WO2013187098A1 - 光伝送システム、局側光終端装置および通信回線切替方法 - Google Patents
光伝送システム、局側光終端装置および通信回線切替方法 Download PDFInfo
- Publication number
- WO2013187098A1 WO2013187098A1 PCT/JP2013/057091 JP2013057091W WO2013187098A1 WO 2013187098 A1 WO2013187098 A1 WO 2013187098A1 JP 2013057091 W JP2013057091 W JP 2013057091W WO 2013187098 A1 WO2013187098 A1 WO 2013187098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- side optical
- subscriber
- power saving
- optical
- onus
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
- H04L12/2869—Operational details of access network equipments
- H04L12/2898—Subscriber equipments
Definitions
- the present invention relates to an optical transmission system, a station side optical terminal device, and a communication line switching method.
- An optical network is one in which one OLT (Optical Line Terminal) and one ONU (Optical Network Unit: subscriber-side optical terminator) communicate via an optical transmission line (optical fiber).
- OLT Optical Line Terminal
- ONU Optical Network Unit: subscriber-side optical terminator
- PON Passive Optical Network
- PDS Passive Double Star
- Services can be provided at low cost.
- EPON Ethernet (registered trademark) PON) standardized by IEEE (Institute of Electrical and Electronic Engineers) 802.3.
- an upstream optical signal transmitted from the ONU to the OLT and a downstream optical signal transmitted from the OLT to the ONU are multiplexed by WDM (Wavelength Division Multiplexing).
- the ONU uses TDMA (Time Division Multiple Access) that transmits an upstream optical signal according to the transmission timing permitted by the OLT.
- TDMA Time Division Multiple Access
- the OLT dynamically assigns transmission timings for the upstream signals of each ONU so that upstream optical signals of a plurality of connected ONUs do not overlap each other.
- the downstream optical signal transmitted from the OLT toward the ONU uses TDM (Time Division Multiplexing) and is received by all ONUs connected via the optical transmission path. At that time, the ONU refers to the destination information included in the preamble portion of the downstream optical signal, and discards the downstream optical signal that is not addressed to itself.
- the power consumption of ONUs tends to increase as the communication speed increases and the number of connected electronic devices increases. Since ONUs are installed at subscriber's homes, many ONUs are arranged on the network. Further, the ONU requires a shorter time for the available bandwidth than the OLT and the upper switch group. Therefore, the ONU is left while using wasted power while not performing communication.
- the OLT has an ONU downstream sleep management table for managing whether the downstream optical signal processing unit of the ONU is in a sleep (power saving) state, and the upstream optical signal processing unit of the ONU is in a sleep (saving).
- a method using an ONU upstream sleep management table for managing whether the state is (power) state is disclosed.
- Patent Document 2 a table for managing ONU identification information and a management for managing a return time that is a time when the ONU returns from a sleep (power saving) state in which a part of the upstream and downstream processing units are stopped A method using a table is disclosed (Patent Document 2).
- Some systems have a redundant configuration that switches to another communication line when a failure occurs in the communication line forming the communication network.
- a redundant configuration of the communication line it is possible to improve the robustness against communication failure.
- the communication line that has failed is switched from the communication line to the other communication line, and a link is established to establish communication. Resume.
- the ONU in the sleep (power saving) state aims to reduce power consumption by stopping both the transmitter and the receiver used for data communication with the OLT, or by stopping only the transmitter.
- the ONU in the sleep (power saving) state does not transmit an upstream optical signal to the OLT and does not respond to a control signal from the OLT. Therefore, when the redundant configuration and the ONU power save coexist, the following problems are considered to occur.
- the ONU issues a control light issued by the OLT. Does not respond to the signal. Therefore, there is a problem that the OLT erroneously detects that a failure has occurred in the optical transmission path and switches the communication line.
- Patent Document 1 discloses a method in which the OLT uses a sleep management table for managing the sleep (power saving) state of the upper and lower optical signal processing units of the ONU. Although it is possible to reduce the power consumption of the ONU by monitoring the existence and data type of communication data using the status management table, the above-described problem when the redundant configuration of the optical transmission path coexists, that is, the failure No patent document 1 discloses a solution for erroneous detection. Also in Patent Document 2, there is no disclosure at all regarding the above-described problem when a redundant configuration of an optical transmission line coexists, that is, a solution to erroneous detection of a failure.
- Patent Document 1 in order to reduce power consumption during non-communication of ONUs, the OLT monitors the communication state of each ONU and uses the sleep management table to perform sleep (power saving) control for the ONUs during non-communication. It discloses the technique to do. Using this method, it is possible to reduce power consumption by controlling the ONU to be in a sleep (power saving) state in a time range not corresponding to the redundancy switching condition, but the sleep (power saving) time is limited. Therefore, the ONU frequently repeats state transitions, occupying a band that cannot be ignored on the optical transmission line of the multi-branch PON system, and the power consumption reduction effect of the ONU is limited.
- the present invention has been made in view of the above, and an optical transmission system capable of preventing erroneous detection of a failure in an optical transmission line when the ONU power saving control and the redundant configuration of the optical transmission line coexist.
- An object of the present invention is to provide a station side optical termination device and a communication line switching method.
- the present invention is made redundant with a subscriber-side optical termination device, a station-side optical termination device, and the station-side optical termination device that can be shifted to a power saving mode.
- an optical splitter connected to each of the subscriber-side optical terminators and each of the branch lines, wherein the station-side optical terminator is a saving of the subscriber-side optical terminator.
- Power saving information which is information related to the power mode, is managed, and redundancy switching of the trunk line is controlled based on the power saving information.
- the optical transmission system, the station-side optical termination device, and the communication line switching method according to the present invention prevent erroneous detection of a failure in an optical transmission line when the power saving control of the ONU and the redundant configuration of the optical transmission line coexist. There is an effect that can be.
- FIG. 1 is a diagram showing a configuration example of an optical access network including a PON system according to the present invention.
- FIG. 2 is a diagram illustrating a configuration example of the PON system.
- FIG. 3 is a diagram illustrating a configuration example of the OLT unit.
- FIG. 4 is a diagram illustrating a configuration example of the ONU.
- FIG. 5 is a diagram illustrating a communication operation sequence example of discovery processing.
- FIG. 6 is a diagram illustrating an example of a sequence when a failure occurs in the active trunk optical fiber.
- FIG. 7 is a diagram illustrating an example of a trunk optical fiber switching sequence when a failure occurs in the active trunk optical fiber.
- FIG. 1 is a diagram showing a configuration example of an optical access network including a PON system according to the present invention.
- FIG. 2 is a diagram illustrating a configuration example of the PON system.
- FIG. 3 is a diagram illustrating a configuration example of the OLT unit.
- FIG. 4 is
- FIG. 8 is a diagram illustrating an example of a communication operation sequence in a case where a normal operation is hindered by the conventional communication path switching method.
- FIG. 9 is a flowchart illustrating an example of basic control of the OLT.
- FIG. 10 is a flowchart illustrating an example of OLT power saving control.
- FIG. 11 is a diagram illustrating an example of the state management table.
- FIG. 12 is a flowchart illustrating an example of a communication path switching procedure.
- FIG. 13 is a diagram showing an example of a sequence when the communication path switching method in the OLT according to the present invention is implemented.
- FIG. 14 is a diagram illustrating an example of a sequence when power saving control is performed in the OLT.
- FIG. 9 is a flowchart illustrating an example of basic control of the OLT.
- FIG. 10 is a flowchart illustrating an example of OLT power saving control.
- FIG. 11 is a diagram illustrating an example of the state management table.
- FIG. 15A is a diagram illustrating an example of a power saving control procedure in the ONU.
- FIG. 15B is a diagram illustrating an example of a power saving control procedure in the ONU.
- FIG. 16 is a diagram illustrating a configuration example in which branch lines have multiple stages.
- FIG. 17 is a diagram illustrating a configuration example of the PON system according to the second embodiment.
- FIG. 18 is a diagram illustrating a configuration example of a state management table according to the second embodiment.
- FIG. 19 is a diagram illustrating an example of the power saving control method according to the second embodiment.
- FIG. 1 is a diagram showing a configuration example of an optical access network including a PON system (optical transmission system) according to the present invention.
- the PON system according to the present embodiment includes an OLT (station side optical terminal device) 1 and ONUs (subscriber side optical terminal devices) 2-1 to 2-N (N is an integer of 1 or more).
- the OLT 1 is connected to the upper network 4.
- the ONU 2-1 is connected to the user terminal 5-1, and the ONU 2-N is connected to the user terminal 5-2.
- the OLT 1 is connected to the ONUs 2-1 to ONU2-N via the optical splitter 3, and the OLT 1 and the optical splitter 3 are connected to each other via a trunk optical fiber 7, and between the optical splitter 3 and the ONUs 2-1 to ONU2-N. Are connected by branch optical fibers 6-1 to 6-N, respectively.
- the number of ONUs connected to the OLT 1 is not limited.
- the OLT 1 and the ONU 2-1 to ONU 2-N communicate using optical signals multiplexed by WDM, the upstream optical signal and the downstream optical signal do not collide.
- the OLT 1 transmits the optical transmission times (upstream transmission times) of the ONUs 2-1 to ONU2-N so that the optical transmission times do not overlap. Is controlling.
- FIG. 2 is a diagram illustrating a configuration example of the PON system according to the present embodiment.
- the OLT 1 of the present embodiment has a redundant configuration, and includes an OLT unit 1-1, an OLT unit 1-2, and a control unit 9 that controls the entire OLT 1.
- Each of the OLT unit 1-1 and the OLT unit 1-2 has a function as an OLT alone, and either one is used for operation.
- the OLT unit 1-1 is the active system (wOLT1-1) and the OLT unit 1-2 is the standby system (sOLT1-2).
- the OLT unit 1-1 and the OLT unit 1-2 are each connected to an L2SW (Layer 2 Switch) 8 and connected to the upper network 4 via the L2SW 8.
- L2SW Layer 2 Switch
- the trunk optical fiber 7 is composed of an active trunk optical fiber 7-1 and a standby trunk optical fiber 7-2.
- the active trunk optical fiber 7-1 is connected to the wOLT 1-1, and the standby trunk optical fiber 7-2 is connected.
- 7-2 is connected to sOLT1-2.
- the number of ONUs is four, but the number of ONUs is not limited to this.
- the optical splitter 3 is a passive optical element. In downstream communication, the downstream optical signal transmitted from the OLT 1 via the active trunk optical fiber 7-1 or the standby trunk optical fiber 7-2 is transmitted to itself. This is divided into the number of connected ONUs 2 (four in the example in FIG. 2), and the divided optical signals are output to the branch optical fibers 6-1 to 6-4, respectively. In upstream communication, the optical splitter 3 converts the upstream optical signals transmitted from the branch optical fibers 6-1 to 6-4 into the active trunk optical fiber 7-1 and the standby trunk optical fiber 7-2. Output to.
- the OLT 1 has a function capable of setting and controlling the communication path with the ONUs 2-1 to 2-4.
- the ONUs 2-1 to 2-4 are communication devices that transmit and receive optical signals under the control of the OLT 1, and have a power saving (sleep) mode function to be described later.
- FIG. 3 is a diagram illustrating a configuration example of the OLT unit 1-1 (wOLT1-1).
- the OLT unit 1-2 (sOLT1-2) has the same configuration as the OLT unit 1-1.
- the OLT unit 1-1 includes a PON control unit 10 that performs processing on the OLT side based on the PON protocol, a physical layer processing unit (PHY) 11, an upstream optical signal, and a downstream optical signal.
- PON control unit 10 that performs processing on the OLT side based on the PON protocol
- PHY physical layer processing unit
- upstream optical signal an upstream optical signal
- a downstream optical signal a downstream optical signal.
- WDM WDM coupler
- the optical transmitter / receiver 15 converts an optical signal received from the ONUs 2-1 to 2-4 into an electrical signal and outputs the electric signal to the PON control unit 10, and from the PON control unit 10 And an optical transmitter (Tx: Transmitter) 17 that performs a process of converting the input electrical signal into an optical signal and transmitting it to the ONUs 2-1 to 2-4.
- the physical layer processing unit 11 implements a physical interface function such as NNI (Network Node Interface) with the network, and performs a reception unit (Rx) 18 that performs reception processing, and a transmission unit (Tx) 19 that performs transmission processing. Consists of.
- the WDM 12 is used because wavelength multiplexing is used. However, the WDM 12 is not indispensable when performing communication at a single wavelength.
- the PON control unit 10 includes a signal processing unit 30, a buffer monitoring unit 31, a sleep control signal processing unit 32, a state management table 33, and a time counter 34.
- FIG. 4 is a diagram illustrating a configuration example of the ONU 2-1.
- the ONUs 2-2 to 2-4 have the same configuration as the ONU 2-1.
- the ONU 2-1 is a PON control unit 20 that performs processing on the ONU side based on the PON protocol, and a transmission that is a buffer for storing upstream optical signal data to be transmitted to the OLT 1.
- a physical layer processing unit (PHY) 21 for realizing a physical interface function such as UNI (Unser Network Interface).
- the optical transceiver 25 includes an optical transmitter (Tx) 27 for transmitting an optical signal and an optical receiver (Rx) 26 for receiving the optical signal.
- the physical layer processing unit (PHY) 21 includes a reception unit (Rx) 28 that performs reception processing and a transmission unit (Tx) 29 that performs transmission processing. Note that the WDM 22 is not essential when communication is performed at a single wavelength without using wavelength multiplexing.
- the PON control unit 20 includes a signal processing unit 35, a buffer monitoring unit 36, a link monitoring unit 37, a state table 38, a sleep control unit 39, and a time counter 40.
- the OLT 1 has a failure detection function.
- the signal processing unit 30 detects the failure when the optical signal does not reach the ONUs 2-1 to 2-4 for a certain time. Send a signal. Fault detection in the PON system is being studied by IEEE and ITU-T (International Telecommunication Union Telecommunication Standardization Sector).
- IEEE P1904.1 TM defines failure detection of MAC LoS (Loss of Signal) and optical LoS. Both the MAC LoS and the optical LoS are detected when a failure of the active trunk optical fiber is detected. When this failure is detected, the OLT switches from the active system to the standby system.
- MAC LoS is a failure detection that is detected when the OLT does not receive a report (REPORT message) from any ONU within a certain period, and the optical LoS is valid within a certain period at the optical receiver of the OLT. Detected when an optical signal cannot be received.
- LOBi Loss of burst for ONUi
- LOS Loss of Signal
- LOBi is detected when the OLT fails to receive a burst (signal transmitted from the ONU) scheduled for each ONU four times in succession.
- the LOS is detected when the OLT fails to receive the expected uplink transmission frame four times in succession. Since LOBi is detected for each ONU, it indicates an ONU or branch line failure. In the case of an ONU or branch line failure, switching from the active system to the standby system in the OLT is not performed, and for example, the failure is notified to the operation manager.
- LOS is transmitted, switching from the active system of the trunk fiber to the standby system is performed as in the case of the optical LoS and MAC LoS described above.
- the PON control unit 10 detects the optical LoS based on the notification from the optical transceiver 15. Specifically, when the optical transceiver 15 has a time counter and the state in which the level of the optical signal detected by the Rx 16 is equal to or less than a threshold value continues for a certain period or longer, the PON control unit 10 is notified, and this notification
- the signal processing unit 30 may send out the optical LoS, or the optical transceiver 15 notifies the signal processing unit 30 of the reception level of Rx16, and the PON control unit 10 uses the time counter 34 to set the reception level to the threshold value.
- the optical LoS may be transmitted.
- the PON control unit 10 uses the time counter 34 to measure the elapsed time since the last time the report was received from the ONUs 2-1 to 2-4, and from which ONU the fixed period has elapsed. Is also detected when a report (REPORT message) is not received. For LOBi and LOS, the PON control unit 10 holds information on the upstream bandwidth (upstream transmission permission time zone) allocated to the ONUs 2-1 to 2-4. Detection is based on this information. When these failures are detected, the PON control unit 10 sends a corresponding alarm. The control unit 9 receives this warning.
- the control unit 9 of the OLT 1 switches the trunk optical fiber to be used from the active trunk optical fiber 7-1 to the standby trunk optical fiber 7-2.
- the working trunk optical fiber 7-1 is connected to the wOLT 1-1
- the standby trunk optical fiber 7-2 is connected to the sOLT 1-2
- the OLT used for operation is designated as wOLT1-
- the wOLT 1-1 may directly switch the alarm from the wOLT 1-1 to the sOLT 1-2 by notifying the sOLT 1-2.
- trunk line fault detection (optical LoS, MAC LoS, and so on) that requires switching of the trunk optical fiber (that is, switching of the OLT units 1-1 and 1-2 used for operation) is performed.
- LOS etc. will be referred to as trunk line fault detection.
- the trunk line fault detection may be, for example, the above-described optical LoS, MAC LoS, or LOS, or may be a fault detection method other than these as long as it detects a fault in the trunk optical fiber.
- a trunk fault is detected when one or more of the following conditions are satisfied.
- the optical receiver of the OLT does not receive an optical signal during X [ms] (X is a predetermined constant).
- X is a predetermined constant.
