開度θ2(>θ1)を超えて踏み増しされ、要求車両駆動力が増加したことにより、変速中にエンジン始動完了後の目標変速段が高速段(オーバドライブ状態)から低速段(直結状態)に変更された場合について示している。
 この場合、HVECU90は、アクセル開度θが所定開度θ2となったとき又は要求車両駆動力が当該所定開度θ2に応じた大きさとなったときに、上述した様にアクセル開度θに応じた要求車両駆動力とアクセル開度変化率Δθ/tに応じた補正量とに基づいて変速装置20のエンジン始動完了後の目標変速段を決定し、この新たな目標変速段と今の目標変速段とを比較して、その目標変速段が高速段から低速段に変更されたと判定する。これにより、HVECU90は、高速段に応じたBK1油圧を減少させると共に低速段に応じたCL1油圧を増加させることで、完全係合になる前の係合動作中のブレーキBK1を解放させ、且つ、解放状態のクラッチCL1を係合させる。このハイブリッドシステム1-1では、これまでの間においても、前述した実施例と同じように、第1回転電機MG1と第2回転電機MG2とで反力を取り続けている。
 ここで、この例示では、目標変速段の変更が判定された際に、CL1油圧を増加させるが、BK1油圧を直ぐに減少させず、その変更判定時の大きさにBK1油圧を保持させる。これにより、例えば、アクセルペダルの踏み増し後、直ぐにアクセルペダルが戻されて、再び目標変速段が変更される可能性もあるが、このときにBK1油圧が減少していないので、ブレーキBK1の完全係合、つまり高速段への変速を応答性良く行うことができる。そのBK1油圧の保持は、アクセルペダルの踏み増しが終わるまで続ける。そして、HVECU90は、アクセルペダルの踏み増しが終了し且つその終了時のアクセル開度θが保持されているのであれば、低速段への変更が確定したものと判断し、BK1油圧を減少させる。ブレーキBK1は、そのBK1油圧の減少と共に所定の油圧で半係合状態から解放状態となる。
 ハイブリッドシステム1-1は、ブレーキBK1が解放されると、クラッチCL1が未だ半係合状態であっても、第1回転電機MG1の回転を正回転で上昇させ、この回転を差動装置30と変速装置20を介してエンジン回転軸11に伝えることで、エンジンENGの回転を持ち上げる。その際には、第1回転電機MG1に正のMG1トルクを増大して出力させると共に、反力を第2回転電機MG2に受け持たせるべく、反力分だけMG2トルクを増大させる。その後、エンジン回転数が点火可能な所定回転数まで上昇したときに、HVECU90は、エンジンENGを点火させると共に、エンジントルクの発生に伴う車両駆動力の変動を抑えるべく、MG1トルクとMG2トルクを調整する。ここでは、MG1回転数をエンジン点火時の回転数で止めて、この第1回転電機MG1に負のMG1トルクを発生させると共に、第2回転電機MG2のMG2トルクを正のまま減少させる。この例示では、エンジンENGを点火する前にクラッチCL1が完全係合状態となり、変速装置20のエンジン始動完了後の目標変速段への変速が完了する。
 この様に、このハイブリッドシステム1-1及び動力伝達装置においては、変速装置20の変速途中でエンジン始動完了後の目標変速段(目標変速比)が変更された場合、今の変速を直ぐに止めて新たな目標変速段(目標変速比)への変速を開始させるので、その変速をエンジン始動時に実行することができる。これが為、このハイブリッドシステム1-1及び動力伝達装置は、この場合でも、変速装置20の変速ショックをエンジンENGの始動に伴うショックと同時期に発生させることになるので、夫々のショックが連続して起きることを回避できる。また、このハイブリッドシステム1-1及び動力伝達装置では、この場合にもエンジン始動時に変速装置20を変速させるので、エンジン始動直後に変速装置20を変速させるよりも変速ショックが小さくなる。従って、このハイブリッドシステム1-1及び動力伝達装置は、変速装置20の変速途中でエンジン始動完了後の目標変速段(目標変速比)が変更されたとしても、エンジン始動要求が為されてからエンジン始動直後までの間におけるショックの発生回数やショックの大きさを低く抑えることができ、更にドライバビリティの悪化を抑制できる。
