WO2013168195A1 - Pattern forming method - Google Patents

Pattern forming method Download PDF

Info

Publication number
WO2013168195A1
WO2013168195A1 PCT/JP2012/003033 JP2012003033W WO2013168195A1 WO 2013168195 A1 WO2013168195 A1 WO 2013168195A1 JP 2012003033 W JP2012003033 W JP 2012003033W WO 2013168195 A1 WO2013168195 A1 WO 2013168195A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
transfer sheet
chamber
substrate
transfer
Prior art date
Application number
PCT/JP2012/003033
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 藤立
剛 本田
一哉 小谷
Original Assignee
株式会社ニッシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニッシン filed Critical 株式会社ニッシン
Priority to PCT/JP2012/003033 priority Critical patent/WO2013168195A1/en
Publication of WO2013168195A1 publication Critical patent/WO2013168195A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods

Definitions

  • the present invention relates to a pattern forming method for forming a pattern obtained by sintering metal fine particles on an object to be processed.
  • metal pastes made of fine metal particles such as nano-sized silver and copper have been developed for the purpose of producing printed wiring boards. Specifically, metal fine particles are dissolved in a solvent, and a metal paste in which the fine particles are dispersed by a dispersant is applied to an object to be processed such as a substrate by a printing technique (inkjet or screen printing). Thereafter, the fine particles are sintered by dispersing the dispersant and the solvent by heat treatment.
  • sintering is performed at 220 ° C. for 60 minutes.
  • the sintering is performed at a low temperature of 120 ° C. to 150 ° C. for 60 minutes in order to prevent thermal deformation and damage due to heat.
  • the heat resistance temperature of PET is 150 ° C.
  • the sintering temperature of copper is as high as 250 ° C. Therefore, the object to be coated with the copper ink can be applied only to a polyimide film or the like at present.
  • silver since the sintering temperature is low, it can be applied to PET, but there is another problem that it tends to cause migration and is expensive.
  • a transfer sheet is used as a base material and a pattern sintered on the transfer sheet is transferred to a ceramic substrate (for example, see Patent Document 1). If transferred to an object to be processed having a low heat-resistant temperature such as PET instead of this ceramic substrate, a pattern in which metal fine particles are sintered can be formed on the object to be processed having a low heat-resistant temperature.
  • the workpiece in order to sinter a workpiece (workpiece) by plasma treatment, the workpiece is usually housed in a vacuum chamber and processed, but the workpiece is fed while being fed in a roll-to-roll manner.
  • the rollers In the case of winding the workpiece after processing, there is a technique of storing the rollers together with the rollers such as the feeding means (feeding roller) and the winding means (winding roller) in the vacuum chamber.
  • the present invention has been made in view of such circumstances, and a pattern in which metal fine particles are sintered while miniaturizing an apparatus for pattern formation while preventing thermal deformation and damage due to heat. It is an object of the present invention to provide a pattern forming method that can be efficiently formed on an object to be processed.
  • the above-described vacuum processing includes the case where plasma processing is performed by supplying a gas. Therefore, the target is not a complete high vacuum, but a relatively high processing at a low vacuum of about 100 Pascals. It only has to be achieved. Therefore, the roller can be disposed outside the chamber as long as the atmosphere is blocked by a member that can be sealed to some extent between the outside of the chamber under atmospheric pressure and the inside of the chamber under low vacuum. Then, the substrate (transfer sheet) is processed while being fed into the chamber with a roller outside the chamber, and the transferred air is transferred to the workpiece while being transferred to the outside of the chamber, and the air is cut off by the roller. can do.
  • the chamber processing chamber
  • the chamber can be downsized and the time to reach a low vacuum can be shortened, and metal ink is efficiently applied to the transfer sheet. And as a result, the pattern can be efficiently formed on the workpiece.
  • an O-ring having a circular cross section (O shape) and an annular shape is optimal.
  • the chamber 101, the O-ring 104, the transfer sheet S, and the base are arranged in this order, and the O-ring 104 and the transfer sheet S are interposed between the chamber 101 and the base.
  • the O-ring 104 and the transfer sheet S are interposed between the chamber 101 and the base.
  • the transfer sheet S itself blocks the atmosphere.
  • the workpiece is not processed on the entire processing surface and has some margin. Therefore, in the direction orthogonal to the direction of feeding the transfer sheet, if the transfer sheet corresponding to the processing part is accommodated in the transfer sheet by changing the idea of completely accommodating the transfer sheet as the transfer base in the chamber, The inventors have found that the end of the transfer sheet is accommodated so as to protrude outside the chamber. In other words, if the chamber is configured to be narrower than the width of the transfer sheet in the direction perpendicular to the direction in which the transfer sheet is fed, the transfer sheet is always present at the location where the O-ring is interposed, so that the atmosphere is easily blocked. It came.
  • the pattern forming method according to the present invention is a pattern forming method for forming a pattern in which fine metal particles are sintered on an object to be processed, and a substrate feeding process for feeding a substrate in stages at predetermined distances.
  • the cross section is circular and annular between the base material application surface and the base material side surface of the processing chamber.
  • a plasma processing process in which the base material is fed stepwise for each predetermined distance with an O-ring interposed, and the base material is subjected to plasma processing in a state where the inside of the processing chamber is decompressed, and sintering is performed by the plasma processing. And the fine And a pattern transfer step of transferring the substrate coated with the child stepwise from the processing chamber and transferring the sintered fine particle pattern from the substrate to the object to be processed. .
  • the base material feeding process feeds the base material step by step for each predetermined distance, and the fine particle coating step coats the base material fed stepwise.
  • the plasma treatment process is performed as follows when plasma treatment is performed on a substrate that is fed in stages and coated with fine particles.
  • the cross section is circular between the coating surface of the base material and the base material side surface of the processing chamber in the processing chamber configured to be narrower than the width of the base material.
  • a substrate obtained by sintering the coated fine particles by plasma treatment is sent out step by step from the processing chamber, and the pattern transfer process transfers the pattern of the sintered fine particles from the substrate to the object to be processed.
  • a pattern in which the fine particles are sintered is formed on the workpiece. Therefore, a feeding means for feeding the substrate, a transfer means for transferring the pattern to the object to be processed, and a winding means for winding the object to be processed or the substrate can be arranged outside the processing chamber.
  • the device to be performed can be reduced in size.
  • the time required to reach a low vacuum can be shortened, and the fine particles can be efficiently applied to the substrate and sintered.
  • the fine metal particles are sintered.
  • the tied pattern can be efficiently formed on the workpiece.
  • the substrate having the substrate after the transfer is sent back to the feeding side step by step at a predetermined distance, and the substrate having been cleaned is provided with a cleaning step of cleaning the returned substrate.
  • the substrate feeding process the substrate is preferably fed again, and the fine particle coating process, the plasma processing process, the pattern transfer process, the substrate feeding back process, the cleaning process, and the substrate feeding process are repeated. In this way, the substrate cleaned after the transfer can be reused and reused.
  • the first drying process is performed between the fine particle coating process and the plasma processing process.
  • the first drying process is performed stepwise to dry the substrate coated with the fine particles.
  • an adhesive coating process is performed between the plasma processing process and the pattern transfer process, in which an adhesive is applied to a substrate on which fine particles are applied by sintering by plasma processing, and the pattern transfer process. May transfer a pattern of fine particles coated with an adhesive and sintered from the base material to the object to be processed by the adhesive.
  • an adhesive application process is applied between the plasma treatment process and the pattern transfer process to apply an adhesive to the object to be processed.
  • the sintered fine particle pattern is applied from the substrate to the adhesive. You may transfer to the to-be-processed object with the said adhesive agent. In any case, the adhesiveness between the object to be processed and the pattern can be improved by the adhesive.
  • a second drying process for performing a drying process on the object to be processed after the transfer.
  • the pattern is transferred to the adjacent object to be processed by winding by the adhesive drying process. Can be prevented.
  • a heat treatment process for performing heat treatment on the substrate on which the fine particles are applied may be provided, and the plasma treatment may be performed after the heat treatment process.
  • the substrate can be uniformly heated, the uniformity of the treatment is improved, and the heating time and the plasma irradiation time are shortened.
  • the temperature difference between the front and back surfaces is reduced.
  • it is possible to efficiently sinter the fine particles at a low temperature while reducing the heating time to a low temperature and preventing thermal deformation and damage due to heat.
  • the temperature fluctuation range is reduced, and the reproducibility of the treatment can be improved.
  • the treatment chamber configured to be narrower than the width of the substrate, the substrate coating surface and the substrate side of the treatment chamber
  • the substrate is stepwise fed at predetermined distances with a circular cross-section between the surface and an annular O-ring interposed, and the substrate is subjected to plasma treatment in a state where the inside of the processing chamber is decompressed.
  • the base material is always present at locations where the O-ring is interposed, not only the O-ring but also the base material itself blocks the atmosphere at all locations where the O-ring is interposed. Therefore, it is possible to reduce the size of an apparatus for forming a pattern while preventing thermal deformation and damage due to heat, and efficiently form a pattern in which metal fine particles are sintered on an object to be processed.
  • FIG. 1 is a schematic view of a pattern forming apparatus including a plasma processing apparatus and peripheral devices according to an embodiment. It is a flowchart which shows a series of flows of the pattern formation method for every pattern which concerns on an Example.
  • (A) And (b) is a schematic sectional drawing of the plasma processing apparatus of the embodiment different from FIG. It is the schematic of the pattern formation apparatus provided with the plasma processing apparatus and its peripheral device which concern on a modification. It is a schematic sectional drawing of the plasma processing apparatus which concerns on a modification. It is a schematic plan view of the plasma processing apparatus when the chamber is configured such that the lateral width direction of the transfer sheet that has reached the knowledge of the present invention is completely accommodated in the chamber.
  • FIG. 1A is a schematic perspective view of a plasma processing apparatus according to an embodiment
  • FIG. 1B is a schematic plan view
  • FIG. 1C is a schematic cross-sectional view
  • FIG. 3 is a schematic diagram of a plasma processing apparatus according to an embodiment and a pattern forming apparatus including peripheral devices thereof
  • FIG. 3 is a flowchart showing a series of flow of a pattern forming method for each pattern according to the embodiment
  • 4A and 4B are schematic cross-sectional views of a plasma processing apparatus according to an embodiment different from that shown in FIG.
  • FIG. 1A is a schematic perspective view of a plasma processing apparatus according to an embodiment
  • FIG. 1B is a schematic plan view
  • FIG. 1C is a schematic cross-sectional view
  • FIG. 3 is a schematic diagram of a plasma processing apparatus according to an embodiment and a pattern forming apparatus including peripheral devices thereof
  • FIG. 3 is a flowchart showing a series of flow of a pattern forming method for each pattern according to the embodiment
  • the chamber is illustrated by a two-dot chain line, and the base is not illustrated.
  • the description will be made with the coated surface coated with metal fine particles as the upper surface and the surface opposite to the coated surface as the lower surface.
  • the plasma processing apparatus includes a chamber 1 and a base 2 as shown in FIGS. 1 (a) and 1 (c).
  • a vacuum pump 3 is provided to reduce the pressure inside the chamber 1 to make it vacuum.
  • a long (belt-shaped in this embodiment) base material (transfer sheet) S is placed in a direction F shown in FIGS. 1 (a) to 1 (c).
  • the base 2 faces the surface opposite to the application surface of the transfer sheet S (to which metal fine particles are applied), and supports the transfer sheet S.
  • the chamber 1 corresponds to the processing chamber in the present invention
  • the transfer sheet S corresponds to the base material in the present invention.
  • the chamber 1 in FIG. 1C repeats sealing and opening while raising and lowering up and down, the transfer sheet S is fed when the chamber 1 is raised, the chamber is lowered after the transfer sheet S is stopped, Sealed and evacuated (depressurized), and treated with plasma or the like. Further, by feeding the transfer sheet S in the direction F shown in FIGS. 1A to 1C, the pattern P 1 in FIG. 1B is processed, the pattern P 2 is being processed, and the pattern P 1 is processed. 3 is unprocessed. Further, the predetermined distance to be fed is appropriately determined according to the processing area.
  • the transfer sheet S is a thin film having a thickness of about 50 ⁇ m to 300 ⁇ m or a metal foil having a thickness of about 200 ⁇ m for feeding by roll-to-roll.
  • it will not specifically limit if it has the heat-resistant temperature higher than sintering temperature,
  • it is a polyimide film etc. as a thin film
  • it is SUS (stainless steel) as a metal foil.
  • the transfer sheet S that has been washed after transfer is reused and repeatedly used, so that the transfer sheet S has a belt shape.
  • the transfer sheet S when SUS (stainless steel) is used as the transfer sheet S, the transfer sheet S is a SUS belt, and when the polyimide film is used as the transfer sheet S, the transfer sheet S is a polyimide film belt. If the step feeding process is not continuous processing, the transfer sheet S can be sandwiched between the chamber 1 and the base 2 as shown in FIG.
  • the vacuum is not limited to about 100 Pascal but may be a high vacuum of less than 100 Pascal.
  • the plasma processing apparatus includes a circular O-ring 4 having a circular cross section (O shape).
  • the material of the O-ring 4 is not particularly limited, and is, for example, rubber, metal, fluorine resin, or the like. When the material is metal, a metal hollow O-ring having a hollow O-shaped cross section is used.
  • the O-ring 4 corresponds to the O-ring in the present invention.
  • the width is w 1, when the width of the chamber 1 and w 2, the w 1> w 2. That is, the chamber 1 is configured to be narrower than the width w 1 of the transfer sheet S in a direction orthogonal to the direction F in which the transfer sheet S is fed (see FIGS. 1A to 1C).
  • the width w 1 of the transfer sheet S is not particularly limited, for example, width of about 500 mm.
  • the width w 2 of the chamber 1 is not particularly limited as long as w 1 > w 2 is satisfied, but can be designed to be as narrow as about 100 mm.
  • the length of the transfer sheet S in the feeding direction F is not particularly limited. Further, the length of the chamber 1 is not particularly limited, and is appropriately determined according to the processing area. Further, the width and length of the base 2 are not particularly limited, but in order to sandwich and transfer the transfer sheet S between the chamber 1 and the base 2, the same width or length as the chamber 1 or What is necessary is just to design with the above width and length. Therefore, the width of the base 2, if the chamber 1 and as wide or more, may be narrower than the width w 1 of the transfer sheet S, even wider than the width w 1 of the transfer sheet S It may be the same as the width w 1 of the transfer sheet S.
  • an annular groove 1a is provided on the bottom surface of the wall of the chamber 1, and an O-ring 4 is fitted along the groove 1a. Therefore, the O-ring 4 can be interposed between the application surface of the transfer sheet S coated with metal (for example, copper) fine particles and the surface of the chamber 1 on the transfer sheet S side.
  • metal for example, copper
  • a vacuum pump 5 as a decompression means on the opposite surface. By providing the vacuum pump 5, the decompression process can be performed more reliably.
  • a supply channel 11 for supplying a gas for plasma (indicated as “Gas” in FIG. 1C), and a power for plasma (in FIG. 1C) And an electrode 12 to which “Power” is applied).
  • FIG. 1 (c) shows a single supply channel 11, two or more supply channels 11 may be provided.
  • the gas for plasma is hydrogen, oxygen, or nitrogen, but any gas that is normally used in plasma as exemplified by rare gases such as argon (Ar) and helium (He) can be used. Is not particularly limited.
  • the gas pressure is, for example, about 20 Pascals, but is not limited thereto, and may be changed as appropriate according to the application.
  • the power for plasma (plasma source) is not particularly limited.
  • an electric heater 13 is provided in the base 2 for performing heat treatment.
  • the electric heater 13 is provided in the base 2, but the electric heater 13 is not necessarily provided in the base 2.
  • an electric heater 13 may be provided in the vicinity of the transfer sheet S.
  • the electric heater 13 is not necessarily required, and may be a heating means usually used for heat treatment as exemplified by a silicon carbide microwave heater made of silicon carbide (SiC) or a lamp heater.
  • the heating means provided in the chamber 1 is not particularly limited.
  • about the temperature of heat processing it is about 100 degreeC, for example, However, It is not limited to this, You may change suitably according to a use.
  • the heat treatment is performed under atmospheric pressure, and the pressure is reduced only during the plasma treatment and may be performed in a high vacuum or a low vacuum. Heating under atmospheric pressure also has the effect of distributing heat uniformly under atmospheric pressure. Of course, evacuation (reduced pressure) and heat treatment may be performed in parallel. Thus, in this embodiment, the heat treatment and the plasma treatment are performed in the same chamber 1.
  • the pattern forming apparatus includes a sheet feeding roller 21, a printing inkjet 22, a first drying processing unit 23, and an adhesive inkjet 24 in the periphery of the plasma processing apparatus as shown in FIG.
  • illustration of the vacuum pump 5 (refer FIG.1 (c)) is abbreviate
  • the sheet feeding roller 21 feeds the transfer sheet S step by step in a roll-to-roll manner every predetermined distance.
  • the printing ink jet 22 applies fine particles of metal (for example, copper) to the transfer sheet S fed in stages. Specifically, a metal paste in which metal fine particles are dissolved in a solvent and fine particles are dispersed by a dispersant is jetted onto the transfer sheet S by the ink jet 22 for printing toward the application surface of the transfer sheet S. Apply.
  • it does not necessarily need to be an inkjet, and the application means is not particularly limited as long as it is a printing technique normally used, as exemplified by screen printing.
  • the first drying processing unit 23 is provided between the printing inkjet 22 and the plasma processing apparatus (chamber 1), and performs a drying process on the transfer sheet S that is fed stepwise and coated with fine particles. .
  • the 1st drying process part 23 is comprised, for example by the heater or the warm air machine which sends in warm air.
  • the structure of the first drying processing unit 23 is not particularly limited as long as it is a commonly used drying means.
  • the adhesive ink-jet 24 is provided between the plasma processing apparatus (chamber 1) and the return roller 25 and the transfer roller 28.
  • the transfer sheet S is sintered by the plasma processing in the chamber 1 and coated with fine particles.
  • the application of the adhesive is not limited to inkjet. Further, the specific adhesive is not particularly limited.
  • the return roller 25 returns the transfer sheet S after the transfer by the transfer roller 28 to the sheet feed roller 21 every predetermined distance.
  • the cleaner 26 is provided between the sheet feeding roller 21 and the feeding roller 25 and cleans the transferred transfer sheet S.
  • the cleaner 26 is composed of a wire brush, for example, and mechanically scrubs the transfer surface (pattern stain) of the transfer sheet S.
  • the structure of the cleaner 26 is not particularly limited as long as it is a commonly used cleaning means, as exemplified by wet cleaning with a cleaning liquid, ashing, dry cleaning with plasma, and the like. Further, scrub cleaning, wet cleaning, and dry cleaning may be appropriately combined.
  • the work feeding roller 27 feeds a long workpiece (work) W to the transfer roller 28 in a roll-to-roll manner.
  • the transfer roller 28 is in contact with the return roller 25, and the transfer roller 28 transfers the sintered fine particle pattern from the transfer sheet S to the workpiece W by rotating the rollers 25, 28 in the direction of the arrow in the figure. Transcript.
  • the workpiece W corresponds to an object to be processed in the present invention.
  • the workpiece W is a thin film with a thickness of about 50 ⁇ m to 300 ⁇ m or a metal foil with a thickness of about 200 ⁇ m, like the transfer sheet S, in order to feed the work W by roll.
  • the heat resistance temperature of the workpiece W is not particularly limited, in view of the purpose of forming a pattern on the workpiece W while preventing thermal deformation and damage due to heat by transferring to the workpiece W, the heat resistance temperature is lower than the sintering temperature. This is particularly useful in the case of a workpiece W having a temperature.
  • the thin film is, for example, PET (polyethylene terephthalate).
  • the sintering temperature of copper is as high as 250 ° C.
  • the heat resistant temperature of PET is as low as 150 ° C. Even if the heat resistant temperature is low as in PET, the heat is transferred to the workpiece W made of PET.
  • the pattern can be formed on the workpiece W while preventing damage due to deformation and heat.
  • the second drying processing unit 29 is provided between the transfer roller 28 and the take-up roller 30 and performs a drying process on the workpiece W after being transferred by the transfer roller 28. Similar to the first drying processing unit 23, the second drying processing unit 29 is configured by, for example, a heater or a warm air blower for sending warm air. Of course, the structure of the second drying processing unit 29 is not particularly limited as long as it is a drying means that is normally used.
  • the winding roller 30 winds up the work W after the drying process in the second drying processing unit 29 in a roll-to-roll manner.
  • the pattern forming method according to the present embodiment will be described with reference to FIG. In FIG. 3, it is assumed that the patterns P 1 , P 2 , P 3 , P 4 ,.
  • the processing time of each step is the same except for feeding, transferring, and winding, and the number of times of feeding is one.
  • the process relates to the pattern P 4
  • Step S101 Transfer Sheet Feed
  • the sheet feed roller 21 feeds the transfer sheet S once at a predetermined distance. By this feeding, the pattern P 1 is positioned up to the printing inkjet 22.
  • This step S101 corresponds to the substrate feeding process in the present invention.
  • Step S102 pattern P 1 of microparticles coated fed the transfer sheet S, the printing jet 22 for applying fine particles of metal.
  • This step S102 corresponds to the fine particle coating process in the present invention.
  • Step S103 Transfer sheet feeding /
  • Step S201 Transfer sheet feeding
  • the sheet feeding roller 21 feeds the transfer sheet S once at a predetermined distance.
  • This feed pattern P 1 is located to the first drying unit 23 (step S103), the pattern P 2 is located to the printing jet 22 (step S201).
  • Steps S103 and S201 correspond to the substrate feeding process in the present invention.
  • Step S104 with respect to the pattern P 1 of the first drying process, (step S202) fine particle coating the fed to the transfer sheet S which fine particles are coated, the first drying unit 23 for drying process (step S104).
  • step S104 Concurrently with step S104, the pattern P 2 of the transfer sheet S fed, printing ink jet 22 for applying fine particles of a metal (step S202).
  • step S104 corresponds to the first drying process in the present invention
  • step S202 corresponds to the fine particle coating process in the present invention.
  • Step S105 Transfer sheet feeding /
  • Step S203 Transfer sheet feeding /
  • Step S301 Transfer sheet feeding
  • the sheet feeding roller 21 feeds the transfer sheet S once at a predetermined distance.
  • the pattern P 1 is positioned up to the plasma processing apparatus (chamber 1) (step S105)
  • the pattern P 2 is positioned up to the first drying processing unit 23 (step S203)
  • the pattern P 3 is And the ink jet 22 for printing (step S301).
  • Steps S105, S203, and S301 correspond to the substrate feeding process in the present invention.
  • Step S106 Standby /
  • Step S204 First drying process / (Step S302) Particulate application
  • chamber 1 with respect to the pattern P 1 of dried coated transfer sheet S waits without heat treatment, plasma treatment (step S106).
  • the fed and the pattern P 2 of the transfer sheet S particles has been applied, the first drying unit 23 for drying process (step S204).
  • step S204 Concurrently with step S204, the pattern P 3 of the transfer sheet S fed, printing ink jet 22 for applying fine particles of a metal (step S302).
  • This step S204 corresponds to the first drying process in the present invention
  • this step S302 corresponds to the fine particle coating process in the present invention.
  • Step S107 Transfer sheet feeding /
  • Step S205 Transfer sheet feeding /
  • Step S303 Transfer sheet feeding /
  • Step S401 Transfer sheet feeding
  • the sheet feeding roller 21 is transferred.
  • the sheet S is fed once at a predetermined distance.
  • the pattern P 1 is positioned up to the back side of the chamber 1 (step S107)
  • the pattern P 2 is positioned up to the chamber 1 (step S205)
  • the pattern P 3 is the first drying processing unit 23.
  • the pattern P 4 is located to the printing jet 22 (step S401). That accommodates the pattern P 1, P 2 into the chamber 1, respectively carried out at the same time heat treatment, plasma treatment for the pattern P 1, P 2 in the next step.
  • Steps S107, S205, S303, and S401 correspond to the substrate feeding process in the present invention.
  • Step S108 Heat treatment / Plasma treatment /
  • Step S206 Heat treatment / Plasma treatment /
  • Step S304 First drying process / (Step S402) Particulate application
  • the chamber 1 performs heat treatment and plasma treatment on the patterns P 1 and P 2 (steps S108 and S206).
  • a predetermined pressure for example, about 20 Pascals
  • a power of about 2 KW is applied to the electrode 12 to generate plasma in the chamber 1 by plasma discharge.
  • plasma processing is performed on the patterns P 1 and P 2 . In this way, the plasma treatment is performed on the patterns P 1 and P 2 after the heat treatment.
  • step S304 the first drying unit 23 for drying process
  • step S402 the fine particle coating process in the present invention. Equivalent to.
  • Step S109 Transfer sheet feeding, (Step S207) Transfer sheet feeding, (Step S305) Transfer sheet feeding, (Step S403) Transfer sheet feeding
  • Step S109 Transfer sheet feeding
  • Step S207 Transfer sheet feeding
  • Step S305 Transfer sheet feeding
  • Step S403 Transfer sheet feeding
  • the sheet feeding roller 21 is Then, the transfer sheet S is fed once at a predetermined distance.
  • This feed pattern P 1 is located to the outside of the chamber 1 (step S109)
  • the pattern P 2 is located to the rear side of the chamber 1 (step S207), the pattern P 3 until the chamber 1 Situated (step S305), the pattern P 4 is located to the first drying unit 23 (step S403).
  • Steps S109, S207, S305, and S403 correspond to the substrate feeding process in the present invention.
  • Step S110 waits ⁇ (step S208) waits ⁇ (step S306) waits ⁇ (step S404) outside the first drying treatment plasma treatment by sintering to the transfer sheet S of the pattern P 1 in which fine particles are coated from the chamber 1 the delivery, waits without performing any processing for the pattern P 1 (step S110).
  • step S306 the chamber 1 with respect to the pattern P 3 of the fed to the transfer sheet S which fine particles are coated and dried waits without heat treatment, plasma treatment (step S306).
  • the first drying unit 23 for drying process step S404. This step S404 corresponds to the first drying process in the present invention.
  • Step S111 Transfer sheet feeding, (Step S209) Transfer sheet feeding, (Step S307) Transfer sheet feeding, (Step S405) Transfer sheet feeding
  • the sheet feeding roller 21 is Then, the transfer sheet S is fed once at a predetermined distance.
  • the pattern P 1 is positioned up to the adhesive inkjet 24 (step S111)
  • the pattern P 2 is positioned up to the outside of the chamber 1 (step S209)
  • the pattern P 3 is positioned at the back of the chamber 1. located to the side (step S307)
  • the pattern P 4 is located to the chamber 1 (step S405).
  • Steps S111, S209, S307, and S405 correspond to the substrate feeding process in the present invention.
  • Step S112 adhesive coating and (step S210) waits ⁇ (step S308) heat treatment, a plasma treatment, (step S406) heat treatment and plasma treatment Plasma treatment by sintering to transfer particles of the pattern P 1 coated
  • the adhesive inkjet 24 applies an adhesive to the sheet S (step S112).
  • the transfer sheet S of the pattern P 2 which is sintered by the plasma treatment and coated with the fine particles, is sent out from the chamber 1 and waits without performing any processing on the pattern P 2 (step S 210).
  • the an adhesive is applied in step S112 in the immediately preceding step S114, adhesive dry pattern transfer of step S114 This is because the transfer is performed before the end.
  • the adhesive may be applied in the step S110.
  • the chamber 1 performs a heat treatment and a plasma treatment on the patterns P 3 and P 4 of the transfer sheet S that are fed and dried by applying fine particles (steps S308 and S406).
  • the heat treatment is performed for the pattern P 3, P 4.
  • gas is supplied into the chamber 1 through the supply channel 11 until a predetermined pressure (for example, about 20 Pascals) is reached.
  • a power of about 2 KW is applied to the electrode 12 to generate plasma in the chamber 1 by plasma discharge.
  • plasma processing is performed on the patterns P 3 and P 4 .
  • the plasma treatment is performed on the patterns P 3 and P 4 after the heat treatment.
  • This step S112 corresponds to the adhesive coating process in the present invention
  • the steps S308 and S406 correspond to the heat treatment process and the plasma processing process in the present invention.
  • Step S113 Transfer sheet feeding
  • Step S211 Transfer sheet feeding
  • Step S309 Transfer sheet feeding
  • Step S407 Transfer sheet feeding
  • the sheet feeding roller 21 is Then, the transfer sheet S is fed once at a predetermined distance.
  • This feed pattern P 1 is located to the send back roller 25 and transfer roller 28 (step S113)
  • the pattern P 2 is located to the adhesive for an ink jet 24 (step S211)
  • the pattern P 3 is a chamber located to the outside of one (step S309)
  • the pattern P 4 is located to the rear side of the chamber 1 (step S407).
  • Step S 113 in order to transfer the sintered fine particle pattern from the transfer sheet S to the workpiece W at the stage of feeding to the return roller 25 and the transfer roller 28 in step S 113, the workpiece feeding roller 27 transfers the workpiece W to the workpiece W. Send it in.
  • Steps S113, S211, S309, and S407 correspond to the substrate feeding process in the present invention.
  • Step S114 Pattern transfer / (Step S212) Adhesive application / (Step S310) Standby / (Step S408) Standby By rotating the rollers 25 and 28 in the directions of the arrows in FIG. the pattern P 1 of the sintered particles from the transfer sheet S is transferred to the workpiece W (step S114).
  • step S212 sintered by a plasma treatment on the transfer sheet S pattern P 2 which fine particles are coated, adhesive jet 24 for applying an adhesive (step S212).
  • the pattern P 2 waiting to adhesive without applying in the previous step S210, was coated with adhesive in step S212 immediately before the step S214, the pattern of step 214 This is because the transfer is performed before the adhesive is dried. Of course, if the adhesive does not dry or it takes time to apply the adhesive, the adhesive may be applied in the step S210.
  • step S310 sintered by a plasma treatment feeds the transfer sheet S pattern P 3 which fine particles are coated from the chamber 1 to the outside, and waits without performing any processing for the pattern P 3 (step S310).
  • step S 4 feed the transfer sheet S pattern P 4 which fine particles are coated with sintered by a plasma treatment to the back side of the chamber 1, similarly waits without performing any processing on the pattern P 3 in (step S408).
  • step S114 corresponds to the pattern transfer process in the present invention
  • step S212 corresponds to the adhesive application process in the present invention.
  • Step S115 Transfer sheet feeding, (Step S213) Transfer sheet feeding, (Step S311) Transfer sheet feeding, (Step S409) Transfer sheet feeding
  • Step S114, S212, S310, and S408 Transfer sheet feeding
  • the sheet feeding roller 21 is Then, the transfer sheet S is fed once at a predetermined distance.
  • the transfer sheet S on which the pattern P 1 is transferred to the workpiece W by this feeding is sent back to the feeding side and positioned before the cleaner 26, and at the same time, the pattern P 1 transferred to the workpiece W (pattern P 1 workpiece W) after the transfer of, and position to the second drying unit 29 (step S115), the pattern P 2 is located to the send back roller 25 and transfer roller 28 (step S213), the pattern P 3 is located to the adhesive for an ink jet 24 (step S311), the pattern P 4 is located to the outside of the chamber 1 (step S409).
  • Steps S115, S213, S311, and S409 correspond to the substrate feeding process in the present invention.
  • step S116 second drying process
  • step S214 pattern transfer, (step S312) adhesive coating and (step S410) the work W after the transfer of the stand-pattern P 1, the second drying unit 29 Drying Processing is performed (step S116).
  • step S116 second drying process
  • step S214 pattern transfer, (step S312) adhesive coating and (step S410) the work W after the transfer of the stand-pattern P 1, the second drying unit 29 Drying Processing is performed (step S116).
  • step 312 sintered by a plasma treatment on the transfer sheet S pattern P 3 which fine particles are coated, adhesive jet 24 for applying an adhesive
  • step 312 sintered by a plasma treatment feeds the transfer sheet S pattern P 4 which fine particles are coated from the chamber 1 to the outside, and waits without performing any processing for the pattern P 4 (step S410).
  • step S116 corresponds to the second drying process in the present invention
  • step S214 corresponds to the pattern transfer process in the present invention
  • step S312 corresponds to the adhesive application process in the present invention.
  • Step S117 Transfer Sheet Feed
  • the sheet feed roller 21 feeds the transfer sheet S once at a predetermined distance. This infeed, the transfer sheet S pattern P 1 is transferred to the workpiece W, at the same time as the position to the cleaner 26 is sent back to further infeed side, the workpiece W after the drying process of the pattern P 1 is wound Located on the take-off roller 30.
  • This step S117 corresponds to the substrate feeding process in the present invention.
  • Step S118 Cleaner 26 transfer sheet S cleaning and winding back pattern P 1 is at the same time as the cleaning, the take-up roller 30, winds the workpiece W on which the pattern P 1 is formed, the pattern P A series of processing for 1 is finished.
  • This step S118 corresponds to the cleaning process in the present invention.
  • the processing time of each step is the same except for feeding, transferring, and winding, but the processing time is not limited to this when the processing time is different.
  • the short processing time step may be ended first, and the long processing time step may be ended later.
  • the long processing time step is started first, and then Alternatively, a step with a short processing time may be started so that the end of each step coincides.
  • in order to perform the transfer before the adhesive is dried by pattern transfer it is only necessary to apply the adhesive immediately before the pattern transfer, and it is not always necessary to synchronize with the processing in other steps.
  • the number of times of feeding is one time, but it may be a plurality of times and is not particularly limited.
  • the heat treatment and the plasma treatment are performed simultaneously for each of the two patterns in the chamber. However, the heat treatment and the plasma treatment may be performed for each pattern, or three or more patterns may be performed. Heat treatment and plasma treatment may be performed simultaneously for each time.
  • the base material (transfer sheet) S is fed stepwise for each predetermined distance, and the fine particles are applied to the transfer sheet S fed stepwise.
  • the plasma processing is performed on the transfer sheet S which is fed stepwise and coated with fine particles, the following processing is performed.
  • the transfer sheet S In a direction perpendicular to the direction F of feeding the transfer sheet S, on the transfer sheet narrowly constructed chamber 1 than the width w 1 of the S, between the coating surface and the transfer sheet S side surface of the chamber 1 of the transfer sheet S, between the coating surface and the transfer sheet S side surface of the chamber 1 of the transfer sheet S
  • the transfer sheet S is fed stepwise at a predetermined distance with a circular O-ring 4 having a circular cross section between them, and the transfer sheet S is subjected to plasma treatment in a state where the inside of the chamber 1 is decompressed.
  • the transfer sheet S obtained by sintering the applied fine particles by plasma treatment is sent out step by step from the chamber 1, and the pattern of the sintered fine particles is transferred from the transfer sheet S to the workpiece (workpiece) W.
  • a pattern in which the fine particles are sintered is formed on the workpiece W.
  • rollers such as a feeding means (sheet feeding roller 21) for feeding the transfer sheet S, a transferring means (transfer roller 28) for transferring the pattern to the workpiece W, and a winding means (winding roller) for winding the transfer sheet S are provided. It can be disposed outside the chamber 1 and the chamber 1 (apparatus for pattern formation) can be downsized.
  • the transfer means transfer roller 28
  • the transfer roller 28 By disposing the transfer means (transfer roller 28) outside the chamber 1 and performing the transfer outside the chamber 1, it is possible to prevent the workpiece W from being thermally deformed or damaged by heat.
  • the time to reach a low vacuum can be shortened, and the fine particles can be efficiently applied to the transfer sheet S and sintered.
  • the sintered pattern can be efficiently formed on the workpiece W.
  • the transferred transfer sheet S is sent back to the feeding side step by step at predetermined distances, the transferred transfer sheet S is washed, and the transferred transfer sheet S is again used by using the washed transfer sheet S. It is preferable to perform the feeding and each step repeatedly. In this way, the transfer sheet S washed after transfer can be reused by being reused.
  • a first drying process step is performed between the fine particle application step and the plasma treatment step.
  • the first drying process step is performed to dry the transfer sheet S that is fed stepwise and coated with the fine particles.
  • an adhesive is applied between the plasma processing step and the pattern transfer step to the transfer sheet S that is sintered by the plasma processing and coated with the fine particles.
  • the fine particle pattern applied and sintered is transferred from the transfer sheet S to the workpiece W by the adhesive.
  • the adhesiveness between the workpiece W and the pattern can be improved by the adhesive.
  • a (second) drying process on the workpiece W after transfer.
  • the pattern is transferred to the adjacent workpiece W by winding up by preventing the adhesive from being dried. Can do.
  • the transfer sheet S coated with fine particles is subjected to heat treatment, and plasma treatment is performed after the heat treatment step.
  • plasma treatment is performed after the heat treatment step.
  • the support means for supporting the transfer sheet S is the base 2, but as shown in FIG. 4A, the upper surface of the wall of the chamber 1 on the lower side supports the transfer sheet S. It may be configured. That is, an annular groove 1b is provided on the upper surface of the wall of the chamber 1 on the lower side, and an O-ring 4 is further fitted along the groove 1b. Therefore, an O-ring 4 is interposed between the transfer sheet S application surface and the transfer sheet S side surface of the chamber 1, so that the surface opposite to the transfer sheet S application surface and the transfer sheet S side of the chamber 1. Further, an O-ring 4 can be interposed between them.
  • an O-ring 4 can be further interposed in the base 2 shown in FIGS. 1A and 1C. That is, an annular groove (not shown) is provided on the upper surface of the base 2, and the O-ring 4 is fitted along the groove, so that the transfer surface of the transfer sheet S and the surface of the chamber 1 on the transfer sheet S side are formed. An O-ring 4 may be interposed therebetween, and an O-ring 4 may be further interposed between the surface opposite to the coating surface of the transfer sheet S and the surface of the base 2 on the transfer sheet S side. it can.
  • the O-ring 4 is further interposed between the surface opposite to the coating surface of the transfer sheet S and the surface on the transfer sheet S side of the support means (the lower chamber 1 or the base 2). It is preferable to install. By interposing the O-ring 4 also on the surface opposite to the application surface, the atmosphere can be further blocked.
  • a decompression chamber 6 may be provided on the opposite surface as a decompression processing chamber that decompresses to the same pressure as the chamber 1.
  • a through hole 6 a is provided in the decompression chamber 6, air or the like in the gap is drawn from the through hole 6 a, and the inside of the decompression chamber 6 is decompressed by the vacuum pump 5.
  • FIG. 4 (a) and FIG. 4 (b) may be combined with each other. That is, an annular groove (not shown) is provided on the upper surface of the wall of the decompression chamber 6 shown in FIG. 4 (b), and the O-ring 4 is fitted along the groove as shown in FIG. 4 (a).
  • an O-ring 4 is interposed between the transfer sheet S application surface and the surface of the chamber 1 on the transfer sheet S side, so that the surface opposite to the transfer sheet S application surface and the transfer sheet S of the decompression chamber 6 are present.
  • An O-ring 4 may be further interposed between the side surfaces.
  • the transfer sheet S can be simultaneously coated on both sides.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the application surface is the upper surface and the surface opposite to the application surface is the lower surface, but it may be upside down. That is, the application surface may be the lower surface, and the surface opposite to the application surface may be the upper surface.
  • the application surface is the upper surface, the surface opposite to the application surface is the lower surface, and the application surface is only one surface, but both surfaces may be the application surface.
  • the heat treatment and the plasma treatment are performed in the same chamber 1, but a chamber (treatment chamber) (not shown) for performing the heat treatment is provided separately from the chamber 1 for performing the plasma treatment, Heat treatment and plasma treatment may be individually performed for each chamber. Further, heat treatment may be performed outside the chamber 1 where plasma treatment is performed.
  • the shape of the chamber is square, and the O-ring is arranged in accordance with the shape.
  • the shape of the chamber and the O-ring is not particularly limited.
  • an O-ring may be arranged accordingly.
  • the transfer target object is also long because it is fed roll-to-roll, but the work is not necessarily long. It does not have to be a scale. Transfer may be performed on the substrate-like workpiece, or transfer may be performed by combining the substrate-like workpiece and the long workpiece.
  • the transfer sheet washed after transfer is reused and repeatedly used. However, it is not always necessary to reuse. You may perform the printing by an inkjet, or the sintering by a plasma process with respect to a disposable base material (transfer sheet).
  • the first drying process step is performed between the fine particle application step and the plasma treatment step.
  • the plasma treatment step was performed on the transfer sheet that was sent stepwise and the fine particles were dried and applied, but if the fine particles were already dried before the plasma treatment, It is not always necessary to perform a drying process.
  • the adhesive is applied to the transfer sheet on which the fine particles are applied by sintering by the plasma processing between the plasma processing step and the pattern transfer step.
  • the fine particle pattern applied with the adhesive and sintered is transferred from the transfer sheet S to the workpiece W by the adhesive
  • the present invention is not limited to this.
  • an adhesive inkjet 24 for applying an adhesive to the workpiece (workpiece) W is provided downstream of the workpiece feed roller 27.
  • the adhesive inkjet 24 may transfer the sintered fine particle pattern from the base material (transfer sheet) S to the workpiece W to which the adhesive is applied by the adhesive.
  • the adhesiveness between the workpiece W and the pattern can be improved by the adhesive.
  • the (second) drying process is performed on the workpiece after transfer, but the adhesive is already dried before being wound, and the pattern is transferred to the adjacent workpiece by winding. In the case where there is no fear of being dried, it is not always necessary to perform a drying process.
  • the transfer sheet coated with the fine particles is subjected to the heat treatment, and the plasma treatment is performed after the heat treatment step.
  • the plasma treatment is performed without performing the heat treatment. Also good.
  • only the plasma processing may be performed without providing the chamber 1 with heating means represented by the electric heater 13 (see FIG. 1C, FIG. 2, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