- a control signal response for example, MPCP (Multi-Point Control Protocol) frame
- ONU does not react continuously Z times to the OLT transmission permission signal (Z is a predetermined constant).
- the PON control unit 10 includes a time counter 34.
- the optical receiver 16 does not receive an optical signal that is valid for a certain period of time
- the signal processing unit 30 performs discovery processing for communicating with the detected ONUs 2-1 to 2-4, band allocation processing for allocating communication bands (upstream transmission time zones) of the ONUs 2-1 to 2-4, and the like. Do.
- the signal processing unit 30 transmits the band allocation result to the ONUs 2-1 to 2-4 by a GATE message (band allocation notification).
- the signal processing unit 30 allocates a band to each ONU 2-1 to 2-4 based on a REPORT message (response signal) including an uplink allocation request transmitted from each ONU 2-1 to 2-4. Further, the signal processing unit 30 detects the response signal (MPCP frame) transmitted from the ONUs 2-1 to 2-4, and uses the time counter 34 to respond to each ONU 2-1 to 2-4 (MPCP frame).
- MPCP frame response signal
- the MPCP frame is a GATE frame and a REPORT frame that are transmitted and received at regular intervals, and data, sleep permission, and response are transmitted by the data frame.
- the sleep control signal processing unit 32 refers to the state management table 33 which is a table for managing the power saving states of the ONUs 2-1 to 2-4, and sleeps (power saving) for each of the ONUs 2-1 to 2-4. ) A mode is selected, and a sleep permission (Sleep_Allow) control signal for transitioning to the sleep mode is transmitted. Further, the sleep control signal processing unit 32 updates the state management table 33 when receiving a sleep permission response (Sleep_Ack) control signal from the ONU. When the sleep control signal processing unit 32 restores the ONUs 2-1 to 2-4 from the sleep (power saving) mode, the sleep control signal processing unit 32 normally applies the ONUs 2-1 to 2-4 in the corresponding sleep (power saving) mode.
- the state management table 33 is a table for managing the power saving states of the ONUs 2-1 to 2-4, and sleeps (power saving) for each of the ONUs 2-1 to 2-4.
- the sleep control signal processing unit 32 also updates the state management table 33 when receiving a return permission response (WakeUp_Ack) control signal from the ONUs 2-1 to 2-4.
- the state management table 33 may be updated so that the state of the transmission source ONUs 2-1 to 2-4 is set to the sleep mode.
- the process related to power-off notification is implemented as follows, for example.
- the power-off detection unit (not shown) of the ONUs 2-1 to 2-4 notifies the PON control unit 20 when it detects its own power-off.
- the PON control unit 20 transmits to the OLT 1 a power-off notification notifying that the power-off has occurred.
- a power-off notification is transmitted to the OLT 1, but the ONUs 2-1 to 2-4 are in a sleep state (power saving state).
- a power failure notification may or may not be transmitted. Whether or not the power-off notification can be transmitted depends on the bandwidth update cycle, the activation time of the transmission / reception function from the power saving state of the ONUs 2-1 to 2-4, and the like.
- the OLT 1 transmits a GATE frame for each band update period even if the connected ONUs 2-1 to 2-4 are in the sleep mode. Note that the bandwidth allocated to each ONU 2-1 to 2-4 in the sleep mode is a bandwidth for each ONU 2-1 to 2-4 to transmit a REPORT frame.
- the PON control unit 20 of the ONUs 2-1 to 2-4 cancels the sleep mode and replaces the part that has been turned off. to start.
- the Rx activation time reception side activation time: the time until the part that has been stopped due to entering the sleep state among the components that perform reception processing of the ONUs 2-1 to 2-4 becomes operable
- a REPORT frame requesting a band for transmitting a power-off notification is transmitted.
- the Rx startup time is the Tx startup time (transmission side startup time: of the components that perform transmission processing of the ONUs 2-1 to 2-4, and the part that has been stopped becomes operable by entering the sleep state. Therefore, the REPORT frame can be transmitted when the Rx activation time has elapsed.
- the PON control unit 20 of the ONUs 2-1 to 2-4 receives the GATE frame for notifying the band allocation for transmitting the power-off notification, the power-off notification is performed in the band (transmission time period) indicated by the GATE frame. Send. Since the power-off notification is completed between the occurrence of the power-off and the power-off power holding time (the time during which power can be held using a capacitor after the power-off) elapses, the power-off notification during sleep Is possible.
- the buffer monitoring unit 31 monitors the accumulation amount of the transmission buffer 13 and notifies the sleep control signal processing unit 32 of the monitoring result.
- the sleep control signal processing unit 32 shifts the optical transmitter 27 of the optical transceivers 25 of the ONUs 2-1 to 2-4 to the sleep (power saving) mode, or sleeps both the optical transmitter 27 and the optical receiver 26. Whether to shift to the (power saving) mode is determined based on information from the buffer monitoring unit 31 and the buffer monitoring unit 36 of the ONUs 2-1 to 2-4 received from the ONUs 2-1 to 2-4.
- the signal processing unit 30 generates control signals for sleep permission (Sleep_Allow) and return permission (WakeUp_Allow) based on the determination result of the sleep control signal processing unit 32, and transmits the control signal from the optical transmitter 17.
- the sleep (power saving) mode of both the optical transmitter 27 and the optical receiver 26 it is assumed that the sleep (power saving) state and the temporary activation state are intermittently repeated, and the ONUs 2-1 to 2-4 Even in the mode, signals from the OLT 1 can be received at regular intervals.
- the sleep control signal processing unit 32 passes through the signal processing unit 30 to the state management table 33. Update. At the same time, the sleep control signal processing unit 32 monitors the sleep (power saving) time using the time counter 34.
- the signal processing unit 30 When the optical receiver 16 receives the upstream optical signal data from the ONUs 2-1 to 2-4, the signal processing unit 30 temporarily stores the received data in the reception buffer 14. The signal processing unit 30 determines the processing timing using the time counter 34, reads the data stored in the reception buffer 14 at the determined timing, and sends it to the L2SW 8 via the receiving unit 18 of the physical layer processing unit 11.
- the ONUs 2-2 to 2-4 are the same as the ONU 2-1.
- the ONU 2-1 has a function of shifting to a sleep (power saving) mode as a communication state.
- the sleep (power saving) mode here refers to powering off only the optical transmitter 27 or both the optical transmitter 27 and the optical receiver 26 when there is no data to be transmitted in the upstream direction or the downstream direction. This is a mode for stopping power consumption and reducing power consumption.
- the OLT 1 requests the ONUs 2-1 to 2-4 to transition to the sleep (power saving) mode, and after the ONUs 2-1 to 2-4 transmit a response to the request, the transition to the sleep mode is performed.
- the procedure will be described as an example.
- the procedure for the transition to the sleep mode of the ONUs 2-1 to 2-4 is not limited to this, and a request for transition to the sleep mode is transmitted from the ONUs 2-1 to 2-4 and the OLT 1 permits the request. Requesting the OLT 1 to make a transition to the sleep mode from the OLT 1 to the ONUs 2-1 to 2-4, and the ONUs 2-1 to 2-4 to transit to the sleep mode without sending a response to the request, Various procedures can be applied.
- the buffer monitoring unit 36 monitors the accumulated amount of the transmission buffer 23 and notifies the signal processing unit 35 of the monitoring result.
- the signal processing unit 35 grasps the upstream transmission time zone assigned to the own device by the GATE frame received from the OLT 1 via the optical receiver 26. Further, the signal processing unit 35 stores the accumulated amount of the transmission buffer 23 by the REPORT message when the transmission data is accumulated in the transmission buffer 23 based on the notification from the buffer monitoring unit 36 and allocates the bandwidth. Request.
- the signal processing unit 35 When receiving upstream transmission data from the transmission unit 29 of the physical layer processing unit 21, the signal processing unit 35 temporarily stores the transmission data in the transmission buffer 23. The signal processing unit 35 reads the transmission data from the transmission buffer 23 in the upstream transmission time zone assigned from the OLT 1 and transmits it as an upstream optical signal from the optical transmitter 27.
- the sleep control unit 39 refers to the buffer monitoring unit 36 and performs non-communication (transmission buffer, and If no data is stored in the reception buffer), a sleep permission response (Sleep_Ack) is returned via the signal processing unit 35.
- the sleep control unit 39 identifies and selects a sleep (power saving) mode, and transitions its own state to the sleep (power saving) mode. Further, the ONU 2-1 has a state table 38 indicating the power saving state of its own device, and updates the state table 38 according to the state transition at that time.
- the ONU 2-1 transits to the normal state temporarily and periodically in order to respond to the control signal (MPCP frame) from the OLT 1.
- the control signal MPCP frame
- the sleep control unit 39 passes through the signal processing unit 35 and the optical transmitter 27 and the optical receiver 26 (or the optical transmitter 27) of the optical transmitter / receiver 25. Only) is controlled to transit to the sleep mode in which the sleep state and the temporary activation state are periodically repeated.
- the sleep control unit 39 transmits a sleep permission response (Sleep_Ack) from the optical transmitter 27 via the signal processing unit 35 and updates the state table 38.
- the sleep (power saving) time is monitored using the internal time counter 40.
- the sleep control unit 39 passes through the signal processing unit 35 and the optical transmitter 27 and the optical receiver 26 (or optical transmission) of the optical transmitter / receiver 25. (Only the device 27) is shifted from the sleep mode to the normal state, a return permission response (WakeUp_Ack) message is transmitted from the optical transmitter 27 via the signal processing unit 35, and the state table 38 is updated.
- the active wOLT 1-1 does not receive an optical signal from any of the connected ONU 2-1 to ONU 2-4 for a certain period (failure monitoring time) as a trunk failure detection signal as a redundant switching condition.
- An example using an optical LoS alarm that is sometimes transmitted will be described.
- FIG. 5 is a diagram illustrating a communication operation sequence example of discovery processing.
- the OLT 1 performs a discovery process to set a logical link, and holds the synchronization necessary for matching the transmission permission timing and the ONU 2 Communication can be performed by setting control function information.
- the ONUs 2-1 to 2 are turned on. No optical line required for communication with the OLT 1 is set. Further, since the control function information of the ONU 2 is not registered in the OLT 1, communication cannot be performed. This state is called an unregistered state.
- the unregistered ONUs 2-1 to 2-4 only receive data until they are registered (registered) in the OLT 1, and enter a standby state until communication is permitted from the OLT 1.
- FIG. 5 shows an example in which a new ONU 2-1 is connected.
- the ONU 2-1 receives a GATE message (Discovery Gate) that accepts new registration from the OLT 1 (step S1).
- the GATE message stores a transmission permission time (start time of the transmission permission time zone) and a transmission amount (information on how many uplink signals can be transmitted from when).
- a GATE message Discovery Gate
- the ONU 2-1 transitions to a state for performing initial settings (discovery state).
- the ONU 2-1 synchronizes its own time with the time T1 of the OLT 1 stored in the GATE message (step S2), and the transmission time T2 (the transmission time specified by the GATE message is added to the random time). Wait for a random time (step S3). After this standby, the ONU 2-1 stores and transmits it in a REGISTER_REQ message storing information necessary for communication with the OLT 1 such as its own identification information (function information held in the case of necessity) (step S4). ).
- the OLT 1 registers the ONU 2-1 as a communication terminal based on the REGISTER_REQ message information, and calculates an RTT (Round Trip Time) with the ONU 2-1 (step S5).
- the OLT 1 transmits a control message (REGISTER message) informing the registration to the ONU 2-1 (step S 6).
- This REGISTER message includes communication link setting information.
- the ONU 2-1 stores the setting information and becomes capable of communication by performing necessary communication settings in its own apparatus.
- the ONU 2-1 that has transitioned to the REGISTER message registration state transmits / receives data to / from the OLT 1 using the stored setting information.
- the setting information may include information regarding the sleep mode.
- the ONU 2-1 When transmission is permitted by the GATE message (step S7), the ONU 2-1 synchronizes its time with the time T3 of the OLT 1 included in the received message (step S8), and waits for a random time (step S8). After S9), a REGISTER_ACK message notifying that the communication setting has been completed is transmitted (step S10). Thus, the discovery process between the OLT 1 and the ONU 2-1 is completed, and the communication between the OLT 1 and the ONU 2-1 becomes possible thereafter (step S11).
- FIG. 6 is a diagram showing an example of a sequence when a failure occurs in the active trunk optical fiber 7-1.
- the OLT 1 After completion of the discovery process described with reference to FIG. 5 (step S11), the OLT 1 performs bandwidth allocation to the connected ONU 2-1 every fixed GATE period Ts and notifies the bandwidth allocation result by a GATE message (step S12). , S16, S20).
- a GATE message (step S12). , S16, S20).
- the ONU 2-1 synchronizes its own time with the time of the OLT 1 included in the GATE message (steps S13, S17, S21). And it waits until the transmission permission time notified by the GATE message (steps S14 and S18), and transmits the REPORT message after waiting (steps S15 and S19).
- a timer fault monitoring timer
- the ONU 2-1 receives the third GATE frame after the completion of the discovery process (step S20), and after performing time synchronization (step S21), the active trunk optical fiber 7- It is assumed that a failure has occurred in 1 (step S22). Then, even if a GATE frame is transmitted from the OLT 1 (step S23), the OLT 1 cannot receive the REPORT message from the ONU 2-1, the failure monitoring timer times out, and an optical LoS alarm is generated (step S24).
- FIG. 7 is a diagram showing an example of a trunk optical fiber switching sequence when a failure occurs in the active trunk optical fiber 7-1.
- the OLT 1 is operating wOLT 1-1.
- the ONU 2-1 to ONU 2-4 are connected to the OLT 1, and the discovery process for the ONU 2-1 to ONU 2-4 is completed (step S11).
- the OLT 1 performs bandwidth allocation for each of the connected ONUs 2-1 to 2-4, and notifies the bandwidth allocation result by a GATE message (step S31).
- Each of the ONUs 2-1 to 2-4 transmits a REPORT message at the transmission permission time notified by the GATE message (step S32).
- the OLT 1 starts counting the fault monitoring timer every time an optical signal is received (step S34). If a failure occurs in the active trunk optical fiber 7-1 (step S35), even if the OLT 1 transmits a GATE message, the REPORT message is not returned from all ONUs 2-1 to 2-4, and the failure monitoring timer A timeout occurs, and an optical LoS alarm is generated by the PON control unit 10 in wOLT 1-1 (step S36).
- the control unit 9 Upon receiving the optical LoS alarm, the control unit 9 switches the OLT to be operated from wOLT1-1 to sOLT1-2, and changes the route of the main signal with the L2SW8 accordingly. Thereby, switching processing from the active trunk optical fiber 7-1 to the standby trunk optical fiber 7-2 is performed.
- the sOLT 1-2 transmits a GATE message to each of the connected ONUs 2-1 to 2-4 (step S38).
- Each of the ONUs 2-1 to 2-4 returns a REPORT message in response to the received GATE message (step S39).
- the sOLT 1-2 updates the RTT for any ONU among the ONUs 2-1 to 2-4 (step S40). In this way, the communication line is maintained again using the standby trunk optical fiber 7-2.
- the sOLT1- 2 when switching to the communication path connected via the sOLT 1-2, the standby trunk optical fiber 7-2, the optical splitter 3, and the branch optical fibers 6-1 to 6-4, the sOLT1- 2 starts communication based on the setting information of the ONUs 2-1 to 2-4 acquired by the wOLT 1-1 during the discovery process. These setting information may be stored in a common storage unit in the OLT 1 so that both the wOLT 1-1 and the sOLT 1-2 can be referred to. At the time of switching, the wOLT 1-1 can be accessed via the control unit 9. May be transmitted to sOLT1-2.
- the PON control unit 10 on the standby sOLT 1-2 side will switch the RTT with any one of the ONUs 2-1 to 2-4 after the switching. Calculate again. RTTs with other ONUs are updated based on the difference between the recalculated value and the value before recalculation. In this way, by reflecting the setting information acquired by wOLT 1-1 in sOLT 1-2, the discovery process when the communication path is switched from the active system to the standby system can be omitted.
- the discovery process, trunk failure detection process, and communication path switching process described in FIGS. 5, 6, and 7 are the same as those in the normal PON system.
- 6 and 7 show an example in which an optical LoS alarm is used as a trunk line fault detection signal.
- the trunk line fault detection signal as a switching condition is not limited to this, and even if a MAC LoS alarm is used. It may be a LOBi alarm, a LOS alarm, or the like.
- the communication path is switched when the LOBi alarm is transmitted for all ONUs.
- FIG. 8 is a diagram illustrating an example of a communication operation sequence in a case where a normal operation is hindered by the conventional communication path switching method.
- FIG. 8 shows an example in which the OLT 1 operates in accordance with a communication path switching method similar to the conventional one.
- the OLT 1 performs bandwidth allocation for each of the connected ONUs 2-1 to 2-4 and notifies the bandwidth allocation result by a GATE message (step S31). .
- Each of the ONUs 2-1 to 2-4 transmits a REPORT message at the transmission permission time notified by the GATE message (step S32).
- the sleep (power saving state) transition permission (Sleep_Allow) is set to the ONU 2-1 To 2-4 (step S42).
- Each of the ONUs 2-1 to 2-4 returns a response signal (Sleep_Ack) indicating transition to the sleep mode to Sleep_Allow (step S43), and transitions to the sleep mode.
- step S41 when viewed from the OLT 1 side, the optical signals and control signal responses from all ONUs 2-1 to 2-4 are temporarily not received.
- the fault monitoring timer that has started counting upon reception of the last REPORT message (step S41) times out, and an optical LoS alarm is generated (step S44). Then, similarly to FIG. 7, the communication path is switched (step S45).
- the active trunk optical fiber 7-1 can be used even if no failure occurs in the optical transmission path. It is erroneously determined that a failure has occurred, and the active trunk optical fiber 7-1 is switched to the standby trunk optical fiber 7-2.
- the OLT 1 needs to switch the communication path as described above in the case of a trunk line failure, but does not have to switch the communication path in the case of a branch line failure. If there are multiple ONUs 2-1 to 2-4 connected, whether or not there is a trunk failure depending on whether there is no response from only one ONU or no response from all ONUs (no optical signal is received). Can be determined. However, if there is only one ONU 2-1 to 2-4 in a normal state that is not in the sleep mode, or if a failure occurs in the ONU or a branch line connected to the ONU, all the ONUs 2-1 to 2-4 are in the OLT 1. No optical signal will be received from.
- the OLT 1 cannot distinguish between a main line failure and a branch line failure, and the communication line is switched even in the case of a branch line failure that does not need to switch the communication path, resulting in unnecessary communication interruption. There is also a problem. *
- the OLT 1 manages the state (whether or not it is in the sleep mode) of each of the ONUs 2-1 to 2-4 using the state management table 33, and the ONU 2-1
- a LoS alarm or the like which is a communication path switching condition is not transmitted, or a communication path switching is not performed even if a LoS alarm is issued.
- the sleep mode time is controlled so that the number of ONUs 2-1 to 2-4 that are not in the sleep mode is one or more, erroneous detection of a trunk line failure can be prevented.
- the time of the sleep mode so that the number of ONUs 2-1 to 2-4 that are not in the sleep mode is two or more, it is possible to distinguish between a trunk line failure and a branch line failure.
- control is performed so that the communication path is not switched, and the number of ONUs 2-1 to 2-4 that simultaneously enter the sleep mode.
- the number of ONUs 2-1 to 2-4 that simultaneously enter the sleep mode needs to be two or more.
- the number of ONUs 2-1 to 2-4 that simultaneously enter the sleep mode may be one or more. Therefore, if the purpose is to prevent erroneous detection of a trunk line failure, one or more ONUs 2-1 to 2-4 that simultaneously enter the sleep mode may be used.
- FIG. 9 is a flowchart illustrating an example of the basic control of the OLT 1
- FIG. 10 is a flowchart illustrating an example of the power saving control of the OLT 1.
- the signal processing unit 30 performs a discovery process as an initial setting (step S51).
- the ONUs 2-1 to 2-4 that have completed the discovery process Bandwidth allocation is performed for the ONUs 2-1 to 2-4 by a GATE message (Gate Frame) (step S52).
- the signal processing unit 30 performs data processing for the received signal processing (step S53).
- the sleep control signal processing unit 32 of the OLT 1 performs power saving control on the ONUs 2-1 to 2-4 (step S54).
- the PON control unit 10 of the OLT 1 performs fault monitoring such as the above-described optical LoS detection (step S55). Then, steps S52 to S55 are repeated. Note that the order in steps S52 to S55 is not limited to this, and the order of the processes may be different, or two or more of these processes may be performed simultaneously.
- FIG. 10 shows details of the bandwidth allocation in step S52 and the power saving control in step S54.
- the OLT 1 performs bandwidth allocation, 2-4 is notified (step S62).
- the OLT 1 receives the REPORT message (Report Frame) from the ONUs 2-1 to 2-4 (step S63), and the transmission buffer amount (accumulated amount of the transmission buffer 23) in the ONUs 2-1 to 2-4 stored in the REPORT message It is determined whether or not there is (a certain amount or more) (step S64). If there is a transmission buffer amount (step S64, Yes), the process returns to step S62.
- REPORT message Report Frame
- the transmission buffer amount accumulated amount of the transmission buffer 23
- the OLT 1 refers to the state management table 33 when there is no transmission buffer amount (No in step S64) (step S65).
- the connected ONUs 2-1 to 2-4 are all in the normal state, and the alarm is not masked.
- the OLT 1 receives, for each ONU 2-1 to 2-4, the Sleep_Ack that is a response indicating that the ONU 2-1 to 2-4 shifts to the sleep mode, the ONU 2-1 to 2 that has received the Sleep_Ack -4, the state management table 33 is updated to the sleep mode (Sleep), and the start time and return time are updated. The start time and return time are updated based on this information because the OLT 1 knows the Sleep_Request message for the ONUs 2-1 to 2-4.
- the state management table 33 is updated so as to be in the same state as immediately after the discovery process. . Even when a return request to the normal state is transmitted from the ONUs 2-1 to -4 in the sleep mode due to the generation of transmission data, when the return request is received, the state management table 33 is used for the discovery process. Update to the same state as immediately after.
- FIG. 11 shows an example of the state management table 33, and the items of the state management table 33 are not limited to these. Information on whether or not the ONUs 2-1 to 2-4 are in the sleep mode at least should be included.
- the OLT 1 determines whether there are three or more active ONUs 2-1 to 2-4 (step S66), and if not three or more (step S66, No), step Return to S62.
- step S66 determines whether there are three or more active ONUs 2-1 to 2-4 (step S66), and if not three or more (step S66, No), step Return to S62.
- the active ONU 2 -1 to 2-4 is less than one. For this reason, when the number of active ONUs 2-1 to 2-4 is two or less, the ONUs 2-1 to 2-4 having no transmission buffer amount are not shifted to the sleep mode.
- step S66 When there are three or more ONUs 2-1 to 2-4 in the active state (step S66, Yes), the OLT 1 performs power saving control to shift the ONUs 2-1 to 2-4 having no transmission buffer amount to the sleep mode.
- the start and end times of the sleep mode for the ONU are determined (step S67), and Sleep_Allow is transmitted to the ONU (step S68).
- step S69 it is determined whether or not Sleep_Ack is received from the ONU (step S69). If received (step S69, Yes), the state management table 33 is updated (step S70), and the process returns to step S62. If Sleep_Ack is not received (No at Step S69), the process returns to Step S62 as it is.
- Control may be performed so that two or more units are always active by shifting the time of entering the sleep mode between the ONUs 2-1 to 2-4 in the mode.
- whether or not the sleep mode is set is managed as an ONU state, and control is performed so that all the ONUs do not enter the sleep mode at the same time.
- the start state it is also possible to manage whether the power saving state or the temporary start state, and control the power saving state so that it does not overlap in all ONUs.
- control is performed that does not perform communication path switching when all ONUs are in the sleep mode.
- this control method there are various variations in this control method.
- a main line fault detection signal such as an optical LoS alarm even if no signal is received from the ONUs 2-1 to 2-4 for a fault monitoring time or longer. is there.
- main line fault detection signals such as optical LoS alarms
- the fault monitoring timer count is reset periodically (before expiration), etc.
- FIG. 12 is a flowchart illustrating an example of a communication path switching procedure according to the present embodiment.
- the PON control unit 10 of the OLT 1 performs bandwidth allocation and notifies the ONUs 2-1 to 2-4 with a GATE message (step S71). Then, the failure monitoring timer starts counting (step S72). Then, it is determined whether or not a REPORT message has been received as a response to the GATE message (step S73). If received (step S73, Yes), the process returns to step S71, and after transmitting the GATE message, the fault monitoring timer is counted again. Start.
- step S72 is moved after the REPORT message is received (step S73, Yes), and the process returns to step S71 via step S72.
- Step S74 the PON control unit 10 determines whether the count of the failure monitoring timer has expired (Step S74), and when it has not expired, the process returns to Step S73 (Step S73). S74 No).
- MAC LoS is detected as trunk line fault detection
- optical LoS it is determined whether a valid optical signal is received instead of whether a REPORT message is received. It becomes.
- the PON control unit 10 issues an alarm (Report Alarm) indicating that a trunk line fault such as optical LoS has been detected (step S75), and the state management table 33 Is updated (step S76). Specifically, the information is updated in the alarm column of the state management table 33 to information indicating that an alarm has occurred. Then, the PON control unit 10 refers to the state management table 33 (step S77) and determines whether or not one or more ONUs are active (step S78). When one or more ONUs are active (Step S78 Yes), a Holdover signal is transmitted to the control unit 9 (Step S79). In the case where the control unit 9 is not provided, a Holdover signal is transmitted to the PON control unit 10 of the sOLT 1-2.
- an alarm Report Alarm
- the state management table 33 Is updated (step S76). Specifically, the information is updated in the alarm column of the state management table 33 to information indicating that an alarm has occurred. Then, the PON control unit 10 refers to the state management table 33 (step S
- the control unit 9 that has received the Holdover signal transmits to the sOLT 1-2 a redundant switching notification that instructs switching of the communication path to the standby system (step S80).
- the OLT 1 performs redundancy switching, and the RTT is recalculated by the sOLT 1-2 (step S81), and the process returns to the step S71.
- step S78 If it is determined in step S78 that all ONUs are not active (No in step S78), it is decided to mask alarms (LOBi, etc.) for each ONU for the ONUs 2-1 to 2-4 in the sleep mode (step S82)
- the state management table 33 is updated so that the alarms of the ONUs 2-1 to 2-4 in the mode are set to Mask (step S83), and the process returns to step S71.
- Masking an alarm for each ONU means, for example, that even if a failure is detected for each ONU, processing corresponding to the detection result is not performed. Note that the process of setting the alarm for each ONU as Mask in the state management table 33 may be performed when each ONU is shifted to the sleep mode.
- the same communication path switching process can be performed by using the determination of whether or not the number of times the expected received frame has not been received has become a certain number.
- a branch line (or ONU) fault is erroneously caused by a trunk line. The possibility of being detected as a failure can be greatly reduced.
- FIG. 13 is a diagram showing an example of a sequence when the communication path switching method in the OLT 1 according to the present invention is performed.
- an example is shown in which the control to make two or more ONUs 2-1 to 2-4 that are simultaneously active is not performed, and the power-saving control is performed in the same manner as the conventional control.
- wOLT 1-1 and ONUs 2-1 to 2-4 of OLT 1 transmit GATE message (step S31), REPORT message transmission (step S32), Sleep_Allow transmission (step S42), and Sleep_Ack transmission (step S43) is performed.
- the PON control unit 10 of the wOLT 1-1 updates the state management table 33 as described above (step S85).
- the PON control unit 10 of the wOLT 1-1 When receiving the REPORT frame, the PON control unit 10 of the wOLT 1-1 starts counting the fault monitoring timer (step S41), and since all of the ONUs 2-1 to 2-4 have shifted to the sleep mode, the fault monitoring timer expires, An alarm for detecting a trunk line failure is generated (step S44).
- the PON control unit 10 of the wOLT 1-1 refers to the state management table 33 and sets all the ONUs 2-1 to 2 Since -4 is in the sleep mode, redundant switching is not performed.
- the GATE frame is transmitted from the wOLT 1-1 to the ONUs 2-1 to 2-4 that have returned from the sleep mode, as before the occurrence of the alarm (step S31a).
- unnecessary redundant switching due to erroneous detection of a trunk line failure can be prevented.
- FIG. 14 is a diagram illustrating an example of a sequence when power saving control is performed in the OLT 1 according to the present embodiment.
- FIG. 14 shows an example in which there is no transmission buffer amount for all of the ONUs 2-1 to 2-4, and all of the ONUs 2-1 to 2-4 can be shifted to the sleep mode.
- the ONUs 2-1 to 2-4 are shifted to the sleep mode almost simultaneously, there is a time zone in which all of the ONUs 2-1 to 2-4 are in the sleep mode.
- Sleep_Allow transmission (step S42) is performed in which two or more ONUs 2-1 to 2-4 that are simultaneously active are transmitted.
- the ONU 2 that is simultaneously active by shifting the time to shift to the sleep mode by the ONU 2-1 to 2-4 by the round robin method. -1 to 2-4 are controlled to be two or more. Note that the specific method for determining the sleep mode start time of each ONU 2-1 to 2-4, in which two or more ONUs 2-1 to 2-4 are simultaneously active, is not limited to the example of FIG.
- the new ONUs 2-1 to 2-4 are not shifted to the sleep mode.
- the ONUs 2-1 to 2-4 that are shifting to the sleep mode are temporarily returned to the normal state or the end time of the sleep mode is shifted to control as shown in FIG. May be performed. That is, two or more units are activated by shifting the sleep time as shown in FIG. 14 for the ONUs 2-1 to 2-4 that are already in the sleep mode and the ONUs 2-1 to 2-4 that are newly shifted to the sleep mode. Control may be performed as follows.
- FIGS. 15A and 15B are diagrams illustrating an example of the power saving control procedure in the ONUs 2-1 to 2-4.
- the PON control units 20 of the ONUs 2-1 to 2-4 first perform initial setting (discovery) processing (step S91).
- a frame is received from the OLT 1 (step S92)
- the data frame is received (Step S94), and the type of data is determined (Step S95).
- step S96 it is determined whether or not the received frame is Sleep_Allow (step S96). If it is Sleep_Allow (step S96, Yes), the PON control unit 20 refers to the transmission buffer amount (accumulation amount of the transmission buffer 23). (Step S97), it is determined whether there is a transmission buffer amount (Step S98). If there is no transmission buffer amount (No in step S98), Sleep_Ack is returned (step S99).
- the PON control unit 20 starts counting a timer (Sleep_Timer) for measuring the sleep time, which is the duration of one power saving state in the sleep mode (step S100), and the optical transmitter 27 (or optical The transmitter 27 and the optical receiver 26) are shifted to the power saving state (Sleep_Duration) (step S101).
- the PON control unit 20 determines whether or not the Sleep_Timer count has expired (step S102). If the count has expired (Yes in step S102), the optical transmitter 27 (or the optical transmitter 27 and the optical receiver 26) is temporarily suspended. Transition to the activated state (step S103).
- the PON control unit 20 receives the GATE message (step S104), refers to the transmission buffer amount (step S105), and determines whether there is a transmission buffer amount (step S106). When there is no transmission buffer amount (No in step S106), the transmission buffer amount (in this case, a value indicating that there is no transmission buffer amount) is input to the REPORT message (step S107), and the REPORT message is transmitted (step S108). Return to step S101.
- step S96 If it is determined in step S96 that it is not Sleep_Allow (No in step S96), predetermined data processing is performed on the received data (step S109), and the process returns to step S92. If it is determined in step S98 that there is a transmission buffer amount (step S98, Yes), Sleep_Ack (Wakeup) is returned (step S110). Sleep_Ack (Wakeup) is a frame that requests a return to the normal state, unlike the above-described Sleep_Ack that accepts the transition to the sleep mode. Then, a REPORT message and a data frame are transmitted (step S111), and the process returns to step S92.
- step S93 If the message is a GATE message in step S93 (Yes in step S93), the GATE message is received (step S112), the transmission buffer amount is referenced (step S113), and the transmission buffer amount is input to the REPORT message (step S114). Then, after waiting until the transmission permission time (step S115), a REPORT message is transmitted (step S116), and the process returns to step S92.
- step S106 If there is a transmission buffer amount in step S106 (Yes in step S106), the PON control unit 20 returns a Sleep_Ack (Wakeup) (step S117), transmits a REPORT message and a data frame (step S118), and step S92. Return to. *
- FIG. 16 is a diagram illustrating a configuration example in which branch lines have multiple stages.
- the OLT 1, the active trunk optical fiber 7-1, and the standby trunk optical fiber 7-2 are the same as in the example of FIG. 2, but in the example of FIG. 16, the first-stage optical splitter 3-1 and the second-stage optical splitter 7-1.
- the optical splitters 3-2 and 3-3 have a two-stage configuration.
- the optical splitter 3-1 is connected to the active trunk optical fiber 7-1 and the standby trunk optical fiber 7-2, and to the branch optical fibers 6-1 and 6-2 to the optical splitters 3-2 and 3-3.
- the optical splitter 3-2 is connected to the optical splitter 3-1 by the branch optical fiber 6-1, and is connected to the ONUs 2-1 to 2-4 by the branch lines.
- the optical splitter 3-3 is connected to the branch optical fiber 6-1.
- -2 is connected to the optical splitter 3-1 and is connected to the ONUs 2-5 to 2-8 through the branch lines.
- branch optical fibers 6-1 and 6-2 which are branch lines in the first stage, are set as branch line # 1, and branch lines connecting optical splitters 3-2 and 3-3 and ONUs 2-1 to 2-8 are branch lines # 1. 2.
- the OLT 1 holds information about which branch line # 1 is connected to each ONU, and at the same time, an ONU that connects an active ONU to a different branch line # 1. It is desirable to control so that For example, as shown in FIG. 16, the ONU 2-1 connected to the branch line optical fiber 6-1 and the ONU 2-5 connected to the branch line optical fiber 6-2 are made active.
- the OLT 1 manages the power saving state of the ONUs 2-1 to 2-4 using the state management table 33, and performs redundancy switching using the state management table 33. Judged whether or not. For this reason, unnecessary redundant switching due to erroneous detection of a trunk line failure can be prevented.
- power saving control so that the number of ONUs 2-1 to 2-4 that are simultaneously active is two or more, it is possible to determine a branch line failure and a trunk line failure.
- FIG. FIG. 17 is a diagram showing a configuration example of the second embodiment of the PON system according to the present invention.
- the PON system of the present embodiment has a multi-stage configuration, and the optical splitter 3 connected by the OLT 1 and the trunk fiber 7 includes branch optical fibers 50-1 to 50-4 (first stage). Branch optical fiber). Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
- the branch optical fibers 50-1, 50-2, 50-3, and 50-4 are connected to branch splitters 51-1, 51-2, 51-3, and 51-4, respectively.
- the branch line splitter 51-1 is connected to the ONUs 71-1 to 71-8 via branch line optical fibers 61-1 to 61-8 (second-stage branch line optical fibers).
- branch line splitters 51-2, 51-3, 51-4 are connected to branch line optical fibers 52-2, 52-3, 52-4, respectively, and branch line optical fibers 62-1 to 62-8, 63-. 1 to 63-8 and 64-1 to 64-8, respectively.
- the configurations of the ONUs 71-1 to 71-8, 72-1 to 72-8, 73-1 to 73-8, and 74-1 to 74-8 are the same as those of the ONU 2-1 described in the first embodiment. In FIG.
- branch optical fibers 62-1 to 62-8, 63-1 to 63-8 connected to branch optical fibers 50-2 and 50-3, and ONUs 72-1 to Illustrations 72-8 and 73-1 to 73-8 are omitted.
- the number of branch splitters and the number of ONUs connected to each branch splitter via the second branch optical fiber are not limited to the example of FIG.
- the OLT 1 is connected to an administrator device (EMS (Element Management System)) 80 and a data center 90.
- FIG. 17 shows an example in which the OLT 1 is connected to both the administrator device 80 and the data center 90, the OLT 1 may be connected to only one of them. It is assumed that at least one of the administrator device 80 and the data center 90 grasps the connection relationship illustrated in FIG. It is assumed that ONU position information such as which splitter each ONU is located under and which splitter stage the ONU is connected to is stored as a database.
- the OLT 1 acquires ONU position information from the database held by the administrator device 80 or the data center 90, and the PON control unit 10 identifies individual ONUs managed by itself. Based on the information, position information is added to the state management table 33 described in the first embodiment.
- FIG. 18 is a diagram illustrating a configuration example of the state management table 33 according to the present embodiment.
- the status information column of FIG. 18 stores the same information as the status management table 33 of the first embodiment, and further stores location information for each ONU in this embodiment.
- the OLT 1 updates the state information in the state management table 33 in the same procedure as in the first embodiment.
- power saving control of the ONU when the power saving control of the ONU is performed as described in the first embodiment, the failure of the first branch optical fiber (branch optical fibers 50-1 to 50-4) and the trunk line In order to distinguish the failure of the fiber 7, power saving control of the ONU may be performed so that a plurality of ONUs connected to different branch line splitters 51-1 to 51-4 are simultaneously active.
- FIG. 19 is a diagram illustrating an example of the power saving control method according to the present embodiment.
- the sleep mode period is indicated by a dotted line
- the active period is indicated by a solid line.
- two or more ONUs (connected to different branch line splitters 51-1 to 51-4) under different branch line splitters 51-1 to 51-4 are activated simultaneously.
- Implement power saving control If two or more ONUs connected to different branch line splitters 51-1 to 51-4 are made active at the same time, branch line optical fibers 50-1 to 50-4 (or branch line splitters 51-1 to 51-4). ) Can receive a response from ONUs connected to branch optical fibers 50-1 to 50-4 in which no failure has occurred.
- FIG. 19 the sleep mode period is indicated by a dotted line
- the active period is indicated by a solid line.
- one ONU under each branch splitter is shown one by one, but the same applies when there are two or more ONUs under the branch splitter. It is sufficient that two or more ONUs under the control of 51-1 to 51-4 are active at the same time.
- the OLT 1 uses the state management table 33 including the location information illustrated in FIG. 18 to perform the power saving control of the ONU as in the first embodiment.
- the power saving control method is the same as that of the first embodiment except that two or more ONUs connected to different branch line splitters 51-1 to 51-4 are simultaneously activated as described above.
- the number of stages of branch lines may be three or more. In the case of three or more stages, control is performed so that two or more ONUs under different optical splitters are active at the same time for the branch splitter connected directly below the branch to be distinguished from the trunk failure.
- various types of information in the state management table 33 managed by the active OLT are transferred to the standby OLT via the control unit 9, and after the main line is switched, the standby OLT stores these information.
- the power saving control of the ONU is performed using
- the ONU location information is acquired from the administrator device 80 and the data center 90.
- the service usage status for each ONU is also acquired from the administrator device 80 and the data center 90. It may be.
- the OLT 1 when the OLT 1 has a multi-stage configuration, acquires the position information of each ONU from at least one of the administrator device 80 and the data center 90 and stores the position information in the state management table 33. Information is also stored and managed. Based on the state management table 33, the OLT 1 performs power saving control of the ONUs so that two or more ONUs connected to different branch line splitters 51-1 to 51-4 are simultaneously active. For this reason, unnecessary redundant switching due to erroneous detection of a trunk line failure can be prevented.
- the optical transmission system, the station-side optical terminal device, and the communication line switching method according to the present invention are useful for a PON system with redundant OLT, and are particularly suitable for a PON system that performs power saving control. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
Abstract
省電力モードに遷移可能なONUと、OLTと、OLTと冗長化された幹線により接続されるとともにONUとそれぞれ支線により接続される光スプリッタとを備える光伝送システムであって、OLTは、ONUの省電力モードに関する情報である状態管理テーブルを保持し、状態管理テーブルに基づいて、幹線の冗長切替を実施するか否かを判断する。
Description
本発明は、光伝送システム、局側光終端装置および通信回線切替方法に関する。
近年、通信網の高速、および広帯域化に対応するために、光ネットワークの導入が図られている。光ネットワークは1つのOLT(Optical Line Terminal:局側光終端装置)と1つのONU(Optical Network Unit:加入者側光終端装置)が光伝送路(光ファイバ)を介して通信を行うものである。また、光ネットワークシステムのうちの1つであるPON(Passive Optical Network)システムは、1つのOLTが光スプリッタを介して複数のONUとPDS(Passive Double Star)型のネットワークを形成するため、高速アクセスサービスを安価で提供することが可能である。PONの代表的な規格として、IEEE(Institute of Electrical and Electronic Engineers)802.3で標準化されたEPON(Ethernet(登録商標) PON)がある。
PONの通信方式として、ONUからOLTに向かって送信される上り光信号と、OLTからONUに向かって送信される下り光信号はWDM(Wavelength Division Multiplexing:波長分割多重)によって多重される。ONUはOLTが許可した送信タイミングに従い、上り光信号を送信するTDMA(Time Division Multiple Access:時分割多重接続)を用いている。すなわち、OLTは接続されている複数のONUの上り光信号が互いに重複しない送信タイミングを、各ONUの上り信号用に動的に割当てている。OLTからONUに向かって送信される下り光信号はTDM(Time Division Multiplexing:時分割多重化)が用いられ、光伝送路で接続された全てのONUに受信される。その際、ONUは下り光信号のプリアンブル部に含まれる宛先情報を参照し、自分宛てではない下り光信号を破棄する。
通信速度の向上、および接続される電子機器の増加に伴って、ONUの消費電力は増大傾向にある。ONUは加入者宅に設置されるため、ネットワーク上に多数配置されている。また、ONUは利用できる帯域を必要とする時間がOLT、上位スイッチ群と比較して短い。従って、ONUは通信を行わない間に無駄な電力を使用しながら放置されていることになる。
下記特許文献1では、PONシステムにおいて、OLTはONUの下り光信号処理部がスリープ(省電力)状態であるかを管理するONU下りスリープ管理テーブルと、ONUの上り光信号処理部がスリープ(省電力)状態であるかを管理するONU上りスリープ管理テーブルを用いる手法を開示している。
下記特許文献2では、ONUの識別情報を管理するテーブルと、当該ONUが上りおよび下り処理部の一部を停止させているスリープ(省電力)状態から復帰する時刻である復帰時刻を管理する管理テーブルを用いる手法を開示している(特許文献2)。
通信網を形成する通信回線において障害が発生した場合、他の通信回線に切替える冗長構成をとるシステムがある。このように、通信回線の冗長構成をとることにより、通信障害へのロバスト性を高めることが可能である。通信回線の冗長構成をとる通信網では、通信装置が使用中の現行回線において通信回線障害を検出した場合に、障害が発生した通信回線から他の通信回線に切替え、リンクを確立して通信を再開する。
一方で、前述した近年の高速大容量通信の需要拡大に伴い、ONUの消費電力は増大傾向にあり、低電力動作が求められている。スリープ(省電力)状態にあるONUは、OLTとのデータの通信に用いる送信器、および受信器を共に停止させること、または送信器のみを停止させることにより消費電力の低減を図っている。スリープ(省電力)状態にあるONUは、OLTに対して上り光信号を送信せず、OLTからの制御信号に対しても応答しない。そのため、冗長構成とONUパワーセーブを併存させた場合、以下の課題が生じると考えられる。
光伝送路の冗長構成とONUスリープを併存させたPONシステムでは、OLTに接続されている全てのONUのスリープ(省電力)状態が一時的に重なってしまうと、ONUはOLTの発行する制御光信号に対して応答しない。そのため、OLTが光伝送路に障害が発生したと誤検知し、通信回線の切替えを行ってしまうという課題がある。
特許文献1では、OLTがONUの上下の光信号処理部のスリープ(省電力)状態を管理するスリープ管理テーブルを用いる手法を開示している。状態管理テーブルを用いて、通信データの存在とデータ種別を監視することでONUの消費電力を低減させることはできるが、光伝送路の冗長構成を併存させた場合の前述の課題、すなわち障害の誤検知の解決方法については特許文献1には全く開示されていない。特許文献2においても、光伝送路の冗長構成を併存させた場合の前述の課題、すなわち障害の誤検知の解決方法については全く開示されていない。
特許文献1においては、ONUの非通信時における消費電力を抑えるため、OLTが各ONUの通信状態を監視し、スリープ管理テーブルを用いて非通信時のONUに対してスリープ(省電力)制御を行う手法を開示している。この手法を用いて、冗長切替条件に該当しない時間範囲でONUをスリープ(省電力)状態とするよう制御を行うことで消費電力を抑えることが可能であるが、スリープ(省電力)時間に制約が生じ、ONUは頻繁に状態遷移を繰り返すことになり、多分岐のPONシステムの光伝送路上において、無視し得ない帯域を占有するとともにONUの消費電力低減効果は限定的となる。
本発明は、上記に鑑みてなされたものであって、ONUの省電力制御と光伝送路の冗長構成とを併存させる場合に、光伝送路の障害の誤検知を防ぐことができる光伝送システム、局側光終端装置および通信回線切替方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、省電力モードに遷移可能な加入者側光終端装置と、局側光終端装置と、前記局側光終端装置と冗長化された幹線により接続されるとともに前記加入者側光終端装置とそれぞれ支線により接続される光スプリッタとを備える光伝送システムであって、前記局側光終端装置は、前記加入者側光終端装置の省電力モードに関する情報である省電力情報を管理し、前記省電力情報に基づいて、前記幹線の冗長切替を制御することを特徴とする。
本発明にかかる光伝送システム、局側光終端装置および通信回線切替方法は、ONUの省電力制御と光伝送路の冗長構成とを併存させる場合に、光伝送路の障害の誤検知を防ぐことができるという効果を奏する。
以下に、本発明にかかる光伝送システム、局側光終端装置および通信回線切替方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明にかかるPONシステム(光伝送システム)を含む光アクセスネットワークの構成例を示す図である。本実施の形態のPONシステムは、OLT(局側光終端装置)1とONU(加入者側光終端装置)2-1~2-N(Nは1以上の整数)で構成される。OLT1は、上位ネットワーク4に接続される。ONU2-1はユーザ端末5-1に接続され、ONU2-Nはユーザ端末5-2に接続される。
図1は、本発明にかかるPONシステム(光伝送システム)を含む光アクセスネットワークの構成例を示す図である。本実施の形態のPONシステムは、OLT(局側光終端装置)1とONU(加入者側光終端装置)2-1~2-N(Nは1以上の整数)で構成される。OLT1は、上位ネットワーク4に接続される。ONU2-1はユーザ端末5-1に接続され、ONU2-Nはユーザ端末5-2に接続される。
OLT1は、光スプリッタ3を介してONU2-1~ONU2-Nと接続され、OLT1と光スプリッタ3の間は、幹線光ファイバ7で接続され、光スプリッタ3とONU2-1~ONU2-Nの間は、それぞれ支線光ファイバ6-1~6-Nで接続される。なお、OLT1に接続されるONUの数に制限はない。
OLT1とONU2-1~ONU2-NとはWDMによって多重された光信号を用いて通信を行っているため、上り方向の光信号と下り方向の光信号が衝突することはない。一方で、複数のONU2-1~ONU2-Nは同一波長で通信を行うため、光送出の時刻が重ならないようにOLT1がONU2-1~ONU2-Nのそれぞれの光送出時刻(上り送信時刻)を制御している。
図2は、本実施の形態のPONシステムの構成例を示す図である。図2に示すように、本実施の形態のOLT1は、冗長構成をとっており、OLT部1-1とOLT部1-2とOLT1全体を制御する制御部9とを備える。OLT部1-1とOLT部1-2は、いずれも単独でOLTとしての機能を有し、いずれか一方が運用に用いられる。ここでは、OLT部1-1が現用系(wOLT1-1)であるとし、OLT部1-2が予備系(sOLT1-2)であるとしている。OLT部1-1とOLT部1-2は、それぞれL2SW(Layer 2 Switch)8と接続し、L2SW8経由で上位ネットワーク4に接続する。また、幹線光ファイバ7は、現用系幹線光ファイバ7-1と予備系幹線光ファイバ7-2で構成され、現用系幹線光ファイバ7-1はwOLT1-1に接続し、予備系幹線光ファイバ7-2はsOLT1-2に接続する。図2では、ONUの台数を4台としているがONUの台数はこれに限定されない。
光スプリッタ3は受動光素子であり、下り方向の通信においては、OLT1から現用系幹線光ファイバ7-1、また予備系幹線光ファイバ7-2を介して送信される下り光信号を、自身に接続されるONU2の台数(図2に例では4台)に分割し、分割された各光信号を支線光ファイバ6-1~6-4にそれぞれに出力する。また、上り方向の通信においては、光スプリッタ3は、支線光ファイバ6-1~6-4から送信される上り光信号を、現用系幹線光ファイバ7-1および予備系幹線光ファイバ7-2に出力する。
OLT1は、ONU2-1~2-4と通信経路設定を行い、制御することができる機能を備えている。ONU2-1~2-4は、OLT1からの制御により光信号の送受信を行う通信装置であり、後述する省電力(スリープ)モードの機能を備えている。
図3は、OLT部1-1(wOLT1-1)の構成例を示す図である。OLT部1-2(sOLT1-2)は、OLT部1-1と同様の構成である。図2、3に示すように、OLT部1-1は、PONプロトコルに基づいてOLT側の処理を実施するPON制御部10と、物理層処理部(PHY)11と、上り光信号と下り光信号を波長多重するWDMカプラ(WDM)12と、ONU2-1~2-4へ送信する下り光信号のデータを格納するためのバッファである送信バッファ13と、ONU2-1~2-4から受信する上り光信号のデータを格納するためのバッファである受信バッファ14と、光送受信器15と、を備える。
光送受信器15は、ONU2-1~2-4から受信する光信号を電気信号に変換しPON制御部10へ出力する処理を行う光受信器(Rx:Receiver)16と、PON制御部10から入力された電気信号を光信号に変換しONU2-1~2-4へ送信する処理を行う光送信器(Tx:Transmitter)17と、を備える。物理層処理部11は、ネットワークとの間でNNI(Network Node Interface)等の物理インタフェース機能を実現し、受信処理を行う受信部(Rx)18と、送信処理を行う送信部(Tx)19とで構成される。なお、本実施の形態のPONシステムでは、波長多重を用いるためWDM12を用いているが、単一波長で通信を行う場合にWDM12は必須ではない。
また、PON制御部10は、信号処理部30、バッファ監視部31、スリープ制御信号処理部32、状態管理テーブル33、タイムカウンタ34を備える。
図4は、ONU2-1の構成例を示す図である。ONU2-2~2-4も、ONU2-1と同様の構成である。図2、4に示すように、ONU2-1は、PONプロトコルに基づいてONU側の処理を実施するPON制御部20と、OLT1へ送信する上り光信号のデータを格納するためのバッファである送信バッファ23と、OLT1から受信する下り光信号のデータを格納するためのバッファである受信バッファ24と、上り光信号と下り光信号を波長多重するWDMカプラ(WDM)22と、ユーザ端末5-1との間で、UNI(Unser Network Interface)等の物理インタフェース機能を実現する物理層処理部(PHY)21と、を備える。
光送受信器25は光信号を送信するための光送信器(Tx)27と、光信号を受信するための光受信器(Rx)26とで構成される。また、物理層処理部(PHY)21は、受信処理を行う受信部(Rx)28と、送信処理を行う送信部(Tx)29とで構成される。なお、波長多重を用いずに単一波長で通信を行う場合にWDM22は必須ではない。
また、PON制御部20は、信号処理部35、バッファ監視部36、リンク監視部37、状態テーブル38、スリープ制御部39、タイムカウンタ40を備える。
本実施の形態では、OLT1は、障害検出の機能を有しており、PON制御部10では、ONU2-1~2-4から光信号が一定時間届かない場合に、信号処理部30が障害検出信号を送出する。PONシステムにおける障害検出は、IEEEやITU-T(International Telecommunication Union Telecommunication Standardization Sector)で検討されている。
例えば、IEEE P1904.1TMでは、MAC LoS(Loss of Signal)、光LoSの障害検出が規定されている。MAC LoS、光LoSは、いずれも現用系幹線光ファイバの障害を検出したときに検出され、この障害が検出された場合、OLTは、現用系から予備系への切り替えを実施する。MAC LoSは、OLTが、一定期間以内にどのONUからもレポート(REPORTメッセージ)を受信しなかった場合に検出される障害検出であり、光LoSは、OLTの光受信器において一定期間以内に有効な光信号を受信できなかった場合に検出される。
また、ITU-T G.987.3では、障害検出として、LOBi(Loss of burst for ONUi)、LOS(Loss of Signal)が規定されている。LOBiは、OLTが、ONUごとにスケジュールされたバースト(ONUから送信される信号)を4回連続して受信失敗した場合に検出される。LOSは、OLTが、予想する上り方向の伝送フレームを4回連続して受信失敗した場合に検出される。LOBiはONUごとに検出されるため、ONUまたは支線の障害を示している。ONUまたは支線の障害の場合、OLTにおける現用系から予備系の切替は実施されず、例えば、運用管理者へ障害の通知が行われる。LOSが送出された場合は、上述の光LoS、MAC LoSの場合と同じく、幹線ファイバの現用系から予備系の切替が実施される。
図2に示した構成例では、PON制御部10は、光送受信器15からの通知に基づいて光LoSを検出する。具体的には、光送受信器15がタイムカウンタを有して、Rx16が検出する光信号のレベルが閾値以下である状態が一定期間以上続いた場合に、PON制御部10へ通知し、この通知により信号処理部30が光LoSを送出してもよいし、光送受信器15はRx16の受信レベルを信号処理部30へ通知し、PON制御部10がタイムカウンタ34を用いて、受信レベルが閾値以下である状態が一定期間以上継続した場合に、光LoSを送出してもよい。
MAC LoSについては、PON制御部10が、最後にONU2-1~2-4からレポートを受信してからの経過時間をタイムカウンタ34により計測し、一定期間が経過するまでの間にどのONUからもレポート(REPORTメッセージ)を受信しなかった場合に検出する。LOBi、LOSについては、PON制御部10は、自身がONU2-1~2-4に対して割り当てた上り帯域(上り送信許可時間帯)の情報を保持しているので、信号処理部30が、この情報に基づいて検出する。PON制御部10は、これらの障害が検出された場合には、対応する警報を送出する。制御部9は、この警報を受信する。
光LoS、MAC LoS、LOSの警報が送出された場合、OLT1の制御部9は、用いる幹線光ファイバを現用系幹線光ファイバ7-1から予備系幹線光ファイバ7-2へ切り替える。図2に示すように、現用系幹線光ファイバ7-1は、wOLT1-1に接続し、予備系幹線光ファイバ7-2は、sOLT1-2に接続しており、運用に用いるOLTをwOLT1-1からsOLT1-2に切り替えることにより、幹線光ファイバの切り替えが実施される。なお、制御部9を備えずに、wOLT1-1がsOLT1-2へ直接警報を通知することにより、wOLT1-1からsOLT1-2に切り替えを実施してもよい。
以下、本実施の形態では、障害検出信号のうち、幹線光ファイバの切り替え(すなわち運用に使用されるOLT部1-1,1-2の切り替え)が必要な障害検出(光LoS、MAC LoS、LOS等)を幹線障害検出と呼ぶこととする。幹線障害検出は、例えば、上述の光LoS、MAC LoS、LOSであってもよいし、幹線光ファイバの障害を検出するものであればこれら以外の障害検出方法であってもよい。
以上のことから、光LoS、MAC LoS、LOS等の幹線障害の検出方法をまとめると、以下の条件のうち1つ以上を満たす場合に幹線障害として検出される。
(1)OLTの光受信器がX[ms]の間、光信号を受信しない場合(Xは予め定められた定数)。
(2)OLTがONUからの制御信号応答(例えば、MPCP(Multi-Point Control Protocol)フレーム)をY[ms]の間受信しない場合(Yは予め定められた定数)。
(3)OLTの送信許可信号に対して、ONUがZ回連続で反応しない場合(Zは予め定められた定数)。
(1)OLTの光受信器がX[ms]の間、光信号を受信しない場合(Xは予め定められた定数)。
(2)OLTがONUからの制御信号応答(例えば、MPCP(Multi-Point Control Protocol)フレーム)をY[ms]の間受信しない場合(Yは予め定められた定数)。
(3)OLTの送信許可信号に対して、ONUがZ回連続で反応しない場合(Zは予め定められた定数)。
以下、OLT1のPON制御部10の機能について、図2、3を用いて説明する。PON制御部10は、タイムカウンタ34を備えており、ONU2-1~2-4からの光信号が一定時間届かない(光受信器16において、一定時間有効な光信号を受信しない)場合、光LoS警報を上げる。
信号処理部30は、検出されたONU2-1~2-4と通信をするためのディスカバリ処理、および各ONU2-1~2-4の通信帯域(上り送信時間帯)を割当てる帯域割当て処理等を行う。信号処理部30は、帯域割当て結果をONU2-1~2-4へ、GATEメッセージ(帯域割当通知)により送信する。信号処理部30は、各ONU2-1~2-4から送信される、上り割当て要求を含むREPORTメッセージ(応答信号)に基づいて、各ONU2-1~2-4に帯域を割当てる。また、信号処理部30は、ONU2-1~2-4から送信される応答信号(MPCPフレーム)を検出し、タイムカウンタ34を用いてONU2-1~2-4毎に応答信号(MPCPフレーム)が一定時間届かない場合に、信号処理部30がMAC LoS警報を上げる。MPCPフレームは一定時間ごとに送受信されるGATEフレーム、REPORTフレームであり、データやスリープ許可および応答はデータフレームにより送信される。
スリープ制御信号処理部32は、各ONU2-1~2-4の省電力状態を管理するテーブルである状態管理テーブル33を参照し、各ONU2-1~2-4に対してそれぞれスリープ(省電力)モードを選択し、スリープモードへ遷移させるスリープ許可(Sleep_Allow)の制御信号を送信する。また、スリープ制御信号処理部32は、ONUからスリープ許可応答(Sleep_Ack)の制御信号を受けた場合に、状態管理テーブル33を更新する。また、スリープ制御信号処理部32は、スリープ(省電力)モードからONU2-1~2-4を復帰させる場合、該当するスリープ(省電力)モードのONU2-1~2-4に対して、通常モードに遷移させる復帰許可(WakeUp_Allow)の制御信号を送信する。スリープ制御信号処理部32は、ONU2-1~2-4から復帰許可応答(WakeUp_Ack)の制御信号を受けた場合も、状態管理テーブル33を更新する。また、電源断通知(R-INH等)を受信した場合に、送信元のONU2-1~2-4の状態をスリープモードとするよう状態管理テーブル33を更新するようにしてもよい。
電源断通知に関する処理は例えば、次のように実施する。ONU2-1~2-4の電源断検出部(図示せず)は、自身の電源断を検出するとPON制御部20へ通知する。PON制御部20は電源断の検出を通知されると、自身に電源断が発生したことを通知する電源断通知をOLT1へ送信する。
本実施の形態では、ONU2-1~2-4が自身の電源断を検出した場合、電源断通知をOLT1へ送信するが、ONU2-1~2-4がスリープ状態(省電力状態)である場合に電源断が発生すると、電源断通知を送信できる場合とできない場合がある。電源断通知を送信できるか否かは、帯域更新周期、ONU2-1~2-4の省電力状態からの送受信機能の起動時間等に依存する。
スリープ時の電源断通知が可能な例を示す。OLT1は、接続された各ONU2-1~2-4がスリープモード中であってもGATEフレームを帯域更新周期ごとに送信することとする。なお、スリープモード中の各ONU2-1~2-4に割当てる帯域は、各ONU2-1~2-4がREPORTフレームを送信するための帯域とする。
省電力状態(スリープ時)でONU2-1~2-4において電源断が発生すると、ONU2-1~2-4のPON制御部20は、スリープモードを解除し、オフ状態となっていた部分を起動する。例として、Rx起動時間(受信側起動時間:ONU2-1~2-4の受信処理を行う構成要素のうちスリープ状態となることにより停止中であった部分が動作可能となるまでの時間)が経過した後に最初に受信したGATEフレームに基づいて、電源断通知を送信するための帯域を要求するREPORTフレームを送信している。なお、Rx起動時間の方がTx起動時間(送信側起動時間:ONU2-1~2-4の送信処理を行う構成要素のうちスリープ状態となることにより停止中であった部分が動作可能となるまでの時間)より長いため、Rx起動時間が経過した時点でREPORTフレームの送信が可能となっている。
ONU2-1~2-4のPON制御部20は、電源断通知を送信するための帯域割当を通知するGATEフレームを受信すると、当該GATEフレームにより指示された帯域(送信時間帯)で電源断通知を送信する。電源断の発生から電源断電力保持時間(電源断からコンデンサ等を用いて電力を保持可能な時間である)が経過するまでの間に、電源断通知が完了するため、スリープ時の電源断通知が可能である。
バッファ監視部31は、送信バッファ13の蓄積量を監視し、監視結果をスリープ制御信号処理部32へ通知する。スリープ制御信号処理部32は、ONU2-1~2-4の光送受信器25の光送信器27をスリープ(省電力)モードに遷移させるか、光送信器27および光受信器26の両方をスリープ(省電力)モードに遷移させるかを、バッファ監視部31、およびONU2-1~2-4から受信したONU2-1~2-4のバッファ監視部36からの情報を基に決定する。信号処理部30は、スリープ制御信号処理部32の決定結果に基づいてスリープ許可(Sleep_Allow)、および復帰許可(WakeUp_Allow)の制御信号を生成し、光送信器17より送信する。
なお、光送信器27および光受信器26の両方をスリープ(省電力)モードでは、間欠的にスリープ(省電力)状態と一時起動状態とを繰り返すとし、ONU2-1~2-4は、スリープモードにおいても、一定周期ごとにOLT1からの信号を受信可能である。
光受信器16が、ONU2-1~2-4からスリープ許可応答(Sleep_Ack)、または復帰許可応答(WakeUp_Ack)受信した場合、スリープ制御信号処理部32は信号処理部30を介して状態管理テーブル33を更新する。同時に、スリープ制御信号処理部32は、タイムカウンタ34を用いてスリープ(省電力)時間を監視する。
光受信器16が、ONU2-1~2-4より上り光信号のデータを受信すると、信号処理部30は、受信したデータを一時的に受信バッファ14へ格納する。信号処理部30はタイムカウンタ34を用いて処理のタイミングを決定し、決定したタイミングで受信バッファ14へ格納されたデータを読み出して物理層処理部11の受信部18経由でL2SW8へ送る。
次に、図2、図4を用いてONU2-1の機能について説明する。ONU2-2~2-4もONU2-1と同様である。ONU2-1は、通信状態としてスリープ(省電力)モードに移行する機能を備えている。ここでいうスリープ(省電力)モードとは上り方向、または下り方向に送信すべきデータがない場合等に、光送信器27のみ、または光送信器27および光受信器26の両方の電源を落とすことで停止させ、消費電力の低減を図るモードである。ここでは、OLT1からONU2-1~2-4に対してスリープ(省電力)モードへの遷移を要求し、ONU2-1~2-4が当該要求に対する応答を送信した後に、スリープモードへ遷移する手順を例に説明する。
なお、ONU2-1~2-4のスリープモードへの遷移の手順は、これに限らず、ONU2-1~2-4からスリープモードへの遷移要求を送信してOLT1が当該要求に対して許可を送信する手順、OLT1からONU2-1~2-4へスリープモードへの遷移を要求して、ONU2-1~2-4が当該要求に対する応答を送信せずに、スリープモードに遷移する手順、等多様な手順を適用することができる。
バッファ監視部36は、送信バッファ23の蓄積量を監視し、監視結果を信号処理部35へ通知する。信号処理部35は、光受信器26経由でOLT1から受信したGATEフレームにより自装置に割り当てられた上り送信時間帯を把握する。また、信号処理部35は、バッファ監視部36からの通知に基づいて、送信バッファ23に一定以上、送信データが蓄積した場合に、REPORTメッセージにより送信バッファ23の蓄積量を格納して帯域割当てを要求する。
物理層処理部21の送信部29より上り送信データを受けた際、信号処理部35は、当該送信データを一時的に送信バッファ23へ格納する。信号処理部35は、OLT1から割当てられた上り送信時間帯で送信バッファ23から送信データを読み出して光送信器27より上り光信号として送信する。
ONU2-1のPON制御部20では、信号処理部35によりOLT1より送信されるスリープ許可応答(Sleep_Allow)を受信すると、スリープ制御部39がバッファ監視部36を参照し、非通信(送信バッファ、および受信バッファにデータが格納されていない)状態であれば信号処理部35を介してスリープ許可応答(Sleep_Ack)を返信する。スリープ制御部39がスリープ(省電力)モードを識別、および選択肢し、自身の状態をスリープ(省電力)モードへと遷移させる。また、ONU2-1は自装置の省電力の状態を示す状態テーブル38を持ち、その時々の状態遷移に応じて、状態テーブル38を更新する。また、ONU2-1は、スリープモードにおいても、OLT1からの制御信号(MPCPフレーム)に応答するために、一時的かつ周期的に通常状態へと遷移する。一時的に通常状態に戻ることで、OLT1から送信されるGATEメッセージに対してREPORTメッセージを返すことができる。
光受信器26がOLT1からスリープ許可(Sleep_Allow)を受信した場合、信号処理部35を介して、スリープ制御部39は光送受信器25の光送信器27と光受信器26(または光送信器27のみ)を、スリープ状態と一時起動状態を周期的に繰り返すスリープモードへと遷移させる制御を行う。また、スリープ制御部39は、信号処理部35を介してスリープ許可応答(Sleep_Ack)を光送信器27より送信し、状態テーブル38を更新する。同時に内部のタイムカウンタ40を用いてスリープ(省電力)時間を監視する。
また、光受信器26がOLT1から復帰許可応答(WakeUp_Ack)受信した場合、信号処理部35を介して、スリープ制御部39は光送受信器25の光送信器27と光受信器26(または光送信器27のみ)をスリープモードから通常状態へと遷移させる制御を行い、信号処理部35を介して復帰許可応答(WakeUp_Ack)メッセージを光送信器27より送信し、状態テーブル38を更新する。
次に、OLT1における現用系幹線光ファイバ7-1から予備系幹線光ファイバ7-2への冗長切替の例について説明する。ここでは、冗長切替の条件となる幹線障害検出信号として、現用系wOLT1-1が、接続されたONU2-1~ONU2-4のいずれからも一定期間(障害監視時間)の間光信号を受信しないときに送出される光LoS警報を用いる例を説明する。
図5は、ディスカバリ処理の通信動作シーケンス例を示す図である。OLT1とONU2-1~2-4との通信を開始するためには、OLT1がディスカバリ処理を行うことで論理リンクを設定し、送信許可のタイミングを合わせるために必要な同期とONU2の保持している制御機能情報を設定することにより通信を行うことができる。未接続のONU2-1~2-4が新たに支線光ファイバに接続された場合、或いは電源が切られた状態のONU2-1~2-4の電源が投入された場合、ONU2-1~2-4はOLT1との通信に必要な光回線の設定がされていない。また、OLT1にはONU2の制御機能情報が登録されていないため通信を行うことができない。この状態を未登録(Unregistered)状態という。未登録状態のONU2-1~2-4は、OLT1に登録(Registered)されるまで受信のみを行い、OLT1から通信が許可されるまで待機状態となる。
図5では、新しくONU2-1が接続されたとした例を示している。ONU2-1は、OLT1から新規登録を受け付けるGATEメッセージ(Discovery Gate)を受信する(ステップS1)。GATEメッセージには、送信許可時刻(送信許可時間帯の開始時刻)と送信量(いつの時点からどれだけの上り信号を送信してよいかという情報)が格納されている。ただし、ディスカバリ処理中のGATEメッセージ(Discovery Gate)の場合には、複数のONUが同時に発見される可能性があるため、各ONUは、ランダム時間待機した後に、送信を行う。ONU2-1は、GATEメッセージ(Discovery Gate)を受信すると、初期設定を行う状態(ディスカバリ状態)に遷移する。この状態に遷移すると、ONU2-1は自装置の時刻をGATEメッセージに格納されたOLT1の時刻T1に同期させ(ステップS2)、送信時刻T2(GATEメッセージで指示された送信許可時刻にランダム時間足した時刻)となるまでランダム時間待機する(ステップS3)。この待機の後、ONU2-1は自装置の識別情報等OLT1との通信に必要な情報(必要な場合においては保持している機能情報)を格納したREGISTER_REQメッセージに格納して送信する(ステップS4)。
OLT1は、REGISTER_REQメッセージ情報を基にONU2-1を通信端末として登録し、ONU2-1との間のRTT(Round Trip Time)を計算する(ステップS5)。OLT1はONU2-1を登録した場合に、登録を知らせる制御メッセージ(REGISTERメッセージ)をONU2-1へ送信する(ステップS6)。このREGISTERメッセージは通信リンクの設定情報を含んでおり、このREGISTERメッセージを受信した場合ONU2-1は設定情報を記憶し、必要な通信設定を自装置に行うことによって通信可能状態となる。REGISTERメッセ―ジ登録状態に遷移したONU2-1は、以後記憶した設定情報を用いてOLT1とデータの送受信を行う。なお、この設定情報に、スリープモードに関する情報を含んでいてもよい。
ONU2-1は、GATEメッセージにより送信が許可されると(ステップS7)、時刻を、受信したメッセージに含まれるOLT1の時刻T3に自装置の時刻を同期させ(ステップS8)、ランダム時間待機(ステップS9)の後、通信設定を完了したことを通知するREGISTER_ACKメッセ―ジ送信する(ステップS10)。以上により、OLT1とONU2-1との間のディスカバリ処理が完了し、以降OLT1とONU2-1の通信が可能となる(ステップS11)。
図6は、現用系幹線光ファイバ7-1に障害が発生した場合のシーケンスの一例を示す図である。図5で説明したディスカバリ処理完了(ステップS11)の後、OLT1は、一定のGATE周期Tsごとに、接続するONU2-1に対して帯域割当てを行いGATEメッセージにより帯域割当て結果を通知する(ステップS12、S16、S20)。図6では、ONU2-1のみがOLT1に接続されているとしている。ONU2-1は、GATEメッセージに含まれるOLT1の時刻に自装置の時刻を同期させる(ステップS13、S17、S21)。そして、GATEメッセージで通知された送信許可時刻まで待機し(ステップS14、S18)、待機の後にREPORTメッセージを送信する(ステップS15、S19)。
OLT1は、REPORTメッセージを光信号として受信するたびに、タイムカウンタ34を用いて障害監視時間を計測するためのタイマ(障害監視タイマ)のカウントを開始し、次のREPORTメッセージを受信すると、カウントリセットを実施するとともに次の計測のカウントを開始することを繰り返している。
ここで、図6に示したように、ディスカバリ処理完了後の3回目のGATEフレームをONU2-1が受信し(ステップS20)、時刻同期を行った(ステップS21)後に現用系幹線光ファイバ7-1に障害が発生したとする(ステップS22)。すると、OLT1からGATEフレームが送信されても(ステップS23)、OLT1はONU2-1からのREPORTメッセージを受信できず、障害監視タイマはタイムアウトとなり、光LoS警報が生成される(ステップS24)。
図7は、現用系幹線光ファイバ7-1に障害が発生した場合の幹線光ファイバ切替えシーケンスの一例を示す図である。図7の例では、はじめは、現用系幹線光ファイバ7-1に障害は発生しておらず、OLT1では、wOLT1-1が稼動しているとする。まず、OLT1にONU2-1~ONU2-4が接続され、ONU2-1~ONU2-4についてディスカバリ処理を完了する(ステップS11)。OLT1は、接続するONU2-1~2-4に対してそれぞれ帯域割当てを行いGATEメッセージにより帯域割当て結果を通知する(ステップS31)。ONU2-1~2-4は、それぞれGATEメッセージで通知された送信許可時刻でREPORTメッセージを送信する(ステップS32)。
OLT1は、図6の例で説明したように、光信号の受信ごとに障害監視タイマのカウントを開始している(ステップS34)。現用系幹線光ファイバ7-1に障害が発生する(ステップS35)と、OLT1がGATEメッセージを送信しても、全てのONU2-1~2-4からREPORTメッセージが返信されなくなり、障害監視タイマがタイムアウトとなり、wOLT1-1内のPON制御部10により光LoS警報が生成される(ステップS36)。
光LoS警報を受信した制御部9は、稼動させるOLTをwOLT1-1からsOLT1-2へ切替、L2SW8との主信号の経路をこれに応じて変更する。これにより、現用系幹線光ファイバ7-1から予備系幹線光ファイバ7-2への切替処理が実施される。これらの切替処理を実施する切替時間(ステップS37)の後、sOLT1-2は、接続されているONU2-1~ONU2-4へそれぞれGATEメッセージを送信する(ステップS38)。ONU2-1~ONU2-4は、それぞれ受信したGATEメッセージに対して、REPORTメッセージを返信する(ステップS39)。sOLT1-2は、ONU2-1~ONU2-4との間のうちいずれかのONUについてRTTを更新する(ステップS40)。このようにして、予備系幹線光ファイバ7-2を用いて再び通信回線を維持する。
なお、図7の例では、sOLT1-2、予備系幹線光ファイバ7-2、光スプリッタ3、支線光ファイバ6-1~6-4を介して接続された通信経路に切替わる際、sOLT1-2は、wOLT1-1がディスカバリ処理時に取得したONU2-1~ONU2-4の設定情報を元に通信を開始している。これらの設定情報は、OLT1内の共通の記憶部に保持しておき、wOLT1-1、sOLT1-2の両方が参照できるようにしてもよいし、切替時に、wOLT1-1から制御部9を介してsOLT1-2へ送信してもよい。また、RTTについては、通信経路の切替により変わる可能性があるため、予備系sOLT1-2側のPON制御部10は、切替後に、ONU2-1~ONU2-4のうちいずれかのONUとのRTTの計算を再度行う。この再計算した値と再計算前の値との差分に基づいて他のONUとのRTTを更新する。このように、wOLT1-1が取得した設定情報をsOLT1-2へ反映させることにより、現用系から予備系へと通信経路を切り替えた際のディスカバリ処理を省略することができる。
以上、図5、6、7で述べた、ディスカバリ処理、幹線障害検出処理、通信経路の切替処理については、通常のPONシステムと同様である。なお、図6、7の例では、幹線障害検出信号として光LoS警報を用いる例を示したが、切替条件となる幹線障害検出信号はこれに限ったものではなく、MAC LoS警報を用いてもよいし、LOBi警報、LOS警報等であってもよい。ただし、ONUごとに警報の送出されるLOBi警報等の場合は、全てのONUについてLOBi警報が送出された場合に、通信経路の切替が実施されることになる。
次に、ONU2-1~2-4の省電力制御と障害検出の両方を実施する場合の課題を説明する。図8は、従来の通信経路切替方法により、通常運用に支障が生じる場合の通信動作シーケンスの一例を示す図である。主に夜間など比較的ユーザが通信サービスを利用しない時間帯において、OLT1に接続された全ONU2-1~2-4が一時的にスリープ(省電力)モードに移行してしまう場合がある。図8では、OLT1が、従来と同様の通信経路切替方法に従って動作した例を示している。
図7の例と同様に、ディスカバリ処理(ステップS11)の後、OLT1は、接続するONU2-1~2-4に対してそれぞれ帯域割当てを行いGATEメッセージにより帯域割当て結果を通知する(ステップS31)。ONU2-1~2-4は、それぞれGATEメッセージで通知された送信許可時刻でREPORTメッセージを送信する(ステップS32)。
OLT1は、ONU2-1~2-4との間に送受信データが無くONU2-1~2-4をスリープモードへ遷移させると決定すると、スリープ(省電力状態)移行許可(Sleep_Allow)をONU2-1~2-4へそれぞれ送信する(ステップS42)。ONU2-1~2-4は、Sleep_Allowに対して、それぞれスリープモードへ移行することを示す応答信号(Sleep_Ack)を返信し(ステップS43)、スリープモードへ遷移する。
この場合、OLT1側からみると、一時的に全てのONU2-1~2-4からの光信号、および制御信号応答を受信しない状態となる。最後のREPORTメッセージ受信によりカウントを開始した(ステップS41)障害監視タイマは、タイムアウトとなり、光LoS警報が生成される(ステップS44)。そして、図7と同様に、通信経路の切替が実施される(ステップS45)。
このように、従来の通信路切替方法では、全てのONU2-1~2-4がスリープモードに移行すると、光伝送路の障害発生でない場合であっても、現用系幹線光ファイバ7-1に障害が発生したと誤判断してしまい、現用系幹線光ファイバ7-1から予備系幹線光ファイバ7-2へ切替てしまう。
また、OLT1は、幹線障害の場合には、上述のように通信路の切替を実施する必要があるが、支線障害の場合は通信路の切替を実施しなくてよい。接続するONU2-1~ONU2-4が複数であれば、1つのONUだけから応答がない、全てのONUから応答がない(光信号を受信しない)、のどちらであるかにより、幹線障害か否かを判断することができる。しかし、スリープモードでない通常状態のONU2-1~2-4が1台しかない場合、当該ONUまたは当該ONUに接続する支線に障害が発生した場合、OLT1では、全てのONU2-1~2-4から光信号を受信しないことになる。OLT1では、この場合、幹線障害と支線障害の区別がつかず、本来、通信路の切替の必要のない支線障害の場合にも通信路の切替を実施してしまい、不要な通信中断が生じるという問題もある。
そこで、本実施の形態では、以下に述べるように、OLT1では、状態管理テーブル33を用いて各ONU2-1~2-4の状態(スリープモードであるか否か)を管理し、ONU2-1~2-4の全てがスリープモードである場合には、通信路切替の条件となるLoS警報等を送出しないようにする、またはLoS警報が発せられても通信路切替を実施しないようにする。また、スリープモードでないONU2-1~2-4の台数が1台以上となるようスリープモードの時間を制御すると、幹線障害の誤検出を防ぐことができる。さらに、スリープモードでないONU2-1~2-4の台数を2台以上となるようスリープモードの時間を制御することにより、幹線障害と支線障害の区別ができるようにする。なお、以下では、ONU2-1~2-4の全てがスリープモードである場合には、通信路切替が行われないようにする制御と、同時にスリープモードとなるONU2-1~2-4の台数を2台以上(または1台以上)とする制御と、の両方を実施する例について説明するが、いずれか一方のみを実施してもよい。
なお、幹線障害と支線障害の区別をするためには、同時にスリープモードとなるONU2-1~2-4の台数を2台以上とする必要があるが、幹線障害の誤検出を防ぐには、同時にスリープモードとなるONU2-1~2-4の台数は1台以上であればよい。したがって、幹線障害の誤検出を防ぐことを目的とする場合は、同時にスリープモードとなるONU2-1~2-4を1台以上とすればよい。
以下、状態管理テーブル33を用いたOLT1の動作について詳細に説明する。図9は、OLT1の基本制御の一例を示すフローチャートであり、図10は、OLT1の省電力制御の一例を示すフローチャートである。
図9に示すように、OLT1では、信号処理部30が、初期設定としてディスカバリ処理を実施し(ステップS51)、ディスカバリ処理が完了すると、ディスカバリ処理が完了しているONU2-1~2-4に対して帯域割当てを実施し、GATEメッセージ(Gate Frame)によりONU2-1~2-4に通知する(ステップS52)。また、信号処理部30は、ONU2-1~2-4から信号を受信すると受信信号処理に対するデータ処理を実施する(ステップS53)。また、OLT1のスリープ制御信号処理部32は、ONU2-1~2-4に対して省電力制御を実施する(ステップS54)。さらに、OLT1のPON制御部10は、上述の光LoS検出等、障害監視を実施する(ステップS55)。そして、ステップS52~S55を繰り返す。なお、ステップS52~S55内の順は、これに限定されず、処理の順序が異なっていてもよいし、これらのうちの2つ以上の処理が同時に実施されてもよい。
図10は、上記のステップS52の帯域割当てとステップS54の省電力制御の詳細を示しており、初期設定(ステップS61)の後、OLT1は、帯域割当てを実施し、GATEメッセージによりONU2-1~2-4に通知する(ステップS62)。OLT1は、ONU2-1~2-4からREPORTメッセージ(Report Frame)を受信し(ステップS63)、REPORTメッセージに格納されたONU2-1~2-4における送信バッファ量(送信バッファ23の蓄積量)があるか(一定量以上であるか)否かを判断する(ステップS64)。送信バッファ量がある場合(ステップS64 Yes)、ステップS62へ戻る。
OLT1は、送信バッファ量がない場合(ステップS64 No)、状態管理テーブル33を参照する(ステップS65)。図11は、状態管理テーブル33の一例を示す図である。図11に示すように、状態管理テーブル33は、ONU2-1~2-4ごとに、ONU2-1~2-4の識別番号(ここでは、ONU2-i(i=1,2,3,4)の識別番号をONU#iとする)と、ONU2-1~2-4がスリープモードであるか通常状態(アクティブ:Active)であるかを示す情報である状態(State)と、ONUごとの警報をマスクするか否かを示す情報である警報(Alarm)と、切替トリガと、開始時刻(スリープモードである場合のスリープモードの開始時刻)と、復帰時刻(スリープモードである場合のスリープモードからの復帰時刻)とが格納される。切替トリガは、警報がマスクされていない場合に、通信経路を切替えるためのトリガを示しており、図11の例の監視は、警報の監視を意味しており、警報が生成された場合、ただちに切替処理を実施することを意味している。
ディスカバリ処理の直後は、接続される各ONU2-1~2-4の状態は、全て通常状態であり、警報はマスクされない。そして、OLT1は、ONU2-1~2-4ごとに、ONU2-1~2-4からスリープモードへ移行することを示す応答であるSleep_Ackを受信した場合に、Sleep_Ackを受信したONU2-1~2-4について、状態管理テーブル33を、状態をスリープモード(Sleep)へ更新し、開始時刻と復帰時刻を更新する。なお、開始時刻と復帰時刻については、OLT1がONU2-1~2-4に対して、Sleep_Requestメッセージを把握しているため、この情報に基づいて更新する。また、OLT1が、スリープモードから復帰させることをOLT2-1~2-4へ指示し、その応答を受信した場合には、状態管理テーブル33をディスカバリ処理の直後と同様の状態となるよう更新する。スリープモード中のONU2-1~―4から、送信データが発生したことにより通常状態への復帰要求が送信された場合も、当該復帰要求を受信した場合には、状態管理テーブル33をディスカバリ処理の直後と同様の状態となるよう更新する。なお、図11は状態管理テーブル33の一例を示しており、状態管理テーブル33の項目はこれらに限定されない。最低限ONU2-1~2-4がスリープモードであるか否かの情報が含まれていればよい。
図10の説明に戻る。OLT1は、状態管理テーブル33に基づいて、アクティブ状態のONU2-1~2-4が3台以上であるか否かを判断し(ステップS66)、3台以上でない場合(ステップS66 No)、ステップS62へ戻る。アクティブ状態のONU2-1~2-4が2台以下である場合は、ステップS64で送信バッファ量が無いと判断されたONU2-1~2-4をスリープモードへ移行させてしまうとアクティブなONU2-1~2-4が1台以下となってしまう。このため、アクティブ状態のONU2-1~2-4が2台以下である場合は、送信バッファ量がないONU2-1~2-4をスリープモードへ遷移させない。
アクティブ状態のONU2-1~2-4が3台以上の場合(ステップS66 Yes)、OLT1は、送信バッファ量がないONU2-1~2-4をスリープモードへ移行させる省電力制御を実施して当該ONUに対するスリープモードの開始および終了時刻を決定し(ステップS67)、当該ONUへSleep_Allowを送信する(ステップS68)。その後、当該ONUからSleep_Ackを受信したか否かを判断し(ステップS69)、受信した場合(ステップS69 Yes)は、状態管理テーブル33を更新し(ステップS70)、ステップS62へ戻る。Sleep_Ackを受信しない場合(ステップS69 No)は、そのままステップS62へ戻る。
なお、ほぼ同時に、複数のONU2-1~2-4について送信バッファ量がないと判断した場合は、当該ONU(休止候補ONU)を全てスリープモードへ移行させないのではなく、休止候補ONUと既にスリープモードとなっているONU2-1~2-4とでスリープモードとなる時間をずらすことにより、常に2台以上がアクティブになるような制御を行ってもよい。
また、本実施の形態では、スリープモードであるか否かをONUの状態として管理し、全てのONUが同時にスリープモードにならないように制御したが、スリープモード内の周期的な省電力状態と一時起動状態も考慮し、省電力状態であるか一時起動状態であるかについても管理し、省電力状態が全てのONUで重ならないように制御するようにしてもよい。
次に、本実施の形態のOLT1における通信経路切替処理について詳細に説明する。なお、本実施の形態では、幹線障害の誤検出を防ぐため、全てのONUがスリープモードである場合に通信経路切替を実施しない制御を実施するが、この制御方法には様々なバリエーションが考えられる。例えば、全てのONUがスリープモードである場合には、障害監視時間以上の間ONU2-1~2-4から信号を受信しなくても、光LoS警報等の幹線障害検出信号を発生させない方法もある。また、光LoS警報等の幹線障害検出信号を発生させない代わりに、全てのONUがスリープモードである場合には、障害監視タイマのカウントを定期的(満了する前に)リセットする等して、障害監視タイマを満了させない方法もある。さらに、光LoS警報等の幹線障害検出信号を発生しても、全てのONUがスリープモードである場合には、通信経路切替処理を実施しないようにするという方法もある。これらの方法やこれら以外の方法のうち、どの方法を実施してもよいが、ここでは、光LoS警報等の幹線障害検出信号を発生しても、全てのONUがスリープモードである場合には、通信経路切替処理を実施しないようにする方法を採用する例を説明する。すなわち、本実施の形態では、制御部9は、光LoS警報を受信してもすぐには通信路切替(冗長切替)を実施せず、切替を指示するHoldover信号を受信してから通信路切替を実施する。
図12は、本実施の形態の通信経路切替手順の一例を示すフローチャートである。OLT1のPON制御部10は、帯域割当てを実施し、GATEメッセージによりONU2-1~2-4に通知する(ステップS71)。そして、障害監視タイマのカウントを開始する(ステップS72)。そして、GATEメッセージに対する応答としてREPORTメッセージを受信したか否かを判断し(ステップS73)、受信した場合(ステップS73 Yes)、ステップS71へ戻り、GATEメッセージを送信した後再度障害監視タイマのカウントを開始する。
なお、ここでは、GATEメッセージを送信した際に障害監視タイマのカウントを開始する例を説明している。障害監視タイマによる障害時間の監視は、本来受信するべき応答信号が一定時間内に受信できたか否かを監視できればよいため、図12の例のように応答信号を要求する信号(この場合GATEメッセージ)の送信をカウントの開始としてもよいし、図6等で示したように、一定周期内に受信することが予定されている応答信号を受信した時点で、カウントを開始してもよい。応答信号を受信した時点で、カウントを開始する場合は、ステップS72をREPORTメッセージを受信した場合(ステップS73 Yes)の後に移動させ、ステップS72を経由してステップS71へ戻る処理となる。
REPORTメッセージを受信しない場合(ステップS73 No)、PON制御部10は、障害監視タイマのカウントが満了したか否かを判断し(ステップS74)、満了していない場合は、ステップS73へ戻る(ステップS74 No)。なお、ここでは、幹線障害検出としてMAC LoSを検出する例を説明するが、光LoSを検出する場合は、REPORTメッセージを受信したか否かではなく有効な光信号を受信したか否かの判断となる。
障害監視タイマのカウントが満了した場合(ステップS74 Yes)、PON制御部10は、光LoS等の幹線障害を検出したことを示す警報(Report Alarm)を発行し(ステップS75)、状態管理テーブル33を更新する(ステップS76)。具体的には、状態管理テーブル33の警報の欄に警報が発生していることを示す情報に更新する。そして、PON制御部10は、状態管理テーブル33を参照し(ステップS77)、1台以上のONUがアクティブであるか否かを判断し(ステップS78)、1台以上のONUがアクティブである場合(ステップS78 Yes)、Holdover信号を制御部9へ送信する(ステップS79)。なお、制御部9を備えない構成の場合は、Holdover信号をsOLT1-2のPON制御部10へ送信する。
Holdover信号を受信した制御部9は、通信路切替を予備系に切替えることを指示する冗長切替通知をsOLT1-2へ送信する(ステップS80)。これによりOLT1は、冗長切替が実施し、sOLT1-2によりRTTの再計算が実施され(ステップS81)、ステップS71へ戻る。
ステップS78で、全てのONUがアクティブでないと判断した場合(ステップS78 No)、スリープモードのONU2-1~2-4についてONU毎の警報(LOBi等)をマスクすると決定し(ステップS82)、スリープモードのONU2-1~2-4の警報をMaskとするよう状態管理テーブル33を更新し(ステップS83)、ステップS71へ戻る。ONU毎の警報をマスクするとは、例えば、ONU毎に障害検出されても、当該検出結果に対応した処理を実施しないことを意味する。なお、この状態管理テーブル33においてONU毎の警報をMaskとする処理は、各ONUをスリープモードへ移行させたときに行ってもよい。
なお、LOBiやLOS等、予想される受信フレームが未受信となった回数を計数して障害検出する方法の場合は、上記の障害監視タイマにより障害監視時間が経過したか否かの判断の替わりに、予想される受信フレームが未受信となった回数が一定数となったか否かの判断を用いれば、同様の通信経路切替処理を実施できる。
また、図11を用いて説明したように、本実施の形態では、2台以上のONU2-1~2-4がアクティブになるよう制御しているため、支線(またはONU)障害が誤って幹線障害として検出される可能性を大幅に低減させることができる。
図13は、本発明にかかるOLT1における通信路切替方法を実施した場合のシーケンスの一例を示す図である。図13の例では、同時にアクティブとなるONU2-1~2-4を2台以上となる制御は行わず、省電力制御については従来と同様の制御を行った例を示している。OLT1のwOLT1-1とONU2-1~2-4は、図8の例と同様に、GATEメッセージ送信(ステップS31)、REPORTメッセージ送信(ステップS32)、Sleep_Allow送信(ステップS42)、Sleep_Ack送信(ステップS43)を実施する。そして、wOLT1-1のPON制御部10は、Sleep_Ackを受信すると上述のように、状態管理テーブル33を更新する(ステップS85)。
wOLT1-1のPON制御部10は、REPORTフレームを受信すると障害監視タイマのカウントを開始し(ステップS41)、ONU2-1~2-4が全てスリープモードへ移行したため、障害監視タイマが満了し、幹線障害検出の警報が生成される(ステップS44)。本実施の形態では、図12で説明した通り、幹線障害検出の警報が生成されても、wOLT1-1のPON制御部10は、状態管理テーブル33を参照して、全てのONU2-1~2-4がスリープモードであることがわかるため、冗長切替は実施されない。この結果、スリープモードから復帰したONU2-1~2-4には、警報の発生前と同じく、wOLT1-1からGATEフレームが送信される(ステップS31a)。このように、本実施の形態では、幹線障害の誤検出による不要な冗長切替を防ぐことができる。
図14は、本実施の形態のOLT1における省電力制御を実施した場合のシーケンスの一例を示す図である。図14は、ONU2-1~2-4の全てについて送信バッファ量がなく、ONU2-1~2-4の全てをスリープモードに移行させることが可能な例を示している。このような例の場合、従来では、ほぼ同時にONU2-1~2-4をスリープモードへ移行させるため、ONU2-1~2-4の全てがスリープモードとなる時間帯があったが、本実施の形態では、同時にアクティブとなるONU2-1~2-4を2台以上とするSleep_Allow送信(ステップS42)を送信している。そして、OLT1は、Sleep_Ackを受信(ステップS43)すると、状態管理テーブル33を更新する(ステップS85)。具体的には、図14の例では、省電力効果の公平性を考慮してラウンドロビン方式により、スリープモードへ移行させる時刻をONU2-1~2-4によりずらすことにより、同時にアクティブとなるONU2-1~2-4を2台以上とするよう制御している。なお、同時にアクティブとなるONU2-1~2-4を2台以上とする、具体的な各ONU2-1~2-4のスリープモードの開始時間の決定方法は、図14の例に限定されない。
また、図10の例では、アクティブなONU2-1~2-4が3台以下の場合は、新たなONU2-1~2-4をスリープモードへ移行させないようにしていたが、新たなONU2-1~2-4をスリープモードへ移行させる場合に、スリープモードへ移行中のONU2-1~2-4を一旦通常状態に復帰させるまたはスリープモードの終了時間をずらして、図14のような制御を行ってもよい。すなわち、既にスリープモードとなっているONU2-1~2-4と新たにスリープモードへ移行させるONU2-1~2-4とに対して図14のようなスリープ時間をずらして2台以上をアクティブとする制御を行ってもよい。
次に、ONU2-1~2-4における省電力制御について説明する。図15-1,15-2は、ONU2-1~2-4における省電力制御手順の一例を示す図である。ONU2-1~2-4のPON制御部20は、まず、初期設定(ディスカバリ)処理を実施する(ステップS91)。OLT1からフレームを受信すると(ステップS92)、受信したフレームがGATEメッセージ(Gate Frame)であるか否かを判断し(ステップS93)、GATEメッセージでない(すなわち、データフレーム(Data Frame)である)場合(ステップS93 No)、データフレームを受信し(ステップS94)、データの種類を判別する(ステップS95)。
そして、受信したフレームがSleep_Allowであるか否かを判断し(ステップS96)、Sleep_Allowである場合(ステップS96 Yes)、PON制御部20は、送信バッファ量(送信バッファ23の蓄積量)を参照し(ステップS97)、送信バッファ量があるか否かを判断する(ステップS98)。送信バッファ量がない場合(ステップS98 No)、Sleep_Ackを返信する(ステップS99)。そして、PON制御部20は、スリープモードにおける1回の省電力状態の継続時間であるスリープ時間を計測するためのタイマ(Sleep_Timer)のカウントを開始し(ステップS100)、光送信器27(または光送信器27および光受信器26)を省電力状態(Sleep_Duration)へ移行させる(ステップS101)。PON制御部20は、Sleep_Timerのカウントが満了したか否かを判断し(ステップS102)、満了した場合(ステップS102 Yes)、光送信器27(または光送信器27および光受信器26)を一時起動状態へ移行させる(ステップS103)。
そして、PON制御部20は、GATEメッセージを受信し(ステップS104)、送信バッファ量を参照して(ステップS105)、送信バッファ量があるか否かを判断する(ステップS106)。送信バッファ量がない場合(ステップS106 No)、送信バファ量(この場合は送信バッファ量がないことを示す値)をREPORTメッセージに入力し(ステップS107)、REPORTメッセージを送信し(ステップS108)、ステップS101へ戻る。
ステップS96で、Sleep_Allowでないと判断した場合(ステップS96 No)、受信データに対して所定のデータ処理を実施し(ステップS109)、ステップS92へ戻る。ステップS98で、送信バッファ量があると判断した場合(ステップS98 Yes)、Sleep_Ack(Wakeup)を返信する(ステップS110)。Sleep_Ack(Wakeup)は、スリープモードへの移行を承諾する上述のSleep_Ackとは異なり、通常状態への復帰を要求するフレームである。そして、REPORTメッセージ、データフレームを送信し(ステップS111)、ステップS92へ戻る。
ステップS93でGATEメッセージであった場合(ステップS93 Yes)、GATEメッセージを受信し(ステップS112)、送信バッファ量を参照し(ステップS113)、送信バッファ量をREPORTメッセージに入力する(ステップS114)。そして、送信許可時刻まで待機した後(ステップS115)、REPORTメッセージを送信し(ステップS116)、ステップS92へ戻る。
また、ステップS106で送信バッファ量がある場合(ステップS106 Yes)、PON制御部20は、Sleep_Ack(Wakeup)を返信し(ステップS117)、REPORTメッセージ、データフレームを送信し(ステップS118)、ステップS92へ戻る。
また、以上の説明では、光スプリッタが1台であり、支線が一段階であったが、光スプリッタが多段階に設定され、支線が多段階となるような構成も考えられる。図16は、支線が多段階となる構成例を示す図である。OLT1および現用系幹線光ファイバ7-1、予備系幹線光ファイバ7-2は、図2の例と同様であるが、図16の例では、1段目の光スプリッタ3-1と2段目の光スプリッタ3-2,3-3の2段階の構成となっている。光スプリッタ3-1は、現用系幹線光ファイバ7-1、予備系幹線光ファイバ7-2と接続されるとともに、光スプリッタ3-2,3-3に支線光ファイバ6-1,6-2でそれぞれ接続される。光スプリッタ3-2は、支線光ファイバ6-1により光スプリッタ3-1と接続されるとともに、各支線によりONU2-1~2-4と接続され、光スプリッタ3-3は、支線光ファイバ6-2により光スプリッタ3-1と接続されるとともに、各支線によりONU2-5~2-8と接続される。ここで、1段階目の支線である支線光ファイバ6-1,6-2を支線#1とし、光スプリッタ3-2,3-3とONU2-1~2-8を接続する支線を支線#2とする。
図16に示すような、多段階の構成の場合、同時にアクティブとする2台以上のONUが同一の支線#1に接続するONUであった場合(例えば、ONU2-1とONU2-2がアクティブの場合)、支線#1の障害であるか、幹線障害であるかの区別ができない。従って、このような場合には、OLT1は、ONU毎に、どの支線#1に接続するONUであるかという情報を保持しておき、同時にアクティブとするONUを異なる支線#1に接続するONUとなるよう制御することが望ましい。例えば、図16のように、支線光ファイバ6-1に接続するONU2-1と支線光ファイバ6-2に接続するONU2-5とをアクティブとする。
以上のように、本実施の形態では、OLT1が、ONU2-1~2-4の省電力の状態を状態管理テーブル33を用いて管理し、状態管理テーブル33を用いて冗長切替を実施するか否かを判断するようにした。このため、幹線障害の誤検出による不要な冗長切替を防ぐことができる。また、同時にアクティブとするONU2-1~2-4の台数を2台以上とするよう省電力制御を実施することで、支線障害と幹線障害の判別を実施することができる。
実施の形態2.
図17は、本発明にかかるPONシステムの実施の形態2の構成例を示す図である。本実施の形態のPONシステムは、図17に示すように、多段構成であり、OLT1と幹線ファイバ7により接続される光スプリッタ3は、支線光ファイバ50-1~50-4(1段目の支線光ファイバ)に接続される。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。支線光ファイバ50-1,50-2,50-3,50-4は、それぞれ支線スプリッタ51-1,51-2,51-3,51-4に接続される。支線スプリッタ51-1は、支線光ファイバ61-1~61-8(2段目の支線光ファイバ)を介してONU71-1~71-8に接続される。同様に、支線スプリッタ51-2,51-3,51-4は支線光ファイバ52-2,52-3,52-4にそれぞれ接続されるとともに支線光ファイバ62-1~62-8,63-1~63-8,64-1~64-8にそれぞれ接続される。ONU71-1~71-8,72-1~72-8,73-1~73-8,74-1~74-8の構成は、実施の形態1で説明したONU2-1と同様である。なお、図17では、図の簡略化のため、支線光ファイバ50-2,50-3に接続される支線光ファイバ62-1~62-8,63-1~63-8およびONU72-1~72-8,73-1~73-8の図示を省略している。また、支線スプリッタの数および各支線スプリッタに2段目の支線光ファイバを介して接続されるONUの数は、図17の例に限定されない。
図17は、本発明にかかるPONシステムの実施の形態2の構成例を示す図である。本実施の形態のPONシステムは、図17に示すように、多段構成であり、OLT1と幹線ファイバ7により接続される光スプリッタ3は、支線光ファイバ50-1~50-4(1段目の支線光ファイバ)に接続される。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。支線光ファイバ50-1,50-2,50-3,50-4は、それぞれ支線スプリッタ51-1,51-2,51-3,51-4に接続される。支線スプリッタ51-1は、支線光ファイバ61-1~61-8(2段目の支線光ファイバ)を介してONU71-1~71-8に接続される。同様に、支線スプリッタ51-2,51-3,51-4は支線光ファイバ52-2,52-3,52-4にそれぞれ接続されるとともに支線光ファイバ62-1~62-8,63-1~63-8,64-1~64-8にそれぞれ接続される。ONU71-1~71-8,72-1~72-8,73-1~73-8,74-1~74-8の構成は、実施の形態1で説明したONU2-1と同様である。なお、図17では、図の簡略化のため、支線光ファイバ50-2,50-3に接続される支線光ファイバ62-1~62-8,63-1~63-8およびONU72-1~72-8,73-1~73-8の図示を省略している。また、支線スプリッタの数および各支線スプリッタに2段目の支線光ファイバを介して接続されるONUの数は、図17の例に限定されない。
OLT1は、管理者装置(EMS(Element Management System))80およびデータセンター90に接続される。なお、図17では、OLT1が管理者装置80とデータセンター90の両方に接続される例を示しているがいずれか一方のみと接続されていてもよい。管理者装置80、データセンター90の少なくともいずれか一方は、図17に示した接続関係を把握しているとする。そして、各ONUが、どのスプリッタの配下に位置するか、またONUの接続するスプリッタが何段目のスプリッタであるか等のONU位置情報をデータベースとして保持しているとする。
本実施の形態では、多段構成の場合に、OLT1が、管理者装置80またはデータセンター90が有するデータベースからONUの位置情報を取得し、PON制御部10は、自身が管理する各ONUの個体識別情報に基づいて、実施の形態1で述べた状態管理テーブル33に位置情報を追加する。図18は、本実施の形態の状態管理テーブル33の構成例を示す図である。図18の状態情報の欄には、実施の形態1の状態管理テーブル33と同様の情報が格納され、本実施の形態ではさらにONUごとの位置情報が格納される。OLT1は、状態管理テーブル33の状態情報については、実施の形態1と同様の手順で更新する。
図17に示す多段構成において、実施の形態1で述べたようにONUの省電力制御を実施する際、1段目の支線光ファイバ(支線光ファイバ50-1~50-4)の障害と幹線ファイバ7の障害とを区別するには、異なる支線スプリッタ51-1~51-4に接続するONUが同時に複数アクティブとなるようにONUの省電力制御を実施すればよい。
図19は、本実施の形態の省電力制御方法の一例を示す図である。図19では、スリープモードの期間を点線で示し、アクティブの期間を実線で示している。図19に示すように、異なる支線スプリッタ51-1~51-4の配下の(異なる支線スプリッタ51-1~51-4に接続する)ONUが、2つ以上同時にアクティブとなるように、ONUの省電力制御を実施する。異なる支線スプリッタ51-1~51-4に接続するONUが、2つ以上同時にアクティブとなるようにしておけば、支線光ファイバ50-1~50-4(または支線スプリッタ51-1~51-4)に障害が発生した場合、OLT1は、障害が発生していない支線光ファイバ50-1~50-4に接続するONUから応答を受信することができる。なお、図19では、図の簡略化のため、各支線スプリッタの配下のONUを1つずつ示しているが、支線スプリッタの配下に2つ以上のONUが存在する場合も同様で、異なる支線スプリッタ51-1~51-4の配下のONUが、2つ以上同時にアクティブとなっていればよい。
OLT1は、図18に例示した位置情報を含む状態管理テーブル33を用いて、実施の形態1と同様のONUの省電力制御を実施する。省電力制御の方法は、上記のように異なる支線スプリッタ51-1~51-4に接続するONUが、2つ以上同時にアクティブとなるようにする以外は、実施の形態1と同様である。
なお、以上説明した例では、支線が2段となった例を示したが、支線の段数は3段以上であってもよい。3段以上の場合、幹線障害と区別したい支線の直下に接続する支線スプリッタについて、異なる光スプリッタの配下のONUが、2つ以上同時にアクティブとなるように制御する。
また、本実施の形態においても、現用系OLTが管理している状態管理テーブル33の各種情報は、制御部9を介して予備系OLTに転送され、幹線切り替え後に、予備系OLTはこれらの情報を用いてONUの省電力制御を実施する。
また、本実施の形態では、管理者装置80、データセンター90からONUの位置情報を取得するようにしたが、ONUごとのサービス利用状況等についても管理者装置80、データセンター90から取得するようにしてもよい。
以上のように、本実施の形態では、多段の構成を有する場合に、OLT1は、管理者装置80、データセンター90のうち少なくとも一方から各ONUの位置情報を取得し、状態管理テーブル33に位置情報も格納して管理する。そして、OLT1は、状態管理テーブル33に基づいて、異なる支線スプリッタ51-1~51-4に接続するONUが、2つ以上同時にアクティブとなるようにONUの省電力制御を実施するようにした。このため、幹線障害の誤検出による不要な冗長切替を防ぐことができる。
以上のように、本発明にかかる光伝送システム、局側光終端装置および通信回線切替方法は、OLTを冗長化したPONシステムに有用であり、特に、省電力制御を行うPONシステムに適している。
1 OLT、1-1 wOLT、1-2 sOLT、2-1~2-N,71-1~71-8,74-1~74-8 ONU、3 光スプリッタ、4 上位ネットワーク、5-1,5-2 ユーザ端末、6-1~6-N,50-1~50-4,61-1~61-8,64-1~64-8 支線光ファイバ、7 幹線光ファイバ、7-1 現用系幹線光ファイバ、7-2 予備系幹線光ファイバ、8 L2SW、9 制御部、10,20 PON制御部、11,21 物理層処理部、12,22 WDMカプラ、13,23 送信バッファ、14,24 受信バッファ、15,25 光送受信器、16,26 光受信器、17,27 光送信器、18,28 受信部、19,29 送信部、30,35 信号処理部、31,36 バッファ監視部、32 スリープ制御信号処理部、33 状態管理テーブル、34,40 タイムカウンタ、37 リンク監視部、38 状態テーブル、39 スリープ制御部、51-1~51-4 支線スプリッタ。
Claims (17)
- 省電力モードに遷移可能な加入者側光終端装置と、局側光終端装置と、前記局側光終端装置と冗長化された幹線により接続されるとともに前記加入者側光終端装置とそれぞれ支線により接続される光スプリッタとを備える光伝送システムであって、
前記局側光終端装置は、前記加入者側光終端装置の省電力モードに関する情報である省電力情報を管理し、前記省電力情報に基づいて、前記幹線の冗長切替を制御することを特徴とする光伝送システム。 - 前記局側光終端装置は、
前記省電力情報として、前記加入者側光終端装置ごとに前記加入者側光終端装置が省電力モードであるか否かを示す状態情報を含み、
前記状態情報に基づいて前記加入者側光終端装置が省電力モードであるか否かを判断し、省電力モードでない前記加入者側光終端装置からの応答信号に基づいて前記幹線の冗長切替を実施するか否かを判断し、省電力モードの前記加入者側光終端装置からの応答信号を前記幹線の冗長切替の実施の判断に用いないことを特徴とする請求項1に記載の光伝送システム。 - 前記局側光終端装置は、
前記加入者側光終端装置から当該加入者側光終端装置が省電力モードへの移行をすることを示す通知を受信した場合に当該通知に基づいて前記状態情報を更新し、
前記加入者側光終端装置から、当該加入者側光終端装置が省電力モードから通常モードに復帰することを示す通知を受信した場合に当該通知に基づいて前記状態情報を更新する、ことを特徴とする請求項2に記載の光伝送システム。 - 前記局側光終端装置は、
前記加入者側光終端装置から電源断通知を受信した場合、前記電源断通知の送信元の前記加入者側光終端装置に対応する前記状態情報を省電力モードであることを示す値に更新することを特徴とする請求項2または3に記載の光伝送システム。 - 前記局側光終端装置は、前記加入者側光終端装置ごとに前記応答信号を所定の障害検出時間内に受信しなかった場合に障害として検出する障害検出処理を行うとし、省電力モードの前記加入者側光終端装置については前記応答信号を前記所定の障害検出時間内に受信しなかった場合に前記障害として検出しないことを特徴とする請求項1~4のいずれか1つに記載の光伝送システム。
- 前記局側光終端装置は、いずれの前記加入者側光終端装置からも前記応答信号を所定の障害検出時間内に受信しなかった場合に幹線障害として検出する幹線障害検出処理を行うとし、全ての前記加入者側光終端装置が省電力モードであった場合は前記応答信号を前記所定の障害検出時間内に受信しなかった場合に前記幹線障害として検出しないことを特徴とする請求項1~5のいずれか1つに記載の光伝送システム。
- 前記局側光終端装置は、いずれの前記加入者側光終端装置からも前記応答信号を所定の障害検出時間内に受信しなかった場合に幹線障害として検出する幹線障害検出処理を行うとし、全ての前記加入者側光終端装置が省電力モードであった場合は前記幹線障害を検出しても前記幹線の冗長切替を実施しないことを特徴とする請求項1~5のいずれか1つに記載の光伝送システム。
- 前記局側光終端装置は、
前記加入者側光終端装置ごとに前記加入者側光終端装置における省電力モードの開始および終了時間を制御し、前記開始および終了時間を前記省電力情報として管理し、省電力モードでない前記加入者側光終端装置が1台以上存在するよう前記加入者側光終端装置ごとの前記開始および終了時間を決定し、省電力モードでない前記加入者側光終端装置からの応答信号に基づいて前記幹線の冗長切替を実施するか否かの判断を行うことを特徴とする請求項1~7のいずれか1つに記載の光伝送システム。 - 省電力モードでない前記加入者側光終端装置が2台以上存在するよう前記加入者側光終端装置ごとの前記開始および終了時間を決定することを特徴とする請求項8に記載の光伝送システム。
- 前記応答信号を帯域割当通知に対する応答信号とすることを特徴とする請求項2~9のいずれか1つに記載の光伝送システム。
- 省電力モードに遷移可能な加入者側光終端装置と光スプリッタ経由で接続される局側光終端装置であって、
前記光スプリッタとの間の幹線が冗長化され、前記光スプリッタとそれぞれ支線により接続され、
前記加入者側光終端装置の省電力モードに関する情報である省電力情報を管理し、前記省電力情報に基づいて、前記幹線の冗長切替を制御するPON制御部、
を備えることを特徴とする局側光終端装置。 - 省電力モードに遷移可能な加入者側光終端装置と、局側光終端装置と、前記局側光終端装置と冗長化された幹線により接続されるとともに前記加入者側光終端装置とそれぞれ支線により接続される光スプリッタとを備える光伝送システムにおける通信回線切替方法であって、
前記局側光終端装置が、
前記加入者側光終端装置の省電力モードに関する省電力情報を管理する管理ステップと、
前記省電力情報に基づいて、前記幹線の冗長切替を制御する切替ステップと、
を含むことを特徴とする通信回線切替方法。 - 前記支線および前記光スプリッタが多段に接続され、
前記局側光終端装置は、前記加入者側光終端装置ごとに当該加入者側光終端装置が接続する前記光スプリッタを示す情報を含む位置情報を保持し、前記位置情報と前記省電力情報とに基づいて、前記加入者側光終端装置ごとの前記開始および終了時間を決定することを特徴とする請求項8に記載の光伝送システム。 - 前記局側光終端装置は、前記位置情報と前記省電力情報とに基づいて、同一段の異なる前記光スプリッタに接続する前記加入者側光終端装置が2台以上省電力モードでない状態となるよう前記加入者側光終端装置ごとの前記開始および終了時間を決定することを特徴とする請求項13に記載の光伝送システム。
- 前記局側光終端装置は、前記位置情報を管理者装置またはデータセンターから取得することを特徴とする請求項13または14に記載の光伝送システム。
- 前記支線および前記光スプリッタが多段に接続され、
前記PON制御部は、前記加入者側光終端装置ごとに当該加入者側光終端装置が接続する前記光スプリッタを示す情報を含む位置情報を保持し、前記加入者側光終端装置ごとに前記加入者側光終端装置における省電力モードの開始および終了時間を制御し、前記開始および終了時間を前記省電力情報として管理し、前記位置情報と前記省電力情報とに基づいて、前記加入者側光終端装置ごとの前記開始および終了時間を決定し、省電力モードでない前記加入者側光終端装置からの応答信号に基づいて前記幹線の冗長切替を実施するか否かの判断を行うことを特徴とする請求項11に記載の局側光終端装置。 - 前記支線および前記光スプリッタが多段に接続され、
前記局側光終端装置が、前記加入者側光終端装置ごとに当該加入者側光終端装置が接続する前記光スプリッタを示す情報を含む位置情報を保持し、前記加入者側光終端装置ごとに前記加入者側光終端装置における省電力モードの開始および終了時間を制御し、前記開始および終了時間を前記省電力情報として管理し、前記位置情報と前記省電力情報とに基づいて、前記加入者側光終端装置ごとの前記開始および終了時間を決定する省電力制御ステップ、
をさらに含み、
前記切替ステップでは、省電力モードでない前記加入者側光終端装置からの応答信号に基づいて前記幹線の冗長切替を実施するか否かの判断を行うことを特徴とする請求項12に記載の通信回線切替方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014520974A JP5730443B2 (ja) | 2012-06-14 | 2013-03-13 | 光伝送システム、局側光終端装置および通信回線切替方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2012/065257 | 2012-06-14 | ||
PCT/JP2012/065257 WO2013186900A1 (ja) | 2012-06-14 | 2012-06-14 | 光伝送システム、局側光終端装置および通信回線切替方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013187098A1 true WO2013187098A1 (ja) | 2013-12-19 |
Family
ID=49757762
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/065257 WO2013186900A1 (ja) | 2012-06-14 | 2012-06-14 | 光伝送システム、局側光終端装置および通信回線切替方法 |
PCT/JP2013/057091 WO2013187098A1 (ja) | 2012-06-14 | 2013-03-13 | 光伝送システム、局側光終端装置および通信回線切替方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/065257 WO2013186900A1 (ja) | 2012-06-14 | 2012-06-14 | 光伝送システム、局側光終端装置および通信回線切替方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201351928A (ja) |
WO (2) | WO2013186900A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018510576A (ja) * | 2015-03-30 | 2018-04-12 | アマゾン・テクノロジーズ、インコーポレイテッド | マルチテナント環境のためのネットワークフローログ |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI584603B (zh) * | 2015-03-06 | 2017-05-21 | Nippon Telegraph & Telephone | Central office equipment and optical transmission system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012095089A (ja) * | 2010-10-27 | 2012-05-17 | Sumitomo Electric Ind Ltd | 局側装置、宅側装置、光通信システム、および光通信システムの制御方法 |
WO2012176531A1 (ja) * | 2011-06-20 | 2012-12-27 | 住友電気工業株式会社 | 中継装置、中継方法及びその中継装置を用いた光通信システム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008199253A (ja) * | 2007-02-13 | 2008-08-28 | Fujitsu Ten Ltd | 異常診断システム及び診断情報管理装置 |
WO2008126162A1 (ja) * | 2007-03-06 | 2008-10-23 | Mitsubishi Electric Corporation | 光通信ネットワークシステム、親局光通信装置、光通信方法および通信プログラム |
-
2012
- 2012-06-14 WO PCT/JP2012/065257 patent/WO2013186900A1/ja active Application Filing
- 2012-11-12 TW TW101141977A patent/TW201351928A/zh unknown
-
2013
- 2013-03-13 WO PCT/JP2013/057091 patent/WO2013187098A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012095089A (ja) * | 2010-10-27 | 2012-05-17 | Sumitomo Electric Ind Ltd | 局側装置、宅側装置、光通信システム、および光通信システムの制御方法 |
WO2012176531A1 (ja) * | 2011-06-20 | 2012-12-27 | 住友電気工業株式会社 | 中継装置、中継方法及びその中継装置を用いた光通信システム |
Non-Patent Citations (1)
Title |
---|
KENJI MINEFUJI ET AL.: "Jochoka PON System ni Okeru Shogai Kenshutsu ni Kansuru Kento", 2012 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI, 6 March 2012 (2012-03-06), pages 287 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018510576A (ja) * | 2015-03-30 | 2018-04-12 | アマゾン・テクノロジーズ、インコーポレイテッド | マルチテナント環境のためのネットワークフローログ |
US10469536B2 (en) | 2015-03-30 | 2019-11-05 | Amazon Technologies, Inc. | Networking flow logs for multi-tenant environments |
US11659004B2 (en) | 2015-03-30 | 2023-05-23 | Amazon Technologies, Inc. | Networking flow logs for multi-tenant environments |
Also Published As
Publication number | Publication date |
---|---|
WO2013186900A1 (ja) | 2013-12-19 |
TW201351928A (zh) | 2013-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5106683B2 (ja) | 通信方法、光通信システム、利用者側光回線終端装置、局側光回線終端装置および制御装置 | |
JP5226900B2 (ja) | 通信回線切替方法、通信装置、局側通信装置、通信システム並びに制御装置 | |
JP5226901B2 (ja) | 光通信システムの通信方法、光通信システム、子局装置、制御装置並びにプログラム | |
JP5908051B2 (ja) | 通信システム、親局装置、子局装置、制御装置、および通信制御方法 | |
US9179204B2 (en) | Optical network system | |
WO2012114827A1 (ja) | 通信システム、局側通信装置、利用者側通信装置、通信方法、および制御装置 | |
EP2451123A1 (en) | Communication system, station-side optical circuit terminating apparatus, user-side optical circuit terminating apparatus, control apparatus, and communication method | |
JP5426782B2 (ja) | 通信システム、通信回線切替方法および親局装置 | |
JP5546663B2 (ja) | 子局装置、親局装置、通信回線切替方法、通信システムおよび制御装置 | |
JP5546662B2 (ja) | 子局装置、光通信システムの通信方法、光通信システムおよび制御装置 | |
JP2012213121A (ja) | 通信システムにおける局側装置および通信制御方法 | |
JP5579133B2 (ja) | 通信システム、局側光回線終端装置、利用者側光回線終端装置、制御装置、並びに通信方法 | |
JP2012142698A (ja) | 局側装置、通信システムおよび通信制御方法 | |
WO2013187098A1 (ja) | 光伝送システム、局側光終端装置および通信回線切替方法 | |
JP5730443B2 (ja) | 光伝送システム、局側光終端装置および通信回線切替方法 | |
JP2014049775A (ja) | 光通信システム、親局装置、経路切替制御装置および通信制御方法 | |
JP5456131B2 (ja) | 通信方法、光通信システム、利用者側光回線終端装置、局側光回線終端装置および制御装置 | |
JP2013207555A (ja) | Ponシステム、局側装置とその運用方法及びアクセス制御装置 | |
WO2012119490A1 (zh) | 一种无源光网络的保护方法及系统 | |
US20230362521A1 (en) | Olt power management system | |
JP5425692B2 (ja) | Mpcpリンク管理回路 | |
JP2011114531A (ja) | 光アクセスネットワークシステム及び消費電力制御方法 | |
WO2016157238A1 (ja) | 局側装置および通信システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13804968 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014520974 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13804968 Country of ref document: EP Kind code of ref document: A1 |