 ここで、目標変速段(目標変速比)の変更判定時期が遅いときには、エンジンENGの点火までに変速装置20の新たな目標変速段(目標変速比)への変速が完了できないこともあり得る。しかしながら、このハイブリッドシステム1-1及び動力伝達装置では、エンジンENGの点火までにクラッチCL1を少なくとも半係合状態まで動作させることで、エンジン始動直後の変速ショックの発生を抑えることができる。
[変形例2]
 さて、エンジン始動後の変速ショックは、要求車両駆動力が大きいほど大きくなる。これが為、前述した変形例1のように、アクセルペダルの踏み増しが行われた際には、アクセル開度θの増加に伴い要求車両駆動力が大きくなるので、変速装置20のエンジン始動完了後の目標変速段(目標変速比)への変速をエンジン始動時に行い、連続した複数回に渡るショックの発生を回避しつつ、要求車両駆動力の出力応答性を向上させることが望ましい。しかしながら、その一方で、このハイブリッドシステム1-1では、エンジン始動時に少なくとも変更前後の2つの目標変速段(目標変速比)に対する変速ショックを発生させ、また、エンジンENGの始動に伴うショックと共に大きなショックを発生させてしまう虞がある。
 そこで、この変形例2のハイブリッドシステム1-1及び動力伝達装置では、目標変速段(目標変速比)の変更判定の際に、要求車両駆動力が所定値よりも大きいときだけ目標変速段(目標変速比)を変更させる。従って、このハイブリッドシステム1-1及び動力伝達装置では、要求車両駆動力が所定値よりも大きければ、エンジン始動時における変速装置20の変速中に目標変速段(目標変速比)の変更を許容し、要求車両駆動力が所定値以下であれば、その変速中の目標変速段(目標変速比)の変更を禁止する。その所定値は、エンジン始動直後の変速ショックが許容できる大きさのときの要求車両駆動力であり、その内の最大値を設定すればよい。この例示では、図9に破線で示す変速線の要求車両駆動力を所定値として利用してもよい。尚、許容とは、例えばショックの発生が運転者に違和感を与えないことを条件とする。
 このハイブリッドシステム1-1は、要求車両駆動力が所定値よりも大きければ、エンジン始動時に変速装置20を変更後の新たな目標変速段(目標変速比)へと変速する。これにより、このハイブリッドシステム1-1は、エンジン始動と変速装置20の変速とを短時間で終わらせることができるので、エンジン始動直後の大きな変速ショックの発生を回避しつつ、要求車両駆動力の出力応答性を向上させることができる。一方、このハイブリッドシステム1-1は、要求車両駆動力が所定値以下であれば、エンジン始動時における元の目標変速段(目標変速比)の変速を継続し、この変速が完了してから新たな目標変速段(目標変速比)への変速を行うことになる。これが為、このときには、エンジン始動完了後に新たな目標変速段(目標変速比)への変速が行われ、エンジン始動直後に変速ショックが発生してしまう可能性がある。しかしながら、このときには、要求車両駆動力が所定値以下であるので、エンジン始動直後の大きな変速ショックの発生は回避される。
 この例示では要求車両駆動力の大きさに基づいて新たな目標変速段(目標変速比)への変更要否を判断しているが、その判断は、例えばアクセル開度θに基づいて行ってもよい。つまり、このハイブリッドシステム1-1では、アクセル開度θが所定開度θ3(上記の要求車両駆動力の所定値に対応するアクセル開度θ)よりも大きければ、エンジン始動時における変速装置20の変速中に目標変速段(目標変速比)の変更を許容し、アクセル開度θが所定開度θ3以下であれば、その変速中の目標変速段(目標変速比)の変更を禁止してもよい。
 このハイブリッドシステム1-1は、要求車両駆動力が上記の所定値よりも大きい場合又はアクセル開度θが所定開度θ3よりも大きい場合、エンジン始動時に変速装置20をエンジン始動完了後の目標変速段(目標変速比)に変速させ、要求車両駆動力が所定値以下の場合又はアクセル開度θが所定開度θ3以下の場合、エンジン始動完了後に当該エンジン始動完了後の目標変速段(目標変速比)へと変速装置20を変速させるよう構成してもよい。この場合には、要求車両駆動力が所定値よりも大きければ、エンジン始動直後の大きな変速ショックの発生を回避しつつ、要求車両駆動力の出力応答性を向上させることができる。これに対して、要求車両駆動力が所定値以下のときには、エンジン始動時に変速装置20の変速を行わず、エンジン始動完了後に目標変速段(目標変速比)への変速が行われるが、エンジン始動直後の大きな変速ショックの発生を回避することができる。
[変形例3]
 変速装置20の変速中に今とは別の新たな目標変速段(目標変速比)への変速に切り替えた場合には、差動装置30から変速装置20に伝達されるトルクが変速動作に伴うトルクの回転方向とは反対向きになり、変速動作がもたついてしまう可能性がある。そこで、この変形例3のハイブリッドシステム1-1及び動力伝達装置では、新たな目標変速段(目標変速比)への変速の最中に、エンジンENGを始動させ、エンジントルクを増加させることによって、この変速が完了するまでの動作時間を短くする。
 以下、この一例を図14のフローチャートと図15のタイムチャートとに基づいて説明する。
 HVECU90は、変速装置20の目標変速段が低速段であるのか高速段であるのかを判断する(ステップST11)。図15のタイムチャートでは、エンジン始動完了後の目標変速段が高速段から低速段に変更される。
 HVECU90は、エンジンENGが始動中であるのか否かを判定する(ステップST12)。ここで云う始動中とは、エンジン始動時におけるエンジン回転数が0よりも大きい状態のときのことを云う。従って、エンジン始動中と判定された場合には、既に変速装置20が変速動作に入っており、EV走行中の変速装置20がニュートラル状態であれば、クラッチCL1又はブレーキBK1が少なくとも半係合状態になっていることが判る。
 HVECU90は、エンジンENGが始動中でなければ(エンジン回転数が0であれば)、後述するステップST14に進む。この場合、ステップST14では、目標変速段への変速を開始させることになるが、変速装置20の変速が始まっており、クラッチCL1又はブレーキBK1が半係合状態となる前の状態であれば、その変速動作を継続させる。
 一方、HVECU90は、エンジンENGが始動中の場合、アクセル開度θが所定開度θ4(>θ1)よりも大きいのか否かを判定する(ステップST13)。このステップST13の判定は、変速中の変速装置20の目標変速段に変更があるのか否かを観る為のものである。
 ここで、変速装置20が低速段のときの車両駆動力と高速段のときの車両駆動力との差は、車速が低いほど大きくなる。これが為、その所定開度θ4は、車速に応じて決めればよい。この所定開度θ4は、例えば図16のマップから車速に基づいて決める。この所定開度θ4に依れば、車速が低いほど小さなアクセル開度θでエンジン始動時に変速装置20が変速される。ここではアクセル開度θで判定を行っているが、このステップST13は、そのアクセル開度θに対応する要求車両駆動力を用いて同様の判定を行ってもよい。
 HVECU90は、アクセル開度θが所定開度θ4以下又は要求車両駆動力が所定値(所定開度θ4に対応する車両駆動力)以下の場合、変速中の変速装置20の目標変速段に変更がないので、後述するステップST15に進む。
 これに対して、HVECU90は、アクセル開度θが所定開度θ4よりも大きい又は要求車両駆動力が所定値よりも大きい場合、変速装置20の目標変速段への変速を行う(ステップST14)。このステップST14では、ステップST13の判定を経た場合、変更後の新たな目標変速段に変速させる。
 HVECU90は、エンジン回転数が点火可能な回転数にまで上昇しているのか否かを判定する(ステップST15)。つまり、ここでは、エンジン回転数がエンジンパワーの増加を可能にする回転数以上になっているのか否かを判定する。
 エンジン回転数が点火可能な回転数よりも低い場合、HVECU90は、この演算処理を一旦終わらせる。
 これに対して、エンジン回転数が点火可能な回転数以上の場合、HVECU90は、エンジントルクを増加させる(ステップST16)。その際、エンジンENGが未だ点火されていなければ、エンジンENGを点火させてからエンジントルクの増加を行う。
 ここでは、変速中のイナーシャトルク分の保障が可能なエンジントルク増加量を算出し、これに応じたエンジンパワーを出力させる。そのエンジントルク増加量は、図17示すように車速が高いほど多くする。これは、車速が高いほど変速に要する回転数変化(ブレーキBK1やクラッチCL1における第1係合部材と第2係合部材との間の回転差など)が大きく、変速時間を著しく遅くしない為に大きなエンジントルクが必要とされるからである。この例示では、同じ車速であれば、高速段よりも低速段の方がエンジントルク増加量を多くしている。また、このエンジントルク増加量は、車速が変速線(例えば図17の破線に示すオーバドライブ状態から直結状態への変速線)に近い部分では0にしてもよい。このエンジントルクの増加は、例えばエンジンENGの点火と共に開始し、クラッチCL1が完全係合に近づくまで実施する。図15のタイムチャートでは、クラッチCL1を完全係合させるべく、CL1油圧を半係合状態から完全係合に向けて増加させるときまでエンジントルクの増加を行っている。
 このハイブリッドシステム1-1及び動力伝達装置に依れば、エンジン始動時における変速装置20の変速中にエンジン始動完了後の目標変速段(目標変速比)が変更された場合、その変更後の新たな目標変速段(目標変速比)への変速の際にエンジントルクを増加させることで、その変速に要する時間を短縮しているので、その変速後の要求車両駆動力の出力応答性を向上させることができる。また、このハイブリッドシステム1-1及び動力伝達装置では、その目標変速段(目標変速比)が変更されなくても、変速装置20の変速中にエンジントルクを増加させるので、この変速に要する時間の短縮化が図れ、この変速後の要求車両駆動力の出力応答性を向上させることができる。
[変形例4]
 以上示した実施例及び変形例1-3の技術は、以下の図18に示すハイブリッドシステム1-2においても適用可能であり、その実施例及び変形例1-3と同様の効果を得ることができる。その図18の符号101は、このハイブリッドシステム1-2が搭載されたハイブリッド車両を示す。
 ハイブリッドシステム1-2は、ハイブリッドシステム1-1と同じように、動力源としてのエンジンENGと第1回転電機MG1と第2回転電機MG2とを備え、更に変速装置20と差動装置30と変速調整装置40とを有する動力伝達装置を備える。各動力源は、ハイブリッドシステム1-1と同じものである。一方、動力伝達装置は、ハイブリッドシステム1-1の動力伝達装置に対して以下のような構成上の違いを有するものである。
 ハイブリッドシステム1-2の動力伝達装置は、直列接続された変速装置20と差動装置30の配置、これらの接続形態などが異なる。
 変速装置20は、差動回転が可能な複数の回転要素からなる遊星歯車機構(具体的にはシングルピニオン型の遊星歯車機構)を備える。この例示でも、サンギヤS1は、変速調整装置40のブレーキBK1に接続されている。また、この例示においても、サンギヤS1とキャリアC1との間には、変速調整装置40のクラッチCL1を介在させている。
 但し、このハイブリッドシステム1-2においては、キャリアC1が差動装置30に接続され、この差動装置30との間の動力伝達を担う第2動力伝達要素となる。このハイブリッドシステム1-2では、エンジンENGが差動装置30に接続されるので、そのキャリアC1がエンジンENGとの間の動力伝達を担う第1動力伝達要素としても機能する。また、このハイブリッドシステム1-2では、変速装置20のリングギヤR1が変速装置20及び差動装置30からなる動力伝達装置の出力となり、カウンタドライブギヤ51等を介して第2回転電機MG2と駆動輪Wとに接続される。そのリングギヤR1は、カウンタドライブギヤ51と一体になって回転する。
 差動装置30は、差動動作が可能な複数の回転要素からなる遊星歯車機構(具体的にはシングルピニオン型の遊星歯車機構)を備える。この例示でも、サンギヤS2は、MG1回転軸12に接続されている。
 但し、このハイブリッドシステム1-2においては、キャリアC2がエンジンENGに接続され、キャリアC2とエンジン回転軸11とを一体になって回転させることができる。また、このハイブリッドシステム1-2においては、リングギヤR2が変速装置20のキャリアC1に接続され、このリングギヤR2とキャリアC1とを一体になって回転させることができる。
 図19には、このハイブリッドシステム1-2の作動係合表を示している。丸印等は、前述した図3のものと同じである。
[単独モータEVモード]
 二次電池が充電可能な場合には、クラッチCL1とブレーキBK1を共に解放させ、変速装置20をニュートラル状態に制御する。この単独モータEVモード(エンジンブレーキ不要)においては、ハイブリッドシステム1-1と同じように、エンジンブレーキを実施させずに回生電力を得ることができるので、燃費(電費)が向上する。一方、二次電池の充電が禁止される場合には、クラッチCL1とブレーキBK1の内の何れか一方だけを係合させることで、エンジンENGを連れ回し状態とし、エンジンブレーキを発生させる。この場合にも、HVECU90は、ハイブリッドシステム1-1と同じように、第1回転電機MG1の制御によりエンジン回転数を上昇させる。
 後進時には、二次電池の充電が可能であれば、クラッチCL1とブレーキBK1を共に解放させ、第2回転電機MG2の動力だけで走行させてもよく、クラッチCL1とブレーキBK1を共に係合させ、変速装置20のキャリアC1を固定することによって、第1回転電機MG1と第2回転電機MG2の双方の動力で走行させてもよい。
[HV走行モード]
 このハイブリッドシステム1-2は、ハイブリッドシステム1-1と同じように、HVハイモードとHVローモードを車速に応じて使い分けている。従って、このハイブリッドシステム1-2においてもメカニカルポイントが2つになるので、このHV走行モードにおいては、ハイギヤで動作しているときの伝達効率を向上させることができ、高車速走行時の燃費を向上させることができる。
 HVハイモードにおいては、クラッチCL1を解放させると共にブレーキBK1を係合させることで、変速装置20を高速段に切り替え、エンジンENGの回転が増速して出力されるように制御する。一方、HVローモードにおいては、クラッチCL1を係合させると共にブレーキBK1を解放させることで、変速装置20を低速段に切り替え、エンジンENGの回転が等速のまま出力されるように制御する。このハイブリッドシステム1-2においても、HVハイモードとHVローモードとの間で切り替える際には、変速装置20と差動装置30とを同時に変速させる協調変速制御を実行する。従って、このハイブリッドシステム1-2は、第1回転電機MG1の回転を電気的に制御することで、システム変速比が連続的に変化させられる電気的無段変速機として動作させることができる。
 後進時には、HVローモードで第1回転電機MG1を発電機、第2回転電機MG2を電動機として動作させ、この第2回転電機MG2を前進時とは逆向きに回転させる。
 ところで、前述した実施例及び変形例1-4においては2段の変速装置20を例示したが、その変速装置20は、3段以上の変速段を有するものであってもよく、無段変速機であってもよい。有段変速機の場合、変速装置20は、例えば、複数の遊星歯車機構の組み合わせと係合装置(ブレーキやクラッチ)により複数の変速段が構成されるものであってもよく、所謂一般的な有段の自動変速機であってもよい。無段変速機の場合、変速装置20は、例えば、ベルト式のものでもよく、ボールプラネタリ式のものでもよい。変速装置20は、何れの形態のものが適用されようとも、その入出力軸が夫々に第1動力伝達要素と第2動力伝達要素になる。
 また、前述した実施例及び変形例1-4においてはエンジンENGの動力等を利用した回生運転で充電を行うハイブリッド車両100,101を例示したが、その実施例及び変形例1-4で説明した技術は、外部電源による充電が可能なプラグインハイブリッド車両に適用してもよい。
 1-1,1-2 ハイブリッドシステム
 11 エンジン回転軸
 12 MG1回転軸
 13 MG2回転軸
 20 変速装置
 21 回転軸
 30 差動装置
 40 変速調整装置
 100,101 ハイブリッド車両
 90 HVECU(統合ECU)
 91 エンジンECU
 92 MGECU
 BK1 ブレーキ
 CL1 クラッチ
 C1,C2 キャリア
 ENG エンジン(機関)
 MG1 第1回転電機
 MG2 第2回転電機
 P1、P2 ピニオンギヤ
 R1,R2 リングギヤ
 S1,S2 サンギヤ
 W 駆動輪

Claims (12)

  1.  機関の回転軸が接続された第1動力伝達要素を有する変速装置と、
     前記変速装置の第2動力伝達要素に接続された回転要素と、第1回転電機の回転軸に接続された回転要素と、第2回転電機の回転軸及び駆動輪に接続された回転要素と、を含む差動回転可能な複数の回転要素を有する差動装置と、
     前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達できないニュートラル状態又は当該第1動力伝達要素と当該第2動力伝達要素との間で動力伝達可能な状態へと前記変速装置を制御可能な変速調整装置と、
     前記第1及び第2の回転電機の内の少なくとも1つの動力を前記駆動輪に伝えるEV走行中に前記機関を始動させる場合に、ニュートラル状態の前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達可能な状態に制御する第1工程と、前記第1回転電機の回転数を上昇させる第2工程と、該第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御を行う第3工程と、を有する制御装置と、
     を備えることを特徴としたハイブリッド車両の動力伝達装置。
  2.  機関の回転軸が接続された第1回転要素と、第1回転電機の回転軸が接続された第2回転要素と、を含む差動回転可能な複数の回転要素とを有する差動装置と、
     前記差動装置の第3回転要素が接続された第1動力伝達要素と、第2回転電機の回転軸及び駆動輪が接続された第2動力伝達要素と、を有する変速装置と、
     前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達できないニュートラル状態又は当該第1動力伝達要素と当該第2動力伝達要素との間で動力伝達可能な状態へと前記変速装置を制御可能な変速調整装置と、
     前記第1及び第2の回転電機の内の少なくとも1つの動力を前記駆動輪に伝えるEV走行中に前記機関を始動させる場合に、ニュートラル状態の前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達可能な状態に制御する第1工程と、前記第1回転電機の回転数を上昇させる第2工程と、該第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御を行う第3工程と、を有する制御装置と、
     を備えることを特徴としたハイブリッド車両の動力伝達装置。
  3.  EV走行中に前記機関を始動させる場合の前記第1動力伝達要素と前記第2動力伝達要素との間での動力伝達が可能な状態への制御とは、前記変速装置を当該変速装置における前記機関の始動完了後の目標変速比又は目標変速段へと変速させる変速制御である請求項1又は2に記載のハイブリッド車両の動力伝達装置。
  4.  前記変速装置は、前記機関の始動完了までに前記目標変速比又は前記目標変速段への変速を完了させる請求項3記載のハイブリッド車両の動力伝達装置。
  5.  前記変速装置は、車速、アクセル操作量、スロットル開度又はアクセル操作速度の内の少なくとも1つに応じた前記目標変速比又は前記目標変速段への変速を行う請求項3又は4に記載のハイブリッド車両の動力伝達装置。
  6.  前記変速装置は、前記機関の始動時に要求車両駆動力が変化した場合、該変化後の要求車両駆動力に応じた前記機関の始動完了後の新たな目標変速比又は新たな目標変速段への変速を行う請求項3から5の内の少なくとも1つに記載のハイブリッド車両の動力伝達装置。
  7.  前記制御装置は、前記機関の始動時に前記目標変速比又は前記目標変速段への変速が完了しない場合、該機関の出力トルクを増加させる請求項3から6の内の少なくとも1つに記載のハイブリッド車両の動力伝達装置。
  8.  前記変速装置は、要求車両駆動力が所定値以上の場合、前記目標変速比又は前記目標変速段への変速を行い、前記要求車両駆動力が前記所定値よりも小さい場合、前記目標変速比又は前記目標変速段への変速を行わない請求項3から7の内の少なくとも1つに記載のハイブリッド車両の動力伝達装置。
  9.  前記第3工程における前記機関の始動制御は、該機関への点火制御である請求項1から8の内の少なくとも1つに記載のハイブリッド車両の動力伝達装置。
  10.  機関と、
     第1回転電機と、
     第2回転電機と、
     前記機関の回転軸が接続された第1動力伝達要素を有する変速装置と、
     前記変速装置の第2動力伝達要素に接続された回転要素と、前記第1回転電機の回転軸に接続された回転要素と、前記第2回転電機の回転軸及び駆動輪に接続された回転要素と、を含む差動回転可能な複数の回転要素を有する差動装置と、
     前記第1及び第2の回転電機の内の少なくとも1つの動力を前記駆動輪に伝えてEV走行する場合に、前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達できないニュートラル状態に制御し、該EV走行中に前記機関を始動させる場合、前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達可能な状態に制御する変速調整装置と、
     前記EV走行中に前記機関を始動させる場合、前記変速装置が前記動力伝達可能な状態に制御された後又は当該状態への制御中に、前記第1回転電機の回転数を上昇させる回転電機制御装置と、
     前記EV走行中に前記機関を始動させる場合、前記第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御を行う機関制御装置と、
     を備えることを特徴としたハイブリッドシステム。
  11.  機関と、
     第1回転電機と、
     第2回転電機と、
     前記機関の回転軸が接続された第1回転要素と、前記第1回転電機の回転軸が接続された第2回転要素と、を含む差動回転可能な複数の回転要素を有する差動装置と、
     前記差動装置の第3回転要素が接続された第1動力伝達要素と、前記第2回転電機の回転軸及び駆動輪が接続された第2動力伝達要素と、を有する変速装置と、
     前記第1及び第2の回転電機の内の少なくとも1つの動力を前記駆動輪に伝えてEV走行する場合に、前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達できないニュートラル状態に制御し、該EV走行中に前記機関を始動させる場合、前記変速装置を前記第1動力伝達要素と前記第2動力伝達要素との間で動力伝達可能な状態に制御する変速調整装置と、
     前記EV走行中に前記機関を始動させる場合、前記変速装置が前記動力伝達可能な状態に制御された後又は当該状態への制御中に、前記第1回転電機の回転数を上昇させる回転電機制御装置と、
     前記EV走行中に前記機関を始動させる場合、前記第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御を行う機関制御装置と、
     を備えることを特徴としたハイブリッドシステム。
  12.  前記第1回転電機の回転数の上昇に伴い回転数が持ち上げられた前記機関の始動制御は、該機関への点火制御である請求項10又は11に記載のハイブリッドシステム。
PCT/JP2012/065659 2012-06-19 2012-06-19 ハイブリッド車両の動力伝達装置及びハイブリッドシステム WO2013190641A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014521130A JP5904279B2 (ja) 2012-06-19 2012-06-19 ハイブリッド車両の動力伝達装置及びハイブリッドシステム
US14/409,760 US9649926B2 (en) 2012-06-19 2012-06-19 Power transmission device for a hybrid vehicle and hybrid system
CN201280074133.2A CN104395122B (zh) 2012-06-19 2012-06-19 混合动力车辆的动力传递装置及混合动力系统
PCT/JP2012/065659 WO2013190641A1 (ja) 2012-06-19 2012-06-19 ハイブリッド車両の動力伝達装置及びハイブリッドシステム
DE112012006555.7T DE112012006555B4 (de) 2012-06-19 2012-06-19 Leistungsübertragungsvorrichtung für ein Hybridfahrzeug und Hybridsystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065659 WO2013190641A1 (ja) 2012-06-19 2012-06-19 ハイブリッド車両の動力伝達装置及びハイブリッドシステム

Publications (1)

Publication Number Publication Date
WO2013190641A1 true WO2013190641A1 (ja) 2013-12-27

Family

ID=49768272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065659 WO2013190641A1 (ja) 2012-06-19 2012-06-19 ハイブリッド車両の動力伝達装置及びハイブリッドシステム

Country Status (5)

Country Link
US (1) US9649926B2 (ja)
JP (1) JP5904279B2 (ja)
CN (1) CN104395122B (ja)
DE (1) DE112012006555B4 (ja)
WO (1) WO2013190641A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013190641A1 (ja) * 2012-06-19 2016-02-08 トヨタ自動車株式会社 ハイブリッド車両の動力伝達装置及びハイブリッドシステム
CN106828071A (zh) * 2017-01-21 2017-06-13 浙江钱江摩托股份有限公司 一种混合动力车辆双离合驱动装置及控制方法
CN107054044A (zh) * 2017-01-21 2017-08-18 浙江钱江摩托股份有限公司 一种混合动力车辆驱动装置及其控制方法
CN112406508A (zh) * 2020-10-29 2021-02-26 东风汽车集团有限公司 混合动力驱动方法、装置、动力系统、车辆及相关设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470744B (zh) * 2012-07-17 2017-03-15 丰田自动车株式会社 混合动力车辆用驱动装置
EP2896527B1 (en) * 2012-09-14 2020-06-10 Toyota Jidosha Kabushiki Kaisha Power transmission device for hybrid vehicle, and hybrid system
JP6399033B2 (ja) * 2016-04-27 2018-10-03 トヨタ自動車株式会社 自動変速機の制御装置
JP6458770B2 (ja) * 2016-05-18 2019-01-30 トヨタ自動車株式会社 ハイブリッド自動車
WO2018014966A1 (de) * 2016-07-22 2018-01-25 Gkn Automotive Ltd. Getriebeanordnung für ein hybridfahrzeug, antriebssystem und hybridfahrzeug
JP6607202B2 (ja) * 2017-01-10 2019-11-20 トヨタ自動車株式会社 駆動装置
JP6627788B2 (ja) * 2017-01-23 2020-01-08 トヨタ自動車株式会社 ハイブリッド車両
DE102017213373A1 (de) * 2017-08-02 2019-02-07 Robert Bosch Gmbh Getriebe für eine Hybridantriebsanordnung
JP2019035449A (ja) * 2017-08-11 2019-03-07 トヨタ自動車株式会社 車両用駆動装置
JP2020138581A (ja) * 2019-02-27 2020-09-03 本田技研工業株式会社 ハイブリッド車両の駆動装置
CN109854700B (zh) * 2019-03-15 2024-04-05 重庆青山工业有限责任公司 变速器总成、换档动力补偿方法及纯电动车
JP2021160450A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 ハイブリッド車両の駆動装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120233A (ja) * 2006-11-10 2008-05-29 Toyota Motor Corp ハイブリッド駆動装置
JP2008143407A (ja) * 2006-12-12 2008-06-26 Toyota Motor Corp 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP2009190694A (ja) * 2008-02-18 2009-08-27 Toyota Motor Corp ハイブリッド車の駆動装置
JP2009298269A (ja) * 2008-06-12 2009-12-24 Toyota Motor Corp ハイブリッド車両の制御装置
JP2010070099A (ja) * 2008-09-19 2010-04-02 Toyota Motor Corp 車両の駆動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265539B2 (ja) * 2005-01-21 2009-05-20 トヨタ自動車株式会社 車両用駆動装置の変速制御装置
JP4821571B2 (ja) 2006-11-10 2011-11-24 トヨタ自動車株式会社 ハイブリッド駆動装置
JP2008207690A (ja) * 2007-02-27 2008-09-11 Toyota Motor Corp 車両用駆動装置の制御装置
JP2009173174A (ja) * 2008-01-24 2009-08-06 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP5120650B2 (ja) 2008-07-11 2013-01-16 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
US8868274B2 (en) 2010-09-07 2014-10-21 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicular drive system
WO2013114595A1 (ja) 2012-02-01 2013-08-08 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
WO2013190641A1 (ja) * 2012-06-19 2013-12-27 トヨタ自動車株式会社 ハイブリッド車両の動力伝達装置及びハイブリッドシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120233A (ja) * 2006-11-10 2008-05-29 Toyota Motor Corp ハイブリッド駆動装置
JP2008143407A (ja) * 2006-12-12 2008-06-26 Toyota Motor Corp 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP2009190694A (ja) * 2008-02-18 2009-08-27 Toyota Motor Corp ハイブリッド車の駆動装置
JP2009298269A (ja) * 2008-06-12 2009-12-24 Toyota Motor Corp ハイブリッド車両の制御装置
JP2010070099A (ja) * 2008-09-19 2010-04-02 Toyota Motor Corp 車両の駆動装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013190641A1 (ja) * 2012-06-19 2016-02-08 トヨタ自動車株式会社 ハイブリッド車両の動力伝達装置及びハイブリッドシステム
CN106828071A (zh) * 2017-01-21 2017-06-13 浙江钱江摩托股份有限公司 一种混合动力车辆双离合驱动装置及控制方法
CN107054044A (zh) * 2017-01-21 2017-08-18 浙江钱江摩托股份有限公司 一种混合动力车辆驱动装置及其控制方法
CN107054044B (zh) * 2017-01-21 2023-07-18 浙江美可达摩托车有限公司 一种混合动力车辆驱动装置及其控制方法
CN106828071B (zh) * 2017-01-21 2023-07-25 浙江美可达摩托车有限公司 一种混合动力车辆双离合驱动装置及控制方法
CN112406508A (zh) * 2020-10-29 2021-02-26 东风汽车集团有限公司 混合动力驱动方法、装置、动力系统、车辆及相关设备
CN112406508B (zh) * 2020-10-29 2023-08-08 东风汽车集团有限公司 混合动力驱动方法、装置、动力系统、车辆及相关设备

Also Published As

Publication number Publication date
US9649926B2 (en) 2017-05-16
CN104395122A (zh) 2015-03-04
US20150151627A1 (en) 2015-06-04
CN104395122B (zh) 2017-06-20
DE112012006555B4 (de) 2023-07-06
JP5904279B2 (ja) 2016-04-13
JPWO2013190641A1 (ja) 2016-02-08
DE112012006555T8 (de) 2015-04-23
DE112012006555T5 (de) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5904279B2 (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP6801617B2 (ja) 車両の制御装置
JP5991374B2 (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP5892256B2 (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP5060371B2 (ja) 動力出力装置および車両
JP4447039B2 (ja) 動力出力装置および車両
EP2868543B1 (en) Hybrid vehicle drive apparatus
EP2810806A1 (en) Drive apparatus for hybrid vehicle
JP6015770B2 (ja) ハイブリッド車両用駆動装置
WO2013186924A1 (ja) ハイブリッド車両用駆動装置
JP6015410B2 (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP6888497B2 (ja) 車両用動力伝達装置の制御装置
JP2017194102A (ja) 車両用動力伝達装置の制御装置
JP2014051146A (ja) ハイブリッド車両用駆動装置
JP2009248768A (ja) 動力出力装置および車両
JP6015489B2 (ja) ハイブリッド車両用駆動装置
JP6900861B2 (ja) 車両
JP6946889B2 (ja) 車両用動力伝達装置の制御装置
JP6825523B2 (ja) 車両用動力伝達装置の制御装置
JP6801615B2 (ja) 車両用動力伝達装置の油圧制御回路
JP6915471B2 (ja) 車両用動力伝達装置の制御装置
JP6881183B2 (ja) 車両の動力伝達装置
JP6809424B2 (ja) 車両用動力伝達装置の制御装置
JP6911667B2 (ja) 車両用動力伝達装置の制御装置
JP6801614B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521130

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14409760

Country of ref document: US

Ref document number: 1120120065557

Country of ref document: DE

Ref document number: 112012006555

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879375

Country of ref document: EP

Kind code of ref document: A1