WO2013137050A1 - Portable ultrasonic diagnostic device and battery thereof - Google Patents
Portable ultrasonic diagnostic device and battery thereof Download PDFInfo
- Publication number
- WO2013137050A1 WO2013137050A1 PCT/JP2013/055906 JP2013055906W WO2013137050A1 WO 2013137050 A1 WO2013137050 A1 WO 2013137050A1 JP 2013055906 W JP2013055906 W JP 2013055906W WO 2013137050 A1 WO2013137050 A1 WO 2013137050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- opening
- substrate
- housing
- flow path
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4411—Device being modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4427—Device being portable or laptop-like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/462—Displaying means of special interest characterised by constructional features of the display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/56—Details of data transmission or power supply
Definitions
- the present invention relates to a portable ultrasonic diagnostic apparatus, and more particularly to a portable ultrasonic diagnostic apparatus having an apparatus cooling system.
- a portable ultrasonic diagnostic apparatus As a conventional ultrasonic diagnostic apparatus, a wagon type in which various apparatuses are mounted on a movable carriage is the mainstream. Portable ultrasonic diagnostic devices with excellent portability are also available on the market as ultrasonic diagnostic devices.
- a portable ultrasonic diagnostic apparatus called a notebook type includes a thin main body and a display unit, and the display unit has a structure that can be folded on the main body as a lid.
- the maximum allowable temperature at the contact part of ME equipment that may be in contact with the subject is 48 ° C (when touching for more than 1 minute). Cooling is required.
- the wagon type has a cooling system by mounting a heat sink on an electronic component (for example, CPU) that generates a large amount of heat, and mounting an exhaust fan.
- an electronic component for example, CPU
- an object of the present invention is to provide a portable ultrasonic diagnostic apparatus capable of increasing the cooling efficiency of the portable ultrasonic diagnostic apparatus having a large size and space restrictions and a high substrate density.
- the portable ultrasonic diagnostic apparatus of the present invention includes a housing having a substrate therein, a battery that is housed in a battery housing portion provided in the housing and that supplies power to the substrate, and is provided in the battery housing portion, An intake opening for sucking air around the battery or the board heated by heat generated by the battery or the board; and an air around the battery or the board sucked from the intake opening. A flow path for guiding, and an exhaust opening for exhausting air around the battery or the substrate that has passed through the flow path.
- the cooling efficiency of the device can be increased in the portable ultrasonic diagnostic device with large size and space restrictions and high substrate density.
- the present invention can increase the cooling efficiency of a portable ultrasonic diagnostic apparatus having a large substrate density and a large size and space restrictions.
- the front perspective view which looked at the portable ultrasonic diagnostic equipment concerning an embodiment of the invention from the front The figure which showed the state where the operation part and the display part were closed
- the front perspective view which looked at the battery accommodated in a battery accommodating part from the front Rear perspective view of portable ultrasound diagnostic device viewed from the rear Front perspective view of the main unit from the front The figure which showed the flow of the air in the battery accommodated in a battery accommodating part.
- a diagram showing the air flow in front of the main unit The figure which showed the air flow in the back of the main body Rear perspective view of the schematic internal structure of the main unit viewed from the rear Central cross-sectional view along the longitudinal direction of the main body
- the figure which shows that the main body is equipped with a plurality of substrates
- the portable ultrasonic diagnostic apparatus of the present invention includes a main body housing 50 having a substrate therein, a battery 8 housed in a battery housing portion 51 provided in the housing 50 and supplying power to the substrate, and the battery housing An intake opening (first opening 15 and third opening) that is provided in the section 51 and sucks in air around the battery 8 or the board heated by the heat generated by the battery 8 or the board.
- a flow path (first flow path 55, second flow path 56) for guiding the air around the battery 8 or the substrate sucked from the intake opening, and passes through the flow path
- an exhaust opening (the second opening 10 and the fourth opening 12) for exhausting the air around the battery 8 or the substrate.
- FIG. 1 is a front perspective view of the portable ultrasonic diagnostic apparatus 100 of the present embodiment as viewed from the front.
- the portable ultrasonic diagnostic apparatus 100 includes a main body 1 having a substrate therein, an operation unit 2, and a display unit 3.
- the operation unit 2 gives various instructions to a board (control board) built in the main body 1 to operate the portable ultrasonic diagnostic apparatus 100.
- the board of the main body 1 is equipped with circuits such as a CPU, a power supply circuit, and a battery controller, and the ultrasonic transmissions transmitted from various ultrasonic probes connected to the probe connection unit 4 by the mounted circuits.
- a wave signal is generated and echo signals received from various ultrasonic probes are processed.
- the substrate displays an ultrasonic image on the display unit 3 by a mounted circuit.
- the operation unit 2 and the display unit 3 are connected to the main body 1 through a connecting portion such as a universal joint (universal joint) or a hinge, and the operation unit 2 and the display unit 3 can be rotated or opened and closed by the universal joint or the hinge, respectively. It is.
- the operation unit 2 can be closed relative to the display unit 3 by a hinge, the portable ultrasonic diagnostic apparatus 100 can be folded compactly, and the portable ultrasonic diagnostic apparatus 100 can be easily carried.
- the display unit 3 can be freely adjusted in angle by a universal joint (connection unit), and can be maintained at an angle that is easy for the operator to see.
- FIG. 2 is a diagram showing a state in which the operation unit 2 and the display unit 3 are closed. In this way, the installation space can be reduced by flipping up the operation unit 2.
- the main body 1 includes a housing 50 having a substrate inside, a battery housing portion 51 that houses a battery (battery pack) 8, and a probe connection portion 4 that connects an ultrasonic probe. Is provided.
- the battery 8 has a battery inlet 9 and allows air to pass through a part of the battery 8.
- the operation unit 2 includes an operation unit intake port 6 that intakes air to cool the inside of the operation unit 2 and an operation unit exhaust port 7 that exhausts intake air from the operation unit intake port 6.
- the operation unit intake port 6 is provided on the probe connection unit 4 side provided on the side of the housing 50.
- the operation unit exhaust port 7 is provided on the opposite side of the probe connection unit 4 so that the exhaust (hot air) from the operation unit intake port 6 does not directly hit the subject.
- the operation unit intake port 6 and the operation unit exhaust port 7 are provided in the operation unit 2, a flow path for cooling the inside of the operation unit 2 can be secured, and the portable ultrasonic diagnostic apparatus The cooling effect of 100 can be enhanced, and exhaust (hot air) can be prevented from directly hitting the subject.
- the operation unit 2 includes a fan 5 that generates an airflow of intake air from the operation unit intake port 6.
- FIG. 3 is a front perspective view of the battery 8 accommodated in the battery accommodating portion 51 as viewed from the front.
- the battery 8 includes a battery intake port 9 that intakes air into the battery 8, a battery exhaust port 19 that exhausts intake air from the battery intake port 9 as battery exhaust, and a power storage unit 20.
- the battery air inlet 9 is located in front of the battery 8 (front surface) in a state where the battery 8 is accommodated in the battery accommodating portion 51.
- the battery exhaust port 19 is located in the upper front portion of the battery 8 in a state where the battery 8 is housed in the battery housing portion 51.
- the plurality of battery intake ports 9 and the plurality of battery exhaust ports 19 are partitioned by a plurality of partition walls 21. Since the space is secured in front of the battery and in the upper front portion by the plurality of partition walls 21, the space surrounded by the plurality of partition walls 21 absorbs an impact such as a drop on the battery 8.
- the storage unit 20 and the circuit of the battery 8 are protected against the fall of the battery 8.
- the portable ultrasonic diagnostic device has a large size and space restrictions and a high density of the board.
- the cooling efficiency of the apparatus can be increased, and the impact on the battery can be absorbed by the space surrounded by the plurality of partition walls.
- FIG. 4 is a rear perspective view of the portable ultrasonic diagnostic apparatus 100 as seen from the rear.
- the main body 1 includes a housing 50 having a substrate inside, a battery housing 51 (FIG. 2) for housing the battery 8, a first opening (described later) provided in the battery housing 51, and a first opening
- the second opening 10 for exhausting the intake air from the air, the third opening 11 provided in the upper part (upper surface) of the housing 50, and the intake air from the third opening 11 provided behind the housing 50 And a side opening 13 provided on the side (side surface) opposite to the probe connection part 4 (FIG. 2).
- the side opening 13 is provided on the side (side) opposite to the probe connector 4 (FIG. 2) so that the exhaust (hot air) does not directly hit the subject.
- the main body 1 also includes various interfaces 14 such as a USB port. According to this configuration, by securing a flow path from the side opening 13 to the second opening 10, a plurality of flow paths can be secured, and the cooling effect of the portable ultrasonic diagnostic device 100 can be increased. In addition, the exhaust gas (hot air) can be prevented from directly hitting the subject.
- FIG. 5 is a front perspective view of the main body 1 as viewed from the front.
- the main body 1 is provided with a probe connecting portion 4 for connecting an ultrasonic probe on the side (side surface) of the housing 50.
- a battery (battery pack) 8 is accommodated in a battery accommodating portion 51 provided in the lower front part of the housing 50.
- the battery air inlet 9 for taking in air is provided in the front lower part (dead space) of the housing 50. Therefore, when the state shown in FIG. 1 is established, the battery air inlet 9 becomes inconspicuous.
- the first opening 15 is provided in the battery accommodating part 51 (in front of the casing 50) in order to take in the battery exhaust that has passed through a part of the battery 8.
- the first opening 15 is provided at a position facing the battery exhaust port 19 in a state where the battery 8 is housed in the battery housing 51.
- the first opening 15 is provided at the interface of a universal joint (connection part) 30 that connects the main body 1 and the display part 3. Further, in the case of the battery housing portion 51, the first opening portion 15 may be provided at an interface of a portion other than the universal joint (connection portion) 30 (for example, an upper portion or a rear portion of the battery housing portion 51).
- the air is sucked from the battery inlet 9, passes through a part of the battery 8, and is exhausted from the battery exhaust 19.
- the air passes through a part of the battery 8 to cool the battery 8.
- the air exhausted from the battery exhaust port 19 is sucked from the first opening 15 and guided to the inside of the main body 1 (first flow path).
- the air sucked from the third opening 11 is exhausted from the fourth opening 12 after being guided to the inside of the main body 1 (second flow path).
- the first flow path may be provided along the surface of the battery 8. Thereby, the cooling efficiency of the battery 8 is improved.
- the air guided from the first opening 15 to the inside of the main body 1 (first flow path) is exhausted from the second opening 10 provided at the rear of the housing 50.
- the Air is sucked from the side opening 13, guided to the inside of the main body 1 (first flow path), and then exhausted from the second opening 10 provided behind the housing 50.
- FIG. 9 is a rear perspective view of the schematic internal structure of the main body 1 as viewed from the rear.
- the housing 50 includes a housing rear portion 22, a housing upper portion 23, and a housing lower portion 24.
- the housing rear part 22 includes a second opening 10.
- the housing upper part 23 includes a third opening 11 and a fourth opening 12.
- the housing 50 includes the substrate 16 therein.
- the substrate 16 has a lower surface portion (first flat surface portion) 53 and an upper surface portion (second flat surface portion) 54.
- the substrate 16 is mounted with various circuits that realize the functions of the portable ultrasonic diagnostic apparatus 100.
- the lower surface portion (first flat surface portion) 53 of the substrate 16 is mounted with a power supply unit, a power supply controller, and the like that are connected to the battery 8 and an external power supply to generate power for each unit.
- the upper surface portion (second flat surface portion) 54 of the substrate 16 includes a signal control unit that controls an ultrasonic transmission / reception signal of the ultrasonic probe, and a calculation unit that calculates an ultrasonic image based on the ultrasonic reception signal.
- an I / O unit responsible for input / output control of the interface 14 is installed. Since FIG.
- FIG. 9 is a schematic diagram, components mounted on the board 16 are omitted, but many other circuit components (for example, CPU, resistors, capacitors, various digital ICs, LSIs, analog ICs) are omitted. Etc.) is mounted on the substrate 16 and is mounted with high density.
- FIG. 9 shows the CPU 29 as a component that generates a large amount of heat. Although not shown, the CPU 29 and the like are also mounted on the lower surface portion (first flat surface portion) 53 of the substrate 16.
- the portable ultrasonic diagnostic apparatus 100 includes a flow path (first flow path) 55 that guides intake air from the first opening 15 in order to cool the substrate 16.
- the flow path (first flow path) 55 is configured by a lower surface portion (first flat surface portion) 53 of the substrate 16 and guides intake air from the first opening 15 along the planar direction of the substrate 16.
- the second opening 10 exhausts the intake air that has passed through the flow path (first flow path) 55. According to this configuration, since the flow path is configured by the lower surface portion 53 of the substrate 16, a portion that was a dead space can be used as the flow path.
- the portable ultrasonic diagnostic apparatus 100 includes a first fan 18 that generates an intake airflow from the first opening 15, and a second fan 17 that generates an intake airflow from the third opening 11. Is provided. According to this configuration, the first fan 18 generates an air flow of intake air, so that the flow of air passing through the first flow path 55 can be promoted, and the second fan 17 generates an air flow of intake air. By doing so, the flow of air passing through the inside of the main body 1 can be promoted, and the cooling effect of the portable ultrasonic diagnostic apparatus 100 can be enhanced.
- the battery intake port 9 is located in front of the casing 50, and the second opening 10 is located in the rear of the casing 50. According to this configuration, since air linearly passes from the battery inlet 9 to the second opening 10, the cooling effect of the portable ultrasonic diagnostic device 100 without air staying inside the housing Can be increased.
- FIG. 10 is a central sectional view of the main body 1 along the front-rear direction.
- the air sucked from the battery intake port 9 passes through a part of the battery 8 and is exhausted from the battery exhaust port 19.
- the air passing through a part of the battery 8 may cool the battery 8.
- the battery air inlet 9 and the battery air outlet 19 are provided at the front upper part and the upper part of the battery 8, respectively, and are arranged at orthogonal positions.
- the battery air outlet 19 is provided at the rear of the battery 8 and
- the intake air from the port 9 may pass through the inside of the battery 8 and be exhausted from the battery exhaust port 19.
- the flow path for the air to pass through the battery 8 may be formed in a wave shape in order to enhance the cooling effect of the battery 8.
- the air exhausted from the battery exhaust port 19 is sucked from the first opening 15 provided in the battery housing 51.
- the first opening 15 may be provided in the connection portion 30 (FIG. 5) in consideration of size and space restrictions. Further, the position of the first opening 15 may be determined in accordance with the position of the battery exhaust port 19. For example, when the battery exhaust port 19 is provided behind the battery 8, the first opening 15 may be provided behind the battery housing part 51. A plurality of first openings 15 may be provided.
- the air sucked from the first opening 15 is guided to the inside of the main body 1 and is a pre-stage flow path 55a of the flow path (first flow path) 55 formed between the battery housing portion 51 and the substrate 16. And then passes through the rear flow path 55b.
- the air passing through the flow path (first flow path) 55 mainly cools the lower surface portion (first flat surface portion) 53 side of the substrate 16.
- the front channel 55a is configured to have a smaller space than the rear channel 55b. As a result, the flow rate of air passing through the front-stage flow channel 55a is faster than the flow rate of air passing through the rear-stage flow channel 55b, and the cooling effect of the substrate 16 is enhanced.
- the air that has passed through the flow path (first flow path) 55 is exhausted from the second opening 10.
- the air sucked from the third opening 11 provided on the upper surface of the housing 50 is guided to the inside of the main body 1 (second flow path 56).
- the third opening 11 provided on the upper surface of the housing 50 sucks air in order to cool the upper surface portion (second flat surface portion) 54 of the substrate 16.
- the flow path (second flow path) 56 is a flow path (second flow path) 56, which is constituted by the upper surface portion (second flat surface portion) 54 of the substrate 16, and intake air from the third opening 11 Lead.
- the flow path (second flow path) 56 guides the intake air from the third opening 11 along the planar direction of the substrate 16.
- the fourth opening 12 provided at the rear of the housing 50 exhausts the intake air that has passed through the flow path (second flow path) 56.
- both surfaces (upper and lower surfaces) of the substrate can be cooled at the same time, greatly restricting size and space.
- the cooling efficiency of the apparatus can be increased.
- the battery air inlet 9 and the second opening 10 face each other in the front-rear direction of the housing 50 in a state where the battery 8 is housed in the battery housing 51.
- the battery inlet 9 is located in front of the housing 50, and the second opening 10 is located in the rear of the housing 50.
- the battery 8 In order to facilitate the insertion of the battery 8 into the main body 1, the battery 8 is inserted into the battery housing 51 from the front of the main body 1. Therefore, considering the size and space restrictions, conventionally, the battery 8 has blocked the air flow path from the front of the main body 1.
- a side opening 13 is provided on the side of the main body 1 for intake, but space is divided for the probe connection 4 and various interfaces 14, making it difficult to secure sufficient ventilation holes. Thus, sufficient cooling could not be performed with only the side openings 13. Further, since the intake air from the side opening 13 passes non-linearly from the side of the main body 1 to the rear (from the side opening 13 to the second opening 10), the air enters the housing 50. It stayed.
- the present embodiment by providing the battery 8 with the battery intake port 9 and the battery exhaust port 19, a flow path is secured inside the battery 8, and air passes linearly from the front to the rear of the main body 1. A flow path can be secured.
- the cooling function of the portable ultrasonic diagnostic apparatus 100 that satisfies the size and space restrictions can be enhanced, and the battery 8 can also be cooled.
- the battery inlet 9 is hidden behind the operation unit 2 when the portable ultrasonic diagnostic apparatus 100 is used, it is possible to prevent foreign matter from being mixed in and to ensure a stable inflow of air.
- the first flow path 55 and the second flow path 56 are provided inside the main body 1, and the air passing through the first flow path 55 is the first flat portion 53 of the substrate 16. Since the air passing through the second flow path 56 cools the second flat surface portion 54 of the substrate 16, both surfaces (upper and lower surfaces) of the substrate 16 can be simultaneously cooled. The cooling function of the ultrasonic diagnostic apparatus 100 can be enhanced.
- the first channel 55 is formed in the lower part of the substrate 16 (between the substrate 16 and the housing lower part 24), so that the portion that was a dead space can be used as the channel.
- the front flow path 55a is formed between the battery housing part 51 and the substrate 16, so that the portion that was a dead space can be used as the flow path.
- front-stage flow channel 55a is formed narrower than the rear-stage flow channel 55b, the speed of air passing through the front-stage flow channel 55a can be increased, and the cooling function of the portable ultrasonic diagnostic apparatus 100 is enhanced. be able to.
- the substrate 16 may include a plurality of substrates 16a and 16b.
- the plurality of substrates 16, 16 a, 16 b may be arranged in layers inside the main body 1. That is, the substrate 16 includes a plurality of substrates 16a and 16b substantially parallel to the substrate 16. Even when the main body 1 includes a plurality of substrates 16, 16 a, 16 b, the cooling function of the portable ultrasonic diagnostic apparatus 100 can be enhanced by securing a plurality of flow paths.
- the cooling structure and the cooling function of the main body 1 of the portable ultrasonic diagnostic apparatus 100 have been described.However, in the present embodiment, other components (for example, the battery housing portion are provided with a battery housing portion).
- the present invention can also be applied to the operation unit 2 or the display unit 3) provided.
- the number and shape of the openings, air inlets, air outlets, and fans described above can be changed as appropriate according to the shape and use state of the portable ultrasonic diagnostic apparatus 100.
- the portable ultrasonic diagnostic apparatus has an effect that the cooling efficiency of the apparatus can be increased in a portable ultrasonic diagnostic apparatus with large size and space restrictions and high substrate density. It is useful as a portable ultrasonic diagnostic device.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Computer Networks & Wireless Communication (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
This portable ultrasonic diagnostic device is provided with a frame housing a substrate internally, a battery which is housed in a battery housing unit provided inside the frame and which supplies power to the aforementioned substrate, an intake opening which is disposed in the battery housing unit and which intakes air from around the battery or substrate which has been heated by heat generated by the battery or substrate, a flow path which guides the air from around the battery or substrate taken in through the intake opening, and an exhaust opening which discharges the air from around the battery or substrate which has passed through the flow path.
Description
本発明は、携帯型超音波診断装置に関し、特に、装置の冷却システムを有する携帯型超音波診断装置に関する。
The present invention relates to a portable ultrasonic diagnostic apparatus, and more particularly to a portable ultrasonic diagnostic apparatus having an apparatus cooling system.
従来の超音波診断装置としては、移動可能な台車に各種装置を搭載したワゴンタイプが主流である。また、可搬性に優れた携帯型の超音波診断装置も、超音波診断装置として市場に流通している。例えば、ノートタイプと呼ばれる携帯型超音波診断装置は、薄型の本体と表示部を備え、表示部が、蓋として本体に折り畳み可能な構造を備えている。
As a conventional ultrasonic diagnostic apparatus, a wagon type in which various apparatuses are mounted on a movable carriage is the mainstream. Portable ultrasonic diagnostic devices with excellent portability are also available on the market as ultrasonic diagnostic devices. For example, a portable ultrasonic diagnostic apparatus called a notebook type includes a thin main body and a display unit, and the display unit has a structure that can be folded on the main body as a lid.
医用電気機器の安全規格IEC60601-1では、被検体と接触の可能性があるME機器の接触部分における最大許容温度は、48℃(1分以上触れる場合)と定められており、超音波診断装置の冷却が要求される。
According to the safety standard IEC60601-1 for medical electrical equipment, the maximum allowable temperature at the contact part of ME equipment that may be in contact with the subject is 48 ° C (when touching for more than 1 minute). Cooling is required.
ワゴンタイプでは、発熱の大きい電子部品(例えば、CPU)にヒートシンクを搭載し、排気ファンを搭載することで、冷却システムを有するが、携帯型超音波診断装置では、スペースの確保が困難であるため、ワゴンタイプと同様の冷却システムを有することは困難である。つまり、携帯型超音波診断装置は、ワゴンタイプに比べて、サイズの制約が大きく、発熱部品の冷却が容易にできない問題を抱えている。そのため、特許文献1のように、可撓基板を用いることで筐体内のスペースを確保して冷却効果を高める提案がなされている。
The wagon type has a cooling system by mounting a heat sink on an electronic component (for example, CPU) that generates a large amount of heat, and mounting an exhaust fan. However, it is difficult to secure space in a portable ultrasonic diagnostic device. It is difficult to have a cooling system similar to the wagon type. That is, the portable ultrasonic diagnostic apparatus has a problem that the size of the ultrasonic diagnostic apparatus is larger than that of the wagon type, and the heat generating components cannot be easily cooled. Therefore, as in Patent Document 1, a proposal has been made to increase the cooling effect by securing a space in the housing by using a flexible substrate.
しかしながら、可撓基板を利用する場合であっても、すべての基板を可撓とすることはできないため、空気の流路の確保が不十分であり、発熱部品の冷却が十分ではない。
However, even when a flexible substrate is used, all the substrates cannot be made flexible, so that the air flow path is not sufficiently secured, and the heat generating components are not sufficiently cooled.
そこで、本発明の目的は、サイズやスペースの制約が大きく基板密集度の高い携帯型超音波診断装置において、装置の冷却効率を高めることができる携帯型超音波診断装置を提供することである。
Therefore, an object of the present invention is to provide a portable ultrasonic diagnostic apparatus capable of increasing the cooling efficiency of the portable ultrasonic diagnostic apparatus having a large size and space restrictions and a high substrate density.
本発明の携帯型超音波診断装置は、基板を内部に有する筺体と、前記筺体内に設けられるバッテリ収容部に収容され前記基板に電力を供給するバッテリと、前記バッテリ収容部に設けられ、前記バッテリ又は前記基板によって発生された熱で加熱された前記バッテリ又は前記基板の周囲の空気を吸気する吸気用開口部と、前記吸気用開口部から吸気された前記バッテリ又は前記基板の周囲の空気を導く流路と、前記流路を通過した前記バッテリ又は前記基板の周囲の空気を排気する排気用開口部とを備える。
The portable ultrasonic diagnostic apparatus of the present invention includes a housing having a substrate therein, a battery that is housed in a battery housing portion provided in the housing and that supplies power to the substrate, and is provided in the battery housing portion, An intake opening for sucking air around the battery or the board heated by heat generated by the battery or the board; and an air around the battery or the board sucked from the intake opening. A flow path for guiding, and an exhaust opening for exhausting air around the battery or the substrate that has passed through the flow path.
この構成によれば、バッテリの排気口から空気を内部に導くことで、サイズやスペースの制約が大きく基板密集度の高い携帯型超音波診断装置において、装置の冷却効率を高めることができる。
According to this configuration, by guiding the air from the exhaust port of the battery to the inside, the cooling efficiency of the device can be increased in the portable ultrasonic diagnostic device with large size and space restrictions and high substrate density.
本発明は、サイズやスペースの制約が大きく基板密集度の高い携帯型超音波診断装置において、装置の冷却効率を高めることができる。
The present invention can increase the cooling efficiency of a portable ultrasonic diagnostic apparatus having a large substrate density and a large size and space restrictions.
以下、本発明の実施の形態の携帯型超音波診断装置について、図面を用いて説明する。
本発明の携帯型超音波診断装置には、基板を内部に有する本体筺体50と、前記筺体50内に設けられるバッテリ収容部51に収容され前記基板に電力を供給するバッテリ8と、前記バッテリ収容部51に設けられ、前記バッテリ8又は前記基板によって発生された熱で加熱された前記バッテリ8又は前記基板の周囲の空気を吸気する吸気用開口部(第1の開口部15、第3の開口部11)と、前記吸気用開口部から吸気された前記バッテリ8又は前記基板の周囲の空気を導く流路(第1の流路55、第2の流路56)と、前記流路を通過した前記バッテリ8又は前記基板の周囲の空気を排気する排気用開口部(第2の開口部10、第4の開口部12)とを備える。 Hereinafter, a portable ultrasonic diagnostic apparatus according to an embodiment of the present invention will be described with reference to the drawings.
The portable ultrasonic diagnostic apparatus of the present invention includes amain body housing 50 having a substrate therein, a battery 8 housed in a battery housing portion 51 provided in the housing 50 and supplying power to the substrate, and the battery housing An intake opening (first opening 15 and third opening) that is provided in the section 51 and sucks in air around the battery 8 or the board heated by the heat generated by the battery 8 or the board. Part 11), a flow path (first flow path 55, second flow path 56) for guiding the air around the battery 8 or the substrate sucked from the intake opening, and passes through the flow path And an exhaust opening (the second opening 10 and the fourth opening 12) for exhausting the air around the battery 8 or the substrate.
本発明の携帯型超音波診断装置には、基板を内部に有する本体筺体50と、前記筺体50内に設けられるバッテリ収容部51に収容され前記基板に電力を供給するバッテリ8と、前記バッテリ収容部51に設けられ、前記バッテリ8又は前記基板によって発生された熱で加熱された前記バッテリ8又は前記基板の周囲の空気を吸気する吸気用開口部(第1の開口部15、第3の開口部11)と、前記吸気用開口部から吸気された前記バッテリ8又は前記基板の周囲の空気を導く流路(第1の流路55、第2の流路56)と、前記流路を通過した前記バッテリ8又は前記基板の周囲の空気を排気する排気用開口部(第2の開口部10、第4の開口部12)とを備える。 Hereinafter, a portable ultrasonic diagnostic apparatus according to an embodiment of the present invention will be described with reference to the drawings.
The portable ultrasonic diagnostic apparatus of the present invention includes a
図1は、本実施の形態の携帯型超音波診断装置100を前方から見た正面斜視図である。
具体的には、図1に示すように、携帯型超音波診断装置100は、基板を内部に有する本体1と、操作部2と、表示部3とを備える。操作部2は、本体1に内蔵された基板(制御基板)に各種命令を与え、携帯型超音波診断装置100を操作する。本体1の基板は、CPU、電源回路、及びバッテリコントローラなどの回路を搭載し、搭載された回路により、探触子接続部4に接続される各種超音波探触子から送信される超音波送波信号を生成し、各種超音波探触子から受信されるエコー信号を処理する。また、基板は、搭載された回路により、表示部3に超音波画像を表示する。 FIG. 1 is a front perspective view of the portable ultrasonicdiagnostic apparatus 100 of the present embodiment as viewed from the front.
Specifically, as shown in FIG. 1, the portable ultrasonicdiagnostic apparatus 100 includes a main body 1 having a substrate therein, an operation unit 2, and a display unit 3. The operation unit 2 gives various instructions to a board (control board) built in the main body 1 to operate the portable ultrasonic diagnostic apparatus 100. The board of the main body 1 is equipped with circuits such as a CPU, a power supply circuit, and a battery controller, and the ultrasonic transmissions transmitted from various ultrasonic probes connected to the probe connection unit 4 by the mounted circuits. A wave signal is generated and echo signals received from various ultrasonic probes are processed. In addition, the substrate displays an ultrasonic image on the display unit 3 by a mounted circuit.
具体的には、図1に示すように、携帯型超音波診断装置100は、基板を内部に有する本体1と、操作部2と、表示部3とを備える。操作部2は、本体1に内蔵された基板(制御基板)に各種命令を与え、携帯型超音波診断装置100を操作する。本体1の基板は、CPU、電源回路、及びバッテリコントローラなどの回路を搭載し、搭載された回路により、探触子接続部4に接続される各種超音波探触子から送信される超音波送波信号を生成し、各種超音波探触子から受信されるエコー信号を処理する。また、基板は、搭載された回路により、表示部3に超音波画像を表示する。 FIG. 1 is a front perspective view of the portable ultrasonic
Specifically, as shown in FIG. 1, the portable ultrasonic
操作部2及び表示部3は、本体1にユニバーサルジョイント(自在継手)又はヒンジなどの接続部により接続されており、操作部2及び表示部3は、ユニバーサルジョイント又はヒンジによりそれぞれ回転可能又は開閉可能である。操作部2は、ヒンジにより表示部3に相対して閉じることができ、携帯型超音波診断装置100をコンパクトに折り畳むことができ、携帯型超音波診断装置100の持ち運びも容易にすることができる。また、表示部3は、ユニバーサルジョイント(接続部)により角度を自在に調整することができ、操作者の見やすい角度に維持することもできる。
The operation unit 2 and the display unit 3 are connected to the main body 1 through a connecting portion such as a universal joint (universal joint) or a hinge, and the operation unit 2 and the display unit 3 can be rotated or opened and closed by the universal joint or the hinge, respectively. It is. The operation unit 2 can be closed relative to the display unit 3 by a hinge, the portable ultrasonic diagnostic apparatus 100 can be folded compactly, and the portable ultrasonic diagnostic apparatus 100 can be easily carried. . Further, the display unit 3 can be freely adjusted in angle by a universal joint (connection unit), and can be maintained at an angle that is easy for the operator to see.
図2は、操作部2と表示部3が閉じられた状態を示した図である。このように、操作部2を跳ね上げることで、設置スペースを削減することができる。
FIG. 2 is a diagram showing a state in which the operation unit 2 and the display unit 3 are closed. In this way, the installation space can be reduced by flipping up the operation unit 2.
図2に示すように、本体1は、基板を内部に有する筺体50と、バッテリ(バッテリパック)8を収容するバッテリ収容部51と、超音波探触子を接続する探触子接続部4とを備える。バッテリ8は、バッテリ吸気口9を有し、空気をバッテリ8の一部に通過させる。
As shown in FIG. 2, the main body 1 includes a housing 50 having a substrate inside, a battery housing portion 51 that houses a battery (battery pack) 8, and a probe connection portion 4 that connects an ultrasonic probe. Is provided. The battery 8 has a battery inlet 9 and allows air to pass through a part of the battery 8.
操作部2は、操作部2の内部を冷却するために吸気する操作部吸気口6と、操作部吸気口6からの吸気を排気する操作部排気口7とを備える。操作部吸気口6は、筺体50の側方に設けられた探触子接続部4側に設けられる。操作部吸気口6からの排気(熱風)が被検体に直接当たらないように、操作部排気口7は、探触子接続部4の反対側に設けられる。この構成によれば、操作部2に操作部吸気口6と操作部排気口7が設けられることで、操作部2の内部を冷却する流路を確保することができ、携帯型超音波診断装置100の冷却効果を高めることができるとともに、排気(熱風)が被検体に直接当たらないようにすることができる。また、操作部2は、操作部吸気口6からの吸気の気流を生じさせるファン5を備える。
The operation unit 2 includes an operation unit intake port 6 that intakes air to cool the inside of the operation unit 2 and an operation unit exhaust port 7 that exhausts intake air from the operation unit intake port 6. The operation unit intake port 6 is provided on the probe connection unit 4 side provided on the side of the housing 50. The operation unit exhaust port 7 is provided on the opposite side of the probe connection unit 4 so that the exhaust (hot air) from the operation unit intake port 6 does not directly hit the subject. According to this configuration, since the operation unit intake port 6 and the operation unit exhaust port 7 are provided in the operation unit 2, a flow path for cooling the inside of the operation unit 2 can be secured, and the portable ultrasonic diagnostic apparatus The cooling effect of 100 can be enhanced, and exhaust (hot air) can be prevented from directly hitting the subject. In addition, the operation unit 2 includes a fan 5 that generates an airflow of intake air from the operation unit intake port 6.
図3は、バッテリ収容部51に収容されるバッテリ8を前方から見た正面斜視図である。バッテリ8は、バッテリ8へ吸気するバッテリ吸気口9と、バッテリ吸気口9からの吸気をバッテリ排気として排気するバッテリ排気口19と、蓄電部20を備える。バッテリ吸気口9は、バッテリ8がバッテリ収容部51に収容された状態で、バッテリ8の前方(前面)に位置する。バッテリ排気口19は、バッテリ8がバッテリ収容部51に収容された状態で、バッテリ8の前方上部に位置する。複数のバッテリ吸気口9及び複数のバッテリ排気口19は、複数の隔壁21によって区画される。複数の隔壁21により、バッテリ前方及び前方上部に空間が確保されるので、複数の隔壁21で囲まれた空間が、バッテリ8に対する落下などの衝撃を吸収する。
FIG. 3 is a front perspective view of the battery 8 accommodated in the battery accommodating portion 51 as viewed from the front. The battery 8 includes a battery intake port 9 that intakes air into the battery 8, a battery exhaust port 19 that exhausts intake air from the battery intake port 9 as battery exhaust, and a power storage unit 20. The battery air inlet 9 is located in front of the battery 8 (front surface) in a state where the battery 8 is accommodated in the battery accommodating portion 51. The battery exhaust port 19 is located in the upper front portion of the battery 8 in a state where the battery 8 is housed in the battery housing portion 51. The plurality of battery intake ports 9 and the plurality of battery exhaust ports 19 are partitioned by a plurality of partition walls 21. Since the space is secured in front of the battery and in the upper front portion by the plurality of partition walls 21, the space surrounded by the plurality of partition walls 21 absorbs an impact such as a drop on the battery 8.
例えば、バッテリ8の落下に対して、バッテリ8の蓄電部20や回路が保護される。この構成によれば、従来は空気の流路を塞いでいたバッテリにバッテリ吸気口9とバッテリ排気口19を設けることで、サイズやスペースの制約が大きく基板密集度の高い携帯型超音波診断装置において、装置の冷却効率を高めることができるとともに、複数の隔壁で囲まれた空間により、バッテリに対する衝撃を吸収することができる。
For example, the storage unit 20 and the circuit of the battery 8 are protected against the fall of the battery 8. According to this configuration, by providing the battery intake port 9 and the battery exhaust port 19 in the battery that has conventionally blocked the air flow path, the portable ultrasonic diagnostic device has a large size and space restrictions and a high density of the board. In addition, the cooling efficiency of the apparatus can be increased, and the impact on the battery can be absorbed by the space surrounded by the plurality of partition walls.
図4は、携帯型超音波診断装置100を後方から見た背面斜視図である。本体1は、基板を内部に有する筺体50と、バッテリ8を収容するバッテリ収容部51(図2)と、バッテリ収容部51に設けられる第1の開口部(後述)と、第1の開口部からの吸気を排気する第2の開口部10と、筺体50の上部(上面)に設けられる第3の開口部11と、筐体50の後方に設けられ、第3の開口部11からの吸気を排気する第4の開口部12と、探触子接続部4(図2)と反対の側方(側面)に設けられる側方開口部13とを備える。
FIG. 4 is a rear perspective view of the portable ultrasonic diagnostic apparatus 100 as seen from the rear. The main body 1 includes a housing 50 having a substrate inside, a battery housing 51 (FIG. 2) for housing the battery 8, a first opening (described later) provided in the battery housing 51, and a first opening The second opening 10 for exhausting the intake air from the air, the third opening 11 provided in the upper part (upper surface) of the housing 50, and the intake air from the third opening 11 provided behind the housing 50 And a side opening 13 provided on the side (side surface) opposite to the probe connection part 4 (FIG. 2).
排気(熱風)が被検体に直接当たらないように、側方開口部13は、探触子接続部4(図2)と反対の側方(側面)に設けられる。また、本体1は、USBポート等の各種インターフェース14を備える。この構成によれば、側方開口部13から第2の開口部10への流路を確保することで、複数の流路を確保することができ、携帯型超音波診断装置100の冷却効果を高めることができるとともに、排気(熱風)が被検体に直接当たらないようにすることができる。
The side opening 13 is provided on the side (side) opposite to the probe connector 4 (FIG. 2) so that the exhaust (hot air) does not directly hit the subject. The main body 1 also includes various interfaces 14 such as a USB port. According to this configuration, by securing a flow path from the side opening 13 to the second opening 10, a plurality of flow paths can be secured, and the cooling effect of the portable ultrasonic diagnostic device 100 can be increased. In addition, the exhaust gas (hot air) can be prevented from directly hitting the subject.
図5は、本体1を前方から見た正面斜視図である。本体1には、超音波探触子を接続する探触子接続部4が、筐体50の側方(側面)に設けられる。筐体50の前方下部に設けられたバッテリ収容部51に、バッテリ(バッテリパック)8が収容される。空気を吸気するバッテリ吸気口9は、筐体50の前方下部(デッドスペース)に設けられることになる。よって、図1の状態にしたとき、バッテリ吸気口9が目立たなくなる。
FIG. 5 is a front perspective view of the main body 1 as viewed from the front. The main body 1 is provided with a probe connecting portion 4 for connecting an ultrasonic probe on the side (side surface) of the housing 50. A battery (battery pack) 8 is accommodated in a battery accommodating portion 51 provided in the lower front part of the housing 50. The battery air inlet 9 for taking in air is provided in the front lower part (dead space) of the housing 50. Therefore, when the state shown in FIG. 1 is established, the battery air inlet 9 becomes inconspicuous.
第1の開口部15は、バッテリ8の一部を通過したバッテリ排気を吸気するために、バッテリ収容部51(筐体50の前方)に設けられる。第1の開口部15は、バッテリ8がバッテリ収容部51に収容された状態で、バッテリ排気口19に対向する位置に設けられる。第1の開口部15は、本体1と表示部3とを接続するユニバーサルジョイント(接続部)30の界面に設けられる。また、第1の開口部15は、バッテリ収容部51であれば、ユニバーサルジョイント(接続部)30以外の部分(例えば、バッテリ収容部51の上部又は後方)の界面に設けられてもよい。
The first opening 15 is provided in the battery accommodating part 51 (in front of the casing 50) in order to take in the battery exhaust that has passed through a part of the battery 8. The first opening 15 is provided at a position facing the battery exhaust port 19 in a state where the battery 8 is housed in the battery housing 51. The first opening 15 is provided at the interface of a universal joint (connection part) 30 that connects the main body 1 and the display part 3. Further, in the case of the battery housing portion 51, the first opening portion 15 may be provided at an interface of a portion other than the universal joint (connection portion) 30 (for example, an upper portion or a rear portion of the battery housing portion 51).
次に、携帯型超音波診断装置100の空気(吸気及び排気)の流れについて説明する。
図6に示すように、空気は、バッテリ吸気口9から吸気され、バッテリ8の一部を通過して、バッテリ排気口19から排気される。空気は、バッテリ8を冷却するために、バッテリ8の一部を通過している。 Next, the flow of air (intake and exhaust) of the portable ultrasonicdiagnostic apparatus 100 will be described.
As shown in FIG. 6, the air is sucked from thebattery inlet 9, passes through a part of the battery 8, and is exhausted from the battery exhaust 19. The air passes through a part of the battery 8 to cool the battery 8.
図6に示すように、空気は、バッテリ吸気口9から吸気され、バッテリ8の一部を通過して、バッテリ排気口19から排気される。空気は、バッテリ8を冷却するために、バッテリ8の一部を通過している。 Next, the flow of air (intake and exhaust) of the portable ultrasonic
As shown in FIG. 6, the air is sucked from the
図7に示すように、バッテリ排気口19から排気された空気は、第1の開口部15から吸気され、本体1の内部(第1の流路)に導かれる。また、第3の開口部11から吸気された空気は、本体1の内部(第2の流路)に導かれた後、第4の開口部12から排気される。なお、第1の流路は、バッテリ8の表面を沿うように設けてもよい。これにより、バッテリ8の冷却の効率が良くなる。
As shown in FIG. 7, the air exhausted from the battery exhaust port 19 is sucked from the first opening 15 and guided to the inside of the main body 1 (first flow path). The air sucked from the third opening 11 is exhausted from the fourth opening 12 after being guided to the inside of the main body 1 (second flow path). Note that the first flow path may be provided along the surface of the battery 8. Thereby, the cooling efficiency of the battery 8 is improved.
図8に示すように、第1の開口部15から本体1の内部(第1の流路)に導かれた空気は、筐体50の後方に設けられた第2の開口部10から排気される。空気が、側方開口部13から吸気され、本体1の内部(第1の流路)に導かれた後、筐体50の後方に設けられた第2の開口部10から排気される。
As shown in FIG. 8, the air guided from the first opening 15 to the inside of the main body 1 (first flow path) is exhausted from the second opening 10 provided at the rear of the housing 50. The Air is sucked from the side opening 13, guided to the inside of the main body 1 (first flow path), and then exhausted from the second opening 10 provided behind the housing 50.
次に、吸気及び排気される空気の流路について説明する。図9は、本体1の模式的な内部構造を後方から見た背面斜視図である。筺体50は、筺体後方部22と、筺体上部23と、筺体下部24とを備える。筺体後方部22は、第2の開口部10を備える。筺体上部23は、第3の開口部11と第4の開口部12とを備える。筺体50は、内部に基板16を備える。基板16は、下面部(第1の平面部)53と上面部(第2の平面部)54とを有する。基板16は、携帯型超音波診断装置100の機能を実現する種々の回路を搭載する。
Next, the flow path of air that is sucked and exhausted will be described. FIG. 9 is a rear perspective view of the schematic internal structure of the main body 1 as viewed from the rear. The housing 50 includes a housing rear portion 22, a housing upper portion 23, and a housing lower portion 24. The housing rear part 22 includes a second opening 10. The housing upper part 23 includes a third opening 11 and a fourth opening 12. The housing 50 includes the substrate 16 therein. The substrate 16 has a lower surface portion (first flat surface portion) 53 and an upper surface portion (second flat surface portion) 54. The substrate 16 is mounted with various circuits that realize the functions of the portable ultrasonic diagnostic apparatus 100.
例えば、基板16の下面部(第1の平面部)53は、バッテリ8や外部電源に接続されて各部の電源を生成する電源部や電源コントローラなどを搭載する。また、基板16の上面部(第2の平面部)54は、超音波探触子の超音波送受信信号を制御する信号制御部や、超音波受信信号を基に超音波画像を演算する演算部や、インターフェース14の入出力制御を担うI/O部などを搭載する。図9は模式図であるため、基板16に搭載されている部品は省略されているが、この他にも多くの回路部品(例えば、CPU、抵抗、コンデンサ、種々のデジタルIC、LSI、アナログICなど)が、基板16に搭載されており、高密度実装されている。図9には、発熱の大きい部品としてCPU29が示されている。図示しないが、基板16の下面部(第1の平面部)53にも、CPU29などが搭載されている。
For example, the lower surface portion (first flat surface portion) 53 of the substrate 16 is mounted with a power supply unit, a power supply controller, and the like that are connected to the battery 8 and an external power supply to generate power for each unit. Further, the upper surface portion (second flat surface portion) 54 of the substrate 16 includes a signal control unit that controls an ultrasonic transmission / reception signal of the ultrasonic probe, and a calculation unit that calculates an ultrasonic image based on the ultrasonic reception signal. In addition, an I / O unit responsible for input / output control of the interface 14 is installed. Since FIG. 9 is a schematic diagram, components mounted on the board 16 are omitted, but many other circuit components (for example, CPU, resistors, capacitors, various digital ICs, LSIs, analog ICs) are omitted. Etc.) is mounted on the substrate 16 and is mounted with high density. FIG. 9 shows the CPU 29 as a component that generates a large amount of heat. Although not shown, the CPU 29 and the like are also mounted on the lower surface portion (first flat surface portion) 53 of the substrate 16.
携帯型超音波診断装置100は、基板16を冷却するために、第1の開口部15からの吸気を導く流路(第1の流路)55を備える。流路(第1の流路)55は、基板16の下面部(第1の平面部)53により構成され、基板16の平面方向に沿って、第1の開口部15からの吸気を導く。第2の開口部10は、流路(第1の流路)55を通過した吸気を排気する。この構成によれば、基板16の下面部53により流路が構成されることで、デッドスペースであった部分を流路として活用することができる。
The portable ultrasonic diagnostic apparatus 100 includes a flow path (first flow path) 55 that guides intake air from the first opening 15 in order to cool the substrate 16. The flow path (first flow path) 55 is configured by a lower surface portion (first flat surface portion) 53 of the substrate 16 and guides intake air from the first opening 15 along the planar direction of the substrate 16. The second opening 10 exhausts the intake air that has passed through the flow path (first flow path) 55. According to this configuration, since the flow path is configured by the lower surface portion 53 of the substrate 16, a portion that was a dead space can be used as the flow path.
携帯型超音波診断装置100は、第1の開口部15からの吸気の気流を生じさせる第1のファン18と、第3の開口部11からの吸気の気流を生じさせる第2のファン17とを備える。この構成によれば、第1のファン18が吸気の気流を生じさせることで、第1の流路55を通過する空気の流れを促すことができ、第2のファン17が吸気の気流を生じさせることで、本体1の内部を通過する空気の流れを促すことができ、携帯型超音波診断装置100の冷却効果を高めることができる。
The portable ultrasonic diagnostic apparatus 100 includes a first fan 18 that generates an intake airflow from the first opening 15, and a second fan 17 that generates an intake airflow from the third opening 11. Is provided. According to this configuration, the first fan 18 generates an air flow of intake air, so that the flow of air passing through the first flow path 55 can be promoted, and the second fan 17 generates an air flow of intake air. By doing so, the flow of air passing through the inside of the main body 1 can be promoted, and the cooling effect of the portable ultrasonic diagnostic apparatus 100 can be enhanced.
バッテリ8がバッテリ収容部51に収容された状態で、バッテリ吸気口9は、筐体50の前方に位置し、第2の開口部10は、筐体50の後方に位置する。この構成によれば、バッテリ吸気口9から第2の開口部10へ、直線的に空気が通過するので、空気が筐体の内部に滞留することなく、携帯型超音波診断装置100の冷却効果を高めることができる。
In a state where the battery 8 is accommodated in the battery accommodating portion 51, the battery intake port 9 is located in front of the casing 50, and the second opening 10 is located in the rear of the casing 50. According to this configuration, since air linearly passes from the battery inlet 9 to the second opening 10, the cooling effect of the portable ultrasonic diagnostic device 100 without air staying inside the housing Can be increased.
図10は、本体1の前後方向に沿った中央断面図である。図10に示すように、バッテリ吸気口9から吸気された空気が、バッテリ8の一部を通過し、バッテリ排気口19から排気される。この場合、バッテリ8の一部を通過する空気が、バッテリ8を冷却してもよい。また、バッテリ吸気口9とバッテリ排気口19は、それぞれバッテリ8の前方上部と上部に設けられ、直交する位置に配置されているが、バッテリ排気口19がバッテリ8の後方に設けられ、バッテリ吸気口9からの吸気が、バッテリ8の内部を通過して、バッテリ排気口19から排気されてもよい。また、空気がバッテリ8を通過するための流路は、バッテリ8の冷却効果を高めるために、波状に形成されてもよい。
FIG. 10 is a central sectional view of the main body 1 along the front-rear direction. As shown in FIG. 10, the air sucked from the battery intake port 9 passes through a part of the battery 8 and is exhausted from the battery exhaust port 19. In this case, the air passing through a part of the battery 8 may cool the battery 8. In addition, the battery air inlet 9 and the battery air outlet 19 are provided at the front upper part and the upper part of the battery 8, respectively, and are arranged at orthogonal positions. However, the battery air outlet 19 is provided at the rear of the battery 8 and The intake air from the port 9 may pass through the inside of the battery 8 and be exhausted from the battery exhaust port 19. Further, the flow path for the air to pass through the battery 8 may be formed in a wave shape in order to enhance the cooling effect of the battery 8.
バッテリ排気口19から排気された空気は、バッテリ収容部51に設けられた第1の開口部15から吸気される。第1の開口部15は、サイズやスペースの制約を考慮して、接続部30(図5)に設けられてもよい。また、バッテリ排気口19の位置に合わせて、第1の開口部15の位置が定められてもよい。例えば、バッテリ排気口19がバッテリ8の後方に設けられる場合、第1の開口部15は、バッテリ収容部51の後方に設けられてもよい。また、第1の開口部15は、複数設けられてもよい。
The air exhausted from the battery exhaust port 19 is sucked from the first opening 15 provided in the battery housing 51. The first opening 15 may be provided in the connection portion 30 (FIG. 5) in consideration of size and space restrictions. Further, the position of the first opening 15 may be determined in accordance with the position of the battery exhaust port 19. For example, when the battery exhaust port 19 is provided behind the battery 8, the first opening 15 may be provided behind the battery housing part 51. A plurality of first openings 15 may be provided.
第1の開口部15から吸気された空気は、本体1の内部に導かれ、バッテリ収容部51と基板16との間に形成される流路(第1の流路)55の前段流路55aを通過し、後段流路55bを通過する。流路(第1の流路)55を通過する空気は、主に、基板16の下面部(第1の平面部)53側を冷却する。図10に示すように、前段流路55aは、後段流路55bに比べ、空間が狭くなるように構成されている。この結果、前段流路55aを通過する空気の流速は、後段流路55bを通過する空気の流速に比べ、速くなり、基板16の冷却効果が高まる。
The air sucked from the first opening 15 is guided to the inside of the main body 1 and is a pre-stage flow path 55a of the flow path (first flow path) 55 formed between the battery housing portion 51 and the substrate 16. And then passes through the rear flow path 55b. The air passing through the flow path (first flow path) 55 mainly cools the lower surface portion (first flat surface portion) 53 side of the substrate 16. As shown in FIG. 10, the front channel 55a is configured to have a smaller space than the rear channel 55b. As a result, the flow rate of air passing through the front-stage flow channel 55a is faster than the flow rate of air passing through the rear-stage flow channel 55b, and the cooling effect of the substrate 16 is enhanced.
流路(第1の流路)55を通過した空気は、第2の開口部10から排気される。
The air that has passed through the flow path (first flow path) 55 is exhausted from the second opening 10.
筐体50の上面に設けられた第3の開口部11から吸気された空気は、本体1の内部(第2の流路56)に導かれる。つまり、筐体50の上面に設けられた第3の開口部11は、基板16の上面部(第2の平面部)54を冷却するために吸気する。流路(第2の流路)56は、流路(第2の流路)56は、基板16の上面部(第2の平面部)54により構成され、第3の開口部11からの吸気を導く。流路(第2の流路)56は、基板16の平面方向に沿って、第3の開口部11からの吸気を導く。筐体50の後方に設けられた第4の開口部12は、流路(第2の流路)56を通過した吸気を排気する。この構成によれば、バッテリ排気口19から空気を内部に導くとともに、複数の流路を確保することで、基板の両面(上下面)を同時に冷却することができ、サイズやスペースの制約が大きく基板密集度の高い携帯型超音波診断装置100において、装置の冷却効率を高めることができる。
The air sucked from the third opening 11 provided on the upper surface of the housing 50 is guided to the inside of the main body 1 (second flow path 56). In other words, the third opening 11 provided on the upper surface of the housing 50 sucks air in order to cool the upper surface portion (second flat surface portion) 54 of the substrate 16. The flow path (second flow path) 56 is a flow path (second flow path) 56, which is constituted by the upper surface portion (second flat surface portion) 54 of the substrate 16, and intake air from the third opening 11 Lead. The flow path (second flow path) 56 guides the intake air from the third opening 11 along the planar direction of the substrate 16. The fourth opening 12 provided at the rear of the housing 50 exhausts the intake air that has passed through the flow path (second flow path) 56. According to this configuration, air is guided from the battery exhaust port 19 to the inside, and by securing a plurality of flow paths, both surfaces (upper and lower surfaces) of the substrate can be cooled at the same time, greatly restricting size and space. In portable ultrasonic diagnostic apparatus 100 with high substrate density, the cooling efficiency of the apparatus can be increased.
図10に示すように、バッテリ8がバッテリ収容部51に収容された状態で、バッテリ吸気口9及び第2の開口部10が筐体50の前後方向で対向している。また、バッテリ吸気口9は、筐体50の前方に位置し、第2の開口部10は、筐体50の後方に位置する。
As shown in FIG. 10, the battery air inlet 9 and the second opening 10 face each other in the front-rear direction of the housing 50 in a state where the battery 8 is housed in the battery housing 51. The battery inlet 9 is located in front of the housing 50, and the second opening 10 is located in the rear of the housing 50.
この結果、バッテリ吸気口9から第2の開口部10へ(本体1の前方から後方へ)、直線的に空気が通過するので、空気が筐体50の内部に滞留することなく、装置の冷却効果を高めることができる。
As a result, air passes linearly from the battery inlet 9 to the second opening 10 (from the front to the rear of the main body 1), so that the air is not retained inside the housing 50 and the device is cooled. The effect can be enhanced.
バッテリ8の本体1への挿入を容易にするために、バッテリ8は、本体1の前方からバッテリ収容部51へ挿入される。したがって、サイズやスペースの制約を考慮すると、従来は、バッテリ8は、本体1の前方からの空気の流路を塞いでいた。また、本体1の側方には、側方開口部13を設けて吸気が行われるが、探触子接続部4や各種インターフェース14にスペースが割かれることから、充分な通気口の確保が難しくなり、側方開口部13だけでは充分な冷却を行うことができなかった。さらに、側方開口部13からの吸気が本体1の側方から後方へ(側方開口部13から第2の開口部10へ)非直線的に通過するため、空気が筐体50の内部に滞留していた。
In order to facilitate the insertion of the battery 8 into the main body 1, the battery 8 is inserted into the battery housing 51 from the front of the main body 1. Therefore, considering the size and space restrictions, conventionally, the battery 8 has blocked the air flow path from the front of the main body 1. In addition, a side opening 13 is provided on the side of the main body 1 for intake, but space is divided for the probe connection 4 and various interfaces 14, making it difficult to secure sufficient ventilation holes. Thus, sufficient cooling could not be performed with only the side openings 13. Further, since the intake air from the side opening 13 passes non-linearly from the side of the main body 1 to the rear (from the side opening 13 to the second opening 10), the air enters the housing 50. It stayed.
一方、本実施の形態では、バッテリ8にバッテリ吸気口9とバッテリ排気口19を設けることで、バッテリ8の内部に流路を確保し、本体1の前方から後方へ直線的に空気が通過する流路を確保することができる。この結果、サイズやスペースの制約を満たす携帯型超音波診断装置100の冷却機能を高めることができ、バッテリ8を冷却することもできる。また、バッテリ吸気口9は、携帯型超音波診断装置100の使用時に、操作部2の後方に隠れるため、異物の混入を防ぐことができ、安定した空気の流入を確保することができる。
On the other hand, in the present embodiment, by providing the battery 8 with the battery intake port 9 and the battery exhaust port 19, a flow path is secured inside the battery 8, and air passes linearly from the front to the rear of the main body 1. A flow path can be secured. As a result, the cooling function of the portable ultrasonic diagnostic apparatus 100 that satisfies the size and space restrictions can be enhanced, and the battery 8 can also be cooled. Further, since the battery inlet 9 is hidden behind the operation unit 2 when the portable ultrasonic diagnostic apparatus 100 is used, it is possible to prevent foreign matter from being mixed in and to ensure a stable inflow of air.
また、本実施の形態では、本体1の内部に第1の流路55と第2の流路56を設け、第1の流路55を通過する空気が、基板16の第1の平面部53を冷却し、第2の流路56を通過する空気が、基板16の第2の平面部54を冷却することで、基板16の両面(上下面)を同時に冷却することができるので、携帯型超音波診断装置100の冷却機能を高めることができる。第1の流路55は、基板16の下部(基板16と筐体下部24との間)に形成されることで、デッドスペースであった部分を流路として活用することができる。特に、前段流路55aは、バッテリ収容部51と基板16との間に形成されることで、デッドスペースであった部分を流路として活用することができる。また、前段流路55aは、後段流路55bよりも狭く形成されているので、前段流路55aを通過する空気の速度を速くすることができ、携帯型超音波診断装置100の冷却機能を高めることができる。
Further, in the present embodiment, the first flow path 55 and the second flow path 56 are provided inside the main body 1, and the air passing through the first flow path 55 is the first flat portion 53 of the substrate 16. Since the air passing through the second flow path 56 cools the second flat surface portion 54 of the substrate 16, both surfaces (upper and lower surfaces) of the substrate 16 can be simultaneously cooled. The cooling function of the ultrasonic diagnostic apparatus 100 can be enhanced. The first channel 55 is formed in the lower part of the substrate 16 (between the substrate 16 and the housing lower part 24), so that the portion that was a dead space can be used as the channel. In particular, the front flow path 55a is formed between the battery housing part 51 and the substrate 16, so that the portion that was a dead space can be used as the flow path. Further, since the front-stage flow channel 55a is formed narrower than the rear-stage flow channel 55b, the speed of air passing through the front-stage flow channel 55a can be increased, and the cooling function of the portable ultrasonic diagnostic apparatus 100 is enhanced. be able to.
以上、本発明にかかる実施の形態について説明したが、本発明はこれらに限定されるものではなく、請求項に記載された範囲内において変更・変形することが可能である。
As mentioned above, although embodiment concerning this invention was described, this invention is not limited to these, It is possible to change and change within the range described in the claim.
例えば、図11に示すように、基板16は、複数の基板16a,16bを備えてもよい。複数の基板16,16a,16bは、本体1の内部で、層状に配置されてもよい。つまり、基板16は、基板16と略平行に複数の基板16a,16bを備える。本体1が、複数の基板16,16a,16bを備える場合であっても、流路を複数確保することで、携帯型超音波診断装置100の冷却機能を高めることができる。
For example, as shown in FIG. 11, the substrate 16 may include a plurality of substrates 16a and 16b. The plurality of substrates 16, 16 a, 16 b may be arranged in layers inside the main body 1. That is, the substrate 16 includes a plurality of substrates 16a and 16b substantially parallel to the substrate 16. Even when the main body 1 includes a plurality of substrates 16, 16 a, 16 b, the cooling function of the portable ultrasonic diagnostic apparatus 100 can be enhanced by securing a plurality of flow paths.
また、本実施の形態では、携帯型超音波診断装置100の本体1の冷却構造及び冷却機能について説明したが、本実施の形態は、バッテリ収容部を備えるその他の部品(例えば、バッテリ収容部を備える操作部2又は表示部3)にも適用可能である。
In the present embodiment, the cooling structure and the cooling function of the main body 1 of the portable ultrasonic diagnostic apparatus 100 have been described.However, in the present embodiment, other components (for example, the battery housing portion are provided with a battery housing portion). The present invention can also be applied to the operation unit 2 or the display unit 3) provided.
また、上記の開口部、吸気口、排気口、及びファンの数や形状は、携帯型超音波診断装置100の形状や使用状態などに応じて、適宜変更可能である。
In addition, the number and shape of the openings, air inlets, air outlets, and fans described above can be changed as appropriate according to the shape and use state of the portable ultrasonic diagnostic apparatus 100.
本発明にかかる携帯型超音波診断装置は、サイズやスペースの制約が大きく基板密集度の高い携帯型超音波診断装置において、装置の冷却効率を高めることができるという効果を有し、冷却システムを有する携帯型超音波診断装置などとして有用である。
The portable ultrasonic diagnostic apparatus according to the present invention has an effect that the cooling efficiency of the apparatus can be increased in a portable ultrasonic diagnostic apparatus with large size and space restrictions and high substrate density. It is useful as a portable ultrasonic diagnostic device.
1 本体、2 操作部、3 表示部、4 探触子接続部、5,17,18 ファン、6 操作部吸気口、7 操作部排気口、8 バッテリ、9 バッテリ吸気口、10 第2の開口部、11 第3の開口部、12 第4の開口部、13 側方開口部、14 インターフェース、15 第1の開口部、16 基板、19 バッテリ排気口、20 蓄電部、21 隔壁、22 筐体後方部、23 筐体上部、24 筐体下部、29 CPU、30 ユニバーサルジョイント(接続部)、50 筐体、51 バッテリ収容部、53 第1の平面部、54 第2の平面部、55 第1の流路、56 第2の流路、100 携帯型超音波診断装置
1 body, 2 operation section, 3 display section, 4 probe connection section, 5, 17, 18 fan, 6 operation section intake, 7 operation section exhaust, 8 battery, 9 battery intake, 10 second opening 11, 11 3rd opening, 12 4th opening, 13 side opening, 14 interface, 15 1st opening, 16 substrate, 19 battery exhaust, 20 power storage, 21 bulkhead, 22 housing Rear part, 23 upper case, 24 lower case, 29 CPU, 30 universal joint (connection part), 50 case, 51 battery housing part, 53 first flat part, 54 second flat part, 55 first Channel, 56 second channel, 100 portable ultrasonic diagnostic equipment
Claims (15)
- 基板を内部に有する筺体と、
前記筺体内に設けられるバッテリ収容部に収容され前記基板に電力を供給するバッテリと、
前記バッテリ収容部に設けられ、前記バッテリ又は前記基板によって発生された熱で加熱された前記バッテリ又は前記基板の周囲の空気を吸気する吸気用開口部と、
前記吸気用開口部から吸気された前記バッテリ又は前記基板の周囲の空気を導く流路と、
前記流路を通過した前記バッテリ又は前記基板の周囲の空気を排気する排気用開口部と
を備えたことを特徴とする携帯型超音波診断装置。 A housing having a substrate inside;
A battery that is housed in a battery housing provided in the housing and supplies power to the substrate;
An intake opening that is provided in the battery housing and sucks in air around the battery or the substrate heated by heat generated by the battery or the substrate;
A flow path for guiding air around the battery or the substrate sucked from the intake opening;
A portable ultrasonic diagnostic apparatus comprising: an exhaust opening for exhausting air around the battery or the substrate that has passed through the flow path. - 前記流路は、前記基板の平面部により構成され、前記基板の平面方向に沿って、前記吸気用開口部から吸気された前記バッテリの周囲の空気を導くことを特徴とする請求項1に記載の携帯型超音波診断装置。 2. The flow path is configured by a planar portion of the substrate, and guides air around the battery sucked from the intake opening along a planar direction of the substrate. Portable ultrasonic diagnostic equipment.
- 前記吸気用開口部は、前記筐体の前方に設けられ前記基板の下面部の周囲の空気を吸気する第1の開口部と、前記筐体の上面に設けられ前記基板の上面部の周囲の空気を吸気する第3の開口部とを具備し、
前記流路は、前記基板の下面部の平面方向に沿って、前記第1の開口部から吸気される前記基板の下面部の周囲の空気を導く第1の流路と、前記基板の上面部の平面方向に沿って、前記第3の開口部から吸気される前記基板の上面部の周囲の空気を導く第2の流路とを具備し、
前記排気用開口部は、前記筐体の後方に設けられ、前記第1の流路を通過した吸気された前記基板の下面部の周囲の空気を排気する第2の開口部と、前記第2の流路を通過した吸気された前記基板の上面部の周囲の空気を排気する第4の開口部と、を具備した
ことを特徴とする請求項1に記載の携帯型超音波診断装置。 The intake opening includes a first opening provided in front of the housing for sucking air around a lower surface portion of the substrate, and an upper surface of the housing provided around the upper surface portion of the substrate. A third opening for sucking air;
The flow path includes a first flow path that guides air around the lower surface portion of the substrate sucked from the first opening along a planar direction of the lower surface portion of the substrate, and an upper surface portion of the substrate. A second flow path for guiding the air around the upper surface portion of the substrate sucked from the third opening along the plane direction of
The exhaust opening is provided at the rear of the housing, and a second opening that exhausts the air around the lower surface of the substrate that has been sucked and has passed through the first flow path, and the second 2. The portable ultrasonic diagnostic apparatus according to claim 1, further comprising: a fourth opening that exhausts air around the upper surface of the substrate that has been sucked through the flow path. - 前記バッテリは、
前記バッテリの周囲の空気を吸気するバッテリ吸気口と、
前記吸気された前記バッテリの周囲の空気を前記バッテリの排気として排気するバッテリ排気口と
を備えたことを特徴とする請求項1に記載の携帯型超音波診断装置。 The battery is
A battery air inlet for inhaling air around the battery;
2. The portable ultrasonic diagnostic apparatus according to claim 1, further comprising a battery exhaust port that exhausts the air around the battery that has been taken in as exhaust of the battery. - 前記バッテリが前記バッテリ収容部に収容された状態で、前記バッテリ吸気口は、前記筐体の前方に位置し、前記第2の開口部は、前記筐体の後方に位置することを特徴とする請求項4に記載の携帯型超音波診断装置。 In a state where the battery is housed in the battery housing portion, the battery air inlet is located in front of the housing, and the second opening is located in the rear of the housing. The portable ultrasonic diagnostic apparatus according to claim 4.
- 前記筐体の側方に設けられ、超音波探触子を接続する探触子接続部と、
前記探触子接続部と反対の側方に設けられる側方開口部と
を備えたことを特徴とする請求項1に記載の携帯型超音波診断装置。 A probe connecting portion provided on a side of the housing for connecting an ultrasonic probe; and
2. The portable ultrasonic diagnostic apparatus according to claim 1, further comprising a side opening provided on a side opposite to the probe connecting portion. - 前記吸気用開口部に吸気された前記バッテリ又は前記基板の周囲の空気に気流を生じさせるファンを備えたことを特徴とする請求項1に記載の携帯型超音波診断装置。 2. The portable ultrasonic diagnostic apparatus according to claim 1, further comprising a fan that generates an air flow in the air around the battery or the board sucked into the intake opening.
- 前記第1の開口部に吸気された前記基板の下面部の周囲の空気の気流を生じさせる第1のファンと、
前記第3の開口部に吸気された前記基板の上面部の周囲の空気の気流を生じさせる第2のファンと
を備えることを特徴とする請求項3に記載の携帯型超音波診断装置。 A first fan that generates an air flow around the lower surface of the substrate sucked into the first opening;
4. The portable ultrasonic diagnostic apparatus according to claim 3, further comprising a second fan that generates an air flow around the upper surface portion of the substrate sucked into the third opening. - 前記基板と略平行に複数の基板を備えることを特徴とする請求項1に記載の携帯型超音波診断装置。 2. The portable ultrasonic diagnostic apparatus according to claim 1, further comprising a plurality of substrates substantially parallel to the substrate.
- 前記筐体の側方に設けられ、超音波探触子を接続する探触子接続部と、
前記携帯型超音波診断装置を操作する操作部と、
前記操作部に設けられ、前記操作部の周囲の空気を吸気する操作部吸気口と、前記操作部に設けられ、前記操作部吸気口から吸気された前記操作部の周囲の空気を排気する操作部排気口とを備え、
前記操作部吸気口は、前記探触子接続部側に設けられ、
前記操作部排気口は、前記探触子接続部の反対側に設けられることを特徴とする請求項1に記載の携帯型超音波診断装置。 A probe connecting portion provided on a side of the housing for connecting an ultrasonic probe; and
An operation unit for operating the portable ultrasonic diagnostic apparatus;
An operation unit intake port that is provided in the operation unit and sucks air around the operation unit, and an operation that is provided in the operation unit and exhausts air around the operation unit that is sucked from the operation unit intake port. Part exhaust port,
The operation part intake port is provided on the probe connection part side,
2. The portable ultrasonic diagnostic apparatus according to claim 1, wherein the operation unit exhaust port is provided on a side opposite to the probe connection unit. - 基板を内部に有する筺体と、
バッテリを収容するバッテリ収容部と、
前記バッテリの一部を通過したバッテリ排気を吸気するために、前記バッテリ収容部に設けられる第1の開口部と、
前記基板を冷却するために、前記第1の開口部からの吸気を導く流路と、
前記流路を通過した前記吸気を排気する第2の開口部と
を備えたことを特徴とする携帯型超音波診断装置。 A housing having a substrate inside;
A battery housing for housing the battery;
A first opening provided in the battery housing portion to inhale battery exhaust that has passed through a portion of the battery;
In order to cool the substrate, a flow path for guiding intake air from the first opening,
And a second opening for exhausting the intake air that has passed through the flow path. - 基板を内部に有する筺体と、
バッテリを収容するバッテリ収容部と、
前記筐体の前方に設けられる第1の開口部と、
前記基板の下面部を冷却するために、前記下面部の平面方向に沿って、前記第1の開口部からの吸気を導く第1の流路と、
前記筐体の後方に設けられ、前記第1の流路を通過した前記吸気を排気する第2の開口部と、
前記筐体の上面に設けられ、前記基板の上面部を冷却するために吸気する第3の開口部と、
前記第3の開口部からの吸気を導く第2の流路と、
前記筐体の後方に設けられ、前記第2の流路を通過した前記吸気を排気する第4の開口部と
を備えたことを特徴とする携帯型超音波診断装置。 A housing having a substrate inside;
A battery housing for housing the battery;
A first opening provided in front of the housing;
In order to cool the lower surface portion of the substrate, along the planar direction of the lower surface portion, a first flow path for guiding intake air from the first opening,
A second opening that is provided behind the housing and exhausts the intake air that has passed through the first flow path;
A third opening that is provided on the upper surface of the housing and sucks air to cool the upper surface of the substrate;
A second flow path for guiding the intake air from the third opening;
A portable ultrasonic diagnostic apparatus, comprising: a fourth opening provided behind the housing and exhausting the intake air that has passed through the second flow path. - 前記第1の開口部は、本体と表示部とを接続するユニバーサルジョイントの界面又はバッテリ収容部の上部又は後方の界面に設けられることを特徴とする請求項3、11又は12のいずれか一項に記載の携帯型超音波診断装置。 13. The first opening is provided at an interface of a universal joint that connects the main body and the display unit, or an upper or rear interface of the battery housing unit. The portable ultrasonic diagnostic apparatus according to 1.
- 前記第1の流路は、前段流路と後段流路を有し、前記前段流路は前記後段流路に比べ、空間が狭くなるように構成されることを特徴とする請求項3又12に記載の携帯型超音波診断装置。 13. The first flow path has a front-stage flow path and a rear-stage flow path, and the front-stage flow path is configured to have a narrower space than the rear-stage flow path. The portable ultrasonic diagnostic apparatus according to 1.
- 請求項1乃至12いずれか一項に記載の前記携帯型超音波診断装置における前記バッテリであって、
前記バッテリが前記バッテリ収容部に収容された状態で、前記バッテリの前方に位置する複数のバッテリ吸気口と、
前記複数のバッテリ吸気口を区画する複数の隔壁と
を備えることを特徴とするバッテリ。 The battery in the portable ultrasonic diagnostic apparatus according to any one of claims 1 to 12,
In a state where the battery is accommodated in the battery accommodating portion, a plurality of battery intake ports located in front of the battery;
A battery comprising: a plurality of partition walls partitioning the plurality of battery intake ports.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380014115.XA CN104168834B (en) | 2012-03-15 | 2013-03-05 | Portable ultrasonic diagnosing device and accumulator thereof |
JP2014504802A JP6029648B2 (en) | 2012-03-15 | 2013-03-05 | Portable ultrasonic diagnostic apparatus and battery thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-059085 | 2012-03-15 | ||
JP2012059085 | 2012-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137050A1 true WO2013137050A1 (en) | 2013-09-19 |
Family
ID=49160963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055906 WO2013137050A1 (en) | 2012-03-15 | 2013-03-05 | Portable ultrasonic diagnostic device and battery thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6029648B2 (en) |
CN (1) | CN104168834B (en) |
WO (1) | WO2013137050A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104306020A (en) * | 2014-09-30 | 2015-01-28 | 深圳市理邦精密仪器股份有限公司 | Portable B ultrasonic instrument |
WO2015137158A1 (en) * | 2014-03-10 | 2015-09-17 | オリンパス株式会社 | Electrical apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06318124A (en) * | 1993-05-07 | 1994-11-15 | Hitachi Ltd | Electronic device |
JP2007122192A (en) * | 2005-10-25 | 2007-05-17 | Ricoh Co Ltd | Information processor and production method therefor |
JP2009033547A (en) * | 2007-07-27 | 2009-02-12 | Panasonic Corp | Electronic device |
JP2010000220A (en) * | 2008-06-20 | 2010-01-07 | Panasonic Corp | Ultrasonic diagnostic apparatus |
WO2010150541A1 (en) * | 2009-06-25 | 2010-12-29 | 株式会社日立メディコ | Portable ultrasonic diagnostic device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3307213A1 (en) * | 1983-02-25 | 1984-08-30 | Siemens AG, 1000 Berlin und 8000 München | DEVICE FOR FILLING A MESSAGE CABLE |
JPH0282693A (en) * | 1988-09-20 | 1990-03-23 | Matsushita Electric Ind Co Ltd | Cooling device in casing |
JP3254756B2 (en) * | 1992-10-13 | 2002-02-12 | 株式会社日立製作所 | Electronic equipment |
JP2000059061A (en) * | 1998-08-07 | 2000-02-25 | Toshiba Corp | Electronic equipment housing device and electric equipment housing case |
JP4350767B2 (en) * | 2007-03-30 | 2009-10-21 | オリンパスメディカルシステムズ株式会社 | Medical equipment |
JP2008284003A (en) * | 2007-05-15 | 2008-11-27 | Aloka Co Ltd | Ultrasonic probe |
CN101468240B (en) * | 2007-12-26 | 2012-01-25 | 重庆融海超声医学工程研究中心有限公司 | Ultrasonic therapy head |
-
2013
- 2013-03-05 JP JP2014504802A patent/JP6029648B2/en active Active
- 2013-03-05 CN CN201380014115.XA patent/CN104168834B/en active Active
- 2013-03-05 WO PCT/JP2013/055906 patent/WO2013137050A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06318124A (en) * | 1993-05-07 | 1994-11-15 | Hitachi Ltd | Electronic device |
JP2007122192A (en) * | 2005-10-25 | 2007-05-17 | Ricoh Co Ltd | Information processor and production method therefor |
JP2009033547A (en) * | 2007-07-27 | 2009-02-12 | Panasonic Corp | Electronic device |
JP2010000220A (en) * | 2008-06-20 | 2010-01-07 | Panasonic Corp | Ultrasonic diagnostic apparatus |
WO2010150541A1 (en) * | 2009-06-25 | 2010-12-29 | 株式会社日立メディコ | Portable ultrasonic diagnostic device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015137158A1 (en) * | 2014-03-10 | 2015-09-17 | オリンパス株式会社 | Electrical apparatus |
JP5927357B2 (en) * | 2014-03-10 | 2016-06-01 | オリンパス株式会社 | Electrical equipment |
JPWO2015137158A1 (en) * | 2014-03-10 | 2017-04-06 | オリンパス株式会社 | Electrical equipment |
CN104306020A (en) * | 2014-09-30 | 2015-01-28 | 深圳市理邦精密仪器股份有限公司 | Portable B ultrasonic instrument |
Also Published As
Publication number | Publication date |
---|---|
CN104168834A (en) | 2014-11-26 |
JP6029648B2 (en) | 2016-11-24 |
CN104168834B (en) | 2016-06-08 |
JPWO2013137050A1 (en) | 2015-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2770401B1 (en) | Cooling system for a hand-held electronic device | |
CN101174172B (en) | Case temperature suppressing structure for electronic device and portable computer | |
JP3601778B2 (en) | Electronics | |
JP6029648B2 (en) | Portable ultrasonic diagnostic apparatus and battery thereof | |
US7746632B2 (en) | Air duct for directing airflow in a computer enclosure | |
JP2008077436A5 (en) | ||
JP5265012B2 (en) | Electronics | |
JP6159783B2 (en) | Electronics | |
US9122452B2 (en) | Electronic device | |
JP5531400B2 (en) | COOLING UNIT, COOLING SYSTEM, AND ELECTRONIC DEVICE | |
TW201639432A (en) | Enclosure of electronic device | |
JP2020052870A (en) | Duct for expansion card, expansion card, electronic apparatus and cooling method of expansion card | |
JP4466640B2 (en) | Heat dissipation structure of electronic equipment | |
TW201409212A (en) | Rack-mounted server system | |
JP2011119775A (en) | Electronic apparatus | |
JP5733144B2 (en) | Electronics | |
JP2004014825A (en) | Cooling mechanism of electronic equipment | |
TWI466626B (en) | Electronic device and case used in the same | |
JP6337560B2 (en) | Electronic equipment with cooling mechanism | |
JP5573601B2 (en) | Board condensation prevention structure | |
JPH09283960A (en) | Rack structure for electronic equipment | |
JP7169085B2 (en) | laser device | |
JP2000349476A (en) | Cooling structure for electronic device | |
JP2021196727A (en) | Electronic device | |
TWI363950B (en) | Computer system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13761670 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014504802 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13761670 Country of ref document: EP Kind code of ref document: A1 |