A chamber (1) is configured to be narrower than the width (W1) of a transfer sheet (S) in a direction (F) orthogonal to the direction of feeding a base material (transfer sheet) (S). In the chamber (1), the transfer sheet (S) is fed in stages for each prescribed distance while an annular O-ring (4) with a round cross-section is interposed between the coated surface of the transfer sheet (S) and the surface of the chamber (1) facing the transfer sheet (S). The transfer sheet (S) is subjected to plasma processing while the inside of the chamber (1) is being depressurized. As a result, since the transfer sheet (S) is inevitably interposed where the O-ring is interposed,, at all the locations where the O-ring is interposed, not only the O-ring (4) but also the transfer sheet (S) itself shuts off the atmosphere. Thereby, a device for pattern forming (chamber 1) may be miniaturized while preventing thermal deformation and heat-induced damage and a fine metal particle sintered pattern can be efficiently formed onto an object to be processed (work).

Description

パターン形成方法Pattern formation method
 本発明は、金属の微粒子を焼結させたパターンを被処理物に形成するパターン形成方法に関する。 The present invention relates to a pattern forming method for forming a pattern obtained by sintering metal fine particles on an object to be processed.
 従来、ナノサイズの銀や銅などの金属の微粒子からなる金属ペーストが、印刷配線基板を作る目的で開発されている。具体的には、金属の微粒子を溶剤に溶かし、分散剤により微粒子を分散させた金属ペーストを印刷技術(インクジェットやスクリーン印刷)により基板などの被処理物に塗布する。その後、加熱処理により分散剤や溶剤を分散させて微粒子を焼結させる。 Conventionally, metal pastes made of fine metal particles such as nano-sized silver and copper have been developed for the purpose of producing printed wiring boards. Specifically, metal fine particles are dissolved in a solvent, and a metal paste in which the fine particles are dispersed by a dispersant is applied to an object to be processed such as a substrate by a printing technique (inkjet or screen printing). Thereafter, the fine particles are sintered by dispersing the dispersant and the solvent by heat treatment.
 加熱処理に際しては、銀の微粒子を用いてガラス基板を被処理物として用いる場合には220℃で60分での焼結条件で行われる。また、ガラス基板よりも薄い基材を被処理物として用いる場合には、熱変形や熱による損傷を防止するために120℃~150℃の低温で60分での焼結条件で行われる。 In the heat treatment, when a glass substrate is used as an object to be processed using silver fine particles, sintering is performed at 220 ° C. for 60 minutes. When a substrate thinner than the glass substrate is used as the object to be processed, the sintering is performed at a low temperature of 120 ° C. to 150 ° C. for 60 minutes in order to prevent thermal deformation and damage due to heat.
 しかし、被処理物としてPET(ポリエチレンテレフタレート)を用いた場合に、PETの耐熱温度は150℃に対して、銅の焼結温度は250℃と高い。したがって、銅インクを塗布する被処理物としては、現状ではポリイミドフィルム等にしか応用できない。なお、銀の場合には焼結温度は低いので、PETにも応用することが可能であるが、マイグレーション(migration)を引き起こしやすく、高コストになるという別の問題がある。 However, when PET (polyethylene terephthalate) is used as the object to be treated, the heat resistance temperature of PET is 150 ° C., and the sintering temperature of copper is as high as 250 ° C. Therefore, the object to be coated with the copper ink can be applied only to a polyimide film or the like at present. In the case of silver, since the sintering temperature is low, it can be applied to PET, but there is another problem that it tends to cause migration and is expensive.
 そこで、転写シートを基材として用いて、転写シート上に焼結したパターンをセラミック基板に転写する技術などがある(例えば、特許文献1参照)。このセラミック基板の代わりにPETのような耐熱温度が低い被処理物に転写すれば、耐熱温度が低い被処理物に対しても金属の微粒子を焼結させたパターンを形成することができる。 Therefore, there is a technique in which a transfer sheet is used as a base material and a pattern sintered on the transfer sheet is transferred to a ceramic substrate (for example, see Patent Document 1). If transferred to an object to be processed having a low heat-resistant temperature such as PET instead of this ceramic substrate, a pattern in which metal fine particles are sintered can be formed on the object to be processed having a low heat-resistant temperature.
 一方、従来、被処理物(ワーク)に対してプラズマ処理により焼結するには、ワークをそのまま真空チャンバー内に収容して処理する場合がほとんどであるが、ロールtoロールでワークを送り込みながら処理して、処理後のワークを巻き取る場合にも、送り込み手段(送り込みローラ)や巻き取り手段(巻き取りローラ)などのローラごと真空チャンバー内に収容する技術がある。 On the other hand, conventionally, in order to sinter a workpiece (workpiece) by plasma treatment, the workpiece is usually housed in a vacuum chamber and processed, but the workpiece is fed while being fed in a roll-to-roll manner. In the case of winding the workpiece after processing, there is a technique of storing the rollers together with the rollers such as the feeding means (feeding roller) and the winding means (winding roller) in the vacuum chamber.
特許第4128885号Japanese Patent No. 4128885
 しかしながら、上述の場合にはローラが大きければ、その分真空チャンバーも大きくなり、装置が高価になるという問題点がある。また、真空チャンバーが大きくなると、真空に達するまでの時間が非常に長くなり、非効率になってしまう。さらには、PETのような耐熱温度が低いワークであって、長尺状のワークに転写する場合には、真空チャンバーの内部で転写するとワークに対する熱変形や熱による損傷があり、単に真空チャンバーの外部で転写すると装置構成が複雑になるという問題がある。 However, in the case described above, the larger the roller, the larger the vacuum chamber and the more expensive the apparatus. In addition, when the vacuum chamber becomes large, the time until the vacuum is reached becomes very long and becomes inefficient. Furthermore, when a workpiece such as PET having a low heat-resistant temperature is transferred to a long workpiece, if the workpiece is transferred inside the vacuum chamber, the workpiece may be thermally deformed or damaged by heat. There is a problem that the configuration of the apparatus becomes complicated if it is transferred externally.
 本発明は、このような事情に鑑みてなされたものであって、熱変形や熱による損傷を防止しつつ、パターン形成を行う装置を小型化にして、金属の微粒子を焼結させたパターンを効率良く被処理物に形成することができるパターン形成方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a pattern in which metal fine particles are sintered while miniaturizing an apparatus for pattern formation while preventing thermal deformation and damage due to heat. It is an object of the present invention to provide a pattern forming method that can be efficiently formed on an object to be processed.
 発明者らは、上記の問題を解決するために鋭意研究した結果、次のような知見を得た。 As a result of earnest research to solve the above problems, the inventors have obtained the following knowledge.
 すなわち、上述の真空での処理は、ガスを供給してプラズマ処理を行う場合も含まれるので、完全な高真空を目標とするものではなく、比較的高い100パスカル程度の低真空での処理が達成できればよい。したがって、大気圧下のチャンバー外部と低真空下でのチャンバー内部との間で、ある程度密封することができる部材で大気を遮断さえすれば、ローラをチャンバー外部に配設することができる。そして、チャンバー外部にあるローラで基材(転写シート)をチャンバー内部に送り込みながら処理して、処理後の転写シートをチャンバー外部に送り込みながらワークに転写しつつローラで巻き取っても、大気を遮断することができる。 That is, the above-described vacuum processing includes the case where plasma processing is performed by supplying a gas. Therefore, the target is not a complete high vacuum, but a relatively high processing at a low vacuum of about 100 Pascals. It only has to be achieved. Therefore, the roller can be disposed outside the chamber as long as the atmosphere is blocked by a member that can be sealed to some extent between the outside of the chamber under atmospheric pressure and the inside of the chamber under low vacuum. Then, the substrate (transfer sheet) is processed while being fed into the chamber with a roller outside the chamber, and the transferred air is transferred to the workpiece while being transferred to the outside of the chamber, and the air is cut off by the roller. can do.
 転写ローラを含め各ローラをチャンバーの外部に配設した結果、チャンバー(処理室)を小型化にして、低真空に達するまでの時間も短縮することができ、効率良く転写シートに金属インクを塗布して焼結することができ、その結果、パターンを効率良く被処理物に形成することができる。密封する部材としては、断面が円形(O形)であって環状のOリングが最適である。 As a result of arranging each roller including the transfer roller outside the chamber, the chamber (processing chamber) can be downsized and the time to reach a low vacuum can be shortened, and metal ink is efficiently applied to the transfer sheet. And as a result, the pattern can be efficiently formed on the workpiece. As a member to be sealed, an O-ring having a circular cross section (O shape) and an annular shape is optimal.
 しかし、図7の平面図に示すように、転写シートSを送り込む方向Fに直交する方向において、転写シートSがチャンバー101内に完全に収容されるようにチャンバー101を構成すると、Oリング104が介在した状態であっても大気を完全に遮断することができない(図7ではチャンバー101を二点鎖線で図示)。これは、以下の事項に起因すると思われる。 However, as shown in the plan view of FIG. 7, when the chamber 101 is configured such that the transfer sheet S is completely accommodated in the chamber 101 in the direction orthogonal to the direction F in which the transfer sheet S is fed, the O-ring 104 is Even in the intervening state, the atmosphere cannot be completely shut off (in FIG. 7, the chamber 101 is shown by a two-dot chain line). This is considered to be caused by the following matters.
 すなわち、転写シートSがある箇所では、チャンバー101・Oリング104・転写シートS・ベース(図7では図示省略)の順に配置されて、チャンバー101・ベース間にOリング104および転写シートSが介在する結果、Oリング104のみならず転写シートS自身が大気を遮断する。しかし、転写シートSがない箇所では、Oリング104のみが介在する結果、転写シートSがない隙間から大気が流れ込むことに起因すると思われる。 That is, in a place where the transfer sheet S is present, the chamber 101, the O-ring 104, the transfer sheet S, and the base (not shown in FIG. 7) are arranged in this order, and the O-ring 104 and the transfer sheet S are interposed between the chamber 101 and the base. As a result, not only the O-ring 104 but also the transfer sheet S itself blocks the atmosphere. However, it is considered that the air flows from the gap where there is no transfer sheet S as a result of only the O-ring 104 being interposed in the place where there is no transfer sheet S.
 一方で、通常ではワークは処理面の全面で処理されるものではなく、ある程度の余白がある。そこで、転写の基となる転写シートをチャンバー内に完全に収容するという発想を変えて、処理箇所に相当する転写箇所さえ転写シート内に収容すれば、転写シートを送り込む方向に直交する方向において、転写シートの端がチャンバー外にはみ出るように収容するという知見に至った。つまり、転写シートを送り込む方向に直交する方向において、転写シートの幅よりも狭くチャンバーを構成すれば、Oリングが介在する箇所では必ず転写シートも介在するので、大気が遮断され易くなるという知見に至った。 On the other hand, normally, the workpiece is not processed on the entire processing surface and has some margin. Therefore, in the direction orthogonal to the direction of feeding the transfer sheet, if the transfer sheet corresponding to the processing part is accommodated in the transfer sheet by changing the idea of completely accommodating the transfer sheet as the transfer base in the chamber, The inventors have found that the end of the transfer sheet is accommodated so as to protrude outside the chamber. In other words, if the chamber is configured to be narrower than the width of the transfer sheet in the direction perpendicular to the direction in which the transfer sheet is fed, the transfer sheet is always present at the location where the O-ring is interposed, so that the atmosphere is easily blocked. It came.
 このような知見に基づく本発明は、次のような構成をとる。
 すなわち、本発明に係るパターン形成方法は、金属の微粒子を焼結させたパターンを被処理物に形成するパターン形成方法であって、基材を所定距離ごとに段階的に送り込む基材送り込み過程と、段階的に送り込まれた前記基材に前記微粒子を塗布する微粒子塗布過程と、段階的に送り込まれて前記微粒子が塗布された前記基材に対してプラズマ処理を行う際に、前記基材を送り込む方向に直交する方向において、当該基材の幅よりも狭く構成された処理室内に、基材の塗布面と前記処理室の基材側の面との間に断面が円形であって環状のOリングを介在させた状態で前記所定距離ごとに基材を段階的に送り込み、処理室の内部を減圧した状態で基材に対してプラズマ処理を行うプラズマ処理過程と、前記プラズマ処理により焼結して前記微粒子が塗布された基材を処理室から段階的に送り出し、焼結した前記微粒子のパターンを基材から前記被処理物に転写するパターン転写過程とを備えていることを特徴とするものである。
The present invention based on such knowledge has the following configuration.
That is, the pattern forming method according to the present invention is a pattern forming method for forming a pattern in which fine metal particles are sintered on an object to be processed, and a substrate feeding process for feeding a substrate in stages at predetermined distances. A fine particle coating process for applying the fine particles to the base material fed in stages, and a plasma treatment for the base material to which the fine particles are fed in stages and coated with the fine particles. In a direction perpendicular to the feeding direction, in a processing chamber configured to be narrower than the width of the base material, the cross section is circular and annular between the base material application surface and the base material side surface of the processing chamber. A plasma processing process in which the base material is fed stepwise for each predetermined distance with an O-ring interposed, and the base material is subjected to plasma processing in a state where the inside of the processing chamber is decompressed, and sintering is performed by the plasma processing. And the fine And a pattern transfer step of transferring the substrate coated with the child stepwise from the processing chamber and transferring the sintered fine particle pattern from the substrate to the object to be processed. .
 本発明に係るパターン形成方法によれば、基材送り込み過程は、基材を所定距離ごとに段階的に送り込み、微粒子塗布過程は、段階的に送り込まれた基材に微粒子を塗布する。プラズマ処理過程は、段階的に送り込まれて微粒子が塗布された基材に対してプラズマ処理を行う際に、以下のように処理する。基材を送り込む方向に直交する方向において、当該基材の幅よりも狭く構成された処理室内に、基材の塗布面と処理室の基材側の面との間に断面が円形であって環状のOリングを介在させた状態で所定距離ごとに基材を段階的に送り込み、処理室の内部を減圧した状態で基材に対してプラズマ処理を行う。その結果、Oリングが介在する箇所では必ず基材も介在するので、Oリングが介在する全ての箇所ではOリングのみならず基材自身が大気を遮断する。100パスカル程度の低真空であれば減圧下でのプラズマ処理を達成することができる。 According to the pattern forming method of the present invention, the base material feeding process feeds the base material step by step for each predetermined distance, and the fine particle coating step coats the base material fed stepwise. The plasma treatment process is performed as follows when plasma treatment is performed on a substrate that is fed in stages and coated with fine particles. In a direction perpendicular to the direction in which the base material is fed, the cross section is circular between the coating surface of the base material and the base material side surface of the processing chamber in the processing chamber configured to be narrower than the width of the base material. With the annular O-ring interposed, the base material is fed stepwise for each predetermined distance, and the base material is subjected to plasma processing while the inside of the processing chamber is decompressed. As a result, since the base material is always present at locations where the O-ring is interposed, not only the O-ring but also the base material itself blocks the atmosphere at all locations where the O-ring is interposed. Plasma treatment under reduced pressure can be achieved with a low vacuum of about 100 Pascals.
 そして、塗布された微粒子をプラズマ処理により焼結した基材を処理室から段階的に送り出し、パターン転写過程は、焼結した微粒子のパターンを基材から被処理物に転写することで、金属の微粒子を焼結させたパターンを被処理物に形成する。したがって、基材を送り込む送り込み手段や被処理物にパターンを転写する転写手段や被処理物や基材を巻き取る巻き取り手段を処理室外部に配設することができ、処理室(パターン形成を行う装置)を小型化にすることができる。転写手段を処理室外部に配設して転写を処理室外部で行うことで、被処理物に対する熱変形や熱による損傷を防止することができる。また、処理室を小型化にした結果、低真空に達するまでの時間も短縮することができ、効率良く基材に微粒子を塗布して焼結することができ、その結果、金属の微粒子を焼結させたパターンを効率良く被処理物に形成することができる。 Then, a substrate obtained by sintering the coated fine particles by plasma treatment is sent out step by step from the processing chamber, and the pattern transfer process transfers the pattern of the sintered fine particles from the substrate to the object to be processed. A pattern in which the fine particles are sintered is formed on the workpiece. Therefore, a feeding means for feeding the substrate, a transfer means for transferring the pattern to the object to be processed, and a winding means for winding the object to be processed or the substrate can be arranged outside the processing chamber. The device to be performed) can be reduced in size. By disposing the transfer unit outside the processing chamber and performing the transfer outside the processing chamber, it is possible to prevent thermal deformation and damage to the object to be processed due to heat. In addition, as a result of downsizing the processing chamber, the time required to reach a low vacuum can be shortened, and the fine particles can be efficiently applied to the substrate and sintered. As a result, the fine metal particles are sintered. The tied pattern can be efficiently formed on the workpiece.
 上述した本発明において、転写後の基材を所定距離ごとに段階的に送り込み側に送り返す基材送り返し過程と、送り返された基材を洗浄する洗浄過程とを備え、洗浄された基材を用いて基材送り込み過程は当該基材を再度に送り込み、微粒子塗布過程,プラズマ処理過程,パターン転写過程,基材送り返し過程,洗浄過程および基材送り込み過程を繰り返し行うのが好ましい。このようにして、転写後に洗浄された基材を用いて再利用して、繰り返し用いることができる。 In the present invention described above, the substrate having the substrate after the transfer is sent back to the feeding side step by step at a predetermined distance, and the substrate having been cleaned is provided with a cleaning step of cleaning the returned substrate. In the substrate feeding process, the substrate is preferably fed again, and the fine particle coating process, the plasma processing process, the pattern transfer process, the substrate feeding back process, the cleaning process, and the substrate feeding process are repeated. In this way, the substrate cleaned after the transfer can be reused and reused.
 上述したこれらの本発明において、微粒子塗布過程とプラズマ処理過程との間に、段階的に送り込まれて微粒子が塗布された基材に対して乾燥処理を行う第1乾燥処理過程を備え、プラズマ処理過程は、段階的に送り込まれて微粒子が乾燥して塗布された基材に対してプラズマ処理を行うのが好ましい。 In these present inventions described above, the first drying process is performed between the fine particle coating process and the plasma processing process. The first drying process is performed stepwise to dry the substrate coated with the fine particles. In the process, it is preferable to perform a plasma treatment on a substrate which is fed stepwise and the fine particles are dried and applied.
 上述したこれらの本発明では、プラズマ処理過程とパターン転写過程との間に、プラズマ処理により焼結して微粒子が塗布された基材に接着剤を塗布する接着剤塗布過程を備え、パターン転写過程は、接着剤が塗布されて焼結した微粒子のパターンを基材から被処理物に当該接着剤により転写してもよい。また、プラズマ処理過程とパターン転写過程との間に、被処理物に接着剤を塗布する接着剤塗布過程を備え、パターン転写過程は、焼結した微粒子のパターンを基材から接着剤が塗布された被処理物に当該接着剤により転写してもよい。いずれの場合においても、被処理物とパターンとの密着性を接着剤により向上させることができる。 In the present invention described above, an adhesive coating process is performed between the plasma processing process and the pattern transfer process, in which an adhesive is applied to a substrate on which fine particles are applied by sintering by plasma processing, and the pattern transfer process. May transfer a pattern of fine particles coated with an adhesive and sintered from the base material to the object to be processed by the adhesive. In addition, an adhesive application process is applied between the plasma treatment process and the pattern transfer process to apply an adhesive to the object to be processed. In the pattern transfer process, the sintered fine particle pattern is applied from the substrate to the adhesive. You may transfer to the to-be-processed object with the said adhesive agent. In any case, the adhesiveness between the object to be processed and the pattern can be improved by the adhesive.
 上述したこれらの本発明では、転写後の被処理物に対して乾燥処理を行う第2乾燥処理過程を備えるのが好ましい。特に、接着剤が被処理物とパターンとの間に介在して、被処理物を巻き取る場合には、巻き取りによりパターンが隣接する被処理物に転写されるのを接着剤の乾燥処理により防止することができる。 In the present invention described above, it is preferable to include a second drying process for performing a drying process on the object to be processed after the transfer. In particular, when the adhesive is interposed between the object to be processed and the pattern and the object to be processed is wound, the pattern is transferred to the adjacent object to be processed by winding by the adhesive drying process. Can be prevented.
 上述したこれらの本発明では、微粒子が塗布された基材に対して加熱処理を行う加熱処理過程を備え、加熱処理過程の後でプラズマ処理を行ってもよい。このようにプラズマ処理とは別の加熱処理を当該プラズマ処理と組み合わせることで、均一に加熱することができ処理の均一性が向上し、加熱時間やプラズマ照射時間も短く済むので基材への損傷も少なく、表裏面の温度差も緩和される。その結果、加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。また、プラズマ処理よりも事前に加熱することにより温度の変動幅が少なくなり、処理の再現性が向上することができる。 In the present invention described above, a heat treatment process for performing heat treatment on the substrate on which the fine particles are applied may be provided, and the plasma treatment may be performed after the heat treatment process. In this way, by combining a heat treatment different from the plasma treatment with the plasma treatment, the substrate can be uniformly heated, the uniformity of the treatment is improved, and the heating time and the plasma irradiation time are shortened. The temperature difference between the front and back surfaces is reduced. As a result, it is possible to efficiently sinter the fine particles at a low temperature while reducing the heating time to a low temperature and preventing thermal deformation and damage due to heat. Further, by performing the heating in advance of the plasma treatment, the temperature fluctuation range is reduced, and the reproducibility of the treatment can be improved.
 本発明に係るパターン形成方法によれば、基材を送り込む方向に直交する方向において、当該基材の幅よりも狭く構成された処理室内に、基材の塗布面と処理室の基材側の面との間に断面が円形であって環状のOリングを介在させた状態で所定距離ごとに基材を段階的に送り込み、処理室の内部を減圧した状態で基材に対してプラズマ処理を行う。その結果、Oリングが介在する箇所では必ず基材も介在するので、Oリングが介在する全ての箇所ではOリングのみならず基材自身が大気を遮断する。したがって、熱変形や熱による損傷を防止しつつ、パターン形成を行う装置を小型化にして、金属の微粒子を焼結させたパターンを効率良く被処理物に形成することができる。 According to the pattern forming method of the present invention, in the direction perpendicular to the direction in which the substrate is fed, the treatment chamber configured to be narrower than the width of the substrate, the substrate coating surface and the substrate side of the treatment chamber The substrate is stepwise fed at predetermined distances with a circular cross-section between the surface and an annular O-ring interposed, and the substrate is subjected to plasma treatment in a state where the inside of the processing chamber is decompressed. Do. As a result, since the base material is always present at locations where the O-ring is interposed, not only the O-ring but also the base material itself blocks the atmosphere at all locations where the O-ring is interposed. Therefore, it is possible to reduce the size of an apparatus for forming a pattern while preventing thermal deformation and damage due to heat, and efficiently form a pattern in which metal fine particles are sintered on an object to be processed.
実施例に係るプラズマ処理装置の概略図である。It is the schematic of the plasma processing apparatus which concerns on an Example. 実施例に係るプラズマ処理装置およびその周辺機器を備えたパターン形成装置の概略図である。1 is a schematic view of a pattern forming apparatus including a plasma processing apparatus and peripheral devices according to an embodiment. 実施例に係る各々のパターン毎のパターン形成方法の一連の流れを示すフローチャートである。It is a flowchart which shows a series of flows of the pattern formation method for every pattern which concerns on an Example. (a)および(b)は図1とは別の実施態様のプラズマ処理装置の概略断面図である。(A) And (b) is a schematic sectional drawing of the plasma processing apparatus of the embodiment different from FIG. 変形例に係るプラズマ処理装置およびその周辺機器を備えたパターン形成装置の概略図である。It is the schematic of the pattern formation apparatus provided with the plasma processing apparatus and its peripheral device which concern on a modification. 変形例に係るプラズマ処理装置の概略断面図である。It is a schematic sectional drawing of the plasma processing apparatus which concerns on a modification. 本発明の知見に至った転写シートの横幅方向がチャンバー内に完全に収容されるようにチャンバーを構成したときのプラズマ処理装置の概略平面図である。It is a schematic plan view of the plasma processing apparatus when the chamber is configured such that the lateral width direction of the transfer sheet that has reached the knowledge of the present invention is completely accommodated in the chamber.
 以下、図面を参照して本発明の実施例を説明する。図1(a)は、実施例に係るプラズマ処理装置の概略斜視図であり、図1(b)は、概略平面図であり、図1(c)は、概略断面図であり、図2は、実施例に係るプラズマ処理装置およびその周辺機器を備えたパターン形成装置の概略図であり、図3は、実施例に係る各々のパターン毎のパターン形成方法の一連の流れを示すフローチャートであり、図4は、(a)および(b)は図1とは別の実施態様のプラズマ処理装置の概略断面図である。図1(b)では、Oリングの配置を明確に図示するためにチャンバーを二点鎖線で図示して、ベースの図示を省略する。本実施例では、金属の微粒子が塗布された塗布面を上面とし、塗布面とは逆側の面を下面として説明する。 Embodiments of the present invention will be described below with reference to the drawings. 1A is a schematic perspective view of a plasma processing apparatus according to an embodiment, FIG. 1B is a schematic plan view, FIG. 1C is a schematic cross-sectional view, and FIG. FIG. 3 is a schematic diagram of a plasma processing apparatus according to an embodiment and a pattern forming apparatus including peripheral devices thereof, and FIG. 3 is a flowchart showing a series of flow of a pattern forming method for each pattern according to the embodiment, 4A and 4B are schematic cross-sectional views of a plasma processing apparatus according to an embodiment different from that shown in FIG. In FIG. 1B, in order to clearly illustrate the arrangement of the O-ring, the chamber is illustrated by a two-dot chain line, and the base is not illustrated. In the present embodiment, the description will be made with the coated surface coated with metal fine particles as the upper surface and the surface opposite to the coated surface as the lower surface.
 本実施例では、プラズマ処理装置は、図1(a)および図1(c)に示すように、チャンバー1とベース2とを備えている。図1(c)に示すように、チャンバー1の内部を減圧して真空にするために真空ポンプ3を設けている。真空ポンプ3によってチャンバー1の内部を減圧した状態で長尺状(本実施例ではベルト状)の基材(転写シート)Sを、図1(a)~図1(c)に示す方向Fにロールtoロールで所定距離ごとにステップ(段階的)に送り込みながら処理する。ベース2は(金属の微粒子が塗布された)転写シートSの塗布面とは逆側の面に面しており、転写シートSを支持する。チャンバー1は、本発明における処理室に相当し、転写シートSは、本発明における基材に相当する。 In this embodiment, the plasma processing apparatus includes a chamber 1 and a base 2 as shown in FIGS. 1 (a) and 1 (c). As shown in FIG. 1C, a vacuum pump 3 is provided to reduce the pressure inside the chamber 1 to make it vacuum. In a state where the inside of the chamber 1 is decompressed by the vacuum pump 3, a long (belt-shaped in this embodiment) base material (transfer sheet) S is placed in a direction F shown in FIGS. 1 (a) to 1 (c). Process while feeding in steps (stepwise) every predetermined distance by roll-to-roll. The base 2 faces the surface opposite to the application surface of the transfer sheet S (to which metal fine particles are applied), and supports the transfer sheet S. The chamber 1 corresponds to the processing chamber in the present invention, and the transfer sheet S corresponds to the base material in the present invention.
 例えば、図1(c)のチャンバー1は上下に昇降しながら密閉と開放とを繰り返し、チャンバー1が上昇しているときに転写シートSが送り込まれ、転写シートSが停止後にチャンバーが降下し、密閉および真空引き(減圧)され、プラズマ等で処理される。また、図1(a)~図1(c)に示す方向Fに転写シートSを送り込むことにより、図1(b)のパターンPは処理済となり、パターンPは処理中となり、パターンPは未処理となる。また、送り込む所定距離は、処理面積に応じて適宜決定される。 For example, the chamber 1 in FIG. 1C repeats sealing and opening while raising and lowering up and down, the transfer sheet S is fed when the chamber 1 is raised, the chamber is lowered after the transfer sheet S is stopped, Sealed and evacuated (depressurized), and treated with plasma or the like. Further, by feeding the transfer sheet S in the direction F shown in FIGS. 1A to 1C, the pattern P 1 in FIG. 1B is processed, the pattern P 2 is being processed, and the pattern P 1 is processed. 3 is unprocessed. Further, the predetermined distance to be fed is appropriately determined according to the processing area.
 転写シートSとしては、ロールtoロールで送り込むために、厚みが50μm~300μm程度の薄いフィルムや、200μm程度の金属箔である。焼結温度よりも高い耐熱温度を有していれば特に限定されないが、薄いフィルムとしては、例えばポリイミドフィルムなどであり、金属箔としては、例えばSUS(ステンレス鋼)である。後述するように、本実施例では転写後に洗浄された転写シートSを用いて再利用して、繰り返し用いるので、転写シートSはベルト状である。よって、SUS(ステンレス鋼)を転写シートSとして用いる場合には転写シートSはSUSベルトであり、ポリイミドフィルムを転写シートSとして用いる場合には転写シートSはポリイミドフィルムベルトである。連続処理でなくステップ送り処理であれば、図1(c)に示すように転写シートSを、チャンバー1とベース2とで上下で挟み込んで処理することができる。なお、100パスカル程度の低真空に限定されず、100パスカル未満の高真空であってもよい。 The transfer sheet S is a thin film having a thickness of about 50 μm to 300 μm or a metal foil having a thickness of about 200 μm for feeding by roll-to-roll. Although it will not specifically limit if it has the heat-resistant temperature higher than sintering temperature, For example, it is a polyimide film etc. as a thin film, For example, it is SUS (stainless steel) as a metal foil. As will be described later, in this embodiment, the transfer sheet S that has been washed after transfer is reused and repeatedly used, so that the transfer sheet S has a belt shape. Therefore, when SUS (stainless steel) is used as the transfer sheet S, the transfer sheet S is a SUS belt, and when the polyimide film is used as the transfer sheet S, the transfer sheet S is a polyimide film belt. If the step feeding process is not continuous processing, the transfer sheet S can be sandwiched between the chamber 1 and the base 2 as shown in FIG. The vacuum is not limited to about 100 Pascal but may be a high vacuum of less than 100 Pascal.
 その他に、プラズマ処理装置は、図1(b)および図1(c)に示すように、断面が円形(O形)であって環状のOリング4を備えている。Oリング4の材質としては、特に限定されないが、例えばゴムや金属やフッ素樹脂等である。材質が金属の場合には、断面が中空O形の金属中空Oリングが用いられる。Oリング4は、本発明におけるOリングに相当する。 In addition, as shown in FIGS. 1B and 1C, the plasma processing apparatus includes a circular O-ring 4 having a circular cross section (O shape). The material of the O-ring 4 is not particularly limited, and is, for example, rubber, metal, fluorine resin, or the like. When the material is metal, a metal hollow O-ring having a hollow O-shaped cross section is used. The O-ring 4 corresponds to the O-ring in the present invention.
 また、転写シートSを送り込む方向F(図1(a)~図1(c)を参照)に直交する方向において、図1(a)および図1(b)に示すように、転写シートSの幅をwとし、チャンバー1の幅をwとすると、w>wとなる。すなわち、転写シートSを送り込む方向F(図1(a)~図1(c)を参照)に直交する方向において、転写シートSの幅wよりも狭くチャンバー1を構成する。転写シートSの幅wについては、特に限定されないが、例えば500mm程度の幅である。チャンバー1の幅wについても、w>wを満たせば特に限定されないが、100mm程度の幅にまで狭く設計することができる。 Further, as shown in FIGS. 1 (a) and 1 (b), in the direction orthogonal to the direction F in which the transfer sheet S is fed (see FIGS. 1 (a) to 1 (c)), as shown in FIGS. the width is w 1, when the width of the chamber 1 and w 2, the w 1> w 2. That is, the chamber 1 is configured to be narrower than the width w 1 of the transfer sheet S in a direction orthogonal to the direction F in which the transfer sheet S is fed (see FIGS. 1A to 1C). The width w 1 of the transfer sheet S, is not particularly limited, for example, width of about 500 mm. The width w 2 of the chamber 1 is not particularly limited as long as w 1 > w 2 is satisfied, but can be designed to be as narrow as about 100 mm.
 送り込む方向Fの転写シートSの長さについては特に限定されない。また、チャンバー1の長さについても特に限定されず、処理面積に応じて適宜決定される。また、ベース2の幅や長さについても特に限定されないが、チャンバー1とベース2とで転写シートSを上下で挟み込んで処理するためには、チャンバー1と同程度の幅や長さ、あるいはそれ以上の幅や長さで設計すればよい。したがって、ベース2の幅については、チャンバー1と同程度の幅あるいはそれ以上であれば、転写シートSの幅wよりも狭くてもよいし、転写シートSの幅wよりも広くてもよいし、転写シートSの幅wと同程度であってもよい。 The length of the transfer sheet S in the feeding direction F is not particularly limited. Further, the length of the chamber 1 is not particularly limited, and is appropriately determined according to the processing area. Further, the width and length of the base 2 are not particularly limited, but in order to sandwich and transfer the transfer sheet S between the chamber 1 and the base 2, the same width or length as the chamber 1 or What is necessary is just to design with the above width and length. Therefore, the width of the base 2, if the chamber 1 and as wide or more, may be narrower than the width w 1 of the transfer sheet S, even wider than the width w 1 of the transfer sheet S It may be the same as the width w 1 of the transfer sheet S.
 図1(c)に示すように、チャンバー1の壁の底面には環状の溝1aが設けられており、その溝1aに沿ってOリング4が嵌合される。したがって、金属(例えば銅)の微粒子が塗布された転写シートSの塗布面とチャンバー1の転写シートS側の面との間にOリング4を介在させて配設することができる。これにより、チャンバー1の内壁よりも内側の空間が、処理可能な箇所(図1(b)のパターンPを参照)となり、処理箇所に相当する転写箇所さえチャンバー1内に収容すれば、転写シートSを送り込む方向F(図1(a)~図1(c)を参照)に直交する方向において、転写シートSの端がチャンバー1外にはみ出るように収容される。 As shown in FIG. 1C, an annular groove 1a is provided on the bottom surface of the wall of the chamber 1, and an O-ring 4 is fitted along the groove 1a. Therefore, the O-ring 4 can be interposed between the application surface of the transfer sheet S coated with metal (for example, copper) fine particles and the surface of the chamber 1 on the transfer sheet S side. Thus, the space inside than the inner wall of the chamber 1, the process where possible (see pattern P 2 in FIG. 1 (b)) becomes, if accommodated in the chamber 1 even transfer area corresponding to the processing locations, transfer The transfer sheet S is accommodated so that the end of the transfer sheet S protrudes out of the chamber 1 in a direction orthogonal to the direction F in which the sheet S is fed (see FIGS. 1A to 1C).
 また、転写シートSの塗布面とは逆側の面に大気が入り込む可能性がある。そこで、図1(c)に示すように、当該逆側の面に減圧手段として真空ポンプ5を備えるのが好ましい。真空ポンプ5を備えることで、より一層確実に減圧処理を行うことができる。 Also, there is a possibility that air enters the surface opposite to the coated surface of the transfer sheet S. Therefore, as shown in FIG. 1C, it is preferable to provide a vacuum pump 5 as a decompression means on the opposite surface. By providing the vacuum pump 5, the decompression process can be performed more reliably.
 チャンバー1内でプラズマ処理を行うために、プラズマのためのガス(図1(c)では「Gas」で表記)を供給する供給流路11と、プラズマのための電力(図1(c)では「Power」で表記)を印加する電極12とを備えている。図1(c)では供給流路11を単数図示しているが、2つ以上であってもよい。プラズマのためのガスについては、水素や酸素や窒素であるが、アルゴン(Ar)やヘリウム(He)などの希ガスなどに例示されるように、通常においてプラズマで用いられるガスであれば、ガスについては特に限定されない。また、ガスの圧力については、例えば20パスカル程度であるが、これに限定されず、用途に応じて適宜変更してもよい。また、プラズマのための電力(プラズマ源)についても特に限定されない。 In order to perform plasma processing in the chamber 1, a supply channel 11 for supplying a gas for plasma (indicated as “Gas” in FIG. 1C), and a power for plasma (in FIG. 1C) And an electrode 12 to which “Power” is applied). Although FIG. 1 (c) shows a single supply channel 11, two or more supply channels 11 may be provided. The gas for plasma is hydrogen, oxygen, or nitrogen, but any gas that is normally used in plasma as exemplified by rare gases such as argon (Ar) and helium (He) can be used. Is not particularly limited. The gas pressure is, for example, about 20 Pascals, but is not limited thereto, and may be changed as appropriate according to the application. Also, the power for plasma (plasma source) is not particularly limited.
 さらに、加熱処理を行うために、ベース2内に電気ヒータ13を設けている。図1では、ベース2内に電気ヒータ13を設けているが、必ずしもベース2内に電気ヒータ13を設ける必要はなく、後述する図4(a)に示すように、下側におけるチャンバー1の壁の上面が転写シートSを支持する場合には、転写シートSの近傍に電気ヒータ13を設けてもよい。また、必ずしも電気ヒータ13である必要はなく、炭化ケイ素(SiC)からなるシリコンカーバイトのマイクロ波加熱ヒータや、ランプヒータなどに例示されるように、通常において加熱処理に用いられる加熱手段であれば、チャンバー1内に設けられる加熱手段については、特に限定されない。また、加熱処理の温度については、例えば100℃程度であるが、これに限定されず、用途に応じて適宜変更してもよい。 Furthermore, an electric heater 13 is provided in the base 2 for performing heat treatment. In FIG. 1, the electric heater 13 is provided in the base 2, but the electric heater 13 is not necessarily provided in the base 2. As shown in FIG. When the upper surface of the sheet supports the transfer sheet S, an electric heater 13 may be provided in the vicinity of the transfer sheet S. Further, the electric heater 13 is not necessarily required, and may be a heating means usually used for heat treatment as exemplified by a silicon carbide microwave heater made of silicon carbide (SiC) or a lamp heater. For example, the heating means provided in the chamber 1 is not particularly limited. Moreover, about the temperature of heat processing, it is about 100 degreeC, for example, However, It is not limited to this, You may change suitably according to a use.
 また、加熱処理のときには必ずしも高真空や低真空で行う必要はない。大気圧下で加熱処理を行い、プラズマ処理のときのみ減圧して高真空や低真空で行えばよい。大気圧下で加熱することにより、大気圧下で熱を均一に分布させるという効果をも奏する。もちろん、真空引き(減圧)と加熱処理とを同時並行して行ってもよい。このように、本実施例では、加熱処理およびプラズマ処理を同じチャンバー1で行っている。 Also, it is not always necessary to perform the heat treatment at high vacuum or low vacuum. The heat treatment is performed under atmospheric pressure, and the pressure is reduced only during the plasma treatment and may be performed in a high vacuum or a low vacuum. Heating under atmospheric pressure also has the effect of distributing heat uniformly under atmospheric pressure. Of course, evacuation (reduced pressure) and heat treatment may be performed in parallel. Thus, in this embodiment, the heat treatment and the plasma treatment are performed in the same chamber 1.
 プラズマ処理装置の他に、パターン形成装置は、プラズマ処理装置の周辺には、図2に示すように、シート用送り込みローラ21と印字用インクジェット22と第1乾燥処理部23と接着剤用インクジェット24と送り返しローラ25とクリーナー26とワーク用送り込みローラ27と転写ローラ28と第2乾燥処理部29と巻き取りローラ30とを備えている。図2では、図面の便宜上、真空ポンプ5(図1(c)を参照)の図示を省略する。 In addition to the plasma processing apparatus, the pattern forming apparatus includes a sheet feeding roller 21, a printing inkjet 22, a first drying processing unit 23, and an adhesive inkjet 24 in the periphery of the plasma processing apparatus as shown in FIG. A return roller 25, a cleaner 26, a work feed roller 27, a transfer roller 28, a second drying processing unit 29, and a take-up roller 30. 2, illustration of the vacuum pump 5 (refer FIG.1 (c)) is abbreviate | omitted for convenience of drawing.
 シート用送り込みローラ21は、ロールtoロールで転写シートSを所定距離ごとに段階的に送り込む。印字用インクジェット22は、段階的に送り込まれた転写シートSに、金属(例えば銅)の微粒子を塗布する。具体的には、金属の微粒子を溶剤に溶かし、分散剤により微粒子を分散させた金属ペーストを、印字用インクジェット22は転写シートSの塗布面に向けて噴射することで、当該転写シートSに微粒子を塗布する。なお、必ずしもインクジェットである必要はなく、スクリーン印刷に例示されるように、通常において用いられる印刷技術であれば、塗布手段については特に限定されない。 The sheet feeding roller 21 feeds the transfer sheet S step by step in a roll-to-roll manner every predetermined distance. The printing ink jet 22 applies fine particles of metal (for example, copper) to the transfer sheet S fed in stages. Specifically, a metal paste in which metal fine particles are dissolved in a solvent and fine particles are dispersed by a dispersant is jetted onto the transfer sheet S by the ink jet 22 for printing toward the application surface of the transfer sheet S. Apply. In addition, it does not necessarily need to be an inkjet, and the application means is not particularly limited as long as it is a printing technique normally used, as exemplified by screen printing.
 第1乾燥処理部23は、印字用インクジェット22とプラズマ処理装置(チャンバー1)との間に設けられており、段階的に送り込まれて微粒子が塗布された転写シートSに対して乾燥処理を行う。第1乾燥処理部23は、例えばヒータ、あるいは温風を送り込む温風機などで構成されている。もちろん、通常において用いられる乾燥手段であれば、第1乾燥処理部23の構造については、特に限定されない。 The first drying processing unit 23 is provided between the printing inkjet 22 and the plasma processing apparatus (chamber 1), and performs a drying process on the transfer sheet S that is fed stepwise and coated with fine particles. . The 1st drying process part 23 is comprised, for example by the heater or the warm air machine which sends in warm air. Of course, the structure of the first drying processing unit 23 is not particularly limited as long as it is a commonly used drying means.
 接着剤用インクジェット24は、プラズマ処理装置(チャンバー1)と送り返しローラ25や転写ローラ28との間に設けられており、チャンバー1でのプラズマ処理により焼結して微粒子が塗布された転写シートSに接着剤を塗布する。具体的には、接着剤用インクジェット24は接着剤を転写シートSの焼結後の微粒子からなるパターン上に向けて噴射することで、当該転写シートSに接着剤を塗布する。接着剤の塗布については、インクジェットには限定されない。また、具体的な接着剤についても特に限定されない。 The adhesive ink-jet 24 is provided between the plasma processing apparatus (chamber 1) and the return roller 25 and the transfer roller 28. The transfer sheet S is sintered by the plasma processing in the chamber 1 and coated with fine particles. Apply adhesive to Specifically, the adhesive inkjet 24 applies the adhesive to the transfer sheet S by spraying the adhesive onto the pattern composed of fine particles after the transfer sheet S is sintered. The application of the adhesive is not limited to inkjet. Further, the specific adhesive is not particularly limited.
 送り返しローラ25は、転写ローラ28による転写後の転写シートSを所定距離ごとにシート用送り込みローラ21に送り返す。クリーナー26は、シート用送り込みローラ21と送り返しローラ25との間に設けられており、送り返された転写シートSを洗浄する。クリーナー26は、例えばワイヤブラシで構成されており、転写シートSの転写面(パターン汚れ)を機械的にスクラブ洗浄する。もちろん、洗浄液等によるウェット洗浄やアッシング(ashing)やプラズマなどによるドライ洗浄などに例示されるように、通常において用いられる洗浄手段であれば、クリーナー26の構造については、特に限定されない。また、スクラブ洗浄やウェット洗浄やドライ洗浄を適宜組み合わせてもよい。 The return roller 25 returns the transfer sheet S after the transfer by the transfer roller 28 to the sheet feed roller 21 every predetermined distance. The cleaner 26 is provided between the sheet feeding roller 21 and the feeding roller 25 and cleans the transferred transfer sheet S. The cleaner 26 is composed of a wire brush, for example, and mechanically scrubs the transfer surface (pattern stain) of the transfer sheet S. Of course, the structure of the cleaner 26 is not particularly limited as long as it is a commonly used cleaning means, as exemplified by wet cleaning with a cleaning liquid, ashing, dry cleaning with plasma, and the like. Further, scrub cleaning, wet cleaning, and dry cleaning may be appropriately combined.
 ワーク用送り込みローラ27は、ロールtoロールで長尺状の被処理物(ワーク)Wを転写ローラ28に送り込む。転写ローラ28は送り返しローラ25に接触しており、図中の矢印の方向に各ローラ25、28を回転させることで、転写ローラ28は、焼結した微粒子のパターンを転写シートSからワークWに転写する。ワークWは、本発明における被処理物に相当する。 The work feeding roller 27 feeds a long workpiece (work) W to the transfer roller 28 in a roll-to-roll manner. The transfer roller 28 is in contact with the return roller 25, and the transfer roller 28 transfers the sintered fine particle pattern from the transfer sheet S to the workpiece W by rotating the rollers 25, 28 in the direction of the arrow in the figure. Transcript. The workpiece W corresponds to an object to be processed in the present invention.
 ワークWとしては、ロールtoロールで送り込むために、転写シートSと同様に、厚みが50μm~300μm程度の薄いフィルムや、200μm程度の金属箔である。ワークWの耐熱温度については特に限定されないが、ワークWに転写することで、熱変形や熱による損傷を防止しつつ、パターンをワークWに形成する目的を鑑みれば、焼結温度よりも低い耐熱温度を有するワークWの場合に特に有用である。例えば、銅の微粒子を焼結させたパターンを薄いフィルムに形成する場合には、薄いフィルムとしては、例えばPET(ポリエチレンテレフタレート)である。上述したように、銅の焼結温度は250℃と高く、PETの耐熱温度は150℃と低いので、PETのように耐熱温度が低くても、PETからなるワークWに転写することで、熱変形や熱による損傷を防止しつつ、パターンをワークWに形成することができる。 The workpiece W is a thin film with a thickness of about 50 μm to 300 μm or a metal foil with a thickness of about 200 μm, like the transfer sheet S, in order to feed the work W by roll. Although the heat resistance temperature of the workpiece W is not particularly limited, in view of the purpose of forming a pattern on the workpiece W while preventing thermal deformation and damage due to heat by transferring to the workpiece W, the heat resistance temperature is lower than the sintering temperature. This is particularly useful in the case of a workpiece W having a temperature. For example, when a pattern obtained by sintering copper fine particles is formed on a thin film, the thin film is, for example, PET (polyethylene terephthalate). As described above, the sintering temperature of copper is as high as 250 ° C., and the heat resistant temperature of PET is as low as 150 ° C. Even if the heat resistant temperature is low as in PET, the heat is transferred to the workpiece W made of PET. The pattern can be formed on the workpiece W while preventing damage due to deformation and heat.
 第2乾燥処理部29は、転写ローラ28と巻き取りローラ30との間に設けられており、転写ローラ28による転写後のワークWに対して乾燥処理を行う。第1乾燥処理部23と同様に、第2乾燥処理部29は、例えばヒータ、あるいは温風を送り込む温風機などで構成されている。もちろん、通常において用いられる乾燥手段であれば、第2乾燥処理部29の構造については、特に限定されない。巻き取りローラ30は、第2乾燥処理部29での乾燥処理後のワークWを、ロールtoロールで段階的に巻き取る。 The second drying processing unit 29 is provided between the transfer roller 28 and the take-up roller 30 and performs a drying process on the workpiece W after being transferred by the transfer roller 28. Similar to the first drying processing unit 23, the second drying processing unit 29 is configured by, for example, a heater or a warm air blower for sending warm air. Of course, the structure of the second drying processing unit 29 is not particularly limited as long as it is a drying means that is normally used. The winding roller 30 winds up the work W after the drying process in the second drying processing unit 29 in a roll-to-roll manner.
 続いて、本実施例に係るパターン形成方法について、図3を参照して説明する。図3では、パターンP,P,P,P,…の順に処理されるものとする。また、図3では、送り込みや転写や巻き取りを除いて、各々のステップの処理時間はそれぞれ同じであり、送り込みの回数は1回ずつであるとして、チャンバーでは2つのパターン毎に加熱処理・プラズマ処理をそれぞれ同時に行うものとして説明する。なお、図3のステップS1xx(ただしx=01,02,03,…)は、パターンPに関する処理、ステップS2xx(ただしxx=01,02,03,…)は、パターンPに関する処理、ステップS3xx(ただしx=01,02,03,…)は、パターンPに関する処理、ステップS4xx(ただしx=01,02,03,…)は、パターンPに関する処理、…ステップSnxx(ただしx=01,02,03,…)は、パターンPに関する処理とする。 Next, the pattern forming method according to the present embodiment will be described with reference to FIG. In FIG. 3, it is assumed that the patterns P 1 , P 2 , P 3 , P 4 ,. In FIG. 3, the processing time of each step is the same except for feeding, transferring, and winding, and the number of times of feeding is one. In the chamber, heat treatment / plasma is performed every two patterns. It demonstrates as what performs a process simultaneously. Steps S1xx (except x = 01, 02, 03, ...) in FIG. 3, the process relates to pattern P 1, step S2xx (although xx = 01, 02, 03, ...), the process relates to the pattern P 2, step S3xx (except x = 01, 02, 03, ...), the process relates to a pattern P 3, step S4xx (except x = 01, 02, 03, ...), the process relates to the pattern P 4, ... step Snxx (except x = (01, 02, 03,...) Are processes related to the pattern P n .
 (ステップS101)転写シート送り込み
 シート用送り込みローラ21は、転写シートSを所定距離に1回送り込む。この送り込みによって、パターンPは、印字用インクジェット22にまで位置する。このステップS101は、本発明における基材送り込み過程に相当する。
(Step S101) Transfer Sheet Feed The sheet feed roller 21 feeds the transfer sheet S once at a predetermined distance. By this feeding, the pattern P 1 is positioned up to the printing inkjet 22. This step S101 corresponds to the substrate feeding process in the present invention.
 (ステップS102)微粒子塗布
 送り込まれた転写シートSのパターンPに、印字用インクジェット22は金属の微粒子を塗布する。このステップS102は、本発明における微粒子塗布過程に相当する。
(Step S102) pattern P 1 of microparticles coated fed the transfer sheet S, the printing jet 22 for applying fine particles of metal. This step S102 corresponds to the fine particle coating process in the present invention.
 (ステップS103)転写シート送り込み・(ステップS201)転写シート送り込み
 ステップS102が終了すると、シート用送り込みローラ21は、転写シートSを所定距離に1回送り込む。この送り込みによって、パターンPは、第1乾燥処理部23にまで位置する(ステップS103)とともに、パターンPは、印字用インクジェット22にまで位置する(ステップS201)。このステップS103・S201は、本発明における基材送り込み過程に相当する。
(Step S103) Transfer sheet feeding / (Step S201) Transfer sheet feeding When step S102 is completed, the sheet feeding roller 21 feeds the transfer sheet S once at a predetermined distance. This feed pattern P 1 is located to the first drying unit 23 (step S103), the pattern P 2 is located to the printing jet 22 (step S201). Steps S103 and S201 correspond to the substrate feeding process in the present invention.
 (ステップS104)第1乾燥処理・(ステップS202)微粒子塗布
 送り込まれて微粒子が塗布された転写シートSのパターンPに対して、第1乾燥処理部23は乾燥処理を行う(ステップS104)。ステップS104と同時に、送り込まれた転写シートSのパターンPに、印字用インクジェット22は金属の微粒子を塗布する(ステップS202)。このステップS104は、本発明における第1乾燥処理過程に相当し、このステップS202は、本発明における微粒子塗布過程に相当する。
(Step S104) with respect to the pattern P 1 of the first drying process, (step S202) fine particle coating the fed to the transfer sheet S which fine particles are coated, the first drying unit 23 for drying process (step S104). Concurrently with step S104, the pattern P 2 of the transfer sheet S fed, printing ink jet 22 for applying fine particles of a metal (step S202). This step S104 corresponds to the first drying process in the present invention, and this step S202 corresponds to the fine particle coating process in the present invention.
 (ステップS105)転写シート送り込み・(ステップS203)転写シート送り込み・(ステップS301)転写シート送り込み
 これらステップS104・S202が終了すると、シート用送り込みローラ21は、転写シートSを所定距離に1回送り込む。この送り込みによって、パターンPは、プラズマ処理装置(チャンバー1)にまで位置し(ステップS105)、パターンPは、第1乾燥処理部23にまで位置する(ステップS203)とともに、パターンPは、印字用インクジェット22にまで位置する(ステップS301)。このステップS105・S203・S301は、本発明における基材送り込み過程に相当する。
(Step S105) Transfer sheet feeding / (Step S203) Transfer sheet feeding / (Step S301) Transfer sheet feeding When these steps S104 and S202 are completed, the sheet feeding roller 21 feeds the transfer sheet S once at a predetermined distance. By this feeding, the pattern P 1 is positioned up to the plasma processing apparatus (chamber 1) (step S105), the pattern P 2 is positioned up to the first drying processing unit 23 (step S203), and the pattern P 3 is And the ink jet 22 for printing (step S301). Steps S105, S203, and S301 correspond to the substrate feeding process in the present invention.
 (ステップS106)待機・(ステップS204)第1乾燥処理・(ステップS302)微粒子塗布
 上述したように、チャンバー1では2つのパターン毎に加熱処理・プラズマ処理をそれぞれ同時に行うので、送り込まれて微粒子が乾燥して塗布された転写シートSのパターンPに対してチャンバー1は加熱処理・プラズマ処理を行わずに待機する(ステップS106)。一方、送り込まれて微粒子が塗布された転写シートSのパターンPに対して、第1乾燥処理部23は乾燥処理を行う(ステップS204)。ステップS204と同時に、送り込まれた転写シートSのパターンPに、印字用インクジェット22は金属の微粒子を塗布する(ステップS302)。このステップS204は、本発明における第1乾燥処理過程に相当し、このステップS302は、本発明における微粒子塗布過程に相当する。
(Step S106) Standby / (Step S204) First drying process / (Step S302) Particulate application As described above, in the chamber 1, the heating process and the plasma process are performed simultaneously for each of the two patterns. chamber 1 with respect to the pattern P 1 of dried coated transfer sheet S waits without heat treatment, plasma treatment (step S106). On the other hand, the fed and the pattern P 2 of the transfer sheet S particles has been applied, the first drying unit 23 for drying process (step S204). Concurrently with step S204, the pattern P 3 of the transfer sheet S fed, printing ink jet 22 for applying fine particles of a metal (step S302). This step S204 corresponds to the first drying process in the present invention, and this step S302 corresponds to the fine particle coating process in the present invention.
 (ステップS107)転写シート送り込み・(ステップS205)転写シート送り込み・(ステップS303)転写シート送り込み・(ステップS401)転写シート送り込み
 これらステップS106・S204・S302が終了すると、シート用送り込みローラ21は、転写シートSを所定距離に1回送り込む。この送り込みによって、パターンPは、チャンバー1の奥側にまで位置し(ステップS107)、パターンPは、チャンバー1にまで位置し(ステップS205)、パターンPは、第1乾燥処理部23にまで位置する(ステップS303)とともに、パターンPは、印字用インクジェット22にまで位置する(ステップS401)。つまり、チャンバー1内にパターンP,Pを収容し、次のステップでパターンP,Pに対して加熱処理・プラズマ処理をそれぞれ同時に行う。このステップS107・S205・S303・S401は、本発明における基材送り込み過程に相当する。
(Step S107) Transfer sheet feeding / (Step S205) Transfer sheet feeding / (Step S303) Transfer sheet feeding / (Step S401) Transfer sheet feeding When these steps S106, S204, and S302 are completed, the sheet feeding roller 21 is transferred. The sheet S is fed once at a predetermined distance. By this feeding, the pattern P 1 is positioned up to the back side of the chamber 1 (step S107), the pattern P 2 is positioned up to the chamber 1 (step S205), and the pattern P 3 is the first drying processing unit 23. located to the (step S303), the pattern P 4 is located to the printing jet 22 (step S401). That accommodates the pattern P 1, P 2 into the chamber 1, respectively carried out at the same time heat treatment, plasma treatment for the pattern P 1, P 2 in the next step. Steps S107, S205, S303, and S401 correspond to the substrate feeding process in the present invention.
 (ステップS108)加熱処理・プラズマ処理・(ステップS206)加熱処理・プラズマ処理・(ステップS304)第1乾燥処理・(ステップS402)微粒子塗布
 送り込まれて微粒子が乾燥して塗布された転写シートSのパターンP,Pに対してチャンバー1は加熱処理・プラズマ処理を行う(ステップS108・S206)。転写シートSのパターンP,Pに対して電気ヒータ13が加熱することで、パターンP,Pに対して加熱処理を行う。次に、供給流路11を通してチャンバー1内にガスを所定の圧力(例えば20パスカル程度)に達するまで供給する。そして、2KW程度の電力を電極12に印加して、プラズマ放電によりプラズマをチャンバー1内で発生させる。そして、パターンP,Pに対してプラズマ処理を行う。このようにして、パターンP,Pに対して加熱処理の後でプラズマ処理を行う。
(Step S108) Heat treatment / Plasma treatment / (Step S206) Heat treatment / Plasma treatment / (Step S304) First drying process / (Step S402) Particulate application The chamber 1 performs heat treatment and plasma treatment on the patterns P 1 and P 2 (steps S108 and S206). By electric heater 13 heats the pattern P 1, P 2 of the transfer sheet S, the heat treatment is performed for the pattern P 1, P 2. Next, gas is supplied into the chamber 1 through the supply channel 11 until a predetermined pressure (for example, about 20 Pascals) is reached. Then, a power of about 2 KW is applied to the electrode 12 to generate plasma in the chamber 1 by plasma discharge. Then, plasma processing is performed on the patterns P 1 and P 2 . In this way, the plasma treatment is performed on the patterns P 1 and P 2 after the heat treatment.
 一方、送り込まれて微粒子が塗布された転写シートSのパターンPに対して、第1乾燥処理部23は乾燥処理を行う(ステップS304)。ステップS304と同時に、送り込まれた転写シートSのパターンPに、印字用インクジェット22は金属の微粒子を塗布する(ステップS402)。このステップS108・S206は、本発明における加熱処理過程およびプラズマ処理過程に相当し、このステップS304は、本発明における第1乾燥処理過程に相当し、このステップS402は、本発明における微粒子塗布過程に相当する。 On the other hand, the fed and the pattern P 3 of the transfer sheet S particles has been applied, the first drying unit 23 for drying process (step S304). Concurrently with step S304, the pattern P 4 of the transfer sheet S fed, printing ink jet 22 for applying fine particles of a metal (step S402). The steps S108 and S206 correspond to the heat treatment process and the plasma treatment process in the present invention, the step S304 corresponds to the first drying process in the present invention, and the step S402 corresponds to the fine particle coating process in the present invention. Equivalent to.
 以下のステップでは、パターンP以降については説明を省略し、パターンP~Pについてのみ説明する。 In the following step, the pattern P 5 and later are not explained further, and describes only the patterns P 1 ~ P 4.
 (ステップS109)転写シート送り込み・(ステップS207)転写シート送り込み・(ステップS305)転写シート送り込み・(ステップS403)転写シート送り込み
 これらステップS108・S206・S304・S402が終了すると、シート用送り込みローラ21は、転写シートSを所定距離に1回送り込む。この送り込みによって、パターンPは、チャンバー1の外側にまで位置し(ステップS109)、パターンPは、チャンバー1の奥側にまで位置し(ステップS207)、パターンPは、チャンバー1にまで位置する(ステップS305)とともに、パターンPは、第1乾燥処理部23にまで位置する(ステップS403)。このステップS109・S207・S305・S403は、本発明における基材送り込み過程に相当する。
(Step S109) Transfer sheet feeding, (Step S207) Transfer sheet feeding, (Step S305) Transfer sheet feeding, (Step S403) Transfer sheet feeding When these steps S108, S206, S304, and S402 are completed, the sheet feeding roller 21 is Then, the transfer sheet S is fed once at a predetermined distance. This feed pattern P 1 is located to the outside of the chamber 1 (step S109), the pattern P 2 is located to the rear side of the chamber 1 (step S207), the pattern P 3 until the chamber 1 Situated (step S305), the pattern P 4 is located to the first drying unit 23 (step S403). Steps S109, S207, S305, and S403 correspond to the substrate feeding process in the present invention.
 (ステップS110)待機・(ステップS208)待機・(ステップS306)待機・(ステップS404)第1乾燥処理
 プラズマ処理により焼結して微粒子が塗布されたパターンPの転写シートSをチャンバー1から外側に送り出し、パターンPに対していずれの処理も行わずに待機する(ステップS110)。一方、プラズマ処理により焼結して微粒子が塗布されたパターンPの転写シートSをチャンバー1の奥側にまで送り出し、同様にパターンPに対していずれの処理も行わずに待機する(ステップS208)。
(Step S110) waits · (step S208) waits · (step S306) waits · (step S404) outside the first drying treatment plasma treatment by sintering to the transfer sheet S of the pattern P 1 in which fine particles are coated from the chamber 1 the delivery, waits without performing any processing for the pattern P 1 (step S110). On the other hand, feeding and sintered by a plasma treatment transfer sheet S pattern P 2 which fine particles are coated to the back side of the chamber 1, similarly waits without performing any processing on the pattern P 1 in (step S208).
 また、送り込まれて微粒子が乾燥して塗布された転写シートSのパターンPに対してチャンバー1は加熱処理・プラズマ処理を行わずに待機する(ステップS306)。一方、送り込まれて微粒子が塗布された転写シートSのパターンPに対して、第1乾燥処理部23は乾燥処理を行う(ステップS404)。このステップS404は、本発明における第1乾燥処理過程に相当する。 Further, the chamber 1 with respect to the pattern P 3 of the fed to the transfer sheet S which fine particles are coated and dried waits without heat treatment, plasma treatment (step S306). On the other hand, the fed and the pattern P 4 of the transfer sheet S particles has been applied, the first drying unit 23 for drying process (step S404). This step S404 corresponds to the first drying process in the present invention.
 (ステップS111)転写シート送り込み・(ステップS209)転写シート送り込み・(ステップS307)転写シート送り込み・(ステップS405)転写シート送り込み
 これらステップS110・S208・S306・S404が終了すると、シート用送り込みローラ21は、転写シートSを所定距離に1回送り込む。この送り込みによって、パターンPは、接着剤用インクジェット24にまで位置し(ステップS111)、パターンPは、チャンバー1の外側にまで位置し(ステップS209)、パターンPは、チャンバー1の奥側にまで位置する(ステップS307)とともに、パターンPは、チャンバー1にまで位置する(ステップS405)。つまり、チャンバー1内にパターンP,Pを収容し、次のステップでパターンP,Pに対して加熱処理・プラズマ処理をそれぞれ同時に行う。このステップS111・S209・S307・S405は、本発明における基材送り込み過程に相当する。
(Step S111) Transfer sheet feeding, (Step S209) Transfer sheet feeding, (Step S307) Transfer sheet feeding, (Step S405) Transfer sheet feeding When these steps S110, S208, S306, and S404 are completed, the sheet feeding roller 21 is Then, the transfer sheet S is fed once at a predetermined distance. By this feeding, the pattern P 1 is positioned up to the adhesive inkjet 24 (step S111), the pattern P 2 is positioned up to the outside of the chamber 1 (step S209), and the pattern P 3 is positioned at the back of the chamber 1. located to the side (step S307), the pattern P 4 is located to the chamber 1 (step S405). That accommodates a pattern P 3, P 4 into the chamber 1, respectively carried out at the same time heat treatment, plasma treatment for the pattern P 3, P 4 in the next step. Steps S111, S209, S307, and S405 correspond to the substrate feeding process in the present invention.
 (ステップS112)接着剤塗布・(ステップS210)待機・(ステップS308)加熱処理・プラズマ処理・(ステップS406)加熱処理・プラズマ処理
 プラズマ処理により焼結して微粒子が塗布されたパターンPの転写シートSに、接着剤用インクジェット24は接着剤を塗布する(ステップS112)。一方、プラズマ処理により焼結して微粒子が塗布されたパターンPの転写シートSをチャンバー1から外側に送り出し、パターンPに対していずれの処理も行わずに待機する(ステップS210)。なお、パターンPにおいて、前のステップS110で接着剤を塗布せずに待機して、ステップS114の直前のステップS112での接着剤を塗布したのは、ステップS114のパターン転写で接着剤が乾かないうちに転写を行うためである。もちろん、接着剤が乾かない、あるいは接着剤を塗布するのに時間がかかる場合には、ステップS110の段階で接着剤を塗布してもよい。
(Step S112) adhesive coating and (step S210) waits · (step S308) heat treatment, a plasma treatment, (step S406) heat treatment and plasma treatment Plasma treatment by sintering to transfer particles of the pattern P 1 coated The adhesive inkjet 24 applies an adhesive to the sheet S (step S112). On the other hand, the transfer sheet S of the pattern P 2 , which is sintered by the plasma treatment and coated with the fine particles, is sent out from the chamber 1 and waits without performing any processing on the pattern P 2 (step S 210). Incidentally, in the pattern P 1, waiting for the adhesive without coating in the previous step S110, the an adhesive is applied in step S112 in the immediately preceding step S114, adhesive dry pattern transfer of step S114 This is because the transfer is performed before the end. Of course, if the adhesive does not dry or it takes time to apply the adhesive, the adhesive may be applied in the step S110.
 一方、送り込まれて微粒子が乾燥して塗布された転写シートSのパターンP,Pに対してチャンバー1は加熱処理・プラズマ処理を行う(ステップS308・S406)。転写シートSのパターンP,Pに対して電気ヒータ13が加熱することで、パターンP,Pに対して加熱処理を行う。次に、供給流路11を通してチャンバー1内にガスを所定の圧力(例えば20パスカル程度)に達するまで供給する。そして、2KW程度の電力を電極12に印加して、プラズマ放電によりプラズマをチャンバー1内で発生させる。そして、パターンP,Pに対してプラズマ処理を行う。このようにして、パターンP,Pに対して加熱処理の後でプラズマ処理を行う。このステップS112は、本発明における接着剤塗布過程に相当し、このステップS308・S406は、本発明における加熱処理過程およびプラズマ処理過程に相当する。 On the other hand, the chamber 1 performs a heat treatment and a plasma treatment on the patterns P 3 and P 4 of the transfer sheet S that are fed and dried by applying fine particles (steps S308 and S406). By electric heater 13 heats the pattern P 3, P 4 of the transfer sheet S, the heat treatment is performed for the pattern P 3, P 4. Next, gas is supplied into the chamber 1 through the supply channel 11 until a predetermined pressure (for example, about 20 Pascals) is reached. Then, a power of about 2 KW is applied to the electrode 12 to generate plasma in the chamber 1 by plasma discharge. Then, plasma processing is performed on the patterns P 3 and P 4 . In this way, the plasma treatment is performed on the patterns P 3 and P 4 after the heat treatment. This step S112 corresponds to the adhesive coating process in the present invention, and the steps S308 and S406 correspond to the heat treatment process and the plasma processing process in the present invention.
 (ステップS113)転写シート送り込み・(ステップS211)転写シート送り込み・(ステップS309)転写シート送り込み・(ステップS407)転写シート送り込み
 これらステップS112・S210・S308・S406が終了すると、シート用送り込みローラ21は、転写シートSを所定距離に1回送り込む。この送り込みによって、パターンPは、送り返しローラ25・転写ローラ28にまで位置し(ステップS113)、パターンPは、接着剤用インクジェット24にまで位置し(ステップS211)、パターンPは、チャンバー1の外側にまで位置する(ステップS309)とともに、パターンPは、チャンバー1の奥側にまで位置する(ステップS407)。パターンPにおいて、ステップS113で送り返しローラ25・転写ローラ28にまで送り込んだ段階で、焼結した微粒子のパターンを転写シートSからワークWに転写するために、ワーク用送り込みローラ27はワークWを送り込む。このステップS113・S211・S309・S407は、本発明における基材送り込み過程に相当する。
(Step S113) Transfer sheet feeding (Step S211) Transfer sheet feeding (Step S309) Transfer sheet feeding (Step S407) Transfer sheet feeding When these steps S112, S210, S308, and S406 are completed, the sheet feeding roller 21 is Then, the transfer sheet S is fed once at a predetermined distance. This feed pattern P 1 is located to the send back roller 25 and transfer roller 28 (step S113), the pattern P 2 is located to the adhesive for an ink jet 24 (step S211), the pattern P 3 is a chamber located to the outside of one (step S309), the pattern P 4 is located to the rear side of the chamber 1 (step S407). In the pattern P 1 , in order to transfer the sintered fine particle pattern from the transfer sheet S to the workpiece W at the stage of feeding to the return roller 25 and the transfer roller 28 in step S 113, the workpiece feeding roller 27 transfers the workpiece W to the workpiece W. Send it in. Steps S113, S211, S309, and S407 correspond to the substrate feeding process in the present invention.
 (ステップS114)パターン転写・(ステップS212)接着剤塗布・(ステップS310)待機・(ステップS408)待機
 図2中の矢印の方向に各ローラ25、28を回転させることで、転写ローラ28は、焼結した微粒子のパターンPを転写シートSからワークWに転写する(ステップS114)。一方、プラズマ処理により焼結して微粒子が塗布されたパターンPの転写シートSに、接着剤用インクジェット24は接着剤を塗布する(ステップS212)。パターンPでも述べたが、パターンPにおいて、前のステップS210で接着剤を塗布せずに待機して、ステップS214の直前のステップS212での接着剤を塗布したのは、ステップ214のパターン転写で接着剤が乾かないうちに転写を行うためである。もちろん、接着剤が乾かない、あるいは接着剤を塗布するのに時間がかかる場合には、ステップS210の段階で接着剤を塗布してもよい。
(Step S114) Pattern transfer / (Step S212) Adhesive application / (Step S310) Standby / (Step S408) Standby By rotating the rollers 25 and 28 in the directions of the arrows in FIG. the pattern P 1 of the sintered particles from the transfer sheet S is transferred to the workpiece W (step S114). On the other hand, sintered by a plasma treatment on the transfer sheet S pattern P 2 which fine particles are coated, adhesive jet 24 for applying an adhesive (step S212). Although mentioned in the pattern P 1, the pattern P 2, waiting to adhesive without applying in the previous step S210, was coated with adhesive in step S212 immediately before the step S214, the pattern of step 214 This is because the transfer is performed before the adhesive is dried. Of course, if the adhesive does not dry or it takes time to apply the adhesive, the adhesive may be applied in the step S210.
 また、プラズマ処理により焼結して微粒子が塗布されたパターンPの転写シートSをチャンバー1から外側に送り出し、パターンPに対していずれの処理も行わずに待機する(ステップS310)。一方、プラズマ処理により焼結して微粒子が塗布されたパターンPの転写シートSをチャンバー1の奥側にまで送り出し、同様にパターンPに対していずれの処理も行わずに待機する(ステップS408)。このステップS114は、本発明におけるパターン転写過程に相当し、このステップS212は、本発明における接着剤塗布過程に相当する。 Also, sintered by a plasma treatment feeds the transfer sheet S pattern P 3 which fine particles are coated from the chamber 1 to the outside, and waits without performing any processing for the pattern P 3 (step S310). On the other hand, feed the transfer sheet S pattern P 4 which fine particles are coated with sintered by a plasma treatment to the back side of the chamber 1, similarly waits without performing any processing on the pattern P 3 in (step S408). This step S114 corresponds to the pattern transfer process in the present invention, and this step S212 corresponds to the adhesive application process in the present invention.
 (ステップS115)転写シート送り込み・(ステップS213)転写シート送り込み・(ステップS311)転写シート送り込み・(ステップS409)転写シート送り込み
 これらステップS114・S212・S310・S408が終了すると、シート用送り込みローラ21は、転写シートSを所定距離に1回送り込む。この送り込みによって、パターンPがワークWに転写された転写シートSは、送り込み側に送り返されてクリーナー26の手前にまで位置するのと同時に、ワークWに転写されたパターンP(パターンPの転写後のワークW)は、第2乾燥処理部29にまで位置し(ステップS115)、パターンPは、送り返しローラ25・転写ローラ28にまで位置し(ステップS213)、パターンPは、接着剤用インクジェット24にまで位置する(ステップS311)とともに、パターンPは、チャンバー1の外側にまで位置する(ステップS409)。このステップS115・S213・S311・S409は、本発明における基材送り込み過程に相当する。
(Step S115) Transfer sheet feeding, (Step S213) Transfer sheet feeding, (Step S311) Transfer sheet feeding, (Step S409) Transfer sheet feeding When these steps S114, S212, S310, and S408 are completed, the sheet feeding roller 21 is Then, the transfer sheet S is fed once at a predetermined distance. The transfer sheet S on which the pattern P 1 is transferred to the workpiece W by this feeding is sent back to the feeding side and positioned before the cleaner 26, and at the same time, the pattern P 1 transferred to the workpiece W (pattern P 1 workpiece W) after the transfer of, and position to the second drying unit 29 (step S115), the pattern P 2 is located to the send back roller 25 and transfer roller 28 (step S213), the pattern P 3 is located to the adhesive for an ink jet 24 (step S311), the pattern P 4 is located to the outside of the chamber 1 (step S409). Steps S115, S213, S311, and S409 correspond to the substrate feeding process in the present invention.
 (ステップS116)第2乾燥処理・(ステップS214)パターン転写・(ステップS312)接着剤塗布・(ステップS410)待機
 パターンPの転写後のワークWに対して、第2乾燥処理部29は乾燥処理を行う(ステップS116)。一方、図2中の矢印の方向に各ローラ25、28を回転させることで、転写ローラ28は、焼結した微粒子のパターンPを転写シートSからワークWに転写する(ステップS214)。
Against (step S116) second drying process, (step S214) pattern transfer, (step S312) adhesive coating and (step S410) the work W after the transfer of the stand-pattern P 1, the second drying unit 29 Drying Processing is performed (step S116). On the other hand, by rotating the rollers 25 and 28 in the direction of the arrow in FIG. 2, the transfer roller 28 transfers the workpiece W to the pattern P 2 of the sintered particles from the transfer sheet S (step S214).
 また、プラズマ処理により焼結して微粒子が塗布されたパターンPの転写シートSに、接着剤用インクジェット24は接着剤を塗布する(ステップ312)。一方、プラズマ処理により焼結して微粒子が塗布されたパターンPの転写シートSをチャンバー1から外側に送り出し、パターンPに対していずれの処理も行わずに待機する(ステップS410)。このステップS116は、本発明における第2乾燥処理過程に相当し、このステップS214は、本発明におけるパターン転写過程に相当し、このステップS312は、本発明における接着剤塗布過程に相当する。 Also, sintered by a plasma treatment on the transfer sheet S pattern P 3 which fine particles are coated, adhesive jet 24 for applying an adhesive (step 312). On the other hand, sintered by a plasma treatment feeds the transfer sheet S pattern P 4 which fine particles are coated from the chamber 1 to the outside, and waits without performing any processing for the pattern P 4 (step S410). This step S116 corresponds to the second drying process in the present invention, this step S214 corresponds to the pattern transfer process in the present invention, and this step S312 corresponds to the adhesive application process in the present invention.
 以下のステップでは、パターンPと同様の処理を行うので、パターンP以降については説明を省略する。パターンPについてのみ、ステップS117~S118を説明する。 In the following steps, since the same process as the pattern P 1, it will not be described pattern P 2 or later. The pattern P 1 only, illustrating the steps S117 ~ S118.
 (ステップS117)転写シート送り込み
 これらステップS116・S214・S312・S410が終了すると、シート用送り込みローラ21は、転写シートSを所定距離に1回送り込む。この送り込みによって、パターンPがワークWに転写された転写シートSは、より一層送り込み側に送り返されてクリーナー26にまで位置するのと同時に、パターンPの乾燥処理後のワークWは、巻き取りローラ30に位置する。このステップS117は、本発明における基材送り込み過程に相当する。
(Step S117) Transfer Sheet Feed When these steps S116, S214, S312 and S410 are completed, the sheet feed roller 21 feeds the transfer sheet S once at a predetermined distance. This infeed, the transfer sheet S pattern P 1 is transferred to the workpiece W, at the same time as the position to the cleaner 26 is sent back to further infeed side, the workpiece W after the drying process of the pattern P 1 is wound Located on the take-off roller 30. This step S117 corresponds to the substrate feeding process in the present invention.
 (ステップS118)洗浄および巻き取り
 送り返されたパターンPの転写シートSをクリーナー26は洗浄するのと同時に、巻き取りローラ30は、パターンPが形成されたワークWを巻き取って、パターンPについて一連の処理を終了する。このステップS118は、本発明における洗浄過程に相当する。
(Step S118) Cleaner 26 transfer sheet S cleaning and winding back pattern P 1 is at the same time as the cleaning, the take-up roller 30, winds the workpiece W on which the pattern P 1 is formed, the pattern P A series of processing for 1 is finished. This step S118 corresponds to the cleaning process in the present invention.
 この図3のフローチャートでは、送り込みや転写や巻き取りを除いて、各々のステップの処理時間はそれぞれ同じであるとして説明したが、処理時間がそれぞれ異なる場合には、これに限定されない。例えば、処理開始に同期して、短い処理時間のステップを先に終了させ、長い処理時間のステップを後に終了させてもよいし、逆に、長い処理時間のステップを先に開始して、その後に短い処理時間のステップを開始して、それぞれのステップの終了が一致するようにしてもよい。特に、上述したようにパターン転写で接着剤が乾かないうちに転写を行うためには、パターン転写の直前に接着剤を塗布すればよく、必ずしも他のステップでの処理に同期させる必要はない。 In the flowchart of FIG. 3, it has been described that the processing time of each step is the same except for feeding, transferring, and winding, but the processing time is not limited to this when the processing time is different. For example, in synchronization with the start of processing, the short processing time step may be ended first, and the long processing time step may be ended later. Conversely, the long processing time step is started first, and then Alternatively, a step with a short processing time may be started so that the end of each step coincides. In particular, as described above, in order to perform the transfer before the adhesive is dried by pattern transfer, it is only necessary to apply the adhesive immediately before the pattern transfer, and it is not always necessary to synchronize with the processing in other steps.
 また、図3のフローチャートでは、送り込みの回数は1回ずつであるとしたが、複数回ずつであってもよく、特に限定されない。また、図3のフローチャートでは、チャンバーでは2つのパターン毎に加熱処理・プラズマ処理をそれぞれ同時に行ったが、1つのパターン毎に加熱処理・プラズマ処理をそれぞれ行ってもよいし、3つ以上のパターン毎に加熱処理・プラズマ処理をそれぞれ同時に行ってもよい。 In the flowchart of FIG. 3, the number of times of feeding is one time, but it may be a plurality of times and is not particularly limited. In the flowchart of FIG. 3, the heat treatment and the plasma treatment are performed simultaneously for each of the two patterns in the chamber. However, the heat treatment and the plasma treatment may be performed for each pattern, or three or more patterns may be performed. Heat treatment and plasma treatment may be performed simultaneously for each time.
 本実施例に係るパターン形成方法によれば、基材(転写シート)Sを所定距離ごとに段階的に送り込み、段階的に送り込まれた転写シートSに微粒子を塗布する。段階的に送り込まれて微粒子が塗布された転写シートSに対してプラズマ処理を行う際に、以下のように処理する。転写シートSを送り込む方向Fに直交する方向において、当該転写シートSの幅wよりも狭く構成されたチャンバー1内に、転写シートSの塗布面とチャンバー1の転写シートS側の面との間に断面が円形であって環状のOリング4を介在させた状態で所定距離ごとに転写シートSを段階的に送り込み、チャンバー1の内部を減圧した状態で転写シートSに対してプラズマ処理を行う。その結果、Oリング4が介在する箇所では必ず転写シートSも介在するので、Oリング4が介在する全ての箇所ではOリング4のみならず転写シートS自身が大気を遮断する。100パスカル程度の低真空であれば減圧下でのプラズマ処理を達成することができる。 According to the pattern forming method according to the present embodiment, the base material (transfer sheet) S is fed stepwise for each predetermined distance, and the fine particles are applied to the transfer sheet S fed stepwise. When the plasma processing is performed on the transfer sheet S which is fed stepwise and coated with fine particles, the following processing is performed. In a direction perpendicular to the direction F of feeding the transfer sheet S, on the transfer sheet narrowly constructed chamber 1 than the width w 1 of the S, between the coating surface and the transfer sheet S side surface of the chamber 1 of the transfer sheet S The transfer sheet S is fed stepwise at a predetermined distance with a circular O-ring 4 having a circular cross section between them, and the transfer sheet S is subjected to plasma treatment in a state where the inside of the chamber 1 is decompressed. Do. As a result, since the transfer sheet S is always present at the location where the O-ring 4 is interposed, not only the O-ring 4 but also the transfer sheet S itself blocks the atmosphere at all locations where the O-ring 4 is interposed. Plasma treatment under reduced pressure can be achieved with a low vacuum of about 100 Pascals.
 そして、塗布された微粒子をプラズマ処理により焼結した転写シートSをチャンバー1から段階的に送り出し、焼結した微粒子のパターンを転写シートSから被処理物(ワーク)Wに転写することで、金属の微粒子を焼結させたパターンをワークWに形成する。したがって、転写シートSを送り込む送り込み手段(シート用送り込みローラ21)やワークWにパターンを転写する転写手段(転写ローラ28)や転写シートSを巻き取る巻き取り手段(巻き取りローラ)などのローラをチャンバー1外部に配設することができ、チャンバー1(パターン形成を行う装置)を小型化にすることができる。転写手段(転写ローラ28)をチャンバー1外部に配設して転写をチャンバー1外部で行うことで、ワークWに対する熱変形や熱による損傷を防止することができる。また、チャンバー1を小型化にした結果、低真空に達するまでの時間も短縮することができ、効率良く転写シートSに微粒子を塗布して焼結することができ、その結果、金属の微粒子を焼結させたパターンを効率良くワークWに形成することができる。 Then, the transfer sheet S obtained by sintering the applied fine particles by plasma treatment is sent out step by step from the chamber 1, and the pattern of the sintered fine particles is transferred from the transfer sheet S to the workpiece (workpiece) W. A pattern in which the fine particles are sintered is formed on the workpiece W. Accordingly, rollers such as a feeding means (sheet feeding roller 21) for feeding the transfer sheet S, a transferring means (transfer roller 28) for transferring the pattern to the workpiece W, and a winding means (winding roller) for winding the transfer sheet S are provided. It can be disposed outside the chamber 1 and the chamber 1 (apparatus for pattern formation) can be downsized. By disposing the transfer means (transfer roller 28) outside the chamber 1 and performing the transfer outside the chamber 1, it is possible to prevent the workpiece W from being thermally deformed or damaged by heat. In addition, as a result of downsizing the chamber 1, the time to reach a low vacuum can be shortened, and the fine particles can be efficiently applied to the transfer sheet S and sintered. The sintered pattern can be efficiently formed on the workpiece W.
 本実施例では、転写後の転写シートSを所定距離ごとに段階的に送り込み側に送り返し、送り返された転写シートSを洗浄し、洗浄された転写シートSを用いて当該転写シートSを再度に送り込み、各ステップを繰り返し行うのが好ましい。このようにして、転写後に洗浄された転写シートSを用いて再利用して、繰り返し用いることができる。 In this embodiment, the transferred transfer sheet S is sent back to the feeding side step by step at predetermined distances, the transferred transfer sheet S is washed, and the transferred transfer sheet S is again used by using the washed transfer sheet S. It is preferable to perform the feeding and each step repeatedly. In this way, the transfer sheet S washed after transfer can be reused by being reused.
 本実施例では、微粒子塗布のステップとプラズマ処理のステップとの間に、段階的に送り込まれて微粒子が塗布された転写シートSに対して乾燥処理を行う第1乾燥処理のステップを行い、プラズマ処理のステップは、段階的に送り込まれて微粒子が乾燥して塗布された転写シートSに対してプラズマ処理を行うのが好ましい。 In the present embodiment, a first drying process step is performed between the fine particle application step and the plasma treatment step. The first drying process step is performed to dry the transfer sheet S that is fed stepwise and coated with the fine particles. In the processing step, it is preferable to perform plasma processing on the transfer sheet S which is fed stepwise and the fine particles are dried and applied.
 本実施例では、プラズマ処理のステップとパターン転写のステップとの間に、プラズマ処理により焼結して微粒子が塗布された転写シートSに接着剤を塗布し、パターン転写のステップは、接着剤が塗布されて焼結した微粒子のパターンを転写シートSからワークWに当該接着剤により転写している。この場合、ワークWとパターンとの密着性を接着剤により向上させることができる。 In this embodiment, an adhesive is applied between the plasma processing step and the pattern transfer step to the transfer sheet S that is sintered by the plasma processing and coated with the fine particles. The fine particle pattern applied and sintered is transferred from the transfer sheet S to the workpiece W by the adhesive. In this case, the adhesiveness between the workpiece W and the pattern can be improved by the adhesive.
 本実施例では、転写後のワークWに対して(第2)乾燥処理を行うのが好ましい。特に、接着剤がワークWとパターンとの間に介在して、ワークWを巻き取る場合には、巻き取りによりパターンが隣接するワークWに転写されるのを接着剤の乾燥処理により防止することができる。 In this embodiment, it is preferable to perform a (second) drying process on the workpiece W after transfer. In particular, when the adhesive is interposed between the workpiece W and the pattern and the workpiece W is wound up, the pattern is transferred to the adjacent workpiece W by winding up by preventing the adhesive from being dried. Can do.
 本実施例では、微粒子が塗布された転写シートSに対して加熱処理を行い、加熱処理のステップの後でプラズマ処理を行っている。このようにプラズマ処理とは別の加熱処理を当該プラズマ処理と組み合わせることで、均一に加熱することができ処理の均一性が向上し、加熱時間やプラズマ照射時間も短く済むので転写シートSへの損傷も少なく、表裏面の温度差も緩和される。その結果、加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。また、プラズマ処理よりも事前に加熱することにより温度の変動幅が少なくなり、処理の再現性が向上することができる。 In this embodiment, the transfer sheet S coated with fine particles is subjected to heat treatment, and plasma treatment is performed after the heat treatment step. In this way, by combining a heat treatment different from the plasma treatment with the plasma treatment, uniform heating can be achieved, the uniformity of the treatment can be improved, and the heating time and the plasma irradiation time can be shortened. There is little damage, and the temperature difference between the front and back surfaces is reduced. As a result, it is possible to efficiently sinter the fine particles at a low temperature while reducing the heating time to a low temperature and preventing thermal deformation and damage due to heat. Further, by performing the heating in advance of the plasma treatment, the temperature fluctuation range is reduced, and the reproducibility of the treatment can be improved.
 図1や図2では転写シートSを支持する支持手段はベース2であったが、図4(a)に示すように、下側におけるチャンバー1の壁の上面が転写シートSを支持するように構成してもよい。すなわち、下側におけるチャンバー1の壁の上面には環状の溝1bが設けられており、その溝1bに沿ってOリング4がさらに嵌合される。したがって、転写シートSの塗布面とチャンバー1の転写シートS側の面との間にOリング4を介在させて、転写シートSの塗布面とは逆側の面とチャンバー1の転写シートS側との間にもOリング4をさらに介在させて配設することができる。 1 and 2, the support means for supporting the transfer sheet S is the base 2, but as shown in FIG. 4A, the upper surface of the wall of the chamber 1 on the lower side supports the transfer sheet S. It may be configured. That is, an annular groove 1b is provided on the upper surface of the wall of the chamber 1 on the lower side, and an O-ring 4 is further fitted along the groove 1b. Therefore, an O-ring 4 is interposed between the transfer sheet S application surface and the transfer sheet S side surface of the chamber 1, so that the surface opposite to the transfer sheet S application surface and the transfer sheet S side of the chamber 1. Further, an O-ring 4 can be interposed between them.
 なお、図4(a)に示す下側におけるチャンバー1の代わりに、図1(a)および図1(c)に示すベース2においても、同様にOリング4をさらに介在させることができる。すなわち、ベース2の上面に環状の溝(図示省略)を設け、その溝に沿ってOリング4を嵌合させることで、転写シートSの塗布面とチャンバー1の転写シートS側の面との間にOリング4を介在させて、転写シートSの塗布面とは逆側の面とベース2の転写シートS側の面との間にもOリング4をさらに介在させて配設することができる。 In addition, instead of the lower chamber 1 shown in FIG. 4A, an O-ring 4 can be further interposed in the base 2 shown in FIGS. 1A and 1C. That is, an annular groove (not shown) is provided on the upper surface of the base 2, and the O-ring 4 is fitted along the groove, so that the transfer surface of the transfer sheet S and the surface of the chamber 1 on the transfer sheet S side are formed. An O-ring 4 may be interposed therebetween, and an O-ring 4 may be further interposed between the surface opposite to the coating surface of the transfer sheet S and the surface of the base 2 on the transfer sheet S side. it can.
 このように、転写シートSの塗布面とは逆側の面と支持手段(下側におけるチャンバー1またはベース2)の転写シートS側の面との間にもOリング4をさらに介在させて配設するのが好ましい。Oリング4を塗布面とは逆側の面にも介在させることで、大気をより一層遮断することができる。 As described above, the O-ring 4 is further interposed between the surface opposite to the coating surface of the transfer sheet S and the surface on the transfer sheet S side of the support means (the lower chamber 1 or the base 2). It is preferable to install. By interposing the O-ring 4 also on the surface opposite to the application surface, the atmosphere can be further blocked.
 また、転写シートSの塗布面とは逆側の面をベースなどの支持手段が支持する際に、当該逆側の面と支持手段との間に僅かな隙間があることで、その隙間に大気が入り込む可能性がある。そこで、図4(b)に示すように、真空ポンプ5の他に、当該逆側の面にチャンバー1と同じ圧力に減圧する減圧処理室として減圧チャンバー6を備えてもよい。減圧チャンバー6に貫通孔6aを設け、隙間にある空気等を貫通孔6aから抜き、真空ポンプ5によって減圧チャンバー6の内部を減圧する。このように真空ポンプ5および減圧チャンバー6を備えることで、より一層確実に減圧処理を行うことができる。 Further, when a support means such as a base supports the surface opposite to the application surface of the transfer sheet S, there is a slight gap between the opposite surface and the support means. May get in. Therefore, as shown in FIG. 4B, in addition to the vacuum pump 5, a decompression chamber 6 may be provided on the opposite surface as a decompression processing chamber that decompresses to the same pressure as the chamber 1. A through hole 6 a is provided in the decompression chamber 6, air or the like in the gap is drawn from the through hole 6 a, and the inside of the decompression chamber 6 is decompressed by the vacuum pump 5. By providing the vacuum pump 5 and the decompression chamber 6 in this manner, the decompression process can be performed more reliably.
 また、図4(a)と図4(b)とを互いに組み合わせてもよい。すなわち、図4(b)に示す減圧チャンバー6の壁の上面に環状の溝(図示省略)を設け、図4(a)に示すように、その溝に沿ってOリング4を嵌合させることで、転写シートSの塗布面とチャンバー1の転写シートS側の面との間にOリング4を介在させて、転写シートSの塗布面とは逆側の面と減圧チャンバー6の転写シートS側の面との間にもOリング4をさらに介在させて配設してもよい。図4(a)の場合には、転写シートSに対し両面に同時塗布も可能となる。 Also, FIG. 4 (a) and FIG. 4 (b) may be combined with each other. That is, an annular groove (not shown) is provided on the upper surface of the wall of the decompression chamber 6 shown in FIG. 4 (b), and the O-ring 4 is fitted along the groove as shown in FIG. 4 (a). Thus, an O-ring 4 is interposed between the transfer sheet S application surface and the surface of the chamber 1 on the transfer sheet S side, so that the surface opposite to the transfer sheet S application surface and the transfer sheet S of the decompression chamber 6 are present. An O-ring 4 may be further interposed between the side surfaces. In the case of FIG. 4A, the transfer sheet S can be simultaneously coated on both sides.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, and can be modified as follows.
 (1)上述した実施例では、塗布面を上面とし、塗布面とは逆側の面を下面としたが、上下逆であってもよい。すなわち、塗布面を下面とし、塗布面とは逆側の面を上面としてもよい。 (1) In the embodiment described above, the application surface is the upper surface and the surface opposite to the application surface is the lower surface, but it may be upside down. That is, the application surface may be the lower surface, and the surface opposite to the application surface may be the upper surface.
 (2)上述した実施例では、塗布面を上面とし、塗布面とは逆側の面を下面として、塗布面を一面のみとしたが、両面を塗布面としてもよい。 (2) In the embodiment described above, the application surface is the upper surface, the surface opposite to the application surface is the lower surface, and the application surface is only one surface, but both surfaces may be the application surface.
 (3)上述した実施例では、加熱処理およびプラズマ処理を同じチャンバー1で行ったが、加熱処理を行うチャンバー(処理室)(図示省略)を、プラズマ処理を行うチャンバー1とは別に備え、各々のチャンバー毎に加熱処理・プラズマ処理を個々に行ってもよい。また、プラズマ処理を行うチャンバー1外部で加熱処理を行ってもよい。 (3) In the above-described embodiment, the heat treatment and the plasma treatment are performed in the same chamber 1, but a chamber (treatment chamber) (not shown) for performing the heat treatment is provided separately from the chamber 1 for performing the plasma treatment, Heat treatment and plasma treatment may be individually performed for each chamber. Further, heat treatment may be performed outside the chamber 1 where plasma treatment is performed.
 (4)上述した実施例では、チャンバーの形状は方形であって、それに合わせてOリングを配設したが、チャンバーやOリングの形状については、特に限定されない。例えば、円筒形のチャンバーの場合には、それに合わせてOリングを配設すればよい。 (4) In the above-described embodiments, the shape of the chamber is square, and the O-ring is arranged in accordance with the shape. However, the shape of the chamber and the O-ring is not particularly limited. For example, in the case of a cylindrical chamber, an O-ring may be arranged accordingly.
 (5)上述した実施例では、Oリングは1つのみであったが、2重あるいは3重以上のOリングをそれぞれ配設してもよい。 (5) In the above-described embodiment, there is only one O-ring, but double or triple O-rings may be provided.
 (6)上述した実施例では、基材(転写シート)と同様に、転写先の被処理物(ワーク)も、ロールtoロールで送り込むために長尺状であったが、ワークについては必ずしも長尺状である必要はない。基板状のワークに対して転写を行ってもよいし、基板状のワークおよび長尺状のワークをそれぞれ組み合わせて転写を行ってもよい。 (6) In the above-described embodiment, similarly to the base material (transfer sheet), the transfer target object (work) is also long because it is fed roll-to-roll, but the work is not necessarily long. It does not have to be a scale. Transfer may be performed on the substrate-like workpiece, or transfer may be performed by combining the substrate-like workpiece and the long workpiece.
 (7)上述した実施例では、転写後に洗浄された転写シートを用いて再利用して、繰り返し用いたが、必ずしも再利用する必要はない。使い捨ての基材(転写シート)に対してインクジェットによる印字やプラズマ処理による焼結を行ってもよい。 (7) In the above-described embodiments, the transfer sheet washed after transfer is reused and repeatedly used. However, it is not always necessary to reuse. You may perform the printing by an inkjet, or the sintering by a plasma process with respect to a disposable base material (transfer sheet).
 (8)上述した実施例では、微粒子塗布のステップとプラズマ処理のステップとの間に、段階的に送り込まれて微粒子が塗布された転写シートに対して乾燥処理を行う第1乾燥処理のステップを行い、プラズマ処理のステップは、段階的に送り込まれて微粒子が乾燥して塗布された転写シートに対してプラズマ処理を行ったが、プラズマ処理の前に微粒子が既に乾燥している場合には、必ずしも乾燥処理を行う必要はない。 (8) In the above-described embodiment, the first drying process step is performed between the fine particle application step and the plasma treatment step. The plasma treatment step was performed on the transfer sheet that was sent stepwise and the fine particles were dried and applied, but if the fine particles were already dried before the plasma treatment, It is not always necessary to perform a drying process.
 (9)上述した実施例では、プラズマ処理のステップとパターン転写のステップとの間に、プラズマ処理により焼結して微粒子が塗布された転写シートに接着剤を塗布し、パターン転写のステップは、接着剤が塗布されて焼結した微粒子のパターンを転写シートSからワークWに当該接着剤により転写したが、これに限定されない。例えば、図5に示すように、プラズマ処理のステップとパターン転写のステップとの間に、被処理物(ワーク)Wに接着剤を塗布する接着剤用インクジェット24をワーク用送り込みローラ27の下流に備え、接着剤用インクジェット24は、焼結した微粒子のパターンを基材(転写シート)Sから接着剤が塗布されたワークWに当該接着剤により転写してもよい。いずれの場合においても、ワークWとパターンとの密着性を接着剤により向上させることができる。 (9) In the above-described embodiment, the adhesive is applied to the transfer sheet on which the fine particles are applied by sintering by the plasma processing between the plasma processing step and the pattern transfer step. Although the fine particle pattern applied with the adhesive and sintered is transferred from the transfer sheet S to the workpiece W by the adhesive, the present invention is not limited to this. For example, as shown in FIG. 5, between the plasma processing step and the pattern transfer step, an adhesive inkjet 24 for applying an adhesive to the workpiece (workpiece) W is provided downstream of the workpiece feed roller 27. The adhesive inkjet 24 may transfer the sintered fine particle pattern from the base material (transfer sheet) S to the workpiece W to which the adhesive is applied by the adhesive. In any case, the adhesiveness between the workpiece W and the pattern can be improved by the adhesive.
 (10)上述した実施例や変形例(9)では接着剤を塗布したが、被処理物(ワーク)とパターンとの密着性の向上を考慮しない、あるいは接着剤を塗布しなくともワークに対してパターンが密着する場合には、必ずしも接着剤を塗布する必要はない。 (10) Although the adhesive is applied in the above-described embodiment and modification (9), the improvement in the adhesion between the object to be processed (work) and the pattern is not taken into consideration, or the workpiece is applied without applying the adhesive. When the pattern adheres, it is not always necessary to apply an adhesive.
 (11)上述した実施例では、転写後のワークに対して(第2)乾燥処理を行ったが、巻き取られる前に接着剤が既に乾燥して、巻き取りによりパターンが隣接するワークに転写される恐れがない場合には、必ずしも乾燥処理を行う必要はない。 (11) In the above-described embodiment, the (second) drying process is performed on the workpiece after transfer, but the adhesive is already dried before being wound, and the pattern is transferred to the adjacent workpiece by winding. In the case where there is no fear of being dried, it is not always necessary to perform a drying process.
 (12)上述した実施例では、微粒子が塗布された転写シートに対して加熱処理を行い、加熱処理のステップの後でプラズマ処理を行ったが、加熱処理を行わずにプラズマ処理のみであってもよい。例えば、図6に示すように、電気ヒータ13(図1(c)や図2などを参照)などに代表される加熱手段をチャンバー1に備えずにプラズマ処理のみを行ってもよい。 (12) In the above-described embodiment, the transfer sheet coated with the fine particles is subjected to the heat treatment, and the plasma treatment is performed after the heat treatment step. However, only the plasma treatment is performed without performing the heat treatment. Also good. For example, as shown in FIG. 6, only the plasma processing may be performed without providing the chamber 1 with heating means represented by the electric heater 13 (see FIG. 1C, FIG. 2, etc.).
 1 … チャンバー
 4 … Oリング
 F … ワークを送り込む方向
 w … ワークの幅
 w … チャンバーの幅
 S … 転写シート(基材)
 W … ワーク(被処理物)
1 ... chamber 4 ... O-ring F ... width S of the width w 2 ... chambers direction w 1 ... workpiece feeding the workpiece ... transfer sheet (substrate)
W ... Workpiece (processed object)

Claims (7)

  1.  金属の微粒子を焼結させたパターンを被処理物に形成するパターン形成方法であって、
     基材を所定距離ごとに段階的に送り込む基材送り込み過程と、
     段階的に送り込まれた前記基材に前記微粒子を塗布する微粒子塗布過程と、
     段階的に送り込まれて前記微粒子が塗布された前記基材に対してプラズマ処理を行う際に、前記基材を送り込む方向に直交する方向において、当該基材の幅よりも狭く構成された処理室内に、基材の塗布面と前記処理室の基材側の面との間に断面が円形であって環状のOリングを介在させた状態で前記所定距離ごとに基材を段階的に送り込み、処理室の内部を減圧した状態で基材に対してプラズマ処理を行うプラズマ処理過程と、
     前記プラズマ処理により焼結して前記微粒子が塗布された基材を処理室から段階的に送り出し、焼結した前記微粒子のパターンを基材から前記被処理物に転写するパターン転写過程と
     を備えていることを特徴とするパターン形成方法。
    A pattern forming method for forming a pattern in which metal fine particles are sintered on a workpiece,
    A substrate feeding process for feeding the substrate in stages at predetermined distances;
    A fine particle application process for applying the fine particles to the substrate fed stepwise;
    A processing chamber configured to be narrower than the width of the base material in a direction orthogonal to the direction in which the base material is fed when performing plasma processing on the base material that is fed stepwise and coated with the fine particles. In addition, in a state where the cross-section is circular and an annular O-ring is interposed between the application surface of the base material and the surface on the base material side of the processing chamber, the base material is fed stepwise for each predetermined distance, A plasma treatment process for performing plasma treatment on the substrate in a state where the inside of the treatment chamber is decompressed,
    And a pattern transfer step of transferring the sintered fine particle pattern from the base material to the object to be processed by stepwise sending out the base material coated with the fine particles sintered by the plasma treatment from the processing chamber. A pattern forming method characterized by comprising:
  2.  請求項1に記載のパターン形成方法において、
     転写後の前記基材を前記所定距離ごとに段階的に送り込み側に送り返す基材送り返し過程と、
     送り返された基材を洗浄する洗浄過程と
     を備え、
     洗浄された基材を用いて前記基材送り込み過程は当該基材を再度に送り込み、前記微粒子塗布過程,前記プラズマ処理過程,前記パターン転写過程,前記基材送り返し過程,前記洗浄過程および前記基材送り込み過程を繰り返し行うことを特徴とするパターン形成方法。
    In the pattern formation method of Claim 1,
    Substrate feeding back process of feeding back the substrate after transfer to the feeding side step by step for each predetermined distance;
    A cleaning process for cleaning the returned substrate,
    In the substrate feeding process using the washed substrate, the substrate is fed again, the fine particle coating process, the plasma processing process, the pattern transfer process, the substrate feeding back process, the cleaning process, and the substrate. A pattern forming method, wherein the feeding process is repeated.
  3.  請求項1または請求項2に記載のパターン形成方法において、
     前記微粒子塗布過程と前記プラズマ処理過程との間に、段階的に送り込まれて前記微粒子が塗布された前記基材に対して乾燥処理を行う第1乾燥処理過程を備え、
     前記プラズマ処理過程は、段階的に送り込まれて前記微粒子が乾燥して塗布された前記基材に対してプラズマ処理を行うことを特徴とするパターン形成方法。
    In the pattern formation method of Claim 1 or Claim 2,
    A first drying process for performing a drying process on the substrate on which the fine particles have been applied by being sent stepwise between the fine particle application process and the plasma treatment process;
    In the plasma processing process, the plasma processing is performed on the substrate which is fed stepwise and the fine particles are dried and applied.
  4.  請求項1から請求項3のいずれかに記載のパターン形成方法において、
     前記プラズマ処理過程と前記パターン転写過程との間に、前記プラズマ処理により焼結して前記微粒子が塗布された基材に接着剤を塗布する接着剤塗布過程を備え、
     前記パターン転写過程は、前記接着剤が塗布されて焼結した前記微粒子のパターンを基材から前記被処理物に当該接着剤により転写することを特徴とするパターン形成方法。
    In the pattern formation method in any one of Claims 1-3,
    Between the plasma treatment process and the pattern transfer process, comprising an adhesive application process for applying an adhesive to a substrate on which the fine particles have been applied by sintering by the plasma treatment,
    In the pattern transfer process, the pattern of fine particles, which is coated with the adhesive and sintered, is transferred from a base material to the object to be processed by the adhesive.
  5.  請求項1から請求項3のいずれかに記載のパターン形成方法において、
     前記プラズマ処理過程と前記パターン転写過程との間に、前記被処理物に接着剤を塗布する接着剤塗布過程を備え、
     前記パターン転写過程は、焼結した前記微粒子のパターンを基材から前記接着剤が塗布された前記被処理物に当該接着剤により転写することを特徴とするパターン形成方法。
    In the pattern formation method in any one of Claims 1-3,
    An adhesive application process for applying an adhesive to the object to be processed is provided between the plasma processing process and the pattern transfer process,
    The pattern transfer method is characterized in that, in the pattern transfer process, the sintered fine particle pattern is transferred from a base material to the workpiece to which the adhesive is applied by the adhesive.
  6.  請求項1から請求項5のいずれかに記載のパターン形成方法において、
     転写後の前記被処理物に対して乾燥処理を行う第2乾燥処理過程を備えることを特徴とするパターン形成方法。
    In the pattern formation method in any one of Claims 1-5,
    A pattern forming method comprising: a second drying process for performing a drying process on the object to be processed after the transfer.
  7.  請求項1から請求項6のいずれかに記載のパターン形成方法において、
     前記微粒子が塗布された前記基材に対して加熱処理を行う加熱処理過程を備え、
     前記加熱処理過程の後で前記プラズマ処理を行うことを特徴とするパターン形成方法。
     
    In the pattern formation method in any one of Claims 1-6,
    Comprising a heat treatment process for performing heat treatment on the base material coated with the fine particles,
    A pattern forming method, wherein the plasma treatment is performed after the heat treatment process.
PCT/JP2012/003033 2012-05-09 2012-05-09 Pattern forming method WO2013168195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003033 WO2013168195A1 (en) 2012-05-09 2012-05-09 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003033 WO2013168195A1 (en) 2012-05-09 2012-05-09 Pattern forming method

Publications (1)

Publication Number Publication Date
WO2013168195A1 true WO2013168195A1 (en) 2013-11-14

Family

ID=49550282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003033 WO2013168195A1 (en) 2012-05-09 2012-05-09 Pattern forming method

Country Status (1)

Country Link
WO (1) WO2013168195A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147242A (en) * 1993-11-24 1995-06-06 Fuji Electric Co Ltd Manufacturing equipment of thin film photoelectric transducer
JPH0963970A (en) * 1995-08-30 1997-03-07 Fuji Electric Co Ltd Thin film manufacturing device and manufacture thereof
JP2002048244A (en) * 2000-08-02 2002-02-15 Ulvac Japan Ltd Sealing method, sealing mechanism and vacuum treatment equipment
JP2004247572A (en) * 2003-02-14 2004-09-02 Harima Chem Inc Method for forming fine wiring pattern
JP2007182605A (en) * 2006-01-06 2007-07-19 Konica Minolta Holdings Inc Method for forming thin film, and thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147242A (en) * 1993-11-24 1995-06-06 Fuji Electric Co Ltd Manufacturing equipment of thin film photoelectric transducer
JPH0963970A (en) * 1995-08-30 1997-03-07 Fuji Electric Co Ltd Thin film manufacturing device and manufacture thereof
JP2002048244A (en) * 2000-08-02 2002-02-15 Ulvac Japan Ltd Sealing method, sealing mechanism and vacuum treatment equipment
JP2004247572A (en) * 2003-02-14 2004-09-02 Harima Chem Inc Method for forming fine wiring pattern
JP2007182605A (en) * 2006-01-06 2007-07-19 Konica Minolta Holdings Inc Method for forming thin film, and thin film

Similar Documents

Publication Publication Date Title
KR100623563B1 (en) Plasma processing apparatus, method for producing reaction vessel for plasma generation, and plasma processing method
RU2420044C2 (en) Plasma treatment device
TWI460805B (en) Apparatus and method for processing substrate
JP4763974B2 (en) Plasma processing apparatus and plasma processing method
US20150228461A1 (en) Plasma treatment apparatus and method
JP2000200697A (en) Plasma processing device and plasma processing method
JP2010212424A (en) Shower head and plasma processing apparatus
TWI400418B (en) Heat treatment apparatus and heat treatment method
JP2011056335A (en) Apparatus for pre-drying and method of pre-drying
TW201936976A (en) Apparatus and method for cleaning chamber
WO2013168195A1 (en) Pattern forming method
JP2007280641A (en) Plasma treatment device and plasma treatment method
KR101297711B1 (en) Plasma processing apparatus and plasma processing method
JP2008262781A (en) Atmosphere control device
JP2006252819A (en) Plasma treatment device
TWI633574B (en) Semiconductor processing device and method for processing substrate
TWI623964B (en) Substrate processing system with multiple processing devices deployed in shared ambient environment and associated methods
JP2006331664A (en) Plasma treatment device
JP2007026981A (en) Plasma processing device
JP2002127250A (en) Dry film laminator
EP1887609B1 (en) Equipment for the plasma treatment of one- or two-dimentional articles
TWI681068B (en) Substrate processing device and film forming device
WO2013160948A1 (en) Vacuum processing device
JP4604591B2 (en) Plasma processing method
JP2004031621A (en) Apparatus and method for plasma processing and for plasma forming film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP