WO2013077446A1 - Single-stranded nucleic acid molecule for regulating expression of gene - Google Patents

Single-stranded nucleic acid molecule for regulating expression of gene Download PDF

Info

Publication number
WO2013077446A1
WO2013077446A1 PCT/JP2012/080461 JP2012080461W WO2013077446A1 WO 2013077446 A1 WO2013077446 A1 WO 2013077446A1 JP 2012080461 W JP2012080461 W JP 2012080461W WO 2013077446 A1 WO2013077446 A1 WO 2013077446A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
bases
nucleic acid
side region
acid molecule
Prior art date
Application number
PCT/JP2012/080461
Other languages
French (fr)
Japanese (ja)
Inventor
忠明 大木
久男 白水
智洋 濱崎
Original Assignee
株式会社ボナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ボナック filed Critical 株式会社ボナック
Publication of WO2013077446A1 publication Critical patent/WO2013077446A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/533Physical structure partially self-complementary or closed having a mismatch or nick in at least one of the strands

Definitions

  • the present invention relates to a single-stranded nucleic acid molecule that suppresses gene expression, a composition containing the same, and use thereof.
  • miRNA is known as a nucleic acid molecule that suppresses gene expression.
  • miRNAs have been reported to repress the transcription of proteins encoded by genes through the following production process. That is, first, a miRNA transcript (Pri-miRNA) having a cap structure at the 5 'end and poly (A) at the 3' end is generated in the nucleus. The Pri-miRNA is cleaved by RNase (Drosha) to generate a miRNA precursor (Pre-miRNA). The Pre-miRNA has a hairpin structure having a loop region and a stem region.
  • This Pre-miRNA moves to the outside of the nucleus, and then is degraded by cytoplasmic RNase (Dicer) to cut out double-stranded miRNA having an overhang of 1 to 4 bases at the 3 'end.
  • cytoplasmic RNase Dioxe
  • One strand of this double-stranded miRNA binds to a complex similar to RNA induced Silencing Complex (RISC).
  • RISC RNA induced Silencing Complex
  • the miRNA / RISC complex binds to the 3 'untranslated region (3'UTR) of a specific mRNA, thereby suppressing protein translation from the mRNA.
  • an object of the present invention is to provide a new nucleic acid molecule capable of suppressing gene expression.
  • the single-stranded nucleic acid molecule of the present invention is a single-stranded nucleic acid molecule comprising an expression suppressing sequence that suppresses the expression of a target gene and a complementary sequence that has a mismatch with the expression suppressing sequence.
  • the internal region (Z) is configured by connecting an internal 5 ′ side region (X) and an internal 3 ′ side region (Y),
  • the 5 ′ side region (Xc) is complementary to the internal 5 ′ side region (X);
  • the 3 ′ side region (Yc) is complementary to the inner 3 ′ side region (Y);
  • At least one of the internal region (Z), the 5 ′ side region (Xc) and the 3 ′ side region (Yc) includes the expression suppression sequence,
  • a region complementary to the region containing the expression suppression sequence comprises the complementary sequence;
  • the 5 ′ terminal base and the 3 ′ terminal base of the single-stranded nucleic acid molecule are unbound.
  • composition of the present invention is a composition for suppressing the expression of a target gene, and is characterized by containing the single-stranded nucleic acid molecule of the present invention.
  • composition of the present invention is a pharmaceutical composition, and is characterized by containing the single-stranded nucleic acid molecule of the present invention.
  • the expression suppression method of the present invention is a method of suppressing the expression of a target gene, characterized in that the single-stranded nucleic acid molecule of the present invention is used.
  • the method for treating a disease of the present invention includes a step of administering the single-stranded nucleic acid molecule of the present invention to a patient, wherein the single-stranded nucleic acid molecule serves as the expression-suppressing sequence of a gene causing the disease. It has a sequence that suppresses expression.
  • the single-stranded nucleic acid molecule of the present invention can suppress gene expression, specifically, translation of a protein encoded by the gene.
  • the present inventors are the first to find that the structure of the single-stranded nucleic acid molecule of the present invention can suppress gene expression.
  • the gene expression suppression effect of the single-stranded nucleic acid molecule of the present invention is presumed to be due to the same phenomenon as RNA interference, but gene expression suppression in the present invention is not limited or limited to RNA interference.
  • FIG. 1 is a schematic diagram showing an example of a single-stranded nucleic acid molecule of the present invention.
  • FIG. 2 is a schematic diagram showing another example of the single-stranded nucleic acid molecule of the present invention.
  • FIG. 3 is a schematic diagram showing another example of the single-stranded nucleic acid molecule of the present invention.
  • FIG. 4 is a graph showing the amount of HMGA2 mRNA in Examples of the present invention.
  • FIG. 5 is a graph showing the amount of mature miRNA of human let-7a-1 miRNA in the examples of the present invention.
  • the single-stranded nucleic acid molecule of the present invention is a single-stranded nucleic acid molecule comprising an expression suppressing sequence that suppresses expression of a target gene and a complementary sequence that has a mismatch with the expression suppressing sequence, as described above.
  • the internal region (Z) is configured by connecting an internal 5 ′ side region (X) and an internal 3 ′ side region (Y),
  • the 5 ′ side region (Xc) is complementary to the internal 5 ′ side region (X);
  • the 3 ′ side region (Yc) is complementary to the inner 3 ′ side region (Y);
  • At least one of the internal region (Z), the 5 ′ side region (Xc) and the 3 ′ side region (Yc) includes the expression suppression sequence,
  • a region complementary to the region containing the expression suppression sequence comprises the complementary sequence;
  • the 5 ′ terminal base and the 3 ′ terminal base of the single-stranded nucleic acid molecule are unbound.
  • target gene expression suppression means, for example, suppression of translation of the target gene, that is, suppression of translation of a protein encoded by the target gene, and more specifically, mRNA of the target gene.
  • Means suppression of translation of the protein from The suppression of the expression of the target gene can be achieved, for example, by reducing the production amount of the transcription product from the target gene, reducing the activity of the transcription product, reducing the production amount of the translation product from the target gene, or activity of the translation product. It can be confirmed by decrease of Examples of the protein include a mature protein or a precursor protein before undergoing processing or post-translational modification.
  • the single-stranded nucleic acid molecule of the present invention is also referred to as “ssNc molecule” of the present invention. Since the ssNc molecule of the present invention can be used, for example, in vivo or in vitro to suppress target gene expression, it is also referred to as “target gene expression suppression ssNc molecule” or “target gene expression inhibitor”. Moreover, the ssNc molecule of the present invention can suppress side effects such as interferon induction.
  • the ssNc molecule of the present invention has an unlinked 5 'end and 3' end, and can also be referred to as a linear single-stranded nucleic acid molecule.
  • the inner 5 'region (X) and the inner 3' region (Y) are directly linked.
  • the nucleic acid molecule of this embodiment for example, it is preferable that the 5 'end is a non-phosphate group in order to maintain unbonded at both ends.
  • the 5 ′ side region (Xc) is complementary to the internal 5 ′ side region (X), and the 3 ′ side region (Yc) is the internal 3 ′ side region (Y ). Therefore, on the 5 ′ side, the region (Xc) is folded toward the region (X), and the region (Xc) and the region (X) can form a double chain by self-annealing. In addition, on the 3 ′ side, the region (Yc) is folded toward the region (Y), and the region (Yc) and the region (Y) can form a double chain by self-annealing. .
  • the 5 'end of the 5' side region (Xc) and the 3 'end of the 3' side region (Yc) are also referred to as unbound ends.
  • the expression suppression sequence only needs to have, for example, expression suppression activity, and a mature miRNA sequence is preferable.
  • the production process of miRNA in vivo and the protein expression suppression process by miRNA are as follows. First, a single-stranded miRNA transcript (Pri-miRNA) having a cap structure at the 5 'end and a polyA structure at the 3' end is expressed in the nucleus.
  • the Pri-miRNA has a hairpin structure.
  • the Pri-miRNA is cleaved by RNase (Drosha) to generate a single-stranded precursor (Pre-miRNA).
  • the Pre-miRNA has a hairpin structure having a stem region and a loop region.
  • the Pre-miRNA is transported to the cytoplasm, then cleaved by RNase (Dicer), and from its stem structure, a double-stranded miRNA having an overhang of several bases (eg, 1 to 4 bases) at the 3 ′ end. Is generated.
  • the single-stranded mature miRNA of the double-stranded miRNA binds to a complex similar to RISC (RNA induced Silencing Complex), and the mature miRNA / RISC complex binds to a specific mRNA.
  • RISC RNA induced Silencing Complex
  • Protein translation from the mRNA is suppressed.
  • the mature miRNA sequence may be used as the expression suppression sequence.
  • the expression suppression sequence can be referred to as a translation suppression sequence because it specifically suppresses translation of a protein.
  • the present invention relates to the structure of a nucleic acid molecule for allowing the expression suppression activity of the target gene by the expression suppression sequence to function in the cell, for example, not the point of the sequence information of the expression suppression sequence for the target gene. . Therefore, in the present invention, for example, in addition to the single-stranded mature miRNA sequence of the miRNA known at the time of filing, a sequence that will become apparent in the future can be used as the expression suppression sequence. Since the ssNc molecule of the present invention is loaded with miRNA as described above, it can also be referred to as a nucleic acid for miRNA supplementation.
  • the expression suppression sequence preferably has complementarity to a predetermined region of the target gene, for example.
  • the expression suppression sequence preferably has, for example, a 5 ′ region having a sequence that is completely complementary to the target gene, more preferably a sequence from the second base to the 8th base at the 5 ′ end (Seed sequence). Also has a sequence that is completely complementary to the target gene.
  • the complementarity of the expression suppression sequence is not particularly limited, and is preferably 90% or more, more preferably 95%, still more preferably 98%, and particularly preferably 100%. By satisfying such complementarity, for example, off-target can be sufficiently reduced.
  • HMGA2 high mobility group AT-hook 2
  • HMG non-histone chromosomal high mobility group
  • the length of the expression suppression sequence is not particularly limited, and the lower limit is, for example, 18 base length, preferably 19 base length, more preferably 20 base length, and the upper limit is, for example, 25 base length, preferably 24.
  • the base length is more preferably 23 bases.
  • the complementary sequence is a sequence having a mismatch when aligned with the expression suppression sequence.
  • the expression suppressing sequence is a sequence having a mismatch when aligned with the complementary sequence.
  • the number of mismatches is not particularly limited.
  • the ssNc molecule of the present invention has a structure in which the expression suppression sequence is arranged in at least one of the internal region (Z), the 5 ′ side region (Xc), and the 3 ′ side region (Yc).
  • expression suppression occurs as in the case of Pre-miRNA. That is, it is speculated that the mature miRNA is generated from the ssNC molecule of the present invention, and that the translation of the protein from the target gene is suppressed by the mature miRNA. Note that the present invention is not limited by this mechanism.
  • the expression suppressing sequence is contained in at least one of the internal region (Z), the 5 'side region (Xc), and the 3' side region (Yc) as described above.
  • the ssNc molecule of the present invention may have, for example, one or more than two of the expression suppression sequences.
  • the ssNc molecule of the present invention may have two or more of the same expression suppression sequences for the same target gene, or may have two or more different expression suppression sequences for the same target gene. Two or more different expression suppression sequences for different target genes may be included.
  • the location of each expression suppression sequence is not particularly limited, and the internal region (Z), the 5 ′ side region (Xc), and the Any one of the 3 ′ side regions (Yc) may be used, or a different region may be used.
  • the ssNc molecule of the present invention has two or more of the expression suppression sequences for different target genes, for example, the expression of two or more different target genes can be suppressed by the ssNc molecule of the present invention.
  • the mature miRNA sequence is generated from one strand (also referred to as a guide strand) of the stem structure by cleaving the Pre-miRNA.
  • a minor miRNA * sequence (also referred to as a passenger strand) is generated from the other strand of the structure of the stem structure.
  • the minor miRNA * sequence is usually a complementary strand having a mismatch of 1 to several bases when aligned with the Pre-miRNA.
  • the ssNc molecule of the present invention may further have the minor miRNA * sequence, for example.
  • the mature miRNA sequence and the minor miRNA * sequence may have non-complementary bases when they are aligned.
  • the minor miRNA * has, for example, a complementation to the mature miRNA sequence of, for example, 60 to 100%.
  • Each of the mature miRNA sequence and the minor miRNA * may have, for example, one or several bases that are non-complementary, and the several bases are, for example, 2 to 15 bases .
  • the non-complementary bases may be, for example, continuous or non-continuous.
  • the position of the minor miRNA * sequence is not particularly limited, and is preferably, for example, a position that can be annealed with the mature miRNA sequence to form a double strand.
  • the internal 5 ′ region (X) preferably has the minor miRNA * sequence
  • the internal 3 ′ region (Yc) preferably has the minor miRNA * sequence
  • the 5 ′ region (Xc) preferably has the minor miRNA * sequence
  • the 3 ′ region (Yc) preferably has the minor miRNA * sequence
  • the 3 ′ region (Yc) preferably has the minor miRNA * sequence.
  • the length of the minor miRNA * sequence is not particularly limited, and the difference from the length of the mature miRNA sequence is, for example, 0 to 10 bases long, preferably 0 to 7 bases long, more preferably 0 to 5 bases long It is.
  • the minor miRNA * sequence and the mature miRNA sequence may be, for example, the same length, the former may be longer, or the latter may be longer.
  • HMGA2 high mobility group AT-hook 2 protein
  • the inner region (Z) is formed by connecting the inner 5 'region (X) and the inner 3' region (Y).
  • the region (X) and the region (Y) are directly connected, for example, and do not have an intervening sequence therebetween.
  • the inner region (Z) is defined as “the inner 5 ′ side region (X) and the inner 3 ′ side in order to indicate the arrangement relationship between the 5 ′ side region (Xc) and the 3 ′ side region (Xc)”.
  • the region (Y) is connected to each other ”, and in the inner region (Z), the 5 ′ side region (Xc) and the 3 ′ side region (Yc) are, for example,
  • the use of ssNc molecules is not limited to being a separate and independent region. That is, for example, when the internal region (Z) has the expression suppression sequence, the expression suppression sequence is arranged across the region (X) and the region (Y) in the internal region (Z). Also good.
  • the 5 'side region (Xc) is complementary to the internal 5' side region (X).
  • the region (Xc) may have a sequence complementary to the entire region of the region (X) or a partial region thereof.
  • the region (Xc) It is preferable that the entire region or a partial region thereof includes a complementary sequence or consists of the complementary sequence.
  • the region (Xc) may be completely complementary to the entire region complementary to the region (X) or the complementary partial region, for example, or one or several bases may be non-complementary.
  • the 3 'side region (Yc) is complementary to the internal 3' side region (Y).
  • the region (Yc) may have a sequence complementary to the entire region of the region (Y) or a partial region thereof. Specifically, for example, the entire region (Y) Alternatively, it preferably includes a sequence complementary to the partial region, or consists of the complementary sequence.
  • the region (Yc) may be completely complementary to the entire region complementary to the region (Y) or the complementary partial region, for example, or one or several bases may be non-complementary. .
  • the one base or several bases is, for example, 1 to 3 bases, preferably 1 base or 2 bases.
  • the 5 'side region (Xc) and the internal 5' side region (X) may be directly connected or indirectly connected, for example.
  • direct linkage includes, for example, linkage by a phosphodiester bond.
  • a linker region (Lx) is provided between the region (Xc) and the region (X), and the region (Xc) and the region ( And X) are linked together.
  • the 3 ′ side region (Yc) and the inner 3 ′ side region (Y) may be directly connected or indirectly connected, for example.
  • direct linkage includes, for example, linkage by a phosphodiester bond.
  • a linker region (Ly) is provided between the region (Yc) and the region (Y), and the region (Yc) and the region ( And Y) are linked.
  • the ssNc molecule of the present invention may have, for example, both the linker region (Lx) and the linker region (Ly), or one of them.
  • the linker region (Lx) is provided between the 5 ′ side region (Xc) and the inner 5 ′ side region (X), and the 3 ′ side region (Yc) and the inner 3 'The linker region (Ly) is not present between the side region (Y), that is, the region (Yc) and the region (Y) are directly linked.
  • the linker region (Ly) is provided between the 3 ′ side region (Yc) and the inner 3 ′ side region (Y), and the 5 ′ side region (Xc) and the The linker region (Lx) is not provided between the internal 5′-side region (X), that is, the region (Xc) and the region (X) are directly linked.
  • the linker region (Lx) and the linker region (Ly) each preferably have a structure that does not cause self-annealing within its own region.
  • the linker region may be the same as the sequence of the loop region of the Pre-miRNA, for example. Alternatively, it may be a miniaturized arrangement of the loop region arrangement. Since the size of the linker region is smaller than that of the Pre-miRNA, the linker region is preferably a miniaturized sequence of the sequence or a non-nucleotide residue as described later, for example.
  • FIG. 1A is a schematic diagram showing an outline of the order of each region from the 5 ′ side to the 3 ′ side of the ssNc molecule.
  • FIG. 1B shows the ssNc molecule. It is a schematic diagram which shows the state which forms the double chain
  • FIG. 1 merely shows the order of connection of the regions and the positional relationship of the regions forming the double chain.
  • the length of each region is not limited to this.
  • FIG. 2 (A) is a schematic diagram showing an outline of the order of each region from the 5 ′ side to the 3 ′ side of the ssNc molecule as an example
  • FIG. 2 (B) shows the ssNc molecule.
  • FIG. 2 is a schematic diagram showing a state in which a double chain is formed in the molecule.
  • the ssNc molecule is located between the 5 ′ side region (Xc) and the inner 5 ′ side region (X), and between the inner 3 ′ side region (Y) and the 3 ′ side.
  • a double chain is formed with the side region (Yc), and the Lx region and the Ly region have a loop structure.
  • FIG. 2 merely shows the connection order of the regions and the positional relationship of the regions forming the double chain.
  • the length of each region is not limited to this.
  • the number of bases in the 5 ′ side region (Xc), the internal 5 ′ side region (X), the internal 3 ′ side region (Y) and the 3 ′ side region (Yc) is particularly For example, it is as follows.
  • “the number of bases” means, for example, “length” and can also be referred to as “base length”.
  • the 5′-side region (Xc) may be complementary to the entire region of the inner 5′-side region (X), for example.
  • the region (Xc) has the same base length as the region (X), and is composed of a base sequence complementary to the entire region from the 5 ′ end to the 3 ′ end of the region (X).
  • the region (Xc) has the same base length as the region (X), and all bases in the region (Xc) are complementary to all bases in the region (X). That is, for example, it is preferably completely complementary.
  • the present invention is not limited to this.
  • one or several bases may be non-complementary.
  • the 5′-side region (Xc) may be complementary to a partial region of the inner 5′-side region (X), for example.
  • the region (Xc) has, for example, the same base length as the partial region of the region (X), that is, consists of a base sequence having a base length shorter by one base or more than the region (X). preferable. More preferably, the region (Xc) has the same base length as the partial region of the region (X), and all the bases of the region (Xc) are included in the partial region of the region (X). It is preferred that it is complementary to all bases, that is, for example, completely complementary.
  • the partial region of the region (X) is preferably, for example, a region (segment) having a base sequence continuous from the 5 ′ terminal base (first base) in the region (X).
  • the 3′-side region (Yc) may be complementary to the entire region of the inner 3′-side region (Y), for example.
  • the region (Yc) has, for example, the same base length as the region (Y) and is composed of a base sequence complementary to the entire region from the 5 ′ end to the 3 ′ end of the region (Y).
  • the region (Yc) has the same base length as the region (Y), and all bases in the region (Yc) are complementary to all bases in the region (Y). That is, for example, it is preferable to be completely complementary.
  • the present invention is not limited to this.
  • one or several bases may be non-complementary.
  • the 3′-side region (Yc) may be complementary to a partial region of the inner 3′-side region (Y), for example.
  • the region (Yc) has, for example, the same base length as the partial region of the region (Y), that is, consists of a base sequence having a base length shorter by one base or more than the region (Y). preferable. More preferably, the region (Yc) has the same base length as the partial region of the region (Y), and all the bases of the region (Yc) are included in the partial region of the region (Y). It is preferred that it is complementary to all bases, that is, for example, completely complementary.
  • the partial region of the region (Y) is preferably, for example, a region (segment) having a base sequence continuous from the base at the 3 'end (first base) in the region (Y).
  • the number of bases (Z) in the internal region (Z), the number of bases (X) in the internal 5 ′ side region (X), and the number of bases in the internal 3 ′ side region (Y) ( Y), the number of bases (Z) in the internal region (Z), the number of bases (Yc) in the 3′-side region (Yc), and the number of bases (Xc) in the 5′-side region (Xc) For example, the relationship satisfies the conditions of the following formulas (1) and (2).
  • Z X + Y (1)
  • the relationship between the number of bases (X) in the inner 5 ′ side region (X) and the number of bases (Y) in the inner 3 ′ side region (Y) is not particularly limited, For example, any of the following formulas may be satisfied.
  • X Y (19) X ⁇ Y (20) X> Y (21)
  • the number of bases (X) in the internal 5 ′ side region (X), the number of bases (Xc) in the 5 ′ side region (Xc), the number of bases in the internal 3 ′ side region (Y) satisfies, for example, the following conditions (a) to (d).
  • Y Yc (4)
  • the difference between the number of bases (X) in the inner 5 ′ side region (X) and the number of bases (Xc) in the 5 ′ side region (Xc), the inner 3 ′ side region ( The difference between the number of bases (Y) of Y) and the number of bases (Yc) of the 3 ′ side region (Yc) preferably satisfies the following condition, for example.
  • A The conditions of the following formulas (11) and (12) are satisfied.
  • FIG. 3 shows ssNc containing the linker region (Lx) and the linker region (Ly), (A) is the ssNc molecule of (a), (B) is the ssNc molecule of (b), ( C) is an example of the ssNc molecule of (c), and (D) is an example of the ssNc molecule of (d).
  • a dotted line shows the state which has formed the double chain
  • FIG. 3 is merely the relationship between the inner 5 ′ side region (X) and the 5 ′ side region (Xc), and the relationship between the inner 3 ′ side region (Y) and the 3 ′ side region (Yc).
  • the length and shape of each region are not limited thereto, and the presence or absence of the linker region (Lx) and the linker region (Ly) is not limited thereto.
  • the ssNc molecules of (a) to (c) include, for example, the 5 ′ side region (Xc) and the inner 5 ′ side region (X), and the 3 ′ side region (Yc) and the inner 3 ′ side.
  • the region (Y) has a base that cannot be aligned with any of the 5 ′ side region (Xc) and the 3 ′ side region (Yc) in the internal region (Z) by forming a double chain, respectively. It can be said that the structure has a base that does not form a double chain.
  • the base that cannot be aligned also referred to as a base that does not form a double chain
  • free base In FIG.
  • the free base region is indicated by “F”.
  • the number of bases in the region (F) is not particularly limited.
  • the number of bases (F) in the region (F) is, for example, the number of bases “X—Xc” in the case of the ssNc molecule of (a), and “Y—Yc” in the case of the ssNc molecule of (b). In the case of the ssNc molecule of (c), it is the total number of bases “X-Xc” and “Y-Yc”.
  • the ssNc molecule of (d) is, for example, a structure in which the entire region of the internal region (Z) is aligned with the 5 ′ side region (Xc) and the 3 ′ side region (Yc), It can also be said that the entire region (Z) forms a double chain.
  • the 5 'end of the 5' side region (Xc) and the 3 'end of the 3' side region (Yc) are unlinked.
  • the length of each region is exemplified below, but the present invention is not limited thereto.
  • the numerical range of the number of bases discloses all positive integers belonging to the range.
  • the description “1 to 4 bases” includes “1, 2, 3, 4 bases”. "Means all disclosures (the same applies hereinafter).
  • the total number of bases of the free base (F) in the 5 ′ side region (Xc), the 3 ′ side region (Yc), and the internal region (Z) is, for example, the number of bases in the internal region (Z) It becomes.
  • the lengths of the 5 ′ side region (Xc) and the 3 ′ side region (Yc) depend on, for example, the length of the internal region (Z), the number of free bases (F), and the position thereof. Can be determined as appropriate.
  • the number of bases in the internal region (Z) is, for example, 19 bases or more.
  • the lower limit of the number of bases is, for example, 19 bases, preferably 20 bases, and more preferably 21 bases.
  • the upper limit of the number of bases is, for example, 50 bases, preferably 40 bases, and more preferably 30 bases.
  • Specific examples of the number of bases in the internal region (Z) include, for example, 19 bases, 20 bases, 21 bases, 22 bases, 23 bases, 24 bases, 25 bases, 26 bases, 27 bases, 28 bases, 29 bases, or , 30 bases.
  • the internal region (Z) may be, for example, a region composed only of the expression suppression sequence or a region including the expression suppression sequence.
  • the number of bases in the expression suppressing sequence is, for example, 19 to 30 bases, and preferably 19, 20 or 21 bases.
  • the internal region (Z) may further have an additional sequence on the 5 'side and / or 3' side of the expression suppression sequence.
  • the number of bases of the additional sequence is, for example, 1 to 31 bases, preferably 1 to 21 bases, more preferably 1 to 11 bases, and further preferably 1 to 7 bases.
  • the number of bases in the 5 ′ side region (Xc) is, for example, 1 to 29 bases, preferably 1 to 11 bases, more preferably 1 to 7 bases, and further preferably 1 to 4 bases. Particularly preferred are 1 base, 2 bases and 3 bases.
  • the internal region (Z) or the 3 'side region (Yc) includes the expression suppression sequence, for example, such a base number is preferable.
  • the number of bases in the internal region (Z) is 19 to 30 bases (for example, 19 bases)
  • the number of bases in the 5 ′ side region (Xc) is, for example, 1 to 11 bases
  • the number is preferably 1 to 7 bases, more preferably 1 to 4 bases, and still more preferably 1 base, 2 bases, and 3 bases.
  • the 5′-side region (Xc) may be, for example, a region composed only of the expression suppression sequence, or a region including the expression suppression sequence But you can.
  • the length of the expression suppression sequence is, for example, as described above.
  • the 5 'region (Xc) contains the expression suppression sequence, it may further have an additional sequence on the 5' side and / or 3 'side of the expression suppression sequence.
  • the number of bases of the additional sequence is, for example, 1 to 11 bases, and preferably 1 to 7 bases.
  • the number of bases in the 3 ′ side region (Yc) is, for example, 1 to 29 bases, preferably 1 to 11 bases, more preferably 1 to 7 bases, and further preferably 1 to 4 bases. Particularly preferred are 1 base, 2 bases and 3 bases.
  • the internal region (Z) or the 5 'side region (Xc) includes the expression suppression sequence, for example, such a base number is preferable.
  • the number of bases in the internal region (Z) is 19 to 30 bases (for example, 19 bases)
  • the number of bases in the 3 ′ side region (Yc) is, for example, 1 to 11 bases
  • the number is preferably 1 to 7 bases, more preferably 1 to 4 bases, and still more preferably 1 base, 2 bases, and 3 bases.
  • the 3 ′ side region (Yc) may be, for example, a region composed only of the expression suppression sequence, or a region including the expression suppression sequence But you can.
  • the length of the expression suppression sequence is, for example, as described above.
  • the 3 'side region (Yc) includes the expression suppression sequence, it may further have an additional sequence on the 5' side and / or 3 'side of the expression suppression sequence.
  • the number of bases of the additional sequence is, for example, 1 to 11 bases, and preferably 1 to 7 bases.
  • the number of bases in the internal region (Z), the 5′-side region (Xc), and the 3′-side region (Yc) is expressed by, for example, “Z ⁇ Xc + Yc” in the formula (2). Can do.
  • the number of bases “Xc + Yc” is, for example, the same as or smaller than the inner region (Z).
  • “Z ⁇ (Xc + Yc)” is, for example, 1 to 10, preferably 1 to 4, more preferably 1, 2 or 3.
  • the “Z ⁇ (Xc + Yc)” corresponds to, for example, the number of bases (F) in the free base region (F) in the internal region (Z).
  • the length of the linker region (Lx) and the linker region (Ly) is not particularly limited.
  • the linker region (Lx) preferably has, for example, a length that allows the internal 5 ′ side region (X) and the 5 ′ side region (Xc) to form a double chain, and the linker region (Ly) ) Is, for example, preferably a length such that the inner 3 ′ side region (Y) and the 3 ′ side region (Yc) can form a double chain.
  • the number of bases of the linker region (Lx) and the linker region (Ly) may be the same or different.
  • the base sequence may be the same or different.
  • the lower limit of the number of bases in the linker region (Lx) and the linker region (Ly) is, for example, 1 base, preferably 2 bases, more preferably 3 bases, and the upper limit thereof is, for example, 100 bases, preferably 80 bases, more preferably 50 bases.
  • Specific examples of the number of bases in each linker region include 1 to 50 bases, 1 to 30 bases, 1 to 20 bases, 1 to 10 bases, 1 to 7 bases, and 1 to 4 bases. This is not a limitation.
  • the position of the unbound end of the 5 ′ side region (Xc) with respect to the internal region (Z) include the following conditions.
  • the position of the unbound end is, for example, in the internal region (Z)
  • the site is preferably 1/50 to 1/2 from the 5 ′ end, more preferably 1/50 to 1/3 or 1/50 to 1/4, and even more preferably 1/30 to 1 /.
  • the unbound end of the 3 ′ side region (Yc) corresponds to the 3 ′ side of the center of the internal region (Z)
  • the position of the unbound end is, for example, the internal region (Z)
  • it is preferably 1/50 to 1/2 of the 3 ′ end, more preferably 1/50 to 1/3 or 1/50 to 1/4, and even more preferably 1/30 to 1/2, 1/30 to 1/3 or 1/30 to 1/4.
  • the total length of the ssNc molecule of the present invention is not particularly limited.
  • the lower limit of the total number of bases (total number of bases) is, for example, 38 bases, preferably 42 bases, more preferably 50 bases, and even more preferably 51 bases.
  • the upper limit is, for example, 300 bases, preferably 200 bases, more preferably 150 bases, still more preferably 100 bases, particularly preferably 80 bases. It is.
  • the lower limit of the total number of bases excluding the linker region (Lx) and the linker region (Ly) is, for example, 38 bases, preferably 42 bases, more preferably 50 bases. Yes, more preferably 51 bases, particularly preferably 52 bases, and the upper limit is, for example, 300 bases, preferably 200 bases, more preferably 150 bases, still more preferably 100 bases Particularly preferred is 80 bases.
  • the structural unit of the ssNc molecule of the present invention is not particularly limited, and examples thereof include nucleotide residues.
  • the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue.
  • the nucleotide residue include an unmodified unmodified nucleotide residue and a modified modified nucleotide residue.
  • the ssNc molecule of the present invention can improve nuclease resistance and stability by including, for example, the modified nucleotide residue.
  • the ssNc molecule of the present invention may further contain a non-nucleotide residue in addition to the nucleotide residue, for example. Details of the nucleotide residue and the non-nucleotide residue will be described later.
  • each of the constituent units of the internal region (Z), the 5 ′ side region (Xc) and the 3 ′ side region (Yc) is preferably the nucleotide residue.
  • Each region is composed of the following residues (1) to (3), for example. (1) Unmodified nucleotide residue (2) Modified nucleotide residue (3) Unmodified nucleotide residue and modified nucleotide residue
  • the structural units of the linker region (Lx) and the linker region (Ly) are not particularly limited, and examples thereof include the nucleotide residue and the non-nucleotide residue.
  • the linker region may be composed of, for example, only the nucleotide residue, may be composed of only the non-nucleotide residue, or may be composed of the nucleotide residue and the non-nucleotide residue.
  • the linker region is composed of the following residues (1) to (7), for example.
  • both structural units may be the same or different.
  • Specific examples include, for example, a form in which the constituent units of both linker regions are the nucleotide residues, a form in which the constituent units of both linker regions are the non-nucleotide residues, and the constituent units of one region are the nucleotide residues.
  • the other linker region is a non-nucleotide residue.
  • the ssNc molecule of the present invention examples include a molecule composed only of the nucleotide residue, a molecule containing the non-nucleotide residue in addition to the nucleotide residue, and the like.
  • the nucleotide residue may be, for example, only the unmodified nucleotide residue, only the modified nucleotide residue, or the unmodified nucleotide residue and the modification. Both nucleotide residues may be used.
  • the number of the modified nucleotide residue is not particularly limited, and is, for example, “one or several”, specifically For example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2.
  • the number of the non-nucleotide residue is not particularly limited, and is, for example, “one or several”, specifically, for example, 1 to Eight, one to six, one to four, one, two or three.
  • the nucleotide residue is preferably, for example, a ribonucleotide residue.
  • the ssNc molecule of the present invention is also referred to as “RNA molecule” or “ssRNA molecule”, for example.
  • RNA molecule or “ssRNA molecule”
  • examples of the ssRNA molecule include a molecule composed only of the ribonucleotide residue, and a molecule containing the non-nucleotide residue in addition to the ribonucleotide residue.
  • the ribonucleotide residue may be, for example, only the unmodified ribonucleotide residue, only the modified ribonucleotide residue, or the unmodified ribonucleotide residue and Both of the modified ribonucleotide residues may be included.
  • the number of the modified ribonucleotide residue is not particularly limited. For example, “1 or several” Specifically, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2.
  • the modified ribonucleotide residue relative to the unmodified ribonucleotide residue may be, for example, the deoxyribonucleotide residue in which a ribose residue is replaced with a deoxyribose residue.
  • the number of the deoxyribonucleotide residue is not particularly limited, and is, for example, “one or several”. Specifically, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2.
  • the ssNc molecule of the present invention may contain, for example, a labeling substance and may be labeled with the labeling substance.
  • the labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, isotopes and the like.
  • the labeling substance include fluorophores such as pyrene, TAMRA, fluorescein, Cy3 dye, and Cy5 dye, and examples of the dye include Alexa dye such as Alexa488.
  • the isotope include a stable isotope and a radioactive isotope, and a stable isotope is preferable.
  • the stable isotope has a low risk of exposure and does not require a dedicated facility, so that it is easy to handle and the cost can be reduced.
  • the stable isotope for example, has no change in physical properties of the labeled compound, and is excellent in properties as a tracer.
  • the stable isotope is not particularly limited, and examples thereof include 2 H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S, and 36 S.
  • the ssNc molecule of the present invention can suppress the expression of the target gene. Therefore, the ssNc molecule of the present invention can be used as a therapeutic agent for diseases caused by genes, for example.
  • the ssNc molecule of the present invention includes, for example, a sequence that suppresses the expression of a gene causing the disease as the expression suppression sequence
  • the disease can be treated by suppressing the expression of the target gene, for example.
  • “treatment” includes, for example, the meanings of preventing the disease, improving the disease, and improving the prognosis.
  • the disease is not particularly limited, and for example, the expression suppression sequence can be appropriately set according to the target disease. Examples of the disease include cancers such as breast cancer, lung cancer and stomach cancer.
  • the method of using the ssNc molecule of the present invention is not particularly limited, and for example, the ssNc molecule may be administered to an administration subject having the target gene.
  • Examples of the administration subject include cells, tissues, and organs.
  • Examples of the administration target include non-human animals such as humans and non-human mammals other than humans.
  • the administration can be, for example, in vivo or in vitro .
  • the cells are not particularly limited, and examples thereof include various cultured cells such as HeLa cells, 293 cells, NIH3T3 cells, and COS cells, stem cells such as ES cells and hematopoietic stem cells, and cells isolated from living bodies such as primary cultured cells. can give.
  • the target gene to be subject to expression suppression is not particularly limited, and a desired gene can be set. Then, as described above, the expression suppression sequence may be appropriately designed according to the type of the target gene.
  • the ssNc molecule of the present invention can suppress the expression of a target gene as described above, it is useful as a research tool for, for example, pharmaceuticals, diagnostic agents and agricultural chemicals, and agricultural chemicals, medicine, and life sciences.
  • nucleotide residues include, for example, sugars, bases and phosphates as constituent elements. As described above, examples of the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue.
  • the ribonucleotide residue has, for example, a ribose residue as a sugar, and has adenine (A), guanine (G), cytosine (C) and U (uracil) as bases
  • the deoxyribose residue is For example, it has a deoxyribose residue as a sugar and has adenine (A), guanine (G), cytosine (C) and thymine (T) as bases.
  • the nucleotide residue includes an unmodified nucleotide residue and a modified nucleotide residue.
  • each of the constituent elements is, for example, the same or substantially the same as that existing in nature, and preferably the same or substantially the same as that naturally occurring in the human body. .
  • the modified nucleotide residue is, for example, a nucleotide residue obtained by modifying the unmodified nucleotide residue.
  • the modified nucleotide residue for example, any of the constituent elements of the unmodified nucleotide residue may be modified.
  • “modification” refers to, for example, substitution, addition and / or deletion of the component, substitution, addition and / or deletion of atoms and / or functional groups in the component, and is referred to as “modification”. be able to.
  • modified nucleotide residue include naturally occurring nucleotide residues, artificially modified nucleotide residues, and the like. For example, Limbac et al.
  • modified nucleosides of RNA Nucleic Acids Res. 22: 2183-2196
  • the modified nucleotide residue may be, for example, a residue of an alternative to the nucleotide residue
  • ribophosphate skeleton examples include modification of a ribose-phosphate skeleton (hereinafter referred to as ribophosphate skeleton).
  • a ribose residue can be modified.
  • the ribose residue can be modified, for example, at the 2′-position carbon.
  • a hydroxyl group bonded to the 2′-position carbon can be replaced with hydrogen or a halogen such as fluoro.
  • the ribose residue can be replaced with deoxyribose.
  • the ribose residue can be substituted with, for example, a stereoisomer, and can be substituted with, for example, an arabinose residue.
  • the ribophosphate skeleton may be substituted with a non-ribophosphate skeleton having a non-ribose residue and / or non-phosphate, for example.
  • the non-ribophosphate skeleton include uncharged ribophosphate skeletons.
  • the substitute for the nucleotide substituted with the non-ribophosphate skeleton include morpholino, cyclobutyl, pyrrolidine and the like.
  • Other examples of the substitute include artificial nucleic acid monomer residues. Specific examples include PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acid), and PNA is preferable.
  • a phosphate group can be modified.
  • the phosphate group closest to the sugar residue is called an ⁇ -phosphate group.
  • the ⁇ -phosphate group is negatively charged, and the charge is evenly distributed over two oxygen atoms that are not bound to a sugar residue.
  • the four oxygen atoms in the ⁇ -phosphate group in the phosphodiester bond between nucleotide residues, the two oxygen atoms that are non-bonded to the sugar residue are hereinafter referred to as “non-linking oxygen”.
  • the two oxygen atoms bonded to the sugar residue are hereinafter referred to as “linking oxygen”.
  • the ⁇ -phosphate group is preferably subjected to, for example, a modification that makes it uncharged or a modification that makes the charge distribution in the unbound oxygen asymmetric.
  • the phosphate group may replace the non-bonded oxygen, for example.
  • the oxygen is, for example, one of S (sulfur), Se (selenium), B (boron), C (carbon), H (hydrogen), N (nitrogen), and OR (R is an alkyl group or an aryl group).
  • R is an alkyl group or an aryl group.
  • the non-bonded oxygen for example, both are preferably substituted, and more preferably, both are substituted with S.
  • the modified phosphate group include phosphorothioate, phosphorodithioate, phosphoroselenate, boranophosphate, boranophosphate ester, phosphonate hydrogen, phosphoramidate, alkyl or arylphosphonate, and phosphotriester. Among them, phosphorodithioate in which the two non-bonded oxygens are both substituted with S is preferable.
  • the phosphate group may substitute, for example, the bonded oxygen.
  • the oxygen can be substituted, for example, with any atom of S (sulfur), C (carbon) and N (nitrogen), and the modified phosphate group is, for example, a bridged phosphoramidate, S substituted with N Substituted bridged phosphorothioates, bridged methylene phosphonates substituted with C, and the like.
  • the binding oxygen substitution is preferably performed, for example, on at least one of the 5 ′ terminal nucleotide residue and the 3 ′ terminal nucleotide residue of the ssNc molecule of the present invention, and in the case of the 5 ′ side, substitution with C is preferable. For the 'side, substitution with N is preferred.
  • the phosphate group may be substituted with, for example, the phosphorus-free linker.
  • the linker include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, and methylenedimethyl. It contains groups such as hydrazo and methyleneoxymethylimino, and preferably contains a methylenecarbonylamino group and a methylenemethylimino group.
  • the ssNc molecule of the present invention for example, at least one nucleotide residue at the 3 'end and the 5' end may be modified.
  • the modification may be, for example, either the 3 'end or the 5' end, or both.
  • the modification is, for example, as described above, and is preferably performed on the terminal phosphate group.
  • the phosphate group may be modified entirely, or one or more atoms in the phosphate group may be modified. In the former case, for example, the entire phosphate group may be substituted or deleted.
  • Examples of the modification of the terminal nucleotide residue include addition of other molecules.
  • Examples of the other molecule include functional molecules such as a labeling substance and a protecting group as described above.
  • Examples of the protecting group include S (sulfur), Si (silicon), B (boron), ester-containing groups, and the like.
  • the functional molecule such as the labeling substance can be used for, for example, detection of the ssNc molecule of the present invention.
  • the other molecule may be added to the phosphate group of the nucleotide residue, for example, or may be added to the phosphate group or the sugar residue via a spacer.
  • the terminal atom of the spacer can be added or substituted, for example, to the binding oxygen of the phosphate group or O, N, S or C of the sugar residue.
  • the binding site of the sugar residue is preferably, for example, C at the 3 'position or C at the 5' position, or an atom bonded thereto.
  • the spacer can be added or substituted at a terminal atom of a nucleotide substitute such as PNA.
  • the spacer is not particularly limited.
  • the molecule to be added to the terminal includes, for example, a dye, an intercalating agent (for example, acridine), a crosslinking agent (for example, psoralen, mitomycin C), a porphyrin (TPPC4, texaphyrin, suffirin), a polycyclic Aromatic hydrocarbons (eg phenazine, dihydrophenazine), artificial endonucleases (eg EDTA), lipophilic carriers (eg cholesterol, cholic acid, adamantaneacetic acid, 1-pyrenebutyric acid, dihydrotestosterone, 1,3-bis- O (hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoy
  • the 5 ′ end may be modified with, for example, a phosphate group or a phosphate group analog.
  • the phosphate group is, for example, 5 ′ monophosphate ((HO) 2 (O) PO-5 ′), 5 ′ diphosphate ((HO) 2 (O) POP (HO) (O) —O— 5 '), 5' triphosphate ((HO) 2 (O) PO- (HO) (O) POP (HO) (O) -O-5 '), 5'-guanosine cap (7-methylated or Unmethylated, 7m-GO-5 '-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-adenosine cap (Appp), optional Modified or unmodified nucleotide cap structure (NO-5 '-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5 'monophosphate (NO-5 '-(HO
  • the base is not particularly limited.
  • the base may be, for example, a natural base or a non-natural base.
  • the base may be, for example, naturally derived or a synthetic product.
  • As the base for example, a general base or a modified analog thereof can be used.
  • Examples of the base include purine bases such as adenine and guanine, and pyrimidine bases such as cytosine, uracil and thymine.
  • Other examples of the base include inosine, thymine, xanthine, hypoxanthine, nubalarine, isoguanisine, and tubercidine.
  • the base examples include alkyl derivatives such as 2-aminoadenine and 6-methylated purine; alkyl derivatives such as 2-propylated purine; 5-halouracil and 5-halocytosine; 5-propynyluracil and 5-propynylcytosine; -Azouracil, 6-azocytosine and 6-azothymine; 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl) uracil, 5-aminoallyluracil; 8-halogenated, aminated, Thiolated, thioalkylated, hydroxylated and other 8-substituted purines; 5-trifluoromethylated and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines; 6-azapyrimidines; N-2, N -6 and O-6 substituted purines (2-aminopropyladenyl 5-
  • the modified nucleotide residue may include, for example, a residue lacking a base, that is, an abasic ribophosphate skeleton.
  • the modified nucleotide residues are, for example, US Provisional Application No. 60 / 465,665 (filing date: April 25, 2003) and International Application No. PCT / US04 / 07070 (filing date: 2004/3). The residues described on the 8th of May) can be used, and the present invention can incorporate these documents.
  • Non-nucleotide residue is not particularly limited.
  • the ssNc molecule of the present invention may have, for example, a non-nucleotide structure containing a pyrrolidine skeleton or a piperidine skeleton as the non-nucleotide residue.
  • the non-nucleotide residue is preferably present in at least one of the linker region (Lx) and the linker region (Ly).
  • the non-nucleotide residue may be included in the linker region (Lx), may be included in the linker region (Ly), or may be included in both the linker regions.
  • the linker region (Lx) and the linker region (Ly) may be the same or different, for example.
  • the pyrrolidine skeleton may be, for example, a skeleton of a piperidine derivative in which one or more carbons constituting the five-membered ring of pyrrolidine are substituted.
  • a carbon atom other than C-2 carbon is used. It is preferable.
  • the carbon may be substituted with, for example, nitrogen, oxygen, or sulfur.
  • the pyrrolidine skeleton may include, for example, a carbon-carbon double bond or a carbon-nitrogen double bond in the 5-membered ring of pyrrolidine.
  • the carbon and nitrogen constituting the 5-membered ring of pyrrolidine may be bonded to, for example, a hydrogen group or a substituent as described later.
  • the linker region (Lx) may be bonded to the region (X) and the region (Xc) through, for example, any group of the pyrrolidine skeleton, preferably any one of the 5-membered rings Carbon atoms and nitrogen, preferably carbon (C-2) and nitrogen at the 2-position of the 5-membered ring.
  • Examples of the pyrrolidine skeleton include a proline skeleton and a prolinol skeleton.
  • the proline skeleton, prolinol skeleton, and the like are excellent in safety because they are, for example, in-vivo substances and their reduced forms.
  • the piperidine skeleton may be, for example, a skeleton of a piperidine derivative in which one or more carbons constituting the six-membered ring of piperidine are substituted, and when substituted, for example, a carbon atom other than C-2 carbon. It is preferable.
  • the carbon may be substituted with, for example, nitrogen, oxygen, or sulfur.
  • the piperidine skeleton may contain, for example, a carbon-carbon double bond or a carbon-nitrogen double bond in the six-membered ring of piperidine.
  • the carbon and nitrogen constituting the piperidine 6-membered ring may be bonded to, for example, a hydrogen group or a substituent as described later.
  • the linker region (Lx) may be bonded to the region (X) and the region (Xc), for example, via any group of the piperidine skeleton, and preferably any one of the six-membered rings Of the 6-membered ring, and carbon (C-2) and nitrogen are preferred. The same applies to the linker region (Ly).
  • the linker region may be, for example, only a non-nucleotide residue consisting of the non-nucleotide structure, or may include a non-nucleotide residue consisting of the non-nucleotide structure and a nucleotide residue.
  • the linker region is represented by the following formula (I), for example.
  • X 1 and X 2 are each independently H 2 , O, S or NH; Y 1 and Y 2 are each independently a single bond, CH 2 , NH, O or S; R 3 is a hydrogen atom or substituent bonded to C-3, C-4, C-5 or C-6 on ring A; The substituent is OH, OR 4 , NH 2 , NHR 4 , NR 4 R 5 , SH, SR 4 or an oxo group ( ⁇ O); When R 3 is the substituent, the substituent R 3 may be one, plural or absent, and in plural cases, may be the same or different; R 4 and R 5 are substituents or protecting groups and may be the same or different; L 1 is an alkylene chain consisting of n atoms, wherein the hydrogen atom on the alkylene carbon atom is substituted with OH, OR a , NH 2 , NHR a , NR a R b , SH or SR a May not be substituted,
  • the ring A may contain a carbon-carbon double bond or a carbon-nitrogen double bond.
  • linker region (Lx) is represented by the formula (1)
  • the region (Xc) and the region (X) are each linked to the linker region (Lx) via —OR 1 — or —OR 2 —.
  • the linker region (Ly) is represented by the formula (1)
  • the region (Yc) and the region (Y) are each linked to the linker region via —OR 1 — or —OR 2 —. It binds to (Ly).
  • R 1 and R 2 may be present or absent, and when present, R 1 and R 2 are each independently a nucleotide residue or the structure (I).
  • X 1 and X 2 are each independently, for example, H 2 , O, S or NH.
  • X 1 being H 2 means that X 1 together with the carbon atom to which X 1 is bonded forms CH 2 (methylene group). The same is true for X 2.
  • l 1 or 2.
  • ring A is a 5-membered ring, for example, the pyrrolidine skeleton.
  • the pyrrolidine skeleton include a proline skeleton and a prolinol skeleton, and examples thereof include a bivalent structure.
  • ring A is a 6-membered ring, for example, the piperidine skeleton.
  • one carbon atom other than C-2 on ring A may be substituted with nitrogen, oxygen or sulfur.
  • Ring A may contain a carbon-carbon double bond or a carbon-nitrogen double bond in ring A.
  • Ring A may be, for example, either L-type or D-type.
  • Y 1 and Y 2 are each independently a single bond, CH 2 , NH, O or S.
  • R 3 is a hydrogen atom or a substituent bonded to C-3, C-4, C-5 or C-6 on the ring A.
  • the substituent is OH, OR 4 , NH 2 , NHR 4 , NR 4 R 5 , SH, SR 4 or an oxo group ( ⁇ O).
  • R 3 is the above-described substituent, the substituent R 3 may be one, plural, or absent, and when plural, it may be the same or different.
  • R 4 and R 5 are substituents or protecting groups, and may be the same or different.
  • substituents examples include halogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cyclylalkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, heterocyclylalkenyl. , Heterocyclylalkyl, heteroarylalkyl, silyl, silyloxyalkyl and the like. The same applies hereinafter.
  • the protecting group is, for example, a functional group that converts a highly reactive functional group to be inert, and examples thereof include known protecting groups.
  • the description of the literature J. F. W. McOmie, “Protecting Groups in Organic Chemistry”, Prenum Press, London and New York, 1973) can be used as the protecting group.
  • the protecting group is not particularly limited, and examples thereof include tert-butyldimethylsilyl (TBDMS) group, bis (2-acetoxyethyloxy) methyl (ACE) group, triisopropylsilyloxymethyl (TOM) group, 1- (2 -Cyanoethoxy) ethyl (CEE) group, 2-cyanoethoxymethyl (CEM) group and tolylsulfonylethoxymethyl (TEM) group, dimethoxytrityl (DMTr) and the like.
  • TDMS tert-butyldimethylsilyl
  • ACE (2-acetoxyethyloxy) methyl
  • TOM triisopropylsilyloxymethyl
  • CEE 2-Cyanoethoxymethyl
  • CEM 2-cyanoethoxymethyl
  • TEM dimethoxytrityl
  • the protecting group is not particularly limited, and examples thereof include a TBDMS group, an ACE group, a TOM group, a CEE group, a CEM group, and a TEM group.
  • silyl-containing groups described later are also included. The same applies hereinafter.
  • L 1 is an alkylene chain composed of n atoms.
  • the hydrogen atom on the alkylene carbon atom may be substituted with, for example, OH, OR a , NH 2 , NHR a , NR a R b , SH or SR a , or may not be substituted.
  • L 1 may be a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom.
  • the polyether chain is, for example, polyethylene glycol.
  • Y 1 is NH, O, or S
  • the L 1 atom bonded to Y 1 is carbon
  • the L 1 atom bonded to OR 1 is carbon
  • oxygen atoms are not adjacent to each other. That is, for example, when Y 1 is O, the oxygen atom and the oxygen atom of L 1 are not adjacent, and the oxygen atom of OR 1 and the oxygen atom of L 1 are not adjacent.
  • L 2 is an alkylene chain composed of m atoms.
  • the hydrogen atom on the alkylene carbon atom may be substituted with, for example, OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c , or may not be substituted.
  • L 2 may be a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom.
  • Y 2 is NH, O, or S
  • the L 2 atom bonded to Y 2 is carbon
  • the L 2 atom bonded to OR 2 is carbon
  • oxygen atoms are not adjacent to each other. That is, for example, when Y 2 is O, the oxygen atom and the oxygen atom of L 2 are not adjacent, and the oxygen atom of OR 2 and the oxygen atom of L 2 are not adjacent.
  • N in L 1 and m in L 2 are not particularly limited, and the lower limit is, for example, 0, and the upper limit is not particularly limited.
  • n and m can be appropriately set depending on, for example, the desired length of the linker region (Lx).
  • n and m are each preferably 0 to 30, more preferably 0 to 20, and still more preferably 0 to 15 from the viewpoints of production cost and yield.
  • n + m is, for example, 0 to 30, preferably 0 to 20, and more preferably 0 to 15.
  • R a , R b , R c and R d are each independently a substituent or a protecting group.
  • the substituent and the protective group are the same as described above, for example.
  • hydrogen atoms may be independently substituted with halogens such as Cl, Br, F and I, for example.
  • the linker region (Lx) is represented by the formula (I)
  • the region (Xc) and the region (X) are, for example, linked to the linker via —OR 1 — or —OR 2 —, respectively.
  • R 1 and R 2 may or may not exist.
  • R 1 and R 2 are each independently a nucleotide residue or the structure of formula (I) above.
  • the linker region (Lx) is, for example, the non-nucleotide residue having the structure of the formula (I) excluding the nucleotide residue R 1 and / or R 2. And a nucleotide residue.
  • the linker region (Lx) has, for example, two or more non-nucleotide residues having the structure of the formula (I) linked to each other. It becomes a structure.
  • the structure of the formula (I) may include 1, 2, 3, or 4, for example.
  • the linker region (Lx) is formed only from the non-nucleotide residue having the structure of the formula (I), for example.
  • the linker region (Ly) is represented by the formula (I), for example, the region (Yc), the region (Y), and the linker region (Ly) are described in the linker region (Lx). Can be used.
  • the combination of the region (Xc) and the region (X), the region (Yc) and the region (Y), and the —OR 1 — and —OR 2 — is not particularly limited.
  • One of the following conditions can be given.
  • Condition (1) The region (Xc) is bonded to the structure of the formula (I) through —OR 2 —, and the region (X) is bonded through —OR 1 —.
  • the region (Yc) is bonded to the structure of the formula (I) through —OR 1 —, and the region (Y) is bonded through —OR 2 —.
  • Condition (2) The region (Xc) is bonded to the structure of the formula (I) through —OR 2 —, and the region (X) is bonded through —OR 1 —.
  • the region (Yc) is bonded to the structure of the formula (I) through —OR 2 —, and the region (Y) is bonded through —OR 1 —.
  • Condition (3) The region (Xc) is bonded to the structure of the formula (I) through —OR 1 —, and the region (X) is bonded through —OR 2 —.
  • the region (Yc) is bonded to the structure of the formula (I) through —OR 1 —, and the region (Y) is bonded through —OR 2 —.
  • Condition (4) The region (Xc) is bonded to the structure of the formula (I) through —OR 1 —, and the region (X) is bonded through —OR 2 —.
  • the region (Yc) is bonded to the structure of the formula (I) through —OR 2 —, and the region (Y) is bonded through —OR 1 —.
  • Examples of the structure of the formula (I) include the following formulas (I-1) to (I-9), in which n and m are the same as those in the formula (I).
  • q is an integer of 0 to 10.
  • n, m and q are not particularly limited and are as described above.
  • alkyl includes, for example, a linear or branched alkyl group.
  • the number of carbon atoms of the alkyl is not particularly limited, and is, for example, 1 to 30, preferably 1 to 6 or 1 to 4.
  • Examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, n-heptyl, Examples thereof include n-octyl, n-nonyl, n-decyl and the like.
  • Preferred examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl and the like.
  • alkenyl includes, for example, linear or branched alkenyl.
  • alkenyl include those having one or more double bonds in the alkyl.
  • the number of carbon atoms of the alkenyl is not particularly limited, and is the same as, for example, the alkyl, preferably 2 to 8.
  • alkenyl include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 3-methyl-2-butenyl and the like.
  • alkynyl includes, for example, linear or branched alkynyl.
  • alkynyl include those having one or more triple bonds in the alkyl.
  • the number of carbon atoms of the alkynyl is not particularly limited, and is the same as, for example, the alkyl, preferably 2 to 8.
  • examples of the alkynyl include ethynyl, propynyl, butynyl and the like.
  • the alkynyl may further have one or more double bonds, for example.
  • aryl includes, for example, a monocyclic aromatic hydrocarbon group and a polycyclic aromatic hydrocarbon group.
  • the monocyclic aromatic hydrocarbon group include phenyl and the like.
  • the polycyclic aromatic hydrocarbon group include 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9- Examples include phenanthryl.
  • Preferable examples include naphthyl such as phenyl, 1-naphthyl and 2-naphthyl.
  • heteroaryl includes, for example, a monocyclic aromatic heterocyclic group and a condensed aromatic heterocyclic group.
  • heteroaryl include furyl (eg, 2-furyl, 3-furyl), thienyl (eg, 2-thienyl, 3-thienyl), pyrrolyl (eg, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), Imidazolyl (eg, 1-imidazolyl, 2-imidazolyl, 4-imidazolyl), pyrazolyl (eg, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl), triazolyl (eg, 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-4-yl), tetrazolyl (eg 1-tetrazolyl, 2-tetrazolyl, 5-tetrazolyl), oxazolyl (eg 2-
  • cycloalkyl is, for example, a cyclic saturated hydrocarbon group, and the number of carbons is, for example, 3-15.
  • the cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, a bridged cyclic hydrocarbon group, a spiro hydrocarbon group, and the like, preferably cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. And a bridged cyclic hydrocarbon group.
  • the “bridged cyclic hydrocarbon group” includes, for example, bicyclo [2.1.0] pentyl, bicyclo [2.2.1] heptyl, bicyclo [2.2.2] octyl and bicyclo [3. 2.1] octyl, tricyclo [2.2.1.0] heptyl, bicyclo [3.3.1] nonane, 1-adamantyl, 2-adamantyl and the like.
  • examples of the “spiro hydrocarbon group” include spiro [3.4] octyl and the like.
  • cycloalkenyl includes, for example, a cyclic unsaturated aliphatic hydrocarbon group, and has, for example, 3 to 7 carbon atoms.
  • examples of the group include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like, preferably cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, and the like.
  • the cycloalkenyl includes, for example, a bridged cyclic hydrocarbon group and a spiro hydrocarbon group having an unsaturated bond in the ring.
  • arylalkyl includes, for example, benzyl, 2-phenethyl, naphthalenylmethyl and the like
  • cycloalkylalkyl or “cyclylalkyl” includes, for example, cyclohexylmethyl, adamantylmethyl and the like.
  • hydroxyalkyl include hydroxymethyl and 2-hydroxyethyl.
  • alkoxy includes the alkyl-O— group, and examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, and n-butoxy.
  • Alkoxyalkyl includes, for example, methoxymethyl
  • aminoalkyl include 2-aminoethyl and the like.
  • heterocyclyl is, for example, 1-pyrrolinyl, 2-pyrrolinyl, 3-pyrrolinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, pyrrolidinone, 1-imidazolinyl, 2-imidazolinyl, 4-imidazolinyl, 1 -Imidazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, imidazolidinone, 1-pyrazolinyl, 3-pyrazolinyl, 4-pyrazolinyl, 1-pyrazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, piperidinone, piperidinyl, 2-piperidinyl 4-piperidinyl, 1-piperazinyl, 2-piperazinyl, piperazinone, 2-morpholinyl, 3-morpholinyl, morpholino, tetrahydropyranyl, tetra
  • heterocyclylalkyl includes, for example, piperidinylmethyl, piperazinylmethyl and the like
  • heterocyclylalkenyl includes, for example, 2-piperidinylethenyl and the like
  • heteroarylalkyl Examples include pyridylmethyl and quinolin-3-ylmethyl.
  • sil includes a group represented by the formula R 3 Si—, and R 3 can be independently selected from the above alkyl, aryl and cycloalkyl, such as trimethylsilyl group, tert-butyldimethyl
  • examples of the silyl group include silyloxy and the like.
  • examples of the “silyloxy” include trimethylsilyloxy and the like.
  • Examples of the “silyloxyalkyl” include trimethylsilyloxymethyl and the like.
  • alkylene includes, for example, methylene, ethylene, propylene and the like.
  • the various groups described above may be substituted.
  • substituents include hydroxy, carboxy, halogen, alkyl halide (eg, CF 3 , CH 2 CF 3 , CH 2 CCl 3 ), nitro, nitroso, cyano, alkyl (eg, methyl, ethyl, isopropyl, tert) -Butyl), alkenyl (eg vinyl), alkynyl (eg ethynyl), cycloalkyl (eg cyclopropyl, adamantyl), cycloalkylalkyl (eg cyclohexylmethyl, adamantylmethyl), cycloalkenyl (eg cyclopropenyl) , Aryl (eg phenyl, naphthyl), arylalkyl (eg benzyl, phenethyl), heteroaryl (eg pyridyl, furyl),
  • Method for synthesizing ssNc molecule of the present invention is not particularly limited, and conventionally known methods can be adopted.
  • the synthesis method include a synthesis method using a genetic engineering technique, a chemical synthesis method, and the like.
  • genetic engineering techniques include in vitro transcription synthesis, a method using a vector, and a method using a PCR cassette.
  • the vector is not particularly limited, and examples thereof include non-viral vectors such as plasmids and viral vectors.
  • the chemical synthesis method is not particularly limited, and examples thereof include a phosphoramidite method and an H-phosphonate method.
  • a commercially available automatic nucleic acid synthesizer can be used.
  • amidite is generally used.
  • the amidite is not particularly limited, and commercially available amidites include, for example, RNA Phosphoramidates (2′-O-TBDMSi, trade name, Michisato Pharmaceutical), ACE amidite, TOM amidite, CEE amidite, CEM amidite, TEM amidite, etc. Is given.
  • composition for suppressing expression of the present invention is a composition for suppressing the expression of a target gene, and is characterized by containing the ssNc molecule of the present invention.
  • the composition of the present invention is characterized by containing the ssNc molecule of the present invention, and other configurations are not limited at all.
  • the expression suppressing composition of the present invention can also be referred to as an expression suppressing reagent, for example.
  • the expression of the target gene can be suppressed by administering the composition for suppressing expression to a subject in which the target gene is present.
  • the pharmaceutical composition of the present invention is characterized by containing the ssNc molecule of the present invention.
  • the composition of the present invention is characterized by containing the ssNc molecule of the present invention, and other configurations are not limited at all.
  • the pharmaceutical composition of the present invention can also be referred to as a pharmaceutical product, for example.
  • treatment includes, for example, the meanings of prevention of the above-mentioned diseases, improvement of the diseases, and improvement of the prognosis.
  • the disease to be treated is not particularly limited, and examples thereof include diseases caused by gene expression.
  • a gene that causes the disease is set as the target gene, and the expression suppression sequence may be set as appropriate according to the target gene.
  • composition for suppressing expression and the pharmaceutical composition (hereinafter referred to as composition) of the present invention is not particularly limited.
  • composition for example, if the ssNc molecule is administered to an administration subject having the target gene. Good.
  • Examples of the administration subject include cells, tissues, and organs.
  • Examples of the administration target include non-human animals such as humans and non-human mammals other than humans.
  • the administration can be, for example, in vivo or in vitro .
  • the cells are not particularly limited, and examples thereof include various cultured cells such as HeLa cells, 293 cells, NIH3T3 cells, and COS cells, stem cells such as ES cells and hematopoietic stem cells, and cells isolated from living bodies such as primary cultured cells. can give.
  • the administration method is not particularly limited, and can be appropriately determined according to the administration subject, for example.
  • the administration subject is a cultured cell
  • examples thereof include a method using a transfection reagent and an electroporation method.
  • composition of the present invention may contain, for example, only the ssNc molecule of the present invention, or may further contain other additives.
  • the additive is not particularly limited, and for example, a pharmaceutically acceptable additive is preferable.
  • the type of the additive is not particularly limited, and can be appropriately selected depending on, for example, the type of administration target.
  • the ssNc molecule may form a complex with the additive, for example.
  • the additive can also be referred to as a complexing agent, for example.
  • the complex formation for example, the ssNc molecule can be efficiently delivered.
  • the bond between the ssNc molecule and the complexing agent is not particularly limited, and examples thereof include non-covalent bonds. Examples of the complex include an inclusion complex.
  • the complexing agent is not particularly limited, and examples thereof include a polymer, cyclodextrin, adamantine and the like.
  • examples of the cyclodextrin include a linear cyclodextrin copolymer and a linear oxidized cyclodextrin copolymer.
  • Examples of the additive include a carrier, a binding substance to a target cell, a condensing agent, a fusing agent, an excipient, and the like.
  • the carrier is preferably a polymer, and more preferably a biopolymer, for example.
  • the carrier is preferably biodegradable, for example.
  • the carrier include proteins such as human serum albumin (HSA), low density lipoprotein (LDL), and globulin; carbohydrates such as dextran, pullulan, chitin, chitosan, inulin, cyclodextrin, and hyaluronic acid; lipids and the like Can be given.
  • a synthetic polymer such as a synthetic polyamino acid can also be used.
  • polyamino acid examples include polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic anhydride copolymer, poly (L-lactide-co-glycolide) copolymer, divinyl ether-maleic anhydride. Copolymer, N- (2-hydroxypropyl) methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly (2-ethylacrylic acid), N-isopropylacrylamide polymer, or polyphosphazine ) Etc.
  • PLL polylysine
  • poly L-aspartic acid poly L-glutamic acid
  • styrene-maleic anhydride copolymer poly (L-lactide-co-glycolide) copolymer
  • divinyl ether-maleic anhydride divinyl ether-maleic anhydride.
  • binding substance examples include thyroid stimulating hormone, melanocyte stimulating hormone, lectin, glycoprotein, surfactant protein A, mucin carbohydrate, polyvalent lactose, polyvalent galactose, N-acetylgalactosamine, N-acetylglucosamine, polyvalent mannose. Multivalent fucose, glycosylated polyamino acid, polyvalent galactose, transferrin, bisphosphonate, polyglutamic acid, polyaspartic acid, lipid, cholesterol, steroid, bile acid, folate, vitamin B12, biotin, neproxin, RGD peptide, RGD peptide mimetic and the like.
  • PEI polyethyleneimine
  • PEI polyethyleneimine
  • the fusing agent and condensing agent include polyamino chains such as polyethyleneimine (PEI).
  • PEI may be, for example, linear or branched, and may be either a synthetic product or a natural product.
  • the PEI may be alkyl-substituted or lipid-substituted, for example.
  • polyhistidine, polyimidazole, polypyridine, polypropyleneimine, melittin, polyacetal substance (for example, cationic polyacetal) and the like can be used as the fusion agent.
  • the fusion agent may have an ⁇ helical structure, for example.
  • the fusion agent may be a membrane disrupting agent such as melittin.
  • composition of the present invention can use, for example, US Pat. No. 6,509,323, US Patent Publication No. 2003/0008818, PCT / US04 / 07070, and the like for the formation of the complex.
  • amphiphilic molecules include amphiphilic molecules.
  • the amphiphilic molecule is, for example, a molecule having a hydrophobic region and a hydrophilic region.
  • the molecule is preferably a polymer, for example.
  • the polymer is, for example, a polymer having a secondary structure, and a polymer having a repetitive secondary structure is preferable.
  • a polypeptide is preferable, and an ⁇ -helical polypeptide is more preferable.
  • the amphiphilic polymer may be a polymer having two or more amphiphilic subunits, for example.
  • the subunit include a subunit having a cyclic structure having at least one hydrophilic group and one hydrophobic group.
  • the subunit may have, for example, a steroid such as cholic acid, an aromatic structure, or the like.
  • the polymer may have both a cyclic structure subunit such as an aromatic subunit and an amino acid.
  • the expression suppression method of the present invention is a method of suppressing the expression of a target gene, characterized by using the ssNc molecule of the present invention.
  • the expression suppression method of the present invention is characterized by using the ssNc molecule of the present invention, and other processes and conditions are not limited at all.
  • the mechanism of gene expression suppression is not particularly limited, and examples thereof include expression suppression by mature miRNA.
  • the expression suppression method of the present invention includes, for example, a step of administering the ssNc molecule to a subject in which the target gene is present.
  • the administration step for example, the ssNc molecule is brought into contact with the administration subject.
  • the administration subject include cells, tissues, and organs.
  • the administration target include non-human animals such as humans and non-human mammals other than humans.
  • the administration can be, for example, in vivo or in vitro .
  • the ssNc molecule may be administered alone, or the composition of the present invention containing the ssNc molecule may be administered.
  • the administration method is not particularly limited, and can be appropriately selected depending on, for example, the type of administration target.
  • the treatment method for a disease of the present invention includes the step of administering the ssNc molecule of the present invention to a patient as described above, and the ssNc molecule serves as a gene causing the disease as the expression-suppressing sequence. It has a sequence that suppresses the expression of.
  • the treatment method of the present invention is characterized by using the ssNc molecule of the present invention, and other steps and conditions are not limited at all.
  • the expression suppression method of the present invention can be used.
  • the administration method is not particularly limited, and may be, for example, oral administration or parenteral administration.
  • ssNc molecule The use of the present invention is the use of the ssNc molecule of the present invention for suppressing the expression of the target gene.
  • the nucleic acid molecule of the present invention is a nucleic acid molecule for use in the treatment of a disease, wherein the nucleic acid molecule is the ssNc molecule of the present invention, and the ssNc molecule serves as the cause of the disease as the expression suppression sequence. It has a sequence that suppresses the expression of the gene to be
  • RNA Single-stranded RNA having the following sequences was synthesized by a nucleic acid synthesizer (trade name: ABI Expedite (registered trademark) 8909 Nucleic Acid Synthesis System, Applied Biosystems) based on the phosphoramidite method.
  • RNA Phosphoramidites (2′-O-TBDMSi, trade name, Michisato Pharmaceutical) was used as an RNA amidite (hereinafter the same).
  • the deprotection of the amidite followed a conventional method.
  • the synthesized RNA was purified by HPLC. Each purified RNA was lyophilized.
  • the 5 ′ uppercase region is the mature miRNA sequence of human let-7a-1 miRNA (SEQ ID NO: 1)
  • the 3 ′ uppercase region is the human let-7a-1 miRNA sequence.
  • minor miRNA * sequence SEQ ID NO: 2
  • the sequence surrounded by a square is a linker region (Lx) on the 5 ′ side and a linker region (Ly) on the 3 ′ side.
  • two underlined portions via the 5′-side linker region (Lx) are regions that self-anneal with each other, and two underlined portions via the 3′-side linker region (Ly) self-anneal with each other.
  • the bases marked with * are free bases.
  • PK-0021, PK-0022, PK-0023, PK-0024, and PK-0025 Lx and Ly surrounded by a square can be expressed by the following formula, and amidite of the scheme 3 shown in Example B: Synthesized by using compound 10 (L-proline diamide amidite).
  • NM-0001 was synthesized as a reference example ssRNA.
  • the NM-0001 is a human let-7a-1 precursor miRNA.
  • the upper case underline is the mature miRNA sequence of human let-7a-1 miRNA
  • the lower case underline is the minor miRNA * sequence of human let-7a-1 miRNA.
  • the area surrounded by a square is a loop area.
  • HMGA2 mRNA (2) Detection of HMGA2 mRNA
  • the ssRNA was introduced into human lung adenocarcinoma epithelial cell line A549 cells, and HMGA2 mRNA targeted by human let-7a-1 miRNA was detected.
  • the ssRNA was dissolved in distilled water for injection (Otsuka Pharmaceutical, the same applies hereinafter) to prepare a 100 ⁇ mol / L RNA solution.
  • As the cells A549 cells (DS Pharma Biomedical) were used.
  • As the medium DMEM (Invitrogen) containing 10% FBS was used. The culture conditions were 37 ° C. and 5% CO 2 .
  • the cells were cultured in the medium, and the culture solution was dispensed into a 24-well plate in 400 ⁇ L portions at 5 ⁇ 10 4 cells / well.
  • the ssRNA was transfected using a transfection reagent HiperFect Reagent (trade name, QIAGEN) according to the attached protocol.
  • the composition per well was set as follows. In the following composition, (B) is Opti-MEM (trade name, Invitrogen), and (C) is the RNA solution, and 97 ⁇ L of both were added.
  • the final ssRNA concentrations were 1 nmol / L, 10 nmol / L, and 100 nmol / L.
  • the cells in the wells were cultured for 3 days.
  • reverse transcriptase (trade name: M-MLV reverse transcriptase, Invitrogen) was used to synthesize cDNA from the RNA according to the attached protocol. Then, quantitative PCR was performed using the synthesized cDNA as a template, and the amount of HMGA2 cDNA was measured. The amount of GAPDH mRNA was used as an internal control, and the amount of cDNA was also measured.
  • FIG. 4 shows the amount of HMGA2 mRNA when the final concentration of ssRNA at the time of transfection is 100 nmol / L. As shown in FIG. 4, when any of the ssRNAs was used, the amount of HMGA2 mRNA was decreased as compared with the control. Thus, since the amount of HMGA2 mRNA is reduced by the transfection of the ssRNA in the Example, it can be said that protein translation is also suppressed.
  • the mature miRNA sequence of the human let-7a-1 miRNA was quantified from the RNA recovered in (2). The quantification was performed using TaqMan TM MicroRNA Assays (trade name, Applied Biosystems) according to the attached instructions. The total amount of the reaction solution was 25 ⁇ L, and each measurement was performed three times. The quantification of the mature miRNA sequence was normalized by the amount of RNU6B rRNA. The relative value in each sample was determined with the amount of endogenous feature let7-a-1 in the A549 cells not added with ssRNA being 1.
  • FIG. 5 is a graph showing the amount of mature miRNA of the human let-7a-1 miRNA in each transfected cell.
  • the vertical axis represents the relative value of the amount of the character let7a-1.
  • mature miRNA was detected in the cells transfected with any of the ssRNAs of Examples.
  • Example B1 Synthesis of Prolinol Prolinol protected with a dimethoxytrityl group was synthesized according to Scheme 1 shown in the following formula.
  • Fmoc-L-prolinol (compound 2)
  • L-prolinol (Compound 1) (0.61 g, 6.0 mmol) was dissolved in 70 mL of pure water to prepare an L-prolinol aqueous solution.
  • N- (9-fluorenylmethoxycarbonyloxy) succinimide (Fmoc-OSu) (2.0 g, 6.0 mmol) was dissolved in 10 mL of THF. This THF solution was added to the L-prolinol aqueous solution and stirred for 1 hour to react both. This reaction solution was separated into a liquid fraction and a precipitate fraction, and each fraction was extracted with ethyl acetate, and the organic layer was recovered.
  • DMTr-alkyl-L-prolinol (Compound 6)
  • the DMTr-L-prolinol (compound 4) (0.80 g, 2.0 mmol) was dissolved in 15 mL of methanol, and 5-hydroxypentanal (0.31 g, 3.0 mmol) was added and stirred.
  • sodium cyanoborohydride (0.25 g, 4.0 mmol) was added and further stirred.
  • the reaction was monitored by TLC of ethyl acetate / hexane and allowed to react for 24 hours until the DMTr-L-prolinol spot disappeared. And the ethyl acetate was added to the said reaction liquid, and the organic layer was collect
  • DMTr-Ureido-L-prolinol (Compound 8)
  • the DMTr-L-prolinol (compound 4) (0.50 g, 1.2 mmol) and triphosgene (0.12 g, 0.40 mmol) were dissolved in 8 mL of dichloromethane and stirred in an ice bath under an argon atmosphere. . Then, N, N-diisopropylethylamine (0.31 g, 2.4 mmol) was added to the solution and stirred for 1 hour.
  • the amount of 5-benzylthio-1H-tetrazole used was 0.15 g (0.78 mmol) for compounds 5 to 7 and 54 mg (0.15 mmol) for compound 8.
  • 2-Cyanoethyl N, N, N ′, N′-tetraisopropyl phosphorodiamidite was added to the solution under an argon atmosphere and stirred for 2 hours.
  • the addition amount of the 2-cyanoethyl N, N, N ′, N′-tetraisopropyl phosphorodiamidite is 0.54 g (1.8 mmol) in the system using the compounds 5 to 7, and the compound 8 is used. In this system, it was 0.19 g (0.64 mmol).
  • DMTr-amidoureido-L-proline amidite (Compound 17)
  • the obtained DMTr-hydroxyamidoureido-L-proline (Compound 16) (0.62 g, 0.94 mmol) was mixed with anhydrous acetonitrile and azeotropically dried at room temperature.
  • Diisopropylammonium tetrazolide (192 mg, 1.12 mmol) was added to the resulting residue, degassed under reduced pressure, and filled with argon gas.
  • Example B3 Synthesis of Proline Diamide Amidite L-proline diamide amidite and D-proline diamide amidite were synthesized according to Scheme 3 above to generate a nucleic acid molecule of the present invention containing a linker having a proline skeleton.
  • the mixture was diluted with dichloromethane (100 mL), washed with saturated aqueous sodium hydrogen carbonate (150 mL), and the organic layer was separated. The organic layer was dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. To the resulting crude residue, anhydrous dimethylformamide (39 mL) and piperidine (18.7 mL, 189 mmol) were added and stirred at room temperature for 1 hour. After completion of the reaction, the solvent was distilled off from the mixed solution at room temperature under reduced pressure.
  • DMTr-Diamide-L-proline amidite (Compound 10)
  • the obtained DMTr-hydroxydiamide-L-proline (Compound 8) (8.55 g, 14.18 mmol) was mixed with anhydrous acetonitrile and dried azeotropically three times at room temperature.
  • Diisopropylammonium tetrazolide (2.91 g, 17.02 mmol) was added to the resulting residue, degassed under reduced pressure, and filled with argon gas.
  • the mixture was diluted with dichloromethane and washed with saturated aqueous sodium hydrogen carbonate, and the organic layer was separated. The organic layer was dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. To the resulting crude residue, anhydrous dimethylformamide (5 mL) and piperidine (2.4 mL, 24 mmol) were added and stirred at room temperature for 1 hour. After completion of the reaction, the solvent was distilled off from the mixed solution at room temperature under reduced pressure.
  • Example B4 In order to generate a nucleic acid molecule of the present invention containing a linker having a proline skeleton, L-proline diamide amidite type B was synthesized according to Scheme 4 below.
  • Fmoc-t-butyl-dimethylsiloxyamide-L-proline (Compound 18) Fmoc-hydroxyamide-L-proline (compound 4) (2.00 g, 30 mmol), t-butyl-dimethylsilyl chloride (1.11 g, 35 mmol) and imidazole (10.90 g, 71 mmol) were mixed. The mixture was degassed under reduced pressure and filled with argon gas. To the mixture was added anhydrous acetonitrile (20 mL) at room temperature, and the mixture was stirred at room temperature overnight under an argon atmosphere.
  • the mixture was diluted with dichloromethane and washed with saturated aqueous sodium hydrogen carbonate.
  • the organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure.
  • To the obtained residue were added anhydrous acetonitrile (5 mL) and 1 mol / L tetrabutylammonium fluoride-containing tetrahydrofuran solution (1.42 mL, tetrabutylammonium fluoride 1.42 mmol), and the mixture was stirred at room temperature overnight.
  • DMTr-Diamide-L-proline amidite type B (Compound 22)
  • the obtained DMTr-hydroxydiamide-L-proline type B (Compound 21) (637 mg, 1.06 mmol) was mixed with anhydrous acetonitrile and azeotropically dried at room temperature.
  • Diisopropylammonium tetrazolide (201 mg, 1.16 mmol) was added to the obtained residue, degassed under reduced pressure, and filled with argon gas.
  • Example B5 In order to generate the nucleic acid molecule of the present invention containing a linker having a proline skeleton, DMTr-amidoethyleneoxyethylamino-L-proline amidite (hereinafter referred to as PEG spacer type) was synthesized according to Scheme 5 below.
  • PEG spacer type DMTr-amidoethyleneoxyethylamino-L-proline amidite
  • the filtrate was concentrated and the obtained residue was subjected to silica gel column chromatography.
  • the NMR results of the above compound are shown below.
  • Example B6 Synthesis of Protected Prolinol Prolinol (compound 3) protected with a dimethoxytrityl group was synthesized according to Scheme 6 shown below.
  • Trifluoroacetyl-L-prolinol (Compound 1) L-prolinol (2.0 g, 20 mmol) was dissolved in 20 mL of THF. On the other hand, ethyl trifluoroacetate (3.0 g, 21 mmol) was dissolved in 20 mL of THF. The latter THF solution was added dropwise to the former L-prolinol-containing THF solution and stirred for 12 hours. The reaction solution was concentrated under reduced pressure to obtain Compound 1 (3.7 g, yield 97%). The NMR results of the above compound are shown below.
  • Trifluoroacetyl-DMTr-L-prolinol (Compound 2)
  • the obtained trifluoroacetyl-L-prolinol (Compound 1) (3.7 g, 19 mmol) was dissolved in pyridine and dried azeotropically three times at room temperature.
  • the obtained residue was dissolved in 15 mL of pyridine, and while stirring in an ice bath under an argon atmosphere, 4,4′-dimethoxytrityl chloride (DMTr-Cl) (8.1 g, 24 mmol) was added, and further at room temperature. The reaction was performed for 4 hours.
  • DMTr-Cl 4,4′-dimethoxytrityl chloride
  • the organic layer was filtered, the obtained filtrate was concentrated under reduced pressure, and the residue was purified by reverse phase silica gel column chromatography.
  • a mixed solvent of acetone and water containing 0.1% pyridine was used, and the mixing ratio of the acetone and water was stepwise. Specifically, the molar ratio of acetone: water The ratio was changed in the order of 2: 8, 3: 7, 4: 6 and 5: 5.
  • the fraction containing the target compound 5 was extracted with dichloromethane, and the organic layer was dried over anhydrous sodium sulfate. The organic layer was filtered, and the obtained filtrate was concentrated under reduced pressure to obtain Compound 5 (prolinol urea amidite) (0.9 g, yield 49%).
  • 2-cyanoethyl N, N, N ′, N′-tetraisopropyl phosphorodiamidite (0.50 g, 1.7 mmol) was dissolved in 1 mL of acetonitrile. This was added to the reaction solution and stirred at room temperature for 4 hours. Dichloromethane was added to the reaction solution, and the mixture was washed with a saturated aqueous sodium bicarbonate solution and saturated brine. The collected organic layer after washing was dried over anhydrous sodium sulfate, the organic layer was filtered, and the obtained filtrate was concentrated under reduced pressure.
  • the single-stranded nucleic acid molecule of the present invention can suppress the expression of a gene, specifically, the translation of a protein encoded by the gene. Since the ssNc molecule of the present invention can suppress the expression of the target gene as described above, it is useful as, for example, pharmaceuticals, diagnostic agents and agricultural chemicals, and research tools for agricultural chemicals, medicine, life sciences and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided is a novel nucleic acid molecule capable of suppressing the expression of a gene. A single-stranded nucleic acid molecule containing an expression-suppressing sequence for a target gene and a complementary sequence having a mismatch with the expression-suppressing sequence, wherein a 5'-side region (Xc), an internal region (Z) and a 3'-side region (Yc) are contained in this order from the 5'-side toward the 3'-side, the region (Z) is formed by linking an internal 5'-side region (X) to an internal 3'-side region (Y), the region (Xc) is complementary to the region (X), the region (Yc) is complementary to the region (Y), at least one of the region (Z), the region (Xc) and the region (Yc) contains the expression-suppressing sequence, a region complementary to the region containing the expression-suppressing sequence contains the complementary sequence, and a 5'-terminal nucleotide and a 3'-terminal nucleotide in the single-stranded nucleic acid molecule are not bound to each other. The single-stranded nucleic acid molecule can suppress the expression of the target gene.

Description

遺伝子発現制御のための一本鎖核酸分子Single-stranded nucleic acid molecules for gene expression control
 本発明は、遺伝子発現を抑制する一本鎖核酸分子、それを含む組成物およびその用途に関する。 The present invention relates to a single-stranded nucleic acid molecule that suppresses gene expression, a composition containing the same, and use thereof.
 遺伝子の発現を抑制する核酸分子として、例えば、マイクロRNA(miRNA)が知られている。miRNAは、一般に、以下のような生成プロセスを経て、遺伝子がコードするタンパク質の転写を抑制すると報告されています。すなわち、まず、核内において、5’末端にキャップ構造、3’末端にポリ(A)を有するmiRNA転写産物(Pri-miRNA)が生成される。前記Pri-miRNAは、RNase(Drosha)により切断され、miRNA前駆体(Pre-miRNA)が生成される。前記Pre-miRNAは、ループ領域とステム領域とを有するヘアピン構造をとる。このPre-miRNAは、核外に移動した後、細胞質のRNase(Dicer)により分解され、3’末端に1~4塩基のオーバーハングを有する、二本鎖のmiRNAが切り出される。この二本鎖のmiRNAのうち、一方の鎖が、RNA induced Silencing Complex(RISC)に類似した複合体に結合する。このmiRNA/RISC複合体が、特定のmRNAの3’非翻訳領域(3’UTR)に結合することによって、前記mRNAからのタンパク質の翻訳が抑制される。 For example, microRNA (miRNA) is known as a nucleic acid molecule that suppresses gene expression. In general, miRNAs have been reported to repress the transcription of proteins encoded by genes through the following production process. That is, first, a miRNA transcript (Pri-miRNA) having a cap structure at the 5 'end and poly (A) at the 3' end is generated in the nucleus. The Pri-miRNA is cleaved by RNase (Drosha) to generate a miRNA precursor (Pre-miRNA). The Pre-miRNA has a hairpin structure having a loop region and a stem region. This Pre-miRNA moves to the outside of the nucleus, and then is degraded by cytoplasmic RNase (Dicer) to cut out double-stranded miRNA having an overhang of 1 to 4 bases at the 3 'end. One strand of this double-stranded miRNA binds to a complex similar to RNA induced Silencing Complex (RISC). The miRNA / RISC complex binds to the 3 'untranslated region (3'UTR) of a specific mRNA, thereby suppressing protein translation from the mRNA.
 miRNAは、分化、細胞増殖、アポトーシス等の生命現象やウイルス感染症、ガン等の多くの疾患に深く関わっていることが明らかになってきている(特許文献1、非特許文献1、非特許文献2)。このことから、特に医療分野における応用が期待されている。 It has become clear that miRNAs are deeply involved in life phenomena such as differentiation, cell proliferation and apoptosis, and many diseases such as viral infections and cancer (Patent Document 1, Non-Patent Document 1, Non-Patent Documents). 2). Therefore, application in the medical field is particularly expected.
WO 2010/056737 A2WO 2010/056737 A2
 そこで、本発明は、遺伝子の発現を抑制可能な新たな核酸分子の提供を目的とする。 Therefore, an object of the present invention is to provide a new nucleic acid molecule capable of suppressing gene expression.
 前記目的を達成するために、本発明の一本鎖核酸分子は、標的遺伝子の発現を抑制する発現抑制配列および前記発現抑制配列に対してミスマッチを有する相補配列を含む一本鎖核酸分子であって、
5’側から3’側にかけて、5’側領域(Xc)、内部領域(Z)および3’側領域(Yc)を、前記順序で含み、
前記内部領域(Z)が、内部5’側領域(X)および内部3’側領域(Y)が連結して構成され、
前記5’側領域(Xc)が、前記内部5’側領域(X)と相補的であり、
前記3’側領域(Yc)が、前記内部3’側領域(Y)と相補的であり、
前記内部領域(Z)、前記5’側領域(Xc)および前記3’側領域(Yc)の少なくとも一つが、前記発現抑制配列を含み、
前記発現抑制配列を含む領域と相補的な領域が、前記相補配列を含み、
前記一本鎖核酸分子の5’末端塩基と3’末端塩基とが未結合であることを特徴とする。
In order to achieve the above object, the single-stranded nucleic acid molecule of the present invention is a single-stranded nucleic acid molecule comprising an expression suppressing sequence that suppresses the expression of a target gene and a complementary sequence that has a mismatch with the expression suppressing sequence. And
From the 5 ′ side to the 3 ′ side, the 5 ′ side region (Xc), the inner region (Z), and the 3 ′ side region (Yc) are included in the above order,
The internal region (Z) is configured by connecting an internal 5 ′ side region (X) and an internal 3 ′ side region (Y),
The 5 ′ side region (Xc) is complementary to the internal 5 ′ side region (X);
The 3 ′ side region (Yc) is complementary to the inner 3 ′ side region (Y);
At least one of the internal region (Z), the 5 ′ side region (Xc) and the 3 ′ side region (Yc) includes the expression suppression sequence,
A region complementary to the region containing the expression suppression sequence comprises the complementary sequence;
The 5 ′ terminal base and the 3 ′ terminal base of the single-stranded nucleic acid molecule are unbound.
 本発明の組成物は、標的遺伝子の発現を抑制するための組成物であって、前記本発明の一本鎖核酸分子を含むことを特徴とする。 The composition of the present invention is a composition for suppressing the expression of a target gene, and is characterized by containing the single-stranded nucleic acid molecule of the present invention.
 本発明の組成物は、薬学的組成物であって、前記本発明の一本鎖核酸分子を含むことを特徴とする。 The composition of the present invention is a pharmaceutical composition, and is characterized by containing the single-stranded nucleic acid molecule of the present invention.
 本発明の発現抑制方法は、標的遺伝子の発現を抑制する方法であって、前記本発明の一本鎖核酸分子を使用することを特徴とする。 The expression suppression method of the present invention is a method of suppressing the expression of a target gene, characterized in that the single-stranded nucleic acid molecule of the present invention is used.
 本発明の疾患の治療方法は、前記本発明の一本鎖核酸分子を、患者に投与する工程を含み、前記一本鎖核酸分子が、前記発現抑制配列として、前記疾患の原因となる遺伝子の発現を抑制する配列を有することを特徴とする。 The method for treating a disease of the present invention includes a step of administering the single-stranded nucleic acid molecule of the present invention to a patient, wherein the single-stranded nucleic acid molecule serves as the expression-suppressing sequence of a gene causing the disease. It has a sequence that suppresses expression.
 本発明の一本鎖核酸分子によれば、遺伝子の発現抑制、具体的には前記遺伝子がコードするタンパク質の翻訳の抑制が可能である。 The single-stranded nucleic acid molecule of the present invention can suppress gene expression, specifically, translation of a protein encoded by the gene.
 なお、本発明の一本鎖核酸分子の構造が、遺伝子の発現を抑制可能であることを見出したのは、本発明者が初めてである。本発明の一本鎖核酸分子の遺伝子の発現抑制効果は、RNA干渉と同様の現象によるものと推測されるが、本発明における遺伝子発現抑制は、RNA干渉に制限および限定されない。 The present inventors are the first to find that the structure of the single-stranded nucleic acid molecule of the present invention can suppress gene expression. The gene expression suppression effect of the single-stranded nucleic acid molecule of the present invention is presumed to be due to the same phenomenon as RNA interference, but gene expression suppression in the present invention is not limited or limited to RNA interference.
図1は、本発明の一本鎖核酸分子の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a single-stranded nucleic acid molecule of the present invention. 図2は、本発明の一本鎖核酸分子のその他の例を示す模式図である。FIG. 2 is a schematic diagram showing another example of the single-stranded nucleic acid molecule of the present invention. 図3は、本発明の一本鎖核酸分子のその他の例を示す模式図である。FIG. 3 is a schematic diagram showing another example of the single-stranded nucleic acid molecule of the present invention. 図4は、本発明の実施例におけるHMGA2 mRNAの量を示すグラフである。FIG. 4 is a graph showing the amount of HMGA2 mRNA in Examples of the present invention. 図5は、本発明の実施例におけるヒトlet-7a-1 miRNAの成熟miRNAの量を示すグラフである。FIG. 5 is a graph showing the amount of mature miRNA of human let-7a-1 miRNA in the examples of the present invention.
 本明細書で使用する用語は、特に言及しない限り、当該技術分野で通常用いられる意味で用いることができる。 Unless otherwise stated, terms used in this specification can be used in the meaning normally used in the technical field.
1.ssNc分子
 本発明の一本鎖核酸分子は、前述のように、標的遺伝子の発現を抑制する発現抑制配列および前記発現抑制配列に対してミスマッチを有する相補配列を含む一本鎖核酸分子であって、
5’側から3’側にかけて、5’側領域(Xc)、内部領域(Z)および3’側領域(Yc)を、前記順序で含み、
前記内部領域(Z)が、内部5’側領域(X)および内部3’側領域(Y)が連結して構成され、
前記5’側領域(Xc)が、前記内部5’側領域(X)と相補的であり、
前記3’側領域(Yc)が、前記内部3’側領域(Y)と相補的であり、
前記内部領域(Z)、前記5’側領域(Xc)および前記3’側領域(Yc)の少なくとも一つが、前記発現抑制配列を含み、
前記発現抑制配列を含む領域と相補的な領域が、前記相補配列を含み、
前記一本鎖核酸分子の5’末端塩基と3’末端塩基とが未結合であることを特徴とする。
1. The ssNc molecule The single-stranded nucleic acid molecule of the present invention is a single-stranded nucleic acid molecule comprising an expression suppressing sequence that suppresses expression of a target gene and a complementary sequence that has a mismatch with the expression suppressing sequence, as described above. ,
From the 5 ′ side to the 3 ′ side, the 5 ′ side region (Xc), the inner region (Z), and the 3 ′ side region (Yc) are included in the above order,
The internal region (Z) is configured by connecting an internal 5 ′ side region (X) and an internal 3 ′ side region (Y),
The 5 ′ side region (Xc) is complementary to the internal 5 ′ side region (X);
The 3 ′ side region (Yc) is complementary to the inner 3 ′ side region (Y);
At least one of the internal region (Z), the 5 ′ side region (Xc) and the 3 ′ side region (Yc) includes the expression suppression sequence,
A region complementary to the region containing the expression suppression sequence comprises the complementary sequence;
The 5 ′ terminal base and the 3 ′ terminal base of the single-stranded nucleic acid molecule are unbound.
 本発明において、「標的遺伝子の発現抑制」は、例えば、前記標的遺伝子の翻訳の抑制、すなわち、前記標的遺伝子がコードするタンパク質の翻訳の抑制を意味し、より詳細には、前記標的遺伝子のmRNAからの前記タンパク質の翻訳の抑制を意味する。前記標的遺伝子の発現抑制は、例えば、前記標的遺伝子からの転写産物の生成量の減少、前記転写産物の活性の減少、前記標的遺伝子からの翻訳産物の生成量の減少、または前記翻訳産物の活性の減少等によって確認できる。前記タンパク質は、例えば、成熟タンパク質、または、プロセシングもしくは翻訳後修飾を受ける前の前駆体タンパク質があげられる。 In the present invention, “target gene expression suppression” means, for example, suppression of translation of the target gene, that is, suppression of translation of a protein encoded by the target gene, and more specifically, mRNA of the target gene. Means suppression of translation of the protein from The suppression of the expression of the target gene can be achieved, for example, by reducing the production amount of the transcription product from the target gene, reducing the activity of the transcription product, reducing the production amount of the translation product from the target gene, or activity of the translation product. It can be confirmed by decrease of Examples of the protein include a mature protein or a precursor protein before undergoing processing or post-translational modification.
 本発明の一本鎖核酸分子は、以下、本発明の「ssNc分子」ともいう。本発明のssNc分子は、例えば、in vivoまたはin vitroにおいて、標的遺伝子の発現抑制に使用できることから、「標的遺伝子の発現抑制用ssNc分子」または「標的遺伝子の発現抑制剤」ともいう。また、本発明のssNc分子は、例えば、インターフェロン誘導等の副作用を抑制できる。 Hereinafter, the single-stranded nucleic acid molecule of the present invention is also referred to as “ssNc molecule” of the present invention. Since the ssNc molecule of the present invention can be used, for example, in vivo or in vitro to suppress target gene expression, it is also referred to as “target gene expression suppression ssNc molecule” or “target gene expression inhibitor”. Moreover, the ssNc molecule of the present invention can suppress side effects such as interferon induction.
 本発明のssNc分子は、その5’末端と3’末端とが未連結であり、線状一本鎖核酸分子ということもできる。本発明のssNc分子は、例えば、前記内部領域(Z)において、前記内部5’領域(X)と前記内部3’領域(Y)が、直接的に連結されている。本形態の核酸分子は、例えば、両末端の未結合の維持のため、5’末端が非リン酸基であることが好ましい。 The ssNc molecule of the present invention has an unlinked 5 'end and 3' end, and can also be referred to as a linear single-stranded nucleic acid molecule. In the ssNc molecule of the present invention, for example, in the inner region (Z), the inner 5 'region (X) and the inner 3' region (Y) are directly linked. In the nucleic acid molecule of this embodiment, for example, it is preferable that the 5 'end is a non-phosphate group in order to maintain unbonded at both ends.
 本発明のssNc分子において、前記5’側領域(Xc)は、前記内部5’側領域(X)と相補的であり、前記3’側領域(Yc)は、前記内部3’側領域(Y)と相補的である。このため、5’側において、前記領域(Xc)が前記領域(X)に向かって折り返し、前記領域(Xc)と前記領域(X)とが、自己アニーリングによって、二重鎖を形成可能であり、また、3’側において、前記領域(Yc)が前記領域(Y)に向かって折り返し、前記領域(Yc)と前記領域(Y)とが、自己アニーリングによって、二重鎖を形成可能である。前記5’側領域(Xc)の5’末端および前記3’側領域(Yc)の3’末端を、それぞれ、未結合末端ともいう。 In the ssNc molecule of the present invention, the 5 ′ side region (Xc) is complementary to the internal 5 ′ side region (X), and the 3 ′ side region (Yc) is the internal 3 ′ side region (Y ). Therefore, on the 5 ′ side, the region (Xc) is folded toward the region (X), and the region (Xc) and the region (X) can form a double chain by self-annealing. In addition, on the 3 ′ side, the region (Yc) is folded toward the region (Y), and the region (Yc) and the region (Y) can form a double chain by self-annealing. . The 5 'end of the 5' side region (Xc) and the 3 'end of the 3' side region (Yc) are also referred to as unbound ends.
 本発明のssNc分子において、前記発現抑制配列は、例えば、発現抑制活性を有していればよく、成熟miRNA配列が好ましい。生体内におけるmiRNAの生成プロセスおよびmiRNAによるタンパク質の発現抑制プロセスは、以下の通りである。まず、5’末端にキャップ構造、3’末端にポリA構造を有する、一本鎖のmiRNA転写産物(Pri-miRNA)が、核内で発現する。前記Pri-miRNAは、ヘアピン構造を有している。前記Pri-miRNAは、RNase(Drosha)によって切断され、一本鎖の前駆体(Pre-miRNA)が生成される。前記Pre-miRNAは、ステム領域とループ領域とを有するヘアピン構造をとる。前記Pre-miRNAは、細胞質に輸送された後、RNase(Dicer)によって切断され、そのステム構造から、3’末端に数塩基(例えば、1~4塩基)のオーバーハングを有する二本鎖のmiRNAが生成される。そして、二本鎖のmiRNAのうちの一本鎖の成熟miRNAが、RISC(RNA induced Silencing Complex)に類似した複合体に結合し、成熟miRNA/RISC複合体が、特定のmRNAに結合することで、前記mRNAからのタンパク質の翻訳が抑制される。本発明においては、前記成熟miRNAの配列を、前記発現抑制配列として使用すればよい。前記発現抑制配列は、例えば、具体的にはタンパク質の翻訳を抑制することから、翻訳抑制配列ということもできる。 In the ssNc molecule of the present invention, the expression suppression sequence only needs to have, for example, expression suppression activity, and a mature miRNA sequence is preferable. The production process of miRNA in vivo and the protein expression suppression process by miRNA are as follows. First, a single-stranded miRNA transcript (Pri-miRNA) having a cap structure at the 5 'end and a polyA structure at the 3' end is expressed in the nucleus. The Pri-miRNA has a hairpin structure. The Pri-miRNA is cleaved by RNase (Drosha) to generate a single-stranded precursor (Pre-miRNA). The Pre-miRNA has a hairpin structure having a stem region and a loop region. The Pre-miRNA is transported to the cytoplasm, then cleaved by RNase (Dicer), and from its stem structure, a double-stranded miRNA having an overhang of several bases (eg, 1 to 4 bases) at the 3 ′ end. Is generated. The single-stranded mature miRNA of the double-stranded miRNA binds to a complex similar to RISC (RNA induced Silencing Complex), and the mature miRNA / RISC complex binds to a specific mRNA. , Protein translation from the mRNA is suppressed. In the present invention, the mature miRNA sequence may be used as the expression suppression sequence. The expression suppression sequence can be referred to as a translation suppression sequence because it specifically suppresses translation of a protein.
 なお、本発明は、前記標的遺伝子に対する前記発現抑制配列の配列情報がポイントではなく、前記発現抑制配列による前記標的遺伝子の発現抑制活性を、例えば、細胞内で機能させるための核酸分子の構造に関する。したがって、本発明においては、例えば、出願時において公知となっている前記miRNAの一本鎖成熟miRNA配列の他、将来的に明らかとなる配列に関しても、前記発現抑制配列として利用できる。本発明のssNc分子は、例えば、前述のように、miRNAを搭載することから、miRNA補充用核酸ということもできる。 The present invention relates to the structure of a nucleic acid molecule for allowing the expression suppression activity of the target gene by the expression suppression sequence to function in the cell, for example, not the point of the sequence information of the expression suppression sequence for the target gene. . Therefore, in the present invention, for example, in addition to the single-stranded mature miRNA sequence of the miRNA known at the time of filing, a sequence that will become apparent in the future can be used as the expression suppression sequence. Since the ssNc molecule of the present invention is loaded with miRNA as described above, it can also be referred to as a nucleic acid for miRNA supplementation.
 前記発現抑制配列は、例えば、前記標的遺伝子の所定領域に対して、相補性を有することが好ましい。前記発現抑制配列は、例えば、その5’側領域が、前記標的遺伝子に完全に相補な配列を有することが好ましく、より好ましくは、5’末端の2塩基目から8塩基までの配列(Seed配列ともいう)が、前記標的遺伝子に完全に相補な配列を有する。前記発現抑制配列の相補性は、特に制限されず、例えば、90%以上が好ましく、より好ましくは95%であり、さらに好ましくは98%であり、特に好ましくは100%である。このような相補性を満たすことにより、例えば、オフターゲットを十分に軽減できる。 The expression suppression sequence preferably has complementarity to a predetermined region of the target gene, for example. The expression suppression sequence preferably has, for example, a 5 ′ region having a sequence that is completely complementary to the target gene, more preferably a sequence from the second base to the 8th base at the 5 ′ end (Seed sequence). Also has a sequence that is completely complementary to the target gene. The complementarity of the expression suppression sequence is not particularly limited, and is preferably 90% or more, more preferably 95%, still more preferably 98%, and particularly preferably 100%. By satisfying such complementarity, for example, off-target can be sufficiently reduced.
 具体例として、HMGA2(high mobility group AT-hook 2)タンパク質の翻訳を抑制するHuman let-7a-1 miRNAの成熟miRNAがあげられる。HMGA2タンパク質は、非ヒストン性染色体高移動度群(HMG)タンパク質のファミリーに属する。以下に、Human let-7a-1 mature miRNA配列を示す。
UGAGGUAGUAGGUUGUAUAGUU(配列番号1)
A specific example is a mature miRNA of Human let-7a-1 miRNA that suppresses translation of HMGA2 (high mobility group AT-hook 2) protein. HMGA2 protein belongs to a family of non-histone chromosomal high mobility group (HMG) proteins. The Human let-7a-1 nature miRNA sequence is shown below.
UGAGGUAGUAGGUUGUAUAGUU (SEQ ID NO: 1)
 前記発現抑制配列の長さは、特に制限されず、下限が、例えば、18塩基長、好ましくは19塩基長、より好ましくは20塩基長であり、上限が、例えば、25塩基長、好ましくは24塩基長、より好ましくは23塩基長である。 The length of the expression suppression sequence is not particularly limited, and the lower limit is, for example, 18 base length, preferably 19 base length, more preferably 20 base length, and the upper limit is, for example, 25 base length, preferably 24. The base length is more preferably 23 bases.
 前記相補配列は、前記発現抑制配列とアライメントした際にミスマッチを有する配列である。これは、前記発現抑制配列が、前記相補配列とアライメントした際にミスマッチを有する配列であることを意味する。前記ミスマッチの個数は、特に制限されない。 The complementary sequence is a sequence having a mismatch when aligned with the expression suppression sequence. This means that the expression suppressing sequence is a sequence having a mismatch when aligned with the complementary sequence. The number of mismatches is not particularly limited.
 本発明のssNc分子は、前述のように、前記内部領域(Z)、前記5’側領域(Xc)および前記3’側領域(Yc)の少なくとも一つに前記発現抑制配列を配置した構造をとることで、Pre-miRNAと同様に、発現抑制が生じると推測される。すなわち、本発明のssNC分子から、前記成熟miRNAが生成され、前記成熟miRNAにより、標的遺伝子からのタンパク質の翻訳が抑制されると推測される。なお、本発明は、このメカニズムにより限定されない。 As described above, the ssNc molecule of the present invention has a structure in which the expression suppression sequence is arranged in at least one of the internal region (Z), the 5 ′ side region (Xc), and the 3 ′ side region (Yc). By taking this, it is presumed that expression suppression occurs as in the case of Pre-miRNA. That is, it is speculated that the mature miRNA is generated from the ssNC molecule of the present invention, and that the translation of the protein from the target gene is suppressed by the mature miRNA. Note that the present invention is not limited by this mechanism.
 本発明のssNc分子において、前記発現抑制配列は、前述のように、前記内部領域(Z)、前記5’側領域(Xc)および前記3’側領域(Yc)の少なくとも一つに含まれる。本発明のssNc分子は、前記発現抑制配列を、例えば、1つ有してもよいし、2つ以上有してもよい。 In the ssNc molecule of the present invention, the expression suppressing sequence is contained in at least one of the internal region (Z), the 5 'side region (Xc), and the 3' side region (Yc) as described above. The ssNc molecule of the present invention may have, for example, one or more than two of the expression suppression sequences.
 後者の場合、本発明のssNc分子は、例えば、同じ標的遺伝子に対する同じ発現抑制配列を2つ以上有してもよいし、同じ標的遺伝子に対する異なる発現抑制配列を2つ以上有してもよいし、異なる標的遺伝子に対する異なる発現抑制配列を2つ以上有してもよい。本発明のssNc分子が、2つ以上の前記発現抑制配列を有する場合、各発現抑制配列の配置箇所は、特に制限されず、前記内部領域(Z)、前記5’側領域(Xc)および前記3’側領域(Yc)のいずれか一領域でもよいし、異なる領域でもよい。本発明のssNc分子が、異なる標的遺伝子に対する前記発現抑制配列を2つ以上有する場合、例えば、本発明のssNc分子によって、2種類以上の異なる標的遺伝子の発現を抑制可能である。 In the latter case, for example, the ssNc molecule of the present invention may have two or more of the same expression suppression sequences for the same target gene, or may have two or more different expression suppression sequences for the same target gene. Two or more different expression suppression sequences for different target genes may be included. When the ssNc molecule of the present invention has two or more expression suppression sequences, the location of each expression suppression sequence is not particularly limited, and the internal region (Z), the 5 ′ side region (Xc), and the Any one of the 3 ′ side regions (Yc) may be used, or a different region may be used. When the ssNc molecule of the present invention has two or more of the expression suppression sequences for different target genes, for example, the expression of two or more different target genes can be suppressed by the ssNc molecule of the present invention.
 前述のように、生体内において、前記成熟miRNA配列は、前記Pre-miRNAが切断されることで、そのステム構造の一方の鎖(ガイド鎖ともいう)から生成される。この際、前記ステム構造の構造の他方の鎖からは、minor miRNA配列(パッセンジャー鎖ともいう)が生成される。前記minor miRNA配列は、通常、前記Pre-miRNAとアライメントした際に、1~数塩基のミスマッチを有する相補鎖である。本発明のssNc分子は、例えば、さらに、前記minor miRNA配列を有してもよい。 As described above, in the living body, the mature miRNA sequence is generated from one strand (also referred to as a guide strand) of the stem structure by cleaving the Pre-miRNA. At this time, a minor miRNA * sequence (also referred to as a passenger strand) is generated from the other strand of the structure of the stem structure. The minor miRNA * sequence is usually a complementary strand having a mismatch of 1 to several bases when aligned with the Pre-miRNA. The ssNc molecule of the present invention may further have the minor miRNA * sequence, for example.
 前記成熟miRNA配列と前記minor miRNA配列は、両者をアライメントした際、非相補的となる塩基を有してもよい。前記minor miRNAは、例えば、前記成熟miRNA配列に対する相補性が、例えば、60~100%である。前記成熟miRNA配列と前記minor miRNAは、それぞれ、内部に、前記非相補となる塩基を、例えば、1塩基または数塩基有してもよく、前記数塩基は、例えば、2~15塩基である。前記非相補的な塩基は、例えば、連続してもよいし、非連続でもよい。 The mature miRNA sequence and the minor miRNA * sequence may have non-complementary bases when they are aligned. The minor miRNA * has, for example, a complementation to the mature miRNA sequence of, for example, 60 to 100%. Each of the mature miRNA sequence and the minor miRNA * may have, for example, one or several bases that are non-complementary, and the several bases are, for example, 2 to 15 bases . The non-complementary bases may be, for example, continuous or non-continuous.
 本発明のssNc分子において、前記minor miRNA配列の位置は、特に制限されず、例えば、前記成熟miRNA配列とアニーリングして二本鎖を形成可能な位置であることが好ましい。本発明のssNc分子において、
前記5’側領域(Xc)が前記成熟miRNA配列を有する場合、前記内部5’側領域(X)が前記minor miRNA配列を有することが好ましく、
前記3’側領域(Yc)が前記成熟miRNA配列を有する場合、前記内部3’側領域(Y)が前記minor miRNA配列を有することが好ましく、
前記内部5’側領域(X)が前記成熟miRNA配列を有する場合、前記5’側領域(Xc)が前記minor miRNA配列を有することが好ましく、
前記内部3’側領域(Y)が前記成熟miRNA配列を有する場合、前記3’側領域(Yc)が前記minor miRNA配列を有することが好ましい。
In the ssNc molecule of the present invention, the position of the minor miRNA * sequence is not particularly limited, and is preferably, for example, a position that can be annealed with the mature miRNA sequence to form a double strand. In the ssNc molecule of the present invention,
When the 5 ′ region (Xc) has the mature miRNA sequence, the internal 5 ′ region (X) preferably has the minor miRNA * sequence,
When the 3 ′ region (Yc) has the mature miRNA sequence, the internal 3 ′ region (Y) preferably has the minor miRNA * sequence,
When the internal 5 ′ region (X) has the mature miRNA sequence, the 5 ′ region (Xc) preferably has the minor miRNA * sequence,
When the internal 3 ′ region (Y) has the mature miRNA sequence, the 3 ′ region (Yc) preferably has the minor miRNA * sequence.
 前記minor miRNA配列の長さは、特に制限されず、前記成熟miRNA配列の長さとの差が、例えば、0~10塩基長、好ましくは0~7塩基長、より好ましくは0~5塩基長である。前記minor miRNA配列と前記成熟miRNA配列は、例えば、同じ長さでもよいし、前者が長くてもよいし、後者が長くてもよい。 The length of the minor miRNA * sequence is not particularly limited, and the difference from the length of the mature miRNA sequence is, for example, 0 to 10 bases long, preferably 0 to 7 bases long, more preferably 0 to 5 bases long It is. The minor miRNA * sequence and the mature miRNA sequence may be, for example, the same length, the former may be longer, or the latter may be longer.
 具体例として、HMGA2(high mobility group AT-hook 2)タンパク質の翻訳を抑制するHuman let-7a-1 miRNAに対するminor miRNA配列があげられる。以下に、その配列の例を示す。
CUAUACAAUCUACUGUCUUUC(配列番号2)
A specific example is the minor miRNA * sequence for Human let-7a-1 miRNA that suppresses translation of HMGA2 (high mobility group AT-hook 2) protein. An example of the arrangement is shown below.
CUAUACAAUCUACUGUCUUCUC (SEQ ID NO: 2)
 前記内部領域(Z)は、前述のように、前記内部5’領域(X)と前記内部3’領域(Y)が連結して構成される。前記領域(X)と前記領域(Y)は、例えば、直接的に連結され、その間に介在配列を有していない。前記内部領域(Z)は、前記5’側領域(Xc)および前記3’側領域(Xc)との配列関係を示すために、「前記内部5’側領域(X)と前記内部3’側領域(Y)が連結して構成される」と表わすものであって、前記内部領域(Z)において、前記5’側領域(Xc)と前記3’側領域(Yc)とが、例えば、前記ssNc分子の使用において、別個の独立した領域であることを限定するものではない。すなわち、例えば、前記内部領域(Z)が、前記発現抑制配列を有する場合、前記内部領域(Z)において、前記領域(X)と前記領域(Y)とにわたって、前記発現抑制配列が配置されてもよい。 As described above, the inner region (Z) is formed by connecting the inner 5 'region (X) and the inner 3' region (Y). The region (X) and the region (Y) are directly connected, for example, and do not have an intervening sequence therebetween. The inner region (Z) is defined as “the inner 5 ′ side region (X) and the inner 3 ′ side in order to indicate the arrangement relationship between the 5 ′ side region (Xc) and the 3 ′ side region (Xc)”. The region (Y) is connected to each other ”, and in the inner region (Z), the 5 ′ side region (Xc) and the 3 ′ side region (Yc) are, for example, The use of ssNc molecules is not limited to being a separate and independent region. That is, for example, when the internal region (Z) has the expression suppression sequence, the expression suppression sequence is arranged across the region (X) and the region (Y) in the internal region (Z). Also good.
 本発明のssNc分子において、前記5’側領域(Xc)は、前記内部5’側領域(X)に相補的である。ここで、前記領域(Xc)は、前記領域(X)の全領域またはその部分領域に対して相補的な配列を有していればよく、具体的には、例えば、前記領域(X)の全領域またはその部分領域に相補的な配列を含む、または、前記相補的な配列からなることが好ましい。前記領域(Xc)は、前記領域(X)の相補的な前記全領域または相補的な前記部分領域に対して、例えば、完全に相補的でもよいし、1もしくは数塩基が非相補的でもよい。本発明のssNc分子において、前記3’側領域(Yc)は、前記内部3’側領域(Y)に相補的である。ここで、前記領域(Yc)は、前記領域(Y)の全領域またはその部分領域に相補的な配列を有していればよく、具体的には、例えば、前記領域(Y)の全領域またはその部分領域に対して相補的な配列を含む、または、前記相補的な配列からなることが好ましい。前記領域(Yc)は、前記領域(Y)の相補的な前記全領域または相補的な前記部分領域に対して、例えば、完全に相補的でもよいし、1もしくは数塩基が非相補的でもよい。前記1塩基若しくは数塩基は、例えば、1~3塩基、好ましくは1塩基または2塩基である。 In the ssNc molecule of the present invention, the 5 'side region (Xc) is complementary to the internal 5' side region (X). Here, the region (Xc) may have a sequence complementary to the entire region of the region (X) or a partial region thereof. Specifically, for example, the region (Xc) It is preferable that the entire region or a partial region thereof includes a complementary sequence or consists of the complementary sequence. The region (Xc) may be completely complementary to the entire region complementary to the region (X) or the complementary partial region, for example, or one or several bases may be non-complementary. . In the ssNc molecule of the present invention, the 3 'side region (Yc) is complementary to the internal 3' side region (Y). Here, the region (Yc) may have a sequence complementary to the entire region of the region (Y) or a partial region thereof. Specifically, for example, the entire region (Y) Alternatively, it preferably includes a sequence complementary to the partial region, or consists of the complementary sequence. The region (Yc) may be completely complementary to the entire region complementary to the region (Y) or the complementary partial region, for example, or one or several bases may be non-complementary. . The one base or several bases is, for example, 1 to 3 bases, preferably 1 base or 2 bases.
 本発明のssNc分子において、前記5’側領域(Xc)と前記内部5’側領域(X)とは、例えば、直接連結してもよいし、間接的に連結してもよい。前者の場合、直接的な連結は、例えば、ホスホジエステル結合による連結があげられる。後者の場合、例えば、前記領域(Xc)と前記領域(X)との間に、リンカー領域(Lx)を有し、前記リンカー領域(Lx)を介して、前記領域(Xc)と前記領域(X)とが連結している形態があげられる。 In the ssNc molecule of the present invention, the 5 'side region (Xc) and the internal 5' side region (X) may be directly connected or indirectly connected, for example. In the former case, direct linkage includes, for example, linkage by a phosphodiester bond. In the latter case, for example, a linker region (Lx) is provided between the region (Xc) and the region (X), and the region (Xc) and the region ( And X) are linked together.
 本発明のssNc分子において、前記3’側領域(Yc)と前記内部3’側領域(Y)とは、例えば、直接連結してもよいし、間接的に連結してもよい。前者の場合、直接的な連結は、例えば、ホスホジエステル結合による連結があげられる。後者の場合、例えば、前記領域(Yc)と前記領域(Y)との間に、リンカー領域(Ly)を有し、前記リンカー領域(Ly)を介して、前記領域(Yc)と前記領域(Y)とが連結している形態があげられる。 In the ssNc molecule of the present invention, the 3 ′ side region (Yc) and the inner 3 ′ side region (Y) may be directly connected or indirectly connected, for example. In the former case, direct linkage includes, for example, linkage by a phosphodiester bond. In the latter case, for example, a linker region (Ly) is provided between the region (Yc) and the region (Y), and the region (Yc) and the region ( And Y) are linked.
 本発明のssNc分子は、例えば、前記リンカー領域(Lx)および前記リンカー領域(Ly)の両方を有してもよいし、いずれか一方を有してもよい。後者の場合、例えば、前記5’側領域(Xc)と前記内部5’側領域(X)との間に前記リンカー領域(Lx)を有し、前記3’側領域(Yc)と前記内部3’側領域(Y)との間に前記リンカー領域(Ly)を有さない、つまり、前記領域(Yc)と前記領域(Y)とが直接連結された形態があげられる。また、後者の場合、例えば、前記3’側領域(Yc)と前記内部3’側領域(Y)との間に前記リンカー領域(Ly)を有し、前記5’側領域(Xc)と前記内部5’側領域(X)との間に前記リンカー領域(Lx)を有さない、つまり、前記領域(Xc)と前記領域(X)とが直接連結された形態があげられる。 The ssNc molecule of the present invention may have, for example, both the linker region (Lx) and the linker region (Ly), or one of them. In the latter case, for example, the linker region (Lx) is provided between the 5 ′ side region (Xc) and the inner 5 ′ side region (X), and the 3 ′ side region (Yc) and the inner 3 'The linker region (Ly) is not present between the side region (Y), that is, the region (Yc) and the region (Y) are directly linked. In the latter case, for example, the linker region (Ly) is provided between the 3 ′ side region (Yc) and the inner 3 ′ side region (Y), and the 5 ′ side region (Xc) and the The linker region (Lx) is not provided between the internal 5′-side region (X), that is, the region (Xc) and the region (X) are directly linked.
 前記リンカー領域(Lx)および前記リンカー領域(Ly)は、それぞれ、それ自体の領域内部において、自己アニーリングを生じない構造であることが好ましい。 The linker region (Lx) and the linker region (Ly) each preferably have a structure that does not cause self-annealing within its own region.
 前記成熟miRNA配列の3’末端に、前記リンカー領域(Lx)および前記リンカー領域(Ly)のいずれかが隣接する場合、そのリンカー領域は、例えば、前記Pre-miRNAのループ領域の配列と同じでもよいし、前記ループ領域の配列の小型化配列であってもよい。前記Pre-miRNAよりも小型化が可能であることから、前記リンカー領域は、例えば、前記配列の小型化配列また、後述するような非ヌクレオチド残基が好ましい。 When either the linker region (Lx) or the linker region (Ly) is adjacent to the 3 ′ end of the mature miRNA sequence, the linker region may be the same as the sequence of the loop region of the Pre-miRNA, for example. Alternatively, it may be a miniaturized arrangement of the loop region arrangement. Since the size of the linker region is smaller than that of the Pre-miRNA, the linker region is preferably a miniaturized sequence of the sequence or a non-nucleotide residue as described later, for example.
 本発明のssNc分子について、前記リンカー領域を有さないssNc分子の一例を、図1の模式図に示す。図1(A)は、前記ssNc分子について、5’側から3’側に向かって、各領域の順序の概略を示す模式図であり、図1(B)は、前記ssNc分子が、前記分子内において二重鎖を形成している状態を示す模式図である。図1(B)に示すように、前記ssNc分子は、前記5’側領域(Xc)が折り返し、前記5’側領域(Xc)と前記内部5’側領域(X)との間で二重鎖が形成され、前記3’側領域(Yc)が折り返し、前記3’側領域(Yc)と前記内部3’側領域(Y)との間で二重鎖が形成される。図1は、あくまでも、各領域の連結順番および二重鎖を形成する各領域の位置関係を示すものであり、例えば、各領域の長さ等は、これに制限されない。 An example of the ssNc molecule having no linker region is shown in the schematic diagram of FIG. FIG. 1A is a schematic diagram showing an outline of the order of each region from the 5 ′ side to the 3 ′ side of the ssNc molecule. FIG. 1B shows the ssNc molecule. It is a schematic diagram which shows the state which forms the double chain | strand in the inside. As shown in FIG. 1B, the ssNc molecule is folded between the 5′-side region (Xc) and doubled between the 5′-side region (Xc) and the inner 5′-side region (X). A chain is formed, the 3 ′ side region (Yc) is folded, and a double chain is formed between the 3 ′ side region (Yc) and the inner 3 ′ side region (Y). FIG. 1 merely shows the order of connection of the regions and the positional relationship of the regions forming the double chain. For example, the length of each region is not limited to this.
 本発明のssNc分子について、前記リンカー領域を有するssNc分子の一例を、図2の模式図に示す。図2(A)は、一例として、前記ssNc分子について、5’側から3’側に向かって、各領域の順序の概略を示す模式図であり、図2(B)は、前記ssNc分子が、前記分子内において二重鎖を形成している状態を示す模式図である。図2(B)に示すように、前記ssNc分子は、前記5’側領域(Xc)と前記内部5’側領域(X)との間、前記内部3’側領域(Y)と前記3’側領域(Yc)との間で、二重鎖が形成され、前記Lx領域および前記Ly領域が、ループ構造をとる。図2は、あくまでも、各領域の連結順番および二重鎖を形成する各領域の位置関係を示すものであり、例えば、各領域の長さ等は、これに制限されない。 An example of the ssNc molecule having the linker region is shown in the schematic diagram of FIG. FIG. 2 (A) is a schematic diagram showing an outline of the order of each region from the 5 ′ side to the 3 ′ side of the ssNc molecule as an example, and FIG. 2 (B) shows the ssNc molecule. FIG. 2 is a schematic diagram showing a state in which a double chain is formed in the molecule. As shown in FIG. 2 (B), the ssNc molecule is located between the 5 ′ side region (Xc) and the inner 5 ′ side region (X), and between the inner 3 ′ side region (Y) and the 3 ′ side. A double chain is formed with the side region (Yc), and the Lx region and the Ly region have a loop structure. FIG. 2 merely shows the connection order of the regions and the positional relationship of the regions forming the double chain. For example, the length of each region is not limited to this.
 本発明のssNc分子において、前記5’側領域(Xc)、前記内部5’側領域(X)、前記内部3’側領域(Y)および前記3’側領域(Yc)の塩基数は、特に制限されず、例えば、以下の通りである。本発明において、「塩基数」は、例えば、「長さ」を意味し、「塩基長」ということもできる。 In the ssNc molecule of the present invention, the number of bases in the 5 ′ side region (Xc), the internal 5 ′ side region (X), the internal 3 ′ side region (Y) and the 3 ′ side region (Yc) is particularly For example, it is as follows. In the present invention, “the number of bases” means, for example, “length” and can also be referred to as “base length”.
 前記5’側領域(Xc)は、前述のように、例えば、前記内部5’側領域(X)の全領域に相補的でもよい。この場合、前記領域(Xc)は、例えば、前記領域(X)と同じ塩基長であり、前記領域(X)の5’末端から3’末端の全領域に相補的な塩基配列からなることが好ましい。前記領域(Xc)は、より好ましくは、前記領域(X)と同じ塩基長であり、且つ、前記領域(Xc)の全ての塩基が、前記領域(X)の全ての塩基と相補的である、つまり、例えば、完全に相補的であることが好ましい。なお、これには制限されず、例えば、前述のように、1もしくは数塩基が非相補的でもよい。 As described above, the 5′-side region (Xc) may be complementary to the entire region of the inner 5′-side region (X), for example. In this case, for example, the region (Xc) has the same base length as the region (X), and is composed of a base sequence complementary to the entire region from the 5 ′ end to the 3 ′ end of the region (X). preferable. More preferably, the region (Xc) has the same base length as the region (X), and all bases in the region (Xc) are complementary to all bases in the region (X). That is, for example, it is preferably completely complementary. However, the present invention is not limited to this. For example, as described above, one or several bases may be non-complementary.
 また、前記5’側領域(Xc)は、前述のように、例えば、前記内部5’側領域(X)の部分領域に相補的でもよい。この場合、前記領域(Xc)は、例えば、前記領域(X)の部分領域と同じ塩基長であり、すなわち、前記領域(X)よりも、1塩基以上短い塩基長の塩基配列からなることが好ましい。前記領域(Xc)は、より好ましくは、前記領域(X)の前記部分領域と同じ塩基長であり、且つ、前記領域(Xc)の全ての塩基が、前記領域(X)の前記部分領域の全ての塩基と相補的である、つまり、例えば、完全に相補的であることが好ましい。前記領域(X)の前記部分領域は、例えば、前記領域(X)における、5’末端の塩基(1番目の塩基)から連続する塩基配列からなる領域(セグメント)であることが好ましい。 Further, as described above, the 5′-side region (Xc) may be complementary to a partial region of the inner 5′-side region (X), for example. In this case, the region (Xc) has, for example, the same base length as the partial region of the region (X), that is, consists of a base sequence having a base length shorter by one base or more than the region (X). preferable. More preferably, the region (Xc) has the same base length as the partial region of the region (X), and all the bases of the region (Xc) are included in the partial region of the region (X). It is preferred that it is complementary to all bases, that is, for example, completely complementary. The partial region of the region (X) is preferably, for example, a region (segment) having a base sequence continuous from the 5 ′ terminal base (first base) in the region (X).
 前記3’側領域(Yc)は、前述のように、例えば、前記内部3’側領域(Y)の全領域に相補的でもよい。この場合、前記領域(Yc)は、例えば、前記領域(Y)と同じ塩基長であり、前記領域(Y)の5’末端から3’末端の全領域に相補的な塩基配列からなることが好ましい。前記領域(Yc)は、より好ましくは、前記領域(Y)と同じ塩基長であり、且つ、前記領域(Yc)の全ての塩基が、前記領域(Y)の全ての塩基と相補的である、つまり、例えば、完全に相補であることが好ましい。なお、これには制限されず、例えば、前述のように、1もしくは数塩基が非相補的でもよい。 As described above, the 3′-side region (Yc) may be complementary to the entire region of the inner 3′-side region (Y), for example. In this case, the region (Yc) has, for example, the same base length as the region (Y) and is composed of a base sequence complementary to the entire region from the 5 ′ end to the 3 ′ end of the region (Y). preferable. More preferably, the region (Yc) has the same base length as the region (Y), and all bases in the region (Yc) are complementary to all bases in the region (Y). That is, for example, it is preferable to be completely complementary. However, the present invention is not limited to this. For example, as described above, one or several bases may be non-complementary.
 また、前記3’側領域(Yc)は、前述のように、例えば、前記内部3’側領域(Y)の部分領域に相補的でもよい。この場合、前記領域(Yc)は、例えば、前記領域(Y)の部分領域と同じ塩基長であり、すなわち、前記領域(Y)よりも、1塩基以上短い塩基長の塩基配列からなることが好ましい。前記領域(Yc)は、より好ましくは、前記領域(Y)の前記部分領域と同じ塩基長であり、且つ、前記領域(Yc)の全ての塩基が、前記領域(Y)の前記部分領域の全ての塩基と相補的である、つまり、例えば、完全に相補であることが好ましい。前記領域(Y)の前記部分領域は、例えば、前記領域(Y)における、3’末端の塩基(1番目の塩基)から連続する塩基配列からなる領域(セグメント)であることが好ましい。 Further, as described above, the 3′-side region (Yc) may be complementary to a partial region of the inner 3′-side region (Y), for example. In this case, the region (Yc) has, for example, the same base length as the partial region of the region (Y), that is, consists of a base sequence having a base length shorter by one base or more than the region (Y). preferable. More preferably, the region (Yc) has the same base length as the partial region of the region (Y), and all the bases of the region (Yc) are included in the partial region of the region (Y). It is preferred that it is complementary to all bases, that is, for example, completely complementary. The partial region of the region (Y) is preferably, for example, a region (segment) having a base sequence continuous from the base at the 3 'end (first base) in the region (Y).
 本発明のssNc分子において、前記内部領域(Z)の塩基数(Z)と、前記内部5’側領域(X)の塩基数(X)および前記内部3’側領域(Y)の塩基数(Y)との関係、前記内部領域(Z)の塩基数(Z)と、前記3’側領域(Yc)の塩基数(Yc)および前記5’側領域(Xc)の塩基数(Xc)との関係は、例えば、下記式(1)および(2)の条件を満たす。
   Z=X+Y   ・・・(1)
   Z≧Xc+Yc ・・・(2)
In the ssNc molecule of the present invention, the number of bases (Z) in the internal region (Z), the number of bases (X) in the internal 5 ′ side region (X), and the number of bases in the internal 3 ′ side region (Y) ( Y), the number of bases (Z) in the internal region (Z), the number of bases (Yc) in the 3′-side region (Yc), and the number of bases (Xc) in the 5′-side region (Xc) For example, the relationship satisfies the conditions of the following formulas (1) and (2).
Z = X + Y (1)
Z ≧ Xc + Yc (2)
 本発明のssNc分子において、前記内部5’側領域(X)の塩基数(X)と前記内部3’側領域(Y)の塩基数(Y)の長さの関係は、特に制限されず、例えば、下記式のいずれの条件を満たしてもよい。
   X=Y ・・・(19)
   X<Y ・・・(20)
   X>Y ・・・(21)
In the ssNc molecule of the present invention, the relationship between the number of bases (X) in the inner 5 ′ side region (X) and the number of bases (Y) in the inner 3 ′ side region (Y) is not particularly limited, For example, any of the following formulas may be satisfied.
X = Y (19)
X <Y (20)
X> Y (21)
 本発明のssNc分子において、前記内部5’側領域(X)の塩基数(X)、前記5’側領域(Xc)の塩基数(Xc)、前記内部3’側領域(Y)の塩基数(Y)および前記3’側領域(Yc)の塩基数(Yc)の関係は、例えば、下記(a)~(d)のいずれかの条件を満たす。
(a)下記式(3)および(4)の条件を満たす。
   X>Xc ・・・(3)
   Y=Yc ・・・(4)
(b)下記式(5)および(6)の条件を満たす。
   X=Xc ・・・(5)
   Y>Yc ・・・(6)
(c)下記式(7)および(8)の条件を満たす。
   X>Xc ・・・(7)
   Y>Yc ・・・(8)
(d)下記式(9)および(10)の条件を満たす。
   X=Xc ・・・(9)
   Y=Yc ・・・(10)
In the ssNc molecule of the present invention, the number of bases (X) in the internal 5 ′ side region (X), the number of bases (Xc) in the 5 ′ side region (Xc), the number of bases in the internal 3 ′ side region (Y) The relationship between (Y) and the number of bases (Yc) in the 3 ′ side region (Yc) satisfies, for example, the following conditions (a) to (d).
(A) The conditions of the following formulas (3) and (4) are satisfied.
X> Xc (3)
Y = Yc (4)
(B) The conditions of the following formulas (5) and (6) are satisfied.
X = Xc (5)
Y> Yc (6)
(C) The conditions of the following formulas (7) and (8) are satisfied.
X> Xc (7)
Y> Yc (8)
(D) The conditions of the following formulas (9) and (10) are satisfied.
X = Xc (9)
Y = Yc (10)
 前記(a)~(d)において、前記内部5’側領域(X)の塩基数(X)と前記5’側領域(Xc)の塩基数(Xc)の差、前記内部3’側領域(Y)の塩基数(Y)と前記3’側領域(Yc)の塩基数(Yc)の差は、例えば、下記条件を満たすことが好ましい。
(a)下記式(11)および(12)の条件を満たす。
   X-Xc=1~10、好ましくは1、2、3または4、
        より好ましくは1、2または3   ・・・(11)
   Y-Yc=0       ・・・(12)
(b)下記式(13)および(14)の条件を満たす。
   X-Xc=0       ・・・(13)
   Y-Yc=1~10、好ましくは1、2、3または4、
        より好ましくは1、2または3   ・・・(14)
(c)下記式(15)および(16)の条件を満たす。
   X-Xc=1~10、好ましくは、1、2または3、
        より好ましくは1または2     ・・・(15)
   Y-Yc=1~10、好ましくは、1、2または3、
        より好ましくは1または2     ・・・(16)
(d)下記式(17)および(18)の条件を満たす。
   X-Xc=0       ・・・(17)
   Y-Yc=0       ・・・(18)
In (a) to (d), the difference between the number of bases (X) in the inner 5 ′ side region (X) and the number of bases (Xc) in the 5 ′ side region (Xc), the inner 3 ′ side region ( The difference between the number of bases (Y) of Y) and the number of bases (Yc) of the 3 ′ side region (Yc) preferably satisfies the following condition, for example.
(A) The conditions of the following formulas (11) and (12) are satisfied.
X−Xc = 1 to 10, preferably 1, 2, 3 or 4,
More preferably 1, 2 or 3 (11)
Y−Yc = 0 (12)
(B) The conditions of the following formulas (13) and (14) are satisfied.
X−Xc = 0 (13)
Y−Yc = 1 to 10, preferably 1, 2, 3 or 4,
More preferably 1, 2 or 3 (14)
(C) The conditions of the following formulas (15) and (16) are satisfied.
X−Xc = 1 to 10, preferably 1, 2 or 3,
More preferably 1 or 2 (15)
Y−Yc = 1 to 10, preferably 1, 2 or 3,
More preferably 1 or 2 (16)
(D) The conditions of the following formulas (17) and (18) are satisfied.
X−Xc = 0 (17)
Y−Yc = 0 (18)
 前記(a)~(d)のssNc分子について、それぞれの構造の一例を、図3の模式図に示す。図3は、前記リンカー領域(Lx)および前記リンカー領域(Ly)を含むssNcであり、(A)は、前記(a)のssNc分子、(B)は、前記(b)のssNc分子、(C)は、前記(c)のssNc分子、(D)は、前記(d)のssNc分子の例である。図3において、点線は、自己アニーリングにより二重鎖を形成している状態を示す。図3のssNc分子は、前記内部5’側領域(X)の塩基数(X)と前記内部3’側領域(Y)の塩基数(Y)を、前記式(20)の「X<Y」として表わすが、これには制限されず、前述のように、前記式(19)の「X=Y」でも、前記式(21)の「X>Y」でもよい。また、図3は、あくまでも、前記内部5’側領域(X)と前記5’側領域(Xc)との関係、前記内部3’側領域(Y)と前記3’側領域(Yc)との関係を示す模式図であり、例えば、各領域の長さ、形状等は、これには制限されず、また、リンカー領域(Lx)およびリンカー領域(Ly)の有無も、これには制限されない。 An example of the structure of each of the ssNc molecules (a) to (d) is shown in the schematic diagram of FIG. FIG. 3 shows ssNc containing the linker region (Lx) and the linker region (Ly), (A) is the ssNc molecule of (a), (B) is the ssNc molecule of (b), ( C) is an example of the ssNc molecule of (c), and (D) is an example of the ssNc molecule of (d). In FIG. 3, a dotted line shows the state which has formed the double chain | strand by self-annealing. In the ssNc molecule of FIG. 3, the number of bases (X) in the inner 5 ′ side region (X) and the number of bases (Y) in the inner 3 ′ side region (Y) are expressed by “X <Y” in the formula (20). However, the present invention is not limited to this, and as described above, “X = Y” in the formula (19) or “X> Y” in the formula (21) may be used. Further, FIG. 3 is merely the relationship between the inner 5 ′ side region (X) and the 5 ′ side region (Xc), and the relationship between the inner 3 ′ side region (Y) and the 3 ′ side region (Yc). For example, the length and shape of each region are not limited thereto, and the presence or absence of the linker region (Lx) and the linker region (Ly) is not limited thereto.
 前記(a)~(c)のssNc分子は、例えば、前記5’側領域(Xc)と前記内部5’側領域(X)、および、前記3’側領域(Yc)と前記内部3’側領域(Y)が、それぞれ二重鎖を形成することによって、前記内部領域(Z)において、前記5’側領域(Xc)および前記3’側領域(Yc)のいずれともアライメントできない塩基を有する構造であり、二重鎖を形成しない塩基を有する構造ともいえる。前記内部領域(Z)において、前記アライメントできない塩基(二重鎖を形成しない塩基ともいう)を、以下、「フリー塩基」という。図3において、前記フリー塩基の領域を、「F」で示す。前記領域(F)の塩基数は、特に制限されない。前記領域(F)の塩基数(F)は、例えば、前記(a)のssNc分子の場合、「X-Xc」の塩基数であり、前記(b)のssNc分子の場合、「Y-Yc」の塩基数であり、前記(c)のssNc分子の場合、「X-Xc」の塩基数と「Y-Yc」の塩基数との合計数である。 The ssNc molecules of (a) to (c) include, for example, the 5 ′ side region (Xc) and the inner 5 ′ side region (X), and the 3 ′ side region (Yc) and the inner 3 ′ side. The region (Y) has a base that cannot be aligned with any of the 5 ′ side region (Xc) and the 3 ′ side region (Yc) in the internal region (Z) by forming a double chain, respectively. It can be said that the structure has a base that does not form a double chain. In the internal region (Z), the base that cannot be aligned (also referred to as a base that does not form a double chain) is hereinafter referred to as “free base”. In FIG. 3, the free base region is indicated by “F”. The number of bases in the region (F) is not particularly limited. The number of bases (F) in the region (F) is, for example, the number of bases “X—Xc” in the case of the ssNc molecule of (a), and “Y—Yc” in the case of the ssNc molecule of (b). In the case of the ssNc molecule of (c), it is the total number of bases “X-Xc” and “Y-Yc”.
 他方、前記(d)のssNc分子は、例えば、前記内部領域(Z)の全領域が、前記5’側領域(Xc)および前記3’側領域(Yc)とアライメントする構造であり、前記内部領域(Z)の全領域が二重鎖を形成する構造ともいえる。なお、前記(d)のssNc分子において、前記5’側領域(Xc)の5’末端と前記3’側領域(Yc)の3’末端は、未連結である。 On the other hand, the ssNc molecule of (d) is, for example, a structure in which the entire region of the internal region (Z) is aligned with the 5 ′ side region (Xc) and the 3 ′ side region (Yc), It can also be said that the entire region (Z) forms a double chain. In the ssNc molecule of (d), the 5 'end of the 5' side region (Xc) and the 3 'end of the 3' side region (Yc) are unlinked.
 本発明のssNc分子について、各領域の長さを以下に例示するが、本発明は、これには制限されない。本発明において、例えば、塩基数の数値範囲は、その範囲に属する正の整数を全て開示するものであり、例えば、「1~4塩基」との記載は、「1、2、3、4塩基」の全ての開示を意味する(以下、同様)。 For the ssNc molecule of the present invention, the length of each region is exemplified below, but the present invention is not limited thereto. In the present invention, for example, the numerical range of the number of bases discloses all positive integers belonging to the range. For example, the description “1 to 4 bases” includes “1, 2, 3, 4 bases”. "Means all disclosures (the same applies hereinafter).
 前記5’側領域(Xc)、前記3’側領域(Yc)、および前記内部領域(Z)における前記フリー塩基(F)の塩基数の合計は、例えば、前記内部領域(Z)の塩基数となる。このため、前記5’側領域(Xc)および前記3’側領域(Yc)の長さは、例えば、前記内部領域(Z)の長さ、前記フリー塩基の数(F)およびその位置に応じて、適宜決定できる。 The total number of bases of the free base (F) in the 5 ′ side region (Xc), the 3 ′ side region (Yc), and the internal region (Z) is, for example, the number of bases in the internal region (Z) It becomes. For this reason, the lengths of the 5 ′ side region (Xc) and the 3 ′ side region (Yc) depend on, for example, the length of the internal region (Z), the number of free bases (F), and the position thereof. Can be determined as appropriate.
 前記内部領域(Z)の塩基数は、例えば、19塩基以上である。前記塩基数の下限は、例えば、19塩基であり、好ましくは20塩基であり、より好ましくは21塩基である。前記塩基数の上限は、例えば、50塩基であり、好ましくは40塩基であり、より好ましくは30塩基である。前記内部領域(Z)の塩基数の具体例は、例えば、19塩基、20塩基、21塩基、22塩基、23塩基、24塩基、25塩基、26塩基、27塩基、28塩基、29塩基、または、30塩基である。 The number of bases in the internal region (Z) is, for example, 19 bases or more. The lower limit of the number of bases is, for example, 19 bases, preferably 20 bases, and more preferably 21 bases. The upper limit of the number of bases is, for example, 50 bases, preferably 40 bases, and more preferably 30 bases. Specific examples of the number of bases in the internal region (Z) include, for example, 19 bases, 20 bases, 21 bases, 22 bases, 23 bases, 24 bases, 25 bases, 26 bases, 27 bases, 28 bases, 29 bases, or , 30 bases.
 前記内部領域(Z)が前記発現抑制配列を含む場合、前記内部領域(Z)は、例えば、前記発現抑制配列のみから構成される領域でもよいし、前記発現抑制配列を含む領域でもよい。前記発現抑制配列の塩基数は、例えば、19~30塩基であり、好ましくは、19、20または21塩基である。前記内部領域(Z)が前記発現抑制配列を含む場合、前記発現抑制配列の5’側および/または3’側に、さらに付加配列を有してもよい。前記付加配列の塩基数は、例えば、1~31塩基であり、好ましくは、1~21塩基であり、より好ましくは、1~11塩基であり、さらに好ましくは、1~7塩基である。 When the internal region (Z) includes the expression suppression sequence, the internal region (Z) may be, for example, a region composed only of the expression suppression sequence or a region including the expression suppression sequence. The number of bases in the expression suppressing sequence is, for example, 19 to 30 bases, and preferably 19, 20 or 21 bases. When the internal region (Z) contains the expression suppression sequence, it may further have an additional sequence on the 5 'side and / or 3' side of the expression suppression sequence. The number of bases of the additional sequence is, for example, 1 to 31 bases, preferably 1 to 21 bases, more preferably 1 to 11 bases, and further preferably 1 to 7 bases.
 前記5’側領域(Xc)の塩基数は、例えば、1~29塩基であり、好ましくは1~11塩基であり、より好ましくは1~7塩基であり、さらに好ましくは1~4塩基であり、特に好ましくは1塩基、2塩基、3塩基である。前記内部領域(Z)または前記3’側領域(Yc)が前記発現抑制配列を含む場合、例えば、このような塩基数が好ましい。具体例として、前記内部領域(Z)の塩基数が、19~30塩基(例えば、19塩基)の場合、前記5’側領域(Xc)の塩基数は、例えば、1~11塩基であり、好ましくは1~7塩基であり、より好ましくは1~4塩基であり、さらに好ましくは1塩基、2塩基、3塩基である。 The number of bases in the 5 ′ side region (Xc) is, for example, 1 to 29 bases, preferably 1 to 11 bases, more preferably 1 to 7 bases, and further preferably 1 to 4 bases. Particularly preferred are 1 base, 2 bases and 3 bases. When the internal region (Z) or the 3 'side region (Yc) includes the expression suppression sequence, for example, such a base number is preferable. As a specific example, when the number of bases in the internal region (Z) is 19 to 30 bases (for example, 19 bases), the number of bases in the 5 ′ side region (Xc) is, for example, 1 to 11 bases, The number is preferably 1 to 7 bases, more preferably 1 to 4 bases, and still more preferably 1 base, 2 bases, and 3 bases.
 前記5’側領域(Xc)が前記発現抑制配列を含む場合、前記5’側領域(Xc)は、例えば、前記発現抑制配列のみから構成される領域でもよいし、前記発現抑制配列を含む領域でもよい。前記発現抑制配列の長さは、例えば、前述の通りである。前記5’側領域(Xc)が前記発現抑制配列を含む場合、前記発現抑制配列の5’側および/または3’側に、さらに付加配列を有してもよい。前記付加配列の塩基数は、例えば、1~11塩基であり、好ましくは、1~7塩基である。 When the 5′-side region (Xc) includes the expression suppression sequence, the 5′-side region (Xc) may be, for example, a region composed only of the expression suppression sequence, or a region including the expression suppression sequence But you can. The length of the expression suppression sequence is, for example, as described above. When the 5 'region (Xc) contains the expression suppression sequence, it may further have an additional sequence on the 5' side and / or 3 'side of the expression suppression sequence. The number of bases of the additional sequence is, for example, 1 to 11 bases, and preferably 1 to 7 bases.
 前記3’側領域(Yc)の塩基数は、例えば、1~29塩基であり、好ましくは1~11塩基であり、より好ましくは1~7塩基であり、さらに好ましくは1~4塩基であり、特に好ましくは1塩基、2塩基、3塩基である。前記内部領域(Z)または前記5’側領域(Xc)が前記発現抑制配列を含む場合、例えば、このような塩基数が好ましい。具体例として、前記内部領域(Z)の塩基数が、19~30塩基(例えば、19塩基)の場合、前記3’側領域(Yc)の塩基数は、例えば、1~11塩基であり、好ましくは1~7塩基であり、より好ましくは1~4塩基であり、さらに好ましくは1塩基、2塩基、3塩基である。 The number of bases in the 3 ′ side region (Yc) is, for example, 1 to 29 bases, preferably 1 to 11 bases, more preferably 1 to 7 bases, and further preferably 1 to 4 bases. Particularly preferred are 1 base, 2 bases and 3 bases. When the internal region (Z) or the 5 'side region (Xc) includes the expression suppression sequence, for example, such a base number is preferable. As a specific example, when the number of bases in the internal region (Z) is 19 to 30 bases (for example, 19 bases), the number of bases in the 3 ′ side region (Yc) is, for example, 1 to 11 bases, The number is preferably 1 to 7 bases, more preferably 1 to 4 bases, and still more preferably 1 base, 2 bases, and 3 bases.
 前記3’側領域(Yc)が前記発現抑制配列を含む場合、前記3’側領域(Yc)は、例えば、前記発現抑制配列のみから構成される領域でもよいし、前記発現抑制配列を含む領域でもよい。前記発現抑制配列の長さは、例えば、前述の通りである。前記3’側領域(Yc)が前記発現抑制配列を含む場合、前記発現抑制配列の5’側および/または3’側に、さらに付加配列を有してもよい。前記付加配列の塩基数は、例えば、1~11塩基であり、好ましくは、1~7塩基である。 When the 3 ′ side region (Yc) includes the expression suppression sequence, the 3 ′ side region (Yc) may be, for example, a region composed only of the expression suppression sequence, or a region including the expression suppression sequence But you can. The length of the expression suppression sequence is, for example, as described above. When the 3 'side region (Yc) includes the expression suppression sequence, it may further have an additional sequence on the 5' side and / or 3 'side of the expression suppression sequence. The number of bases of the additional sequence is, for example, 1 to 11 bases, and preferably 1 to 7 bases.
 前述のように、前記内部領域(Z)、前記5’側領域(Xc)および前記3’側領域(Yc)の塩基数は、例えば、前記式(2)の「Z≧Xc+Yc」で表わすことができる。具体例として、「Xc+Yc」の塩基数は、例えば、前記内部領域(Z)と同じ、または、前記内部領域(Z)より小さい。後者の場合、「Z-(Xc+Yc)」は、例えば、1~10、好ましくは1~4、より好ましくは1、2または3である。前記「Z-(Xc+Yc)」は、例えば、前記内部領域(Z)における前記フリー塩基の領域(F)の塩基数(F)に相当する。 As described above, the number of bases in the internal region (Z), the 5′-side region (Xc), and the 3′-side region (Yc) is expressed by, for example, “Z ≧ Xc + Yc” in the formula (2). Can do. As a specific example, the number of bases “Xc + Yc” is, for example, the same as or smaller than the inner region (Z). In the latter case, “Z− (Xc + Yc)” is, for example, 1 to 10, preferably 1 to 4, more preferably 1, 2 or 3. The “Z− (Xc + Yc)” corresponds to, for example, the number of bases (F) in the free base region (F) in the internal region (Z).
 本発明のssNc分子において、前記リンカー領域(Lx)および前記リンカー領域(Ly)の長さは、特に制限されない。前記リンカー領域(Lx)は、例えば、前記内部5’側領域(X)と前記5’側領域(Xc)とが二重鎖を形成可能な長さであることが好ましく、前記リンカー領域(Ly)は、例えば、前記内部3’側領域(Y)と前記3’側領域(Yc)とが二重鎖を形成可能な長さであることが好ましい。前記リンカー領域(Lx)および前記リンカー領域(Ly)の構成単位が塩基を含む場合、前記リンカー領域(Lx)および前記リンカー領域(Ly)のそれぞれの塩基数は、同じであっても異なってもよく、また、その塩基配列も、同じであっても異なってもよい。前記リンカー領域(Lx)および前記リンカー領域(Ly)の塩基数は、その下限が、例えば、1塩基であり、好ましくは2塩基であり、より好ましくは3塩基であり、その上限が、例えば、100塩基であり、好ましくは80塩基であり、より好ましくは50塩基である。前記各リンカー領域の塩基数は、具体例として、例えば、1~50塩基、1~30塩基、1~20塩基、1~10塩基、1~7塩基、1~4塩基等が例示できるが、これには制限されない。 In the ssNc molecule of the present invention, the length of the linker region (Lx) and the linker region (Ly) is not particularly limited. The linker region (Lx) preferably has, for example, a length that allows the internal 5 ′ side region (X) and the 5 ′ side region (Xc) to form a double chain, and the linker region (Ly) ) Is, for example, preferably a length such that the inner 3 ′ side region (Y) and the 3 ′ side region (Yc) can form a double chain. When the structural unit of the linker region (Lx) and the linker region (Ly) includes a base, the number of bases of the linker region (Lx) and the linker region (Ly) may be the same or different. The base sequence may be the same or different. The lower limit of the number of bases in the linker region (Lx) and the linker region (Ly) is, for example, 1 base, preferably 2 bases, more preferably 3 bases, and the upper limit thereof is, for example, 100 bases, preferably 80 bases, more preferably 50 bases. Specific examples of the number of bases in each linker region include 1 to 50 bases, 1 to 30 bases, 1 to 20 bases, 1 to 10 bases, 1 to 7 bases, and 1 to 4 bases. This is not a limitation.
 本発明のssNc分子において、例えば、図1~図3に示すように、前記内部領域(Z)に、前記5’側領域(Xc)と前記3’側領域(Yc)とをアライメントした際、前記内部領域(Z)に対する前記5’側領域(Xc)の未結合末端の位置は、例えば、以下の条件があげられる。前記5’側領域(Xc)の未結合末端が、前記内部領域(Z)の中心よりも5’側に対応する場合、前記未結合末端の位置は、例えば、前記内部領域(Z)において、その5’末端から1/50~1/2の部位であることが好ましく、より好ましくは1/50~1/3または1/50~1/4であり、さらに好ましくは1/30~1/2、1/30~1/3または1/30~1/4である。また、前記3’側領域(Yc)の未結合末端が、前記内部領域(Z)の中心よりも3’側に対応する場合、前記未結合末端の位置は、例えば、前記内部領域(Z)において、その3’末端から1/50~1/2の部位であることが好ましく、より好ましくは1/50~1/3または1/50~1/4であり、さらに好ましくは1/30~1/2、1/30~1/3または1/30~1/4である。 In the ssNc molecule of the present invention, for example, as shown in FIGS. 1 to 3, when the 5 ′ side region (Xc) and the 3 ′ side region (Yc) are aligned with the internal region (Z), Examples of the position of the unbound end of the 5 ′ side region (Xc) with respect to the internal region (Z) include the following conditions. When the unbound end of the 5 ′ region (Xc) corresponds to the 5 ′ side of the center of the internal region (Z), the position of the unbound end is, for example, in the internal region (Z) The site is preferably 1/50 to 1/2 from the 5 ′ end, more preferably 1/50 to 1/3 or 1/50 to 1/4, and even more preferably 1/30 to 1 /. 2, 1/30 to 1/3 or 1/30 to 1/4. When the unbound end of the 3 ′ side region (Yc) corresponds to the 3 ′ side of the center of the internal region (Z), the position of the unbound end is, for example, the internal region (Z) In this case, it is preferably 1/50 to 1/2 of the 3 ′ end, more preferably 1/50 to 1/3 or 1/50 to 1/4, and even more preferably 1/30 to 1/2, 1/30 to 1/3 or 1/30 to 1/4.
 本発明のssNc分子の全長は、特に制限されない。本発明のssNc分子において、前記塩基数の合計(全長の塩基数)は、下限が、例えば、38塩基であり、好ましくは42塩基であり、より好ましくは50塩基であり、さらに好ましくは51塩基であり、特に好ましくは52塩基であり、その上限は、例えば、300塩基であり、好ましくは200塩基であり、より好ましくは150塩基であり、さらに好ましくは100塩基であり、特に好ましくは80塩基である。本発明のssNc分子において、前記リンカー領域(Lx)およびリンカー領域(Ly)を除く塩基数の合計は、下限が、例えば、38塩基であり、好ましくは42塩基であり、より好ましくは50塩基であり、さらに好ましくは51塩基であり、特に好ましくは52塩基であり、上限が、例えば、300塩基であり、好ましくは200塩基であり、より好ましくは150塩基であり、さらに好ましくは100塩基であり、特に好ましくは80塩基である。 The total length of the ssNc molecule of the present invention is not particularly limited. In the ssNc molecule of the present invention, the lower limit of the total number of bases (total number of bases) is, for example, 38 bases, preferably 42 bases, more preferably 50 bases, and even more preferably 51 bases. The upper limit is, for example, 300 bases, preferably 200 bases, more preferably 150 bases, still more preferably 100 bases, particularly preferably 80 bases. It is. In the ssNc molecule of the present invention, the lower limit of the total number of bases excluding the linker region (Lx) and the linker region (Ly) is, for example, 38 bases, preferably 42 bases, more preferably 50 bases. Yes, more preferably 51 bases, particularly preferably 52 bases, and the upper limit is, for example, 300 bases, preferably 200 bases, more preferably 150 bases, still more preferably 100 bases Particularly preferred is 80 bases.
 本発明のssNc分子の構成単位は、特に制限されず、例えば、ヌクレオチド残基があげられる。前記ヌクレオチド残基は、例えば、リボヌクレオチド残基およびデオキシリボヌクレオチド残基があげられる。前記ヌクレオチド残基は、例えば、修飾されていない非修飾ヌクレオチド残基および修飾された修飾ヌクレオチド残基があげられる。本発明のssNc分子は、例えば、前記修飾ヌクレオチド残基を含むことによって、ヌクレアーゼ耐性を向上し、安定性を向上可能である。また、本発明のssNc分子は、例えば、前記ヌクレオチド残基の他に、さらに、非ヌクレオチド残基を含んでもよい。前記ヌクレオチド残基および前記非ヌクレオチド残基の詳細は、後述する。 The structural unit of the ssNc molecule of the present invention is not particularly limited, and examples thereof include nucleotide residues. Examples of the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue. Examples of the nucleotide residue include an unmodified unmodified nucleotide residue and a modified modified nucleotide residue. The ssNc molecule of the present invention can improve nuclease resistance and stability by including, for example, the modified nucleotide residue. The ssNc molecule of the present invention may further contain a non-nucleotide residue in addition to the nucleotide residue, for example. Details of the nucleotide residue and the non-nucleotide residue will be described later.
 本発明のssNc分子において、前記内部領域(Z)、前記5’側領域(Xc)および前記3’側領域(Yc)の構成単位は、それぞれ、前記ヌクレオチド残基が好ましい。前記各領域は、例えば、下記(1)~(3)の残基で構成される。
(1)非修飾ヌクレオチド残基
(2)修飾ヌクレオチド残基
(3)非修飾ヌクレオチド残基および修飾ヌクレオチド残基
In the ssNc molecule of the present invention, each of the constituent units of the internal region (Z), the 5 ′ side region (Xc) and the 3 ′ side region (Yc) is preferably the nucleotide residue. Each region is composed of the following residues (1) to (3), for example.
(1) Unmodified nucleotide residue (2) Modified nucleotide residue (3) Unmodified nucleotide residue and modified nucleotide residue
 本発明のssNc分子において、前記リンカー領域(Lx)および前記リンカー領域(Ly)の構成単位は、特に制限されず、例えば、前記ヌクレオチド残基および前記非ヌクレオチド残基があげられる。前記リンカー領域は、例えば、前記ヌクレオチド残基のみから構成されてもよいし、前記非ヌクレオチド残基のみから構成されてもよいし、前記ヌクレオチド残基と前記非ヌクレオチド残基から構成されてもよい。前記リンカー領域は、例えば、下記(1)~(7)の残基で構成される。
(1)非修飾ヌクレオチド残基
(2)修飾ヌクレオチド残基
(3)非修飾ヌクレオチド残基および修飾ヌクレオチド残基
(4)非ヌクレオチド残基
(5)非ヌクレオチド残基および非修飾ヌクレオチド残基
(6)非ヌクレオチド残基および修飾ヌクレオチド残基
(7)非ヌクレオチド残基、非修飾ヌクレオチド残基および修飾ヌクレオチド残基
In the ssNc molecule of the present invention, the structural units of the linker region (Lx) and the linker region (Ly) are not particularly limited, and examples thereof include the nucleotide residue and the non-nucleotide residue. The linker region may be composed of, for example, only the nucleotide residue, may be composed of only the non-nucleotide residue, or may be composed of the nucleotide residue and the non-nucleotide residue. . The linker region is composed of the following residues (1) to (7), for example.
(1) Unmodified nucleotide residues (2) Modified nucleotide residues (3) Unmodified nucleotide residues and modified nucleotide residues (4) Nonnucleotide residues (5) Nonnucleotide residues and unmodified nucleotide residues (6 ) Non-nucleotide residues and modified nucleotide residues (7) non-nucleotide residues, unmodified nucleotide residues and modified nucleotide residues
 本発明のssNc分子が、前記リンカー領域(Lx)および前記リンカー領域(Ly)の両方を有する場合、例えば、両方の構成単位が同じでもよいし、異なってもよい。具体例として、例えば、両方のリンカー領域の構成単位が前記ヌクレオチド残基である形態、両方のリンカー領域の構成単位が前記非ヌクレオチド残基である形態、一方の領域の構成単位が前記ヌクレオチド残基であり、他方のリンカー領域の構成単位が非ヌクレオチド残基である形態等があげられる。 When the ssNc molecule of the present invention has both the linker region (Lx) and the linker region (Ly), for example, both structural units may be the same or different. Specific examples include, for example, a form in which the constituent units of both linker regions are the nucleotide residues, a form in which the constituent units of both linker regions are the non-nucleotide residues, and the constituent units of one region are the nucleotide residues. And the other linker region is a non-nucleotide residue.
 本発明のssNc分子は、例えば、前記ヌクレオチド残基のみから構成される分子、前記ヌクレオチド残基の他に前記非ヌクレオチド残基を含む分子等があげられる。本発明のssNc分子において、前記ヌクレオチド残基は、前述のように、例えば、前記非修飾ヌクレオチド残基のみでもよいし、前記修飾ヌクレオチド残基のみでもよいし、前記非修飾ヌクレオチド残基および前記修飾ヌクレオチド残基の両方でもよい。前記ssNc分子が、前記非修飾ヌクレオチド残基と前記修飾ヌクレオチド残基を含む場合、前記修飾ヌクレオチド残基の個数は、特に制限されず、例えば、「1もしくは数個」であり、具体的には、例えば、1~5個、好ましくは1~4個、より好ましくは1~3個、最も好ましくは1または2個である。本発明のssNc分子が、前記非ヌクレオチド残基を含む場合、前記非ヌクレオチド残基の個数は、特に制限されず、例えば、「1もしくは数個」であり、具体的には、例えば、1~8個、1~6個、1~4個、1、2または3個である。 Examples of the ssNc molecule of the present invention include a molecule composed only of the nucleotide residue, a molecule containing the non-nucleotide residue in addition to the nucleotide residue, and the like. In the ssNc molecule of the present invention, as described above, the nucleotide residue may be, for example, only the unmodified nucleotide residue, only the modified nucleotide residue, or the unmodified nucleotide residue and the modification. Both nucleotide residues may be used. When the ssNc molecule includes the unmodified nucleotide residue and the modified nucleotide residue, the number of the modified nucleotide residue is not particularly limited, and is, for example, “one or several”, specifically For example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2. When the ssNc molecule of the present invention includes the non-nucleotide residue, the number of the non-nucleotide residue is not particularly limited, and is, for example, “one or several”, specifically, for example, 1 to Eight, one to six, one to four, one, two or three.
 本発明のssNc分子において、前記ヌクレオチド残基は、例えば、リボヌクレオチド残基が好ましい。この場合、本発明のssNc分子は、例えば、「RNA分子」または「ssRNA分子」ともいう。前記ssRNA分子は、例えば、前記リボヌクレオチド残基のみから構成される分子、前記リボヌクレオチド残基の他に前記非ヌクレオチド残基を含む分子があげられる。前記ssRNA分子において、前記リボヌクレオチド残基は、前述のように、例えば、前記非修飾リボヌクレオチド残基のみでもよいし、前記修飾リボヌクレオチド残基のみでもよいし、前記非修飾リボヌクレオチド残基および前記修飾リボヌクレオチド残基の両方を含んでもよい。 In the ssNc molecule of the present invention, the nucleotide residue is preferably, for example, a ribonucleotide residue. In this case, the ssNc molecule of the present invention is also referred to as “RNA molecule” or “ssRNA molecule”, for example. Examples of the ssRNA molecule include a molecule composed only of the ribonucleotide residue, and a molecule containing the non-nucleotide residue in addition to the ribonucleotide residue. In the ssRNA molecule, as described above, the ribonucleotide residue may be, for example, only the unmodified ribonucleotide residue, only the modified ribonucleotide residue, or the unmodified ribonucleotide residue and Both of the modified ribonucleotide residues may be included.
 前記ssRNA分子が、例えば、前記非修飾リボヌクレオチド残基の他に前記修飾リボヌクレオチド残基を含む場合、前記修飾リボヌクレオチド残基の個数は、特に制限されず、例えば、「1もしくは数個」であり、具体的には、例えば、1~5個、好ましくは1~4個、より好ましくは1~3個、最も好ましくは1または2個である。前記非修飾リボヌクレオチド残基に対する前記修飾リボヌクレオチド残基は、例えば、リボース残基がデオキシリボース残基に置換された前記デオキシリボヌクレオチド残基でもよい。前記ssRNA分子が、例えば、前記非修飾リボヌクレオチド残基の他に前記デオキシリボヌクレオチド残基を含む場合、前記デオキシリボヌクレオチド残基の個数は、特に制限されず、例えば、「1もしくは数個」であり、具体的には、例えば、1~5個、好ましくは1~4個、より好ましくは1~3個、最も好ましくは1または2個である。 When the ssRNA molecule includes, for example, the modified ribonucleotide residue in addition to the unmodified ribonucleotide residue, the number of the modified ribonucleotide residue is not particularly limited. For example, “1 or several” Specifically, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2. The modified ribonucleotide residue relative to the unmodified ribonucleotide residue may be, for example, the deoxyribonucleotide residue in which a ribose residue is replaced with a deoxyribose residue. For example, when the ssRNA molecule includes the deoxyribonucleotide residue in addition to the unmodified ribonucleotide residue, the number of the deoxyribonucleotide residue is not particularly limited, and is, for example, “one or several”. Specifically, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2.
 本発明のssNc分子は、例えば、標識物質を含み、前記標識物質で標識化されてもよい。前記標識物質は、特に制限されず、例えば、蛍光物質、色素、同位体等があげられる。前記標識物質は、例えば、ピレン、TAMRA、フルオレセイン、Cy3色素、Cy5色素等の蛍光団があげられ、前記色素は、例えば、Alexa488等のAlexa色素等があげられる。前記同位体は、例えば、安定同位体および放射性同位体があげられ、好ましくは安定同位体である。前記安定同位体は、例えば、被ばくの危険性が少なく、専用の施設も不要であることから取り扱い性に優れ、また、コストも低減できる。また、前記安定同位体は、例えば、標識した化合物の物性変化がなく、トレーサーとしての性質にも優れる。前記安定同位体は、特に制限されず、例えば、H、13C、15N、17O、18O、33S、34Sおよび36Sがあげられる。 The ssNc molecule of the present invention may contain, for example, a labeling substance and may be labeled with the labeling substance. The labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, isotopes and the like. Examples of the labeling substance include fluorophores such as pyrene, TAMRA, fluorescein, Cy3 dye, and Cy5 dye, and examples of the dye include Alexa dye such as Alexa488. Examples of the isotope include a stable isotope and a radioactive isotope, and a stable isotope is preferable. For example, the stable isotope has a low risk of exposure and does not require a dedicated facility, so that it is easy to handle and the cost can be reduced. In addition, the stable isotope, for example, has no change in physical properties of the labeled compound, and is excellent in properties as a tracer. The stable isotope is not particularly limited, and examples thereof include 2 H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S, and 36 S.
 本発明のssNc分子は、前述のように、前記標的遺伝子の発現抑制ができる。このため、本発明のssNc分子は、例えば、遺伝子が原因となる疾患の治療剤として使用できる。本発明のssNc分子が、例えば、前記発現抑制配列として、前記疾患の原因となる遺伝子の発現を抑制する配列を含む場合、例えば、前記標的遺伝子の発現抑制により、前記疾患を治療できる。本発明において、「治療」は、例えば、前記疾患の予防、疾患の改善、予後の改善の意味を含み、いずれでもよい。前記疾患は、特に制限されず、例えば、目的の疾患に応じて前記発現抑制配列を適宜設定できる。前記疾患としては、例えば、乳がん、肺がん、胃がん等のがんがあげられる。 As described above, the ssNc molecule of the present invention can suppress the expression of the target gene. Therefore, the ssNc molecule of the present invention can be used as a therapeutic agent for diseases caused by genes, for example. When the ssNc molecule of the present invention includes, for example, a sequence that suppresses the expression of a gene causing the disease as the expression suppression sequence, the disease can be treated by suppressing the expression of the target gene, for example. In the present invention, “treatment” includes, for example, the meanings of preventing the disease, improving the disease, and improving the prognosis. The disease is not particularly limited, and for example, the expression suppression sequence can be appropriately set according to the target disease. Examples of the disease include cancers such as breast cancer, lung cancer and stomach cancer.
 本発明のssNc分子の使用方法は、特に制限されず、例えば、前記標的遺伝子を有する投与対象に、前記ssNc分子を投与すればよい。 The method of using the ssNc molecule of the present invention is not particularly limited, and for example, the ssNc molecule may be administered to an administration subject having the target gene.
 前記投与対象は、例えば、細胞、組織または器官があげられる。前記投与対象は、例えば、ヒト、ヒトを除く非ヒト哺乳類等の非ヒト動物があげられる。前記投与は、例えば、in vivoでもin vitroでもよい。前記細胞は、特に制限されず、例えば、HeLa細胞、293細胞、NIH3T3細胞、COS細胞等の各種培養細胞、ES細胞、造血幹細胞等の幹細胞、初代培養細胞等の生体から単離した細胞等があげられる。 Examples of the administration subject include cells, tissues, and organs. Examples of the administration target include non-human animals such as humans and non-human mammals other than humans. The administration can be, for example, in vivo or in vitro . The cells are not particularly limited, and examples thereof include various cultured cells such as HeLa cells, 293 cells, NIH3T3 cells, and COS cells, stem cells such as ES cells and hematopoietic stem cells, and cells isolated from living bodies such as primary cultured cells. can give.
 本発明において、発現抑制の対象となる前記標的遺伝子は、特に制限されず、所望の遺伝子を設定できる。そして、前述のように、前記標的遺伝子の種類に応じて、前記発現抑制配列を適宜設計すればよい。 In the present invention, the target gene to be subject to expression suppression is not particularly limited, and a desired gene can be set. Then, as described above, the expression suppression sequence may be appropriately designed according to the type of the target gene.
 本発明のssNc分子の使用に関しては、後述する本発明の組成物、発現抑制方法および治療方法等の記載を参照できる。 Referring to the use of the ssNc molecule of the present invention, reference can be made to the description of the composition of the present invention, expression suppression method, treatment method and the like described later.
 本発明のssNc分子は、前述のように、標的遺伝子の発現を抑制可能であることから、例えば、医薬品、診断薬および農薬、ならびに、農薬、医学、生命科学等の研究ツールとして有用である。 Since the ssNc molecule of the present invention can suppress the expression of a target gene as described above, it is useful as a research tool for, for example, pharmaceuticals, diagnostic agents and agricultural chemicals, and agricultural chemicals, medicine, and life sciences.
2.ヌクレオチド残基
 前記ヌクレオチド残基は、例えば、構成要素として、糖、塩基およびリン酸を含む。前記ヌクレオチド残基は、前述のように、例えば、リボヌクレオチド残基およびデオキシリボヌクレオチド残基があげられる。前記リボヌクレオチド残基は、例えば、糖としてリボース残基を有し、塩基として、アデニン(A)、グアニン(G)、シトシン(C)およびU(ウラシル)を有し、前記デオキシリボース残基は、例えば、糖としてデオキシリボース残基を有し、塩基として、アデニン(A)、グアニン(G)、シトシン(C)およびチミン(T)を有する。
2. Nucleotide residues The nucleotide residues include, for example, sugars, bases and phosphates as constituent elements. As described above, examples of the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue. The ribonucleotide residue has, for example, a ribose residue as a sugar, and has adenine (A), guanine (G), cytosine (C) and U (uracil) as bases, and the deoxyribose residue is For example, it has a deoxyribose residue as a sugar and has adenine (A), guanine (G), cytosine (C) and thymine (T) as bases.
 前記ヌクレオチド残基は、未修飾ヌクレオチド残基および修飾ヌクレオチド残基があげられる。前記未修飾ヌクレオチド残基は、前記各構成要素が、例えば、天然に存在するものと同一または実質的に同一であり、好ましくは、人体において天然に存在するものと同一または実質的に同一である。 The nucleotide residue includes an unmodified nucleotide residue and a modified nucleotide residue. In the unmodified nucleotide residue, each of the constituent elements is, for example, the same or substantially the same as that existing in nature, and preferably the same or substantially the same as that naturally occurring in the human body. .
 前記修飾ヌクレオチド残基は、例えば、前記未修飾ヌクレオチド残基を修飾したヌクレオチド残基である。前記修飾ヌクレオチド残基は、例えば、前記未修飾ヌクレオチド残基の構成要素のいずれが修飾されてもよい。本発明において、「修飾」は、例えば、前記構成要素の置換、付加および/または欠失、前記構成要素における原子および/または官能基の置換、付加および/または欠失であり、「改変」ということができる。前記修飾ヌクレオチド残基は、例えば、天然に存在するヌクレオチド残基、人工的に修飾したヌクレオチド残基等があげられる。前記天然由来の修飾ヌクレオチド残基は、例えば、リンバックら(Limbach et al.、1994、Summary:the modified nucleosides of RNA、Nucleic Acids Res.22:2183~2196)を参照できる。また、前記修飾ヌクレオチド残基は、例えば、前記ヌクレオチド残基の代替物の残基でもよい The modified nucleotide residue is, for example, a nucleotide residue obtained by modifying the unmodified nucleotide residue. In the modified nucleotide residue, for example, any of the constituent elements of the unmodified nucleotide residue may be modified. In the present invention, “modification” refers to, for example, substitution, addition and / or deletion of the component, substitution, addition and / or deletion of atoms and / or functional groups in the component, and is referred to as “modification”. be able to. Examples of the modified nucleotide residue include naturally occurring nucleotide residues, artificially modified nucleotide residues, and the like. For example, Limbac et al. (Limbach et al., 1994, Summary: the modified nucleosides of RNA, Nucleic Acids Res. 22: 2183-2196) can be referred to as the naturally-occurring modified nucleotide residues. The modified nucleotide residue may be, for example, a residue of an alternative to the nucleotide residue
 前記ヌクレオチド残基の修飾は、例えば、リボース-リン酸骨格(以下、リボリン酸骨格)の修飾があげられる。 Examples of the modification of the nucleotide residue include modification of a ribose-phosphate skeleton (hereinafter referred to as ribophosphate skeleton).
 前記リボリン酸骨格において、例えば、リボース残基を修飾できる。前記リボース残基は、例えば、2’位炭素を修飾でき、具体的には、例えば、2’位炭素に結合する水酸基を、水素またはフルオロ等のハロゲンに置換できる。前記2’位炭素の水酸基を水素に置換することで、リボース残基をデオキシリボースに置換できる。前記リボース残基は、例えば、立体異性体に置換でき、例えば、アラビノース残基に置換してもよい。 In the ribophosphate skeleton, for example, a ribose residue can be modified. The ribose residue can be modified, for example, at the 2′-position carbon. Specifically, for example, a hydroxyl group bonded to the 2′-position carbon can be replaced with hydrogen or a halogen such as fluoro. By substituting the hydroxyl group at the 2'-position with hydrogen, the ribose residue can be replaced with deoxyribose. The ribose residue can be substituted with, for example, a stereoisomer, and can be substituted with, for example, an arabinose residue.
 前記リボリン酸骨格は、例えば、非リボース残基および/または非リン酸を有する非リボリン酸骨格に置換してもよい。前記非リボリン酸骨格は、例えば、前記リボリン酸骨格の非荷電体があげられる。前記非リボリン酸骨格に置換された、前記ヌクレオチドの代替物は、例えば、モルホリノ、シクロブチル、ピロリジン等があげられる。前記代替物は、この他に、例えば、人工核酸モノマー残基があげられる。具体例として、例えば、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)、ENA(2’-O,4’-C-Ethylenebridged Nucleic Acid)等があげられ、好ましくはPNAである。 The ribophosphate skeleton may be substituted with a non-ribophosphate skeleton having a non-ribose residue and / or non-phosphate, for example. Examples of the non-ribophosphate skeleton include uncharged ribophosphate skeletons. Examples of the substitute for the nucleotide substituted with the non-ribophosphate skeleton include morpholino, cyclobutyl, pyrrolidine and the like. Other examples of the substitute include artificial nucleic acid monomer residues. Specific examples include PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acid), and PNA is preferable.
 前記リボリン酸骨格において、例えば、リン酸基を修飾できる。前記リボリン酸骨格において、糖残基に最も隣接するリン酸基は、αリン酸基と呼ばれる。前記αリン酸基は、負に荷電し、その電荷は、糖残基に非結合の2つの酸素原子にわたって、均一に分布している。前記αリン酸基における4つの酸素原子のうち、ヌクレオチド残基間のホスホジエステル結合において、糖残基と非結合である2つの酸素原子は、以下、「非結合(non-linking)酸素」ともいう。他方、前記ヌクレオチド残基間のホスホジエステル結合において、糖残基と結合している2つの酸素原子は、以下、「結合(linking)酸素」という。前記αリン酸基は、例えば、非荷電となる修飾、または、前記非結合酸素における電荷分布が非対称型となる修飾を行うことが好ましい。 In the ribophosphate skeleton, for example, a phosphate group can be modified. In the ribophosphate skeleton, the phosphate group closest to the sugar residue is called an α-phosphate group. The α-phosphate group is negatively charged, and the charge is evenly distributed over two oxygen atoms that are not bound to a sugar residue. Of the four oxygen atoms in the α-phosphate group, in the phosphodiester bond between nucleotide residues, the two oxygen atoms that are non-bonded to the sugar residue are hereinafter referred to as “non-linking oxygen”. Say. On the other hand, in the phosphodiester bond between the nucleotide residues, the two oxygen atoms bonded to the sugar residue are hereinafter referred to as “linking oxygen”. The α-phosphate group is preferably subjected to, for example, a modification that makes it uncharged or a modification that makes the charge distribution in the unbound oxygen asymmetric.
 前記リン酸基は、例えば、前記非結合酸素を置換してもよい。前記酸素は、例えば、S(硫黄)、Se(セレン)、B(ホウ素)、C(炭素)、H(水素)、N(窒素)およびOR(Rは、アルキル基またはアリール基)のいずれかの原子で置換でき、好ましくは、Sで置換される。前記非結合酸素は、例えば、両方が置換されていることが好ましく、より好ましくは、両方がSで置換される。前記修飾リン酸基は、例えば、ホスホロチオエート、ホスホロジチオエート、ホスホロセレネート、ボラノホスフェート、ボラノホスフェートエステル、ホスホネート水素、ホスホロアミデート、アルキルまたはアリールホスホネート、およびホスホトリエステル等があげられ、中でも、前記2つの非結合酸素が両方ともSで置換されているホスホロジチオエートが好ましい。 The phosphate group may replace the non-bonded oxygen, for example. The oxygen is, for example, one of S (sulfur), Se (selenium), B (boron), C (carbon), H (hydrogen), N (nitrogen), and OR (R is an alkyl group or an aryl group). And is preferably substituted with S. In the non-bonded oxygen, for example, both are preferably substituted, and more preferably, both are substituted with S. Examples of the modified phosphate group include phosphorothioate, phosphorodithioate, phosphoroselenate, boranophosphate, boranophosphate ester, phosphonate hydrogen, phosphoramidate, alkyl or arylphosphonate, and phosphotriester. Among them, phosphorodithioate in which the two non-bonded oxygens are both substituted with S is preferable.
 前記リン酸基は、例えば、前記結合酸素を置換してもよい。前記酸素は、例えば、S(硫黄)、C(炭素)およびN(窒素)のいずれかの原子で置換でき、前記修飾リン酸基は、例えば、Nで置換した架橋ホスホロアミデート、Sで置換した架橋ホスホロチオエート、およびCで置換した架橋メチレンホスホネート等があげられる。前記結合酸素の置換は、例えば、本発明のssNc分子の5’末端ヌクレオチド残基および3’末端ヌクレオチド残基の少なくとも一方において行うことが好ましく、5’側の場合、Cによる置換が好ましく、3’側の場合、Nによる置換が好ましい。 The phosphate group may substitute, for example, the bonded oxygen. The oxygen can be substituted, for example, with any atom of S (sulfur), C (carbon) and N (nitrogen), and the modified phosphate group is, for example, a bridged phosphoramidate, S substituted with N Substituted bridged phosphorothioates, bridged methylene phosphonates substituted with C, and the like. The binding oxygen substitution is preferably performed, for example, on at least one of the 5 ′ terminal nucleotide residue and the 3 ′ terminal nucleotide residue of the ssNc molecule of the present invention, and in the case of the 5 ′ side, substitution with C is preferable. For the 'side, substitution with N is preferred.
 前記リン酸基は、例えば、前記リン非含有のリンカーに置換してもよい。前記リンカーは、例えば、シロキサン、カーボネート、カルボキシメチル、カルバメート、アミド、チオエーテル、エチレンオキサイドリンカー、スルホネート、スルホンアミド、チオホルムアセタール、ホルムアセタール、オキシム、メチレンイミノ、メチレンメチルイミノ、メチレンヒドラゾ、メチレンジメチルヒドラゾ、およびメチレンオキシメチルイミノ等の基を含み、好ましくは、メチレンカルボニルアミノ基およびメチレンメチルイミノ基を含む。 The phosphate group may be substituted with, for example, the phosphorus-free linker. Examples of the linker include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, and methylenedimethyl. It contains groups such as hydrazo and methyleneoxymethylimino, and preferably contains a methylenecarbonylamino group and a methylenemethylimino group.
 本発明のssNc分子は、例えば、3’末端および5’末端の少なくとも一方のヌクレオチド残基が修飾されてもよい。前記修飾は、例えば、3’末端および5’末端のいずれか一方でもよいし、両方でもよい。前記修飾は、例えば、前述の通りであり、好ましくは、末端のリン酸基に行うことが好ましい。前記リン酸基は、例えば、全体を修飾してもよいし、前記リン酸基における1つ以上の原子を修飾してもよい。前者の場合、例えば、リン酸基全体の置換でもよいし、欠失でもよい。 In the ssNc molecule of the present invention, for example, at least one nucleotide residue at the 3 'end and the 5' end may be modified. The modification may be, for example, either the 3 'end or the 5' end, or both. The modification is, for example, as described above, and is preferably performed on the terminal phosphate group. For example, the phosphate group may be modified entirely, or one or more atoms in the phosphate group may be modified. In the former case, for example, the entire phosphate group may be substituted or deleted.
 前記末端のヌクレオチド残基の修飾は、例えば、他の分子の付加があげられる。前記他の分子は、例えば、前述のような標識物質、保護基等の機能性分子があげられる。前記保護基は、例えば、S(硫黄)、Si(ケイ素)、B(ホウ素)、エステル含有基等があげられる。前記標識物質等の機能性分子は、例えば、本発明のssNc分子の検出等に利用できる。 Examples of the modification of the terminal nucleotide residue include addition of other molecules. Examples of the other molecule include functional molecules such as a labeling substance and a protecting group as described above. Examples of the protecting group include S (sulfur), Si (silicon), B (boron), ester-containing groups, and the like. The functional molecule such as the labeling substance can be used for, for example, detection of the ssNc molecule of the present invention.
 前記他の分子は、例えば、前記ヌクレオチド残基のリン酸基に付加してもよいし、スペーサーを介して、前記リン酸基または前記糖残基に付加してもよい。前記スペーサーの末端原子は、例えば、前記リン酸基の前記結合酸素、または、糖残基のO、N、SもしくはCに、付加または置換できる。前記糖残基の結合部位は、例えば、3’位のCもしくは5’位のC、またはこれらに結合する原子が好ましい。前記スペーサーは、例えば、前記PNA等のヌクレオチド代替物の末端原子に、付加または置換することもできる。 The other molecule may be added to the phosphate group of the nucleotide residue, for example, or may be added to the phosphate group or the sugar residue via a spacer. The terminal atom of the spacer can be added or substituted, for example, to the binding oxygen of the phosphate group or O, N, S or C of the sugar residue. The binding site of the sugar residue is preferably, for example, C at the 3 'position or C at the 5' position, or an atom bonded thereto. The spacer can be added or substituted at a terminal atom of a nucleotide substitute such as PNA.
 前記スペーサーは、特に制限されず、例えば、-(CH-、-(CHN-、-(CHO-、-(CHS-、O(CHCHO)CHCHOH、無塩基糖、アミド、カルボキシ、アミン、オキシアミン、オキシイミン、チオエーテル、ジスルフィド、チオ尿素、スルホンアミド、およびモルホリノ等、ならびに、ビオチン試薬およびフルオレセイン試薬等を含んでもよい。前記式において、nは、正の整数であり、n=3または6が好ましい。 The spacer is not particularly limited. For example, — (CH 2 ) n —, — (CH 2 ) n N—, — (CH 2 ) n O—, — (CH 2 ) n S—, O (CH 2 CH 2 O) n CH 2 CH 2 OH, including abasic sugar, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, morpholino, and the like, and biotin reagent and fluorescein reagent Good. In the above formula, n is a positive integer, and n = 3 or 6 is preferable.
 前記末端に付加する分子は、これらの他に、例えば、色素、インターカレート剤(例えば、アクリジン)、架橋剤(例えば、ソラレン、マイトマイシンC)、ポルフィリン(TPPC4、テキサフィリン、サッフィリン)、多環式芳香族炭化水素(例えば、フェナジン、ジヒドロフェナジン)、人工エンドヌクレアーゼ(例えば、EDTA)、親油性担体(例えば、コレステロール、コール酸、アダマンタン酢酸、1-ピレン酪酸、ジヒドロテストステロン、1,3-ビス-O(ヘキサデシル)グリセロール、ゲラニルオキシヘキシル基、ヘキサデシルグリセロール、ボルネオール、メントール、1,3-プロパンジオール、ヘプタデシル基、パルミチン酸、ミリスチン酸、O3-(オレオイル)リトコール酸、O3-(オレオイル)コール酸、ジメトキシトリチル、またはフェノキサジン)およびペプチド複合体(例えば、アンテナペディアペプチド、Tatペプチド)、アルキル化剤、リン酸、アミノ、メルカプト、PEG(例えば、PEG-40K)、MPEG、[MPEG]、ポリアミノ、アルキル、置換アルキル、放射線標識マーカー、酵素、ハプテン(例えば、ビオチン)、輸送/吸収促進剤(例えば、アスピリン、ビタミンE、葉酸)、合成リボヌクレアーゼ(例えば、イミダゾール、ビスイミダゾール、ヒスタミン、イミダゾールクラスター、アクリジン-イミダゾール複合体、テトラアザマクロ環のEu3+複合体)等があげられる。 In addition to these, the molecule to be added to the terminal includes, for example, a dye, an intercalating agent (for example, acridine), a crosslinking agent (for example, psoralen, mitomycin C), a porphyrin (TPPC4, texaphyrin, suffirin), a polycyclic Aromatic hydrocarbons (eg phenazine, dihydrophenazine), artificial endonucleases (eg EDTA), lipophilic carriers (eg cholesterol, cholic acid, adamantaneacetic acid, 1-pyrenebutyric acid, dihydrotestosterone, 1,3-bis- O (hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoyl) lithocholic acid, O3- (oleoyl) call , Dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG] 2, Polyamino, alkyl, substituted alkyl, radiolabeled marker, enzyme, hapten (eg, biotin), transport / absorption enhancer (eg, aspirin, vitamin E, folic acid), synthetic ribonuclease (eg, imidazole, bisimidazole, histamine, imidazole cluster) , Acridine-imidazole complex, tetraaza macrocycle Eu 3+ complex) and the like.
 本発明のssNc分子は、前記5’末端が、例えば、リン酸基またはリン酸基アナログで修飾されてもよい。前記リン酸基は、例えば、5’一リン酸((HO)2(O)P-O-5’)、5’二リン酸((HO)2(O)P-O-P(HO)(O)-O-5’)、5’三リン酸((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’-グアノシンキャップ(7-メチル化または非メチル化、7m-G-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’-アデノシンキャップ(Appp)、任意の修飾または非修飾ヌクレオチドキャップ構造(N-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’一チオリン酸(ホスホロチオエート:(HO)2(S)P-O-5’)、5’一ジチオリン酸(ホスホロジチオエート:(HO)(HS)(S)P-O-5’)、5’-ホスホロチオール酸((HO)2(O)P-S-5’)、硫黄置換の一リン酸、二リン酸および三リン酸(例えば、5’-α-チオ三リン酸、5’-γ-チオ三リン酸等)、5’-ホスホルアミデート((HO)2(O)P-NH-5’、(HO)(NH2)(O)P-O-5’)、5’-アルキルホスホン酸(例えば、RP(OH)(O)-O-5’、(OH)2(O)P-5’-CH2、Rはアルキル(例えば、メチル、エチル、イソプロピル、プロピル等))、5’-アルキルエーテルホスホン酸(例えば、RP(OH)(O)-O-5’、Rはアルキルエーテル(例えば、メトキシメチル、エトキシメチル等))等があげられる。 In the ssNc molecule of the present invention, the 5 ′ end may be modified with, for example, a phosphate group or a phosphate group analog. The phosphate group is, for example, 5 ′ monophosphate ((HO) 2 (O) PO-5 ′), 5 ′ diphosphate ((HO) 2 (O) POP (HO) (O) —O— 5 '), 5' triphosphate ((HO) 2 (O) PO- (HO) (O) POP (HO) (O) -O-5 '), 5'-guanosine cap (7-methylated or Unmethylated, 7m-GO-5 '-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5'-adenosine cap (Appp), optional Modified or unmodified nucleotide cap structure (NO-5 '-(HO) (O) PO- (HO) (O) POP (HO) (O) -O-5'), 5 'monothiophosphate (phosphorothioate: ( HO) 2 (S) PO-5 ′), 5 ′ monodithiophosphate (phosphorodithioate: (HO) (HS) (S) PO-5 ′), 5′-phosphorothiolic acid ((HO) 2 (O) PS-5 ′), sulfur-substituted monophosphate, diphosphate and triphosphate (eg, 5′-α-thiotriphosphate, 5′-γ-thiotriphosphate, etc.), 5 ′ Phosphoramidates ((HO) 2 (O) P—NH-5 ′, (HO) (NH 2 ) (O) PO-5 ′), 5′-alkylphosphonic acids (eg RP (OH) ( O) -O-5 ' (OH) 2 (O) P -5'-CH 2, R is alkyl (e.g., methyl, ethyl, isopropyl, propyl, etc.)), 5'-alkyl ether phosphonic acid (e.g., RP (OH) (O) - O-5 ′ and R include alkyl ethers (for example, methoxymethyl, ethoxymethyl, etc.).
 前記ヌクレオチド残基において、前記塩基は、特に制限されない。前記塩基は、例えば、天然の塩基でもよいし、非天然の塩基でもよい。前記塩基は、例えば、天然由来でもよいし、合成品でもよい。前記塩基は、例えば、一般的な塩基、その修飾アナログ等が使用できる。 In the nucleotide residue, the base is not particularly limited. The base may be, for example, a natural base or a non-natural base. The base may be, for example, naturally derived or a synthetic product. As the base, for example, a general base or a modified analog thereof can be used.
 前記塩基は、例えば、アデニンおよびグアニン等のプリン塩基、シトシン、ウラシルおよびチミン等のピリミジン塩基があげられる。前記塩基は、この他に、イノシン、チミン、キサンチン、ヒポキサンチン、ヌバラリン(nubularine)、イソグアニシン(isoguanisine)、ツベルシジン(tubercidine)等があげられる。前記塩基は、例えば、2-アミノアデニン、6-メチル化プリン等のアルキル誘導体;2-プロピル化プリン等のアルキル誘導体;5-ハロウラシルおよび5-ハロシトシン;5-プロピニルウラシルおよび5-プロピニルシトシン;6-アゾウラシル、6-アゾシトシンおよび6-アゾチミン;5-ウラシル(プソイドウラシル)、4-チオウラシル、5-ハロウラシル、5-(2-アミノプロピル)ウラシル、5-アミノアリルウラシル;8-ハロ化、アミノ化、チオール化、チオアルキル化、ヒドロキシル化および他の8-置換プリン;5-トリフルオロメチル化および他の5-置換ピリミジン;7-メチルグアニン;5-置換ピリミジン;6-アザピリミジン;N-2、N-6、およびO-6置換プリン(2-アミノプロピルアデニンを含む);5-プロピニルウラシルおよび5-プロピニルシトシン;ジヒドロウラシル;3-デアザ-5-アザシトシン;2-アミノプリン;5-アルキルウラシル;7-アルキルグアニン;5-アルキルシトシン;7-デアザアデニン;N6,N6-ジメチルアデニン;2,6-ジアミノプリン;5-アミノ-アリル-ウラシル;N3-メチルウラシル;置換1,2,4-トリアゾール;2-ピリジノン;5-ニトロインドール;3-ニトロピロール;5-メトキシウラシル;ウラシル-5-オキシ酢酸;5-メトキシカルボニルメチルウラシル;5-メチル-2-チオウラシル;5-メトキシカルボニルメチル-2-チオウラシル;5-メチルアミノメチル-2-チオウラシル;3-(3-アミノ-3-カルボキシプロピル)ウラシル;3-メチルシトシン;5-メチルシトシン;N4-アセチルシトシン;2-チオシトシン;N6-メチルアデニン;N6-イソペンチルアデニン;2-メチルチオ-N6-イソペンテニルアデニン;N-メチルグアニン;O-アルキル化塩基等があげられる。また、プリンおよびピリミジンは、例えば、米国特許第3,687,808号、「Concise Encyclopedia Of Polymer Science And Engineering」、858~859頁、クロシュビッツ ジェー アイ(Kroschwitz J.I.)編、John Wiley & Sons、1990、およびイングリッシュら(Englischら)、Angewandte Chemie、International Edition、1991、30巻、p.613に開示されるものが含まれる。 Examples of the base include purine bases such as adenine and guanine, and pyrimidine bases such as cytosine, uracil and thymine. Other examples of the base include inosine, thymine, xanthine, hypoxanthine, nubalarine, isoguanisine, and tubercidine. Examples of the base include alkyl derivatives such as 2-aminoadenine and 6-methylated purine; alkyl derivatives such as 2-propylated purine; 5-halouracil and 5-halocytosine; 5-propynyluracil and 5-propynylcytosine; -Azouracil, 6-azocytosine and 6-azothymine; 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl) uracil, 5-aminoallyluracil; 8-halogenated, aminated, Thiolated, thioalkylated, hydroxylated and other 8-substituted purines; 5-trifluoromethylated and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines; 6-azapyrimidines; N-2, N -6 and O-6 substituted purines (2-aminopropyladenyl 5-propynyluracil and 5-propynylcytosine; dihydrouracil; 3-deaza-5-azacytosine; 2-aminopurine; 5-alkyluracil; 7-alkylguanine; 5-alkylcytosine; 7-deazaadenine; N6 2,6-diaminopurine; 5-amino-allyl-uracil; N3-methyluracil; substituted 1,2,4-triazole; 2-pyridinone; 5-nitroindole; 3-nitropyrrole; -Methoxyuracil; uracil-5-oxyacetic acid; 5-methoxycarbonylmethyluracil; 5-methyl-2-thiouracil; 5-methoxycarbonylmethyl-2-thiouracil; 5-methylaminomethyl-2-thiouracil; 3- (3 -Amino-3-carboxypropyl) uracil 3-methylcytosine; 5-methylcytosine; N4-acetylcytosine; 2-thiocytosine; N6-methyladenine; N6-isopentyladenine; 2-methylthio-N6-isopentenyladenine; N-methylguanine; O-alkylated base Etc. Purines and pyrimidines are disclosed in, for example, U.S. Pat. No. 3,687,808, “Concise Encyclopedia Of Polymer And Engineering”, pages 858-859, edited by Kroschwitz JI & W. JI. Sons, 1990, and English et al., Angewante Chemie, International Edition, 1991, 30, p. 613 is included.
 前記修飾ヌクレオチド残基は、これらの他に、例えば、塩基を欠失する残基、すなわち、無塩基のリボリン酸骨格を含んでもよい。また、前記修飾ヌクレオチド残基は、例えば、米国仮出願第60/465,665号(出願日:2003年4月25日)、および国際出願第PCT/US04/07070号(出願日:2004年3月8日)に記載される残基が使用でき、本発明は、これらの文献を援用できる。 In addition to these, the modified nucleotide residue may include, for example, a residue lacking a base, that is, an abasic ribophosphate skeleton. The modified nucleotide residues are, for example, US Provisional Application No. 60 / 465,665 (filing date: April 25, 2003) and International Application No. PCT / US04 / 07070 (filing date: 2004/3). The residues described on the 8th of May) can be used, and the present invention can incorporate these documents.
3.非ヌクレオチド残基
 前記非ヌクレオチド残基は、特に制限されない。本発明のssNc分子は、例えば、前記非ヌクレオチド残基として、ピロリジン骨格またはピペリジン骨格を含む非ヌクレオチド構造を有してもよい。前記非ヌクレオチド残基は、例えば、前記リンカー領域(Lx)および前記リンカー領域(Ly)の少なくとも一方に有することが好ましい。前記非ヌクレオチド残基は、例えば、前記リンカー領域(Lx)に有してもよいし、前記リンカー領域(Ly)に有してもよいし、両方の前記リンカー領域に有してもよい。前記リンカー領域(Lx)および前記リンカー領域(Ly)は、例えば、同じでもよいし、異なってもよい。
3. Non-nucleotide residue The non-nucleotide residue is not particularly limited. The ssNc molecule of the present invention may have, for example, a non-nucleotide structure containing a pyrrolidine skeleton or a piperidine skeleton as the non-nucleotide residue. For example, the non-nucleotide residue is preferably present in at least one of the linker region (Lx) and the linker region (Ly). For example, the non-nucleotide residue may be included in the linker region (Lx), may be included in the linker region (Ly), or may be included in both the linker regions. The linker region (Lx) and the linker region (Ly) may be the same or different, for example.
 前記ピロリジン骨格は、例えば、ピロリジンの5員環を構成する炭素が、1個以上、置換されたピペリジン誘導体の骨格でもよく、置換される場合、例えば、C-2の炭素以外の炭素原子であることが好ましい。前記炭素は、例えば、窒素、酸素、または硫黄で置換されてもよい。前記ピロリジン骨格は、例えば、ピロリジンの5員環内に、例えば、炭素-炭素二重結合、または、炭素-窒素二重結合を含んでもよい。前記ピロリジン骨格において、ピロリジンの5員環を構成する炭素および窒素は、例えば、水素基が結合してもよいし、後述するような置換基が結合してもよい。前記リンカー領域(Lx)は、例えば、前記ピロリジン骨格のいずれの基を介して、前記領域(X)および前記領域(Xc)と結合してもよく、好ましくは、前記5員環のいずれか一個の炭素原子と窒素であり、好ましくは、前記5員環の2位の炭素(C-2)と窒素である。前記ピロリジン骨格としては、例えば、プロリン骨格、プロリノール骨格等があげられる。前記プロリン骨格およびプロリノール骨格等は、例えば、生体内物質およびその還元体であるため、安全性にも優れる。 The pyrrolidine skeleton may be, for example, a skeleton of a piperidine derivative in which one or more carbons constituting the five-membered ring of pyrrolidine are substituted. When the pyrrolidine skeleton is substituted, for example, a carbon atom other than C-2 carbon is used. It is preferable. The carbon may be substituted with, for example, nitrogen, oxygen, or sulfur. The pyrrolidine skeleton may include, for example, a carbon-carbon double bond or a carbon-nitrogen double bond in the 5-membered ring of pyrrolidine. In the pyrrolidine skeleton, the carbon and nitrogen constituting the 5-membered ring of pyrrolidine may be bonded to, for example, a hydrogen group or a substituent as described later. The linker region (Lx) may be bonded to the region (X) and the region (Xc) through, for example, any group of the pyrrolidine skeleton, preferably any one of the 5-membered rings Carbon atoms and nitrogen, preferably carbon (C-2) and nitrogen at the 2-position of the 5-membered ring. Examples of the pyrrolidine skeleton include a proline skeleton and a prolinol skeleton. The proline skeleton, prolinol skeleton, and the like are excellent in safety because they are, for example, in-vivo substances and their reduced forms.
 前記ピペリジン骨格は、例えば、ピペリジンの6員環を構成する炭素が、1個以上、置換されたピペリジン誘導体の骨格でもよく、置換される場合、例えば、C-2の炭素以外の炭素原子であることが好ましい。前記炭素は、例えば、窒素、酸素、または硫黄で置換されてもよい。前記ピペリジン骨格は、例えば、ピペリジンの6員環内に、例えば、炭素-炭素二重結合、または、炭素-窒素二重結合を含んでもよい。前記ピペリジン骨格において、ピペリジンの6員環を構成する炭素および窒素は、例えば、水素基が結合してもよいし、後述するような置換基が結合してもよい。前記リンカー領域(Lx)は、例えば、前記ピペリジン骨格のいずれの基を介して、前記領域(X)および前記領域(Xc)と結合してもよく、好ましくは、前記6員環のいずれか一個の炭素原子と窒素であり、好ましくは、前記6員環の2位の炭素(C-2)と窒素である。前記リンカー領域(Ly)についても同様である。 The piperidine skeleton may be, for example, a skeleton of a piperidine derivative in which one or more carbons constituting the six-membered ring of piperidine are substituted, and when substituted, for example, a carbon atom other than C-2 carbon. It is preferable. The carbon may be substituted with, for example, nitrogen, oxygen, or sulfur. The piperidine skeleton may contain, for example, a carbon-carbon double bond or a carbon-nitrogen double bond in the six-membered ring of piperidine. In the piperidine skeleton, the carbon and nitrogen constituting the piperidine 6-membered ring may be bonded to, for example, a hydrogen group or a substituent as described later. The linker region (Lx) may be bonded to the region (X) and the region (Xc), for example, via any group of the piperidine skeleton, and preferably any one of the six-membered rings Of the 6-membered ring, and carbon (C-2) and nitrogen are preferred. The same applies to the linker region (Ly).
 前記リンカー領域は、例えば、前記非ヌクレオチド構造からなる非ヌクレオチド残基のみでもよいし、前記非ヌクレオチド構造からなる非ヌクレオチド残基と、ヌクレオチド残基とを含んでもよい。 The linker region may be, for example, only a non-nucleotide residue consisting of the non-nucleotide structure, or may include a non-nucleotide residue consisting of the non-nucleotide structure and a nucleotide residue.
 前記リンカー領域は、例えば、下記式(I)で表わされる。
Figure JPOXMLDOC01-appb-C000001
The linker region is represented by the following formula (I), for example.
Figure JPOXMLDOC01-appb-C000001
前記式(I)中、
およびXは、それぞれ独立して、H、O、SまたはNHであり;
およびYは、それぞれ独立して、単結合、CH、NH、OまたはSであり;
は、環A上のC-3、C-4、C-5またはC-6に結合する水素原子または置換基であり、
前記置換基は、OH、OR、NH、NHR、NR、SH、SRまたはオキソ基(=O)であり;
が前記置換基の場合、置換基Rは、1でも複数でも、存在しなくてもよく、複数の場合、同一でも異なってもよく;
およびRは、置換基または保護基であり、同一でも異なってもよく;
は、n個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、OR、NH、NHR、NR、SHもしくはSRで置換されても置換されていなくてもよく、または、
は、前記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ただし、Yが、NH、OまたはSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接せず;
は、m個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、OR、NH、NHR、NR、SHもしくはSRで置換されても置換されていなくてもよく、または、
は、前記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ただし、Yが、NH、OまたはSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接せず;
、R、RおよびRは、それぞれ独立して、置換基または保護基であり;
lは、1または2であり;
mは、0~30の範囲の整数であり;
nは、0~30の範囲の整数であり;
環Aは、前記環A上のC-2以外の1個の炭素原子が、窒素、酸素、または硫黄で置換されてもよく、
前記環A内に、炭素-炭素二重結合、または、炭素-窒素二重結合を含んでもよい。前記リンカー領域(Lx)が前記式(1)で表わされる場合、前記領域(Xc)および前記領域(X)は、それぞれ、-OR-または-OR-を介して、前記リンカー領域(Lx)に結合する。また、前記リンカー領域(Ly)が前記式(1)で表わされる場合、前記領域(Yc)および前記領域(Y)は、それぞれ、-OR-または-OR-を介して、前記リンカー領域(Ly)に結合する。ここで、RおよびRは、存在しても存在しなくてもよく、存在する場合、RおよびRは、それぞれ独立して、ヌクレオチド残基または前記構造(I)である。
In the formula (I),
X 1 and X 2 are each independently H 2 , O, S or NH;
Y 1 and Y 2 are each independently a single bond, CH 2 , NH, O or S;
R 3 is a hydrogen atom or substituent bonded to C-3, C-4, C-5 or C-6 on ring A;
The substituent is OH, OR 4 , NH 2 , NHR 4 , NR 4 R 5 , SH, SR 4 or an oxo group (═O);
When R 3 is the substituent, the substituent R 3 may be one, plural or absent, and in plural cases, may be the same or different;
R 4 and R 5 are substituents or protecting groups and may be the same or different;
L 1 is an alkylene chain consisting of n atoms, wherein the hydrogen atom on the alkylene carbon atom is substituted with OH, OR a , NH 2 , NHR a , NR a R b , SH or SR a May not be substituted, or
L 1 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom,
However, when Y 1 is NH, O or S, the atom of L 1 bonded to Y 1 is carbon, the atom of L 1 bonded to OR 1 is carbon, and oxygen atoms are not adjacent to each other;
L 2 is an alkylene chain consisting of m atoms, wherein the hydrogen atom on the alkylene carbon atom is substituted with OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c May not be substituted, or
L 2 is a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom,
However, when Y 2 is NH, O or S, the atom of L 2 bonded to Y 2 is carbon, the atom of L 2 bonded to OR 2 is carbon, and oxygen atoms are not adjacent to each other;
R a , R b , R c and R d are each independently a substituent or a protecting group;
l is 1 or 2;
m is an integer ranging from 0 to 30;
n is an integer ranging from 0 to 30;
In ring A, one carbon atom other than C-2 on ring A may be substituted with nitrogen, oxygen, or sulfur.
The ring A may contain a carbon-carbon double bond or a carbon-nitrogen double bond. When the linker region (Lx) is represented by the formula (1), the region (Xc) and the region (X) are each linked to the linker region (Lx) via —OR 1 — or —OR 2 —. ). When the linker region (Ly) is represented by the formula (1), the region (Yc) and the region (Y) are each linked to the linker region via —OR 1 — or —OR 2 —. It binds to (Ly). Here, R 1 and R 2 may be present or absent, and when present, R 1 and R 2 are each independently a nucleotide residue or the structure (I).
 前記式(I)中、XおよびXは、例えば、それぞれ独立して、H、O、SまたはNHである。前記式(I)中において、XがHであるとは、Xが、Xの結合する炭素原子とともに、CH(メチレン基)を形成することを意味する。Xについても同様である。 In the formula (I), X 1 and X 2 are each independently, for example, H 2 , O, S or NH. In the formula (I), X 1 being H 2 means that X 1 together with the carbon atom to which X 1 is bonded forms CH 2 (methylene group). The same is true for X 2.
 前記式(I)中、環Aにおいて、lは、1または2である。l=1の場合、環Aは、5員環であり、例えば、前記ピロリジン骨格である。前記ピロリジン骨格は、例えば、プロリン骨格、プロリノール骨格等があげられ、これらの二価の構造が例示できる。l=2の場合、環Aは、6員環であり、例えば、前記ピペリジン骨格である。環Aは、環A上のC-2以外の1個の炭素原子が、窒素、酸素または硫黄で置換されてもよい。また、環Aは、環A内に、炭素-炭素二重結合または炭素-窒素二重結合を含んでもよい。環Aは、例えば、L型およびD型のいずれでもよい。 In the formula (I), in ring A, l is 1 or 2. When l = 1, ring A is a 5-membered ring, for example, the pyrrolidine skeleton. Examples of the pyrrolidine skeleton include a proline skeleton and a prolinol skeleton, and examples thereof include a bivalent structure. When l = 2, ring A is a 6-membered ring, for example, the piperidine skeleton. In ring A, one carbon atom other than C-2 on ring A may be substituted with nitrogen, oxygen or sulfur. Ring A may contain a carbon-carbon double bond or a carbon-nitrogen double bond in ring A. Ring A may be, for example, either L-type or D-type.
 前記式(I)中、YおよびYは、それぞれ独立して、単結合、CH、NH、OまたはSである。 In the formula (I), Y 1 and Y 2 are each independently a single bond, CH 2 , NH, O or S.
 前記式(I)中、Rは、環A上のC-3、C-4、C-5またはC-6に結合する水素原子または置換基である。前記置換基は、OH、OR、NH、NHR、NR、SH、SRまたはオキソ基(=O)である。Rが前記置換基の場合、置換基Rは、1でも複数でも、存在しなくてもよく、複数の場合、同一でも異なってもよい。RおよびRは、置換基または保護基であり、同一でも異なってもよい。 In the formula (I), R 3 is a hydrogen atom or a substituent bonded to C-3, C-4, C-5 or C-6 on the ring A. The substituent is OH, OR 4 , NH 2 , NHR 4 , NR 4 R 5 , SH, SR 4 or an oxo group (═O). When R 3 is the above-described substituent, the substituent R 3 may be one, plural, or absent, and when plural, it may be the same or different. R 4 and R 5 are substituents or protecting groups, and may be the same or different.
 前記置換基は、例えば、ハロゲン、アルキル、アルケニル、アルキニル、ハロアルキル、アリール、ヘテロアリール、アリールアルキル、シクロアルキル、シクロアルケニル、シクロアルキルアルキル、シクリルアルキル、ヒドロキシアルキル、アルコキシアルキル、アミノアルキル、ヘテロシクリルアルケニル、ヘテロシクリルアルキル、ヘテロアリールアルキル、シリル、シリルオキシアルキル等があげられる。以下、同様である。 Examples of the substituent include halogen, alkyl, alkenyl, alkynyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cyclylalkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, heterocyclylalkenyl. , Heterocyclylalkyl, heteroarylalkyl, silyl, silyloxyalkyl and the like. The same applies hereinafter.
 前記保護基は、例えば、反応性の高い官能基を不活性に変換する官能基であり、公知の保護基等があげられる。前記保護基は、例えば、文献(J. F. W. McOmie, 「Protecting Groups in Organic Chemistry」Prenum Press, London and New York, 1973)の記載を援用できる。前記保護基は、特に制限されず、例えば、tert-ブチルジメチルシリル(TBDMS)基、ビス(2-アセトキシエチルオキシ)メチル(ACE)基、トリイソプロピルシリルオキシメチル(TOM)基、1-(2-シアノエトキシ)エチル(CEE)基、2-シアノエトキシメチル(CEM)基およびトリルスルフォニルエトキシメチル(TEM)基、ジメトキシトリチル(DMTr)等があげられる。RがORの場合、前記保護基は、特に制限されず、例えば、TBDMS基、ACE基、TOM基、CEE基、CEM基およびTEM基等があげられる。この他にも、後述するシリル含有基等もあげられる。以下、同様である。 The protecting group is, for example, a functional group that converts a highly reactive functional group to be inert, and examples thereof include known protecting groups. For example, the description of the literature (J. F. W. McOmie, “Protecting Groups in Organic Chemistry”, Prenum Press, London and New York, 1973) can be used as the protecting group. The protecting group is not particularly limited, and examples thereof include tert-butyldimethylsilyl (TBDMS) group, bis (2-acetoxyethyloxy) methyl (ACE) group, triisopropylsilyloxymethyl (TOM) group, 1- (2 -Cyanoethoxy) ethyl (CEE) group, 2-cyanoethoxymethyl (CEM) group and tolylsulfonylethoxymethyl (TEM) group, dimethoxytrityl (DMTr) and the like. When R 3 is OR 4 , the protecting group is not particularly limited, and examples thereof include a TBDMS group, an ACE group, a TOM group, a CEE group, a CEM group, and a TEM group. In addition to this, silyl-containing groups described later are also included. The same applies hereinafter.
 前記式(I)中、Lは、n個の原子からなるアルキレン鎖である。前記アルキレン炭素原子上の水素原子は、例えば、OH、OR、NH、NHR、NR、SHもしくはSRで置換されてもよいし、置換されていなくてもよい。または、Lは、前記アルキレン鎖の一つ以上の炭素原子が酸素原子で置換されたポリエーテル鎖でもよい。前記ポリエーテル鎖は、例えば、ポリエチレングリコールである。なお、Yが、NH、OまたはSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接しない。つまり、例えば、YがOの場合、その酸素原子とLの酸素原子は隣接せず、ORの酸素原子とLの酸素原子は隣接しない。 In the formula (I), L 1 is an alkylene chain composed of n atoms. The hydrogen atom on the alkylene carbon atom may be substituted with, for example, OH, OR a , NH 2 , NHR a , NR a R b , SH or SR a , or may not be substituted. Alternatively, L 1 may be a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom. The polyether chain is, for example, polyethylene glycol. When Y 1 is NH, O, or S, the L 1 atom bonded to Y 1 is carbon, the L 1 atom bonded to OR 1 is carbon, and oxygen atoms are not adjacent to each other. That is, for example, when Y 1 is O, the oxygen atom and the oxygen atom of L 1 are not adjacent, and the oxygen atom of OR 1 and the oxygen atom of L 1 are not adjacent.
 前記式(I)中、Lは、m個の原子からなるアルキレン鎖である。前記アルキレン炭素原子上の水素原子は、例えば、OH、OR、NH、NHR、NR、SHもしくはSRで置換されてもよいし、置換されていなくてもよい。または、Lは、前記アルキレン鎖の一つ以上の炭素原子が酸素原子で置換されたポリエーテル鎖でもよい。なお、Yが、NH、OまたはSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接しない。つまり、例えば、YがOの場合、その酸素原子とLの酸素原子は隣接せず、ORの酸素原子とLの酸素原子は隣接しない。 In the formula (I), L 2 is an alkylene chain composed of m atoms. The hydrogen atom on the alkylene carbon atom may be substituted with, for example, OH, OR c , NH 2 , NHR c , NR c R d , SH or SR c , or may not be substituted. Alternatively, L 2 may be a polyether chain in which one or more carbon atoms of the alkylene chain are substituted with an oxygen atom. When Y 2 is NH, O, or S, the L 2 atom bonded to Y 2 is carbon, the L 2 atom bonded to OR 2 is carbon, and oxygen atoms are not adjacent to each other. That is, for example, when Y 2 is O, the oxygen atom and the oxygen atom of L 2 are not adjacent, and the oxygen atom of OR 2 and the oxygen atom of L 2 are not adjacent.
 LのnおよびLのmは、特に制限されず、それぞれ、下限は、例えば、0であり、上限も、特に制限されない。nおよびmは、例えば、前記リンカー領域(Lx)の所望の長さに応じて、適宜設定できる。nおよびmは、例えば、製造コストおよび収率等の点から、それぞれ、0~30が好ましく、より好ましくは0~20であり、さらに好ましくは0~15である。nとmは、同じでもよいし(n=m)、異なってもよい。n+mは、例えば、0~30であり、好ましくは0~20であり、より好ましくは0~15である。 N in L 1 and m in L 2 are not particularly limited, and the lower limit is, for example, 0, and the upper limit is not particularly limited. n and m can be appropriately set depending on, for example, the desired length of the linker region (Lx). For example, n and m are each preferably 0 to 30, more preferably 0 to 20, and still more preferably 0 to 15 from the viewpoints of production cost and yield. n and m may be the same (n = m) or different. n + m is, for example, 0 to 30, preferably 0 to 20, and more preferably 0 to 15.
 R、R、RおよびRは、それぞれ独立して、置換基または保護基があげられる。前記置換基および前記保護基は、例えば、前述と同様である。 R a , R b , R c and R d are each independently a substituent or a protecting group. The substituent and the protective group are the same as described above, for example.
 前記式(I)において、水素原子は、例えば、それぞれ独立して、Cl、Br、FおよびI等のハロゲンに置換されてもよい。 In the formula (I), hydrogen atoms may be independently substituted with halogens such as Cl, Br, F and I, for example.
 前記リンカー領域(Lx)が、前記式(I)で表わされる場合、前記領域(Xc)および前記領域(X)は、例えば、それぞれ、-OR-または-OR-を介して、前記リンカー領域(Lx)に結合する。ここで、RおよびRは、存在しても存在しなくてもよい。RおよびRが存在する場合、RおよびRは、それぞれ独立して、ヌクレオチド残基または前記式(I)の構造である。Rおよび/またはRが前記ヌクレオチド残基の場合、前記リンカー領域(Lx)は、例えば、ヌクレオチド残基Rおよび/またはRを除く前記式(I)の構造からなる前記非ヌクレオチド残基と、前記ヌクレオチド残基とから形成される。Rおよび/またはRが前記式(I)の構造の場合、前記リンカー領域(Lx)は、例えば、前記式(I)の構造からなる前記非ヌクレオチド残基が、2つ以上連結された構造となる。前記式(I)の構造は、例えば、1個、2個、3個または4個含んでもよい。このように、前記構造を複数含む場合、前記(I)の構造は、例えば、直接連結されてもよいし、前記ヌクレオチド残基を介して結合してもよい。他方、RおよびRが存在しない場合、前記リンカー領域(Lx)は、例えば、前記式(I)の構造からなる前記非ヌクレオチド残基のみから形成される。また、前記リンカー領域(Ly)が、前記式(I)で表わされる場合、例えば、前記領域(Yc)、前記領域(Y)および前記リンカー領域(Ly)について、前記リンカー領域(Lx)の説明を援用できる。 In the case where the linker region (Lx) is represented by the formula (I), the region (Xc) and the region (X) are, for example, linked to the linker via —OR 1 — or —OR 2 —, respectively. Join to region (Lx). Here, R 1 and R 2 may or may not exist. When R 1 and R 2 are present, R 1 and R 2 are each independently a nucleotide residue or the structure of formula (I) above. When R 1 and / or R 2 is the nucleotide residue, the linker region (Lx) is, for example, the non-nucleotide residue having the structure of the formula (I) excluding the nucleotide residue R 1 and / or R 2. And a nucleotide residue. When R 1 and / or R 2 has the structure of the formula (I), the linker region (Lx) has, for example, two or more non-nucleotide residues having the structure of the formula (I) linked to each other. It becomes a structure. The structure of the formula (I) may include 1, 2, 3, or 4, for example. As described above, when a plurality of the structures are included, the structure (I) may be directly connected or may be bonded via the nucleotide residue. On the other hand, when R 1 and R 2 are not present, the linker region (Lx) is formed only from the non-nucleotide residue having the structure of the formula (I), for example. Further, when the linker region (Ly) is represented by the formula (I), for example, the region (Yc), the region (Y), and the linker region (Ly) are described in the linker region (Lx). Can be used.
 前記領域(Xc)および前記領域(X)、ならびに、前記領域(Yc)および前記領域(Y)と、前記-OR-および-OR-との結合の組合せは、特に制限されず、例えば、以下のいずれかの条件があげられる。
条件(1)
 前記領域(Xc)は、-OR-を介して、前記領域(X)は、-OR-を介して、前記式(I)の構造と結合し、
 前記領域(Yc)は、-OR-を介して、前記領域(Y)は、-OR-を介して、前記式(I)の構造と結合する。
条件(2)
 前記領域(Xc)は、-OR-を介して、前記領域(X)は、-OR-を介して、前記式(I)の構造と結合し、
 前記領域(Yc)は、-OR-を介して、前記領域(Y)は、-OR-を介して、前記式(I)の構造と結合する。
条件(3)
 前記領域(Xc)は、-OR-を介して、前記領域(X)は、-OR-を介して、前記式(I)の構造と結合し、
 前記領域(Yc)は、-OR-を介して、前記領域(Y)は、-OR-を介して、前記式(I)の構造と結合する。
条件(4)
 前記領域(Xc)は、-OR-を介して、前記領域(X)は、-OR-を介して、前記式(I)の構造と結合し、
 前記領域(Yc)は、-OR-を介して、前記領域(Y)は、-OR-を介して、前記式(I)の構造と結合する。
The combination of the region (Xc) and the region (X), the region (Yc) and the region (Y), and the —OR 1 — and —OR 2 — is not particularly limited. One of the following conditions can be given.
Condition (1)
The region (Xc) is bonded to the structure of the formula (I) through —OR 2 —, and the region (X) is bonded through —OR 1 —.
The region (Yc) is bonded to the structure of the formula (I) through —OR 1 —, and the region (Y) is bonded through —OR 2 —.
Condition (2)
The region (Xc) is bonded to the structure of the formula (I) through —OR 2 —, and the region (X) is bonded through —OR 1 —.
The region (Yc) is bonded to the structure of the formula (I) through —OR 2 —, and the region (Y) is bonded through —OR 1 —.
Condition (3)
The region (Xc) is bonded to the structure of the formula (I) through —OR 1 —, and the region (X) is bonded through —OR 2 —.
The region (Yc) is bonded to the structure of the formula (I) through —OR 1 —, and the region (Y) is bonded through —OR 2 —.
Condition (4)
The region (Xc) is bonded to the structure of the formula (I) through —OR 1 —, and the region (X) is bonded through —OR 2 —.
The region (Yc) is bonded to the structure of the formula (I) through —OR 2 —, and the region (Y) is bonded through —OR 1 —.
 前記式(I)の構造は、例えば、下記式(I-1)~式(I-9)が例示でき、下記式において、nおよびmは、前記式(I)と同じである。下記式において、qは、0~10の整数である。
Figure JPOXMLDOC01-appb-C000002
Examples of the structure of the formula (I) include the following formulas (I-1) to (I-9), in which n and m are the same as those in the formula (I). In the following formula, q is an integer of 0 to 10.
Figure JPOXMLDOC01-appb-C000002
 前記式(I-1)~(I-9)において、n、mおよびqは、特に制限されず、前述の通りである。具体例として、前記式(I-1)において、n=8、前記(I-2)において、n=3、前記式(I-3)において、n=4または8、前記(I-4)において、n=7または8、前記式(I-5)において、n=3およびm=4、前記(I-6)において、n=8およびm=4、前記式(I-7)において、n=8およびm=4、前記(I-8)において、n=5およびm=4、前記式(I-9)において、q=1およびm=4があげられる。前記式(I-4)の一例(n=8)を、下記式(I-4a)に、前記式(I-6)の一例(n=5、m=4)を、下記式(I-6a)に示す。
Figure JPOXMLDOC01-appb-C000003
In the above formulas (I-1) to (I-9), n, m and q are not particularly limited and are as described above. As a specific example, n = 8 in the formula (I-1), n = 3 in the (I-2), n = 4 or 8 in the formula (I-3), (I-4) N = 7 or 8, in the formula (I-5), n = 3 and m = 4, in the (I-6), n = 8 and m = 4, in the formula (I-7), In n = 8 and m = 4, in the above (I-8), n = 5 and m = 4, and in the formula (I-9), q = 1 and m = 4. An example (n = 8) of the formula (I-4) is represented by the following formula (I-4a), an example (n = 5, m = 4) of the formula (I-6) is represented by the following formula (I− This is shown in 6a).
Figure JPOXMLDOC01-appb-C000003
 本発明において、「アルキル」は、例えば、直鎖状または分枝状のアルキル基を含む。前記アルキルの炭素数は、特に制限されず、例えば、1~30であり、好ましくは、1~6または1~4である。前記アルキル基は、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ぺンチル、イソペンチル、ネオペンチル、n-ヘキシル、イソヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル等があげられる。好ましくは、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ぺンチル、イソペンチル、ネオペンチル、n-ヘキシル、イソヘキシル等があげられる。 In the present invention, “alkyl” includes, for example, a linear or branched alkyl group. The number of carbon atoms of the alkyl is not particularly limited, and is, for example, 1 to 30, preferably 1 to 6 or 1 to 4. Examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, n-heptyl, Examples thereof include n-octyl, n-nonyl, n-decyl and the like. Preferred examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl and the like.
 本発明において、「アルケニル」は、例えば、直鎖状または分枝状のアルケニルを含む。前記アルケニルは、前記アルキルにおいて、1個または複数の二重結合を有するもの等があげられる。前記アルケニルの炭素数は、特に制限されず、例えば、前記アルキルと同様であり、好ましくは2~8である。前記アルケニルは、例えば、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1,3-ブタジエニル、3-メチル-2-ブテニル等があげられる。 In the present invention, “alkenyl” includes, for example, linear or branched alkenyl. Examples of the alkenyl include those having one or more double bonds in the alkyl. The number of carbon atoms of the alkenyl is not particularly limited, and is the same as, for example, the alkyl, preferably 2 to 8. Examples of the alkenyl include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 3-methyl-2-butenyl and the like.
 本発明において、「アルキニル」は、例えば、直鎖状または分枝状のアルキニルを含む。前記アルキニルは、前記アルキルにおいて、1個または複数の三重結合を有するもの等があげられる。前記アルキニルの炭素数は、特に制限されず、例えば、前記アルキルと同様であり、好ましくは2~8である。前記アルキニルは、例えば、エチニル、プロピニル、ブチニル等があげられる。前記アルキニルは、例えば、さらに、1個または複数の二重結合を有してもよい。 In the present invention, “alkynyl” includes, for example, linear or branched alkynyl. Examples of the alkynyl include those having one or more triple bonds in the alkyl. The number of carbon atoms of the alkynyl is not particularly limited, and is the same as, for example, the alkyl, preferably 2 to 8. Examples of the alkynyl include ethynyl, propynyl, butynyl and the like. The alkynyl may further have one or more double bonds, for example.
 本発明において、「アリール」は、例えば、単環芳香族炭化水素基および多環芳香族炭化水素基を含む。前記単環芳香族炭化水素基は、例えば、フェニル等があげられる。前記多環芳香族炭化水素基は、例えば、1-ナフチル、2-ナフチル、1-アントリル、2-アントリル、9-アントリル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル、9-フェナントリル等があげられる。好ましくは、例えば、フェニル、1-ナフチルおよび2-ナフチル等のナフチル等があげられる。 In the present invention, “aryl” includes, for example, a monocyclic aromatic hydrocarbon group and a polycyclic aromatic hydrocarbon group. Examples of the monocyclic aromatic hydrocarbon group include phenyl and the like. Examples of the polycyclic aromatic hydrocarbon group include 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9- Examples include phenanthryl. Preferable examples include naphthyl such as phenyl, 1-naphthyl and 2-naphthyl.
 本発明において、「ヘテロアリール」は、例えば、単環芳香族複素環式基および縮合芳香族複素環式基を含む。前記ヘテロアリールは、例えば、フリル(例:2-フリル、3-フリル)、チエニル(例:2-チエニル、3-チエニル)、ピロリル(例:1-ピロリル、2-ピロリル、3-ピロリル)、イミダゾリル(例:1-イミダゾリル、2-イミダゾリル、4-イミダゾリル)、ピラゾリル(例:1-ピラゾリル、3-ピラゾリル、4-ピラゾリル)、トリアゾリル(例:1,2,4-トリアゾール-1-イル、1,2,4-トリアゾール-3-イル、1,2,4-トリアゾール-4-イル)、テトラゾリル(例:1-テトラゾリル、2-テトラゾリル、5-テトラゾリル)、オキサゾリル(例:2-オキサゾリル、4-オキサゾリル、5-オキサゾリル)、イソキサゾリル(例:3-イソキサゾリル、4-イソキサゾリル、5-イソキサゾリル)、チアゾリル(例:2-チアゾリル、4-チアゾリル、5-チアゾリル)、チアジアゾリル、イソチアゾリル(例:3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル)、ピリジル(例:2-ピリジル、3-ピリジル、4-ピリジル)、ピリダジニル(例:3-ピリダジニル、4-ピリダジニル)、ピリミジニル(例:2-ピリミジニル、4-ピリミジニル、5-ピリミジニル)、フラザニル(例:3-フラザニル)、ピラジニル(例:2-ピラジニル)、オキサジアゾリル(例:1,3,4-オキサジアゾール-2-イル)、ベンゾフリル(例:2-ベンゾ[b]フリル、-ベンゾ[b]フリル、4-ベンゾ[b]フリル、5-ベンゾ[b]フリル、6-ベンゾ[b]フリル、7-ベンゾ[b]フリル)、ベンゾチエニル(例:2-ベンゾ[b]チエニル、3-ベンゾ[b]チエニル、4-ベンゾ[b]チエニル、5-ベンゾ[b]チエニル、6-ベンゾ[b]チエニル、7-ベンゾ[b]チエニル)、ベンズイミダゾリル(例:1-ベンゾイミダゾリル、2-ベンゾイミダゾリル、4-ベンゾイミダゾリル、5-ベンゾイミダゾリル)、ジベンゾフリル、ベンゾオキサゾリル、ベンゾチアゾリル、キノキサリル(例:2-キノキサリニル、5-キノキサリニル、6-キノキサリニル)、シンノリニル(例:3-シンノリニル、4-シンノリニル、5-シンノリニル、6-シンノリニル、7-シンノリニル、8-シンノリニル)、キナゾリル(例:2-キナゾリニル、4-キナゾリニル、5-キナゾリニル、6-キナゾリニル、7-キナゾリニル、8-キナゾリニル)、キノリル(例:2-キノリル、3-キノリル、4-キノリル、5-キノリル、6-キノリル、7-キノリル、8-キノリル)、フタラジニル(例:1-フタラジニル、5-フタラジニル、6-フタラジニル)、イソキノリル(例:1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリル、6-イソキノリル、7-イソキノリル、8-イソキノリル)、プリル、プテリジニル(例:2-プテリジニル、4-プテリジニル、6-プテリジニル、7-プテリジニル)、カルバゾリル、フェナントリジニル、アクリジニル(例:1-アクリジニル、2-アクリジニル、3-アクリジニル、4-アクリジニル、9-アクリジニル)、インドリル(例:1-インドリル、2-インドリル、3-インドリル、4-インドリル、5-インドリル、6-インドリル、7-インドリル)、イソインドリル、フェナジニル(例:1-フェナジニル、2-フェナジニル)またはフェノチアジニル(例:1-フェノチアジニル、2-フェノチアジニル、3-フェノチアジニル、4-フェノチアジニル)等があげられる。 In the present invention, “heteroaryl” includes, for example, a monocyclic aromatic heterocyclic group and a condensed aromatic heterocyclic group. Examples of the heteroaryl include furyl (eg, 2-furyl, 3-furyl), thienyl (eg, 2-thienyl, 3-thienyl), pyrrolyl (eg, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), Imidazolyl (eg, 1-imidazolyl, 2-imidazolyl, 4-imidazolyl), pyrazolyl (eg, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl), triazolyl (eg, 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-4-yl), tetrazolyl (eg 1-tetrazolyl, 2-tetrazolyl, 5-tetrazolyl), oxazolyl (eg 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), isoxazolyl (eg 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl) Thiazolyl (eg: 2-thiazolyl, 4-thiazolyl, 5-thiazolyl), thiadiazolyl, isothiazolyl (eg: 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl), pyridyl (eg: 2-pyridyl, 3-pyridyl, 4- Pyridinyl), pyridazinyl (eg: 3-pyridazinyl, 4-pyridazinyl), pyrimidinyl (eg: 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl), furazanyl (eg: 3-furazinyl), pyrazinyl (eg: 2-pyrazinyl) Oxadiazolyl (eg 1,3,4-oxadiazol-2-yl), benzofuryl (eg 2-benzo [b] furyl, -benzo [b] furyl, 4-benzo [b] furyl, 5-benzo [B] furyl, 6-benzo [b] furyl, 7-benzo [b] furyl), benzothienyl (eg 2-benzo [b] thienyl, 3-benzo [b] thienyl, 4-benzo [b] thienyl, 5-benzo [b] thienyl, 6-benzo [b] thienyl, 7-benzo [b] thienyl), benz Imidazolyl (eg 1-benzimidazolyl, 2-benzimidazolyl, 4-benzoimidazolyl, 5-benzoimidazolyl), dibenzofuryl, benzoxazolyl, benzothiazolyl, quinoxalyl (eg 2-quinoxalinyl, 5-quinoxalinyl, 6-quinoxalinyl), cinnolinyl ( Examples: 3-cinnolinyl, 4-cinnolinyl, 5-cinnolinyl, 6-cinnolinyl, 7-cinnolinyl, 8-cinnolinyl), quinazolyl (eg 2-quinazolinyl, 4-quinazolinyl, 5-quinazolinyl, 6-quinazolinyl, 7-quinazolinyl) , 8-quinazolinyl) Quinolyl (eg, 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, 8-quinolyl), phthalazinyl (eg, 1-phthalazinyl, 5-phthalazinyl, 6-phthalazinyl) , Isoquinolyl (eg, 1-isoquinolyl, 3-isoquinolyl, 4-isoquinolyl, 5-isoquinolyl, 6-isoquinolyl, 7-isoquinolyl, 8-isoquinolyl), prill, pteridinyl (eg, 2-pteridinyl, 4-pteridinyl, 6- Pteridinyl, 7-pteridinyl), carbazolyl, phenanthridinyl, acridinyl (eg 1-acridinyl, 2-acridinyl, 3-acridinyl, 4-acridinyl, 9-acridinyl), indolyl (eg 1-indolyl, 2-indolyl) , 3-indolyl, 4-indolyl, 5-i Drill, 6-indolyl, 7-indolyl), isoindolyl, phenazinyl (eg 1-phenazinyl, 2-phenazinyl) or phenothiazinyl (eg 1-phenothiazinyl, 2-phenothiazinyl, 3-phenothiadinyl, 4-phenothiazinyl) ) Etc.
 本発明において、「シクロアルキル」は、例えば、環状飽和炭化水素基であり、炭素数は、例えば、3~15である。前記シクロアルキルは、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、橋かけ環式炭化水素基、スピロ炭化水素基等があげられ、好ましくは、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、橋かけ環式炭化水素基等があげられる。 In the present invention, “cycloalkyl” is, for example, a cyclic saturated hydrocarbon group, and the number of carbons is, for example, 3-15. Examples of the cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, a bridged cyclic hydrocarbon group, a spiro hydrocarbon group, and the like, preferably cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. And a bridged cyclic hydrocarbon group.
 本発明において、「橋かけ環式炭化水素基」は、例えば、ビシクロ[2.1.0]ペンチル、ビシクロ[2.2.1]ヘプチル、ビシクロ[2.2.2]オクチルおよびビシクロ[3.2.1]オクチル、トリシクロ[2.2.1.0]ヘプチル、ビシクロ[3.3.1]ノナン、1-アダマンチル、2-アダマンチル等があげられる。 In the present invention, the “bridged cyclic hydrocarbon group” includes, for example, bicyclo [2.1.0] pentyl, bicyclo [2.2.1] heptyl, bicyclo [2.2.2] octyl and bicyclo [3. 2.1] octyl, tricyclo [2.2.1.0] heptyl, bicyclo [3.3.1] nonane, 1-adamantyl, 2-adamantyl and the like.
 本発明において、「スピロ炭化水素基」は、例えば、スピロ[3.4]オクチル等があげられる。 In the present invention, examples of the “spiro hydrocarbon group” include spiro [3.4] octyl and the like.
 本発明において、「シクロアルケニル」は、例えば、環状の不飽和脂肪族炭化水素基を包み、炭素数は、例えば、3~7個である。前記基は、例えば、シクロプロペニル、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル等があげられ、好ましくは、シクロプロペニル、シクロブテニル、シクロペンテニル、シクロヘキセニル等である。前記シクロアルケニルは、例えば、環中に不飽和結合を有する橋かけ環式炭化水素基およびスピロ炭化水素基も含む。 In the present invention, “cycloalkenyl” includes, for example, a cyclic unsaturated aliphatic hydrocarbon group, and has, for example, 3 to 7 carbon atoms. Examples of the group include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like, preferably cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, and the like. The cycloalkenyl includes, for example, a bridged cyclic hydrocarbon group and a spiro hydrocarbon group having an unsaturated bond in the ring.
 本発明において、「アリールアルキル」は、例えば、ベンジル、2-フェネチル、およびナフタレニルメチル等があげられ、「シクロアルキルアルキル」または「シクリルアルキル」は、例えば、シクロヘキシルメチル、アダマンチルメチル等があげられ、「ヒドロキシアルキル」は、例えば、ヒドロキシメチルおよび2-ヒドロキシエチル等があげられる。 In the present invention, “arylalkyl” includes, for example, benzyl, 2-phenethyl, naphthalenylmethyl and the like, and “cycloalkylalkyl” or “cyclylalkyl” includes, for example, cyclohexylmethyl, adamantylmethyl and the like. Examples of the “hydroxyalkyl” include hydroxymethyl and 2-hydroxyethyl.
 本発明において、「アルコキシ」は、前記アルキル-O-基を含み、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、およびn-ブトキシ等があげられ、「アルコキシアルキル」は、例えば、メトキシメチル等があげられ、「アミノアルキル」は、例えば、2-アミノエチル等があげられる。 In the present invention, “alkoxy” includes the alkyl-O— group, and examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, and n-butoxy. “Alkoxyalkyl” includes, for example, methoxymethyl Examples of “aminoalkyl” include 2-aminoethyl and the like.
 本発明において、「ヘテロシクリル」は、例えば、1-ピロリニル、2-ピロリニル、3-ピロリニル、1-ピロリジニル、2-ピロリジニル、3-ピロリジニル、ピロリジノン、1-イミダゾリニル、2-イミダゾリニル、4-イミダゾリニル、1-イミダゾリジニル、2-イミダゾリジニル、4-イミダゾリジニル、イミダゾリジノン、1-ピラゾリニル、3-ピラゾリニル、4-ピラゾリニル、1-ピラゾリジニル、3-ピラゾリジニル、4-ピラゾリジニル、ピペリジノン、ピペリジノ、2-ピペリジニル、3-ピペリジニル、4-ピペリジニル、1-ピペラジニル、2-ピペラジニル、ピペラジノン、2-モルホリニル、3-モルホリニル、モルホリノ、テトラヒドロピラニル、テトラヒドロフラニル等があげられる。 In the present invention, “heterocyclyl” is, for example, 1-pyrrolinyl, 2-pyrrolinyl, 3-pyrrolinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, pyrrolidinone, 1-imidazolinyl, 2-imidazolinyl, 4-imidazolinyl, 1 -Imidazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, imidazolidinone, 1-pyrazolinyl, 3-pyrazolinyl, 4-pyrazolinyl, 1-pyrazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, piperidinone, piperidinyl, 2-piperidinyl 4-piperidinyl, 1-piperazinyl, 2-piperazinyl, piperazinone, 2-morpholinyl, 3-morpholinyl, morpholino, tetrahydropyranyl, tetrahydrofuranyl and the like.
 本発明において、「ヘテロシクリルアルキル」は、例えば、ピペリジニルメチル、ピペラジニルメチル等があげられ、「ヘテロシクリルアルケニル」は、例えば、2-ピペリジニルエテニル等があげられ、「ヘテロアリールアルキル」は、例えば、ピリジルメチルおよびキノリン-3-イルメチル等があげられる。 In the present invention, “heterocyclylalkyl” includes, for example, piperidinylmethyl, piperazinylmethyl and the like, and “heterocyclylalkenyl” includes, for example, 2-piperidinylethenyl and the like, and “heteroarylalkyl” Examples include pyridylmethyl and quinolin-3-ylmethyl.
 本発明において、「シリル」は、式RSi-で表される基を含み、Rは、独立して、前記アルキル、アリールおよびシクロアルキルから選択でき、例えば、トリメチルシリル基、tert-ブチルジメチルシリル基等があげられ、「シリルオキシ」は、例えば、トリメチルシリルオキシ基等があげられ、「シリルオキシアルキル」は、例えば、トリメチルシリルオキシメチル等があげられる。 In the present invention, “silyl” includes a group represented by the formula R 3 Si—, and R 3 can be independently selected from the above alkyl, aryl and cycloalkyl, such as trimethylsilyl group, tert-butyldimethyl Examples of the silyl group include silyloxy and the like. Examples of the “silyloxy” include trimethylsilyloxy and the like. Examples of the “silyloxyalkyl” include trimethylsilyloxymethyl and the like.
 本発明において、「アルキレン」は、例えば、メチレン、エチレン、およびプロピレン等があげられる。 In the present invention, “alkylene” includes, for example, methylene, ethylene, propylene and the like.
 本発明において、前述した各種基は、置換されてもよい。前記置換基は、例えば、ヒドロキシ、カルボキシ、ハロゲン、ハロゲン化アルキル(例:CF、CHCF、CHCCl)、ニトロ、ニトロソ、シアノ、アルキル(例:メチル、エチル、イソプロピル、tert-ブチル)、アルケニル(例:ビニル)、アルキニル(例:エチニル)、シクロアルキル(例:シクロプロピル、アダマンチル)、シクロアルキルアルキル(例:シクロヘキシルメチル、アダマンチルメチル)、シクロアルケニル(例:シクロプロペニル)、アリール(例:フェニル、ナフチル)、アリールアルキル(例:ベンジル、フェネチル)、ヘテロアリール(例:ピリジル、フリル)、ヘテロアリールアルキル(例:ピリジルメチル)、ヘテロシクリル(例:ピペリジル)、ヘテロシクリルアルキル(例:モルホリルメチル)、アルコキシ(例:メトキシ、エトキシ、プロポキシ、ブトキシ)、ハロゲン化アルコキシ(例:OCF)、アルケニルオキシ(例:ビニルオキシ、アリルオキシ)、アリールオキシ(例:フェニルオキシ)、アルキルオキシカルボニル(例:メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル)、アリールアルキルオキシ(例:ベンジルオキシ)、アミノ[アルキルアミノ(例:メチルアミノ、エチルアミノ、ジメチルアミノ)、アシルアミノ(例:アセチルアミノ、ベンゾイルアミノ)、アリールアルキルアミノ(例:ベンジルアミノ、トリチルアミノ)、ヒドロキシアミノ]、アルキルアミノアルキル(例:ジエチルアミノメチル)、スルファモイル、オキソ等があげられる。 In the present invention, the various groups described above may be substituted. Examples of the substituent include hydroxy, carboxy, halogen, alkyl halide (eg, CF 3 , CH 2 CF 3 , CH 2 CCl 3 ), nitro, nitroso, cyano, alkyl (eg, methyl, ethyl, isopropyl, tert) -Butyl), alkenyl (eg vinyl), alkynyl (eg ethynyl), cycloalkyl (eg cyclopropyl, adamantyl), cycloalkylalkyl (eg cyclohexylmethyl, adamantylmethyl), cycloalkenyl (eg cyclopropenyl) , Aryl (eg phenyl, naphthyl), arylalkyl (eg benzyl, phenethyl), heteroaryl (eg pyridyl, furyl), heteroarylalkyl (eg pyridylmethyl), heterocyclyl (eg piperidyl), heterocyclylalkyl ( Example: Morpholylmethyl), alkoxy (eg methoxy, ethoxy, propoxy, butoxy), halogenated alkoxy (eg OCF 3 ), alkenyloxy (eg vinyloxy, allyloxy), aryloxy (eg phenyloxy), alkyloxycarbonyl (eg : Methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl), arylalkyloxy (eg, benzyloxy), amino [alkylamino (eg, methylamino, ethylamino, dimethylamino), acylamino (eg, acetylamino, benzoylamino) Arylalkylamino (eg, benzylamino, tritylamino), hydroxyamino], alkylaminoalkyl (eg, diethylaminomethyl), sulfamoyl, oxo and the like.
4.本発明のssNc分子の合成方法
 本発明のssNc分子の合成方法は、特に制限されず、従来公知の方法が採用できる。前記合成方法は、例えば、遺伝子工学的手法による合成法、化学合成法等があげられる。遺伝子工学的手法は、例えば、インビトロ転写合成法、ベクターを用いる方法、PCRカセットによる方法があげられる。前記ベクターは、特に制限されず、プラスミド等の非ウイルスベクター、ウイルスベクター等があげられる。前記化学合成法は、特に制限されず、例えば、ホスホロアミダイト法およびH-ホスホネート法等があげられる。前記化学合成法は、例えば、市販の自動核酸合成機を使用可能である。前記化学合成法は、一般に、アミダイトが使用される。前記アミダイトは、特に制限されず、市販のアミダイトとして、例えば、RNA Phosphoramidites(2’-O-TBDMSi、商品名、三千里製薬)、ACEアミダイトおよびTOMアミダイト、CEEアミダイト、CEMアミダイト、TEMアミダイト等があげられる。
4). Method for synthesizing ssNc molecule of the present invention The method for synthesizing the ssNc molecule of the present invention is not particularly limited, and conventionally known methods can be adopted. Examples of the synthesis method include a synthesis method using a genetic engineering technique, a chemical synthesis method, and the like. Examples of genetic engineering techniques include in vitro transcription synthesis, a method using a vector, and a method using a PCR cassette. The vector is not particularly limited, and examples thereof include non-viral vectors such as plasmids and viral vectors. The chemical synthesis method is not particularly limited, and examples thereof include a phosphoramidite method and an H-phosphonate method. For the chemical synthesis method, for example, a commercially available automatic nucleic acid synthesizer can be used. In the chemical synthesis method, amidite is generally used. The amidite is not particularly limited, and commercially available amidites include, for example, RNA Phosphoramidates (2′-O-TBDMSi, trade name, Michisato Pharmaceutical), ACE amidite, TOM amidite, CEE amidite, CEM amidite, TEM amidite, etc. Is given.
5.組成物
 本発明の発現抑制用組成物は、前述のように、標的遺伝子の発現を抑制するための組成物であり、前記本発明のssNc分子を含むことを特徴とする。本発明の組成物は、前記本発明のssNc分子を含むことが特徴であり、その他の構成は、何ら制限されない。本発明の発現抑制用組成物は、例えば、発現抑制用試薬ということもできる。
5). Composition As described above, the composition for suppressing expression of the present invention is a composition for suppressing the expression of a target gene, and is characterized by containing the ssNc molecule of the present invention. The composition of the present invention is characterized by containing the ssNc molecule of the present invention, and other configurations are not limited at all. The expression suppressing composition of the present invention can also be referred to as an expression suppressing reagent, for example.
 本発明によれば、例えば、前記発現抑制用組成物を、前記標的遺伝子が存在する対象に投与することで、前記標的遺伝子の発現抑制を行うことができる。 According to the present invention, for example, the expression of the target gene can be suppressed by administering the composition for suppressing expression to a subject in which the target gene is present.
 また、本発明の薬学的組成物は、前述のように、前記本発明のssNc分子を含むことを特徴とする。本発明の組成物は、前記本発明のssNc分子を含むことが特徴であり、その他の構成は何ら制限されない。本発明の薬学的組成物は、例えば、医薬品ということもできる。 Further, as described above, the pharmaceutical composition of the present invention is characterized by containing the ssNc molecule of the present invention. The composition of the present invention is characterized by containing the ssNc molecule of the present invention, and other configurations are not limited at all. The pharmaceutical composition of the present invention can also be referred to as a pharmaceutical product, for example.
 本発明によれば、例えば、前記薬学的組成物を、遺伝子が原因となる疾患の患者に投与することで、前記遺伝子の発現を抑制し、前記疾患を治療できる。本発明において、「治療」は、前述のように、例えば、前記疾患の予防、疾患の改善、予後の改善の意味を含み、いずれでもよい。 According to the present invention, for example, by administering the pharmaceutical composition to a patient having a disease caused by a gene, the expression of the gene can be suppressed and the disease can be treated. In the present invention, as described above, “treatment” includes, for example, the meanings of prevention of the above-mentioned diseases, improvement of the diseases, and improvement of the prognosis.
 本発明において、治療の対象となる疾患は、特に制限されず、例えば、遺伝子の発現が原因となる疾患があげられる。前記疾患の種類に応じて、その疾患の原因となる遺伝子を前記標的遺伝子に設定し、さらに、前記標的遺伝子に応じて、前記発現抑制配列を適宜設定すればよい。 In the present invention, the disease to be treated is not particularly limited, and examples thereof include diseases caused by gene expression. According to the type of the disease, a gene that causes the disease is set as the target gene, and the expression suppression sequence may be set as appropriate according to the target gene.
 本発明の発現抑制用組成物および薬学的組成物(以下、組成物という)は、その使用方法は、特に制限されず、例えば、前記標的遺伝子を有する投与対象に、前記ssNc分子を投与すればよい。 The use method of the composition for suppressing expression and the pharmaceutical composition (hereinafter referred to as composition) of the present invention is not particularly limited. For example, if the ssNc molecule is administered to an administration subject having the target gene. Good.
 前記投与対象は、例えば、細胞、組織または器官があげられる。前記投与対象は、例えば、ヒト、ヒトを除く非ヒト哺乳類等の非ヒト動物があげられる。前記投与は、例えば、in vivoでもin vitroでもよい。前記細胞は、特に制限されず、例えば、HeLa細胞、293細胞、NIH3T3細胞、COS細胞等の各種培養細胞、ES細胞、造血幹細胞等の幹細胞、初代培養細胞等の生体から単離した細胞等があげられる。 Examples of the administration subject include cells, tissues, and organs. Examples of the administration target include non-human animals such as humans and non-human mammals other than humans. The administration can be, for example, in vivo or in vitro . The cells are not particularly limited, and examples thereof include various cultured cells such as HeLa cells, 293 cells, NIH3T3 cells, and COS cells, stem cells such as ES cells and hematopoietic stem cells, and cells isolated from living bodies such as primary cultured cells. can give.
 前記投与方法は、特に制限されず、例えば、投与対象に応じて適宜決定できる。前記投与対象が培養細胞の場合、例えば、トランスフェクション試薬を使用する方法、エレクトロポレーション法等があげられる。 The administration method is not particularly limited, and can be appropriately determined according to the administration subject, for example. When the administration subject is a cultured cell, examples thereof include a method using a transfection reagent and an electroporation method.
 本発明の組成物は、例えば、本発明のssNc分子のみを含んでもよいし、さらにその他の添加物を含んでもよい。前記添加物は、特に制限されず、例えば、薬学的に許容された添加物が好ましい。前記添加物の種類は、特に制限されず、例えば、投与対象の種類に応じて適宜選択できる。 The composition of the present invention may contain, for example, only the ssNc molecule of the present invention, or may further contain other additives. The additive is not particularly limited, and for example, a pharmaceutically acceptable additive is preferable. The type of the additive is not particularly limited, and can be appropriately selected depending on, for example, the type of administration target.
 本発明の組成物において、前記ssNc分子は、例えば、前記添加物と複合体を形成してもよい。前記添加物は、例えば、複合化剤ということもできる。前記複合体形成により、例えば、前記ssNc分子を効率よくデリバリーすることができる。前記ssNc分子と前記複合化剤との結合は、特に制限されず、例えば、非共有結合があげられる。前記複合体は、例えば、包接複合体があげられる。 In the composition of the present invention, the ssNc molecule may form a complex with the additive, for example. The additive can also be referred to as a complexing agent, for example. By the complex formation, for example, the ssNc molecule can be efficiently delivered. The bond between the ssNc molecule and the complexing agent is not particularly limited, and examples thereof include non-covalent bonds. Examples of the complex include an inclusion complex.
 前記複合化剤は、特に制限されず、ポリマー、シクロデキストリン、アダマンチン等があげられる。前記シクロデキストリンは、例えば、線状シクロデキストリンコポリマー、線状酸化シクロデキストリンコポリマー等があげられる。 The complexing agent is not particularly limited, and examples thereof include a polymer, cyclodextrin, adamantine and the like. Examples of the cyclodextrin include a linear cyclodextrin copolymer and a linear oxidized cyclodextrin copolymer.
 前記添加剤は、この他に、例えば、担体、標的細胞への結合物質、縮合剤、融合剤、賦形剤等があげられる。 Examples of the additive include a carrier, a binding substance to a target cell, a condensing agent, a fusing agent, an excipient, and the like.
 前記担体は、例えば、高分子が好ましく、より好ましくは、生体高分子である。前記担体は、例えば、生分解性が好ましい。前記担体は、例えば、ヒト血清アルブミン(HSA)、低密度リポタンパク質(LDL)、グロブリン等のタンパク質;例えば、デキストラン、プルラン、キチン、キトサン、イヌリン、シクロデキストリン、ヒアルロン酸等の糖質;脂質等があげられる。前記担体は、例えば、合成ポリアミノ酸等の合成ポリマーも使用できる。前記ポリアミノ酸は、例えば、ポリリシン(PLL)、ポリL-アスパラギン酸、ポリL-グルタミン酸、スチレン-マレイン酸無水物コポリマー、ポリ(L-ラクチド-コ-グリコリド)コポリマー、ジビニルエーテル-マレイン酸無水物コポリマー、N-(2-ヒドロキシプロピル)メタクリルアミドコポリマー(HMPA)、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリウレタン、ポリ(2-エチルアクリル酸)、N-イソプロピルアクリルアミドポリマー、又はポリホスファジン(polyphosphazine)等があげられる。 The carrier is preferably a polymer, and more preferably a biopolymer, for example. The carrier is preferably biodegradable, for example. Examples of the carrier include proteins such as human serum albumin (HSA), low density lipoprotein (LDL), and globulin; carbohydrates such as dextran, pullulan, chitin, chitosan, inulin, cyclodextrin, and hyaluronic acid; lipids and the like Can be given. As the carrier, for example, a synthetic polymer such as a synthetic polyamino acid can also be used. Examples of the polyamino acid include polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic anhydride copolymer, poly (L-lactide-co-glycolide) copolymer, divinyl ether-maleic anhydride. Copolymer, N- (2-hydroxypropyl) methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly (2-ethylacrylic acid), N-isopropylacrylamide polymer, or polyphosphazine ) Etc.
 前記結合物質は、例えば、甲状腺刺激ホルモン、メラニン細胞刺激ホルモン、レクチン、糖タンパク質、サーファクタントプロテインA、ムチン糖質、多価ラクトース、多価ガラクトース、N-アセチルガラクトサミン、N-アセチルグルコサミン、多価マンノース、多価フコース、グリコシル化ポリアミノ酸、多価ガラクトース、トランスフェリン、ビスホスホネート、ポリグルタミン酸、ポリアスパラギン酸、脂質、コレステロール、ステロイド、胆汁酸、葉酸塩、ビタミンB12、ビオチン、ネプロキシン(Neproxin)、RGDペプチド、RGDペプチド擬似体等があげられる。 Examples of the binding substance include thyroid stimulating hormone, melanocyte stimulating hormone, lectin, glycoprotein, surfactant protein A, mucin carbohydrate, polyvalent lactose, polyvalent galactose, N-acetylgalactosamine, N-acetylglucosamine, polyvalent mannose. Multivalent fucose, glycosylated polyamino acid, polyvalent galactose, transferrin, bisphosphonate, polyglutamic acid, polyaspartic acid, lipid, cholesterol, steroid, bile acid, folate, vitamin B12, biotin, neproxin, RGD peptide, RGD peptide mimetic and the like.
 前記融合剤および縮合剤は、例えば、ポリエチレンイミン(PEI)等のポリアミノ鎖等があげられる。PEIは、例えば、直鎖状および分岐状のいずれでもよく、また、合成物および天然物のいずれでもよい。前記PEIは、例えば、アルキル置換されてもよいし、脂質置換されてもよい。また、前記融合剤は、この他に、例えば、ポリヒスチジン、ポリイミダゾール、ポリピリジン、ポリプロピレンイミン、メリチン、ポリアセタール物質(例えば、カチオン性ポリアセタール等)等が使用できる。前記融合剤は、例えば、αらせん構造を有してもよい。前記融合剤は、例えば、メリチン等の膜崩壊剤でもよい。 Examples of the fusing agent and condensing agent include polyamino chains such as polyethyleneimine (PEI). PEI may be, for example, linear or branched, and may be either a synthetic product or a natural product. The PEI may be alkyl-substituted or lipid-substituted, for example. In addition, for example, polyhistidine, polyimidazole, polypyridine, polypropyleneimine, melittin, polyacetal substance (for example, cationic polyacetal) and the like can be used as the fusion agent. The fusion agent may have an α helical structure, for example. The fusion agent may be a membrane disrupting agent such as melittin.
 本発明の組成物は、例えば、前記複合体の形成等について、米国特許第6,509,323号、米国特許公報第2003/0008818号、PCT/US04/07070号等を援用できる。 The composition of the present invention can use, for example, US Pat. No. 6,509,323, US Patent Publication No. 2003/0008818, PCT / US04 / 07070, and the like for the formation of the complex.
 前記添加剤は、この他に、例えば、両親媒性分子があげられる。前記両親媒性分子は、例えば、疎水性領域および親水性領域を有する分子である。前記分子は、例えば、ポリマーが好ましい。前記ポリマーは、例えば、二次構造を有するポリマーであり、反復性の二次構造を有するポリマーが好ましい。具体例としては、例えば、ポリペプチドが好ましく、より好ましくは、αらせん状ポリペプチド等である。 Other examples of the additive include amphiphilic molecules. The amphiphilic molecule is, for example, a molecule having a hydrophobic region and a hydrophilic region. The molecule is preferably a polymer, for example. The polymer is, for example, a polymer having a secondary structure, and a polymer having a repetitive secondary structure is preferable. As a specific example, for example, a polypeptide is preferable, and an α-helical polypeptide is more preferable.
 前記両親媒性ポリマーは、例えば、2つ以上の両親媒性サブユニットを有するポリマーでもよい。前記サブユニットは、例えば、少なくとも1つの親水性基および1つの疎水性基を有する環状構造を有するサブユニットがあげられる。前記サブユニットは、例えば、コール酸等のステロイド、芳香族構造等を有してもよい。前記ポリマーは、例えば、芳香族サブユニット等の環状構造サブユニットとアミノ酸の両方を有してもよい。 The amphiphilic polymer may be a polymer having two or more amphiphilic subunits, for example. Examples of the subunit include a subunit having a cyclic structure having at least one hydrophilic group and one hydrophobic group. The subunit may have, for example, a steroid such as cholic acid, an aromatic structure, or the like. The polymer may have both a cyclic structure subunit such as an aromatic subunit and an amino acid.
6.発現抑制方法
 本発明の発現抑制方法は、前述のように、標的遺伝子の発現を抑制する方法であって、前記本発明のssNc分子を使用することを特徴とする。本発明の発現抑制方法は、前記本発明のssNc分子を使用することが特徴であって、その他の工程および条件は、何ら制限されない。
6). Expression suppression method As described above, the expression suppression method of the present invention is a method of suppressing the expression of a target gene, characterized by using the ssNc molecule of the present invention. The expression suppression method of the present invention is characterized by using the ssNc molecule of the present invention, and other processes and conditions are not limited at all.
 本発明の発現抑制方法において、前記遺伝子の発現抑制のメカニズムは、特に制限されず、例えば、成熟miRNAによる発現抑制があげられる。 In the expression suppression method of the present invention, the mechanism of gene expression suppression is not particularly limited, and examples thereof include expression suppression by mature miRNA.
 本発明の発現抑制方法は、例えば、前記標的遺伝子が存在する対象に、前記ssNc分子を投与する工程を含む。前記投与工程により、例えば、前記投与対象に前記ssNc分子を接触させる。前記投与対象は、例えば、細胞、組織または器官があげられる。前記投与対象は、例えば、ヒト、ヒトを除く非ヒト哺乳類等の非ヒト動物があげられる。前記投与は、例えば、in vivoでもin vitroでもよい。 The expression suppression method of the present invention includes, for example, a step of administering the ssNc molecule to a subject in which the target gene is present. By the administration step, for example, the ssNc molecule is brought into contact with the administration subject. Examples of the administration subject include cells, tissues, and organs. Examples of the administration target include non-human animals such as humans and non-human mammals other than humans. The administration can be, for example, in vivo or in vitro .
 本発明の発現抑制方法は、例えば、前記ssNc分子を単独で投与してもよいし、前記ssNc分子を含む前記本発明の組成物を投与してもよい。前記投与方法は、特に制限されず、例えば、投与対象の種類に応じて適宜選択できる。 In the expression suppression method of the present invention, for example, the ssNc molecule may be administered alone, or the composition of the present invention containing the ssNc molecule may be administered. The administration method is not particularly limited, and can be appropriately selected depending on, for example, the type of administration target.
7.治療方法
 本発明の疾患の治療方法は、前述のように、前記本発明のssNc分子を、患者に投与する工程を含み、前記ssNc分子が、前記発現抑制配列として、前記疾患の原因となる遺伝子の発現を抑制する配列を有することを特徴とする。本発明の治療方法は、前記本発明のssNc分子を使用することが特徴であって、その他の工程および条件は、何ら制限されない。
7). Treatment Method The treatment method for a disease of the present invention includes the step of administering the ssNc molecule of the present invention to a patient as described above, and the ssNc molecule serves as a gene causing the disease as the expression-suppressing sequence. It has a sequence that suppresses the expression of. The treatment method of the present invention is characterized by using the ssNc molecule of the present invention, and other steps and conditions are not limited at all.
 本発明の治療方法は、例えば、前記本発明の発現抑制方法等を援用できる。前記投与方法は、特に制限されず、例えば、経口投与および非経口投与のいずれでもよい。 For the treatment method of the present invention, for example, the expression suppression method of the present invention can be used. The administration method is not particularly limited, and may be, for example, oral administration or parenteral administration.
8.ssNc分子の使用
 本発明の使用は、前記標的遺伝子の発現抑制のための、前記本発明のssNc分子の使用である。
8). Use of ssNc molecule The use of the present invention is the use of the ssNc molecule of the present invention for suppressing the expression of the target gene.
 本発明の核酸分子は、疾患の治療に使用するための核酸分子であって、前記核酸分子は、前記本発明のssNc分子であり、前記ssNc分子が、前記発現抑制配列として、前記疾患の原因となる遺伝子の発現を抑制する配列を有することを特徴とする。 The nucleic acid molecule of the present invention is a nucleic acid molecule for use in the treatment of a disease, wherein the nucleic acid molecule is the ssNc molecule of the present invention, and the ssNc molecule serves as the cause of the disease as the expression suppression sequence. It has a sequence that suppresses the expression of the gene to be
 以下、実施例等により、本発明を詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
(実施例A1)
(1)RNAの合成
 下記配列からなる一本鎖RNAを、ホスホロアミダイト法に基づき、核酸合成機(商品名ABI Expedite(登録商標) 8909 Nucleic Acid Synthesis System、アプライドバイオシステムス)により合成した。前記合成には、RNAアミダイトとして、RNA Phosphoramidites(2’-O-TBDMSi、商品名、三千里製薬)を用いた(以下、同様)。前記アミダイトの脱保護は、定法に従った。合成したRNAは、HPLCにより精製した。精製後のRNAは、それぞれ凍結乾燥した。
(Example A1)
(1) Synthesis of RNA Single-stranded RNA having the following sequences was synthesized by a nucleic acid synthesizer (trade name: ABI Expedite (registered trademark) 8909 Nucleic Acid Synthesis System, Applied Biosystems) based on the phosphoramidite method. In the synthesis, RNA Phosphoramidites (2′-O-TBDMSi, trade name, Michisato Pharmaceutical) was used as an RNA amidite (hereinafter the same). The deprotection of the amidite followed a conventional method. The synthesized RNA was purified by HPLC. Each purified RNA was lyophilized.
 実施例のssRNAを以下に示す。前記各配列において、5’側の大文字の領域は、ヒトlet-7a-1 miRNAの成熟miRNA配列(配列番号1)であり、3’側の大文字の領域は、ヒトlet-7a-1 miRNAのminor miRNA配列(配列番号2)であり、四角で囲んだ配列は、5’側がリンカー領域(Lx)であり、3’側がリンカー領域(Ly)である。また、5’側のリンカー領域(Lx)を介した2つの下線部は、互いに自己アニーリングする領域であり、3’側のリンカー領域(Ly)を介した2つの下線部は、互いに自己アニーリングする領域であり、*を付した塩基はフリー塩基である。 Examples of ssRNA are shown below. In each of the above sequences, the 5 ′ uppercase region is the mature miRNA sequence of human let-7a-1 miRNA (SEQ ID NO: 1), and the 3 ′ uppercase region is the human let-7a-1 miRNA sequence. minor miRNA * sequence (SEQ ID NO: 2), and the sequence surrounded by a square is a linker region (Lx) on the 5 ′ side and a linker region (Ly) on the 3 ′ side. In addition, two underlined portions via the 5′-side linker region (Lx) are regions that self-anneal with each other, and two underlined portions via the 3′-side linker region (Ly) self-anneal with each other. The bases marked with * are free bases.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 前記PK-0021、PK-0022、PK-0023、PK-0024およびPK-0025において、四角で囲んだLxおよびLyは、下記式で表わすことができ、アミダイドとして、実施例Bに示すスキーム3の化合物10(L-プロリンジアミドアミダイト)を使用することにより合成した。
Figure JPOXMLDOC01-appb-C000005
In the PK-0021, PK-0022, PK-0023, PK-0024, and PK-0025, Lx and Ly surrounded by a square can be expressed by the following formula, and amidite of the scheme 3 shown in Example B: Synthesized by using compound 10 (L-proline diamide amidite).
Figure JPOXMLDOC01-appb-C000005
 また、参照例ssRNAとして、下記NM-0001を合成した。前記NM-0001は、ヒトlet-7a-1 前駆体miRNAである。下記配列において、大文字の下線は、ヒトlet-7a-1 miRNAの成熟miRNA配列であり、小文字の下線部は、ヒトlet-7a-1 miRNAのminor miRNA配列である。また、前記配列において、四角で囲んだ領域は、ループ領域である。 In addition, the following NM-0001 was synthesized as a reference example ssRNA. The NM-0001 is a human let-7a-1 precursor miRNA. In the following sequences, the upper case underline is the mature miRNA sequence of human let-7a-1 miRNA, and the lower case underline is the minor miRNA * sequence of human let-7a-1 miRNA. In the arrangement, the area surrounded by a square is a loop area.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(2)HMGA2 mRNAの検出
 前記ssRNAを、ヒト肺腺癌の上皮細胞ラインA549細胞に導入し、ヒトlet-7a-1 miRNAがターゲットとするHMGA2 mRNAの検出を行った。
(2) Detection of HMGA2 mRNA The ssRNA was introduced into human lung adenocarcinoma epithelial cell line A549 cells, and HMGA2 mRNA targeted by human let-7a-1 miRNA was detected.
 前記ssRNAを、注射用蒸留水(大塚製薬、以下同様)で溶解し、100μmol/LのRNA溶液を調製した。細胞は、A549細胞(DSファーマバイオメディカル)を使用した。培地は、10%FBSを含むDMEM(Invitrogen)を使用した。培養条件は、37℃、5%CO下とした。 The ssRNA was dissolved in distilled water for injection (Otsuka Pharmaceutical, the same applies hereinafter) to prepare a 100 μmol / L RNA solution. As the cells, A549 cells (DS Pharma Biomedical) were used. As the medium, DMEM (Invitrogen) containing 10% FBS was used. The culture conditions were 37 ° C. and 5% CO 2 .
 まず、細胞を、前記培地中で培養し、その培養液を、24穴プレートに、400μLずつ、5×10細胞/ウェルとなるように分注した。前記ウェル中の細胞を24時間培養した後、前記ssRNAをトランスフェクション試薬HiperFect Reagent(商品名、QIAGEN社)を用い、添付プロトコールに従って、トランスフェクションした。トランスフェクションは、前記ウェルあたりの組成を以下のように設定した。下記組成において、(B)は、Opti-MEM(商品名、Invitrogen)、(C)は、前記RNA溶液であり、両者をあわせて97μL添加した。なお、前記ウェルにおいて、前記ssRNAの最終濃度は、1nmol/L、10nmol/L、100nmol/Lとした。トランスフェクション後、前記ウェル中の細胞を3日間培養した。 First, the cells were cultured in the medium, and the culture solution was dispensed into a 24-well plate in 400 μL portions at 5 × 10 4 cells / well. After culturing the cells in the well for 24 hours, the ssRNA was transfected using a transfection reagent HiperFect Reagent (trade name, QIAGEN) according to the attached protocol. For transfection, the composition per well was set as follows. In the following composition, (B) is Opti-MEM (trade name, Invitrogen), and (C) is the RNA solution, and 97 μL of both were added. In the wells, the final ssRNA concentrations were 1 nmol / L, 10 nmol / L, and 100 nmol / L. After transfection, the cells in the wells were cultured for 3 days.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 そして、得られた培養細胞について、ISOGEN reagent(商品名、ニッポンジーン)を用い、添付のプロトコールに従って、RNAを回収した。 And about the obtained cultured cell, RNA was collect | recovered according to the attached protocol using ISOGEN reagent (brand name, Nippon Gene).
 次に、逆転写酵素(商品名M-MLV reverse transcriptase、Invitrogen)を用い、添付のプロトコールに従って、前記RNAからcDNAを合成した。そして、合成した前記cDNAを鋳型として定量的PCRを行い、HMGA2 cDNAの量を測定した。また、GAPDH mRNAの量を内部コントロールとし、そのcDNAの量を併せて測定した。 Next, reverse transcriptase (trade name: M-MLV reverse transcriptase, Invitrogen) was used to synthesize cDNA from the RNA according to the attached protocol. Then, quantitative PCR was performed using the synthesized cDNA as a template, and the amount of HMGA2 cDNA was measured. The amount of GAPDH mRNA was used as an internal control, and the amount of cDNA was also measured.
 前記定量PCRは、試薬として、FastStart Universal SYBR Green Master(商品名、Roche)、サーモサイクラーとしてMX3000P(商品名、Stratagene)、解析機器としてMxPro(商品名、Stratagene)を用いた(以下、同様)。前記HMGA2 cDNAおよびGAPDH cDNAの増幅には、それぞれ、以下のプライマーセットを使用した。反応液の全量は25μLとして、それぞれ3回測定した。
HMGA2 cDNA用プライマーセット
   5’-GAAGCCACTGGAGAAAAACG-3’(配列番号12)
   5’-CTTCGGCAGACTCTTGTGAG-3’(配列番号13)
GAPDH cDNA用プライマーセット
   5’-ATGGGGAAGGTGAAGGTCG-3’(配列番号14)
   5’-GGGTCATTGATGGCAATATC-3’(配列番号15)
In the quantitative PCR, FastStart Universal SYBR Green Master (trade name, Roche) was used as a reagent, MX3000P (trade name, Stratagene) was used as a thermocycler, and MxPro (trade name, Stratagene) was used as an analysis instrument (hereinafter the same). The following primer sets were used for amplification of the HMGA2 cDNA and GAPDH cDNA, respectively. The total amount of the reaction solution was 25 μL, and each measurement was performed three times.
Primer set for HMGA2 cDNA 5′-GAAGCCACTGGAGAAAAACG-3 ′ (SEQ ID NO: 12)
5'-CTTCGGCAGACTCTTGTGAG-3 '(SEQ ID NO: 13)
GAPDH cDNA primer set 5'-ATGGGGAAGGTGAAGGTCG-3 '(SEQ ID NO: 14)
5'-GGGTCATTGATGGCAATATC-3 '(SEQ ID NO: 15)
 コントロールとして、前記ssRNA未添加のA549細胞についても、同様の処理および測定を行った。そして、前記コントール(ssRNA未添加)におけるHMGA2 mRNAの量を1とした場合における、各トランスフェクション細胞におけるHMGA2 mRNAの相対値を算出した。 As a control, the same treatment and measurement were performed on the A549 cells to which the ssRNA had not been added. Then, when the amount of HMGA2 mRNA in the control (no ssRNA added) was 1, the relative value of HMGA2 mRNA in each transfected cell was calculated.
 これらの結果を、図4に示す。図4は、トランスフェクション時のssRNAの終濃度が100nmol/Lの場合のHMGA2 mRNAの量を示す。図4に示すように、いずれの前記ssRNAを使用した場合も、HMGA2 mRNAの量が、コントロールよりも減少した。このように、実施例の前記ssRNAのトランスフェクションにより、HMGA2 mRNAの量が減少していることから、タンパク質の翻訳も抑制されているといえる。 These results are shown in FIG. FIG. 4 shows the amount of HMGA2 mRNA when the final concentration of ssRNA at the time of transfection is 100 nmol / L. As shown in FIG. 4, when any of the ssRNAs was used, the amount of HMGA2 mRNA was decreased as compared with the control. Thus, since the amount of HMGA2 mRNA is reduced by the transfection of the ssRNA in the Example, it can be said that protein translation is also suppressed.
(3)成熟miRNA配列の検出
 前記(2)において回収したRNAから、前記ヒトlet-7a-1 miRNAの成熟miRNA配列の定量を行った。前記定量は、TaqMan(商標) MicroRNA Assays(商品名、Applied Biosystems)を使用し、添付の説明書に従って行った。なお、反応液の全量は25μLとして、それぞれ3回測定した。また、前記成熟miRNA配列の定量は、RNU6B rRNAの量で規準化した。そして、前記ssRNA未添加のA549細胞における内在性mature let7-a-1の量を1として、各サンプル中の相対値を求めた。
(3) Detection of mature miRNA sequence The mature miRNA sequence of the human let-7a-1 miRNA was quantified from the RNA recovered in (2). The quantification was performed using TaqMan ™ MicroRNA Assays (trade name, Applied Biosystems) according to the attached instructions. The total amount of the reaction solution was 25 μL, and each measurement was performed three times. The quantification of the mature miRNA sequence was normalized by the amount of RNU6B rRNA. The relative value in each sample was determined with the amount of endogenous feature let7-a-1 in the A549 cells not added with ssRNA being 1.
 これらの結果を図5に示す。図5は、各トランスフェクション細胞における前記ヒトlet-7a-1 miRNAの成熟miRNAの量を示すグラフである。図5において、縦軸は、mature let7a-1の量の相対値を示す。図5に示すように、実施例のいずれの前記ssRNAをトランスフェクトした細胞においても、成熟miRNAが検出された。 These results are shown in FIG. FIG. 5 is a graph showing the amount of mature miRNA of the human let-7a-1 miRNA in each transfected cell. In FIG. 5, the vertical axis represents the relative value of the amount of the character let7a-1. As shown in FIG. 5, mature miRNA was detected in the cells transfected with any of the ssRNAs of Examples.
(実施例B1)
1.プロリノールの合成
 下記式に示すスキーム1に従い、ジメトキシトリチル基で保護されたプロリノールを合成した。
(Example B1)
1. Synthesis of Prolinol Prolinol protected with a dimethoxytrityl group was synthesized according to Scheme 1 shown in the following formula.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(1)Fmoc-L-プロリノール(化合物2)
 L-プロリノール(化合物1)(0.61g、6.0mmol)を、純水70mLに溶解し、L-プロリノール水溶液を調製した。N-(9-フルオレニルメトキシカルボニロキシ)スクシンイミド(Fmoc-OSu)(2.0g、6.0mmol)を、THF10mLに溶解した。このTHF溶液を、前記L-プロリノール水溶液に加え、1時間撹拌して、両者を反応させた。この反応液を、液体画分と沈殿画分とに分離し、それぞれの画分を酢酸エチルで抽出し、それぞれ有機層を回収した。そして、それぞれの有機層を合わせた後、無水硫酸ナトリウムを添加して、水分を吸収させた(以下、乾燥という)。前記有機層をろ過して、ろ液を回収し、前記ろ液を減圧濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=1:1)により精製し、化合物2を得た(1.4g、収率74%)。以下に、化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.77(2H,d,J=7.7Hz,Ar-H),7.60(2H,d,J=7.3Hz,Ar-H),7.40(2H,t,J=7.5Hz,Ar-H),7.31(2H,t,J=7.6Hz,Ar-H),4.40-4.50(2H,m,COOCH),4.22(1H,t,J=6.5Hz,Ar-CH),3.20-3.80(5H,m,H-5,H-6),1.75(3H,m,H-3,H-4),1.40(1H,m,H-3).
(1) Fmoc-L-prolinol (compound 2)
L-prolinol (Compound 1) (0.61 g, 6.0 mmol) was dissolved in 70 mL of pure water to prepare an L-prolinol aqueous solution. N- (9-fluorenylmethoxycarbonyloxy) succinimide (Fmoc-OSu) (2.0 g, 6.0 mmol) was dissolved in 10 mL of THF. This THF solution was added to the L-prolinol aqueous solution and stirred for 1 hour to react both. This reaction solution was separated into a liquid fraction and a precipitate fraction, and each fraction was extracted with ethyl acetate, and the organic layer was recovered. And after match | combining each organic layer, the anhydrous sodium sulfate was added and the water | moisture content was absorbed (henceforth drying). The organic layer was filtered to collect the filtrate, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent hexane: ethyl acetate = 1: 1) to obtain Compound 2 (1.4 g, yield 74%). The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.77 (2H, d, J = 7.7 Hz, Ar—H), 7.60 (2H, d, J = 7.3 Hz, Ar—H), 7.40 (2H, t, J = 7.5 Hz, Ar—H), 7.31 (2H, t, J = 7.6 Hz, Ar—H), 4.40-4.50 (2H, m, COOCH 2 ) , 4.22 (1H, t, J = 6.5 Hz, Ar—CH), 3.20-3.80 (5H, m, H-5, H-6), 1.75 (3H, m, H -3, H-4), 1.40 (1H, m, H-3).
(2)Fmoc-DMTr-L-プロリノール(化合物3)
 前記Fmoc-L-プロリノール(化合物2)(1.4g、4.3mmol)を、ピリジン20mLに溶解して、3回共沸した。得られた残留物を、ピリジン20mLに溶解した。この溶液を、アルゴン雰囲気下、氷浴中で、撹拌しながら、4,4’-ジメトキシトリチルクロリド(DMTr-Cl)(1.8g、5.3mmol)を添加した。この反応液について、クロロホルム/メタノールのTLCにより反応を追跡し、Fmoc-L-プロリノールのスポットが消えるまで、4時間反応させた。そして、過剰のDMTr-Clをクエンチするために、前記反応液に、メタノール3mLを加えて10分撹拌した。前記反応液に、さらに、クロロホルムを加えた後、有機層を回収した。回収した前記有機層に、飽和食塩水による洗浄、5%炭酸水素ナトリウム水溶液による洗浄を行い、もう一度、飽和食塩水による洗浄を行った。洗浄後の有機層を、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム、1%ピリジン)により精製し、化合物3を得た(2.0g、収率74%)。以下に、化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.77(2H,d,J=7.7Hz,Ar-H),7.60(2H,d,J=7.3Hz,Ar-H),7.40-7.18(13H,m,Ar-H),6.89(4H,d,J=8.6Hz,Ar-H),4.20-4.40(2H,m,COOCH),4.02(1H,t,J=6.5Hz,Ar-CH),3.80-3.10(5H,m,H-5,H-6),3.73(s,6H,OCH),1.84(3H,m,H-3,H-4),1.58(1H,m,H-3).
(2) Fmoc-DMTr-L-prolinol (compound 3)
The Fmoc-L-prolinol (Compound 2) (1.4 g, 4.3 mmol) was dissolved in 20 mL of pyridine and azeotroped three times. The obtained residue was dissolved in 20 mL of pyridine. To this solution, 4,4′-dimethoxytrityl chloride (DMTr—Cl) (1.8 g, 5.3 mmol) was added with stirring in an ice bath under an argon atmosphere. The reaction was monitored by chloroform / methanol TLC and reacted for 4 hours until the Fmoc-L-prolinol spot disappeared. In order to quench excess DMTr-Cl, 3 mL of methanol was added to the reaction solution and stirred for 10 minutes. After further adding chloroform to the reaction solution, the organic layer was recovered. The collected organic layer was washed with a saturated saline solution, washed with a 5% aqueous sodium hydrogen carbonate solution, and again washed with a saturated saline solution. The organic layer after washing was dried over anhydrous sodium sulfate. The organic layer was filtered, and the resulting filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: chloroform, 1% pyridine) to obtain Compound 3 (2.0 g, yield 74%). The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.77 (2H, d, J = 7.7 Hz, Ar—H), 7.60 (2H, d, J = 7.3 Hz, Ar—H), 7.40 −7.18 (13H, m, Ar—H), 6.89 (4H, d, J = 8.6 Hz, Ar—H), 4.20-4.40 (2H, m, COOCH 2 ), 4 .02 (1H, t, J = 6.5 Hz, Ar—CH), 3.80-3.10 (5H, m, H-5, H-6), 3.73 (s, 6H, OCH 3 ) , 1.84 (3H, m, H-3, H-4), 1.58 (1H, m, H-3).
(3)DMTr-L-プロリノール(化合物4)
 前記Fmoc-DMTr-L-プロリノール(化合物3)(2.0g、3.2mmol)を、20%ピペリジンを含むDMF溶液25mLに溶解し、12時間撹拌した。この溶液を減圧濃縮し、得られた残渣を、シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=85:15、1%ピリジン含有)で精製し、化合物4を得た(1.0g、収率78%)。以下に、化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),3.78(6H,s,OCH),3.31(1H,m,H-6), 3.07(2H,m,H-2,H-6),2.90(2H,m,H-5),1.84(3H,m,H-3,H-4),1.40(1H,m,H-3).
(3) DMTr-L-prolinol (compound 4)
The Fmoc-DMTr-L-prolinol (compound 3) (2.0 g, 3.2 mmol) was dissolved in 25 mL of DMF solution containing 20% piperidine and stirred for 12 hours. The solution was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform: methanol = 85: 15, containing 1% pyridine) to obtain Compound 4 (1.0 g, yield 78%). . The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 3.78 (6H) , S, OCH 3 ), 3.31 (1H, m, H-6), 3.07 (2H, m, H-2, H-6), 2.90 (2H, m, H-5), 1.84 (3H, m, H-3, H-4), 1.40 (1H, m, H-3).
2.アミダイト誘導体の合成
 つぎに、下記式に示すスキーム2に従い、プロリノールを有するアミダイト誘導体を合成した。以下、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩を、「EDC」、N,N-ジメチルアミノピリジン(4-ジメチルアミノピリジン)を「DMAP」という。
2. Synthesis of Amidite Derivative Next, an amidite derivative having prolinol was synthesized according to Scheme 2 shown in the following formula. Hereinafter, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride is referred to as “EDC”, and N, N-dimethylaminopyridine (4-dimethylaminopyridine) is referred to as “DMAP”.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(1)DMTr-アミド-L-プロリノール(化合物5)
 前記DMTr-L-プロリノール(化合物4)(0.80g、2.0mmol)、EDC(0.46g、2.4mmol)およびDMAP(0.29g、2.4mmol)を、ジクロロメタン20mLに溶解して撹拌した。この溶液に、10-ヒドロキシデカン酸(0.45g、2.4mmol)を添加し、撹拌した。この反応液について、酢酸エチルのTLCにより反応を追跡し、DMTr-L-プロリノールのスポットが消えるまで、20時間反応させた。そして、前記反応液に、ジクロロメタンを加えた後、有機層を回収した。回収した前記有機層を、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮し、その残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル、1%ピリジン含有)により精製し、化合物5を得た(0.71g,収率62%)。以下に、化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H), 6.82(4H,d,J=8.6Hz,Ar-H),3.78(6H,s,OCH),3.68-2.93(7H,m,H-2,H-5,H-6),2.27-1.72(6H,m,アルキル,H-3,H-4),1.58(4H,s,アルキル),1.30(10H,s,アルキル).
(1) DMTr-amide-L-prolinol (compound 5)
DMTr-L-prolinol (compound 4) (0.80 g, 2.0 mmol), EDC (0.46 g, 2.4 mmol) and DMAP (0.29 g, 2.4 mmol) were dissolved in 20 mL of dichloromethane. Stir. To this solution, 10-hydroxydecanoic acid (0.45 g, 2.4 mmol) was added and stirred. The reaction was monitored by TLC of ethyl acetate and allowed to react for 20 hours until the DMTr-L-prolinol spot disappeared. And after adding dichloromethane to the said reaction liquid, the organic layer was collect | recovered. The collected organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate. The organic layer was filtered, and the resulting filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (containing ethyl acetate and 1% pyridine) to obtain Compound 5 (0.71 g, yield). 62%). The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 3.78 (6H) , S, OCH 3 ), 3.68-1.93 (7H, m, H-2, H-5, H-6), 2.27-1.72 (6H, m, alkyl, H-3, H-4), 1.58 (4H, s, alkyl), 1.30 (10H, s, alkyl).
(2)DMTr-アルキル-L-プロリノール(化合物6)
 前記DMTr-L-プロリノール(化合物4)(0.80g、2.0mmol)を、メタノール15mLに溶解し、5-ヒドロキシペンタナール(0.31g、3.0mmol)を加えて撹拌した。この溶液に、シアノ水素化ホウ素ナトリウム(0.25g、4.0mmol)を加え、さらに撹拌した。この反応液について、酢酸エチル/ヘキサンのTLCにより反応を追跡し、DMTr-L-プロリノールのスポットが消えるまで、24時間反応させた。そして、前記反応液に、酢酸エチルを加え、有機層を回収した。回収した前記有機層を、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮し、その残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1、1%ピリジン含有)により精製し、化合物6を得た(0.62g、収率63%)。以下に、化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),3.78(6H,s,OCH),3.70-2.86(4H,m,CHOH,H-6),2.06-1.79(5H,m,アルキル,H-2,H-5),1.74-1.49(6H,m,アルキル,H-3,H-4),1.45-1.27(4H,m,アルキル).
(2) DMTr-alkyl-L-prolinol (Compound 6)
The DMTr-L-prolinol (compound 4) (0.80 g, 2.0 mmol) was dissolved in 15 mL of methanol, and 5-hydroxypentanal (0.31 g, 3.0 mmol) was added and stirred. To this solution, sodium cyanoborohydride (0.25 g, 4.0 mmol) was added and further stirred. The reaction was monitored by TLC of ethyl acetate / hexane and allowed to react for 24 hours until the DMTr-L-prolinol spot disappeared. And the ethyl acetate was added to the said reaction liquid, and the organic layer was collect | recovered. The collected organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate. The organic layer was filtered, the obtained filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1, containing 1% pyridine) to obtain Compound 6 ( 0.62 g, yield 63%). The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 3.78 (6H) , S, OCH 3 ), 3.70-2.86 (4H, m, CH 2 OH, H-6), 2.06-1.79 (5H, m, alkyl, H-2, H-5) , 1.74-1.49 (6H, m, alkyl, H-3, H-4), 1.45-1.27 (4H, m, alkyl).
(3)DMTr-ウレタン-L-プロリノール(化合物7)
 1,4-ブタンジオール(0.90g、10mmol)を、ジクロロメタン30mLに溶解し、さらに、カルボニルジイミダゾール(1.4g、8.6mmol)を加え、3時間撹拌した。この反応液の有機層を、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮し、その残渣を、シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=9:1)により精製した。これによって、1,4-ブタンジオールの一方の末端がカルボニルジイミダゾールで活性化された化合物を得た(0.25g,1.5mmol)。この化合物をジクロロメタン15mLに溶解し、前記DMTr-L-プロリノール(化合物4)(0.6g、1.5mmol)を添加し、24時間撹拌した。この混合液に、さらに、酢酸エチルを加え、有機層を回収した。回収した前記有機層を、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮し、その残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1、1%ピリジン含有)により精製し、化合物7を得た(0.61g、収率77%)。以下に、化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),4.24-3.94(2H,m,COOCH),3.78(s,6H,OCH),3.72-2.96(7H,m,アルキル,H-2,H-5,H-6),2.10-1.30(8H,m,アルキル,H-3,H-4).
(3) DMTr-urethane-L-prolinol (compound 7)
1,4-butanediol (0.90 g, 10 mmol) was dissolved in 30 mL of dichloromethane, carbonyldiimidazole (1.4 g, 8.6 mmol) was further added, and the mixture was stirred for 3 hours. The organic layer of this reaction solution was washed with saturated brine, and then dried over anhydrous sodium sulfate. The organic layer was filtered, the obtained filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform: methanol = 9: 1). As a result, a compound in which one end of 1,4-butanediol was activated with carbonyldiimidazole was obtained (0.25 g, 1.5 mmol). This compound was dissolved in 15 mL of dichloromethane, and DMTr-L-prolinol (Compound 4) (0.6 g, 1.5 mmol) was added thereto, followed by stirring for 24 hours. To this mixture, ethyl acetate was further added, and the organic layer was recovered. The collected organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate. The organic layer was filtered, the obtained filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1, containing 1% pyridine) to obtain Compound 7 ( 0.61 g, yield 77%). The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 4.24-3 .94 (2H, m, COOCH 2 ), 3.78 (s, 6H, OCH 3 ), 3.72-2.96 (7H, m, alkyl, H-2, H-5, H-6), 2.10-1.30 (8H, m, alkyl, H-3, H-4).
(4)DMTr-ウレイド-L-プロリノール(化合物8)
 前記DMTr-L-プロリノール(化合物4)(0.50g、1.2mmol)およびトリホスゲン(0.12g、0.40mmol)を、ジクロロメタン8mLに溶解し、アルゴン雰囲気下、氷浴中で、撹拌した。そして、前記溶液に、N,N-ジイソプロピルエチルアミン(0.31g、2.4mmol)を添加し、1時間撹拌した。さらに、前記溶液に、8-アミノ-1-オクタノール(0.17g、1.2mmol)を添加し、同様にして氷浴中で30分撹拌した後、室温で20時間撹拌した。前記溶液に、ジクロロメタンを加え、有機層を回収した。回収した前記有機層を、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮し、その残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1、1%トリエチルアミン含有)により精製し、化合物8を得た(0.44g、収率62%)。以下に、化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,m,Ar-H),3.78(s,6H,OCH),3.68-3.25(9H,m,CHNH,CHOH,H-2,H-5,H-6),1.74-1.18(16H,m,アルキル,H-3,H-4).
(4) DMTr-Ureido-L-prolinol (Compound 8)
The DMTr-L-prolinol (compound 4) (0.50 g, 1.2 mmol) and triphosgene (0.12 g, 0.40 mmol) were dissolved in 8 mL of dichloromethane and stirred in an ice bath under an argon atmosphere. . Then, N, N-diisopropylethylamine (0.31 g, 2.4 mmol) was added to the solution and stirred for 1 hour. Further, 8-amino-1-octanol (0.17 g, 1.2 mmol) was added to the solution, and the mixture was similarly stirred in an ice bath for 30 minutes and then at room temperature for 20 hours. Dichloromethane was added to the solution, and the organic layer was recovered. The collected organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate. The organic layer was filtered, and the resulting filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1, containing 1% triethylamine) to obtain Compound 8 ( 0.44 g, 62% yield). The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, m, Ar—H), 3.78 (s, 6H, OCH 3 ) , 3.68-3.25 (9H, m, CH 2 NH, CH 2 OH, H-2, H-5, H-6), 1.74-1.18 (16H, m, alkyl, H- 3, H-4).
(5)プロリノールを有するアミダイト誘導体(化合物9~12)
 前記修飾プロリノール(化合物5~8)を、それぞれ原料として、以下に示す方法により、化合物9~12を合成した。前記修飾プロリノールおよび5-ベンジルチオ-1H-テトラゾールを、アセトニトリル3mLに溶解した。前記修飾プロリノールの使用量は、化合物5の場合、0.69g(1.2mmol)、化合物6の場合、0.60g(1.2mmol)、化合物7の場合、0.60g(1.2mmol)、化合物8の場合、0.25g(0.43mmol)とした。また、5-ベンジルチオ-1H-テトラゾールの使用量は、化合物5~7に対しては、0.15g(0.78mmol)、化合物8に対しては、54mg(0.15mmol)とした。前記溶液に、アルゴン雰囲気下、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイトを添加し、2時間撹拌した。前記2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイトの添加量は、前記化合物5~7を使用した系では、0.54g(1.8mmol)とし、前記化合物8を使用した系では、0.19g(0.64mmol)とした。そして、前記溶液に、飽和炭酸水素ナトリウム水溶液を添加し、さらに、ジクロロメタンで抽出し、有機層を回収した。回収した前記有機層を、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮し、その残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1、1%トリエチルアミン含有)により精製し、化合物9~12を得た。以下に、各化合物のNMRの結果を示す。
(5) Amidite derivatives having prolinol (compounds 9 to 12)
Compounds 9 to 12 were synthesized by the following method using the modified prolinol (compounds 5 to 8) as raw materials. The modified prolinol and 5-benzylthio-1H-tetrazole were dissolved in 3 mL of acetonitrile. The amount of the modified prolinol used is 0.69 g (1.2 mmol) in the case of Compound 5, 0.60 g (1.2 mmol) in the case of Compound 6, and 0.60 g (1.2 mmol) in the case of Compound 7. In the case of Compound 8, the amount was 0.25 g (0.43 mmol). The amount of 5-benzylthio-1H-tetrazole used was 0.15 g (0.78 mmol) for compounds 5 to 7 and 54 mg (0.15 mmol) for compound 8. 2-Cyanoethyl N, N, N ′, N′-tetraisopropyl phosphorodiamidite was added to the solution under an argon atmosphere and stirred for 2 hours. The addition amount of the 2-cyanoethyl N, N, N ′, N′-tetraisopropyl phosphorodiamidite is 0.54 g (1.8 mmol) in the system using the compounds 5 to 7, and the compound 8 is used. In this system, it was 0.19 g (0.64 mmol). And the saturated sodium hydrogencarbonate aqueous solution was added to the said solution, and also it extracted with dichloromethane, and collect | recovered the organic layers. The collected organic layer was dried over anhydrous sodium sulfate. The organic layer was filtered, and the resulting filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1, containing 1% triethylamine) to obtain compounds 9 to 12. It was. The NMR results of each compound are shown below.
DMTr-アミド-L-プロリノールアミダイト(化合物9、0.60g、収率55%)
H-NMR(CDCl)δ7.40-7.14(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),3.78(6H,s,OCH),3.68-2.93(11H,m,CHO,POCH,CHCH,H-2,H-5,H-6),2.58(2H,m,CHCN),2.27-1.72(6H,m,アルキル,H-3,H-4),1.58(4H,s,アルキル),1.30(22H,s,アルキル,CHCH).
DMTr-amide-L-prolinol amidite (Compound 9, 0.60 g, yield 55%)
1 H-NMR (CDCl 3 ) δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 3.78 (6H, s, OCH 3 ), 3.62-2.93 (11H, m, CH 2 O, POCH 2 , CHCH 3 , H-2, H-5, H-6), 2.58 (2H, m, CH 2 CN), 2.27-1.72 (6H, m, alkyl, H-3, H-4), 1.58 (4H, s, alkyl), 1.30 (22H, s, alkyl), CHCH 3 ).
DMTr-アルキル-L-プロリノールアミダイト(化合物10、0.71g、収率60%)
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),3.78(6H,s,OCH),3.70-2.86(8H,m,CHO,POCH,CHCH,H-6),2.58(2H,m,CHCN),2.06-1.79(5H,m,アルキル,H-2,H-5),1.74-1.49(6H,m,アルキル,H-3,H-4),1.37-1.10(16H,m,アルキル,CHCH).
DMTr-alkyl-L-prolinol amidite (Compound 10, 0.71 g, 60% yield)
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 3.78 (6H) , S, OCH 3 ), 3.70-2.86 (8H, m, CH 2 O, POCH 2 , CHCH 3 , H-6), 2.58 (2H, m, CH 2 CN), 2.06 -1.79 (5H, m, alkyl, H-2, H-5), 1.74-1.49 (6H, m, alkyl, H-3, H-4), 1.37-1.10 (16H, m, alkyl, CHCH 3).
DMTr-ウレタン-L-プロリノールアミダイト(化合物11、0.67g、収率52%)
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),4.24-3.94(2H,m,COOCH),3.78(s,6H,OCH),3.72-2.96(11H,m,CHO,POCH,CHCH,H-2,H-5,H-6),2.58(2H,m,CHCN),2.10-1.46(8H,m,アルキル,H-3,H-4),1.34-1.10(12H,m,CHCH).
DMTr-urethane-L-prolinol amidite (Compound 11, 0.67 g, Yield 52%)
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 4.24-3 .94 (2H, m, COOCH 2 ), 3.78 (s, 6H, OCH 3 ), 3.72-2.96 (11H, m, CH 2 O, POCH 2 , CHCH 3 , H-2, H -5, H-6), 2.58 (2H, m, CH 2 CN), 2.10-1.46 (8H, m, alkyl, H-3, H-4), 1.34-1. 10 (12H, m, CHCH 3 ).
DMTr-ウレイド-L-プロリノールアミダイト(化合物12、0.20g、収率61%)
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,m,Ar-H),3.78(s,6H,OCH),3.65-3.25(13H,m,CHO,POCH,CHCH,H-2,CHNH,CHOH,H-2,H-5,H-6),2.73(2H,m,CHCN),2.10-1.48(16H,m,アルキル,H-3,H-4),1.35-1.10(12H,m,CHCH).
DMTr-ureido-L-prolinol amidite (compound 12, 0.20 g, 61% yield)
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, m, Ar—H), 3.78 (s, 6H, OCH 3 ) 3.65-3.25 (13H, m, CH 2 O, POCH 2 , CHCH 3 , H-2, CH 2 NH, CH 2 OH, H-2, H-5, H-6), 2. 73 (2H, m, CH 2 CN), 2.10-1.48 (16H, m, alkyl, H-3, H-4 ), 1.35-1.10 (12H, m, CHCH 3).
(実施例B2)
 つぎに、下記式に示すスキーム3に従い、L-プロリンを有するアミダイト誘導体を合成した。
(Example B2)
Next, an amidite derivative having L-proline was synthesized according to Scheme 3 shown in the following formula.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(1)DMTr-ヒドロキシアミドアミノ-L-プロリン(化合物11)
 DMTr-アミド-L-プロリン(化合物6)(1.00g、2.05mmol)および5-ヒドロキシペンタナール(0.33g、3.07mmol)を含むエタノール溶液(7mL)に、氷冷下、酢酸緩衝液(7mL)を加えた。この混合液を、氷冷下、20分撹拌した後、シアノ化ホウ素ナトリウム(0.77g、12.28mmol)を加え、さらに、室温下、7時間撹拌した。前記混合液をジクロロメタンで希釈し、水で洗浄した後、さらに飽和食塩水で洗浄した。そして、前記有機層を回収し、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過し、ろ液について、減圧下で溶媒を留去した。得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒 CHCl:CHOH=98:2、0.05%ピリジン含有)に供した。ついで、得られた生成物を、シリカゲルカラムクロマトグラフィー(展開溶媒 CHCl:CHOH=98:2、0.05%ピリジン含有)に供し、さらに、得られた生成物を、シリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:アセトン=7:3、0.05%ピリジン含有)に供した。これによって、無色シロップ状の化合物11を得た(0.49g、収率41%)。
Ms (FAB+): m/z 575 (M)、303 (DMTr
(1) DMTr-hydroxyamidoamino-L-proline (Compound 11)
To an ethanol solution (7 mL) containing DMTr-amido-L-proline (Compound 6) (1.00 g, 2.05 mmol) and 5-hydroxypentanal (0.33 g, 3.07 mmol) under ice cooling, acetate buffer Liquid (7 mL) was added. The mixture was stirred for 20 minutes under ice-cooling, sodium cyanoborohydride (0.77 g, 12.28 mmol) was added, and the mixture was further stirred at room temperature for 7 hours. The mixture was diluted with dichloromethane, washed with water, and further washed with saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate. The organic layer was filtered, and the solvent was distilled off from the filtrate under reduced pressure. The obtained residue was subjected to silica gel column chromatography (developing solvent CH 2 Cl 2 : CH 3 OH = 98: 2, containing 0.05% pyridine). Subsequently, the obtained product was subjected to silica gel column chromatography (developing solvent CH 2 Cl 2 : CH 3 OH = 98: 2, containing 0.05% pyridine), and the obtained product was further subjected to a silica gel column. Chromatography (developing solvent: dichloromethane: acetone = 7: 3, containing 0.05% pyridine) was used. This gave colorless syrupy compound 11 (0.49 g, 41% yield).
Ms (FAB +): m / z 575 (M + ), 303 (DMTr + )
(2)DMTr-アミドアミノ-L-プロリンアミダイト(化合物12)
 得られた前記DMTr-ヒドロキシアミドアミノ-L-プロリン(化合物11)(0.50g、0.87mmol)を無水アセトニトリルと混合し、室温で共沸乾燥した。得られた残留物に、ジイソプロピルアンモニウムテトラゾリド(178mg、1.04mmol)を加え、減圧下で脱気し、アルゴンガスを充填した。前記混合物に対し、無水アセトニトリル(1mL)を加え、さらに、2-シアノエトキシ-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(313mg、1.04mmol)の無水アセトニトリル溶液(1mL)を加えた。この混合物を、アルゴン雰囲気下、室温で4時間撹拌した。そして、前記混合物をジクロロメタンで希釈し、飽和重曹水および飽和食塩水で、順次洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られた前記ろ液について、減圧下で溶媒を留去した。得られた残渣を、充填剤としてアミノシリカを用いたカラムクロマトグラフィー(展開溶媒 ヘキサン:アセトン=7:3、0.05%ピリジン含有)に供し、無色シロップ状の化合物12(0.57g、純度93%、収率79%)を得た。前記純度は、HPLCにより測定した(以下、同様)。以下に、化合物のNMRの結果を示す。
H-NMR (CDCl): δ7.41-7.43 (m,2H,Ar-H)、7.28-7.32(m,4H,Ar-H)、7.25-7.27(m,2H,Ar-H)、7.18-7.21(m,1H,Ar-H)、6.80-6.84(m,4H,Ar-H)、3.73-3.84(m,1H)、3.79(s,6H,OCH)、3.47-3.64(m,3H)、3.12-3.26(m,2H)、3.05(t,J=6.4Hz,2H,CH)、2.98-2.02(m,2H)、2.61(t,J=5.8Hz,2H,CH)、2.55-2.63(m,2H)、2.27-2.42(m,1H,CH)、2.31(t,7.8Hz,2H,CH)、2.03-2.19(m,1H,CH)、1.40-1.90(m,8H)、1.23-1.33(m,5H)、1.14-1.20(m,12H,CH);
P-NMR(CDCl): δ146.91;
Ms(FAB+): m/z 774(M)、303(DMTr),201(C19OP).
(2) DMTr-amidoamino-L-proline amidite (compound 12)
The obtained DMTr-hydroxyamidoamino-L-proline (Compound 11) (0.50 g, 0.87 mmol) was mixed with anhydrous acetonitrile and azeotropically dried at room temperature. Diisopropylammonium tetrazolide (178 mg, 1.04 mmol) was added to the obtained residue, degassed under reduced pressure, and filled with argon gas. Anhydrous acetonitrile (1 mL) was added to the mixture, and an anhydrous acetonitrile solution (1 mL) of 2-cyanoethoxy-N, N, N ′, N′-tetraisopropyl phosphorodiamidite (313 mg, 1.04 mmol) was further added. added. The mixture was stirred for 4 hours at room temperature under an argon atmosphere. The mixture was diluted with dichloromethane and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The obtained residue was subjected to column chromatography using aminosilica as a filler (developing solvent hexane: acetone = 7: 3, containing 0.05% pyridine), and colorless syrupy compound 12 (0.57 g, purity) 93%, yield 79%). The purity was measured by HPLC (hereinafter the same). The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.41-7.43 (m, 2H, Ar—H), 7.28-7.32 (m, 4H, Ar—H), 7.25-7.27 (M, 2H, Ar-H), 7.18-7.21 (m, 1H, Ar-H), 6.80-6.84 (m, 4H, Ar-H), 3.73-3. 84 (m, 1H), 3.79 (s, 6H, OCH 3 ), 3.47-3.64 (m, 3H), 3.12-3.26 (m, 2H), 3.05 (t , J = 6.4 Hz, 2H, CH 2 ), 2.98-2.02 (m, 2H), 2.61 (t, J = 5.8 Hz, 2H, CH 2 ), 2.55-2. 63 (m, 2H), 2.27-2.42 (m, 1H, CH), 2.31 (t, 7.8 Hz, 2H, CH 2 ), 2.03-2.19 (m, 1H, CH), 1.40-1.9 0 (m, 8H), 1.23-1.33 (m, 5H), 1.14-1.20 (m, 12H, CH 3 );
P-NMR (CDCl 3 ): δ 146.91;
Ms (FAB +): m / z 774 (M +), 303 (DMTr +), 201 (C 8 H 19 N 2 OP +).
(3)DMTr-ヒドロキシアミドカルバモイル-L-プロリン(化合物13)
 DMTr-アミド-L-プロリン(化合物6)(1.00g、2.05mmol)を溶解した無水アセトニトリル溶液(10mL)に、1-イミダゾカルボニルオキシ-8-ヒドロキシオクタン(1.12g,4.92mmol)を溶解した無水アセトニトリル溶液(20mL)を、アルゴン雰囲気下、室温で加えた。この混合液を、40~50℃で2日間加熱した後、5日間室温で放置した。前記混合液について、減圧下で溶媒を留去した。得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:アセトン=4:1、0.05%ピリジン含有)に供した。これによって、無色シロップ状の化合物13を得た(0.68g、収率50%)。以下に、化合物のNMRの結果を示す。
H-NMR (CDCl): δ7.40-7.42(m,2H,Ar-H)、7.27-7.31(m,6H,Ar-H)、7.17-7.21(m,1H,Ar-H)、6.79-6.82(m,4H,Ar-H)、4.23-4.30(m,1H)、4.05-4.10(m,2H)、3.79(s,6H,OCH)、3.60-3.65(m,2H)、3.32-3.55(m,2H)、3.16-3.29(m,2H),3.01-3.07(m,2H)、2.38-2.40(m,1H,CH)、1.83-1.90(m,2H)、1.57-1.69(m,8H)、1.26-1.36(m,2H);
Ms (FAB+): m/z 602(M)、303(DMTr).
(3) DMTr-hydroxyamidocarbamoyl-L-proline (Compound 13)
To an anhydrous acetonitrile solution (10 mL) in which DMTr-amido-L-proline (Compound 6) (1.00 g, 2.05 mmol) was dissolved, 1-imidazocarbonyloxy-8-hydroxyoctane (1.12 g, 4.92 mmol) An anhydrous acetonitrile solution (20 mL) in which was dissolved was added at room temperature under an argon atmosphere. The mixture was heated at 40-50 ° C. for 2 days and then allowed to stand at room temperature for 5 days. About the said liquid mixture, the solvent was distilled off under reduced pressure. The obtained residue was subjected to silica gel column chromatography (developing solvent: dichloromethane: acetone = 4: 1, containing 0.05% pyridine). This gave colorless syrup-like compound 13 (0.68 g, yield 50%). The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.42 (m, 2H, Ar—H), 7.27-7.31 (m, 6H, Ar—H), 7.17-7.21 (M, 1H, Ar-H), 6.79-6.82 (m, 4H, Ar-H), 4.23-4.30 (m, 1H), 4.05-4.10 (m, 2H), 3.79 (s, 6H, OCH 3 ), 3.60-3.65 (m, 2H), 3.32-3.55 (m, 2H), 3.16-3.29 (m) , 2H), 3.01-3.07 (m, 2H), 2.38-2.40 (m, 1H, CH), 1.83-1.90 (m, 2H), 1.57-1 .69 (m, 8H), 1.26-1.36 (m, 2H);
Ms (FAB +): m / z 602 (M <+> ), 303 (DMTr <+> ).
(4)DMTr-アミドカルバモイル-L-プロリンアミダイト(化合物14)
 得られた前記DMTr-ヒドロキシアミドカルバモイル-L-プロリン(化合物13)(0.63g、1.00mmol)を無水ピリジンと混合し、室温で共沸乾燥した。得られた残留物に、ジイソプロピルアンモニウムテトラゾリド(206mg、1.20mmol)を加え、減圧下に脱気し、アルゴンガスを充填した。前記混合物に対し、無水アセトニトリル(1mL)を加え、さらに、2-シアノエトキシ-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(282mg、1.12mmol)の無水アセトニトリル溶液(1mL)を加えた。この混合物を、アルゴン雰囲気下、室温で4時間撹拌した。そして、前記混合物をジクロロメタンで希釈し、飽和重曹水および飽和食塩水で順次洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた残渣を、充填剤としてアミノシリカを用いたカラムクロマト(展開溶媒 ヘキサン:アセトン=7:3、0.5%ピリジン含有)に供し、無色シロップ状の化合物14(0.74g、純度100%、収率87%)を得た。以下に、化合物のNMRの結果を示す。
P-NMR (CDCl): δ147.19;
Ms(FAB+): m/z 860(M)、303(DMTr),201(C19OP).
(4) DMTr-amidocarbamoyl-L-proline amidite (Compound 14)
The obtained DMTr-hydroxyamidocarbamoyl-L-proline (Compound 13) (0.63 g, 1.00 mmol) was mixed with anhydrous pyridine and azeotropically dried at room temperature. Diisopropylammonium tetrazolide (206 mg, 1.20 mmol) was added to the resulting residue, degassed under reduced pressure, and filled with argon gas. Anhydrous acetonitrile (1 mL) was added to the mixture, and an anhydrous acetonitrile solution (1 mL) of 2-cyanoethoxy-N, N, N ′, N′-tetraisopropyl phosphorodiamidite (282 mg, 1.12 mmol) was further added. added. The mixture was stirred for 4 hours at room temperature under an argon atmosphere. The mixture was diluted with dichloromethane and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The obtained residue was subjected to column chromatography (developing solvent hexane: acetone = 7: 3, containing 0.5% pyridine) using amino silica as a filler, and colorless syrup-like compound 14 (0.74 g, purity 100) %, Yield 87%). The NMR results of the compound are shown below.
P-NMR (CDCl 3 ): δ 147.19;
Ms (FAB +): m / z 860 (M + ), 303 (DMTr + ), 201 (C 8 H 19 N 2 OP + ).
(5)DMTr-t-ブチルジメチルシロキシアミドウレイド-L-プロリン(化合物15)
 トリホスゲン(1.22g、4.10mmol)に、アルゴン雰囲気および氷冷下、無水テトラヒドロフラン溶液(10mL)を加えた。この混合液に、アルゴン雰囲気および氷冷下、DMTr-アミド-L-プロリン(化合物6)(1.00g、2.05mmol)およびDIEA(9.80g、75.8mmol)を溶解した無水テトラヒドロフラン溶液(10mL)を、30分間で滴下し、その後、室温で1時間撹拌した。前記混合液に、アルゴン雰囲気および氷冷下、10-アミノ-1-t-ブチルジメチルシロキシデカン(2.66g、10.25mmol)およびDIEA(3.20g、24.76mmol)を溶解した無水テトラヒドロフラン溶液(20mL)を、45分間で滴下した。そして、前記混合物を、アルゴン雰囲気下、室温で一晩撹拌した。この混合液を酢酸エチル(200mL)で希釈し、有機層を回収した。前記有機層を、飽和重曹水で洗浄した後、さらに、飽和食塩水で洗浄した。そして、有機層を回収し、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過し、ろ液について、減圧下で溶媒を留去した。得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:アセトン=4:1、0.05%ピリジン含有)に供した。これによって、無色シロップ状の化合物15を得た(0.87g、収率55%)。
(5) DMTr-t-butyldimethylsiloxyamide ureido-L-proline (Compound 15)
Anhydrous tetrahydrofuran solution (10 mL) was added to triphosgene (1.22 g, 4.10 mmol) under an argon atmosphere and ice cooling. An anhydrous tetrahydrofuran solution (DMr-amido-L-proline (Compound 6) (1.00 g, 2.05 mmol)) and DIEA (9.80 g, 75.8 mmol) dissolved in an argon atmosphere and ice-cooled in this mixed solution ( 10 mL) was added dropwise over 30 minutes, followed by stirring at room temperature for 1 hour. An anhydrous tetrahydrofuran solution in which 10-amino-1-t-butyldimethylsiloxydecane (2.66 g, 10.25 mmol) and DIEA (3.20 g, 24.76 mmol) were dissolved in the mixed solution under an argon atmosphere and ice-cooling. (20 mL) was added dropwise over 45 minutes. The mixture was stirred overnight at room temperature under an argon atmosphere. The mixture was diluted with ethyl acetate (200 mL), and the organic layer was collected. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, and then further washed with saturated brine. The organic layer was recovered and dried over anhydrous sodium sulfate. The organic layer was filtered, and the solvent was distilled off from the filtrate under reduced pressure. The obtained residue was subjected to silica gel column chromatography (developing solvent: dichloromethane: acetone = 4: 1, containing 0.05% pyridine). This gave colorless syrupy compound 15 (0.87 g, 55% yield).
(6)DMTr-ヒドロキシアミドウレイド-L-プロリン(化合物16)
 得られた前記DMTr-t-ブチルジメチルシロキシアミドウレイド-L-プロリン(化合物15)(0.87g、1.12mmol)に、アルゴン雰囲気下、無水テトラヒドロフランジクロロメタン溶液(10mL)を室温で加えた。前記混合液に、アルゴン雰囲気下、1mol/Lテトラブチルアンモニウムフルオリド含有テトラヒドロフラン溶液(4.69mL、東京化成)を加え、室温で3日間撹拌した。前記混合液をジクロロメタン(150mL)で希釈し、水で洗浄した後、さらに飽和食塩水で洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:アセトン=1:1、0.05%ピリジン含有)に供し、無色シロップ状の化合物16を得た(0.68g、収率92%)。以下に、化合物のNMRの結果を示す。
H-NMR (CDCl): δ7.41-7.43(m,2H,Ar-H)、7.27-7.31(m,4H,Ar-H)、7.19-7.26(m,2H,Ar-H)、7.19-7.21(m,1H,Ar-H)、6.80-6.83(m,4H,Ar-H)、4.34(t,2H,CH)、3.79(s,6H,OCH)、3.63(d,1H,J=6.4Hz,CH)、3.61(d,1H,J=6.4Hz,CH)、3.34-3.37(m,1H,CH)、3.16-3.27(m,5H),3.04(t,J=5.9Hz,2H,CH)、2.38-2.45(m,1H,CH)、1.83-2.05(m,3H)、1.45-1.64(m,8H)、1.25-1.38(m,7H).
(6) DMTr-hydroxyamidoureido-L-proline (Compound 16)
To the obtained DMTr-t-butyldimethylsiloxyamidoureido-L-proline (Compound 15) (0.87 g, 1.12 mmol), an anhydrous tetrahydrofuran dichloromethane solution (10 mL) was added at room temperature under an argon atmosphere. A 1 mol / L tetrabutylammonium fluoride-containing tetrahydrofuran solution (4.69 mL, Tokyo Kasei) was added to the mixture under an argon atmosphere, and the mixture was stirred at room temperature for 3 days. The mixture was diluted with dichloromethane (150 mL), washed with water, and further washed with saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The obtained residue was subjected to silica gel column chromatography (developing solvent: dichloromethane: acetone = 1: 1, containing 0.05% pyridine) to obtain colorless syrup-like compound 16 (0.68 g, yield 92%). . The NMR results of the compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.41-7.43 (m, 2H, Ar—H), 7.27-7.31 (m, 4H, Ar—H), 7.19-7.26 (M, 2H, Ar-H), 7.19-7.21 (m, 1H, Ar-H), 6.80-6.83 (m, 4H, Ar-H), 4.34 (t, 2H, CH 2 ), 3.79 (s, 6H, OCH 3 ), 3.63 (d, 1H, J = 6.4 Hz, CH 2 ), 3.61 (d, 1H, J = 6.4 Hz, CH 2), 3.34-3.37 (m, 1H, CH), 3.16-3.27 (m, 5H), 3.04 (t, J = 5.9Hz, 2H, CH 2), 2.38-2.45 (m, 1H, CH), 1.83 to 2.05 (m, 3H), 1.45 to 1.64 (m, 8H), 1.25 to 1.38 (m , 7H).
(7)DMTr-アミドウレイド-L-プロリンアミダイト(化合物17)
 得られた前記DMTr-ヒドロキシアミドウレイド-L-プロリン(化合物16)(0.62g、0.94mmol)を無水アセトニトリルと混合し、室温で共沸乾燥した。得られた残留物に、ジイソプロピルアンモニウムテトラゾリド(192mg、1.12mmol)を加え、減圧下で脱気し、アルゴンガスを充填した。前記混合液に対し、無水アセトニトリル(1mL)を加え、さらに、2-シアノエトキシ-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(282mg、1.12mmol)の無水アセトニトリル溶液(1mL)を加えた。この混合物を、アルゴン雰囲気下、室温で4時間撹拌した。そして、前記混合物をジクロロメタンで希釈し、飽和重曹水および飽和食塩水で、順次洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られた前記ろ液について、減圧下で溶媒を留去した。得られた残渣を、充填剤としてアミノシリカを用いたカラムクロマト(展開溶媒 ヘキサン:アセトン=1:1、0.05%ピリジン含有)に供し、無色シロップ状の化合物17を得た(0.77g、純度88%、収率84%)。以下に、化合物のNMRの結果を示す。
P-NMR (CDCl): δ147.27;
Ms (FAB+): m/z 860(M+1)、303(DMTr),201(C19OP).
(7) DMTr-amidoureido-L-proline amidite (Compound 17)
The obtained DMTr-hydroxyamidoureido-L-proline (Compound 16) (0.62 g, 0.94 mmol) was mixed with anhydrous acetonitrile and azeotropically dried at room temperature. Diisopropylammonium tetrazolide (192 mg, 1.12 mmol) was added to the resulting residue, degassed under reduced pressure, and filled with argon gas. Anhydrous acetonitrile (1 mL) was added to the mixture, and 2-cyanoethoxy-N, N, N ′, N′-tetraisopropyl phosphorodiamidite (282 mg, 1.12 mmol) in anhydrous acetonitrile (1 mL) was further added. Was added. The mixture was stirred for 4 hours at room temperature under an argon atmosphere. The mixture was diluted with dichloromethane and washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The obtained residue was subjected to column chromatography (developing solvent hexane: acetone = 1: 1, containing 0.05% pyridine) using amino silica as a filler to obtain colorless syrup-like compound 17 (0.77 g). , Purity 88%, yield 84%). The NMR results of the compound are shown below.
P-NMR (CDCl 3 ): δ 147.27;
Ms (FAB +): m / z 860 (M + +1), 303 (DMTr + ), 201 (C 8 H 19 N 2 OP + ).
(実施例B3)プロリンジアミドアミダイトの合成
 プロリン骨格を有するリンカーを含む本発明の核酸分子を生成するため、前記スキーム3により、L-プロリンジアミドアミダイトおよびD-プロリンジアミドアミダイトを合成した。
Example B3 Synthesis of Proline Diamide Amidite L-proline diamide amidite and D-proline diamide amidite were synthesized according to Scheme 3 above to generate a nucleic acid molecule of the present invention containing a linker having a proline skeleton.
(B3-1)L-プロリンジアミドアミダイト
(1)Fmoc-ヒドロキシアミド-L-プロリン(化合物4)
 前記スキーム3の化合物2(Fmoc-L-プロリン)を開始原料とした。前記化合物2(10.00g、29.64mmol)、4-アミノ-1-ブタノール(3.18g、35.56mmol)および1-ヒドロキシベンゾトリアゾール(10.90g、70.72mmol)を混合し、前記混合物に対し、減圧下で脱気し、アルゴンガスを充填した。前記混合物に、無水アセトニトリル(140mL)を室温で加え、さらに、ジシクロヘキシルカルボジイミド(7.34g、35.56mmol)の無水アセトニトリル溶液(70mL)を添加した後、アルゴン雰囲気下、室温で15時間撹拌した。反応終了後、生成した沈殿をろ別し、回収したろ液について、減圧下で溶媒を留去した。得られた残渣にジクロロメタン(200mL)を加え、飽和重曹水(200mL)で洗浄した。そして、有機層を回収し、硫酸マグネシウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去し、その残渣にジエチルエーテル(200mL)を加え、粉末化した。生じた粉末を濾取することにより、無色粉末状の化合物4(10.34g、収率84%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.76-7.83(m,2H,Ar-H)、7.50-7.63(m,2H,Ar-H)、7.38-7.43(m,2H,Ar-H)、7.28-7.33(m,2H,Ar-H),4.40-4.46(m,1H,CH),4.15-4.31(m,2H,CH),3.67-3.73(m,2H,CH)、3.35-3.52(m,2H,CH)、3.18-3.30(m,2H,CH)、2.20-2.50(m,4H)、1.81-2.03(m,3H)、1.47-1.54(m,2H);
Ms (FAB+): m/z 409(M+H).
(B3-1) L-proline diamide amidite (1) Fmoc-hydroxyamide-L-proline (compound 4)
Compound 2 (Fmoc-L-proline) in Scheme 3 was used as a starting material. Compound 2 (10.00 g, 29.64 mmol), 4-amino-1-butanol (3.18 g, 35.56 mmol) and 1-hydroxybenzotriazole (10.90 g, 70.72 mmol) were mixed, and the mixture On the other hand, it was deaerated under reduced pressure and filled with argon gas. To the mixture was added anhydrous acetonitrile (140 mL) at room temperature, and further an anhydrous acetonitrile solution (70 mL) of dicyclohexylcarbodiimide (7.34 g, 35.56 mmol) was added, followed by stirring at room temperature for 15 hours under an argon atmosphere. After completion of the reaction, the produced precipitate was filtered off, and the solvent was distilled off from the collected filtrate under reduced pressure. Dichloromethane (200 mL) was added to the resulting residue and washed with saturated aqueous sodium hydrogen carbonate (200 mL). And after collect | recovering an organic layer and drying with magnesium sulfate, the said organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure, and diethyl ether (200 mL) was added to the residue to form a powder. The resulting powder was collected by filtration to obtain colorless powdered compound 4 (10.34 g, yield 84%). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.76-7.83 (m, 2H, Ar—H), 7.50-7.63 (m, 2H, Ar—H), 7.38-7.43 (M, 2H, Ar-H), 7.28-7.33 (m, 2H, Ar-H), 4.40-4.46 (m, 1H, CH), 4.15-4.31 ( m, 2H, CH 2 ), 3.67-3.73 (m, 2H, CH 2 ), 3.35-3.52 (m, 2H, CH 2 ), 3.18-3.30 (m, 2H, CH 2), 2.20-2.50 ( m, 4H), 1.81-2.03 (m, 3H), 1.47-1.54 (m, 2H);
Ms (FAB +): m / z 409 (M + H < + > ).
(2)DMTr-アミド-L-プロリン(化合物6)
 Fmoc-ヒドロキシアミド-L-プロリン(化合物4)(7.80g、19.09mmol)を無水ピリジン(5mL)と混合し、室温で2回共沸乾燥した。得られた残留物に、4,4’-ジメトキシトリチルクロリド(8.20g、24.20mmol)、DMAP(23mg、0.19mmol)および無水ピリジン(39mL)を加えた。この混合物を、室温で1時間撹拌した後、メタノール(7.8mL)を加え、室温で30分撹拌した。この混合物を、ジクロロメタン(100mL)で希釈し、飽和重曹水(150mL)で洗浄後、有機層を分離した。前記有機層を、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた未精製の残渣に、無水ジメチルホルムアミド(39mL)およびピペリジン(18.7mL、189mmol)を加え、室温で1時間撹拌した。反応終了後、前記混合液について、減圧下、室温で、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(商品名Wakogel C-300、展開溶媒 CHCl:CHOH=9:1、0.05%ピリジン含有に供し、淡黄色油状の化合物6(9.11g、収率98%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR (CDCl): δ7.39-7.43(m,2H,Ar-H)、7.30(d,J=8.8Hz,4H,Ar-H)、7,21(tt,1H,4.9,1.3Hz,Ar-H)、6.81(d,J=8.8Hz,4H,Ar-H)、3.78(s,6H,OCH)、3.71(dd,H,J=6.3Hz,5.4Hz,CH)、3.21(2H,12.9,6.3Hz,2H,CH)、3.05(t,J=6.3Hz,2H,CH)、2.85-2.91(m,2H,CH)、2.08-2.17(m,1H,CH)、1.85-2.00(m,3H)、1.55-1.65(m,5H):
Ms (FAB+); m/z 489(M+H)、303(DMTr).
(2) DMTr-amide-L-proline (Compound 6)
Fmoc-hydroxyamide-L-proline (compound 4) (7.80 g, 19.09 mmol) was mixed with anhydrous pyridine (5 mL) and azeotropically dried twice at room temperature. To the resulting residue, 4,4′-dimethoxytrityl chloride (8.20 g, 24.20 mmol), DMAP (23 mg, 0.19 mmol) and anhydrous pyridine (39 mL) were added. The mixture was stirred at room temperature for 1 hour, methanol (7.8 mL) was added, and the mixture was stirred at room temperature for 30 minutes. The mixture was diluted with dichloromethane (100 mL), washed with saturated aqueous sodium hydrogen carbonate (150 mL), and the organic layer was separated. The organic layer was dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. To the resulting crude residue, anhydrous dimethylformamide (39 mL) and piperidine (18.7 mL, 189 mmol) were added and stirred at room temperature for 1 hour. After completion of the reaction, the solvent was distilled off from the mixed solution at room temperature under reduced pressure. The obtained residue was subjected to silica gel column chromatography (trade name Wakogel C-300, developing solvent CH 2 Cl 2 : CH 3 OH = 9: 1, containing 0.05% pyridine, to give pale yellow oily compound 6 (9. 11 g, yield 98%) The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.39-7.43 (m, 2H, Ar—H), 7.30 (d, J = 8.8 Hz, 4H, Ar—H), 7, 21 (tt , 1H, 4.9, 1.3 Hz, Ar—H), 6.81 (d, J = 8.8 Hz, 4H, Ar—H), 3.78 (s, 6H, OCH 3 ), 3.71 (Dd, H, J = 6.3 Hz, 5.4 Hz, CH), 3.21 (2H, 12.9, 6.3 Hz, 2H, CH 2 ), 3.05 (t, J = 6.3 Hz, 2H, CH 2 ), 2.85-2.91 (m, 2H, CH 2 ), 2.08-2.17 (m, 1H, CH), 1.85-2.00 (m, 3H), 1.55-1.65 (m, 5H):
Ms (FAB +); m / z 489 (M + H < + > ), 303 (DMTr <+> ).
(3)DMTr-ヒドロキシジアミド-L-プロリン(化合物8)
 得られた前記DMTr-アミド-L-プロリン(化合物6)(6.01g、12.28mmol)、EDC(2.83g、14.74mmol)、1-ヒドロキシベンゾトリアゾール(3.98g、29.47mmol)およびトリエチルアミン(4.47g、44.21mmol)の無水ジクロロメタン溶液(120mL)を混合した。この混合液に、さらに、アルゴン雰囲気下、室温で、6-ヒドロキシヘキサン酸(1.95g、14.47mmol)を加え、その後、アルゴン雰囲気下、室温で、1時間撹拌した。前記混合液をジクロロメタン(600mL)で希釈し、飽和食塩水(800mL)で3回洗浄した。有機層を回収し、前記有機層を、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。これにより、淡黄色泡状の前記化合物8(6.29g、収率85%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR (CDCl): δ7.41-7.43(m,2H,Ar-H)、7.27-7.31(m,4H,Ar-H)、7.19-7.26(m,2H,Ar-H)、7.17-7.21(m,1H,Ar-H)、6.79-6.82(m,4H,Ar-H)、4.51-4.53(m,1H,CH)、3.79(s,6H,OCH)、3.61(t,2H,J=6.4Hz,CH)、3.50-3.55(m,1H,CH)、3.36-3.43(m,1H,CH),3.15-3.24(m,2H,CH),3.04(t,J=6.3Hz,2H,CH)、2.38-2.45(m,1H,CH)、2.31(t,6.8Hz,2H,CH)、2.05-2.20(m,1H,CH)、1.92-2.00(m,1H,CH)、1.75-1.83(m,1H,CH)、1.48-1.71(m,8H)、1.35-1.44(m,2H,CH);
Ms (FAB+): m/z 602(M)、303(DMTr).
(3) DMTr-hydroxydiamide-L-proline (Compound 8)
The obtained DMTr-amide-L-proline (Compound 6) (6.01 g, 12.28 mmol), EDC (2.83 g, 14.74 mmol), 1-hydroxybenzotriazole (3.98 g, 29.47 mmol) And triethylamine (4.47 g, 44.21 mmol) in anhydrous dichloromethane (120 mL) were mixed. To this mixture was further added 6-hydroxyhexanoic acid (1.95 g, 14.47 mmol) at room temperature under an argon atmosphere, and then stirred at room temperature for 1 hour under an argon atmosphere. The mixture was diluted with dichloromethane (600 mL) and washed 3 times with saturated brine (800 mL). The organic layer was collected, and the organic layer was dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. As a result, pale yellow foamy compound 8 (6.29 g, yield 85%) was obtained. The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.41-7.43 (m, 2H, Ar—H), 7.27-7.31 (m, 4H, Ar—H), 7.19-7.26 (M, 2H, Ar-H), 7.17-7.21 (m, 1H, Ar-H), 6.79-6.82 (m, 4H, Ar-H), 4.51-4. 53 (m, 1H, CH), 3.79 (s, 6H, OCH 3 ), 3.61 (t, 2H, J = 6.4 Hz, CH 2 ), 3.50 to 3.55 (m, 1H) , CH), 3.36-3.43 (m, 1H, CH), 3.15-3.24 (m, 2H, CH 2 ), 3.04 (t, J = 6.3 Hz, 2H, CH 2 ), 2.38-2.45 (m, 1H, CH), 2.31 (t, 6.8 Hz, 2H, CH 2 ), 2.05-2.20 (m, 1H, CH), 1 .92-2.00 ( , 1H, CH), 1.75-1.83 ( m, 1H, CH), 1.48-1.71 (m, 8H), 1.35-1.44 (m, 2H, CH 2);
Ms (FAB +): m / z 602 (M <+> ), 303 (DMTr <+> ).
(4)DMTr-ジアミド-L-プロリンアミダイト(化合物10)
 得られた前記DMTr-ヒドロキシジアミド-L-プロリン(化合物8)(8.55g、14.18mmol)を無水アセトニトリルと混合し、室温で3回共沸乾燥した。得られた残留物に、ジイソプロピルアンモニウムテトラゾリド(2.91g、17.02mmol)を加え、減圧下で脱気し、アルゴンガスを充填した。前記混合物に対し、無水アセトニトリル(10mL)を加え、さらに、2-シアノエトキシ-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(5.13g、17.02mmol)の無水アセトニトリル溶液(7mL)を加えた。この混合物を、アルゴン雰囲気下、室温で2時間撹拌した。そして、前記混合物をジクロロメタンで希釈し、飽和重曹水(200mL)で3回洗浄した後、飽和食塩水(200mL)で洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られた前記ろ液について、減圧下に溶媒を留去した。得られた残渣を、充填剤としてアミノシリカゲルを用いたカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=1:3、0.05%ピリジン含有)に供し、無色シロップ状の化合物10(10.25g、純度92%、収率83%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR (CDCl): δ7.40-7.42(m,2H,Ar-H)、7.29-7.31(m,4H,Ar-H)、7.25-7.27(m,2H,Ar-H)、7.17-7.21(m,1H,Ar-H)、6.80-6.82(m,4H,Ar-H)、4.51-4.53(m,1H,CH)、3.75-3.93(m,4H)、3.79(s,6H,OCH)、3.45-3.60(m,4H)、3.35-3.45(m,1H,CH)、3.20-3.29(m,1H)、3.04(t,J=6.4Hz,2H,CH)、2.62(t,J=5.8Hz,2H,CH)、2.40-2.44(m,1H,CH)、2.31(t,7.8Hz,2H,CH)、2.03-2.19(m,1H,CH)、1.92-2.02(m,1H,CH)、1.70-1.83(m,1H,CH)、1.51-1.71(m,8H)、1.35-1.44(m,2H,CH)、1.18(d,J=6.8Hz,6H,CH)、1.16(d,J=6.8Hz,6H,CH);
P-NMR (CDCl): Msδ147.17;
Ms(FAB+): m/z 802(M)、303(DMTr),201(C19OP).
(4) DMTr-Diamide-L-proline amidite (Compound 10)
The obtained DMTr-hydroxydiamide-L-proline (Compound 8) (8.55 g, 14.18 mmol) was mixed with anhydrous acetonitrile and dried azeotropically three times at room temperature. Diisopropylammonium tetrazolide (2.91 g, 17.02 mmol) was added to the resulting residue, degassed under reduced pressure, and filled with argon gas. Anhydrous acetonitrile (10 mL) was added to the mixture, and 2-cyanoethoxy-N, N, N ′, N′-tetraisopropyl phosphorodiamidite (5.13 g, 17.02 mmol) in anhydrous acetonitrile (7 mL) was added. ) Was added. The mixture was stirred at room temperature for 2 hours under an argon atmosphere. The mixture was diluted with dichloromethane, washed 3 times with saturated aqueous sodium hydrogen carbonate (200 mL), and then washed with saturated brine (200 mL). The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The obtained residue was subjected to column chromatography using amino silica gel as a filler (developing solvent hexane: ethyl acetate = 1: 3, containing 0.05% pyridine) to give colorless syrup-like compound 10 (10.25 g, 92% purity, 83% yield). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.42 (m, 2H, Ar—H), 7.29-7.31 (m, 4H, Ar—H), 7.25-7.27 (M, 2H, Ar-H), 7.17-7.21 (m, 1H, Ar-H), 6.80-6.82 (m, 4H, Ar-H), 4.51-4. 53 (m, 1H, CH), 3.75-3.93 (m, 4H), 3.79 (s, 6H, OCH 3 ), 3.45-3.60 (m, 4H), 3.35 −3.45 (m, 1H, CH), 3.20−3.29 (m, 1H), 3.04 (t, J = 6.4 Hz, 2H, CH 2 ), 2.62 (t, J = 5.8 Hz, 2 H, CH 2 ), 2.40-2.44 (m, 1 H, CH), 2.31 (t, 7.8 Hz, 2 H, CH 2 ), 2.03-2.19 ( m, 1H, CH). 2-2.02 (m, 1H, CH), 1.70-1.83 (m, 1H, CH), 1.51-1.71 (m, 8H), 1.35-1.44 (m , 2H, CH 2 ), 1.18 (d, J = 6.8 Hz, 6H, CH 3 ), 1.16 (d, J = 6.8 Hz, 6H, CH 3 );
P-NMR (CDCl 3 ): Msδ 147.17;
Ms (FAB +): m / z 802 (M +), 303 (DMTr +), 201 (C 8 H 19 N 2 OP +).
(B3-2)D-プロリンジアミドアミダイト
(1)Fmoc-ヒドロキシアミド-D-プロリン(化合物3)
 前記スキーム3の化合物1(Fmoc-D-プロリン)を開始原料とした。前記化合物1(1.5g、4.45mmol)、ジシクロヘキシルカルボジイミド(1.1g、5.34mmol)および1-ヒドロキシベンゾトリアゾール(1.5g、10.69mmol)の混合物に対し、減圧下で脱気し、アルゴンガスを充填した。前記混合物に、無水アセトニトリル(24mL)を室温で加え、さらに、4-アミノ-1-ブタノール(0.48g、5.34mmol)の無水アセトニトリル溶液(6mL)添加した後、アルゴン雰囲気下、室温で15時間撹拌した。反応終了後、生成した沈殿をろ別し、回収したろ液について、減圧下で溶媒を留去した。得られた残渣にジクロロメタンを加え、酢酸緩衝液(pH4.0)で3回、飽和重曹水で3回洗浄した。そして、有機層を回収し、硫酸マグネシウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒留去し、その残渣にジエチルエーテル(50mL)を加え、粉末化した。生じた粉末を濾取することにより、白色粉末状の化合物3を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR (400MHz,CDCl): δ7.77(d,J=7.3Hz,2H);7.58(br,2H);7.41(t,J=7.3Hz,2H);7.32(t,J=7.3Hz,2H); 4.25-4.43(m,4H);3.25-3.61(m,6H);1.57-1.92(m,8H).
MS(FAB+): m/z 409(M+H).
(B3-2) D-proline diamide amidite (1) Fmoc-hydroxyamide-D-proline (compound 3)
Compound 1 (Fmoc-D-proline) in Scheme 3 was used as a starting material. The mixture of Compound 1 (1.5 g, 4.45 mmol), dicyclohexylcarbodiimide (1.1 g, 5.34 mmol) and 1-hydroxybenzotriazole (1.5 g, 10.69 mmol) was degassed under reduced pressure. And filled with argon gas. Anhydrous acetonitrile (24 mL) was added to the mixture at room temperature, and further 4-amino-1-butanol (0.48 g, 5.34 mmol) in anhydrous acetonitrile (6 mL) was added. Stir for hours. After completion of the reaction, the produced precipitate was filtered off, and the solvent was distilled off from the collected filtrate under reduced pressure. Dichloromethane was added to the resulting residue, and the mixture was washed 3 times with an acetic acid buffer (pH 4.0) and 3 times with a saturated aqueous sodium bicarbonate solution. And after collect | recovering an organic layer and drying with magnesium sulfate, the said organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure, and diethyl ether (50 mL) was added to the residue to form a powder. The resulting powder was collected by filtration to obtain Compound 3 as a white powder. The NMR results of the above compound are shown below.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.77 (d, J = 7.3 Hz, 2H); 7.58 (br, 2H); 7.41 (t, J = 7.3 Hz, 2H); 7.32 (t, J = 7.3 Hz, 2H); 4.25-4.43 (m, 4H); 3.25-3.61 (m, 6H); 1.57-1.92 (m , 8H).
MS (FAB +): m / z 409 (M + H < + > ).
(2)DMTr-アミド-D-プロリン(化合物5)
 Fmoc-ヒドロキシアミド-D-プロリン(化合物3)(1.0g、2.45mmol)を無水ピリジン(5mL)と混合し、室温で2回共沸乾燥した。得られた残留物に、4,4’-ジメトキシトリチルクロリド(1.05g、3.10mmol)、DMAP(3mg、0.024mmol)および無水ピリジン(5mL)を加えた。この混合物を、室温で1時間撹拌した後、メタノール(1mL)を加え、室温で30分撹拌した。この混合物を、ジクロロメタンで希釈し、飽和重曹水で洗浄後、有機層を分離した。前記有機層を、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた未精製の残渣に、無水ジメチルホルムアミド(5mL)およびピペリジン(2.4mL、24mmol)を加え、室温で1時間撹拌した。反応終了後、前記混合液について、減圧下、室温で、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(商品名Wakogel C-300、展開溶媒 CHCl:CHOH=9:1、0.05%ピリジン含有)に供し、淡黄色油状の化合物5(1.26g、収率96%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(400MHz, CDCl): δ7.62(br,1H);7.41-7.44(m,2H);7.26-7.33(m,6H);7.17-7.22(m,1H);6.80-6.84(m,4H);3.78(s,6H);3.71(dd,J=8.8,5.4Hz,1H);3.22 (q,6.5Hz,2H);3.07(t, J=6.1Hz,2H);2.97-3.03(m,1H);2.85-2.91(m,1H);1.85-2.15(m,3H);1.55-1.73(m,6H).
MS (FAB+): m/z 489 (M+H), 303(DMTr).
(2) DMTr-amide-D-proline (compound 5)
Fmoc-hydroxyamide-D-proline (compound 3) (1.0 g, 2.45 mmol) was mixed with anhydrous pyridine (5 mL) and dried azeotropically twice at room temperature. To the obtained residue, 4,4′-dimethoxytrityl chloride (1.05 g, 3.10 mmol), DMAP (3 mg, 0.024 mmol) and anhydrous pyridine (5 mL) were added. The mixture was stirred at room temperature for 1 hour, methanol (1 mL) was added, and the mixture was stirred at room temperature for 30 minutes. The mixture was diluted with dichloromethane and washed with saturated aqueous sodium hydrogen carbonate, and the organic layer was separated. The organic layer was dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. To the resulting crude residue, anhydrous dimethylformamide (5 mL) and piperidine (2.4 mL, 24 mmol) were added and stirred at room temperature for 1 hour. After completion of the reaction, the solvent was distilled off from the mixed solution at room temperature under reduced pressure. The obtained residue was subjected to silica gel column chromatography (trade name: Wakogel   C-300, developing solvent CH 2 Cl 2 : CH 3 OH = 9: 1, containing 0.05% pyridine) to obtain Compound 5 (1.26 g, yield 96%) as a pale yellow oil. The NMR results of the above compound are shown below.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (br, 1H); 7.41-7.44 (m, 2H); 7.26-7.33 (m, 6H); 7.17- 7.22 (m, 1H); 6.80-6.84 (m, 4H); 3.78 (s, 6H); 3.71 (dd, J = 8.8, 5.4 Hz, 1H); 3.22 (q, 6.5 Hz, 2H); 3.07 (t, J = 6.1 Hz, 2H); 2.97-3.03 (m, 1H); 2.85-2.91 (m , 1H); 1.85-2.15 (m, 3H); 1.55-1.73 (m, 6H).
MS (FAB +): m / z 489 (M + H < + > ), 303 (DMTr <+> ).
(3)DMTr-ヒドロキシジアミド-D-プロリン(化合物7)
 得られた前記DMTr-アミド-D-プロリン(化合物5)(1.2g、2.45mmol)、EDC(566mg、2.95mmol)、1-ヒドロキシベンゾトリアゾール(796mg、5.89mmol)、およびトリエチルアミン(1.2mL、8.84mmol)の無水ジクロロメタン溶液(24mL)を混合した。この混合液に、さらに、アルゴン雰囲気下、室温で、6-ヒドロキシヘキサン酸(390mg、2.95mmol)を加え、その後、アルゴン雰囲気下、室温で1時間撹拌した。前記混合液をジクロロメタンで希釈し、飽和重曹水で3回洗浄した。有機層を回収し、前記有機層を、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。これにより、淡黄色油状の化合物7(1.4g、収率95%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(400MHz,CDCl): δ7.40-7.43(m,2H);7.25-7.32(m,6H);7.17-7.22(m,1H);6.79-6.83(m,4H);3.79(s,6H);3.58-3.63(m,2H);3.49-3.55(m,1H);3.15-3.26(m,2H);3.02-3.07(m,2H);2.30-2.33(m,2H);2.11-2.20(m,1H);1.50-1.99(m,13H);1.36-1.43(m,2H).
MS(FAB+): m/z 602(M),303(DMTr).
(3) DMTr-hydroxydiamide-D-proline (Compound 7)
The obtained DMTr-amide-D-proline (compound 5) (1.2 g, 2.45 mmol), EDC (566 mg, 2.95 mmol), 1-hydroxybenzotriazole (796 mg, 5.89 mmol), and triethylamine ( 1.2 mL, 8.84 mmol) in anhydrous dichloromethane (24 mL) was mixed. To this mixture was further added 6-hydroxyhexanoic acid (390 mg, 2.95 mmol) at room temperature under an argon atmosphere, and then stirred at room temperature for 1 hour under an argon atmosphere. The mixture was diluted with dichloromethane and washed 3 times with saturated aqueous sodium bicarbonate. The organic layer was collected, and the organic layer was dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. This gave compound 7 (1.4 g, yield 95%) as a pale yellow oil. The NMR results of the above compound are shown below.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.40-7.43 (m, 2H); 7.25-7.32 (m, 6H); 7.17-7.22 (m, 1H); 6.79-6.83 (m, 4H); 3.79 (s, 6H); 3.58-3.63 (m, 2H); 3.49-3.55 (m, 1H); 15-3.26 (m, 2H); 3.02-3.07 (m, 2H); 2.30-2.33 (m, 2H); 2.11-2.20 (m, 1H); 1.50-1.99 (m, 13H); 1.36-1.43 (m, 2H).
MS (FAB +): m / z 602 (M <+> ), 303 (DMTr <+> ).
(4)DMTr-ジアミド-D-プロリンアミダイト(化合物9)
 得られた前記DMTr-ヒドロキシジアミド-D-プロリン(化合物7)(1.2g、1.99mmol)を無水アセトニトリルと混合し、室温で3回共沸乾燥した。得られた残留物に、ジイソプロピルアンモニウムテトラゾリド(410mg、2.40mmol)を加え、減圧下で脱気し、アルゴンガスを充填した。前記混合物に対し、無水アセトニトリル(2.4mL)を加え、さらに、2-シアノエトキシ-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(722mg、2.40mmol)を加えた。この混合物を、アルゴン雰囲気下、室温で2時間撹拌した。そして、前記混合物をジクロロメタンで希釈し、飽和重曹水で3回洗浄後、飽和食塩水で洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた残渣を、充填剤としてアミノシリカゲルを用いたカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=1:3)に供し、無色油状の化合物9(1.4g、純度95%、収率83%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(400MHz,CDCl): δ7.40-7.43(m,2H);7.25-7.32(m,6H);7.14-7.21(m,1H);6.80-6.83(m,4H);3.80-3.85(m,2H);3.79(s,6H);3.49-3.65(m,5H);3.02-3.06(m,2H);2.60-2.63(m,2H);2.29-2.33(m,2H);1.77-1.82(m,2H);1.56-1.68(m,8H);1.38-1.43(m,2H);1.15-1.29(m,18H).
31P-NMR (162MHz,CDCl): δ146.94.
MS (FAB+): m/z 802(M),303(DMTr),201(C19OP).
(4) DMTr-Diamide-D-proline amidite (Compound 9)
The obtained DMTr-hydroxydiamide-D-proline (compound 7) (1.2 g, 1.99 mmol) was mixed with anhydrous acetonitrile and dried azeotropically three times at room temperature. Diisopropylammonium tetrazolide (410 mg, 2.40 mmol) was added to the obtained residue, degassed under reduced pressure, and filled with argon gas. To the mixture was added anhydrous acetonitrile (2.4 mL), and 2-cyanoethoxy-N, N, N ′, N′-tetraisopropyl phosphorodiamidite (722 mg, 2.40 mmol) was further added. The mixture was stirred at room temperature for 2 hours under an argon atmosphere. The mixture was diluted with dichloromethane, washed 3 times with saturated aqueous sodium hydrogen carbonate, and then washed with saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The obtained residue was subjected to column chromatography (developing solvent hexane: ethyl acetate = 1: 3) using amino silica gel as a filler to give colorless oily compound 9 (1.4 g, purity 95%, yield 83%). ) The NMR results of the above compound are shown below.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.40-7.43 (m, 2H); 7.25-7.32 (m, 6H); 7.14-7.21 (m, 1H); 6.80-6.83 (m, 4H); 3.80-3.85 (m, 2H); 3.79 (s, 6H); 3.49-3.65 (m, 5H); 02-3.06 (m, 2H); 2.60-2.63 (m, 2H); 2.29-2.33 (m, 2H); 1.77-1.82 (m, 2H); 1.56-1.68 (m, 8H); 1.38-1.43 (m, 2H); 1.15-1.29 (m, 18H).
31 P-NMR (162 MHz, CDCl 3 ): δ146.94.
MS (FAB +): m / z 802 (M +), 303 (DMTr +), 201 (C 8 H 19 N 2 OP +).
(実施例B4)
 プロリン骨格を有するリンカーを含む本発明の核酸分子を生成するため、下記スキーム4により、L-プロリンジアミドアミダイトタイプBを合成した。
(Example B4)
In order to generate a nucleic acid molecule of the present invention containing a linker having a proline skeleton, L-proline diamide amidite type B was synthesized according to Scheme 4 below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(1)Fmoc-t-ブチル-ジメチルシロキシアミド-L-プロリン(化合物18)
 Fmoc-ヒドロキシアミド-L-プロリン(化合物4)(2.00g、30mmol)、t-ブチル-ジメチルシリルクロリド(1.11g、35mmol)およびイミダゾール(10.90g、71mmol)を混合した。前記混合物に対し、減圧下に脱気し、アルゴンガスを充填した。前記混合物に、無水アセトニトリル(20mL)を室温で加え、アルゴン雰囲気下、室温で終夜撹拌した。反応終了後、前記混合物にジクロロメタン(150mL)を加え、水で3回洗浄し、飽和食塩水で洗浄した。有機層を回収し、硫酸マグネシウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去し、その残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 CHCl:CHOH=95:5)に供し、無色シロップ状の化合物18(2.35g、収率92%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.76-7.78(m,2H,Ar-H)、7.50-7.63(m,2H,Ar-H)、7.38-7.42(m,2H,Ar-H)、7.29-7.34(m,2H,Ar-H),4.10-4.46(m,4H,CH),3.47-3.59(m,4H,CH)、3.20-3.26(m,2H,CH)、1.85-1.95(m,2H)、1.42-1.55(m,6H)、0.96(s,9H,t-Bu)、0.02(s,6H,SiCH);
Ms(FAB+): m/z 523(M+H).
(1) Fmoc-t-butyl-dimethylsiloxyamide-L-proline (Compound 18)
Fmoc-hydroxyamide-L-proline (compound 4) (2.00 g, 30 mmol), t-butyl-dimethylsilyl chloride (1.11 g, 35 mmol) and imidazole (10.90 g, 71 mmol) were mixed. The mixture was degassed under reduced pressure and filled with argon gas. To the mixture was added anhydrous acetonitrile (20 mL) at room temperature, and the mixture was stirred at room temperature overnight under an argon atmosphere. After completion of the reaction, dichloromethane (150 mL) was added to the mixture, washed 3 times with water, and washed with saturated brine. The organic layer was collected and dried over magnesium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography (developing solvent CH 2 Cl 2 : CH 3 OH = 95: 5) to give colorless syrup-like compound 18 (2. 35 g, yield 92%). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.76-7.78 (m, 2H, Ar—H), 7.50-7.63 (m, 2H, Ar—H), 7.38-7.42 (m, 2H, Ar-H ), 7.29-7.34 (m, 2H, Ar-H), 4.10-4.46 (m, 4H, CH 2), 3.47-3.59 (M, 4H, CH 2 ), 3.20-3.26 (m, 2H, CH), 1.85-1.95 (m, 2H), 1.42-1.55 (m, 6H), 0.96 (s, 9H, t-Bu), 0.02 (s, 6H, SiCH 3 );
Ms (FAB +): m / z 523 (M + H < + > ).
(2)t-ブチル-ジメチルシロキシアミド-L-プロリン(化合物19)
 得られた前記Fmoc-t-ブチル-ジメチルシロキシアミド-L-プロリン(化合物18)(1.18g、2.5mmol)に対し、無水アセトニトリル(5mL)およびピペリジン(2.4mL)を加え、室温で1時間撹拌した。反応終了後、前記混合物にアセトニトリル(50mL)を加え、不溶物をろ別した。得られたろ液について、減圧下で溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 CHCl:CHOH=9:1)に供し、無色シロップ状の化合物19(0.61g、収率90%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ3.71(dd,1H,J=9.0Hz,5.2Hz,CH)、3.61-3.64 (m,2H,CH)、3.22-3.28(m,2H,CH)、2.98-3.04(m,1H,CH)、2.86-2.91(m,1H,CH)、2.08-2.17(m,1H,CH)、1.86-1.93(m,1H,CH)、1.66-1.75(m,2H,CH)、1.52-1.57(m,4H)、0.89(s,9H,t-Bu)、0.05(s,6H,SiCH):
Ms(FAB+); m/z 301 (M+H).
(2) t-butyl-dimethylsiloxyamide-L-proline (Compound 19)
To the obtained Fmoc-t-butyl-dimethylsiloxyamide-L-proline (compound 18) (1.18 g, 2.5 mmol), anhydrous acetonitrile (5 mL) and piperidine (2.4 mL) were added, and at room temperature. Stir for 1 hour. After completion of the reaction, acetonitrile (50 mL) was added to the mixture, and insolubles were filtered off. About the obtained filtrate, the solvent was distilled off under reduced pressure, and the resulting residue was subjected to silica gel column chromatography (developing solvent CH 2 Cl 2 : CH 3 OH = 9: 1) to give colorless syrup-like compound 19 ( 0.61 g, yield 90%) was obtained. The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 3.71 (dd, 1H, J = 9.0 Hz, 5.2 Hz, CH), 3.61-3.64 (m, 2H, CH 2 ), 3.22- 3.28 (m, 2H, CH 2 ), 2.98-3.04 (m, 1H, CH), 2.86-2.91 (m, 1H, CH), 2.08-2.17 ( m, 1H, CH), 1.86-1.93 (m, 1H, CH), 1.66-1.75 (m, 2H, CH 2), 1.52-1.57 (m, 4H) , 0.89 (s, 9H, t-Bu), 0.05 (s, 6H, SiCH 3 ):
Ms (FAB +); m / z 301 (M + H + ).
(3)t-ブチル-ジメチルシロキシアミドヒドロキシアミド-L-プロリン (化合物20)
 得られた前記t-ブチル-ジメチルシロキシアミド-L-プロリン(化合物19)(550mg、1.8mmol)、6-ヒドロキシヘキサン酸(300mg、2.3mmol)、EDC(434mg、2.3mmol)、および1-ヒドロキシベンゾトリアゾール(695mg、4.5mmol)の無水ジクロロメタン溶液(20mL)を混合した。前記混合物に、アルゴン雰囲気下、室温で、トリエチルアミン(689mg、6.8mmol)を加え、その後、アルゴン雰囲気下、室温で、終夜撹拌した。前記混合液を飽和食塩水で洗浄した。有機層を回収し、前記を無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 CHCl:CHOH=9:1)に供し、無色シロップ状の化合物20(696mg、収率92%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ4.54(d,1H,CH)、3.58-3.67(m,5H)、3.52-3.56(m,1H,CH),3.32-3.39(m,1H),3.20-3.25(m,2H)、2.40-2.43(m,1H,CH)、2.33(t,J=7.3Hz,2H,CH)、2.05-2.25(m,2H)、1.93-2.03(m,1H,CH)、1.75-1.85(m,1H,CH)、1.50-1.73(m,8H)、1.37-1.46(m,2H,CH)、0.87(s, 9H,t-Bu)、0.04(s,6H,SiCH);
Ms(FAB+): m/z 415(M+1).
(3) t-butyl-dimethylsiloxyamide hydroxyamide-L-proline (Compound 20)
The resulting t-butyl-dimethylsiloxyamide-L-proline (Compound 19) (550 mg, 1.8 mmol), 6-hydroxyhexanoic acid (300 mg, 2.3 mmol), EDC (434 mg, 2.3 mmol), and An anhydrous dichloromethane solution (20 mL) of 1-hydroxybenzotriazole (695 mg, 4.5 mmol) was mixed. Triethylamine (689 mg, 6.8 mmol) was added to the mixture at room temperature under an argon atmosphere, and then the mixture was stirred overnight at room temperature under an argon atmosphere. The mixture was washed with saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The resulting residue was subjected to silica gel column chromatography (developing solvent CH 2 Cl 2 : CH 3 OH = 9: 1) to obtain colorless syrup-like compound 20 (696 mg, yield 92%). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 4.54 (d, 1H, CH), 3.58-3.67 (m, 5H), 3.52-3.56 (m, 1H, CH), 3. 32-3.39 (m, 1H), 3.20-3.25 (m, 2H), 2.40-2.43 (m, 1H, CH), 2.33 (t, J = 7.3 Hz) , 2H, CH 2 ), 2.05-2.25 (m, 2H), 1.93-2.03 (m, 1H, CH), 1.75-1.85 (m, 1H, CH), 1.50-1.73 (m, 8H), 1.37-1.46 (m, 2H, CH 2 ), 0.87 (s, 9H, t-Bu), 0.04 (s, 6H, SiCH 3 );
Ms (FAB +): m / z 415 (M ++ 1).
(4)DMTr-ヒドロキシジアミド-L-プロリンタイプB(化合物21)
 得られた前記t-ブチル-ジメチルシロキシアミドヒドロキシアミド-L-プロリン(化合物20)(640mg、1.54mmol)を無水ピリジン(1mL)と混合し、室温で共沸乾燥した。得られた残留物に、4,4’-ジメトキシトリチルクロリド(657mg、1.85mmol)、DMAP(2mg)および無水ピリジン(5mL)を加え、室温で4時間撹拌した後、メタノール(1mL)を加え、30分室温で撹拌した。前記混合物をジクロロメタンで希釈し、飽和重曹水で洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた残渣に、無水アセトニトリル(5mL)および1mol/Lテトラブチルアンモニウムフルオリド含有テトラヒドロフラン溶液(1.42mL、テトラブチルアンモニウムフルオリド1.42mmol)を加え、室温で終夜撹拌した。反応終了後、前記混合物に酢酸エチル(100mL)を加え、水で洗浄した後、飽和食塩水で洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下に溶媒を留去した。得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒 CHCl:CHOH=95:5、0.05%ピリジン含有)に供し、無色シロップ状の化合物21(680mg、収率73%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.41-7.44(m,2H,Ar-H)、7.26-7.33(m,4H,Ar-H)、7.18-7.21(m,2H,Ar-H)、7.17-7.21(m,1H,Ar-H)、6.80-6.84(m,4H,Ar-H)、4.51-4.53(d,6.8Hz,1H,CH)、3.79(s,6H,OCH)、3.61(dd,2H,J=11Hz,5.4Hz,CH)、3.50-3.54(m,1H,CH)、3.36-3.43(m,1H,CH),3.20-3.26(m,2H,CH),3.05(t,J=6.4Hz,2H,CH)、2.38-2.45(m,1H,CH)、2.30(t,J=7.8Hz,2H,CH)、2.05-2.25(m,1H,CH)、1.92-2.00(m,1H,CH)、1.75-1.83(m,1H,CH)、1.52-1.67(m,8H)、1.35-1.45(m,2H,CH);
Ms(FAB+): m/z 602(M)、303(DMTr).
(4) DMTr-hydroxydiamide-L-proline type B (Compound 21)
The obtained t-butyl-dimethylsiloxyamide hydroxyamide-L-proline (Compound 20) (640 mg, 1.54 mmol) was mixed with anhydrous pyridine (1 mL) and azeotropically dried at room temperature. To the obtained residue, 4,4′-dimethoxytrityl chloride (657 mg, 1.85 mmol), DMAP (2 mg) and anhydrous pyridine (5 mL) were added, and the mixture was stirred at room temperature for 4 hours, and then methanol (1 mL) was added. And stirred for 30 minutes at room temperature. The mixture was diluted with dichloromethane and washed with saturated aqueous sodium hydrogen carbonate. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. To the obtained residue were added anhydrous acetonitrile (5 mL) and 1 mol / L tetrabutylammonium fluoride-containing tetrahydrofuran solution (1.42 mL, tetrabutylammonium fluoride 1.42 mmol), and the mixture was stirred at room temperature overnight. After completion of the reaction, ethyl acetate (100 mL) was added to the mixture, washed with water, and then washed with saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The obtained residue was subjected to silica gel column chromatography (developing solvent CH 2 Cl 2 : CH 3 OH = 95: 5, containing 0.05% pyridine) to give colorless syrup-like compound 21 (680 mg, yield 73%). Got. The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.41-7.44 (m, 2H, Ar—H), 7.26-7.33 (m, 4H, Ar—H), 7.18-7.21 (M, 2H, Ar-H), 7.17-7.21 (m, 1H, Ar-H), 6.80-6.84 (m, 4H, Ar-H), 4.51-4. 53 (d, 6.8 Hz, 1 H, CH), 3.79 (s, 6 H, OCH 3 ), 3.61 (dd, 2 H, J = 11 Hz, 5.4 Hz, CH 2 ), 3.50-3 .54 (m, 1H, CH), 3.36-3.43 (m, 1H, CH), 3.20-3.26 (m, 2H, CH 2 ), 3.05 (t, J = 6 .4 Hz, 2 H, CH 2 ), 2.38-2.45 (m, 1 H, CH), 2.30 (t, J = 7.8 Hz, 2 H, CH 2 ), 2.05-2.25 ( m, 1H, C H), 1.92-2.00 (m, 1H, CH), 1.75-1.83 (m, 1H, CH), 1.52-1.67 (m, 8H), 1.35 1.45 (m, 2H, CH 2 );
Ms (FAB +): m / z 602 (M <+> ), 303 (DMTr <+> ).
(5)DMTr-ジアミド-L-プロリンアミダイトタイプB(化合物22)
 得られた前記DMTr-ヒドロキシジアミド-L-プロリン タイプB(化合物21)(637mg、1.06mmol)を無水アセトニトリルと混合し、室温で共沸乾燥した。得られた残留物に、ジイソプロピルアンモニウムテトラゾリド(201mg、1.16mmol)を加え、減圧下で脱気し、アルゴンガスを充填した。前記混合物に対し、無水アセトニトリル(1mL)を加え、さらに、2-シアノエトキシ-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(350mg、1.16mmol)の無水アセトニトリル溶液(1mL)を加えた。この混合物を、アルゴン雰囲気下、室温で4時間撹拌した。前記混合物をジクロロメタンで希釈し、飽和重曹水および飽和食塩水で洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた残渣を、充填剤としてアミノシリカゲルを用いたカラムクロマトグラフィー(展開溶媒 ヘキサン:アセトン=7:3)に供し、無色シロップ状の化合物22(680mg、純度95%、収率76%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.41-7.43(m,2H,Ar-H)、7.25-7.32(m,4H,Ar-H)、7.17-7.22(m,2H,Ar-H)、6.80-6.83(m,4H,Ar-H)、4.53(d,J=7.8Hz,1H,CH)、3.75-3.93(m,3H)、3.79(s,6H,OCH)、3.46-3.68(m,5H)、3.34-3.41(m,1H,CH)、3.10-3.31(m,1H,CH)、3.05(t,J=6.3Hz,2H,CH)、2.62(t,J=6.3Hz,2H,CH)、2.39-2.46(m,1H,CH)、2.29(t,7.3Hz,2H,CH)、2.03-2.19(m,1H,CH)、1.90-2.00(m,1H,CH)、1.70-1.83(m,1H,CH)、1.51-1.71(m,8H)、1.35-1.45(m,2H,CH)、1.18(d,J=6.4Hz,6H,CH)、1.16(d,J=6.4 Hz,6H,CH);
P-NMR(CHCN): δ146.90;
Ms(FAB+): m/z 803(M+1)、303(DMTr).
(5) DMTr-Diamide-L-proline amidite type B (Compound 22)
The obtained DMTr-hydroxydiamide-L-proline type B (Compound 21) (637 mg, 1.06 mmol) was mixed with anhydrous acetonitrile and azeotropically dried at room temperature. Diisopropylammonium tetrazolide (201 mg, 1.16 mmol) was added to the obtained residue, degassed under reduced pressure, and filled with argon gas. Anhydrous acetonitrile (1 mL) was added to the mixture, and an anhydrous acetonitrile solution (1 mL) of 2-cyanoethoxy-N, N, N ′, N′-tetraisopropyl phosphorodiamidite (350 mg, 1.16 mmol) was further added. added. The mixture was stirred for 4 hours at room temperature under an argon atmosphere. The mixture was diluted with dichloromethane and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The obtained residue was subjected to column chromatography using amino silica gel as a filler (developing solvent hexane: acetone = 7: 3) to give colorless syrup-like compound 22 (680 mg, purity 95%, yield 76%). Obtained. The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.41-7.43 (m, 2H, Ar—H), 7.25-7.32 (m, 4H, Ar—H), 7.17-7.22 (M, 2H, Ar-H), 6.80-6.83 (m, 4H, Ar-H), 4.53 (d, J = 7.8 Hz, 1H, CH), 3.75-3. 93 (m, 3H), 3.79 (s, 6H, OCH 3 ), 3.46-3.68 (m, 5H), 3.34-3.41 (m, 1H, CH), 3.10 −3.31 (m, 1H, CH), 3.05 (t, J = 6.3 Hz, 2H, CH 2 ), 2.62 (t, J = 6.3 Hz, 2H, CH 2 ), 2. 39-2.46 (m, 1 H, CH), 2.29 (t, 7.3 Hz, 2 H, CH 2 ), 2.03-2.19 (m, 1 H, CH), 1.90-2. 00 (m, 1H, CH , 1.70-1.83 (m, 1H, CH ), 1.51-1.71 (m, 8H), 1.35-1.45 (m, 2H, CH 2), 1.18 (d , J = 6.4Hz, 6H, CH 3), 1.16 (d, J = 6.4 Hz, 6H, CH 3);
P-NMR (CH 3 CN): δ 146.90;
Ms (FAB +): m / z 803 (M + +1), 303 (DMTr + ).
(実施例B5)
 プロリン骨格を有するリンカーを含む本発明の核酸分子を生成するため、下記スキーム5により、DMTr-アミドエチレンオキシエチルアミノ-L-プロリンアミダイト(以下、PEGスペーサータイプという)を合成した。
(Example B5)
In order to generate the nucleic acid molecule of the present invention containing a linker having a proline skeleton, DMTr-amidoethyleneoxyethylamino-L-proline amidite (hereinafter referred to as PEG spacer type) was synthesized according to Scheme 5 below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(1)DMTr-アミドヒドロキシエトキシエチルアミノ-L-プロリン(化合物23)
 DMTr-アミド-L-プロリン(化合物6)(1.00g、2.05mmol)、4-トルエンスルホン酸2-(2-ヒドロキシエトキシ)エチルエステル(3.10g、12.30mmol)、および炭酸カリウム(0.85g、6.15mmol)の無水ジメチルホルムアミド溶液(10mL)を混合し、アルゴン雰囲気下、室温で4日間撹拌した。前記混合物について、減圧化、室温で溶媒を留去した後、ジクロロメタン(20mL)を加え、ろ過した。ろ液を濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーに供した。前記シリカゲルカラムクロマトグラフィーの添加溶媒は、まず、0.05%ピリジンを含む酢酸エチルを使用した後、0.05%ピリジンを含むCHClとCHOHの混合液(CHCl:CHOH=9::1)を使用した。その結果、無色シロップ状の化合物23(1.15g、収率97%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.41-7.45(m,2H,Ar-H)、7.27-7.31(m,6H,Ar-H)、7.17-7.21(m,1H,Ar-H)、6.79-6.82(m,4H,Ar-H)、3.79(s,6H,OCH)、3.60-3.70(m,2H)、3.39-3.57(m,4H),3.13-3.27(m,3H),3.07-3.08(m,2H)、2.71-2.84(m,1H)、2.38-2.46(m,1H)、2.14-2.19(m,1H)、1.84-1.87(m,1H)、1.57-1.76 (m,8H).
(1) DMTr-amidohydroxyethoxyethylamino-L-proline (Compound 23)
DMTr-amide-L-proline (Compound 6) (1.00 g, 2.05 mmol), 4-toluenesulfonic acid 2- (2-hydroxyethoxy) ethyl ester (3.10 g, 12.30 mmol), and potassium carbonate ( 0.85 g, 6.15 mmol) in anhydrous dimethylformamide solution (10 mL) was mixed and stirred at room temperature for 4 days under an argon atmosphere. About the said mixture, after depressurizing and distilling a solvent off at room temperature, the dichloromethane (20 mL) was added and it filtered. The filtrate was concentrated and the obtained residue was subjected to silica gel column chromatography. As an additive solvent for the silica gel column chromatography, first, ethyl acetate containing 0.05% pyridine was used, and then a mixed solution of CH 2 Cl 2 and CH 3 OH containing 0.05% pyridine (CH 2 Cl 2 : CH 3 OH = 9 :: 1) was used. As a result, colorless syrup-like compound 23 (1.15 g, yield 97%) was obtained. The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.41-7.45 (m, 2H, Ar—H), 7.27-7.31 (m, 6H, Ar—H), 7.17-7.21 (M, 1H, Ar—H), 6.79-6.82 (m, 4H, Ar—H), 3.79 (s, 6H, OCH 3 ), 3.60-3.70 (m, 2H) ), 3.39-3.57 (m, 4H), 3.13-3.27 (m, 3H), 3.07-3.08 (m, 2H), 2.71-2.84 (m) , 1H), 2.38-2.46 (m, 1H), 2.14-2.19 (m, 1H), 1.84-1.87 (m, 1H), 1.57-1.76. (M, 8H).
(2)DMTr-アミドエチレンオキシエチルアミノ-L-プロリンアミダイト(化合物24)
 得られた前記DMTr-アミドヒドロキシエトキシエチルアミノ-L-プロリン(化合物23)(0.63g、1.00mmol)を無水ピリジンと混合し、室温で共沸乾燥した。得られた残留物に、ジイソプロピルアンモニウムテトラゾリド(206mg、1.20mmol)を加え、減圧下で脱気し、アルゴンガスを充填した。前記混合物に対し、無水アセトニトリル(1mL)を加え、さらに、2-シアノエトキシ-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(282mg、1.12mmol)の無水アセトニトリル溶液(1mL)を加えた。この混合物を、アルゴン雰囲気下、室温で4時間撹拌した。そして、前記混合物をジクロロメタンで希釈し、飽和重曹水および飽和食塩水で洗浄した。有機層を回収し、無水硫酸ナトリウムで乾燥した後、前記有機層をろ過した。得られた前記ろ液について、減圧下で溶媒を留去した。得られた残渣を、充填剤としてアミノシリカゲルを用いたカラムクロマトグラフィー(展開溶媒 ヘキサン:アセトン=7:3、0.05%ピリジン含有)に供し、無色シロップ状の化合物24(0.74g、純度100%、収率87%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCN): δ7.41-7.43(m,2H,Ar-H)、7.28-7.31(m,6H,Ar-H)、7.18-7.22(m,1H,Ar-H)、6.84-6.86(m,4H, Ar-H)、3.73-3.84(m,2H,CH)、3.79(s,6H,OCH)、3.47-3.64(m,7H)、3.15-3.23(m,1H)、3.11(t,J=6.4Hz,2H,CH)、3.01(t,J=5.9Hz,2H,CH)、2.95-2.99(m,1H)、2.58-2.63(m,2H)、2.31-2.35(m,1H,CH)、2.03-2.19(m,1H,CH)、1.48-1.78(m,10H)、1.12-1.57(m,12H,CH);
P-NMR(CDCN) :δ148.00;
Ms(FAB+): m/z 776(M)、303(DMTr) 201(C19OP).
(2) DMTr-amidoethyleneoxyethylamino-L-proline amidite (Compound 24)
The obtained DMTr-amidohydroxyethoxyethylamino-L-proline (Compound 23) (0.63 g, 1.00 mmol) was mixed with anhydrous pyridine and azeotropically dried at room temperature. Diisopropylammonium tetrazolide (206 mg, 1.20 mmol) was added to the obtained residue, degassed under reduced pressure, and filled with argon gas. Anhydrous acetonitrile (1 mL) was added to the mixture, and an anhydrous acetonitrile solution (1 mL) of 2-cyanoethoxy-N, N, N ′, N′-tetraisopropyl phosphorodiamidite (282 mg, 1.12 mmol) was further added. added. The mixture was stirred for 4 hours at room temperature under an argon atmosphere. The mixture was diluted with dichloromethane and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic layer was collected and dried over anhydrous sodium sulfate, and then the organic layer was filtered. About the obtained filtrate, the solvent was distilled off under reduced pressure. The obtained residue was subjected to column chromatography (developing solvent hexane: acetone = 7: 3, containing 0.05% pyridine) using amino silica gel as a filler, and colorless syrup-like compound 24 (0.74 g, purity) 100%, yield 87%). The NMR results of the above compound are shown below.
1 H-NMR (CD 3 CN): δ 7.41-7.43 (m, 2H, Ar—H), 7.28-7.31 (m, 6H, Ar—H), 7.18-7. 22 (m, 1H, Ar—H), 6.84-6.86 (m, 4H, Ar—H), 3.73-3.84 (m, 2H, CH 2 ), 3.79 (s, 6H, OCH 3 ), 3.47-3.64 (m, 7H), 3.15-3.23 (m, 1H), 3.11 (t, J = 6.4 Hz, 2H, CH 2 ), 3.01 (t, J = 5.9 Hz, 2H, CH 2 ), 2.95-2.99 (m, 1H), 2.58-2.63 (m, 2H), 2.31-2. 35 (m, 1H, CH), 2.03-2.19 (m, 1H, CH), 1.48-1.78 (m, 10H), 1.12-1.57 (m, 12H, CH) 3 );
P-NMR (CD 3 CN): δ 148.00;
Ms (FAB +): m / z 776 (M +), 303 (DMTr +) 201 (C 8 H 19 N 2 OP +).
(実施例B6)
1.保護プロリノールの合成
 以下に示すスキーム6に従い、ジメトキシトリチル基で保護されたプロリノール(化合物3)を合成した。
(Example B6)
1. Synthesis of Protected Prolinol Prolinol (compound 3) protected with a dimethoxytrityl group was synthesized according to Scheme 6 shown below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(1)トリフルオロアセチル-L-プロリノール(化合物1)
 L-プロリノール(2.0g、20mmol)をTHF20mLに溶解した。他方、トリフルオロ酢酸エチル(3.0g、21mmol)をTHF20mLに溶解した。そして、後者のTHF溶液を、前者のL-プロリノール含有THF溶液に滴下し、12時間撹拌した。この反応液を減圧濃縮し、化合物1を得た(3.7g、収率97%)。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ4.28-4,23(1.0H,m,OH),3.90-3.41(5H,H-2,H-5,H-6,m), 2.27-1.77(4H,H-3,H-4,m).
(1) Trifluoroacetyl-L-prolinol (Compound 1)
L-prolinol (2.0 g, 20 mmol) was dissolved in 20 mL of THF. On the other hand, ethyl trifluoroacetate (3.0 g, 21 mmol) was dissolved in 20 mL of THF. The latter THF solution was added dropwise to the former L-prolinol-containing THF solution and stirred for 12 hours. The reaction solution was concentrated under reduced pressure to obtain Compound 1 (3.7 g, yield 97%). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 4.28-4, 23 (1.0 H, m, OH), 3.90-3.41 (5H, H-2, H-5, H-6, m) , 2.27-1.77 (4H, H-3, H-4, m).
(2)トリフルオロアセチル-DMTr-L-プロリノール(化合物2)
 得られた前記トリフルオロアセチル-L-プロリノール(化合物1)(3.7g、19mmol)をピリジンに溶解して、3回、室温で共沸乾燥した。得られた残留物をピリジン15mLに溶かし、アルゴン雰囲気下、氷浴中で撹拌しながら、4,4’-ジメトキシトリチルクロリド(DMTr-Cl)(8.1g、24mmol)を加え、さらに、室温で4時間反応させた。そして、過剰のDMTr-Clをクエンチするために、前記反応液に、さらに、メタノール10mLを加え10分撹拌した。その後、前記反応液に、ジクロロメタンを加え飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄した。洗浄後の回収した有機層を、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮し、その残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒CHCl:CHOH=95:5、0.1%ピリジン含有)に供し、精製した化合物2を得た(8.5g、収率89%)。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.39-7.18(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),3.78(6H,s,OCH),3.70-3.41(5H,H-2,H-5,H-6, m),2.19-1.85(4H,H-3,H-4,m).
(2) Trifluoroacetyl-DMTr-L-prolinol (Compound 2)
The obtained trifluoroacetyl-L-prolinol (Compound 1) (3.7 g, 19 mmol) was dissolved in pyridine and dried azeotropically three times at room temperature. The obtained residue was dissolved in 15 mL of pyridine, and while stirring in an ice bath under an argon atmosphere, 4,4′-dimethoxytrityl chloride (DMTr-Cl) (8.1 g, 24 mmol) was added, and further at room temperature. The reaction was performed for 4 hours. Then, in order to quench excess DMTr-Cl, 10 mL of methanol was further added to the reaction solution and stirred for 10 minutes. Thereafter, dichloromethane was added to the reaction solution, and the mixture was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine. The collected organic layer after washing was dried over anhydrous sodium sulfate. The organic layer was filtered, the obtained filtrate was concentrated under reduced pressure, and the residue was subjected to silica gel column chromatography (developing solvent CH 2 Cl 2 : CH 3 OH = 95: 5, containing 0.1% pyridine). Purified compound 2 was obtained (8.5 g, yield 89%). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.39-7.18 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 3.78 (6H) , S, OCH 3 ), 3.70-3.41 (5H, H-2, H-5, H-6, m), 2.19-1.85 (4H, H-3, H-4, m).
(3)DMTr-L-プロリノール(化合物3)
 得られた前記トリフルオロアセチル-DMTr-L-プロリノール(化合物2)(5g、10mmol)をTHF100mLに溶解した。このTHF溶液に5%水酸化ナトリウム水溶液100mLを加え、撹拌した。この溶液に、1mol/L フッ化テトラ-n-ブチルアンモニウム(TBAF)溶液5mL加え、室温で12時間撹拌した。この反応液を、飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄した。洗浄後の回収した有機層を、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮し、化合物3を得た(3.6g、収率90%)。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),3.78(6H,s,OCH3),3.31(1H,m,H-6),3.07(2H,m,H-2,H-6),2.90(2H,m,H-5),1.84(3H,m,H-3,H-4),1.40(1H,m,H-3).
(3) DMTr-L-prolinol (Compound 3)
The obtained trifluoroacetyl-DMTr-L-prolinol (compound 2) (5 g, 10 mmol) was dissolved in 100 mL of THF. To this THF solution, 100 mL of 5% aqueous sodium hydroxide solution was added and stirred. To this solution, 5 mL of a 1 mol / L tetra-n-butylammonium fluoride (TBAF) solution was added and stirred at room temperature for 12 hours. The reaction solution was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine. The collected organic layer after washing was dried over anhydrous sodium sulfate. The organic layer was filtered, and the obtained filtrate was concentrated under reduced pressure to obtain Compound 3 (3.6 g, yield 90%). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 3.78 (6H) , S, OCH3), 3.31 (1H, m, H-6), 3.07 (2H, m, H-2, H-6), 2.90 (2H, m, H-5), 1 .84 (3H, m, H-3, H-4), 1.40 (1H, m, H-3).
2.アミダイト誘導体の合成
 前記「1.」で合成した保護プロリノール(化合物3)を用いて、下記スキーム7により、結合形式が異なる、プロリノールを有するアミダイト誘導体を合成した。
2. Synthesis of Amidite Derivatives Using the protected prolinol (compound 3) synthesized in the above “1.”, amidite derivatives having prolinol with different binding formats were synthesized according to Scheme 7 below.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(1)DMTr-ウレタン-L-プロリノール(化合物4)
 1,8-オクタンジオール(9.0g、62mmol)をTHF90mLに溶解し、アルゴン雰囲気下に置いた。他方、カルボニルジイミダゾール(2.0g、12mmol)をTHF10mLに溶解した。後者のTHF溶液を、前者のTHF溶液に加え、室温で1時間撹拌した。この反応液を、1,8-オクタンジオールのTLCスポットが消えるまで、水で洗浄した。さらに、洗浄後に回収した有機層を、飽和食塩水で洗浄し、回収した有機層を、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過し、得られたろ液を減圧濃縮した。その残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒 CHCl:CHOH=95:5)に供し、精製した化合物を得た。この化合物は、1,8-オクタンジオールの片末端がカルボニルジイミダゾールで活性化された化合物であった(2.3g、収率77%)。
(1) DMTr-urethane-L-prolinol (compound 4)
1,8-octanediol (9.0 g, 62 mmol) was dissolved in 90 mL of THF and placed under an argon atmosphere. On the other hand, carbonyldiimidazole (2.0 g, 12 mmol) was dissolved in 10 mL of THF. The latter THF solution was added to the former THF solution and stirred at room temperature for 1 hour. The reaction was washed with water until the 1,8-octanediol TLC spot disappeared. Furthermore, the organic layer collected after washing was washed with saturated saline, and the collected organic layer was dried over anhydrous sodium sulfate. The organic layer was filtered, and the resulting filtrate was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (developing solvent CH 2 Cl 2 : CH 3 OH = 95: 5) to obtain a purified compound. This compound was a compound in which one end of 1,8-octanediol was activated with carbonyldiimidazole (2.3 g, yield 77%).
 前記化合物0.9gをアセトニトリル10mLで溶解し、アルゴン雰囲気下においた。他方、DMTr-L-プロリノール(化合物3)(1.9g、4.8mmol)をアセトニトリル20mLに溶解した。後者のアセトニトリル溶液を、前記前者のアセトニトリル溶液に加え、室温で24時間撹拌した。そして、この反応液を、飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、回収した有機層を、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過し、得られたろ液を減圧濃縮した。その残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒ジクロロメタン:アセトン=9:1、0.1%ピリジン含有)に供し、精製した化合物4(プロリノールウレタンアミダイト)を得た(1.5g、収率65%)。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),4.24-3.94(2H,m,COOCH),3.78(s,6H,OCH),3.72-2.96(7H,m,alkyl,H-2,H-5,H-6),2.10-1.30(16H,m,alkyl,H-3,H-4).
FAB-MS:576 [M+H]
0.9 g of the compound was dissolved in 10 mL of acetonitrile and placed in an argon atmosphere. On the other hand, DMTr-L-prolinol (Compound 3) (1.9 g, 4.8 mmol) was dissolved in 20 mL of acetonitrile. The latter acetonitrile solution was added to the former acetonitrile solution and stirred at room temperature for 24 hours. And this reaction liquid was wash | cleaned by saturated sodium hydrogencarbonate aqueous solution and a saturated salt solution, and the collect | recovered organic layer was dried with anhydrous sodium sulfate. The organic layer was filtered, and the resulting filtrate was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (developing solvent dichloromethane: acetone = 9: 1, containing 0.1% pyridine) to obtain purified compound 4 (prolinol urethane amidite) (1.5 g, yield 65). %). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 4.24-3 .94 (2H, m, COOCH 2 ), 3.78 (s, 6H, OCH 3 ), 3.72-2.96 (7H, m, alkyl, H-2, H-5, H-6), 2.10-1.30 (16H, m, alkyl, H-3, H-4).
FAB-MS: 576 [M + H] + .
(2)DMTr-ウレイド-L-プロリノール(化合物5)
 アルゴン雰囲気下、トリホスゲン(2.0g、6.7mmol)をTHF10mLに溶解し、0℃で撹拌した。他方、DMTr-L-プロリノール(化合物3)(1.3g、3.2mmol)およびN,N-ジイソプロピルエチルアミン(16g、124mmol)をTHF10mLに溶解し、前記トリホスゲンのTHF溶液に滴下した。この反応液を、0℃で1時間、続いて、室温で2時間撹拌した。そして、8-アミノ-1-オクタノール(2.3g、16mmol)およびN,N-ジイソプロピルエチルアミン(5.0g、38mmol)をTHF30mLに溶解した。このTHF溶液に、前記撹拌後の反応液を滴下し、0℃で1時間、続いて、室温で48時間撹拌した。この反応液を減圧濃縮し、その残渣をジクロロメタンに溶解した。この溶液を、飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、回収した有機層を、無水硫酸ナトリウムで乾燥させた。前記有機層をろ過して、得られたろ液を減圧濃縮し、その残渣を、逆相シリカゲルカラムクロマトグラフィーに供して、精製した。この際、展開溶媒は、0.1%ピリジンを含有するアセトンと水との混合溶媒を使用し、前記アセトンと水との混合割合は、ステップワイズとし、具体的には、アセトン:水のモル比を、2:8、3:7、4:6および5:5の順に変化させた。目的の化合物5を含むフラクションを、ジクロロメタンで抽出し、この有機層を無水硫酸ナトリウムで乾燥させた。前記有機層をろ過し、得られたろ液を減圧濃縮し、化合物5(プロリノールウレイドアミダイト)を得た(0.9g、収率49%)。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,m,Ar-H),3.78(s,6H,OCH),3.68-3.25(9H,m,CHNH,CHOH,H-2,H-5,H-6),1.74-1.18(16H,m,alkyl,H-3,H-4).
FAB-MS :575 [M+H]
(2) DMTr-ureido-L-prolinol (compound 5)
Under an argon atmosphere, triphosgene (2.0 g, 6.7 mmol) was dissolved in 10 mL of THF and stirred at 0 ° C. On the other hand, DMTr-L-prolinol (compound 3) (1.3 g, 3.2 mmol) and N, N-diisopropylethylamine (16 g, 124 mmol) were dissolved in 10 mL of THF and added dropwise to the THF solution of triphosgene. The reaction was stirred at 0 ° C. for 1 hour followed by 2 hours at room temperature. 8-Amino-1-octanol (2.3 g, 16 mmol) and N, N-diisopropylethylamine (5.0 g, 38 mmol) were dissolved in 30 mL of THF. The reaction solution after stirring was added dropwise to the THF solution, and the mixture was stirred at 0 ° C. for 1 hour and then at room temperature for 48 hours. The reaction solution was concentrated under reduced pressure, and the residue was dissolved in dichloromethane. This solution was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and the collected organic layer was dried over anhydrous sodium sulfate. The organic layer was filtered, the obtained filtrate was concentrated under reduced pressure, and the residue was purified by reverse phase silica gel column chromatography. At this time, as the developing solvent, a mixed solvent of acetone and water containing 0.1% pyridine was used, and the mixing ratio of the acetone and water was stepwise. Specifically, the molar ratio of acetone: water The ratio was changed in the order of 2: 8, 3: 7, 4: 6 and 5: 5. The fraction containing the target compound 5 was extracted with dichloromethane, and the organic layer was dried over anhydrous sodium sulfate. The organic layer was filtered, and the obtained filtrate was concentrated under reduced pressure to obtain Compound 5 (prolinol urea amidite) (0.9 g, yield 49%). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, m, Ar—H), 3.78 (s, 6H, OCH 3 ) , 3.68-3.25 (9H, m, CH 2 NH, CH 2 OH, H-2, H-5, H-6), 1.74-1.18 (16H, m, alkyl, H- 3, H-4).
FAB-MS: 575 [M + H] + .
(3)プロリノールを有するアミダイト誘導体(化合物6および7)
 修飾プロリノールとして、得られた前記化合物4(0.80g、1.4mmol)をアセトニトリルに溶解し、室温で3回共沸乾燥した。得られた残留物をアセトニトリル1mLに溶解し、アルゴン雰囲気下においた。このアセトニトリル溶液に、ジイソプロピルアンモニウムテトラゾリド(0.24g,1.4mmol)を添加し、反応液とした。他方、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイト(0.50g、1.7mmol)をアセトニトリル1mLに溶解した。これを、前記反応液に添加し、室温で4時間撹拌した。前記反応液に、ジクロロメタンを加え、飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄した。洗浄後の回収した有機層を無水硫酸ナトリウムで乾燥させ、前記有機層をろ過して、得られたろ液を減圧濃縮した。その残渣を、アミノシリカゲルカラムクロマトグラフィー(展開溶媒ヘキサン:アセトン=10:1、0.1%ピリジン含有)に供し、精製した化合物6(DMTr-ウレタン-L-プロリノールアミダイト)(0.90g、収率83%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,d,J=8.6Hz,Ar-H),4.24-3.94(2H,m,COOCH),3.78(s,6H,OCH),3.72-2.96(11H,m,CHO,POCH,CHCH,H-2,H-5,H-6),2.58(2H,m,CHCN),2.10-1.46(16H,m,alkyl,H-3,H-4),1.34-1.10(12H,m,CHCH)。31P-NMR(CDCN)δ 146.82.
FAB-MS:776 [M+H]
(3) Amidite derivatives having prolinol (compounds 6 and 7)
As the modified prolinol, the obtained compound 4 (0.80 g, 1.4 mmol) was dissolved in acetonitrile and dried azeotropically three times at room temperature. The resulting residue was dissolved in 1 mL of acetonitrile and placed under an argon atmosphere. Diisopropylammonium tetrazolide (0.24 g, 1.4 mmol) was added to the acetonitrile solution to prepare a reaction solution. On the other hand, 2-cyanoethyl N, N, N ′, N′-tetraisopropyl phosphorodiamidite (0.50 g, 1.7 mmol) was dissolved in 1 mL of acetonitrile. This was added to the reaction solution and stirred at room temperature for 4 hours. Dichloromethane was added to the reaction solution, and the mixture was washed with a saturated aqueous sodium bicarbonate solution and saturated brine. The collected organic layer after washing was dried over anhydrous sodium sulfate, the organic layer was filtered, and the obtained filtrate was concentrated under reduced pressure. The residue was subjected to amino silica gel column chromatography (developing solvent hexane: acetone = 10: 1, containing 0.1% pyridine) and purified compound 6 (DMTr-urethane-L-prolinol amidite) (0.90 g, Yield 83%) was obtained. The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, d, J = 8.6 Hz, Ar—H), 4.24-3 .94 (2H, m, COOCH 2 ), 3.78 (s, 6H, OCH 3 ), 3.72-2.96 (11H, m, CH 2 O, POCH 2 , CHCH 3 , H-2, H -5, H-6), 2.58 (2H, m, CH 2 CN), 2.10-1.46 (16H, m, alkyll, H-3, H-4), 1.34-1. 10 (12H, m, CHCH 3 ). 31P-NMR (CD 3 CN) δ 146.82.
FAB-MS: 776 [M + H] + .
 前記修飾プロリノールとして、前記化合物4に代えて、前記化合物5を使用した以外は、同様に処理を行い、精製した化合物7(DMTr-ウレイド-L-プロリノールアミダイト)(0.80g、収率74%)を得た。以下に、前記化合物のNMRの結果を示す。
H-NMR(CDCl): δ7.40-7.14(9H,m,Ar-H),6.82(4H,m,Ar-H),3.78(s,6H,OCH),3.65-3.25(13H,m,CHO,POCH,CHCH,H-2,CHNH,CHOH,H-2,H-5,H-6),2.73(2H,m,CHCN),2.10-1.48(16H,m,alkyl,H-3,H-4),1.35-1.10(12H,m,CHCH).
31P-NMR(CDCN)δ 146.83.
FAB-MS:775 [M+H]
Compound 7 (DMTr-ureido-L-prolinol amidite) (0.80 g, yield) was processed and purified in the same manner except that Compound 5 was used instead of Compound 4 as the modified prolinol. 74%). The NMR results of the above compound are shown below.
1 H-NMR (CDCl 3 ): δ 7.40-7.14 (9H, m, Ar—H), 6.82 (4H, m, Ar—H), 3.78 (s, 6H, OCH 3 ) , 3.65-3.25 (13H, m, CH 2 O, POCH 2, CHCH 3, H-2, CH 2 NH, CH 2 OH, H-2, H-5, H-6), 2. 73 (2H, m, CH 2 CN), 2.10-1.48 (16H, m, alkyl, H-3, H-4), 1.35-1.10 (12H, m, CHCH 3).
31P-NMR (CD 3 CN) δ 146.83.
FAB-MS: 775 [M + H] + .
 以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 本発明の一本鎖核酸分子によれば、遺伝子の発現抑制、具体的には、遺伝子がコードするタンパク質の翻訳の抑制が可能である。本発明のssNc分子は、前述のように標的遺伝子の発現を抑制可能であることから、例えば、医薬品、診断薬および農薬、ならびに、農薬、医学、生命科学等の研究ツールとして有用である。 The single-stranded nucleic acid molecule of the present invention can suppress the expression of a gene, specifically, the translation of a protein encoded by the gene. Since the ssNc molecule of the present invention can suppress the expression of the target gene as described above, it is useful as, for example, pharmaceuticals, diagnostic agents and agricultural chemicals, and research tools for agricultural chemicals, medicine, life sciences and the like.

Claims (33)

  1. 標的遺伝子の発現を抑制する発現抑制配列および前記発現抑制配列に対してミスマッチを有する相補配列を含む一本鎖核酸分子であって、
    5’側から3’側にかけて、5’側領域(Xc)、内部領域(Z)および3’側領域(Yc)を、前記順序で含み、
    前記内部領域(Z)が、内部5’側領域(X)および内部3’側領域(Y)が連結して構成され、
    前記5’側領域(Xc)が、前記内部5’側領域(X)と相補的であり、
    前記3’側領域(Yc)が、前記内部3’側領域(Y)と相補的であり、
    前記内部領域(Z)、前記5’側領域(Xc)および前記3’側領域(Yc)の少なくとも一つが、前記発現抑制配列を含み、
    前記発現抑制配列を含む領域と相補的な領域が、前記相補配列を含み、
    前記一本鎖核酸分子の5’末端塩基と3’末端塩基とが未結合であることを特徴とする一本鎖核酸分子。
    A single-stranded nucleic acid molecule comprising an expression suppressing sequence that suppresses expression of a target gene and a complementary sequence having a mismatch with the expression suppressing sequence,
    From the 5 ′ side to the 3 ′ side, the 5 ′ side region (Xc), the inner region (Z), and the 3 ′ side region (Yc) are included in the above order,
    The internal region (Z) is configured by connecting an internal 5 ′ side region (X) and an internal 3 ′ side region (Y),
    The 5 ′ side region (Xc) is complementary to the internal 5 ′ side region (X);
    The 3 ′ side region (Yc) is complementary to the inner 3 ′ side region (Y);
    At least one of the internal region (Z), the 5 ′ side region (Xc) and the 3 ′ side region (Yc) includes the expression suppression sequence,
    A region complementary to the region containing the expression suppression sequence comprises the complementary sequence;
    A single-stranded nucleic acid molecule, wherein the 5 ′ terminal base and the 3 ′ terminal base of the single-stranded nucleic acid molecule are unbound.
  2. 前記発現抑制配列が、成熟miRNA配列である、請求項1記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to claim 1, wherein the expression suppression sequence is a mature miRNA sequence.
  3. 前記5’側領域(Xc)と前記内部5’側領域(X)との間に、リンカー領域(Lx)を有し、
    前記リンカー領域(Lx)を介して、前記5’側領域(Xc)と前記内部5’側領域(X)とが連結している、請求項1または2記載の一本鎖核酸分子。
    Between the 5 ′ side region (Xc) and the inner 5 ′ side region (X), a linker region (Lx) is provided,
    The single-stranded nucleic acid molecule according to claim 1 or 2, wherein the 5'-side region (Xc) and the internal 5'-side region (X) are linked via the linker region (Lx).
  4. 前記3’側領域(Yc)と前記内部3’側領域(Y)との間に、リンカー領域(Ly)を有し、
    前記リンカー領域(Ly)を介して、前記3’側領域(Yc)と前記内部3’側領域(Y)とが連結している、請求項1から3のいずれか一項に記載の一本鎖核酸分子。
    Between the 3 ′ side region (Yc) and the inner 3 ′ side region (Y), it has a linker region (Ly),
    The single piece according to any one of claims 1 to 3, wherein the 3'-side region (Yc) and the internal 3'-side region (Y) are linked via the linker region (Ly). Strand nucleic acid molecule.
  5. 前記5’側領域(Xc)と前記内部5’側領域(X)との間に、リンカー領域(Lx)を有し、
    前記リンカー領域(Lx)を介して、前記5’側領域(Xc)と前記内部5’側領域(X)とが連結し、
    前記3’側領域(Yc)と前記内部3’側領域(Y)との間に、リンカー領域(Ly)を有し、
    前記リンカー領域(Ly)を介して、前記3’側領域(Yc)と前記内部3’側領域(Y)とが連結している、請求項1または2記載の一本鎖核酸分子。
    Between the 5 ′ side region (Xc) and the inner 5 ′ side region (X), a linker region (Lx) is provided,
    The 5 ′ side region (Xc) and the inner 5 ′ side region (X) are linked via the linker region (Lx),
    Between the 3 ′ side region (Yc) and the inner 3 ′ side region (Y), it has a linker region (Ly),
    The single-stranded nucleic acid molecule according to claim 1 or 2, wherein the 3'-side region (Yc) and the internal 3'-side region (Y) are linked via the linker region (Ly).
  6. 前記内部領域(Z)の塩基数(Z)、前記内部5’側領域(X)の塩基数(X)、前記内部3’側領域(Y)の塩基数(Y)、前記5’側領域(Xc)の塩基数(Xc)および前記3’側領域(Yc)の塩基数(Yc)が、下記式(1)および(2)の条件を満たす、請求項1から5のいずれか一項に記載の一本鎖核酸分子。
      Z=X+Y   ・・・(1)
      Z≧Xc+Yc ・・・(2)
     
    The number of bases (Z) in the internal region (Z), the number of bases (X) in the internal 5 ′ side region (X), the number of bases (Y) in the internal 3 ′ side region (Y), the 5 ′ side region The number of bases (Xc) of (Xc) and the number of bases (Yc) of the 3 ′ side region (Yc) satisfy the conditions of the following formulas (1) and (2): A single-stranded nucleic acid molecule according to 1.
    Z = X + Y (1)
    Z ≧ Xc + Yc (2)
  7. 前記内部5’側領域(X)の塩基数(X)、前記5’側領域(Xc)の塩基数(Xc)、前記内部3’側領域(Y)の塩基数(Y)および前記3’側領域(Yc)の塩基数(Yc)が、下記(a)~(d)のいずれかの条件を満たす、請求項1から6のいずれか一項に記載の一本鎖核酸分子。
    (a)下記式(3)および(4)の条件を満たす。
       X>Xc ・・・(3)
       Y=Yc ・・・(4)
    (b)下記式(5)および(6)の条件を満たす。
       X=Xc ・・・(5)
       Y>Yc ・・・(6)
    (c)下記式(7)および(8)の条件を満たす。
       X>Xc ・・・(7)
       Y>Yc ・・・(8)
    (d)下記式(9)および(10)の条件を満たす。
       X=Xc ・・・(9)
       Y=Yc ・・・(10)
     
    The number of bases (X) in the inner 5 ′ side region (X), the number of bases (Xc) in the 5 ′ side region (Xc), the number of bases (Y) in the inner 3 ′ side region (Y) and the 3 ′ The single-stranded nucleic acid molecule according to any one of claims 1 to 6, wherein the number of bases (Yc) in the side region (Yc) satisfies any of the following conditions (a) to (d):
    (A) The conditions of the following formulas (3) and (4) are satisfied.
    X> Xc (3)
    Y = Yc (4)
    (B) The conditions of the following formulas (5) and (6) are satisfied.
    X = Xc (5)
    Y> Yc (6)
    (C) The conditions of the following formulas (7) and (8) are satisfied.
    X> Xc (7)
    Y> Yc (8)
    (D) The conditions of the following formulas (9) and (10) are satisfied.
    X = Xc (9)
    Y = Yc (10)
  8. 前記(a)~(d)において、前記内部5’側領域(X)の塩基数(X)と前記5’側領域(Xc)の塩基数(Xc)の差、前記内部3’側領域(Y)の塩基数(Y)と前記3’側領域(Yc)の塩基数(Yc)の差が、下記条件を満たす、請求項7記載の一本鎖核酸分子。
    (a)下記式(11)および(12)の条件を満たす。
       X-Xc=1、2または3 ・・・(11)
       Y-Yc=0       ・・・(12)
    (b)下記式(13)および(14)の条件を満たす。
       X-Xc=0       ・・・(13)
       Y-Yc=1、2または3 ・・・(14)
    (c)下記式(15)および(16)の条件を満たす。
       X-Xc=1、2または3 ・・・(15)
       Y-Yc=1、2または3 ・・・(16)
    (d)下記式(17)および(18)の条件を満たす。
       X-Xc=0       ・・・(17)
       Y-Yc=0       ・・・(18)
     
    In (a) to (d), the difference between the number of bases (X) in the inner 5 ′ side region (X) and the number of bases (Xc) in the 5 ′ side region (Xc), the inner 3 ′ side region ( The single-stranded nucleic acid molecule according to claim 7, wherein a difference between the number of bases (Y) of Y) and the number of bases (Yc) of the 3 'side region (Yc) satisfies the following condition.
    (A) The conditions of the following formulas (11) and (12) are satisfied.
    X−Xc = 1, 2 or 3 (11)
    Y−Yc = 0 (12)
    (B) The conditions of the following formulas (13) and (14) are satisfied.
    X−Xc = 0 (13)
    Y−Yc = 1, 2 or 3 (14)
    (C) The conditions of the following formulas (15) and (16) are satisfied.
    X−Xc = 1, 2 or 3 (15)
    Y−Yc = 1, 2 or 3 (16)
    (D) The conditions of the following formulas (17) and (18) are satisfied.
    X−Xc = 0 (17)
    Y−Yc = 0 (18)
  9. 前記内部領域(Z)の塩基数(Z)が、19塩基以上である、請求項1から8のいずれか一項に記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to any one of claims 1 to 8, wherein the number of bases (Z) in the internal region (Z) is 19 bases or more.
  10. 前記内部領域(Z)の塩基数(Z)が、19塩基~30塩基である、請求項9記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to claim 9, wherein the internal region (Z) has a base number (Z) of 19 to 30 bases.
  11. 前記5’側領域(Xc)の塩基数(Xc)が、1~11塩基である、請求項1から10のいずれか一項に記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to any one of claims 1 to 10, wherein the 5'-side region (Xc) has a base number (Xc) of 1 to 11 bases.
  12. 前記5’側領域(Xc)の塩基数(Xc)が、1~7塩基である、請求項11記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to claim 11, wherein the number of bases (Xc) in the 5 'side region (Xc) is 1 to 7 bases.
  13. 前記5’側領域(Xc)の塩基数(Xc)が、1~3塩基である、請求項11記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to claim 11, wherein the number of bases (Xc) in the 5 'side region (Xc) is 1 to 3 bases.
  14. 前記3’側領域(Yc)の塩基数(Yc)が、1~11塩基である、請求項1から13のいずれか一項に記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to any one of claims 1 to 13, wherein the number of bases (Yc) in the 3 'side region (Yc) is 1 to 11 bases.
  15. 前記3’側領域(Yc)の塩基数(Yc)が、1~7塩基である、請求項14記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to claim 14, wherein the number of bases (Yc) in the 3 'side region (Yc) is 1 to 7 bases.
  16. 前記3’側領域(Yc)の塩基数(Yc)が、1~3塩基である、請求項14記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to claim 14, wherein the number of bases (Yc) in the 3 'side region (Yc) is 1 to 3 bases.
  17. 少なくとも1つの修飾された残基を含む、請求項1から16のいずれか一項に記載の一本鎖核酸分子。 17. A single-stranded nucleic acid molecule according to any one of claims 1 to 16, comprising at least one modified residue.
  18. 標識物質を含む、請求項1から17のいずれか一項に記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to any one of claims 1 to 17, comprising a labeling substance.
  19. 安定同位体を含む、請求項1から18のいずれか一項に記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to any one of claims 1 to 18, comprising a stable isotope.
  20. RNA分子である、請求項1から19のいずれか一項に記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to any one of claims 1 to 19, which is an RNA molecule.
  21. 前記リンカー領域(Lx)および/または前記リンカー領域(Ly)が、
    ヌクレオチド残基および非ヌクレオチド残基の少なくとも一つから構成される、請求項3から20のいずれか一項に記載の一本鎖核酸分子。
    The linker region (Lx) and / or the linker region (Ly),
    The single-stranded nucleic acid molecule according to any one of claims 3 to 20, which is composed of at least one of a nucleotide residue and a non-nucleotide residue.
  22. 前記ヌクレオチド残基が、非修飾ヌクレオチド残基および/または修飾ヌクレオチド残基である、請求項21記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to claim 21, wherein the nucleotide residue is an unmodified nucleotide residue and / or a modified nucleotide residue.
  23. 前記リンカー領域(Lx)および/または前記リンカー領域(Ly)が、下記(1)~(7)のいずれかの残基で構成される、請求項21または22記載の一本鎖核酸分子。
    (1)非修飾ヌクレオチド残基
    (2)修飾ヌクレオチド残基
    (3)非修飾ヌクレオチド残基および修飾ヌクレオチド残基
    (4)非ヌクレオチド残基
    (5)非ヌクレオチド残基および非修飾ヌクレオチド残基
    (6)非ヌクレオチド残基および修飾ヌクレオチド残基
    (7)非ヌクレオチド残基、非修飾ヌクレオチド残基および修飾ヌクレオチド残基
    The single-stranded nucleic acid molecule according to claim 21 or 22, wherein the linker region (Lx) and / or the linker region (Ly) is composed of any one of the following residues (1) to (7).
    (1) Unmodified nucleotide residues (2) Modified nucleotide residues (3) Unmodified nucleotide residues and modified nucleotide residues (4) Nonnucleotide residues (5) Nonnucleotide residues and unmodified nucleotide residues (6 ) Non-nucleotide residues and modified nucleotide residues (7) non-nucleotide residues, unmodified nucleotide residues and modified nucleotide residues
  24. 前記一本鎖核酸分子において、塩基数の合計が、50塩基以上である、請求項1から23のいずれか一項に記載の一本鎖核酸分子。 The single-stranded nucleic acid molecule according to any one of claims 1 to 23, wherein the total number of bases in the single-stranded nucleic acid molecule is 50 bases or more.
  25. 標的遺伝子の発現を抑制するための組成物であって、
    請求項1から24のいずれか一項に記載の一本鎖核酸分子を含むことを特徴とする、発現抑制用組成物。
    A composition for suppressing the expression of a target gene,
    An expression-suppressing composition comprising the single-stranded nucleic acid molecule according to any one of claims 1 to 24.
  26. 請求項1から24のいずれか一項に記載の一本鎖核酸分子を含むことを特徴とする、薬学的組成物。 25. A pharmaceutical composition comprising a single-stranded nucleic acid molecule according to any one of claims 1 to 24.
  27. がん治療用である、請求項26記載の薬学的組成物。 27. The pharmaceutical composition according to claim 26, which is for cancer treatment.
  28. 標的遺伝子の発現を抑制する方法であって、
    請求項1から24のいずれか一項に記載の一本鎖核酸分子を使用することを特徴とする発現抑制方法。
    A method for suppressing the expression of a target gene,
    25. A method for suppressing expression, comprising using the single-stranded nucleic acid molecule according to any one of claims 1 to 24.
  29. 前記一本鎖核酸分子を、細胞、組織または器官に投与する工程を含む、請求項28記載の発現抑制方法。 29. The expression suppression method according to claim 28, comprising a step of administering the single-stranded nucleic acid molecule to a cell, tissue or organ.
  30. 前記一本鎖核酸分子を、in vivoまたはin vitroで投与する、請求項29記載の発現抑制方法。 30. The expression suppression method according to claim 29, wherein the single-stranded nucleic acid molecule is administered in vivo or in vitro .
  31. 疾患の治療方法であって、
    請求項1から24のいずれか一項に記載の一本鎖核酸分子を、患者に投与する工程を含み、
    前記一本鎖核酸分子が、前記発現抑制配列として、前記疾患の原因となる遺伝子の発現を抑制する配列を有することを特徴とする治療方法。
    A method of treating a disease,
    Administering the single stranded nucleic acid molecule of any one of claims 1 to 24 to a patient,
    The treatment method, wherein the single-stranded nucleic acid molecule has a sequence that suppresses the expression of a gene causing the disease as the expression suppression sequence.
  32. 標的遺伝子の発現抑制のための、請求項1から24のいずれか一項に記載の一本鎖核酸分子の使用。 Use of the single-stranded nucleic acid molecule according to any one of claims 1 to 24 for suppressing expression of a target gene.
  33. 疾患の治療に使用するための核酸分子であって、
    前記核酸分子は、請求項1から24のいずれか一項に記載の一本鎖核酸分子であり、
    前記一本鎖核酸分子が、前記発現抑制配列として、前記疾患の原因となる遺伝子の発現を抑制する配列を有することを特徴とする核酸分子。
    A nucleic acid molecule for use in the treatment of a disease,
    The nucleic acid molecule is a single-stranded nucleic acid molecule according to any one of claims 1 to 24,
    The nucleic acid molecule, wherein the single-stranded nucleic acid molecule has a sequence that suppresses the expression of a gene causing the disease as the expression suppressing sequence.
PCT/JP2012/080461 2011-11-26 2012-11-26 Single-stranded nucleic acid molecule for regulating expression of gene WO2013077446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011258367 2011-11-26
JP2011-258367 2011-11-26

Publications (1)

Publication Number Publication Date
WO2013077446A1 true WO2013077446A1 (en) 2013-05-30

Family

ID=48469885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080461 WO2013077446A1 (en) 2011-11-26 2012-11-26 Single-stranded nucleic acid molecule for regulating expression of gene

Country Status (1)

Country Link
WO (1) WO2013077446A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104775A1 (en) * 2014-12-27 2016-06-30 株式会社ボナック NATURALLY OCCURING miRNA FOR CONTROLLING GENE EXPRESSION, AND USE OF SAME
KR20180100692A (en) 2016-01-30 2018-09-11 가부시키가이샤 보낙 Artificial single guide RNA and its uses
JP2018145199A (en) * 2013-12-27 2018-09-20 株式会社ボナック ARTIFICIAL MATCHING miRNA FOR CONTROLLING GENE EXPRESSION AND USE THEREOF
WO2019074110A1 (en) 2017-10-13 2019-04-18 株式会社ボナック Single-stranded nucleic acid molecule, and production method therefor
US10308672B2 (en) 2016-04-26 2019-06-04 Sumitomo Chemical Company, Limited Method for producing monomer for single-stranded nucleic acid molecule
US10612020B2 (en) 2013-12-26 2020-04-07 Tokyo Medical University Artificial mimic miRNA for controlling gene expression, and use of same
US10751426B2 (en) 2015-10-30 2020-08-25 Bonac Corporation Composition stably containing single-stranded nucleic acid molecule that suppresses expression of TGF-β1 gene
CN111819280A (en) * 2018-03-30 2020-10-23 东丽株式会社 Preparation method of hairpin type single-stranded RNA molecule
US11142769B2 (en) 2015-03-27 2021-10-12 Bonac Corporation Single-stranded nucleic acid molecule having delivery function and gene expression regulating ability
JP2022512651A (en) * 2018-10-09 2022-02-07 イエール ユニバーシティ RIG-I agonist and method of using it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521393A (en) * 2002-03-20 2005-07-21 マサチューセッツ インスティテュート オブ テクノロジー HIV treatment
JP2008278784A (en) * 2007-05-09 2008-11-20 Institute Of Physical & Chemical Research Single-stranded cyclic rna and method for producing the same
US20110052666A1 (en) * 2009-09-03 2011-03-03 Medtronic, Inc. Compositions, Methods, and Systems for SIRNA Delivery
WO2011132672A1 (en) * 2010-04-19 2011-10-27 独立行政法人理化学研究所 Method for stabilizing functional nucleic acids
WO2012005368A1 (en) * 2010-07-08 2012-01-12 株式会社ボナック Single-strand nucleic acid molecule for controlling gene expression
WO2012017919A1 (en) * 2010-08-03 2012-02-09 株式会社ボナック Single-stranded nucleic acid molecule having nitrogen-containing alicyclic skeleton

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521393A (en) * 2002-03-20 2005-07-21 マサチューセッツ インスティテュート オブ テクノロジー HIV treatment
JP2008278784A (en) * 2007-05-09 2008-11-20 Institute Of Physical & Chemical Research Single-stranded cyclic rna and method for producing the same
US20110052666A1 (en) * 2009-09-03 2011-03-03 Medtronic, Inc. Compositions, Methods, and Systems for SIRNA Delivery
WO2011132672A1 (en) * 2010-04-19 2011-10-27 独立行政法人理化学研究所 Method for stabilizing functional nucleic acids
WO2012005368A1 (en) * 2010-07-08 2012-01-12 株式会社ボナック Single-strand nucleic acid molecule for controlling gene expression
WO2012017919A1 (en) * 2010-08-03 2012-02-09 株式会社ボナック Single-stranded nucleic acid molecule having nitrogen-containing alicyclic skeleton

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10612020B2 (en) 2013-12-26 2020-04-07 Tokyo Medical University Artificial mimic miRNA for controlling gene expression, and use of same
JP2018145199A (en) * 2013-12-27 2018-09-20 株式会社ボナック ARTIFICIAL MATCHING miRNA FOR CONTROLLING GENE EXPRESSION AND USE THEREOF
US10934542B2 (en) 2013-12-27 2021-03-02 Bonac Corporation Artificial match-type miRNA for controlling gene expression and use therefor
US11027023B2 (en) 2014-12-27 2021-06-08 Bonac Corporation Natural type miRNA for controlling gene expression, and use of same
JPWO2016104775A1 (en) * 2014-12-27 2017-08-24 株式会社ボナック Natural miRNA for gene expression control and use thereof
WO2016104775A1 (en) * 2014-12-27 2016-06-30 株式会社ボナック NATURALLY OCCURING miRNA FOR CONTROLLING GENE EXPRESSION, AND USE OF SAME
EP3239297A4 (en) * 2014-12-27 2018-07-25 Bonac Corporation NATURALLY OCCURING miRNA FOR CONTROLLING GENE EXPRESSION, AND USE OF SAME
US11142769B2 (en) 2015-03-27 2021-10-12 Bonac Corporation Single-stranded nucleic acid molecule having delivery function and gene expression regulating ability
US10751426B2 (en) 2015-10-30 2020-08-25 Bonac Corporation Composition stably containing single-stranded nucleic acid molecule that suppresses expression of TGF-β1 gene
KR20180100692A (en) 2016-01-30 2018-09-11 가부시키가이샤 보낙 Artificial single guide RNA and its uses
KR102255995B1 (en) 2016-01-30 2021-05-25 가부시키가이샤 보낙 Artificial single guide RNA and uses thereof
US11518994B2 (en) 2016-01-30 2022-12-06 Bonac Corporation Artificial single guide RNA and use thereof
US10308672B2 (en) 2016-04-26 2019-06-04 Sumitomo Chemical Company, Limited Method for producing monomer for single-stranded nucleic acid molecule
WO2019074110A1 (en) 2017-10-13 2019-04-18 株式会社ボナック Single-stranded nucleic acid molecule, and production method therefor
CN111819280A (en) * 2018-03-30 2020-10-23 东丽株式会社 Preparation method of hairpin type single-stranded RNA molecule
US11920131B2 (en) 2018-03-30 2024-03-05 Toray Industries, Inc. Method of producing hairpin single-stranded RNA molecule
JP2022512651A (en) * 2018-10-09 2022-02-07 イエール ユニバーシティ RIG-I agonist and method of using it

Similar Documents

Publication Publication Date Title
JP6162182B2 (en) Single-stranded nucleic acid molecules for gene expression control
JP5555346B2 (en) Single-stranded nucleic acid molecule having nitrogen-containing alicyclic skeleton
JP5876890B2 (en) Single-stranded nucleic acid molecule having amino acid skeleton
US9206422B2 (en) Single-stranded nucleic acid molecule having nitrogen-containing alicyclic skeleton
US8785121B2 (en) Single-stranded nucleic acid molecule for controlling gene expression
WO2013077446A1 (en) Single-stranded nucleic acid molecule for regulating expression of gene
JP2013153736A (en) Single strand nucleic acid molecule having peptide skeleton
JP2013055913A (en) Single-stranded rna molecule for gene expression control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP