WO2013099222A1 - Non-contact charging device - Google Patents
Non-contact charging device Download PDFInfo
- Publication number
- WO2013099222A1 WO2013099222A1 PCT/JP2012/008275 JP2012008275W WO2013099222A1 WO 2013099222 A1 WO2013099222 A1 WO 2013099222A1 JP 2012008275 W JP2012008275 W JP 2012008275W WO 2013099222 A1 WO2013099222 A1 WO 2013099222A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- power
- power receiving
- power supply
- outermost peripheral
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/36—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/38—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2871—Pancake coils
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00304—Overcurrent protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00308—Overvoltage protection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
Definitions
- the present invention relates to a non-contact charging device used for charging a moving body that moves by electric power, such as an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.
- FIG. 9 is a schematic diagram showing a configuration of a conventional non-contact charging device 106.
- the non-contact power feeding device (primary side) F connected to the power source 109 of the power board on the ground side is supplied with power to the power receiving device (secondary side) G mounted on the electric propulsion vehicle. It arrange
- an alternating current is applied to the primary coil 107 (power feeding coil) provided in the power feeding device F to form a magnetic flux
- an induced electromotive force is generated in the secondary coil 108 (power receiving coil) provided in the power receiving device G.
- electric power is transmitted from the primary coil 107 to the secondary coil 108 in a contactless manner.
- the power receiving device G is connected to, for example, the in-vehicle battery 110, and the in-vehicle battery 110 is charged with the electric power transmitted as described above.
- the on-vehicle motor 111 is driven by the electric power stored in the battery 110. Note that, during the non-contact power supply process, for example, the wireless communication device 112 exchanges necessary information between the power supply device F and the power reception device G.
- FIG. 10 is a schematic diagram showing the internal structure of the power feeding device F and the power receiving device G.
- FIG. 10A is a schematic diagram showing an internal structure when the power feeding device F is viewed from above and the power receiving device G is viewed from below.
- FIG. 10B is a schematic diagram illustrating an internal structure when the power feeding device F and the power receiving device G are viewed from the side.
- reference numerals of the components of the power receiving device G corresponding to the components of the power feeding device F are shown in parentheses.
- the power feeding device F includes a primary coil 107, a primary magnetic core 113, a back plate 115, a cover 116, and the like.
- the power receiving device G has a symmetric structure with the power feeding device F, and includes a secondary coil 108, a secondary magnetic core 114, a back plate 115, a cover 116, and the like.
- the surface of the primary magnetic core 113 and the surfaces of the secondary coil 108 and the secondary magnetic core 114 are covered and fixed with a mold resin 117 mixed with a foam material 118, respectively.
- the primary coil 107 of such a conventional power feeding device F and the secondary coil 108 of the power receiving device G will be described with reference to the schematic diagram of FIG.
- the primary coil 107 and the secondary coil 108 are formed by spirally winding litz wires 121 and 122 in which a plurality of strands are bundled.
- the primary coil 107 of the ground-side power supply device F is disposed so as to face the secondary coil 108 of the power receiving device G mounted on the vehicle in a state where the vehicle is parked in a predetermined parking space.
- the primary coil 107 and the secondary coil 108 face each other and are linked over a wide range, whereby non-contact power transmission is performed.
- the secondary coil 108 of the power receiving device G mounted on the lower part of the vehicle is surrounded by the side periphery of the secondary coil 108 in order to prevent the secondary coil 108 from colliding with other objects and being damaged. It is conceivable to provide a metal frame 128 made of a rigid metal.
- the shortest distance L1 from the outermost wire 121 of the primary coil 107 of the power feeding device F to the outermost wire 122 of the secondary coil 108 of the power receiving device G is the outermost wire of the primary coil 107.
- the distance may be longer than the shortest distance L2 from 121 to the metal frame 128 of the power receiving device G.
- the metal frame 128 When power supply is performed in a state where the positional deviation S has occurred, the metal frame 128 is coupled with the magnetic field generated from the primary coil 107 and is induction-heated, causing the metal frame 128 to rise in temperature. If an occupant or the like of an electric propulsion vehicle accidentally touches the metal frame 128, there is a possibility that there is a risk of a burn or the like depending on the degree of temperature rise.
- the non-contact charging device 106 is provided with a position detecting means 130 for detecting a relative displacement amount between the primary coil 107 and the secondary coil 108.
- a position detection means 130 for example, a pair of position detection sensors 131 and 132 disposed opposite to each other on the power feeding device F and the power receiving device G are used.
- the power receiving device G it is disposed between the secondary coil 108 and the metal frame 128 in order to protect the position detection sensor 132.
- the power receiving device G 2 when a positional deviation occurs between the power feeding device F and the power receiving device G, the power receiving device G 2 is connected to the outermost wire 121 of the primary coil 107 of the power feeding device F.
- the shortest distance L1 from the outermost peripheral wire 121 of the primary coil 108 to the shortest distance L3 from the outermost peripheral wire 121 of the primary coil 107 to the position detection sensor 132 of the power receiving device G may be longer.
- the position detection sensor 132 often uses a metal part such as an antenna for wireless communication. When power is fed in a state where such a position shift occurs, the position detection sensor 132 also Inductive heating is performed, and the position detection sensor 132 may be damaged.
- an object of the present invention is to solve the above-described problem, and even if a positional deviation occurs between the power feeding device and the power receiving device, a metal component such as a metal frame provided in the power receiving device is provided.
- An object of the present invention is to provide a non-contact charging device that is not induction-heated.
- the present invention is configured as follows.
- a non-contact charging device includes a power feeding device having a power feeding coil that generates a magnetic flux by an input alternating current, and a power receiving device having a power receiving coil mounted on a moving body, A non-contact charging device that supplies power by electromagnetic induction between a coil and a power receiving coil positioned opposite to the power feeding coil, the power receiving device being arranged around the side of the power receiving coil and moving It has a metal frame fixed to the body and receives power from the outermost peripheral wire of the power supply coil in a state where the amount of positional deviation between the power supply coil and the power reception coil in the direction along the opposing surface of the coil is within the chargeable range. The metal frame is placed away from the receiving coil so that the shortest distance from the outermost peripheral wire of the coil is shorter than the shortest distance from the outermost peripheral wire of the power supply coil to the metal frame. It has been.
- a non-contact charging device includes a power feeding device having a power feeding coil that generates magnetic flux by an input alternating current, and a power receiving device having a power receiving coil mounted on a moving body.
- a non-contact charging device that supplies electric power by electromagnetic induction between a power feeding coil and a power receiving coil positioned opposite to the power feeding coil, the power receiving device being disposed around a side of the power receiving coil.
- a metal frame fixed to the moving body; a position detection sensor that detects a relative position of the power receiving device with respect to the power feeding device; and a control device that controls a charging operation by supplying power from the power feeding coil to the power receiving coil.
- the control device has a shortest distance from the outermost peripheral wire of the power supply coil to the outermost peripheral wire of the power receiving coil, more than the shortest distance from the outermost peripheral wire of the power supply coil to the metal frame.
- the amount of misalignment between the power supply coil and the power receiving coil in the direction along the opposing surface of the coil that becomes shorter is included as information on the chargeable range, and the amount of misalignment detected by the position detection sensor is information on the chargeable range.
- the charging operation is controlled so as not to start power feeding when it is determined that the amount of positional deviation exceeds the chargeable range.
- the outermost peripheral wire of the power receiving coil is changed from the outermost peripheral wire of the power receiving coil in a state where the amount of positional deviation between the power feeding coil and the power receiving coil in the direction along the opposing surface of the coil is within the chargeable range.
- the metal frame is disposed away from the power receiving coil so that the shortest distance is shorter than the shortest distance from the outermost peripheral wire of the power feeding coil to the metal frame. Therefore, even if a positional deviation occurs between the power feeding coil and the power receiving coil, if the positional deviation amount is within the chargeable range, the metal frame can be prevented from being induction heated and heated. Risk prevention.
- the information on the chargeable range is held in the control device, and the control is performed so that the charging operation is not started when the detected positional deviation amount exceeds the chargeable range, so that the metal frame is Can be prevented from being induction-heated.
- the block diagram of the non-contact charging device concerning Embodiment 1 of the present invention External view of the non-contact charging device of FIG. External view of the non-contact charging device of FIG. Cross-sectional view of power feeding device and power receiving device (no misalignment, misalignment) Cross section of litz wire Plan view of allowable displacement range Sectional drawing (there is no position shift, there is position shift) of the electric power feeder and power receiving apparatus of the non-contact charging device concerning Embodiment 2 of this invention
- Flow chart of charging operation start procedure Schematic diagram showing the configuration of a conventional non-contact power transmission system The figure which shows the internal structure of the power receiving apparatus (power feeding apparatus) arrange
- a non-contact charging device includes a power feeding device having a power feeding coil that generates a magnetic flux by an input alternating current, and a power receiving device having a power receiving coil mounted on a moving body, A non-contact charging device that supplies power by electromagnetic induction between a coil and a power receiving coil positioned opposite to the power feeding coil, the power receiving device being arranged around the side of the power receiving coil and moving It has a metal frame fixed to the body and receives power from the outermost peripheral wire of the power supply coil in a state where the amount of positional deviation between the power supply coil and the power reception coil in the direction along the opposing surface of the coil is within the chargeable range. The metal frame is placed away from the receiving coil so that the shortest distance from the outermost peripheral wire of the coil is shorter than the shortest distance from the outermost peripheral wire of the power supply coil to the metal frame. It has been.
- a metal part such as a metal frame is unexpected. Induction heating can be prevented, and safety can be improved.
- the power receiving device is disposed between the power receiving coil and the metal frame, and further includes a position detection sensor that detects the relative position of the power receiving device with respect to the power feeding device, so that the amount of displacement can be charged. Position detection so that the shortest distance from the outermost peripheral wire of the power supply coil to the outermost peripheral wire of the power receiving coil is shorter than the shortest distance from the outermost peripheral wire of the power supply coil to the position detection sensor.
- the sensor may be arranged away from the power receiving coil.
- a non-contact charging device includes a power feeding device having a power feeding coil that generates magnetic flux by an input alternating current, and a power receiving device having a power receiving coil mounted on a moving body.
- a non-contact charging device that supplies electric power by electromagnetic induction between a power feeding coil and a power receiving coil positioned opposite to the power feeding coil, the power receiving device being disposed around a side of the power receiving coil.
- a metal frame fixed to the moving body; a position detection sensor that detects a relative position of the power receiving device with respect to the power feeding device; and a control device that controls a charging operation by supplying power from the power feeding coil to the power receiving coil.
- the control device has a shortest distance from the outermost peripheral wire of the power supply coil to the outermost peripheral wire of the power receiving coil, more than the shortest distance from the outermost peripheral wire of the power supply coil to the metal frame.
- the amount of misalignment between the power supply coil and the power receiving coil in the direction along the opposing surface of the coil that becomes shorter is included as information on the chargeable range, and the amount of misalignment detected by the position detection sensor is information on the chargeable range.
- the charging operation is controlled so as not to start power feeding when it is determined that the amount of positional deviation exceeds the chargeable range.
- the metal part such as the metal frame is expected. It is possible to prevent induction heating without increasing the safety.
- the position detection sensor is disposed between the power receiving coil and the metal frame around the side of the power receiving coil, and the control device transmits information from the outermost peripheral wire of the power feeding coil to the outermost peripheral wire of the power receiving coil as information on the chargeable range.
- FIG. 1 is a block diagram of a non-contact charging apparatus according to the present invention.
- 2 and 3 are external views of a vehicle (for example, an example of a moving body such as an electric propulsion vehicle (vehicle body)) installed in a parking space.
- the non-contact charging device includes, for example, a power feeding device (non-contact power feeding device) 2 installed in a parking space and a power receiving device (non-contact) mounted on an electric propulsion vehicle, for example.
- Contact power receiving device 4.
- the power feeding device 2 includes a primary side rectifier circuit 8 connected to a commercial power source 6, an inverter unit 10, a ground side coil unit (primary coil unit or power feeding coil unit) 12, and a control unit (for example, a microcomputer). 16 and the primary side rectifier circuit 8 and the inverter unit 10 constitute a power control device 17.
- the power receiving device 4 includes a vehicle side coil unit (secondary coil unit or power receiving coil unit) 18, a secondary side rectifier circuit 20, a battery (load) 22, and a control unit (for example, a microcomputer) 24. I have.
- the commercial power source 6 is a 200 V commercial power source that is a low-frequency AC power source, and is connected to the input end of the primary side rectifier circuit 8.
- the output end of the primary side rectifier circuit 8 is the input of the inverter unit 10.
- the output end of the inverter unit 10 is connected to the ground side coil unit 12.
- the output end of the vehicle side coil unit 18 is connected to the input end of the secondary side rectifier circuit 20, and the output end of the secondary side rectifier circuit 20 is connected to the battery 22.
- the ground side coil unit 12 is laid on the ground, and the primary side rectifier circuit 8 is erected, for example, at a position separated from the ground side coil unit 12 by a predetermined distance (see FIG. 2).
- the vehicle side coil unit 18 is attached to, for example, a vehicle body bottom (for example, a chassis).
- the power feeding device side control unit 16 performs wireless communication with the power receiving device side control unit 24, and the power receiving device side control unit 24 determines a power command value according to the detected remaining voltage of the battery 22, and determines the determined power command value. It transmits to the electric power feeder side control part 16.
- the power feeding device side control unit 16 compares the power feeding power detected by the ground side coil unit 12 with the received power command value, and drives the inverter unit 10 so as to obtain the power command value.
- the power receiving device side control unit 24 detects the received power, and changes the power command value to the power feeding device side control unit 16 so that the battery 22 is not overcurrent or overvoltage.
- the vehicle-side coil unit 18 is disposed so as to face the ground-side coil unit 12 by appropriately moving the vehicle body (vehicle). Then, when the power feeding device side control unit 16 drives and controls the inverter unit 10, a high frequency electromagnetic field is formed between the ground side coil unit 12 and the vehicle side coil unit 18. The power receiving device 4 takes out electric power from a high frequency electromagnetic field and charges the battery 22 with the taken out electric power.
- FIG. 4 is a cross-sectional view of the ground side coil unit 12 and the vehicle side coil unit 18 of the contactless charging apparatus of the first embodiment.
- the ground side coil unit 12 includes a base 31 fixed on the ground side, a power supply coil 32 disposed on the base 31, and a cover 33 that is a casing that covers the power supply coil 32. And.
- the vehicle side coil unit 18 includes a base 34 fixed to the vehicle body, a power receiving coil 35 disposed on the base 34, and a cover 36 that is a casing covering the power receiving coil 35. Further, a metal formed of a rigid metal is provided around the side of the power receiving coil 35 and the cover 36 so that the power receiving coil 35 and the cover 36 covering the power receiving coil 35 do not collide with other objects and are damaged.
- a frame 37 is provided in the vehicle side coil unit 18. Note that such a metal frame 37 is fixed to the bottom of the vehicle body and has higher rigidity than the cover 36, and plays a role in preventing other objects from colliding with at least the side surfaces of the power receiving coil 35 and the cover 36. ing.
- the covers 33 and 36 are formed of a resin material or the like so as not to be affected by the magnetic field.
- the feeding coil 32 is formed by winding the litz wire 41 a plurality of times in a spiral shape.
- the power receiving coil 35 is formed by winding the litz wire 42 a plurality of times in a spiral shape.
- Each of the coils 32 and 35 has an annular shape.
- FIG. 5 a cross-sectional view of the litz wire 41 is shown in FIG.
- the litz wire 41 is formed by bundling a plurality of strands 43 and has a substantially circular cross section.
- the litz wire 41 and the litz wire 42 have substantially the same cross-sectional structure.
- the power feeding coil 32 and the power receiving coil 35 are formed by winding the litz wires 41 and 42 having such a cross-sectional shape, for example, with the same number of turns (number of windings) in the opposing surface of the coil.
- the outer diameter (outer shape) and inner diameter of power receiving coil 35 having an annular shape are formed to be approximately the same as the outer diameter and inner diameter of power feeding coil 32.
- the outer diameter of the power receiving coil 35 substantially the same as the outer diameter of the power feeding coil 32, the magnetic flux generated from the power feeding coil 32, the power receiving coil 35, Can be effectively linked over a wide range, and good power supply efficiency can be obtained.
- both coils in the direction along the opposing surface of the coil that is, the direction along the ground plane in the first embodiment. Misalignment may occur between the two.
- a range in which the magnetic flux generated from the power feeding coil 32 and the power receiving coil 35 can be effectively linked over a wide range and can be charged (a chargeable range ( A chargeable range R is set in advance in the non-contact charging device as the positional deviation allowable range R.
- the direction along the facing surface of the coil is the first direction D1
- the direction orthogonal to the facing surface is the second direction D2.
- Such a misalignment allowable range R is shown in FIG.
- the chargeable range R is a substantially circular region in plan view.
- the chargeable range R is set to an appropriate range based on the specifications of the litz wires 41 and 42, the required power supply efficiency, the outer diameters of the power supply coil 32 and the power reception coil 35, and the like.
- the positional deviation is based on the projected area of the power receiving coil 35 projected onto the power feeding coil 32. It can be determined whether or not it is within the chargeable range R. Therefore, it is preferable to set the chargeable range R based on the required power supply efficiency and the inclination angle.
- the side portion 37a of the metal frame 37 is disposed away from the power receiving coil 35.
- FIG. 4B shows a state in which a positional deviation occurs between the power feeding coil 32 and the power receiving coil 35 in the first direction D1, and the positional deviation is the same magnitude as the limit of the chargeable range R.
- the shortest distance L1 from the litz wire 41 located on the outermost periphery of the power supply coil 32 to the litz wire 42 located on the outermost periphery of the power receiving coil 35 is located on the outermost periphery of the power supply coil 32.
- the side portion 37 a of the metal frame 37 is disposed away from the power receiving coil 35 so as to be shorter than the shortest distance L 2 from the litz wire 41 to the side portion 37 a of the metal frame 37.
- the side portion 37a of the metal frame 37 is arranged so as to be separated from the power receiving coil 35, so that the positional deviation in the first direction D1 generated between the power feeding coil 32 and the power receiving coil 35 is within the chargeable range R. If so, it is possible to prevent the metal frame 37 from being inductively heated in combination with the magnetic field generated from the power supply coil 32. Therefore, by managing whether the misalignment is within the chargeable range R, unexpected heating of the metal frame 37 can be prevented, and the safety of the non-contact charging device can be further enhanced. Further, by suppressing the metal frame 37 from being coupled with the magnetic field, the power supply efficiency in the charging operation can be increased.
- FIG. 7 shows a configuration of a contactless charging apparatus according to Embodiment 2 of the present invention.
- the same reference numerals are given to the same components as those of the contactless charging apparatus of the first embodiment, and the description thereof is omitted.
- the contactless charging apparatus further includes position detection means 50 that detects a relative position of the power receiving coil 35 with respect to the power feeding coil 32 in the first direction D1. This is different from the first embodiment.
- the position detection means 50 includes a plurality of position detection sensors 51 provided in the ground side coil unit 12 and a plurality of position detection sensors 52 provided in the vehicle side coil unit 18. Is configured.
- the position detection sensors 51 on the ground side coil unit 12 side are arranged at equal intervals around the side of the power supply coil 32, and similarly, the position detection sensors 52 on the vehicle side coil unit 18 side include the power receiving coil 35. It is arranged at equal intervals around the side of the.
- the position detection sensor 51 on the ground side coil unit 12 side and the position detection sensor 52 on the vehicle side coil unit 18 side in a state where the power feeding coil 32 and the power receiving coil 35 are positioned without positional deviation. Are arranged so that they face each other in the second direction D2.
- a sensing operation such as communication is performed between the position detection sensor 51 on the ground side coil unit 12 side and the position detection sensor 52 on the vehicle side coil unit 18 side, and the ground side coil unit 12 or the vehicle side
- the control unit 16 or 24 can detect the relative positional deviation amount between the power supply coil 32 and the power reception coil 35.
- control unit 16 or 24 holds information on the chargeable range R in advance, and can determine whether or not the positional deviation amount detected by the position detection unit 50 is within the chargeable range R. It has become.
- position detection sensors 51 and 52 incorporate metal parts such as an antenna for performing the sensing operation described above.
- the position detection sensor 52 in which such a metal part is incorporated is also heated by induction heating during the charging operation. It is preventing.
- the shortest distance L ⁇ b> 1 from the litz wire 41 located on the outermost periphery of the power supply coil 32 to the litz wire 42 located on the outermost periphery of the power receiving coil 35 is located on the outermost periphery of the power supply coil 32.
- the position detection sensor 52 is disposed away from the power receiving coil 35 so as to be shorter than the shortest distance L3 from the litz wire 41 to the position detection sensor 52. Note that the side 37a of the metal frame 37 is separated from the power receiving coil 35 as in the first embodiment.
- the position detection sensor 52 is further arranged away from the power receiving coil 35, so that the positional deviation in the first direction D ⁇ b> 1 generated between the power feeding coil 32 and the power receiving coil 35. Is within the chargeable range R, it is possible to prevent the position detection sensor 52 from being inductively heated in combination with the magnetic field generated from the power feeding coil 32. Therefore, by managing whether or not the positional deviation is within the chargeable range R, unexpected heating of the metal frame 37 and the position detection sensor 52 can be prevented, and the safety of the non-contact charging device can be further improved.
- the outermost of the feeding coil 32 is longer than the shortest distance L1 from the litz wire 41 located on the outermost circumference of the feeding coil 2 to the litz wire 42 located on the outermost circumference of the power receiving coil 35. It is more preferable that the position detection sensor 51 is disposed away from the power supply coil 32 so that the shortest distance from the litz wire 41 located on the outer periphery to the position detection sensor 51 of the ground side coil unit 12 is increased.
- each member is made of a metal material having excellent permeability (for example, a ferrite material). It is also possible to reduce the influence of magnetism and prevent induction heating.
- step S1 of the flowchart of FIG. 8 the power receiving coil 36 is relatively positioned with respect to the power feeding coil 32 by moving the electric propulsion vehicle.
- step S2 the position detection amount between the two coils is detected using the position detection sensors 51 and 52. Information on the detected displacement amount is input to the control unit 16 or 24.
- step S3 information on the chargeable range R is stored in advance in the memory unit or the like, and the input positional deviation amount is compared with the chargeable range R (step S3).
- step S5 the input positional deviation amount is compared with the chargeable range R.
- step S3 when it is confirmed in step S3 that the detected positional deviation amount is within the chargeable range R, a charging operation start command is output from the control unit 16 or 24, and the power receiving coil 32 receives power. Power is supplied to the coil 35 (step S4).
- the charging operation is performed, and the displacement amount can be charged.
- the range R is exceeded, an alarm is output so that the charging operation is not started.
- the side part 37a of the metal frame 37, the position detection sensor 52, etc. are induction-heated. Therefore, safety can be improved in the non-contact charging device.
- by suppressing such induction heating it is also possible to increase the power supply efficiency (charging efficiency) from the power supply coil 32 to the power reception coil 35.
- the outer shapes of the feeding coil 32 and the power receiving coil 35 are circular has been described as an example.
- the outer shape may be a polygonal shape.
- the non-contact charging device moves by electric power such as a ship, an aircraft, and a robot in addition to the electric propulsion vehicle.
- the present invention can be applied to a case where it is mounted on a moving body.
- a charging operation is performed while preventing metal parts such as a metal frame provided in the power receiving device from being inductively heated. Therefore, the present invention can be applied to non-contact power transmission used for charging a mobile body that moves by electric power such as a ship, an aircraft, and a robot in addition to an electric propulsion vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
A non-contact charging device, wherein a metal frame is arranged separated from a power reception coil such that: the shortest distance from the outermost peripheral wire in a power supply coil to the outermost peripheral wire in the power reception coil is shorter than the shortest distance from the outermost peripheral wire in the power supply coil to the metal frame, in a state wherein the amount of positional deviation between the power supply coil and the power reception coil in a direction along the facing surfaces of the coils is within a chargeable range. Accordingly, even if positional deviation occurs between the power supply coil and the power reception coil, inductive heating of the metal frame can be prevented, and danger caused by said heating can be prevented, if the amount of positional deviation is within the chargeable range.
Description
本発明は、例えば電気自動車やプラグインハイブリッド車のような電気推進車両等、電力により移動する移動体の充電に用いられる非接触充電装置に関する。
The present invention relates to a non-contact charging device used for charging a moving body that moves by electric power, such as an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.
図9は、従来の非接触充電装置106の構成を示す模式図である。図9において、地上側の電源盤の電源109に接続された非接触給電装置(1次側)Fが、電気推進車両に搭載された受電装置(2次側)Gに対し、給電時において、物理的接続なしに空隙空間であるエアギャップを介して対向するよう配置される。このような配置状態で、給電装置Fに備わる1次コイル107(給電コイル)に交流電流が与えられ磁束が形成されると、受電装置Gに備わる2次コイル108(受電コイル)に誘導起電力が生じ、これによって、1次コイル107から2次コイル108へと電力が非接触で伝達される。
FIG. 9 is a schematic diagram showing a configuration of a conventional non-contact charging device 106. In FIG. 9, the non-contact power feeding device (primary side) F connected to the power source 109 of the power board on the ground side is supplied with power to the power receiving device (secondary side) G mounted on the electric propulsion vehicle. It arrange | positions so that it may oppose through the air gap which is a space | gap space without a physical connection. In such an arrangement state, when an alternating current is applied to the primary coil 107 (power feeding coil) provided in the power feeding device F to form a magnetic flux, an induced electromotive force is generated in the secondary coil 108 (power receiving coil) provided in the power receiving device G. As a result, electric power is transmitted from the primary coil 107 to the secondary coil 108 in a contactless manner.
受電装置Gは、例えば車載バッテリー110に接続され、上述したようにして伝達された電力が車載バッテリー110に充電される。このバッテリー110に蓄積された電力により車載のモータ111が駆動される。なお、非接触給電処理の間、給電装置Fと受電装置Gとの間では、例えば無線通信装置112により必要な情報交換が行われる。
The power receiving device G is connected to, for example, the in-vehicle battery 110, and the in-vehicle battery 110 is charged with the electric power transmitted as described above. The on-vehicle motor 111 is driven by the electric power stored in the battery 110. Note that, during the non-contact power supply process, for example, the wireless communication device 112 exchanges necessary information between the power supply device F and the power reception device G.
図10は、給電装置Fおよび受電装置Gの内部構造を示す模式図である。特に、図10(a)は、給電装置Fを上方から、また、受電装置Gを下方から見たときの内部構造を示す模式図である。図10(b)は、給電装置Fおよび受電装置Gを側方から見たときの内部構造を示す模式図である。なお、図10では、給電装置Fの各構成に対応する受電装置Gの各構成の参照符号を括弧書きにて示している。
FIG. 10 is a schematic diagram showing the internal structure of the power feeding device F and the power receiving device G. In particular, FIG. 10A is a schematic diagram showing an internal structure when the power feeding device F is viewed from above and the power receiving device G is viewed from below. FIG. 10B is a schematic diagram illustrating an internal structure when the power feeding device F and the power receiving device G are viewed from the side. In FIG. 10, reference numerals of the components of the power receiving device G corresponding to the components of the power feeding device F are shown in parentheses.
図10において、給電装置Fは、1次コイル107、1次磁心コア113、背板115、およびカバー116等を備える。受電装置Gは、簡単に述べると、給電装置Fと対称的な構造を有しており、2次コイル108、2次磁心コア114、背板115、カバー116等を備え、1次コイル107と1次磁心コア113の表面、および2次コイル108と2次磁心コア114の表面は、それぞれ、発泡材118が混入されたモールド樹脂117にて被覆固定されている。
10, the power feeding device F includes a primary coil 107, a primary magnetic core 113, a back plate 115, a cover 116, and the like. Briefly speaking, the power receiving device G has a symmetric structure with the power feeding device F, and includes a secondary coil 108, a secondary magnetic core 114, a back plate 115, a cover 116, and the like. The surface of the primary magnetic core 113 and the surfaces of the secondary coil 108 and the secondary magnetic core 114 are covered and fixed with a mold resin 117 mixed with a foam material 118, respectively.
ここで、このような従来の給電装置Fの1次コイル107と、受電装置Gの2次コイル108との関係について、図11の模式図を用いて説明する。図11(a)に示すように、1次コイル107および2次コイル108は、複数の素線が束ねられたリッツワイヤ121、122がスパイラル状に巻き回されて形成されている。地上側の給電装置Fの1次コイル107は、車両が所定の駐車スペースに駐車された状態にて、車両に搭載された受電装置Gの2次コイル108と対向するように配置されている。図11(a)に示すように、1次コイル107と2次コイル108とが対向されて広範囲にわたって鎖交されることにより、非接触での電力電送が行われる。
Here, the relationship between the primary coil 107 of such a conventional power feeding device F and the secondary coil 108 of the power receiving device G will be described with reference to the schematic diagram of FIG. As shown in FIG. 11A, the primary coil 107 and the secondary coil 108 are formed by spirally winding litz wires 121 and 122 in which a plurality of strands are bundled. The primary coil 107 of the ground-side power supply device F is disposed so as to face the secondary coil 108 of the power receiving device G mounted on the vehicle in a state where the vehicle is parked in a predetermined parking space. As shown in FIG. 11A, the primary coil 107 and the secondary coil 108 face each other and are linked over a wide range, whereby non-contact power transmission is performed.
また、電気推進車両においては、車両下部に搭載された受電装置Gの2次コイル108が他の物体に衝突して損傷することを防止するために、2次コイル108の側方周囲を囲むように、剛性を有する金属により形成された金属フレーム128を設けることが考えられる。
Further, in the electric propulsion vehicle, the secondary coil 108 of the power receiving device G mounted on the lower part of the vehicle is surrounded by the side periphery of the secondary coil 108 in order to prevent the secondary coil 108 from colliding with other objects and being damaged. It is conceivable to provide a metal frame 128 made of a rigid metal.
しかしながら、図11(b)に示すように、駐車スペースに対して車両が位置ずれして駐車された場合には、給電装置Fと受電装置Gとの間に位置ずれSが生じる。このような場合、給電装置Fの1次コイル107の最外周のワイヤ121から受電装置Gの2次コイル108の最外周のワイヤ122までの最短距離L1が、1次コイル107の最外周のワイヤ121から受電装置Gの金属フレーム128までの最短距離L2よりも長くなる場合がある。位置ずれSが生じた状態にて電力給電が行われると、金属フレーム128が1次コイル107から発生する磁界と結合し誘導加熱されて、金属フレーム128が温度上昇する。電気推進車両の乗員などが誤って金属フレーム128に触れてしまうと、温度上昇の程度によっては火傷などの危険が伴う可能性がある。
However, as shown in FIG. 11B, when the vehicle is parked with a positional deviation from the parking space, a positional deviation S occurs between the power feeding device F and the power receiving device G. In such a case, the shortest distance L1 from the outermost wire 121 of the primary coil 107 of the power feeding device F to the outermost wire 122 of the secondary coil 108 of the power receiving device G is the outermost wire of the primary coil 107. The distance may be longer than the shortest distance L2 from 121 to the metal frame 128 of the power receiving device G. When power supply is performed in a state where the positional deviation S has occurred, the metal frame 128 is coupled with the magnetic field generated from the primary coil 107 and is induction-heated, causing the metal frame 128 to rise in temperature. If an occupant or the like of an electric propulsion vehicle accidentally touches the metal frame 128, there is a possibility that there is a risk of a burn or the like depending on the degree of temperature rise.
また、図12(a)に示すように、非接触充電装置106には、1次コイル107と2次コイル108との間の相対的な位置ずれ量を検出する位置検出手段130が設けられている場合がある。この位置検出手段130としては、例えば、給電装置Fと受電装置Gとに互いに対向配置された一対の位置検出センサ131、132が用いられる。受電装置Gにおいては、位置検出センサ132を保護するために、2次コイル108と金属フレーム128との間に配置される。
In addition, as shown in FIG. 12A, the non-contact charging device 106 is provided with a position detecting means 130 for detecting a relative displacement amount between the primary coil 107 and the secondary coil 108. There may be. As this position detection means 130, for example, a pair of position detection sensors 131 and 132 disposed opposite to each other on the power feeding device F and the power receiving device G are used. In the power receiving device G, it is disposed between the secondary coil 108 and the metal frame 128 in order to protect the position detection sensor 132.
しかしながら、図12(b)に示すように、給電装置Fと受電装置Gとの間に位置ずれが生じた場合、給電装置Fの1次コイル107の最外周のワイヤ121から受電装置Gの2次コイル108の最外周のワイヤ122までの最短距離L1が、1次コイル107の最外周のワイヤ121から受電装置Gの位置検出センサ132までの最短距離L3よりも長くなる場合がある。位置検出センサ132には、無線通信のためのアンテナなどの金属部品が用いられていることが多く、このような位置ずれが生じた状態にて電力給電が行われると、位置検出センサ132についても誘導加熱が行われ、位置検出センサ132が損傷するおそれがある。
However, as illustrated in FIG. 12B, when a positional deviation occurs between the power feeding device F and the power receiving device G, the power receiving device G 2 is connected to the outermost wire 121 of the primary coil 107 of the power feeding device F. In some cases, the shortest distance L1 from the outermost peripheral wire 121 of the primary coil 108 to the shortest distance L3 from the outermost peripheral wire 121 of the primary coil 107 to the position detection sensor 132 of the power receiving device G may be longer. The position detection sensor 132 often uses a metal part such as an antenna for wireless communication. When power is fed in a state where such a position shift occurs, the position detection sensor 132 also Inductive heating is performed, and the position detection sensor 132 may be damaged.
従って、本発明の目的は、上記課題を解決することにあって、給電装置と受電装置との間の位置ずれが生じた場合であっても、受電装置に備えられる金属フレームなどの金属部品が誘導加熱されないような非接触充電装置を提供することにある。
Accordingly, an object of the present invention is to solve the above-described problem, and even if a positional deviation occurs between the power feeding device and the power receiving device, a metal component such as a metal frame provided in the power receiving device is provided. An object of the present invention is to provide a non-contact charging device that is not induction-heated.
上記目的を達成するために、本発明は以下のように構成する。
In order to achieve the above object, the present invention is configured as follows.
本発明の一の態様にかかる非接触充電装置は、入力された交流電流により磁束を発生する給電コイルを有する給電装置と、移動体に搭載された受電コイルを有する受電装置と、を備え、給電コイルと該給電コイルに対向して位置決めされた状態の受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置であって、受電装置は、受電コイルの側方周囲に配置され、移動体に固定された金属フレームを有し、コイルの対向面沿いの方向における給電コイルと受電コイルとの間の位置ずれ量が充電可能範囲内にある状態にて、給電コイルの最外周ワイヤから受電コイルの最外周ワイヤまでの最短距離が、給電コイルの最外周ワイヤから金属フレームまでの最短距離よりも短くなるように、金属フレームが受電コイルより離間して配置されている。
A non-contact charging device according to one aspect of the present invention includes a power feeding device having a power feeding coil that generates a magnetic flux by an input alternating current, and a power receiving device having a power receiving coil mounted on a moving body, A non-contact charging device that supplies power by electromagnetic induction between a coil and a power receiving coil positioned opposite to the power feeding coil, the power receiving device being arranged around the side of the power receiving coil and moving It has a metal frame fixed to the body and receives power from the outermost peripheral wire of the power supply coil in a state where the amount of positional deviation between the power supply coil and the power reception coil in the direction along the opposing surface of the coil is within the chargeable range. The metal frame is placed away from the receiving coil so that the shortest distance from the outermost peripheral wire of the coil is shorter than the shortest distance from the outermost peripheral wire of the power supply coil to the metal frame. It has been.
また、本発明の別の態様にかかる非接触充電装置は、入力された交流電流により磁束を発生する給電コイルを有する給電装置と、移動体に搭載された受電コイルを有する受電装置と、を備え、給電コイルと該給電コイルに対向して位置決めされた状態の受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置であって、受電装置は、受電コイルの側方周囲に配置され、移動体に固定された金属フレームと、給電装置に対する受電装置の相対的な位置を検出する位置検出センサとを備え、給電コイルから受電コイルへの電力供給による充電動作を制御する制御装置を備え、制御装置は、給電コイルの最外周ワイヤから受電コイルの最外周ワイヤまでの最短距離が、給電コイルの最外周ワイヤから金属フレームまでの最短距離よりも短くなるようなコイルの対向面沿いの方向における給電コイルと受電コイルとの間の位置ずれ量を充電可能範囲の情報として有し、位置検出センサにより検出された位置ずれ量を充電可能範囲の情報と比較して、位置ずれ量が充電可能範囲を超えていると判断した場合に、電力給電を開始しないように充電動作を制御する。
Further, a non-contact charging device according to another aspect of the present invention includes a power feeding device having a power feeding coil that generates magnetic flux by an input alternating current, and a power receiving device having a power receiving coil mounted on a moving body. A non-contact charging device that supplies electric power by electromagnetic induction between a power feeding coil and a power receiving coil positioned opposite to the power feeding coil, the power receiving device being disposed around a side of the power receiving coil. A metal frame fixed to the moving body; a position detection sensor that detects a relative position of the power receiving device with respect to the power feeding device; and a control device that controls a charging operation by supplying power from the power feeding coil to the power receiving coil. The control device has a shortest distance from the outermost peripheral wire of the power supply coil to the outermost peripheral wire of the power receiving coil, more than the shortest distance from the outermost peripheral wire of the power supply coil to the metal frame. The amount of misalignment between the power supply coil and the power receiving coil in the direction along the opposing surface of the coil that becomes shorter is included as information on the chargeable range, and the amount of misalignment detected by the position detection sensor is information on the chargeable range. Compared with, the charging operation is controlled so as not to start power feeding when it is determined that the amount of positional deviation exceeds the chargeable range.
本発明によれば、コイルの対向面沿いの方向における給電コイルと受電コイルとの間の位置ずれ量が充電可能範囲内にある状態にて、給電コイルの最外周ワイヤから受電コイルの最外周ワイヤまでの最短距離が、給電コイルの最外周ワイヤから金属フレームまでの最短距離よりも短くなるように、金属フレームが受電コイルより離間して配置されている。したがって、給電コイルと受電コイルとの間に位置ずれが生じるような場合であっても、位置ずれ量が充電可能範囲内にあれば、金属フレームが誘導加熱されることを防止でき、加熱されることによる危険防止を図れる。
According to the present invention, the outermost peripheral wire of the power receiving coil is changed from the outermost peripheral wire of the power receiving coil in a state where the amount of positional deviation between the power feeding coil and the power receiving coil in the direction along the opposing surface of the coil is within the chargeable range. The metal frame is disposed away from the power receiving coil so that the shortest distance is shorter than the shortest distance from the outermost peripheral wire of the power feeding coil to the metal frame. Therefore, even if a positional deviation occurs between the power feeding coil and the power receiving coil, if the positional deviation amount is within the chargeable range, the metal frame can be prevented from being induction heated and heated. Risk prevention.
また、このような充電可能範囲の情報を制御装置に保持させておき、検出された位置ずれ量が充電可能範囲を超えている場合に、充電動作を開始しないように制御することで、金属フレームが誘導加熱されることを防止できる。
Also, the information on the chargeable range is held in the control device, and the control is performed so that the charging operation is not started when the detected positional deviation amount exceeds the chargeable range, so that the metal frame is Can be prevented from being induction-heated.
本発明の一の態様にかかる非接触充電装置は、入力された交流電流により磁束を発生する給電コイルを有する給電装置と、移動体に搭載された受電コイルを有する受電装置と、を備え、給電コイルと該給電コイルに対向して位置決めされた状態の受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置であって、受電装置は、受電コイルの側方周囲に配置され、移動体に固定された金属フレームを有し、コイルの対向面沿いの方向における給電コイルと受電コイルとの間の位置ずれ量が充電可能範囲内にある状態にて、給電コイルの最外周ワイヤから受電コイルの最外周ワイヤまでの最短距離が、給電コイルの最外周ワイヤから金属フレームまでの最短距離よりも短くなるように、金属フレームが受電コイルより離間して配置されている。
A non-contact charging device according to one aspect of the present invention includes a power feeding device having a power feeding coil that generates a magnetic flux by an input alternating current, and a power receiving device having a power receiving coil mounted on a moving body, A non-contact charging device that supplies power by electromagnetic induction between a coil and a power receiving coil positioned opposite to the power feeding coil, the power receiving device being arranged around the side of the power receiving coil and moving It has a metal frame fixed to the body and receives power from the outermost peripheral wire of the power supply coil in a state where the amount of positional deviation between the power supply coil and the power reception coil in the direction along the opposing surface of the coil is within the chargeable range. The metal frame is placed away from the receiving coil so that the shortest distance from the outermost peripheral wire of the coil is shorter than the shortest distance from the outermost peripheral wire of the power supply coil to the metal frame. It has been.
このような構成によれば、給電コイルと受電コイルとの間の位置ずれ量が充電可能範囲内にあることを確認した上で充電動作を実施すれば、金属フレームなどの金属部品が予期せずに誘導加熱されることを防止でき、安全性を高めることができる。
According to such a configuration, if the charging operation is performed after confirming that the amount of positional deviation between the power feeding coil and the power receiving coil is within the chargeable range, a metal part such as a metal frame is unexpected. Induction heating can be prevented, and safety can be improved.
また、受電装置は、受電コイルの側方周囲にて金属フレームとの間に配置され、給電装置に対する受電装置の相対的な位置を検出する位置検出センサをさらに有し、位置ずれ量が充電可能範囲内にある状態にて、給電コイルの最外周ワイヤから受電コイルの最外周ワイヤまでの最短距離が、給電コイルの最外周ワイヤから位置検出センサまでの最短距離よりも短くなるように、位置検出センサが受電コイルより離間して配置されているようにしても良い。
In addition, the power receiving device is disposed between the power receiving coil and the metal frame, and further includes a position detection sensor that detects the relative position of the power receiving device with respect to the power feeding device, so that the amount of displacement can be charged. Position detection so that the shortest distance from the outermost peripheral wire of the power supply coil to the outermost peripheral wire of the power receiving coil is shorter than the shortest distance from the outermost peripheral wire of the power supply coil to the position detection sensor. The sensor may be arranged away from the power receiving coil.
これにより、金属フレームに加えて位置検出センサについても誘導加熱されることを防止できる。
This can prevent induction heating of the position detection sensor in addition to the metal frame.
また、本発明の別の態様にかかる非接触充電装置は、入力された交流電流により磁束を発生する給電コイルを有する給電装置と、移動体に搭載された受電コイルを有する受電装置と、を備え、給電コイルと該給電コイルに対向して位置決めされた状態の受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置であって、受電装置は、受電コイルの側方周囲に配置され、移動体に固定された金属フレームと、給電装置に対する受電装置の相対的な位置を検出する位置検出センサとを備え、給電コイルから受電コイルへの電力供給による充電動作を制御する制御装置を備え、制御装置は、給電コイルの最外周ワイヤから受電コイルの最外周ワイヤまでの最短距離が、給電コイルの最外周ワイヤから金属フレームまでの最短距離よりも短くなるようなコイルの対向面沿いの方向における給電コイルと受電コイルとの間の位置ずれ量を充電可能範囲の情報として有し、位置検出センサにより検出された位置ずれ量を充電可能範囲の情報と比較して、位置ずれ量が充電可能範囲を超えていると判断した場合に、電力給電を開始しないように充電動作を制御する。
Further, a non-contact charging device according to another aspect of the present invention includes a power feeding device having a power feeding coil that generates magnetic flux by an input alternating current, and a power receiving device having a power receiving coil mounted on a moving body. A non-contact charging device that supplies electric power by electromagnetic induction between a power feeding coil and a power receiving coil positioned opposite to the power feeding coil, the power receiving device being disposed around a side of the power receiving coil. A metal frame fixed to the moving body; a position detection sensor that detects a relative position of the power receiving device with respect to the power feeding device; and a control device that controls a charging operation by supplying power from the power feeding coil to the power receiving coil. The control device has a shortest distance from the outermost peripheral wire of the power supply coil to the outermost peripheral wire of the power receiving coil, more than the shortest distance from the outermost peripheral wire of the power supply coil to the metal frame. The amount of misalignment between the power supply coil and the power receiving coil in the direction along the opposing surface of the coil that becomes shorter is included as information on the chargeable range, and the amount of misalignment detected by the position detection sensor is information on the chargeable range. Compared with, the charging operation is controlled so as not to start power feeding when it is determined that the amount of positional deviation exceeds the chargeable range.
このような構成によれば、給電コイルと受電コイルとの間の位置ずれ量が充電可能範囲内にあることを確認した上で充電動作を開始しているため、金属フレームなどの金属部品が予期せずに誘導加熱されることを防止でき、安全性を高めることができる。
According to such a configuration, since the charging operation is started after confirming that the amount of displacement between the feeding coil and the receiving coil is within the chargeable range, the metal part such as the metal frame is expected. It is possible to prevent induction heating without increasing the safety.
また、位置検出センサは、受電コイルの側方周囲にて金属フレームとの間に配置され、制御装置は、充電可能範囲の情報として、給電コイルの最外周ワイヤから受電コイルの最外周ワイヤまでの最短距離が、給電コイルの最外周ワイヤから位置検出センサまでの最短距離よりも短くなるようなコイルの対向面沿いの方向における給電コイルと受電コイルとの間の位置ずれ量の情報を有し、位置検出センサにより検出された位置ずれ量を充電可能範囲の情報と比較して、位置ずれ量が充電可能範囲を超えていると判断した場合に、電力給電を開始しないように充電動作を制御するようにしても良い。
Further, the position detection sensor is disposed between the power receiving coil and the metal frame around the side of the power receiving coil, and the control device transmits information from the outermost peripheral wire of the power feeding coil to the outermost peripheral wire of the power receiving coil as information on the chargeable range. Information on the amount of positional deviation between the feeding coil and the receiving coil in the direction along the opposing surface of the coil such that the shortest distance is shorter than the shortest distance from the outermost peripheral wire of the feeding coil to the position detection sensor; Comparing the amount of misalignment detected by the position detection sensor with the chargeable range information, and controlling the charging operation so as not to start power supply when it is determined that the amount of misalignment exceeds the chargeable range You may do it.
これにより、金属フレームに加えて位置検出センサについても誘導加熱されることを防止できる。
This can prevent induction heating of the position detection sensor in addition to the metal frame.
(実施の形態1)
以下、本発明の実施の形態1について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 (Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings. In addition, this invention is not limited by this embodiment.
以下、本発明の実施の形態1について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 (Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings. In addition, this invention is not limited by this embodiment.
図1は、本発明に係る非接触充電装置のブロック図である。また、図2および図3は車両(例えば、電気推進車両(車体)などの移動体の一例)が駐車スペースに設置された状態の外観図である。図1、図2および図3に示されるように、非接触充電装置は、例えば駐車スペースに設置される給電装置(非接触給電装置)2と、例えば電気推進車両に搭載される受電装置(非接触受電装置)4とで構成される。
FIG. 1 is a block diagram of a non-contact charging apparatus according to the present invention. 2 and 3 are external views of a vehicle (for example, an example of a moving body such as an electric propulsion vehicle (vehicle body)) installed in a parking space. As shown in FIGS. 1, 2, and 3, the non-contact charging device includes, for example, a power feeding device (non-contact power feeding device) 2 installed in a parking space and a power receiving device (non-contact) mounted on an electric propulsion vehicle, for example. Contact power receiving device) 4.
給電装置2は、商用電源6に接続される1次側整流回路8と、インバータ部10と、地上側コイルユニット(1次コイルユニットまたは給電コイルユニット)12と、制御部(例えば、マイクロコンピュータ)16とを備え、1次側整流回路8とインバータ部10とで電力制御装置17を構成している。一方、受電装置4は、車両側コイルユニット(2次コイルユニットまたは受電コイルユニット)18と、2次側整流回路20と、バッテリー(負荷)22と、制御部(例えば、マイクロコンピュータ)24とを備えている。
The power feeding device 2 includes a primary side rectifier circuit 8 connected to a commercial power source 6, an inverter unit 10, a ground side coil unit (primary coil unit or power feeding coil unit) 12, and a control unit (for example, a microcomputer). 16 and the primary side rectifier circuit 8 and the inverter unit 10 constitute a power control device 17. On the other hand, the power receiving device 4 includes a vehicle side coil unit (secondary coil unit or power receiving coil unit) 18, a secondary side rectifier circuit 20, a battery (load) 22, and a control unit (for example, a microcomputer) 24. I have.
給電装置2において、商用電源6は、低周波交流電源である200V商用電源であり、1次側整流回路8の入力端に接続され、1次側整流回路8の出力端はインバータ部10の入力端に接続され、インバータ部10の出力端は地上側コイルユニット12に接続されている。一方、受電装置4においては、車両側コイルユニット18の出力端は2次側整流回路20の入力端に接続され、2次側整流回路20の出力端はバッテリー22に接続されている。
In the power supply device 2, the commercial power source 6 is a 200 V commercial power source that is a low-frequency AC power source, and is connected to the input end of the primary side rectifier circuit 8. The output end of the primary side rectifier circuit 8 is the input of the inverter unit 10. The output end of the inverter unit 10 is connected to the ground side coil unit 12. On the other hand, in the power receiving device 4, the output end of the vehicle side coil unit 18 is connected to the input end of the secondary side rectifier circuit 20, and the output end of the secondary side rectifier circuit 20 is connected to the battery 22.
また、地上側コイルユニット12は地上に敷設され、1次側整流回路8は、例えば地上側コイルユニット12から所定距離だけ離隔した位置に立設される(図2参照)。一方、車両側コイルユニット18は、例えば車体底部(例えば、シャーシ)に取り付けられる。
Further, the ground side coil unit 12 is laid on the ground, and the primary side rectifier circuit 8 is erected, for example, at a position separated from the ground side coil unit 12 by a predetermined distance (see FIG. 2). On the other hand, the vehicle side coil unit 18 is attached to, for example, a vehicle body bottom (for example, a chassis).
給電装置側制御部16は受電装置側制御部24と無線通信を行い、受電装置側制御部24は、検知したバッテリー22の残電圧に応じて電力指令値を決定し、決定した電力指令値を給電装置側制御部16に送信する。給電装置側制御部16は、地上側コイルユニット12で検知した給電電力と、受信した電力指令値とを比較し、電力指令値が得られるようにインバータ部10を駆動する。
The power feeding device side control unit 16 performs wireless communication with the power receiving device side control unit 24, and the power receiving device side control unit 24 determines a power command value according to the detected remaining voltage of the battery 22, and determines the determined power command value. It transmits to the electric power feeder side control part 16. The power feeding device side control unit 16 compares the power feeding power detected by the ground side coil unit 12 with the received power command value, and drives the inverter unit 10 so as to obtain the power command value.
給電中、受電装置側制御部24は受電電力を検知し、バッテリー22に過電流や過電圧がかからないように、給電装置側制御部16への電力指令値を変更する。
During power feeding, the power receiving device side control unit 24 detects the received power, and changes the power command value to the power feeding device side control unit 16 so that the battery 22 is not overcurrent or overvoltage.
図2および図3に示されるように、給電装置2から受電装置4に給電するに際し、車両側コイルユニット18は、車体(車両)を適宜移動させることで地上側コイルユニット12に対向して配置され、給電装置側制御部16がインバータ部10を駆動制御することで、地上側コイルユニット12と車両側コイルユニット18との間に高周波の電磁場が形成される。受電装置4は、高周波の電磁場より電力を取り出し、取り出した電力でバッテリー22を充電する。
As shown in FIGS. 2 and 3, when power is supplied from the power feeding device 2 to the power receiving device 4, the vehicle-side coil unit 18 is disposed so as to face the ground-side coil unit 12 by appropriately moving the vehicle body (vehicle). Then, when the power feeding device side control unit 16 drives and controls the inverter unit 10, a high frequency electromagnetic field is formed between the ground side coil unit 12 and the vehicle side coil unit 18. The power receiving device 4 takes out electric power from a high frequency electromagnetic field and charges the battery 22 with the taken out electric power.
図4は、本実施の形態1の非接触充電装置の地上側コイルユニット12と車両側コイルユニット18の断面図である。図4(a)に示すように、地上側コイルユニット12は、地上側に固定されたベース31と、ベース31上に配置された給電コイル32と、給電コイル32を覆う筐体であるカバー33とを備えている。
FIG. 4 is a cross-sectional view of the ground side coil unit 12 and the vehicle side coil unit 18 of the contactless charging apparatus of the first embodiment. As shown in FIG. 4A, the ground side coil unit 12 includes a base 31 fixed on the ground side, a power supply coil 32 disposed on the base 31, and a cover 33 that is a casing that covers the power supply coil 32. And.
車両側コイルユニット18は、車体に固定されたベース34と、ベース34上に配置された受電コイル35と、受電コイル35を覆う筐体であるカバー36とを備えている。さらに、受電コイル35およびそれを覆うカバー36が、他の物体と衝突して破損することが無いように、受電コイル35およびカバー36の側方周囲には、剛体である金属により形成された金属フレーム37が、車両側コイルユニット18に備えられている。なお、このような金属フレーム37は車体底部に固定されてカバー36よりも高い剛性を有しており、受電コイル35およびカバー36の少なくとも側面に他の物体が衝突することを防止する役割を担っている。なお、カバー33、36は、磁界の影響を受けないように樹脂材料などにより形成される。
The vehicle side coil unit 18 includes a base 34 fixed to the vehicle body, a power receiving coil 35 disposed on the base 34, and a cover 36 that is a casing covering the power receiving coil 35. Further, a metal formed of a rigid metal is provided around the side of the power receiving coil 35 and the cover 36 so that the power receiving coil 35 and the cover 36 covering the power receiving coil 35 do not collide with other objects and are damaged. A frame 37 is provided in the vehicle side coil unit 18. Note that such a metal frame 37 is fixed to the bottom of the vehicle body and has higher rigidity than the cover 36, and plays a role in preventing other objects from colliding with at least the side surfaces of the power receiving coil 35 and the cover 36. ing. The covers 33 and 36 are formed of a resin material or the like so as not to be affected by the magnetic field.
また、給電コイル32は、リッツワイヤ41をスパイラル状に複数回巻き回することにより形成されており、同様に受電コイル35は、リッツワイヤ42をスパイラル状に複数回巻き回することにより形成されており、それぞれのコイル32、35は円環形状を有している。
The feeding coil 32 is formed by winding the litz wire 41 a plurality of times in a spiral shape. Similarly, the power receiving coil 35 is formed by winding the litz wire 42 a plurality of times in a spiral shape. Each of the coils 32 and 35 has an annular shape.
ここで、それぞれのコイルを形成するリッツワイヤ41、42の断面図として、両者を代表してリッツワイヤ41の断面図を図5に示す。図5に示すように、リッツワイヤ41は、複数の素線43が束ねられて形成されており、概ね円形状断面を有している。なお、リッツワイヤ41とリッツワイヤ42とは、実質的に同様な断面構造を有している。
Here, as a cross-sectional view of the litz wires 41 and 42 forming the respective coils, a cross-sectional view of the litz wire 41 is shown in FIG. As shown in FIG. 5, the litz wire 41 is formed by bundling a plurality of strands 43 and has a substantially circular cross section. The litz wire 41 and the litz wire 42 have substantially the same cross-sectional structure.
このような断面形状を有するリッツワイヤ41、42を、例えば同じターン数(巻き回数)にて、コイルの対向面内にて巻き回することで給電コイル32および受電コイル35が形成されている。なお、本実施の形態1では、円環形状を有する受電コイル35の外径(外形)および内径は、給電コイル32の外径および内径と略同じ大きさに形成されている。
The power feeding coil 32 and the power receiving coil 35 are formed by winding the litz wires 41 and 42 having such a cross-sectional shape, for example, with the same number of turns (number of windings) in the opposing surface of the coil. In the first embodiment, the outer diameter (outer shape) and inner diameter of power receiving coil 35 having an annular shape are formed to be approximately the same as the outer diameter and inner diameter of power feeding coil 32.
このように受電コイル35の外径を給電コイル32の外径と略同じ大きさとすることで、コイル間の位置ずれが生じていない状態にて、給電コイル32から発生する磁束と受電コイル35とが広範囲にわたって効果的に鎖交させることが可能となり、良好な給電効率を得ることができる。
Thus, by making the outer diameter of the power receiving coil 35 substantially the same as the outer diameter of the power feeding coil 32, the magnetic flux generated from the power feeding coil 32, the power receiving coil 35, Can be effectively linked over a wide range, and good power supply efficiency can be obtained.
一方、受電コイル35は車両に搭載され、給電コイル32は地上に配置されているため、コイルの対向面沿いの方向(すなわち、本実施の形態1では、地平面沿いの方向)において、両コイルの間に位置ずれが生じる場合がある。このようにコイル間に位置ずれが生じた場合であっても給電コイル32から発生する磁束と受電コイル35とが広範囲にわたって効果的に鎖交させて充電を行うことができる範囲を充電可能範囲(位置ずれ許容範囲)Rとして、非接触充電装置において充電可能範囲Rが予め設定されている。なお、本実施の形態1では、コイルの対向面沿いの方向を第1方向D1とし、対向面に直交する方向を第2方向D2としている。
On the other hand, since the power receiving coil 35 is mounted on the vehicle and the power feeding coil 32 is disposed on the ground, both coils in the direction along the opposing surface of the coil (that is, the direction along the ground plane in the first embodiment). Misalignment may occur between the two. Thus, even when a positional deviation occurs between the coils, a range in which the magnetic flux generated from the power feeding coil 32 and the power receiving coil 35 can be effectively linked over a wide range and can be charged (a chargeable range ( A chargeable range R is set in advance in the non-contact charging device as the positional deviation allowable range R. In the first embodiment, the direction along the facing surface of the coil is the first direction D1, and the direction orthogonal to the facing surface is the second direction D2.
このような位置ずれ許容範囲Rを図6に示す。図6に示すように、充電可能範囲Rは、平面視では大略円形状の領域となる。なお、充電可能範囲Rは、リッツワイヤ41、42の仕様、要求される給電効率、給電コイル32および受電コイル35の外径などに基づいて適切な範囲に設定される。
Such a misalignment allowable range R is shown in FIG. As shown in FIG. 6, the chargeable range R is a substantially circular region in plan view. The chargeable range R is set to an appropriate range based on the specifications of the litz wires 41 and 42, the required power supply efficiency, the outer diameters of the power supply coil 32 and the power reception coil 35, and the like.
また、受電コイル35と給電コイル32とが相対的に傾斜して配置されるような場合にあっては、給電コイル32に対して投影される受電コイル35の投影面積に基づいて、位置ずれが充電可能範囲R内にあるかどうかを判断することができる。したがって、要求される給電効率や傾斜角度などに基づいて、充電可能範囲Rを設定することが好ましい。
Further, in the case where the power receiving coil 35 and the power feeding coil 32 are disposed relatively inclined, the positional deviation is based on the projected area of the power receiving coil 35 projected onto the power feeding coil 32. It can be determined whether or not it is within the chargeable range R. Therefore, it is preferable to set the chargeable range R based on the required power supply efficiency and the inclination angle.
図4(a)に示すように、車両側コイルユニット18において、金属フレーム37の側部37aは、受電コイル35より離間して配置されている。第1方向D1において、給電コイル32と受電コイル35との間に位置ずれが生じ、その位置ずれが充電可能範囲Rの限度と同じ大きさの位置ずれであるような状態を図4(b)に示す。図4(b)に示すように、給電コイル32の最外周に位置するリッツワイヤ41から受電コイル35の最外周に位置するリッツワイヤ42までの最短距離L1が、給電コイル32の最外周に位置するリッツワイヤ41から金属フレーム37の側部37aまでの最短距離L2よりも短くなるように、金属フレーム37の側部37aが受電コイル35から離間して配置されている。
4A, in the vehicle side coil unit 18, the side portion 37a of the metal frame 37 is disposed away from the power receiving coil 35. As shown in FIG. FIG. 4B shows a state in which a positional deviation occurs between the power feeding coil 32 and the power receiving coil 35 in the first direction D1, and the positional deviation is the same magnitude as the limit of the chargeable range R. Shown in As shown in FIG. 4B, the shortest distance L1 from the litz wire 41 located on the outermost periphery of the power supply coil 32 to the litz wire 42 located on the outermost periphery of the power receiving coil 35 is located on the outermost periphery of the power supply coil 32. The side portion 37 a of the metal frame 37 is disposed away from the power receiving coil 35 so as to be shorter than the shortest distance L 2 from the litz wire 41 to the side portion 37 a of the metal frame 37.
このように金属フレーム37の側部37aが受電コイル35より離間して配置されることにより、給電コイル32と受電コイル35との間に生じた第1方向D1の位置ずれが充電可能範囲R内であれば、金属フレーム37が給電コイル32から発生する磁界と結合して誘導加熱されることを防止することができる。したがって、位置ずれが充電可能範囲R内であるかどうかを管理することにより、金属フレーム37の予期しない加熱を防止でき、非接触充電装置の安全性をさらに高めることができる。また、金属フレーム37が磁界と結合することを抑制することで、充電動作における給電効率を高めることができる。
As described above, the side portion 37a of the metal frame 37 is arranged so as to be separated from the power receiving coil 35, so that the positional deviation in the first direction D1 generated between the power feeding coil 32 and the power receiving coil 35 is within the chargeable range R. If so, it is possible to prevent the metal frame 37 from being inductively heated in combination with the magnetic field generated from the power supply coil 32. Therefore, by managing whether the misalignment is within the chargeable range R, unexpected heating of the metal frame 37 can be prevented, and the safety of the non-contact charging device can be further enhanced. Further, by suppressing the metal frame 37 from being coupled with the magnetic field, the power supply efficiency in the charging operation can be increased.
(実施の形態2)
なお、本発明は上述の実施の形態に限定されるものではなく、その他種々の態様で実施できる。例えば、本発明の実施の形態2にかかる非接触充電装置の構成を図7に示す。なお、本実施の形態2の非接触充電装置において、実施の形態1の非接触充電装置と同じ構成には同じ参照番号を付してその説明を省略する。 (Embodiment 2)
In addition, this invention is not limited to the above-mentioned embodiment, It can implement in another various aspect. For example, FIG. 7 shows a configuration of a contactless charging apparatus according toEmbodiment 2 of the present invention. In the contactless charging apparatus of the second embodiment, the same reference numerals are given to the same components as those of the contactless charging apparatus of the first embodiment, and the description thereof is omitted.
なお、本発明は上述の実施の形態に限定されるものではなく、その他種々の態様で実施できる。例えば、本発明の実施の形態2にかかる非接触充電装置の構成を図7に示す。なお、本実施の形態2の非接触充電装置において、実施の形態1の非接触充電装置と同じ構成には同じ参照番号を付してその説明を省略する。 (Embodiment 2)
In addition, this invention is not limited to the above-mentioned embodiment, It can implement in another various aspect. For example, FIG. 7 shows a configuration of a contactless charging apparatus according to
図7(a)に示すように、本実施の形態2の非接触充電装置では、給電コイル32に対する受電コイル35の第1方向D1における相対的な位置を検出する位置検出手段50がさらに備えられている点において、実施の形態1と相違する。
As shown in FIG. 7A, the contactless charging apparatus according to the second embodiment further includes position detection means 50 that detects a relative position of the power receiving coil 35 with respect to the power feeding coil 32 in the first direction D1. This is different from the first embodiment.
本実施の形態2の非接触充電装置では、地上側コイルユニット12に備えられた複数の位置検出センサ51と、車両側コイルユニット18に備えられた複数の位置検出センサ52とにより位置検出手段50が構成されている。地上側コイルユニット12側の位置検出センサ51は、給電コイル32の側方周囲にて等間隔にて配置されており、同様に、車両側コイルユニット18側の位置検出センサ52は、受電コイル35の側方周囲にて等間隔にて配置されている。また、給電コイル32と受電コイル35とが位置ずれ無しに位置決めされた状態にて、地上側コイルユニット12側のそれぞれの位置検出センサ51と、車両側コイルユニット18側のそれぞれの位置検出センサ52とが、第2方向D2において互いに対向するように、それぞれのセンサの配置が設定されている。
In the non-contact charging apparatus according to the second embodiment, the position detection means 50 includes a plurality of position detection sensors 51 provided in the ground side coil unit 12 and a plurality of position detection sensors 52 provided in the vehicle side coil unit 18. Is configured. The position detection sensors 51 on the ground side coil unit 12 side are arranged at equal intervals around the side of the power supply coil 32, and similarly, the position detection sensors 52 on the vehicle side coil unit 18 side include the power receiving coil 35. It is arranged at equal intervals around the side of the. Further, the position detection sensor 51 on the ground side coil unit 12 side and the position detection sensor 52 on the vehicle side coil unit 18 side in a state where the power feeding coil 32 and the power receiving coil 35 are positioned without positional deviation. Are arranged so that they face each other in the second direction D2.
地上側コイルユニット12側の位置検出センサ51と、車両側コイルユニット18側の位置検出センサ52との間で、通信(例えば、無線)などのセンシング動作を行い、地上側コイルユニット12または車両側コイルユニット18の制御部16、24などにその結果を出力することで、制御部16または24にて、給電コイル32と受電コイル35との相対的な位置ずれ量を検出することができる。
A sensing operation such as communication (for example, wireless) is performed between the position detection sensor 51 on the ground side coil unit 12 side and the position detection sensor 52 on the vehicle side coil unit 18 side, and the ground side coil unit 12 or the vehicle side By outputting the result to the control units 16 and 24 of the coil unit 18, the control unit 16 or 24 can detect the relative positional deviation amount between the power supply coil 32 and the power reception coil 35.
また、制御部16または24では予め充電可能範囲Rの情報が保持されており、位置検出手段50により検出された位置ずれ量が充電可能範囲R内であるかどうかの判断を行うことが可能となっている。
Further, the control unit 16 or 24 holds information on the chargeable range R in advance, and can determine whether or not the positional deviation amount detected by the position detection unit 50 is within the chargeable range R. It has become.
また、このような位置検出センサ51、52には、上述したセンシング動作を行うためのアンテナなどの金属製部品が内蔵されている。本実施の形態2では、車両側コイルユニット18において、金属フレーム37に加えて、このような金属製部品が内蔵された位置検出センサ52についても、充電動作中に誘導加熱により加熱されることを防止している。
Further, such position detection sensors 51 and 52 incorporate metal parts such as an antenna for performing the sensing operation described above. In the second embodiment, in the vehicle side coil unit 18, in addition to the metal frame 37, the position detection sensor 52 in which such a metal part is incorporated is also heated by induction heating during the charging operation. It is preventing.
具体的には、第1方向D1において、給電コイル32と受電コイル35との間に生じた位置ずれが充電可能範囲Rの限度と同じ大きさの位置ずれであるような状態を図7(b)に示す。図7(b)に示すように、給電コイル32の最外周に位置するリッツワイヤ41から受電コイル35の最外周に位置するリッツワイヤ42までの最短距離L1が、給電コイル32の最外周に位置するリッツワイヤ41から位置検出センサ52までの最短距離L3よりも短くなるように、位置検出センサ52が受電コイル35から離間して配置されている。なお、金属フレーム37の側部37aが受電コイル35から離間している点については、上述の実施の形態1と同様である。
Specifically, in the first direction D1, a state in which the positional shift generated between the feeding coil 32 and the power receiving coil 35 is the same positional shift as the limit of the chargeable range R is shown in FIG. ). As shown in FIG. 7B, the shortest distance L <b> 1 from the litz wire 41 located on the outermost periphery of the power supply coil 32 to the litz wire 42 located on the outermost periphery of the power receiving coil 35 is located on the outermost periphery of the power supply coil 32. The position detection sensor 52 is disposed away from the power receiving coil 35 so as to be shorter than the shortest distance L3 from the litz wire 41 to the position detection sensor 52. Note that the side 37a of the metal frame 37 is separated from the power receiving coil 35 as in the first embodiment.
このように車両側コイルユニット18において、さらに、位置検出センサ52が受電コイル35より離間して配置されることにより、給電コイル32と受電コイル35との間に生じた第1方向D1の位置ずれが充電可能範囲R内であれば、位置検出センサ52が給電コイル32から発生する磁界と結合して誘導加熱されることを防止することができる。したがって、位置ずれが充電可能範囲R内であるかどうかを管理することにより、金属フレーム37や位置検出センサ52の予期しない加熱を防止でき、非接触充電装置の安全性をさらに高めることができる。
As described above, in the vehicle side coil unit 18, the position detection sensor 52 is further arranged away from the power receiving coil 35, so that the positional deviation in the first direction D <b> 1 generated between the power feeding coil 32 and the power receiving coil 35. Is within the chargeable range R, it is possible to prevent the position detection sensor 52 from being inductively heated in combination with the magnetic field generated from the power feeding coil 32. Therefore, by managing whether or not the positional deviation is within the chargeable range R, unexpected heating of the metal frame 37 and the position detection sensor 52 can be prevented, and the safety of the non-contact charging device can be further improved.
また、図7(b)に示すように、給電コイル2の最外周に位置するリッツワイヤ41から受電コイル35の最外周に位置するリッツワイヤ42までの最短距離L1よりも、給電コイル32の最外周に位置するリッツワイヤ41から地上側コイルユニット12の位置検出センサ51までの最短距離が長くなるように、位置検出センサ51が給電コイル32から離間して配置されていることがより好ましい。
Further, as shown in FIG. 7B, the outermost of the feeding coil 32 is longer than the shortest distance L1 from the litz wire 41 located on the outermost circumference of the feeding coil 2 to the litz wire 42 located on the outermost circumference of the power receiving coil 35. It is more preferable that the position detection sensor 51 is disposed away from the power supply coil 32 so that the shortest distance from the litz wire 41 located on the outer periphery to the position detection sensor 51 of the ground side coil unit 12 is increased.
なお、上述したような金属フレーム37や位置検出センサ51、52の配置を実現することが困難な場合には、例えば、それぞれの部材を透磁率の優れた金属材料(例えば、フェライト系材料)により形成して磁気の影響を低減し、誘導加熱されないようにすることも可能である。
In addition, when it is difficult to realize the arrangement of the metal frame 37 and the position detection sensors 51 and 52 as described above, for example, each member is made of a metal material having excellent permeability (for example, a ferrite material). It is also possible to reduce the influence of magnetism and prevent induction heating.
ここで、給電コイル32と受電コイル35との間の位置ずれが充電可能範囲R内に入っているかどうかを検出した上で充電動作を行う手順(すなわち、充電開始動作)について、図8のフローチャートを用いて説明する。
Here, the procedure of performing the charging operation after detecting whether or not the positional deviation between the power feeding coil 32 and the power receiving coil 35 is within the chargeable range R (that is, the charging start operation) is a flowchart of FIG. Will be described.
まず、図8のフローチャートのステップS1において、電気推進車両を移動操作することにより、給電コイル32に対する受電コイル36の相対的な位置決めを行う。
First, in step S1 of the flowchart of FIG. 8, the power receiving coil 36 is relatively positioned with respect to the power feeding coil 32 by moving the electric propulsion vehicle.
次に、ステップS2において、位置検出センサ51、52を用いて、両コイル間の位置ずれ量の検出を行う。検出された位置ずれ量の情報は、制御部16または24に入力される。
Next, in step S2, the position detection amount between the two coils is detected using the position detection sensors 51 and 52. Information on the detected displacement amount is input to the control unit 16 or 24.
制御部16または24では、予め充電可能範囲Rの情報がメモリ部などに保持されており、入力された位置ずれ量と充電可能範囲Rとを比較する(ステップS3)。その結果、位置ずれ量が充電可能範囲Rを超過していると判断された場合には、警報を出力するなど、車両の操作者に対して位置ずれ量が充電可能範囲Rを超過しているため、充電動作を開始できないことを知らせる(ステップS5)。この警報を受けた操作者は車両の位置決めを再度実施して、位置ずれ量が充電可能範囲R内であると判断されるまで、ステップS1、S2の動作を実施する。
In the control unit 16 or 24, information on the chargeable range R is stored in advance in the memory unit or the like, and the input positional deviation amount is compared with the chargeable range R (step S3). As a result, when it is determined that the misregistration amount exceeds the rechargeable range R, an alarm is output or the misregistration amount exceeds the rechargeable range R for the vehicle operator. Therefore, it is notified that the charging operation cannot be started (step S5). The operator who has received this warning performs positioning of the vehicle again, and performs the operations of steps S1 and S2 until it is determined that the amount of displacement is within the chargeable range R.
一方、ステップS3において、検出された位置ずれ量が充電可能範囲R内に入っていることが確認されると、制御部16または24より充電動作の開始指令が出力されて、給電コイル32から受電コイル35への電力給電が行われる(ステップS4)。
On the other hand, when it is confirmed in step S3 that the detected positional deviation amount is within the chargeable range R, a charging operation start command is output from the control unit 16 or 24, and the power receiving coil 32 receives power. Power is supplied to the coil 35 (step S4).
本実施の形態2によれば、給電コイル32と受電コイル35との間の位置ずれ量が充電可能範囲R内に入っていることを確認した上で充電動作を行い、位置ずれ量が充電可能範囲Rを超えているような場合には、警報を出力して充電動作を開始しないように制御している。これにより、金属フレーム37の側部37aや位置検出センサ52などが誘導加熱されることを防止できる。したがって、非接触充電装置において、安全性を向上させることができる。また、このような誘導加熱を抑制することにより、給電コイル32から受電コイル35への給電効率(充電効率)を高めることも可能となる。
According to the second embodiment, after confirming that the displacement amount between the feeding coil 32 and the receiving coil 35 is within the chargeable range R, the charging operation is performed, and the displacement amount can be charged. When the range R is exceeded, an alarm is output so that the charging operation is not started. Thereby, it can prevent that the side part 37a of the metal frame 37, the position detection sensor 52, etc. are induction-heated. Therefore, safety can be improved in the non-contact charging device. Further, by suppressing such induction heating, it is also possible to increase the power supply efficiency (charging efficiency) from the power supply coil 32 to the power reception coil 35.
なお、上述の説明では、給電コイル32および受電コイル35の外形が円形状である場合を例として説明したが、多角形状の外形を有するような場合であっても良い。
In the above description, the case where the outer shapes of the feeding coil 32 and the power receiving coil 35 are circular has been described as an example. However, the outer shape may be a polygonal shape.
また、大略環状の給電コイル32と受電コイル35において、外形および内径がほぼ同じような場合を例として説明したが、両コイル32、35のサイズが異なるような場合であっても良い。
In addition, although the case where the outer shape and the inner diameter of the substantially annular power supply coil 32 and the power receiving coil 35 are substantially the same has been described as an example, the sizes of both the coils 32 and 35 may be different.
また、上述の実施の形態では、非接触充電装置が電気推進車両に搭載される場合を例として説明したが、非接触充電装置が電気推進車両の他、船舶、航空機、ロボットなど電力により移動する移動体に搭載されているような場合であれば、本発明を適用できる。
Moreover, although the case where the non-contact charging device is mounted on the electric propulsion vehicle has been described as an example in the above-described embodiment, the non-contact charging device moves by electric power such as a ship, an aircraft, and a robot in addition to the electric propulsion vehicle. The present invention can be applied to a case where it is mounted on a moving body.
なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
It should be noted that, by appropriately combining arbitrary embodiments of the above-described various embodiments, the effects possessed by them can be produced.
本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of the present invention according to the appended claims.
2011年12月27日に出願された日本国特許出願No.2011-286508号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
Japanese patent application No. filed on December 27, 2011. The disclosure of the specification, drawings, and claims of 2011-286508 is incorporated herein by reference in its entirety.
本発明によれば、給電装置と、移動体に搭載された受電装置とを備える非接触充電装置において、受電装置に備えられる金属フレームなどの金属部品が誘導加熱されることを防止しながら充電動作を行うことができるため、電気推進車両の他、船舶、航空機、ロボットなど電力により移動する移動体の充電に用いられる非接触電力伝送に適用できる。
According to the present invention, in a non-contact charging device including a power feeding device and a power receiving device mounted on a moving body, a charging operation is performed while preventing metal parts such as a metal frame provided in the power receiving device from being inductively heated. Therefore, the present invention can be applied to non-contact power transmission used for charging a mobile body that moves by electric power such as a ship, an aircraft, and a robot in addition to an electric propulsion vehicle.
2 給電装置
4 受電装置
6 商用電源
8 1次側整流回路
10 インバータ部
12 地上側コイルユニット
16 制御部
17 電力制御装置
18 車両側コイルユニット
20 2次側整流回路
22 バッテリー
24 制御部
31 ベース
32 給電コイル
33 カバー
34 ベース
35 受電コイル
36 カバー
37 金属フレーム
37a 側部
41 リッツワイヤ
42 リッツワイヤ
43 素線
50 位置検出手段
51 位置検出センサ
52 位置検出センサ
R 位置ずれ許容範囲
L1~L3 最短距離 DESCRIPTION OFSYMBOLS 2 Electric power feeder 4 Power receiving device 6 Commercial power supply 8 Primary side rectifier circuit 10 Inverter part 12 Ground side coil unit 16 Control part 17 Power control device 18 Vehicle side coil unit 20 Secondary side rectifier circuit 22 Battery 24 Control part 31 Base 32 Electric power feeding Coil 33 Cover 34 Base 35 Power receiving coil 36 Cover 37 Metal frame 37a Side 41 Ritz wire 42 Ritz wire 43 Wire 50 Position detection means 51 Position detection sensor 52 Position detection sensor R Position shift tolerance range L1 to L3 Shortest distance
4 受電装置
6 商用電源
8 1次側整流回路
10 インバータ部
12 地上側コイルユニット
16 制御部
17 電力制御装置
18 車両側コイルユニット
20 2次側整流回路
22 バッテリー
24 制御部
31 ベース
32 給電コイル
33 カバー
34 ベース
35 受電コイル
36 カバー
37 金属フレーム
37a 側部
41 リッツワイヤ
42 リッツワイヤ
43 素線
50 位置検出手段
51 位置検出センサ
52 位置検出センサ
R 位置ずれ許容範囲
L1~L3 最短距離 DESCRIPTION OF
Claims (4)
- 入力された交流電流により磁束を発生する給電コイルを有する給電装置と、移動体に搭載された受電コイルを有する受電装置と、を備え、前記給電コイルと該給電コイルに対向して位置決めされた状態の前記受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置であって、
前記受電装置は、前記受電コイルの側方周囲に配置され、前記移動体に固定された金属フレームを有し、
コイルの対向面沿いの方向における前記給電コイルと前記受電コイルとの間の位置ずれ量が充電可能範囲内にある状態にて、前記給電コイルの最外周ワイヤから前記受電コイルの最外周ワイヤまでの最短距離が、前記給電コイルの前記最外周ワイヤから前記金属フレームまでの最短距離よりも短くなるように、前記金属フレームが前記受電コイルより離間して配置されている、非接触充電装置。 A power supply device having a power supply coil that generates magnetic flux by an input alternating current, and a power reception device having a power reception coil mounted on a moving body, the state being positioned facing the power supply coil and the power supply coil A non-contact charging device for supplying power by electromagnetic induction between the power receiving coil of
The power receiving device is disposed around a side of the power receiving coil, and has a metal frame fixed to the moving body,
With the amount of positional deviation between the power feeding coil and the power receiving coil in the direction along the opposing surface of the coil being within the chargeable range, from the outermost peripheral wire of the power feeding coil to the outermost peripheral wire of the power receiving coil The non-contact charging device, wherein the metal frame is arranged away from the power receiving coil such that the shortest distance is shorter than the shortest distance from the outermost peripheral wire of the power feeding coil to the metal frame. - 前記受電装置は、前記受電コイルの側方周囲にて前記金属フレームとの間に配置され、前記給電装置に対する前記受電装置の相対的な位置を検出する位置検出センサをさらに有し、
前記位置ずれ量が充電可能範囲内にある状態にて、前記給電コイルの最外周ワイヤから前記受電コイルの最外周ワイヤまでの最短距離が、前記給電コイルの前記最外周ワイヤから前記位置検出センサまでの最短距離よりも短くなるように、前記位置検出センサが前記受電コイルより離間して配置されている、請求項1に記載の非接触充電装置。 The power receiving device further includes a position detection sensor that is disposed between the power receiving coil and a side of the metal frame and detects a relative position of the power receiving device with respect to the power feeding device.
The shortest distance from the outermost peripheral wire of the power supply coil to the outermost peripheral wire of the power receiving coil is the distance from the outermost peripheral wire of the power supply coil to the position detection sensor in a state where the amount of displacement is within the chargeable range. The non-contact charging device according to claim 1, wherein the position detection sensor is disposed apart from the power receiving coil so as to be shorter than the shortest distance. - 入力された交流電流により磁束を発生する給電コイルを有する給電装置と、移動体に搭載された受電コイルを有する受電装置と、を備え、前記給電コイルと該給電コイルに対向して位置決めされた状態の前記受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置であって、
前記受電装置は、
前記受電コイルの側方周囲に配置され、前記移動体に固定された金属フレームと、
前記給電装置に対する前記受電装置の相対的な位置を検出する位置検出センサとを備え、
前記給電コイルから前記受電コイルへの電力供給による充電動作を制御する制御装置を備え、
前記制御装置は、
前記給電コイルの最外周ワイヤから前記受電コイルの最外周ワイヤまでの最短距離が、前記給電コイルの前記最外周ワイヤから前記金属フレームまでの最短距離よりも短くなるようなコイルの対向面沿いの方向における前記給電コイルと前記受電コイルとの間の位置ずれ量を充電可能範囲の情報として有し、
前記位置検出センサにより検出された位置ずれ量を前記充電可能範囲の情報と比較して、前記位置ずれ量が前記充電可能範囲を超えていると判断した場合に、電力給電を開始しないように充電動作を制御する、非接触充電装置。 A power supply device having a power supply coil that generates magnetic flux by an input alternating current, and a power reception device having a power reception coil mounted on a moving body, the state being positioned facing the power supply coil and the power supply coil A non-contact charging device for supplying power by electromagnetic induction between the power receiving coil of
The power receiving device is:
A metal frame disposed around a side of the power receiving coil and fixed to the moving body;
A position detection sensor for detecting a relative position of the power reception device with respect to the power supply device;
A control device for controlling a charging operation by supplying power from the power feeding coil to the power receiving coil;
The control device includes:
A direction along the facing surface of the coil such that the shortest distance from the outermost peripheral wire of the power supply coil to the outermost peripheral wire of the power receiving coil is shorter than the shortest distance from the outermost peripheral wire of the power supply coil to the metal frame The amount of misalignment between the power feeding coil and the power receiving coil in as a chargeable range information,
When the positional deviation amount detected by the position detection sensor is compared with the information on the chargeable range, and it is determined that the positional deviation amount exceeds the chargeable range, charging is performed so that power supply is not started. Non-contact charging device that controls operation. - 前記位置検出センサは、前記受電コイルの側方周囲にて前記金属フレームとの間に配置され、
前記制御装置は、
前記充電可能範囲の情報として、前記給電コイルの最外周ワイヤから前記受電コイルの最外周ワイヤまでの最短距離が、前記給電コイルの前記最外周ワイヤから前記位置検出センサまでの最短距離よりも短くなるようなコイルの対向面沿いの方向における前記給電コイルと前記受電コイルとの間の位置ずれ量の情報を有し、
前記位置検出センサにより検出された位置ずれ量を前記充電可能範囲の情報と比較して、前記位置ずれ量が前記充電可能範囲を超えていると判断した場合に、電力給電を開始しないように充電動作を制御する、請求項3に記載の非接触充電装置。 The position detection sensor is arranged between the metal frame around a side of the power receiving coil,
The control device includes:
As information on the chargeable range, the shortest distance from the outermost peripheral wire of the power supply coil to the outermost peripheral wire of the power receiving coil is shorter than the shortest distance from the outermost peripheral wire of the power supply coil to the position detection sensor. Information on the amount of misalignment between the feeding coil and the receiving coil in the direction along the opposing surface of the coil,
When the positional deviation amount detected by the position detection sensor is compared with the information on the chargeable range, and it is determined that the positional deviation amount exceeds the chargeable range, charging is performed so that power supply is not started. The contactless charging apparatus according to claim 3, wherein the operation is controlled.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011286508 | 2011-12-27 | ||
JP2011-286508 | 2011-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013099222A1 true WO2013099222A1 (en) | 2013-07-04 |
Family
ID=48696760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/008275 WO2013099222A1 (en) | 2011-12-27 | 2012-12-25 | Non-contact charging device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013099222A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015040650A1 (en) * | 2013-09-17 | 2015-03-26 | パナソニックIpマネジメント株式会社 | Contactless power transmission device |
CN105702441A (en) * | 2014-12-16 | 2016-06-22 | 西门子公司 | Coil unit for a transmission arrangement for inductive transmission of energy |
US9921080B2 (en) | 2015-12-18 | 2018-03-20 | Datalogic Ip Tech S.R.L. | Using hall sensors to detect insertion and locking of a portable device in a base |
EP3206281A4 (en) * | 2014-10-10 | 2018-05-30 | IHI Corporation | Power reception coil device and contactless power supply system |
CN108574327A (en) * | 2017-03-09 | 2018-09-25 | Tdk株式会社 | Coil unit, wireless power supply, wireless receiving device and Wireless power transmission system |
CN109567276A (en) * | 2018-11-30 | 2019-04-05 | 深圳华大北斗科技有限公司 | Non-contact thermal component and electronic cigarette |
CN110341505A (en) * | 2018-03-19 | 2019-10-18 | 江苏现代造船技术有限公司 | A kind of inland river all electric propulsion ship wireless charging device |
WO2023097759A1 (en) * | 2021-12-01 | 2023-06-08 | 中车长春轨道客车股份有限公司 | Inductive power supply test bench |
CN118135075A (en) * | 2024-03-11 | 2024-06-04 | 北京西岐网络科技有限公司 | Digital camp area information intelligent analysis method and system based on big data |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833112A (en) * | 1994-07-20 | 1996-02-02 | Sumitomo Electric Ind Ltd | Non-contact current collector for vehicle |
JP2007159359A (en) * | 2005-12-08 | 2007-06-21 | Sumitomo Electric Ind Ltd | Power transfer system, power transfer device, and power transfer device mounted on vehicle |
WO2011006876A2 (en) * | 2009-07-14 | 2011-01-20 | Conductix-Wampfler Ag | Device for the inductive transfer of electric energy |
WO2011074091A1 (en) * | 2009-12-17 | 2011-06-23 | トヨタ自動車株式会社 | Shield and vehicle whereupon same is mounted |
JP2011244641A (en) * | 2010-05-20 | 2011-12-01 | Toyota Motor Corp | Non-contact power reception device for vehicle |
-
2012
- 2012-12-25 WO PCT/JP2012/008275 patent/WO2013099222A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833112A (en) * | 1994-07-20 | 1996-02-02 | Sumitomo Electric Ind Ltd | Non-contact current collector for vehicle |
JP2007159359A (en) * | 2005-12-08 | 2007-06-21 | Sumitomo Electric Ind Ltd | Power transfer system, power transfer device, and power transfer device mounted on vehicle |
WO2011006876A2 (en) * | 2009-07-14 | 2011-01-20 | Conductix-Wampfler Ag | Device for the inductive transfer of electric energy |
WO2011074091A1 (en) * | 2009-12-17 | 2011-06-23 | トヨタ自動車株式会社 | Shield and vehicle whereupon same is mounted |
JP2011244641A (en) * | 2010-05-20 | 2011-12-01 | Toyota Motor Corp | Non-contact power reception device for vehicle |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015040650A1 (en) * | 2013-09-17 | 2015-03-26 | パナソニックIpマネジメント株式会社 | Contactless power transmission device |
EP3206281A4 (en) * | 2014-10-10 | 2018-05-30 | IHI Corporation | Power reception coil device and contactless power supply system |
US10315527B2 (en) | 2014-10-10 | 2019-06-11 | Ihi Corporation | Power reception coil device and wireless power transfer system |
CN105702441A (en) * | 2014-12-16 | 2016-06-22 | 西门子公司 | Coil unit for a transmission arrangement for inductive transmission of energy |
US9921080B2 (en) | 2015-12-18 | 2018-03-20 | Datalogic Ip Tech S.R.L. | Using hall sensors to detect insertion and locking of a portable device in a base |
CN108574327A (en) * | 2017-03-09 | 2018-09-25 | Tdk株式会社 | Coil unit, wireless power supply, wireless receiving device and Wireless power transmission system |
CN108574327B (en) * | 2017-03-09 | 2022-01-04 | Tdk株式会社 | Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission system |
CN110341505A (en) * | 2018-03-19 | 2019-10-18 | 江苏现代造船技术有限公司 | A kind of inland river all electric propulsion ship wireless charging device |
CN109567276A (en) * | 2018-11-30 | 2019-04-05 | 深圳华大北斗科技有限公司 | Non-contact thermal component and electronic cigarette |
CN109567276B (en) * | 2018-11-30 | 2023-12-01 | 深圳华大北斗科技股份有限公司 | Non-contact heating element and electron cigarette |
WO2023097759A1 (en) * | 2021-12-01 | 2023-06-08 | 中车长春轨道客车股份有限公司 | Inductive power supply test bench |
CN118135075A (en) * | 2024-03-11 | 2024-06-04 | 北京西岐网络科技有限公司 | Digital camp area information intelligent analysis method and system based on big data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013099222A1 (en) | Non-contact charging device | |
JP6067211B2 (en) | Non-contact power feeding device | |
JP5437650B2 (en) | Non-contact power feeding device | |
JP5285418B2 (en) | Resonant non-contact power supply device | |
JP5244250B1 (en) | Power supply device | |
JP6152960B2 (en) | Non-contact power transmission apparatus and non-contact power transmission method | |
US20140306655A1 (en) | Contactless battery charger | |
EP3131174B1 (en) | Non-contact power supply coil | |
US10279691B2 (en) | Contactless feeding pad and contactless feeding device | |
WO2010074106A1 (en) | Resonance type noncontact charging device | |
EP3224843B1 (en) | Power reception apparatus and power transmission apparatus | |
JP2011097671A (en) | Non-contact power supply device | |
US20160197492A1 (en) | Contactless power transmission device | |
JP2013219210A (en) | Non-contact power transmission device | |
WO2013061610A1 (en) | Power supplying apparatus, power receiving apparatus, and non-contact charging apparatus | |
EP3206281B1 (en) | Power reception coil device and wireless power supply system | |
JP2013017247A (en) | Power supply device and power reception device used for non contact power transmission | |
WO2013136787A1 (en) | Electricity supply device, electricity reception device, and electricity supply system | |
US10673276B2 (en) | Coil device, wireless power transfer system, and auxiliary magnetic member | |
JP2013215073A (en) | Feeding apparatus and power reception apparatus for non-contact power transmission system | |
US9748773B2 (en) | Contactless power supply device | |
JP6164490B2 (en) | Non-contact power feeding device | |
JP2016106512A (en) | Non-contact power feeding device | |
JP2015100246A (en) | Non-contact power transmission system, charging station and vehicle | |
JP6587895B2 (en) | Contactless power supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12863192 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12863192 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |