WO2013061590A1 - Optical probe and method for manufacturing same - Google Patents
Optical probe and method for manufacturing same Download PDFInfo
- Publication number
- WO2013061590A1 WO2013061590A1 PCT/JP2012/006835 JP2012006835W WO2013061590A1 WO 2013061590 A1 WO2013061590 A1 WO 2013061590A1 JP 2012006835 W JP2012006835 W JP 2012006835W WO 2013061590 A1 WO2013061590 A1 WO 2013061590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- fiber
- tip
- filter
- optical fiber
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00165—Optical arrangements with light-conductive means, e.g. fibre optics
- A61B1/0017—Details of single optical fibres, e.g. material or cladding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/043—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N2021/6484—Optical fibres
Definitions
- the present invention relates to an optical probe, more specifically, a medical optical probe used for measuring optical characteristics inside a body cavity, and a method for manufacturing the same.
- a long optical probe having flexibility (hereinafter simply referred to as “probe”) is inserted into a body cavity (in the case of digestive system, stomach, esophagus, etc.) by inserting it into a channel of an endoscope, for example. It is conventionally known to measure the optical characteristics of a living tissue inside a body cavity by using a probe using a probe (see, for example, Patent Documents 1, 2, and 3).
- a near infrared spectroscopic method As a spectroscopic method for measurement using a probe, a near infrared spectroscopic method, a fluorescence method, a Raman spectroscopic method, and the like are known.
- near-infrared light is irradiated to a site to be observed in the body cavity, for example, a lesion, and the spectrum of reflected light from the lesion is analyzed, so that the living body of the lesion is analyzed. Analyze tissue components.
- a common point between fluorescence and Raman spectroscopy is that a biological tissue is irradiated with a relatively narrow-band excitation light, and as a result, fluorescence or Raman scattered light (measurement light) that appears in a wavelength region different from the excitation light is included.
- the reflected light is generated from the living tissue, and the reflected light is received and detected by the spectroscope, thereby analyzing the state of the living tissue of the lesioned part.
- an optical filter that passes only the wavelength of irradiation light is attached to the tip on the irradiation side, and the tip on the light receiving side. Is equipped with an optical filter for cutting the wavelength of the irradiation light.
- an optical filter in a probe that uses both an optical fiber for irradiating excitation light (irradiation optical fiber) and an optical fiber for receiving measurement light (light receiving optical fiber).
- an optical filter that passes only the wavelength of the excitation light is installed near the exit end face of the irradiation optical fiber, and an optical filter that cuts the wavelength of the excitation light is installed near the incident end face of the light receiving optical fiber (for example, patent Reference 3).
- the probe described in Patent Document 2 uses a quartz fiber having an outer layer with a metal jacket having a thickness of about 10 to 20 ⁇ m as an irradiation optical fiber, and leaks light from the outer peripheral surface thereof. It is preventing.
- each optical filter it is also required to ensure the light shielding property of the outer peripheral portion of each optical filter so that light does not leak from the outer peripheral portion of the irradiation side optical filter to the outer peripheral portion of the light receiving side optical filter. This is because the above crosstalk can occur between filters or between a filter and an optical fiber.
- the optical fiber with the metal jacket as described above is a probe due to the fact that there are few suppliers, it is expensive, and the core diameter / cladding diameter / jacket diameter is limited in what is usually available. There is a problem that the optical design is limited.
- the adhesive is usually a plastic that generates fluorescence and Raman scattered light with respect to the irradiation light, there is a problem that it is not suitable for use in an optical path.
- An object of the present invention is to provide an optical probe capable of ensuring light-shielding performance without using a special optical fiber such as an optical fiber with a metal jacket in a probe including an optical fiber and a filter, and a method for manufacturing the same. That is.
- the light shielding property here means, for example, the light shielding property between the irradiation optical fiber and the light receiving optical fiber, between the filters, and between the fiber and the filter.
- Another object of the present invention is to provide an optical probe capable of improving the accuracy of internal measurement of a body cavity by Raman spectroscopy and a method for manufacturing the same, in which the tightness of the optical path is ensured.
- the optical probe according to the present invention is: A first optical fiber having a first fiber tip that emits irradiation light to the site to be observed in the body cavity; A second optical fiber having a second fiber tip that receives fluorescence or Raman scattered light from the site to be observed; A first optical filter disposed at the tip of the first fiber; A second optical filter disposed at the tip of the second fiber, At least one of the first optical fiber, the second optical fiber, the first optical filter, and the second optical filter is subjected to a process for forming a metal film.
- the method for producing an optical probe according to the present invention includes: A first optical fiber having a first fiber tip that emits irradiation light to the site to be observed in the body cavity; A second optical fiber having a second fiber tip that receives fluorescence or Raman scattered light from the site to be observed; A first optical filter disposed at the tip of the first fiber; A second optical filter disposed at the tip of the second fiber, and a method of manufacturing an optical probe comprising: At least one of the first optical fiber, the second optical fiber, the first optical filter, and the second optical filter is subjected to a process of forming a metal film.
- a probe having an optical fiber and a filter in a probe having an optical fiber and a filter, light shielding properties can be ensured without using a special optical fiber such as an optical fiber having a metal jacket.
- the accuracy of measurement inside the body cavity by Raman spectroscopy can be improved.
- FIG. 1 Diagram showing a configuration example of a diagnostic system
- Sectional drawing which shows the structure of the optical fiber for irradiation in the probe which concerns on Embodiment 1, and the optical fiber for light reception except a front-end
- FIG. Sectional drawing which shows the 1st modification about the principal part structure of the probe which concerns on Embodiment 1.
- FIG. 1 Sectional drawing which shows the 3rd modification about the principal part structure of the probe which concerns on Embodiment 1.
- FIG. Sectional drawing which shows the principal part structure of the probe which concerns on Embodiment 2 of this invention The figure which shows the 1st example of the arrangement
- FIG. 1 The figure which shows the 1st example of the arrangement
- FIG. The figure which shows the 2nd example of the arrangement position of the metal material for joining determined by
- Sectional drawing which shows the principal part structure of the probe which concerns on Embodiment 3 of this invention
- Sectional drawing which shows the principal part structure of the probe which concerns on Embodiment 4 of this invention
- Sectional drawing which shows the principal part structure of the probe which concerns on Embodiment 5 of this invention
- the effect of eliminating or reducing the crosstalk of optical components (optical fibers and optical filters) at the probe tip can be obtained. Can be detected with high efficiency.
- Embodiments 1, 2, and 5 by applying a surface treatment that forms a metal film on the surface of the tip region of the optical fiber (hereinafter referred to as Embodiments 1, 2, and 5), unnecessary light is incident on the optical fiber that has been subjected to the surface treatment. ⁇ Ejecting can be suppressed.
- a metal film on both the outgoing (irradiation) and received optical fibers hereinafter, corresponding to the first, second, and fifth embodiments
- unnecessary light can be reliably blocked, and the outgoing (irradiation), Crosstalk in the direction perpendicular to the optical axis between the received optical fibers can be eliminated.
- forming a metal film on the outer periphery of the optical filter is very effective in eliminating crosstalk. Since the optical filter has a thickness in the optical axis direction, light may leak from the thickness portion. In the optical probe of the present invention, since the optical filter is provided for both emission (irradiation) and light reception, it is considered that the light leaked from the thickness portion may cause crosstalk. Such a problem can be solved by forming a metal film and shielding light.
- a metal film may be formed on both the tip region of the optical fiber and the outer periphery of the optical filter (hereinafter, corresponding to Embodiments 2 to 5). Furthermore, a form in which these are joined (hereinafter, corresponding to Embodiments 3 and 4) is also preferable and can be employed. In this case, light shielding is particularly reliably performed.
- this holding portion can be, for example, an exterior tube that holds a fiber bundle (hereinafter, corresponds to Embodiment 1).
- the holding unit may be a so-called ferrule (hereinafter, corresponding to Embodiments 1 to 5).
- ferrule hereinafter, corresponding to Embodiments 1 to 5
- an embodiment the tip surface of the ferrule and the tip surface of the optical fiber are the same surface.
- This also has the advantage of easy tip polishing. And especially in this case, the crosstalk between optical fibers can be eliminated.
- Embodiments 2 to 5 when the tip surface of the ferrule and the tip surface of the optical fiber are not the same surface (hereinafter referred to as Embodiments 2 to 5), a metal film is formed on the surface of the tip region of the optical fiber, thereby crosstalk. Can be reduced.
- the optical fiber is preferably a plastic fiber in order to achieve flexibility in the optical axis direction of the entire optical probe (hereinafter, corresponding to Embodiments 1 to 5).
- the plastic jacket for the tip region of the optical fiber, it is preferable to remove the plastic jacket in order to form a metal film (hereinafter, corresponding to Embodiments 1, 2, and 5).
- the configuration of the optical probe is preferably a configuration in which a metal frame is provided and the outer peripheral portion of the optical filter is joined to the metal frame (hereinafter, corresponding to Embodiments 2 to 5).
- a metal frame is provided and the outer peripheral portion of the optical filter is joined to the metal frame
- it is most reliable and preferable in terms of strength if it is bonded over the entire thickness direction of the optical filter (hereinafter, corresponding to Embodiments 2, 3, and 5).
- metal plating and metallization treatment may be mentioned. Any method means a process of forming (metalizing) a metal film on the surface of an optical fiber or optical filter which is a non-metallic material.
- FIG. 1 is a diagram illustrating a configuration example of a diagnostic system.
- a diagnostic system 1 in FIG. 1 includes an endoscope 2, an endoscope processor 3, a base unit 4, an input device 5, monitors 6, 7, and a probe 10 according to Embodiment 1 of the present invention.
- the endoscope 2 is provided at a long flexible endoscope body 21 formed so as to be capable of being introduced into a body cavity, and a proximal end portion (endoscope proximal end portion) 21a of the endoscope body 21.
- the cable 23 that connects the endoscope main body 21 and the endoscope processor 3 via the operation unit 22 so as to communicate with each other.
- the endoscope main body 21 has a flexibility that can be easily bent following the curvature of the body cavity when entering the inside of the body cavity over substantially the entire length thereof. Further, the endoscope body 21 has a mechanism (not shown) capable of bending a predetermined range (operable portion 21c) on the endoscope distal end portion 21b side at an arbitrary angle in accordance with the operation of the knob 22a of the operation portion 22.
- the endoscope main body 21 has a camera CA, a light guide LG, and a channel CH as shown in a perspective view (FIG. 2) of the endoscope distal end portion 21b.
- the light guide LG guides light (visible light) emitted from the illumination light source 31 of the endoscope processor 3 to the endoscope distal end portion 21b, and emits the light from the end face of the endoscope distal end portion 21b.
- the camera CA is an electronic camera equipped with a solid-state imaging device, images an area illuminated by light emitted from the light guide LG, and sends the signal (imaging signal) to the image processing unit 32 of the endoscope processor 3. To transmit. An image (endoscopic image) based on the transmitted imaging signal is displayed on the monitor 6.
- the channel CH is a lumen having a diameter of, for example, 2.6 mm formed in the endoscope main body 21 so as to communicate with the introduction port 22 b formed in the operation unit 22.
- the probe main body 11 has an outer diameter (for example, 2.4 mm) that can be inserted into the channel CH of the endoscope 2, and is a long flexible wire that extends from the probe proximal end portion 11a to the probe distal end portion 11b. It is a shaped member and is introduced into the body cavity by insertion through the channel CH.
- the probe body 11 is connected to the base unit 4 via connectors 11c and 11d provided at the probe base end portion 11a.
- the probe body 11 guides the excitation light emitted from the laser 41 of the base unit 4 by the irradiation optical fiber 110 (see FIG. 3), and emits the light as irradiation light to the observation target site in the body cavity.
- the laser 41 is a semiconductor laser, a solid laser, or the like, but it is preferable to use a semiconductor laser from the viewpoint of downsizing the apparatus.
- the wavelength of the laser light is preferably 400 to 410 nm, 487 nm, 630 to 660 nm, 780 to 790 nm, 830 to 860 nm, 1290 to 1330 nm, or 1520 to 1580 nm.
- the light source of the excitation light may not be the laser 41 but may be an LED (Light Emitting Diode) or the like.
- the probe body 11 receives the reflected light from the site to be observed by the light receiving optical fiber 120 (see FIG. 3), and guides the light to the spectroscope 42 of the base unit 4.
- the fluorescence or Raman scattered light contained in the light guided to the spectroscope 42 is subjected to spectrum analysis by the spectroscope 42.
- the spectrum analysis result is subjected to image processing and the like by a CPU (Central Processing Unit) 43a of the computer 43 and displayed on the monitor 7 in the form of a graph or the like.
- the CPU 43a may determine a medical condition and the like, and the determination result may be stored in the memory 43b and displayed on the monitor 7.
- the execution and setting of various analyzes and determinations in the computer 43 can be performed by operating the input device 5 (for example, a keyboard or a mouse).
- FIG. 3 is a diagram schematically showing the internal configuration of the probe 10 shown in FIG.
- the irradiation optical fiber 110 (first optical fiber) and the light receiving optical fiber 120 (second optical fiber) are both long linear members having a total length of several meters and an outer diameter of about 100 to 300 ⁇ m, and are housed in the probe body 11. ing.
- the irradiation optical fiber 110 is optically connected to the laser 41 of the base unit 4 by the connector 11c of the probe base end portion 11a.
- the light receiving optical fiber 120 is optically connected to the spectroscope 42 of the base unit 4 by a connector 11d of the probe base end portion 11a.
- the tip region (fiber tip region) 111 of the irradiation optical fiber 110 and the tip region (fiber tip region) 121 of the light receiving optical fiber 120 are held by the holding unit 130. Accordingly, the irradiation optical fiber 110 and the light receiving optical fiber 120 form a bundle, and the emission end face (that is, the emission surface of the irradiation light to the observation target part) and the incident end face (that is, the light reception surface of the reflected light from the observation target part). It is positioned.
- the lengths of the fiber tip regions 111 and 121 held by the holding unit 130 are about 5 to 10 mm.
- the main configuration of the probe 10 including the holding unit 130 that holds the fiber tip regions 111 and 121 will be described later.
- the optical filter 141 (first optical filter) is located in the irradiation optical system including the irradiation optical fiber 110, and one end surface thereof is close to the emission end surface of the fiber tip region 111.
- the optical filter 141 has a configuration in which a light absorbing material (or a light reflecting material) is dispersed in a transparent base material such as quartz glass, or a configuration in which a dielectric multilayer film is formed on a transparent substrate. Only the wavelength can be transmitted.
- the optical filter 142 (second optical filter) is located in the light receiving optical system including the light receiving optical fiber 120, and one end surface thereof is close to the incident end surface of the fiber tip region 121.
- the optical filter 142 has a configuration in which a light absorbing material (or light reflecting material) is dispersed in a transparent base material such as quartz glass, or a configuration in which a dielectric multilayer film is formed on a transparent substrate. Only the wavelength cannot be transmitted.
- a lens 150 made of, for example, quartz glass or sapphire is disposed at the probe tip 11b in front of the optical filters 141 and 142.
- the lens 150 is equipped for the purpose of improving the air tightness of the optical path, the external light reception, the external light reception, and the optical path.
- the lens 150 may be a plurality of lens groups.
- the fiber tip regions 111 and 121, the holding unit 130, the optical filters 141 and 142, and the lens 150 are housed in a cylindrical metal frame (not shown) having a length of about 10 to 15 mm.
- the configuration of the irradiation optical fiber 110 and the light receiving optical fiber 120 excluding the fiber tip regions 111 and 121 has a three-layer structure including a core, a clad, and a plastic jacket, as shown in the sectional view of FIG.
- the core and the clad are made of a transparent material such as quartz glass, and the core has a higher refractive index than that of the clad, so that light is confined in the core and propagates.
- the core and clad of the irradiation optical fiber 110 and the light receiving optical fiber 120 are made of a plastic that is resistant to bending (that is, the irradiation optical fiber 110 and the light receiving optical fiber). 120 is preferably configured as a plastic fiber).
- the plastic jacket covers the outer periphery of the clad for reinforcement of the irradiation optical fiber 110 and the light receiving optical fiber 120, improvement of mechanical characteristics, and the like.
- FIG. 5 is a cross-sectional view showing the main configuration of the probe 10 including the holding portion 130 that holds the fiber tip regions 111 and 121.
- the holding unit 130 includes a ferrule 132 and an outer skin 134.
- the ferrule 132 is a member made of, for example, metal, quartz glass, zirconia, or the like.
- the ferrule 132 is formed with a hole into which the irradiation optical fiber 110 and each light receiving optical fiber 120 can be inserted.
- the irradiation optical fiber 110 and the light receiving optical fiber 120 are held by the ferrule 132 by being inserted into this hole.
- the outer skin 134 is a thin tube made of vinyl, for example, and covers the outer periphery of the ferrule 132.
- the irradiation optical fiber 110 and the light receiving optical fiber 120 held by the holding unit 130 are arranged so as to form a bundle in contact with each other or close to each other for the purpose of improving the light receiving efficiency and reducing the probe diameter.
- the light receiving optical fiber 120 disposed so as to surround the irradiation optical fiber 110 has the three-layer structure shown in FIG. 4 in the fiber tip region 121 as well as the region other than the fiber tip region 121.
- the plastic jacket corresponding to the outer layer of the three-layer structure is removed in the fiber tip region 111, and the portion (jacket removing portion) is made of metal.
- Plating is applied.
- the thickness of the metal plating layer 112 is about several ⁇ m to 100 ⁇ m, and can be adjusted by the length of the metal plating process, the number of times the metal plating process is repeated, or the method of the metal plating process. Therefore, the fiber outer diameter can be set to an arbitrary diameter.
- examples of the metal material used in the plating process and constituting the metal plating layer 112 include Ni, Ti, Au, and the like.
- optical fibers having a plastic jacket are used as the irradiation optical fiber 110 and the light receiving optical fiber 120.
- a plastic jacket type optical fiber is advantageous in comparison with a metal jacket type optical fiber in that it is not only inexpensive but also has a low possibility of deterioration or peeling when repeatedly bent.
- the use of a plastic jacket type optical fiber can ensure the flexibility of the probe 10 and facilitate the handling of the probe 10 during production, packaging, and treatment.
- the usable fiber outer diameter is limited by the connector.
- plastic jacket type optical fibers have a wide variety of fiber outer diameters, it is easy to obtain optical fibers suitable for the connectors used.
- the plastic jacket type optical fiber to be used is plated with metal.
- Metal plating can be applied to a desired location. Therefore, as in the present embodiment, the metal plating layer 112 can be formed only in the fiber tip region 111 of the irradiation optical fiber 110. Therefore, the metal plating layer 112 does not become an obstacle to the above effect due to the use of a plastic jacket type optical fiber. Further, since the metal plating layer 112 is formed in the fiber tip region 111, it is possible to prevent light from leaking out of the fiber tip region 111 by the metal plating layer 112.
- the light shielding property capable of preventing crosstalk between the irradiation optical fiber 110 and the light receiving optical fiber 120 is formed so that the irradiation optical fiber 110 and the light receiving optical fiber 120 form a bundle (that is, in contact with or close to each other). This can be ensured in the fiber tip region 111, which is a held region.
- the fiber outer diameter does not become a problem in the process of metal plating, it is possible to use optical fibers of various sizes.
- the bundle of the irradiation optical fiber 110 and the light receiving optical fiber 120 is not necessarily within the tube. It may not be kept in close contact.
- the filling rate of the irradiation optical fiber 110 and the light receiving optical fiber 120 within the inner diameter of the tube is increased by thickening the diameter of the irradiation optical fiber 110 by performing metal plating on the fiber tip region 111 of the irradiation optical fiber 110.
- the stability of the bundle of the irradiation optical fiber 110 and the light receiving optical fiber 120 in the tube can be improved.
- the plastic jacket is removed from the fiber tip region 111, and the jacket removing portion is subjected to metal plating.
- metal plating may be applied to the outer peripheral portion without removing the plastic jacket, but removing the plastic jacket is advantageous in terms of reducing the probe diameter.
- the ferrule 132 used in the example shown in FIG. 5 is not used. Accordingly, the light receiving optical fiber 120 surrounding the irradiation optical fiber 110 is bonded to the irradiation optical fiber 110 with an adhesive, for example, in contact with the metal plating layer 112 on the outer periphery of the irradiation optical fiber 110 and inserted into the outer skin 134. ing. In this configuration, a positioning member such as the ferrule 132 is not required, and the irradiation optical fiber 110 can be easily arranged at the center of the probe 10. In addition, since the ferrule 132 is not used, the probe diameter can be reduced, and the probe outer diameter can be adjusted by adjusting the thickness of the metal plating layer 112.
- the second modification shown in FIG. 7 is similar to the example shown in FIG. 6, but the plastic jacket is removed from the fiber tip region 121 of the light receiving optical fiber 120, and a metal plating layer 122 is formed on the jacket removal portion by metal plating. This is different from the example shown in FIG. In this configuration, since the metal plating is applied to both the irradiation optical fiber 110 and the light receiving optical fiber 120, the light shielding property between the irradiation optical fiber 110 and the light receiving optical fiber 120 can be further improved.
- the third modification shown in FIG. 8 is similar to the example shown in FIG. 7, but the plastic jacket is not removed in the fiber tip region 111 of the irradiation optical fiber 110, leaving the three-layer structure shown in FIG. This is different from the example shown in FIG. In this configuration, even if light leaks from the fiber tip region 111 of the irradiation optical fiber 110, the metal plating layer 122 can prevent this light from entering the fiber tip region 121 of the light receiving optical fiber 120.
- the number of irradiation optical fibers 110 and light receiving optical fibers 120 can be changed as appropriate.
- FIG. 9 is a cross-sectional view showing the main configuration of the probe 15 according to the present embodiment that can be used in the above-described diagnostic system 1.
- the probe 15 has a probe main body 11 that extends from the probe proximal end portion 11 a to the probe distal end portion 11 b, can be inserted into the channel CH of the endoscope 2, and can be connected to the base unit 4, similarly to the probe 10 described above.
- the irradiation optical fiber 211 (first optical fiber) is a long and narrow optical fiber having the three-layer structure shown in FIG. In the tip region of the irradiation optical fiber 211, the plastic jacket corresponding to the outer layer of the three-layer structure is removed, and the metal plating layer 112 is formed in that portion.
- the irradiation optical fiber 211 emits the irradiation light to the site to be observed from the fiber tip portion 211a (first fiber tip portion).
- the light receiving optical fiber 212 (second optical fiber) is a long and narrow optical fiber having the three-layer structure of FIG.
- the metal plating layer 112 is also formed in the tip region of the light receiving optical fiber 212 as in the case of the irradiation optical fiber 211.
- the optical fiber for light reception 212 receives reflected light from the observation target part including Raman scattered light generated with respect to the irradiation light by the living tissue of the observation target part at the fiber tip part 212a (second fiber tip part). .
- the irradiation optical fiber 211 and the light receiving optical fiber 212 are held by a ferrule 213 (holding unit) made of, for example, metal, quartz glass, zirconia, or the like.
- the ferrule 213 is fitted into a cylindrical metal frame 214 (for example, made of stainless steel) having a length of about 5 to 10 mm.
- a lens 215 having a circular cross section (not shown) is disposed at the probe tip 11b and is held in the metal frame 214.
- the lens 215 is equipped for the purpose of improving the light irradiation to the outside, the reception of the light from the outside, and the air tightness of the optical path, and is made of, for example, quartz glass or sapphire.
- a method for holding the lens 215 a conventionally known method can be employed.
- the lens 215 has a convex surface on the probe base end 11a side as shown in FIG. 9, but it may be a flat surface. Although the surface on the tip 11b side is formed in a flat shape, it may be convex.
- the lens 215 may be a plurality of lens groups.
- Optical filters 221 and 222 are disposed between the fiber tip portions 211 a and 212 a and the lens 215, and are housed in the metal frame 214.
- Each of the optical filters 221 and 222 has a semicircular cross section (not shown) so as to form a circular cross section by combination.
- the optical filter 221 (first optical filter) is located in the irradiation optical system including the irradiation optical fiber 211, and one end face thereof is close to the fiber tip 211 a of the irradiation optical fiber 211.
- the internal configuration and wavelength transmission characteristics of the optical filter 221 are the same as those of the optical filter 141 described above.
- the optical filter 222 (second optical filter) is located in the light receiving optical system including the light receiving optical fiber 212, and one end face thereof is close to the fiber tip 212 a of the light receiving optical fiber 212.
- the internal configuration and wavelength transmission characteristics of the optical filter 222 are the same as those of the optical filter 142 described above.
- the filter outer peripheral part 221a which is the outer peripheral part of the semicircular cross section of the optical filter 221 is subjected to metallization processing on the whole. Therefore, a metallized film 231 is formed on the filter outer peripheral part 221a.
- the metallized film thickness can be adjusted by the number of times the metallization process is repeated.
- the metal material used in the metallization process and constituting the metallization film 231 is preferably Ni, Ti or Au.
- the metal material is preferably a single material, but may be an alloy composed of a plurality of materials. However, when an alloy is used, the composition is preferably known.
- Various methods can be adopted as the metallization process. For example, techniques by vapor deposition such as physical vapor deposition and chemical vapor deposition can be used. Further, a method of bringing a molten metal into contact, a method of electroless plating, a method of combining these, a method of further combining electrolytic plating with the method of combining them, or
- the optical filters 221 and 222 are joined to each other by the joining metal material 241 that is the brazing material or solder used for brazing or soldering.
- an airtight joint is formed between the optical filter 221 of the irradiation optical system and the optical filter 222 of the light receiving optical system by metallization processing and brazing or soldering. Therefore, airtightness between the optical filter 221 of the irradiation optical system and the optical filter 222 of the light receiving optical system can be ensured without using an adhesive.
- Adhesion with an adhesive is conventionally known as a general adhesion method for ensuring airtightness, but an adhesive is usually a plastic that generates fluorescence and Raman scattered light with respect to irradiation light. It is not necessarily suitable for use in the optical path.
- an adhesive mainly made of plastic is not used at the joint between the optical filters 221 and 222.
- production of the Raman scattered light and fluorescence resulting from use of an adhesive agent can be prevented reliably.
- the filter outer peripheral part 221a of the irradiation optical system and the filter outer peripheral part 222a of the light receiving optical system are both subjected to metallization processing. Therefore, leakage of light from the filter outer peripheral portion 221a of the irradiation optical system to the filter outer peripheral portion 222a of the light receiving optical system is caused by the metallized film 231 interposed between the optical filter 221 of the irradiation optical system and the optical filter 222 of the light receiving optical system.
- the optical filters 221 and 222 and the metal frame 214 are also joined by the joining metal material 241.
- an airtight joint is formed between the optical filters 221 and 222 and the metal frame 214 by metallization and brazing or soldering. Therefore, airtightness can be ensured between the optical filters 221 and 222 and the metal frame 214 without using an adhesive mainly made of plastic. Thereby, it can prevent reliably that a Raman scattered light and fluorescence generate
- the joining metal material 241 is preferably a single material such as Ag or Cu, but may be an alloy composed of a plurality of materials. However, when an alloy is used, the composition is preferably known.
- the metallized film thickness can be adjusted by the number of times the metallization process is repeated. That is, the metallized film thickness can be arbitrarily set.
- the bonding metal material 241 interposed between the optical filters 221 and 222 and the metal frame 214 does not wrap around the entire thickness direction of the optical filters 221 and 222. You may arrange
- the joining metal material 241 shown in FIG. 10A can be formed by the following method, for example. First, before attaching the optical filters 221 and 222 to the metal frame 214, a metal paste is disposed in the vicinity of the ferrule 213. After the optical filters 221 and 222 are attached to the metal frame 214, the metal paste is melted by heating, and the metal paste is infiltrated into the gap between the metallized film 231 and the metal frame 214 using a capillary phenomenon. Then, after the metal paste penetrates into the gap, the metal paste is cooled.
- the bonding metal member 241 that covers the filter outer peripheral portions 221a and 222a only in a part of the thickness direction of the optical filters 221 and 222 is on the lens 215 side (in other words, the probe tip portion 11b) as shown in FIG. 10B. It may be.
- the metallized film thickness is set to, for example, less than 100 ⁇ m, particularly about 10 ⁇ m, the metallization processing cost can be suppressed at a low cost.
- the bonding metal material 241 interposed between the optical filters 221 and 222 and the metal frame 214 wraps around the entire area in the thickness direction of the optical filters 221 and 222. It is preferable that the filter is disposed so as to cover the filter outer peripheral portions 221a and 222a.
- FIG. 11 is a cross-sectional view showing the main configuration of the probe according to Embodiment 3 of the present invention.
- the main configuration of the probe 20 of the present embodiment shown in FIG. 11 is similar to the main configuration of the probe 15 of the second embodiment shown in FIG. Therefore, in the present embodiment, the same or corresponding components as those described in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted, and the difference from the second embodiment. The explanation will be focused on.
- the irradiation optical fiber 211 and the light receiving optical fiber 212 protrude from the ferrule 213 toward the probe tip 11b. Therefore, protrusions 211 b and 212 b extending from the ferrule 213 to the optical filters 221 and 222 are formed in the irradiation optical fiber 211 and the light receiving optical fiber 212.
- an epoxy-based adhesive can be used for bonding between the ferrule 213 and the irradiation optical fiber 211 and the light-receiving optical fiber 212, but there is a possibility that the adhesive protrudes to the protruding portions 211b and 212b.
- the fiber outer peripheral portions 211c and 212c which are the outer peripheral portions of the protruding portions 211b and 212b, are subjected to the same metallization processing as the optical filters 221 and 222, respectively. Therefore, a metallized film 232 is formed on the fiber outer peripheral portions 211c and 212c.
- the metallized film 232 can reliably prevent the optical path from being affected by the adhesive protruding from the ferrule 213.
- FIG. 12 is a cross-sectional view showing the main configuration of the probe according to Embodiment 4 of the present invention.
- the main configuration of the probe 30 of the present embodiment shown in FIG. 12 is similar to the main configuration of the probes 15 and 20 of the second and third embodiments shown in FIGS. Therefore, in this embodiment, the same or corresponding components as those described in Embodiments 2 and 3 are denoted by the same reference numerals, and detailed description thereof is omitted, and Embodiments 2 and 3 are omitted. The difference will be mainly described.
- the optical filters 221 and 222 are equivalent to the irradiation optical fiber 211 and the light receiving optical fiber 212 so that the filter outer peripheral parts 221a and 222a are flush with the fiber outer peripheral parts 211c and 212c. Is processed into a size (cross section).
- the filter outer peripheral portions 221a and 222a and the fiber outer peripheral portions 211c and 212c having the metallized films 231 and 232 are brazed or soldered, respectively. Therefore, the bonding between the optical filter 221 and the irradiation optical fiber 211 and the bonding between the optical filter 222 and the light receiving optical fiber 212 are formed by the bonding metal materials 241 and 242.
- an airtight joint by metallization processing and brazing or soldering is formed between the optical filters 221 and 222, the irradiation optical fiber 211, and the light receiving optical fiber 212. Therefore, the optical filters 221 and 222 are directly connected to the irradiation optical fiber 211 and the light receiving optical fiber 212. Therefore, it is possible to prevent a gap in which noise light may circulate between the optical filters 221 and 222, the irradiation optical fiber 211, and the light receiving optical fiber 212.
- the irradiation optical fiber 211 and the light receiving optical fiber 212 have the metallized film 232, it is not necessary to form a metal plating layer.
- FIG. 13 is a cross-sectional view showing the main configuration of the probe according to Embodiment 5 of the present invention.
- the main configuration of the probe 40 of the present embodiment shown in FIG. 13 is similar to the main configuration of the probes 15, 20, 30 of the second to fourth embodiments shown in FIGS. Therefore, in the present embodiment, the same or corresponding components as those described in Embodiments 2 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted, and Embodiments 2 to 4 are omitted. The difference will be mainly described.
- the fiber tip portion 212a is disposed closer to the probe tip portion 11b than the fiber tip portion 211a, so that the length of the light receiving optical fiber 212 is the length of the irradiation optical fiber 211. It is longer than that.
- vignetting can be prevented from occurring in the light emitted from the irradiation optical fiber 211 and the light incident on the light receiving optical fiber 212.
- light emitted from an optical fiber or light incident on an optical fiber is divergent light or convergent light.
- NA numerical aperture
- NA is about 0.2.
- vignetting may occur due to the optical filter 221 disposed in front of the irradiation optical fiber 211 and the metallized film 231 and the like around the optical filter 221 to hinder improvement in light receiving efficiency.
- the occurrence of vignetting can be prevented by separating the irradiation optical fiber 211 and the light receiving optical fiber 212 from each other.
- the irradiation optical fiber 211 can be relatively distant from the observation target part, and the light receiving optical fiber 212 can be relatively close. Therefore, the emitted light from the irradiating optical fiber 211 can be applied to the observation target area in a wide area, and the light can be condensed on the light receiving optical fiber 212.
- a ferrule 213 may be interposed between the irradiation optical fiber 211 and the light receiving optical fiber 212 so that they are separated from each other.
- both the irradiation with the irradiation optical fiber 211 and the light reception with the light receiving optical fiber 212 can be performed with the full NA of the fiber, and the efficiency of both irradiation and light reception can be improved.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Endoscopes (AREA)
Abstract
This optical probe is provided with: a first optical fiber which has a first fiber front end part that emits irradiation light; a second optical fiber which has a second fiber front end part that receives fluorescent light or Raman scattering light; a first optical filter which is arranged on the first fiber front end part; and a second optical filter which is arranged on the second fiber front end part. At least one of the first optical fiber, the second optical fiber, the first optical filter and the second optical filter is subjected to a process of forming a metal film.
Description
本発明は、光学プローブ、より具体的には体腔内部の光学特性の測定に用いられる医療用の光学プローブ、及びその製造方法に関する。
The present invention relates to an optical probe, more specifically, a medical optical probe used for measuring optical characteristics inside a body cavity, and a method for manufacturing the same.
可撓性を有する長尺の光学プローブ(以下、単に「プローブ」という)を例えば内視鏡のチャンネルに挿通することで体腔(消化器系の場合、胃及び食道等)内に導入し、このプローブを用いて体腔内部の生体組織の光学特性を分光法により測定することが、従来知られている(例えば、特許文献1、2、3参照)。
A long optical probe having flexibility (hereinafter simply referred to as “probe”) is inserted into a body cavity (in the case of digestive system, stomach, esophagus, etc.) by inserting it into a channel of an endoscope, for example. It is conventionally known to measure the optical characteristics of a living tissue inside a body cavity by using a probe using a probe (see, for example, Patent Documents 1, 2, and 3).
プローブを用いた測定のための分光法としては、近赤外分光法、蛍光法及びラマン分光法等が、知られている。近赤外分光法による体腔内部測定では、体腔内の観察対象部位、例えば病変部に対して近赤外光を照射し、病変部からの反射光のスペクトルを解析することで、病変部の生体組織の成分を解析する。蛍光法及びラマン分光法に共通する点は、比較的狭帯域の励起光を生体組織に照射し、その結果として、励起光とは異なる波長領域に現れる蛍光或いはラマン散乱光(測定光)を含む反射光を生体組織から発生させ、この反射光を受光し、分光器で検出することで、病変部の生体組織の状態を解析する点である。
As a spectroscopic method for measurement using a probe, a near infrared spectroscopic method, a fluorescence method, a Raman spectroscopic method, and the like are known. In the measurement of the inside of a body cavity by near infrared spectroscopy, near-infrared light is irradiated to a site to be observed in the body cavity, for example, a lesion, and the spectrum of reflected light from the lesion is analyzed, so that the living body of the lesion is analyzed. Analyze tissue components. A common point between fluorescence and Raman spectroscopy is that a biological tissue is irradiated with a relatively narrow-band excitation light, and as a result, fluorescence or Raman scattered light (measurement light) that appears in a wavelength region different from the excitation light is included. The reflected light is generated from the living tissue, and the reflected light is received and detected by the spectroscope, thereby analyzing the state of the living tissue of the lesioned part.
さて、ラマン分光法による体腔内部測定に用いるプローブでは、例えば特許文献1記載のように、照射側の先端部には、照射光の波長のみを通過させる光学フィルターが装着され、受光側の先端部には、照射光の波長をカットする光学フィルターが装着される。
By the way, in a probe used for measurement of the inside of a body cavity by Raman spectroscopy, for example, as described in Patent Document 1, an optical filter that passes only the wavelength of irradiation light is attached to the tip on the irradiation side, and the tip on the light receiving side. Is equipped with an optical filter for cutting the wavelength of the irradiation light.
通常、測定光の強度は励起光の強度に比べて著しく低いため、高強度の励起光と低強度の測定光とを分離して測定光のみを検出することが、求められる。そのために、励起光照射用の光ファイバー(照射用光ファイバー)と測定光受光用の光ファイバー(受光用光ファイバー)とを併用するプローブにおいて光学フィルターを設置することが、知られている。例えば、励起光の波長のみを通過させる光学フィルターを、照射用光ファイバーの出射端面付近に設置し、励起光の波長をカットする光学フィルターを、受光用光ファイバーの入射端面付近に設置する(例えば、特許文献3参照)。
Usually, since the intensity of the measurement light is significantly lower than the intensity of the excitation light, it is required to detect only the measurement light by separating the high-intensity excitation light and the low-intensity measurement light. For this purpose, it is known to install an optical filter in a probe that uses both an optical fiber for irradiating excitation light (irradiation optical fiber) and an optical fiber for receiving measurement light (light receiving optical fiber). For example, an optical filter that passes only the wavelength of the excitation light is installed near the exit end face of the irradiation optical fiber, and an optical filter that cuts the wavelength of the excitation light is installed near the incident end face of the light receiving optical fiber (for example, patent Reference 3).
照射用光ファイバーと受光用光ファイバーとを併用するプローブにおいて上記のように光学フィルターを設置した場合であっても、これらのファイバー間のクロストークが問題となることがある。つまり、照射用光ファイバーから漏れ出た極微弱な光が受光用光ファイバーに入射し、その一部が受光用光ファイバー内を伝導してしまうことがある。この光は、照射用光ファイバー内を伝導する光のうちの極わずかであるが、通常は、測定したい光信号自体が微小であるため、この光信号と同程度の強度となることがある。
Even when the optical filter is installed as described above in the probe using both the irradiation optical fiber and the light receiving optical fiber, crosstalk between these fibers may be a problem. That is, extremely weak light leaking from the irradiation optical fiber may enter the light receiving optical fiber, and a part of the light may be conducted in the light receiving optical fiber. This light is very small of the light conducted through the irradiation optical fiber, but usually the optical signal itself to be measured is very small, and may have the same intensity as this optical signal.
このようなクロストークを防ぐために、特許文献2記載のプローブでは、外層に厚さ10~20μm程度の金属ジャケットを備えた石英ファイバーを照射用光ファイバーとして使用し、その外周面からの光の漏れを防止している。
In order to prevent such crosstalk, the probe described in Patent Document 2 uses a quartz fiber having an outer layer with a metal jacket having a thickness of about 10 to 20 μm as an irradiation optical fiber, and leaks light from the outer peripheral surface thereof. It is preventing.
また同様に、ラマン分光法による体腔内部測定において、その精度の向上を図るには、光路の気密性を確保することにより、体腔内の体液によるラマン散乱光或いは蛍光の影響を回避することが求められる。よって、照射側及び受光側の各光学フィルターを、光路の気密性が確保されるように装着する必要がある。
Similarly, in order to improve the accuracy of measurement inside the body cavity by Raman spectroscopy, it is required to avoid the influence of Raman scattered light or fluorescence caused by body fluid in the body cavity by ensuring the airtightness of the optical path. It is done. Therefore, it is necessary to mount the optical filters on the irradiation side and the light receiving side so that the airtightness of the optical path is ensured.
また、照射側光学フィルターの外周部から受光側光学フィルターの外周部に光が漏れたりしないように、各光学フィルターの外周部の遮光性を確保することも求められる。これは上記のクロストークがフィルター間或いはフィルターと光ファイバーとの間でも生じうるためである。
In addition, it is also required to ensure the light shielding property of the outer peripheral portion of each optical filter so that light does not leak from the outer peripheral portion of the irradiation side optical filter to the outer peripheral portion of the light receiving side optical filter. This is because the above crosstalk can occur between filters or between a filter and an optical fiber.
しかしながら、上記のような金属ジャケットを備えた光ファイバーは、サプライヤーが少ないこと、高価であること、及び通常入手できるものではコア径/クラッド径/ジャケット径が限定されていること等の理由により、プローブの光学設計が制限されてしまうという問題がある。
However, the optical fiber with the metal jacket as described above is a probe due to the fact that there are few suppliers, it is expensive, and the core diameter / cladding diameter / jacket diameter is limited in what is usually available. There is a problem that the optical design is limited.
また光路の気密性を確保する一般的な装着方法としては、接着剤による接着がある。しかしながら、接着剤は通常、照射光に対して蛍光及びラマン散乱光を発生するプラスチックが主原料であるため、光路での使用に適さないという問題がある。
Also, as a general mounting method for ensuring the airtightness of the optical path, there is an adhesive bonding. However, since the adhesive is usually a plastic that generates fluorescence and Raman scattered light with respect to the irradiation light, there is a problem that it is not suitable for use in an optical path.
本発明の目的は、光ファイバー及びフィルターを備えたプローブにおいて、金属ジャケットを備えた光ファイバーのような特別な光ファイバーを使用することなく、遮光性を確保することができる光学プローブ及びその製造方法を提供することである。ここでいう遮光性は、例えば照射用光ファイバーと受光用光ファイバーとの間であったり、フィルター間であったり、さらにファイバーとフィルター間の遮光性を意味する。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical probe capable of ensuring light-shielding performance without using a special optical fiber such as an optical fiber with a metal jacket in a probe including an optical fiber and a filter, and a method for manufacturing the same. That is. The light shielding property here means, for example, the light shielding property between the irradiation optical fiber and the light receiving optical fiber, between the filters, and between the fiber and the filter.
また本発明の別の目的は、ラマン分光法による体腔内部測定の精度を向上させることができる、光路の気密性が確保された光学プローブ及びその製造方法を提供することである。
Another object of the present invention is to provide an optical probe capable of improving the accuracy of internal measurement of a body cavity by Raman spectroscopy and a method for manufacturing the same, in which the tightness of the optical path is ensured.
本発明に係る光学プローブは、
体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
前記第1のファイバー先端部に配置された第1の光学フィルターと、
前記第2のファイバー先端部に配置された第2の光学フィルターと、を有し、
前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルター及び前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理が施されている。 The optical probe according to the present invention is:
A first optical fiber having a first fiber tip that emits irradiation light to the site to be observed in the body cavity;
A second optical fiber having a second fiber tip that receives fluorescence or Raman scattered light from the site to be observed;
A first optical filter disposed at the tip of the first fiber;
A second optical filter disposed at the tip of the second fiber,
At least one of the first optical fiber, the second optical fiber, the first optical filter, and the second optical filter is subjected to a process for forming a metal film.
体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
前記第1のファイバー先端部に配置された第1の光学フィルターと、
前記第2のファイバー先端部に配置された第2の光学フィルターと、を有し、
前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルター及び前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理が施されている。 The optical probe according to the present invention is:
A first optical fiber having a first fiber tip that emits irradiation light to the site to be observed in the body cavity;
A second optical fiber having a second fiber tip that receives fluorescence or Raman scattered light from the site to be observed;
A first optical filter disposed at the tip of the first fiber;
A second optical filter disposed at the tip of the second fiber,
At least one of the first optical fiber, the second optical fiber, the first optical filter, and the second optical filter is subjected to a process for forming a metal film.
本発明に係る光学プローブの製造方法は、
体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
前記第1のファイバー先端部に配置された第1の光学フィルターと、
前記第2のファイバー先端部に配置された第2の光学フィルターと、を有する光学プローブの製造方法であって、
前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルター及び前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理を施す。 The method for producing an optical probe according to the present invention includes:
A first optical fiber having a first fiber tip that emits irradiation light to the site to be observed in the body cavity;
A second optical fiber having a second fiber tip that receives fluorescence or Raman scattered light from the site to be observed;
A first optical filter disposed at the tip of the first fiber;
A second optical filter disposed at the tip of the second fiber, and a method of manufacturing an optical probe comprising:
At least one of the first optical fiber, the second optical fiber, the first optical filter, and the second optical filter is subjected to a process of forming a metal film.
体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
前記第1のファイバー先端部に配置された第1の光学フィルターと、
前記第2のファイバー先端部に配置された第2の光学フィルターと、を有する光学プローブの製造方法であって、
前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルター及び前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理を施す。 The method for producing an optical probe according to the present invention includes:
A first optical fiber having a first fiber tip that emits irradiation light to the site to be observed in the body cavity;
A second optical fiber having a second fiber tip that receives fluorescence or Raman scattered light from the site to be observed;
A first optical filter disposed at the tip of the first fiber;
A second optical filter disposed at the tip of the second fiber, and a method of manufacturing an optical probe comprising:
At least one of the first optical fiber, the second optical fiber, the first optical filter, and the second optical filter is subjected to a process of forming a metal film.
本発明によれば、光ファイバー及びフィルターを備えたプローブにおいて、金属ジャケットを備えた光ファイバーのような特別な光ファイバーを使用することなく、遮光性を確保することができる。
According to the present invention, in a probe having an optical fiber and a filter, light shielding properties can be ensured without using a special optical fiber such as an optical fiber having a metal jacket.
また、本発明によれば、ラマン分光法による体腔内部測定の精度を向上させることができる。
Moreover, according to the present invention, the accuracy of measurement inside the body cavity by Raman spectroscopy can be improved.
本発明の構成(以下、実施の形態1~5に相当する)によれば、プローブ先端部における光学部品(光ファイバー、光学フィルター)のクロストークを解消或いは低減できるという効果が得られ、特にラマン光の検出を高効率で行うことができる。
According to the configuration of the present invention (hereinafter, corresponding to Embodiments 1 to 5), the effect of eliminating or reducing the crosstalk of optical components (optical fibers and optical filters) at the probe tip can be obtained. Can be detected with high efficiency.
また、光ファイバーの先端領域の表面に金属膜を形成する表面処理を施す(以下、実施の形態1、2、5に相当する)ことで、当該表面処理が施された光ファイバーに不要な光が入射・出射することを抑止できる。特に出射(照射)、受光の両方の光ファイバーに金属膜を形成する(以下、実施の形態1、2、5に相当する)ことで、不要な光の遮光は確実になり、出射(照射)、受光の光ファイバー間における光軸垂直方向のクロストークを解消することができる。
In addition, by applying a surface treatment that forms a metal film on the surface of the tip region of the optical fiber (hereinafter referred to as Embodiments 1, 2, and 5), unnecessary light is incident on the optical fiber that has been subjected to the surface treatment.・ Ejecting can be suppressed. In particular, by forming a metal film on both the outgoing (irradiation) and received optical fibers (hereinafter, corresponding to the first, second, and fifth embodiments), unnecessary light can be reliably blocked, and the outgoing (irradiation), Crosstalk in the direction perpendicular to the optical axis between the received optical fibers can be eliminated.
また、光学フィルターの外周部に金属膜を形成する(以下、実施の形態2~5に相当する)ことも、クロストークを解消する上で大変効果的である。光学フィルターは光軸方向に厚みを有することから、この厚み部分から光が漏れ出すことがある。本発明の光学プローブにおいては、出射(照射)、受光の両方に光学フィルターを備えるため、この厚み部分から漏れた光が、クロストークの原因となることが考えられるが、光学フィルターの外周部に金属膜を形成して遮光することで、このような問題を解消できる。
Also, forming a metal film on the outer periphery of the optical filter (hereinafter, corresponding to Embodiments 2 to 5) is very effective in eliminating crosstalk. Since the optical filter has a thickness in the optical axis direction, light may leak from the thickness portion. In the optical probe of the present invention, since the optical filter is provided for both emission (irradiation) and light reception, it is considered that the light leaked from the thickness portion may cause crosstalk. Such a problem can be solved by forming a metal film and shielding light.
さらに、出射(照射)、受光の両方の光学フィルターに金属膜を形成する(以下、実施の形態2~5に相当する)ことが遮光上最も好ましく、さらに、このメタライズ処理を利用して、2つの光学フィルターをろう付け又は半田付けにより接合する(以下、実施の形態2~5に相当する)ことが、光学プローブを構成する上で小型化に貢献することとなり、非常に好ましい。
Further, it is most preferable in terms of light shielding to form a metal film on both the emission (irradiation) and light reception optical filters (hereinafter, corresponding to Embodiments 2 to 5). Joining two optical filters by brazing or soldering (hereinafter, corresponding to Embodiments 2 to 5) contributes to miniaturization in configuring the optical probe, which is very preferable.
そして、光ファイバーの先端領域と光学フィルターの外周部との両方に金属膜が形成されていてももちろんかまわない(以下、実施の形態2~5に相当する)。さらに、これらが接合されている形態(以下、実施の形態3、4に相当する)も好ましく、採用可能であり、この場合は特に遮光が確実に行われる。
Of course, a metal film may be formed on both the tip region of the optical fiber and the outer periphery of the optical filter (hereinafter, corresponding to Embodiments 2 to 5). Furthermore, a form in which these are joined (hereinafter, corresponding to Embodiments 3 and 4) is also preferable and can be employed. In this case, light shielding is particularly reliably performed.
また、光学プローブの内部構造においては、光ファイバーは、保持部によって位置や状態が固定されるものであることが好ましい(以下、実施の形態1~5に相当する)。この保持部は、例えばファイバー束を保持する外装チューブとすることができる(以下、実施の形態1に相当する)。
In the internal structure of the optical probe, it is preferable that the position and state of the optical fiber be fixed by a holding portion (hereinafter, corresponding to Embodiments 1 to 5). This holding portion can be, for example, an exterior tube that holds a fiber bundle (hereinafter, corresponds to Embodiment 1).
また一方で、保持部は、いわゆるフェルールであっても良い(以下、実施の形態1~5に相当する)。この場合はさらにフェルールを保持する外装部材や枠部材による保持、固定などが行い易いという利点があるし、さらにフェルールの先端面と光ファイバーの先端面とが同一面であれば(以下、実施の形態1に相当する)、先端研磨を行い易いという利点もある。そしてこの場合は特に、光ファイバー間のクロストークを解消することができる。
On the other hand, the holding unit may be a so-called ferrule (hereinafter, corresponding to Embodiments 1 to 5). In this case, there is an advantage that it can be easily held and fixed by an exterior member or a frame member that holds the ferrule, and if the tip surface of the ferrule and the tip surface of the optical fiber are the same surface (hereinafter referred to as an embodiment) This also has the advantage of easy tip polishing. And especially in this case, the crosstalk between optical fibers can be eliminated.
また、フェルールの先端面と光ファイバーの先端面とが同一面ではない場合(以下、実施の形態2~5に相当する)は、光ファイバーの先端領域の表面に金属膜を形成することで、クロストークを低減させることができる。
Further, when the tip surface of the ferrule and the tip surface of the optical fiber are not the same surface (hereinafter referred to as Embodiments 2 to 5), a metal film is formed on the surface of the tip region of the optical fiber, thereby crosstalk. Can be reduced.
また、光ファイバーは、光学プローブ全体の光軸方向の柔軟性を達成するため、プラスチックファイバーであることが好ましい(以下、実施の形態1~5に相当する)。そして、光ファイバーの先端領域については、プラスチックジャケットを除去しておくことが、金属膜を形成する上で好ましい(以下、実施の形態1、2、5に相当する)。
Further, the optical fiber is preferably a plastic fiber in order to achieve flexibility in the optical axis direction of the entire optical probe (hereinafter, corresponding to Embodiments 1 to 5). For the tip region of the optical fiber, it is preferable to remove the plastic jacket in order to form a metal film (hereinafter, corresponding to Embodiments 1, 2, and 5).
さて、光学プローブの構成としては、金属枠を有しており、この金属枠に光学フィルターの外周部が接合されている構成が好ましい(以下、実施の形態2~5に相当する)。このような構成であれば、光学フィルターの前後で気密が保たれることになり、光路への異物侵入を防止することが可能になる。特に、光学フィルターの全厚み方向にわたって接合されていれば、強度的にもっとも確実であり好ましい(以下、実施の形態2、3、5に相当する)。
The configuration of the optical probe is preferably a configuration in which a metal frame is provided and the outer peripheral portion of the optical filter is joined to the metal frame (hereinafter, corresponding to Embodiments 2 to 5). With such a configuration, airtightness is maintained before and after the optical filter, and foreign matter can be prevented from entering the optical path. In particular, it is most reliable and preferable in terms of strength if it is bonded over the entire thickness direction of the optical filter (hereinafter, corresponding to Embodiments 2, 3, and 5).
ここで、光ファイバーの先端領域の表面、光学フィルターの外周部に金属膜を形成する方法としては、金属めっきとメタライズ処理とが挙げられる。いずれの方法も、非金属材料である光ファイバー、光学フィルターの表面に金属膜を形成する(金属化する)処理を意味する。
Here, as a method of forming a metal film on the surface of the tip region of the optical fiber and the outer peripheral portion of the optical filter, metal plating and metallization treatment may be mentioned. Any method means a process of forming (metalizing) a metal film on the surface of an optical fiber or optical filter which is a non-metallic material.
以下、本発明の実施の形態について、図面を用いて詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施の形態1)
図1は、診断システムの構成例を示す図である。図1の診断システム1は、内視鏡2、内視鏡プロセッサー3、ベースユニット4、入力装置5、モニター6、7、及び本発明の実施の形態1に係るプローブ10を有する。 (Embodiment 1)
FIG. 1 is a diagram illustrating a configuration example of a diagnostic system. Adiagnostic system 1 in FIG. 1 includes an endoscope 2, an endoscope processor 3, a base unit 4, an input device 5, monitors 6, 7, and a probe 10 according to Embodiment 1 of the present invention.
図1は、診断システムの構成例を示す図である。図1の診断システム1は、内視鏡2、内視鏡プロセッサー3、ベースユニット4、入力装置5、モニター6、7、及び本発明の実施の形態1に係るプローブ10を有する。 (Embodiment 1)
FIG. 1 is a diagram illustrating a configuration example of a diagnostic system. A
内視鏡2は、体腔内に導入可能に形成された可撓性を有する長尺の内視鏡本体21と、内視鏡本体21の基端部(内視鏡基端部)21aに設けられた操作部22と、操作部22を介して内視鏡本体21と内視鏡プロセッサー3とを通信可能に接続するケーブル23と、を有する。
The endoscope 2 is provided at a long flexible endoscope body 21 formed so as to be capable of being introduced into a body cavity, and a proximal end portion (endoscope proximal end portion) 21a of the endoscope body 21. And the cable 23 that connects the endoscope main body 21 and the endoscope processor 3 via the operation unit 22 so as to communicate with each other.
内視鏡本体21は、体腔内部を進入する際に体腔の湾曲に追従して容易に湾曲可能な可撓性を、その略全長にわたって有する。また、内視鏡本体21は、操作部22のノブ22aの操作に従って内視鏡先端部21b側の一定範囲(操作可能部21c)を任意の角度で湾曲させることができる機構(図示せず)を有する。
The endoscope main body 21 has a flexibility that can be easily bent following the curvature of the body cavity when entering the inside of the body cavity over substantially the entire length thereof. Further, the endoscope body 21 has a mechanism (not shown) capable of bending a predetermined range (operable portion 21c) on the endoscope distal end portion 21b side at an arbitrary angle in accordance with the operation of the knob 22a of the operation portion 22. Have
内視鏡本体21は、内視鏡先端部21bの斜視図(図2)に示すように、カメラCA、ライトガイドLG及びチャンネルCHを有する。ライトガイドLGは、内視鏡プロセッサー3の照明光源31から発光された光(可視光)を内視鏡先端部21bまで導光し、その光を内視鏡先端部21bの端面から出射させる。カメラCAは、固体撮像素子を備えた電子カメラであり、ライトガイドLGから出射された光により照明された領域を撮像し、その信号(撮像信号)を内視鏡プロセッサー3の画像処理部32に伝送する。伝送された撮像信号に基づく映像(内視鏡映像)は、モニター6に表示される。チャンネルCHは、操作部22に形成された導入口22bと連通するように内視鏡本体21に形成された例えば2.6mm径の内腔である。
The endoscope main body 21 has a camera CA, a light guide LG, and a channel CH as shown in a perspective view (FIG. 2) of the endoscope distal end portion 21b. The light guide LG guides light (visible light) emitted from the illumination light source 31 of the endoscope processor 3 to the endoscope distal end portion 21b, and emits the light from the end face of the endoscope distal end portion 21b. The camera CA is an electronic camera equipped with a solid-state imaging device, images an area illuminated by light emitted from the light guide LG, and sends the signal (imaging signal) to the image processing unit 32 of the endoscope processor 3. To transmit. An image (endoscopic image) based on the transmitted imaging signal is displayed on the monitor 6. The channel CH is a lumen having a diameter of, for example, 2.6 mm formed in the endoscope main body 21 so as to communicate with the introduction port 22 b formed in the operation unit 22.
プローブ本体11は、内視鏡2のチャンネルCHに挿通可能な外径(例えば2.4mm)を有し、且つプローブ基端部11aからプローブ先端部11bまで延在する長尺の可撓性線状部材であり、チャンネルCHへの挿通により体腔に導入される。プローブ本体11は、プローブ基端部11aに設けられたコネクター11c、11dを介してベースユニット4に接続されている。プローブ本体11は、照射用光ファイバー110(図3参照)により、ベースユニット4のレーザー41から発光された励起光を導光し、その光を体腔内の観察対象部位への照射光として出射する。レーザー41は、半導体レーザー又は固体レーザー等であるが、装置小型化の観点では半導体レーザーの使用が好ましい。また、レーザー光の波長としては、400~410nm、487nm、630~660nm、780~790nm、830~860nm、1290~1330nm又は1520~1580nmの波長が好ましい。なお、励起光の光源はレーザー41でなくても良く、LED(Light Emitting Diode)等であっても良い。
The probe main body 11 has an outer diameter (for example, 2.4 mm) that can be inserted into the channel CH of the endoscope 2, and is a long flexible wire that extends from the probe proximal end portion 11a to the probe distal end portion 11b. It is a shaped member and is introduced into the body cavity by insertion through the channel CH. The probe body 11 is connected to the base unit 4 via connectors 11c and 11d provided at the probe base end portion 11a. The probe body 11 guides the excitation light emitted from the laser 41 of the base unit 4 by the irradiation optical fiber 110 (see FIG. 3), and emits the light as irradiation light to the observation target site in the body cavity. The laser 41 is a semiconductor laser, a solid laser, or the like, but it is preferable to use a semiconductor laser from the viewpoint of downsizing the apparatus. The wavelength of the laser light is preferably 400 to 410 nm, 487 nm, 630 to 660 nm, 780 to 790 nm, 830 to 860 nm, 1290 to 1330 nm, or 1520 to 1580 nm. The light source of the excitation light may not be the laser 41 but may be an LED (Light Emitting Diode) or the like.
また、プローブ本体11は、観察対象部位からの反射光を受光用光ファイバー120(図3参照)により受光し、その光をベースユニット4の分光器42へ導光する。分光器42へ導光された光に含まれる蛍光又はラマン散乱光は、分光器42によりスペクトル解析を施される。スペクトル解析結果は、コンピューター43のCPU(Central Processing Unit)43aにより画像処理等を施され、グラフ等の形態でモニター7に表示される。CPU43aにおいて病状等についての判定を行い、その判定結果をメモリー43bに保存すると共にモニター7に表示するようにしても良い。また、コンピューター43における各種の解析及び判定の実行及び設定等は、入力装置5(例えばキーボード又はマウス等)を操作することによって行うことができる。
Also, the probe body 11 receives the reflected light from the site to be observed by the light receiving optical fiber 120 (see FIG. 3), and guides the light to the spectroscope 42 of the base unit 4. The fluorescence or Raman scattered light contained in the light guided to the spectroscope 42 is subjected to spectrum analysis by the spectroscope 42. The spectrum analysis result is subjected to image processing and the like by a CPU (Central Processing Unit) 43a of the computer 43 and displayed on the monitor 7 in the form of a graph or the like. The CPU 43a may determine a medical condition and the like, and the determination result may be stored in the memory 43b and displayed on the monitor 7. The execution and setting of various analyzes and determinations in the computer 43 can be performed by operating the input device 5 (for example, a keyboard or a mouse).
図3は、図1に示すプローブ10の内部構成を概略的に示す図である。
FIG. 3 is a diagram schematically showing the internal configuration of the probe 10 shown in FIG.
照射用光ファイバー110(第1の光ファイバー)及び受光用光ファイバー120(第2の光ファイバー)はいずれも、全長数メートル及び外径100~300μm程度の長尺線状部材であり、プローブ本体11に収納されている。照射用光ファイバー110は、プローブ基端部11aのコネクター11cによりベースユニット4のレーザー41と光学的に接続されている。受光用光ファイバー120は、プローブ基端部11aのコネクター11dによりベースユニット4の分光器42と光学的に接続されている。
The irradiation optical fiber 110 (first optical fiber) and the light receiving optical fiber 120 (second optical fiber) are both long linear members having a total length of several meters and an outer diameter of about 100 to 300 μm, and are housed in the probe body 11. ing. The irradiation optical fiber 110 is optically connected to the laser 41 of the base unit 4 by the connector 11c of the probe base end portion 11a. The light receiving optical fiber 120 is optically connected to the spectroscope 42 of the base unit 4 by a connector 11d of the probe base end portion 11a.
照射用光ファイバー110の先端領域(ファイバー先端領域)111及び受光用光ファイバー120の先端領域(ファイバー先端領域)121は保持部130により保持されている。これにより、照射用光ファイバー110及び受光用光ファイバー120が束を成し、出射端面(つまり観察対象部位への照射光の出射面)及び入射端面(つまり観察対象部位からの反射光の受光面)が位置決めされている。保持部130により保持されるファイバー先端領域111、121の長さは、5~10mm程度である。ファイバー先端領域111、121を保持する保持部130を含む、プローブ10の要部構成については、後述する。
The tip region (fiber tip region) 111 of the irradiation optical fiber 110 and the tip region (fiber tip region) 121 of the light receiving optical fiber 120 are held by the holding unit 130. Accordingly, the irradiation optical fiber 110 and the light receiving optical fiber 120 form a bundle, and the emission end face (that is, the emission surface of the irradiation light to the observation target part) and the incident end face (that is, the light reception surface of the reflected light from the observation target part). It is positioned. The lengths of the fiber tip regions 111 and 121 held by the holding unit 130 are about 5 to 10 mm. The main configuration of the probe 10 including the holding unit 130 that holds the fiber tip regions 111 and 121 will be described later.
光学フィルター141(第1の光学フィルター)は、照射用光ファイバー110を含む照射光学系内に位置し、その一端面は、ファイバー先端領域111の出射端面に近接している。光学フィルター141は、例えば石英ガラス等の透明基材内に光吸収物質(又は光反射物質)を分散させた構成、又は透明基板上に誘電体多層膜を形成した構成を有し、照射光の波長のみが透過可能となっている。
The optical filter 141 (first optical filter) is located in the irradiation optical system including the irradiation optical fiber 110, and one end surface thereof is close to the emission end surface of the fiber tip region 111. The optical filter 141 has a configuration in which a light absorbing material (or a light reflecting material) is dispersed in a transparent base material such as quartz glass, or a configuration in which a dielectric multilayer film is formed on a transparent substrate. Only the wavelength can be transmitted.
光学フィルター142(第2の光学フィルター)は、受光用光ファイバー120を含む受光光学系内に位置し、その一端面は、ファイバー先端領域121の入射端面に近接している。光学フィルター142は、例えば石英ガラス等の透明基材内に光吸収物質(又は光反射物質)を分散させた構成、又は透明基板上に誘電体多層膜を形成した構成を有し、照射光の波長のみが透過不可能となっている。
The optical filter 142 (second optical filter) is located in the light receiving optical system including the light receiving optical fiber 120, and one end surface thereof is close to the incident end surface of the fiber tip region 121. The optical filter 142 has a configuration in which a light absorbing material (or light reflecting material) is dispersed in a transparent base material such as quartz glass, or a configuration in which a dielectric multilayer film is formed on a transparent substrate. Only the wavelength cannot be transmitted.
光学フィルター141、142前方のプローブ先端部11bには、例えば石英ガラス又はサファイア等から成るレンズ150が配置されている。レンズ150は、外部への光の照射、外部からの光の受光、及び光路の気密性を向上させる目的で装備されている。レンズ150は、複数枚のレンズ群であっても良い。
A lens 150 made of, for example, quartz glass or sapphire is disposed at the probe tip 11b in front of the optical filters 141 and 142. The lens 150 is equipped for the purpose of improving the air tightness of the optical path, the external light reception, the external light reception, and the optical path. The lens 150 may be a plurality of lens groups.
ファイバー先端領域111、121、保持部130、光学フィルター141、142、及びレンズ150は、長さ10~15mm程度の筒状の金属枠(図示せず)に収納されている。
The fiber tip regions 111 and 121, the holding unit 130, the optical filters 141 and 142, and the lens 150 are housed in a cylindrical metal frame (not shown) having a length of about 10 to 15 mm.
ファイバー先端領域111、121を除く照射用光ファイバー110及び受光用光ファイバー120の構成は、図4の断面図に示すように、コア、クラッド及びプラスチックジャケットから成る3層構造を有する。
The configuration of the irradiation optical fiber 110 and the light receiving optical fiber 120 excluding the fiber tip regions 111 and 121 has a three-layer structure including a core, a clad, and a plastic jacket, as shown in the sectional view of FIG.
コア及びクラッドは例えば石英ガラス等の透明材料から成り、コアはクラッドに比べて高い屈折率を有しており、これにより光はコア内に閉じ込められて伝播する。照射用光ファイバー110及び受光用光ファイバー120の取り扱い性を向上させるため、照射用光ファイバー110及び受光用光ファイバー120のコア及びクラッドは、曲げに強いプラスチックで構成する(すなわち、照射用光ファイバー110及び受光用光ファイバー120をプラスチックファイバーとして構成する)ことが好ましい。プラスチックジャケットは、照射用光ファイバー110及び受光用光ファイバー120の補強及び機械特性改善等のためにクラッドの外周を被覆する。
The core and the clad are made of a transparent material such as quartz glass, and the core has a higher refractive index than that of the clad, so that light is confined in the core and propagates. In order to improve the handleability of the irradiation optical fiber 110 and the light receiving optical fiber 120, the core and clad of the irradiation optical fiber 110 and the light receiving optical fiber 120 are made of a plastic that is resistant to bending (that is, the irradiation optical fiber 110 and the light receiving optical fiber). 120 is preferably configured as a plastic fiber). The plastic jacket covers the outer periphery of the clad for reinforcement of the irradiation optical fiber 110 and the light receiving optical fiber 120, improvement of mechanical characteristics, and the like.
図5は、ファイバー先端領域111、121を保持する保持部130を含む、プローブ10の要部構成を示す断面図である。
FIG. 5 is a cross-sectional view showing the main configuration of the probe 10 including the holding portion 130 that holds the fiber tip regions 111 and 121.
保持部130は、フェルール132及び外皮134を有する。フェルール132は、例えば金属、石英ガラス又はジルコニア等から成る部材である。フェルール132には、照射用光ファイバー110及び各受光用光ファイバー120を挿入可能な孔が形成されている。照射用光ファイバー110及び受光用光ファイバー120は、この孔に挿入されることによって、フェルール132に保持される。外皮134は、例えばビニール製の薄いチューブであり、フェルール132の外周を被覆する。
The holding unit 130 includes a ferrule 132 and an outer skin 134. The ferrule 132 is a member made of, for example, metal, quartz glass, zirconia, or the like. The ferrule 132 is formed with a hole into which the irradiation optical fiber 110 and each light receiving optical fiber 120 can be inserted. The irradiation optical fiber 110 and the light receiving optical fiber 120 are held by the ferrule 132 by being inserted into this hole. The outer skin 134 is a thin tube made of vinyl, for example, and covers the outer periphery of the ferrule 132.
保持部130により保持された照射用光ファイバー110及び受光用光ファイバー120は、受光効率向上及びプローブ細径化の目的で、互いに当接又は近接して束を成すように配置されている。
The irradiation optical fiber 110 and the light receiving optical fiber 120 held by the holding unit 130 are arranged so as to form a bundle in contact with each other or close to each other for the purpose of improving the light receiving efficiency and reducing the probe diameter.
照射用光ファイバー110を囲繞して配置された受光用光ファイバー120は、ファイバー先端領域121においてもファイバー先端領域121以外の領域と同様、図4に示す3層構造を有している。
The light receiving optical fiber 120 disposed so as to surround the irradiation optical fiber 110 has the three-layer structure shown in FIG. 4 in the fiber tip region 121 as well as the region other than the fiber tip region 121.
他方、照射用光ファイバー110は、ファイバー先端領域111においてはファイバー先端領域111以外の領域と異なり、3層構造の外層に相当するプラスチックジャケットが除去されており、その部分(ジャケット除去部)には金属めっきが施されている。金属めっき層112の厚さは数μmから100μm程度であり、金属めっきの処理の時間の長さ、金属めっきの処理を繰り返す回数、或いは金属めっきの処理の方法によって調整可能である。よって、ファイバー外径を任意の径にすることができる。なお、めっき処理で使用され金属めっき層112を構成することとなる金属材料としては、例えばNi、Ti又はAu等がある。
On the other hand, in the optical fiber for irradiation 110, unlike the region other than the fiber tip region 111, the plastic jacket corresponding to the outer layer of the three-layer structure is removed in the fiber tip region 111, and the portion (jacket removing portion) is made of metal. Plating is applied. The thickness of the metal plating layer 112 is about several μm to 100 μm, and can be adjusted by the length of the metal plating process, the number of times the metal plating process is repeated, or the method of the metal plating process. Therefore, the fiber outer diameter can be set to an arbitrary diameter. In addition, examples of the metal material used in the plating process and constituting the metal plating layer 112 include Ni, Ti, Au, and the like.
このように、本実施の形態では、照射用光ファイバー110及び受光用光ファイバー120として、プラスチックジャケットを有する光ファイバーを使用する。プラスチックジャケットタイプの光ファイバーは、安価であるだけでなく、繰り返し屈曲させたときの劣化又は剥離の可能性が低い点で、金属ジャケットタイプの光ファイバーに比べて有利である。また、プラスチックジャケットタイプの光ファイバーの使用によりプローブ10の柔軟性を確保することができ、生産、梱包及び施術時のプローブ10の取り扱いを容易にすることができる。
Thus, in this embodiment, optical fibers having a plastic jacket are used as the irradiation optical fiber 110 and the light receiving optical fiber 120. A plastic jacket type optical fiber is advantageous in comparison with a metal jacket type optical fiber in that it is not only inexpensive but also has a low possibility of deterioration or peeling when repeatedly bent. Moreover, the use of a plastic jacket type optical fiber can ensure the flexibility of the probe 10 and facilitate the handling of the probe 10 during production, packaging, and treatment.
また、ベースユニット4への接続に用いるコネクター11c、11dとして、一般に流通しているコネクターを使用する場合、使用可能なファイバー外径がそのコネクターによって制限される。しかしながら、プラスチックジャケットタイプの光ファイバーはファイバー外径のバリエーションが豊富であるため、使用するコネクターに適合する光ファイバーの入手が容易である。
In addition, when a generally distributed connector is used as the connectors 11c and 11d used for connection to the base unit 4, the usable fiber outer diameter is limited by the connector. However, since plastic jacket type optical fibers have a wide variety of fiber outer diameters, it is easy to obtain optical fibers suitable for the connectors used.
使用するプラスチックジャケットタイプの光ファイバーには、金属めっきが施されている。金属めっきは所望の個所に施すことができる。よって、本実施の形態のように、金属めっき層112は、照射用光ファイバー110のファイバー先端領域111のみに形成可能である。そのため、金属めっき層112は、プラスチックジャケットタイプの光ファイバーを使用することによる上記効果の阻害要因とはならない。また、ファイバー先端領域111において金属めっき層112が形成されているため、金属めっき層112によりファイバー先端領域111から光が漏れ出すことを防ぐことができる。すなわち、照射用光ファイバー110及び受光用光ファイバー120の間のクロストークを防止可能な遮光性を、照射用光ファイバー110と受光用光ファイバー120とが束を成すように(つまり互いに当接又は近接して)保持されている領域であるファイバー先端領域111において確保することができる。なお、金属めっきの処理においてファイバー外径は問題とならないため、多様なサイズの光ファイバーの使用が可能である。また、チューブ(外皮134)の外径及び内径や照射用光ファイバー110及び受光用光ファイバー120の外径が、仕様から決定された場合、必ずしも照射用光ファイバー110及び受光用光ファイバー120の束がチューブ内で密着した状態に保持されないことがある。このような場合、照射用光ファイバー110のファイバー先端領域111に金属めっきを施すことで照射用光ファイバー110の径を太らせることで、チューブの内径内における照射用光ファイバー110及び受光用光ファイバー120の充填率を高めることができ、ひいてはチューブ内における照射用光ファイバー110及び受光用光ファイバー120の束の安定性を高めることができる。
The plastic jacket type optical fiber to be used is plated with metal. Metal plating can be applied to a desired location. Therefore, as in the present embodiment, the metal plating layer 112 can be formed only in the fiber tip region 111 of the irradiation optical fiber 110. Therefore, the metal plating layer 112 does not become an obstacle to the above effect due to the use of a plastic jacket type optical fiber. Further, since the metal plating layer 112 is formed in the fiber tip region 111, it is possible to prevent light from leaking out of the fiber tip region 111 by the metal plating layer 112. That is, the light shielding property capable of preventing crosstalk between the irradiation optical fiber 110 and the light receiving optical fiber 120 is formed so that the irradiation optical fiber 110 and the light receiving optical fiber 120 form a bundle (that is, in contact with or close to each other). This can be ensured in the fiber tip region 111, which is a held region. In addition, since the fiber outer diameter does not become a problem in the process of metal plating, it is possible to use optical fibers of various sizes. Further, when the outer diameter and inner diameter of the tube (outer skin 134) and the outer diameters of the irradiation optical fiber 110 and the light receiving optical fiber 120 are determined from the specifications, the bundle of the irradiation optical fiber 110 and the light receiving optical fiber 120 is not necessarily within the tube. It may not be kept in close contact. In such a case, the filling rate of the irradiation optical fiber 110 and the light receiving optical fiber 120 within the inner diameter of the tube is increased by thickening the diameter of the irradiation optical fiber 110 by performing metal plating on the fiber tip region 111 of the irradiation optical fiber 110. As a result, the stability of the bundle of the irradiation optical fiber 110 and the light receiving optical fiber 120 in the tube can be improved.
なお、本実施の形態では、ファイバー先端領域111においてプラスチックジャケットが除去されており、ジャケット除去部に金属めっきが施されている。ファイバー先端領域111において、プラスチックジャケットを除去せずにその外周部に金属めっきを施しても良いが、プラスチックジャケットを除去するとプローブ細径化の点で有利である。
In the present embodiment, the plastic jacket is removed from the fiber tip region 111, and the jacket removing portion is subjected to metal plating. In the fiber tip region 111, metal plating may be applied to the outer peripheral portion without removing the plastic jacket, but removing the plastic jacket is advantageous in terms of reducing the probe diameter.
以下、プローブ10の要部構成の変形例について、幾つかの例を挙げて説明する。
Hereinafter, modifications of the main configuration of the probe 10 will be described with some examples.
図6に示す第1の変形例では、図5に示す例で使用されるフェルール132が使用されていない。したがって、照射用光ファイバー110を囲繞する受光用光ファイバー120は、照射用光ファイバー110外周の金属めっき層112に当接した状態で例えば接着剤で照射用光ファイバー110に接着されており、外皮134に挿入されている。この構成では、フェルール132のような位置決め用の部材を必要とせず、容易に照射用光ファイバー110をプローブ10の中心に配置することできる。また、フェルール132を使用しないため、プローブ細径化を図ることができると共に、金属めっき層112の厚さを調整することでプローブ外径を調整することができる。
In the first modification shown in FIG. 6, the ferrule 132 used in the example shown in FIG. 5 is not used. Accordingly, the light receiving optical fiber 120 surrounding the irradiation optical fiber 110 is bonded to the irradiation optical fiber 110 with an adhesive, for example, in contact with the metal plating layer 112 on the outer periphery of the irradiation optical fiber 110 and inserted into the outer skin 134. ing. In this configuration, a positioning member such as the ferrule 132 is not required, and the irradiation optical fiber 110 can be easily arranged at the center of the probe 10. In addition, since the ferrule 132 is not used, the probe diameter can be reduced, and the probe outer diameter can be adjusted by adjusting the thickness of the metal plating layer 112.
図7に示す第2の変形例は図6に示す例と類似するが、受光用光ファイバー120のファイバー先端領域121においてプラスチックジャケットが除去され、金属めっきによりジャケット除去部に金属めっき層122が形成されている点で、図6に示す例と相違する。この構成では、照射用光ファイバー110及び受光用光ファイバー120の双方に金属めっきが施されているため、照射用光ファイバー110及び受光用光ファイバー120の間の遮光性を一層向上させることができる。
The second modification shown in FIG. 7 is similar to the example shown in FIG. 6, but the plastic jacket is removed from the fiber tip region 121 of the light receiving optical fiber 120, and a metal plating layer 122 is formed on the jacket removal portion by metal plating. This is different from the example shown in FIG. In this configuration, since the metal plating is applied to both the irradiation optical fiber 110 and the light receiving optical fiber 120, the light shielding property between the irradiation optical fiber 110 and the light receiving optical fiber 120 can be further improved.
図8に示す第3の変形例は図7に示す例と類似するが、照射用光ファイバー110のファイバー先端領域111においてプラスチックジャケットが除去されておらず、図4に示す3層構造が残されている点で、図7に示す例と相違する。この構成では、照射用光ファイバー110のファイバー先端領域111から光が漏れ出したとしても、金属めっき層122によりこの光が受光用光ファイバー120のファイバー先端領域121に入射することを防ぐことができる。
The third modification shown in FIG. 8 is similar to the example shown in FIG. 7, but the plastic jacket is not removed in the fiber tip region 111 of the irradiation optical fiber 110, leaving the three-layer structure shown in FIG. This is different from the example shown in FIG. In this configuration, even if light leaks from the fiber tip region 111 of the irradiation optical fiber 110, the metal plating layer 122 can prevent this light from entering the fiber tip region 121 of the light receiving optical fiber 120.
なお、上記の各例において、照射用光ファイバー110及び受光用光ファイバー120の使用本数は、適宜変更して実施可能である。
In each of the above examples, the number of irradiation optical fibers 110 and light receiving optical fibers 120 can be changed as appropriate.
(実施の形態2)
以下、本発明の実施の形態2について説明する。本実施の形態では、実施の形態1で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略する。 (Embodiment 2)
The second embodiment of the present invention will be described below. In the present embodiment, the same or corresponding components as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
以下、本発明の実施の形態2について説明する。本実施の形態では、実施の形態1で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略する。 (Embodiment 2)
The second embodiment of the present invention will be described below. In the present embodiment, the same or corresponding components as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
図9は、前述の診断システム1において使用可能な、本実施の形態に係るプローブ15の要部構成を示す断面図である。プローブ15は、前述のプローブ10と同様、プローブ基端部11aからプローブ先端部11bまで延在し、内視鏡2のチャンネルCHに挿通可能且つベースユニット4に接続可能なプローブ本体11を有する。
FIG. 9 is a cross-sectional view showing the main configuration of the probe 15 according to the present embodiment that can be used in the above-described diagnostic system 1. The probe 15 has a probe main body 11 that extends from the probe proximal end portion 11 a to the probe distal end portion 11 b, can be inserted into the channel CH of the endoscope 2, and can be connected to the base unit 4, similarly to the probe 10 described above.
照射用光ファイバー211(第1の光ファイバー)は、前述の照射用光ファイバー110と同様、図4の3層構造を有する長尺且つ細径の光ファイバーである。照射用光ファイバー211の先端領域においては、3層構造の外層に相当するプラスチックジャケットが除去されており、その部分には金属めっき層112が形成されている。照射用光ファイバー211は、観察対象部位への照射光をファイバー先端部211a(第1のファイバー先端部)から出射する。
The irradiation optical fiber 211 (first optical fiber) is a long and narrow optical fiber having the three-layer structure shown in FIG. In the tip region of the irradiation optical fiber 211, the plastic jacket corresponding to the outer layer of the three-layer structure is removed, and the metal plating layer 112 is formed in that portion. The irradiation optical fiber 211 emits the irradiation light to the site to be observed from the fiber tip portion 211a (first fiber tip portion).
受光用光ファイバー212(第2の光ファイバー)は、前述の受光用光ファイバー120と同様、図4の3層構造を有する長尺且つ細径の光ファイバーである。受光用光ファイバー212の先端領域においても、照射用光ファイバー211と同様、金属めっき層112が形成されている。受光用光ファイバー212は、観察対象部位の生体組織により照射光に対して生じたラマン散乱光を含む、観察対象部位からの反射光を、ファイバー先端部212a(第2のファイバー先端部)で受光する。
The light receiving optical fiber 212 (second optical fiber) is a long and narrow optical fiber having the three-layer structure of FIG. The metal plating layer 112 is also formed in the tip region of the light receiving optical fiber 212 as in the case of the irradiation optical fiber 211. The optical fiber for light reception 212 receives reflected light from the observation target part including Raman scattered light generated with respect to the irradiation light by the living tissue of the observation target part at the fiber tip part 212a (second fiber tip part). .
照射用光ファイバー211及び受光用光ファイバー212は、例えば金属、石英ガラス又はジルコニア等から成るフェルール213(保持部)により保持されている。フェルール213は、長さ5~10mm程度の筒状の金属枠214(例えばステンレス製)に嵌入されている。これにより、ファイバー先端部211aを含む照射用光ファイバー211及びファイバー先端部212aを含む受光用光ファイバー212は、金属枠214に収納される。
The irradiation optical fiber 211 and the light receiving optical fiber 212 are held by a ferrule 213 (holding unit) made of, for example, metal, quartz glass, zirconia, or the like. The ferrule 213 is fitted into a cylindrical metal frame 214 (for example, made of stainless steel) having a length of about 5 to 10 mm. As a result, the irradiation optical fiber 211 including the fiber tip 211 a and the light receiving optical fiber 212 including the fiber tip 212 a are accommodated in the metal frame 214.
プローブ先端部11bには、円形の横断面(図示せず)を有するレンズ215が配置されており、金属枠214内に保持されている。レンズ215は、外部への光の照射、外部からの光の受光、及び光路の気密性を向上させる目的で装備されており、例えば石英ガラス又はサファイア等から成るものである。なお、レンズ215の保持方法としては、従来周知の方法を採用可能である。また、レンズ215の構成について、本実施の形態では、図9に示すように、プローブ基端部11a側の面が凸面状に形成されているが、平面状であっても良く、また、プローブ先端部11b側の面が平面状に形成されているが、凸面状であっても良い。また、レンズ215は、複数枚のレンズ群であっても良い。
A lens 215 having a circular cross section (not shown) is disposed at the probe tip 11b and is held in the metal frame 214. The lens 215 is equipped for the purpose of improving the light irradiation to the outside, the reception of the light from the outside, and the air tightness of the optical path, and is made of, for example, quartz glass or sapphire. As a method for holding the lens 215, a conventionally known method can be employed. In the present embodiment, the lens 215 has a convex surface on the probe base end 11a side as shown in FIG. 9, but it may be a flat surface. Although the surface on the tip 11b side is formed in a flat shape, it may be convex. The lens 215 may be a plurality of lens groups.
ファイバー先端部211a、212aとレンズ215との間には、光学フィルター221、222が配置されており、金属枠214内に収納されている。光学フィルター221、222は、組み合わせにより円形の横断面を成すよう、それぞれ半円形の横断面(図示せず)を有する。
Optical filters 221 and 222 are disposed between the fiber tip portions 211 a and 212 a and the lens 215, and are housed in the metal frame 214. Each of the optical filters 221 and 222 has a semicircular cross section (not shown) so as to form a circular cross section by combination.
光学フィルター221(第1の光学フィルター)は、照射用光ファイバー211を含む照射光学系内に位置し、その一端面は、照射用光ファイバー211のファイバー先端部211aに近接している。光学フィルター221の内部構成及び波長透過特性は、前述の光学フィルター141と同様である。
The optical filter 221 (first optical filter) is located in the irradiation optical system including the irradiation optical fiber 211, and one end face thereof is close to the fiber tip 211 a of the irradiation optical fiber 211. The internal configuration and wavelength transmission characteristics of the optical filter 221 are the same as those of the optical filter 141 described above.
光学フィルター222(第2の光学フィルター)は、受光用光ファイバー212を含む受光光学系内に位置し、その一端面は、受光用光ファイバー212のファイバー先端部212aに近接している。光学フィルター222の内部構成及び波長透過特性は、前述の光学フィルター142と同様である。
The optical filter 222 (second optical filter) is located in the light receiving optical system including the light receiving optical fiber 212, and one end face thereof is close to the fiber tip 212 a of the light receiving optical fiber 212. The internal configuration and wavelength transmission characteristics of the optical filter 222 are the same as those of the optical filter 142 described above.
光学フィルター221の半円形横断面の外周部であるフィルター外周部221aは、その全体にメタライズ処理を施されている。そのため、フィルター外周部221a上には、メタライズ膜231が形成されている。メタライズ膜厚は、メタライズ処理を繰り返す回数によって調整することができる。なお、メタライズ処理で使用されメタライズ膜231を構成することとなる金属材料としては、Ni、Ti又はAu等が好ましい。金属材料は単一材料であることが好ましいが、複数材料からなる合金であっても良い。ただし、合金を使用する場合は、その組成が既知であることが好ましい。メタライズ処理としては各種の手法を採用することができる。例えば、物理気相成長法及び化学気相成長法等の蒸着による手法が挙げられる。また、溶融金属を接触させる方法、無電解めっきによる方法、これらを組み合わせた方法、又はその組み合わせた方法にさらに電解めっきを組み合わせた方法等でも良い。
The filter outer peripheral part 221a which is the outer peripheral part of the semicircular cross section of the optical filter 221 is subjected to metallization processing on the whole. Therefore, a metallized film 231 is formed on the filter outer peripheral part 221a. The metallized film thickness can be adjusted by the number of times the metallization process is repeated. The metal material used in the metallization process and constituting the metallization film 231 is preferably Ni, Ti or Au. The metal material is preferably a single material, but may be an alloy composed of a plurality of materials. However, when an alloy is used, the composition is preferably known. Various methods can be adopted as the metallization process. For example, techniques by vapor deposition such as physical vapor deposition and chemical vapor deposition can be used. Further, a method of bringing a molten metal into contact, a method of electroless plating, a method of combining these, a method of further combining electrolytic plating with the method of combining them, or the like may be used.
フィルター外周部221a、222a全体に形成されたメタライズ膜231のうち、互いに対向する部分は、ろう付け又は半田付けを施されている。よって、ろう付け又は半田付けに用いられたろう材又は半田である接合用金属材241によって、光学フィルター221、222は、互いに接合されている。
Of the metallized film 231 formed on the entire filter outer peripheral portions 221a and 222a, portions facing each other are brazed or soldered. Therefore, the optical filters 221 and 222 are joined to each other by the joining metal material 241 that is the brazing material or solder used for brazing or soldering.
このように、本実施の形態では、照射用光学系の光学フィルター221と受光光学系の光学フィルター222との間において、メタライズ処理とろう付け又は半田付けとによる気密接合が形成されている。そのため、照射光学系の光学フィルター221と受光光学系の光学フィルター222との間の気密性を、接着剤を使用せずに確保することができる。気密性を確保する一般的な接着方法として、接着剤による接着が従来から知られているが、接着剤は通常、照射光に対して蛍光及びラマン散乱光を発生するプラスチックが主原料であるため、光路での使用には必ずしも適当ではない。これに対して本実施の形態では、プラスチックを主原料とする接着剤が光学フィルター221、222間の接合部分で使用されない。これにより、接着剤の使用に起因するラマン散乱光及び蛍光の発生を確実に防ぐことができる。さらに、照射光学系のフィルター外周部221a及び受光光学系のフィルター外周部222aはいずれも、全体にメタライズ処理を施されている。そのため、照射光学系の光学フィルター221と受光光学系の光学フィルター222との間に介在するメタライズ膜231により、照射光学系のフィルター外周部221aから受光光学系のフィルター外周部222aへの光の漏れを抑制することができる。よって、分光器42において検出される光に、観察対象部位の生体組織により生じたラマン散乱光とは異なるノイズ光が混入することを抑制することができる。したがって、ラマン分光法による体腔内部測定の精度を向上させることができる。
As described above, in this embodiment, an airtight joint is formed between the optical filter 221 of the irradiation optical system and the optical filter 222 of the light receiving optical system by metallization processing and brazing or soldering. Therefore, airtightness between the optical filter 221 of the irradiation optical system and the optical filter 222 of the light receiving optical system can be ensured without using an adhesive. Adhesion with an adhesive is conventionally known as a general adhesion method for ensuring airtightness, but an adhesive is usually a plastic that generates fluorescence and Raman scattered light with respect to irradiation light. It is not necessarily suitable for use in the optical path. On the other hand, in this embodiment, an adhesive mainly made of plastic is not used at the joint between the optical filters 221 and 222. Thereby, generation | occurrence | production of the Raman scattered light and fluorescence resulting from use of an adhesive agent can be prevented reliably. Furthermore, the filter outer peripheral part 221a of the irradiation optical system and the filter outer peripheral part 222a of the light receiving optical system are both subjected to metallization processing. Therefore, leakage of light from the filter outer peripheral portion 221a of the irradiation optical system to the filter outer peripheral portion 222a of the light receiving optical system is caused by the metallized film 231 interposed between the optical filter 221 of the irradiation optical system and the optical filter 222 of the light receiving optical system. Can be suppressed. Therefore, it is possible to suppress the mixing of noise light different from the Raman scattered light generated by the biological tissue of the observation target site into the light detected by the spectroscope 42. Therefore, it is possible to improve the accuracy of measurement inside the body cavity by Raman spectroscopy.
また、フィルター外周部221a、222a全体に形成されたメタライズ膜131のうち、金属枠214に対向する部分も、ろう付け又は半田付けを施されている。よって、光学フィルター221、222及び金属枠214も、接合用金属材241によって接合されている。
Further, among the metallized film 131 formed on the entire filter outer peripheral portions 221a and 222a, a portion facing the metal frame 214 is also brazed or soldered. Therefore, the optical filters 221 and 222 and the metal frame 214 are also joined by the joining metal material 241.
すなわち、各光学フィルター221、222と金属枠214との間においても、メタライズ処理とろう付け又は半田付けとによる気密接合が形成されている。そのため、各光学フィルター221、222と金属枠214との間においても、プラスチックを主原料とする接着剤を使用せずに気密性を確保することができる。これにより、各光学フィルター221、222と金属枠214との間の接合部分からラマン散乱光及び蛍光が発生することを確実に防ぐことができる。
That is, an airtight joint is formed between the optical filters 221 and 222 and the metal frame 214 by metallization and brazing or soldering. Therefore, airtightness can be ensured between the optical filters 221 and 222 and the metal frame 214 without using an adhesive mainly made of plastic. Thereby, it can prevent reliably that a Raman scattered light and fluorescence generate | occur | produce from the junction part between each optical filter 221,222 and the metal frame 214. FIG.
なお、接合用金属材241は、Ag又はCu等の単一材料であることが好ましいが、複数材料から成る合金であっても良い。ただし、合金を使用する場合は、その組成が既知であることが好ましい。
The joining metal material 241 is preferably a single material such as Ag or Cu, but may be an alloy composed of a plurality of materials. However, when an alloy is used, the composition is preferably known.
本実施の形態のプローブ15において、既述のとおり、メタライズ膜厚は、メタライズ処理を繰り返す回数によって調整することができる。すなわち、メタライズ膜厚は、任意に設定することができる。
In the probe 15 of the present embodiment, as described above, the metallized film thickness can be adjusted by the number of times the metallization process is repeated. That is, the metallized film thickness can be arbitrarily set.
メタライズ膜厚を例えば100μm程度或いはそれ以上に設定した場合には、メタライズ膜231のみで十分な遮光性の確保が容易である。よって、例えば図10Aに示すように、光学フィルター221、222と金属枠214との間に介在する接合用金属材241が、光学フィルター221、222の厚さ方向全域に回り込んでおらず、厚さ方向の一部においてのみフィルター外周部221a、222aを覆うように、配置されていても良い。この場合、メタライズ膜231と金属枠214との間の空隙に光が回り込んでも、その光がフィルター外周部221a、222aを介して光学フィルター221、222に入射することを、メタライズ膜231のみで確実に防ぐことができる。
When the metallized film thickness is set to, for example, about 100 μm or more, it is easy to ensure sufficient light shielding properties with the metallized film 231 alone. Therefore, for example, as shown in FIG. 10A, the bonding metal material 241 interposed between the optical filters 221 and 222 and the metal frame 214 does not wrap around the entire thickness direction of the optical filters 221 and 222. You may arrange | position so that the filter outer peripheral parts 221a and 222a may be covered only in a part of the vertical direction. In this case, even if light sneaks into the gap between the metallized film 231 and the metal frame 214, the light is incident on the optical filters 221 and 222 via the filter outer peripheral portions 221a and 222a only by the metallized film 231. It can be surely prevented.
図10Aに示す接合用金属材241は、例えば以下の方法で形成することができる。まず、金属枠214への光学フィルター221、222装着前に、金属ペーストをフェルール213近傍に配置しておく。そして、金属枠214への光学フィルター221、222装着後に、加熱によって金属ペーストを溶融させ、毛細管現象を利用してメタライズ膜231と金属枠214との間の空隙に金属ペーストを浸透させる。そして、空隙への金属ペースト浸透後に、金属ペーストを冷却させる。
The joining metal material 241 shown in FIG. 10A can be formed by the following method, for example. First, before attaching the optical filters 221 and 222 to the metal frame 214, a metal paste is disposed in the vicinity of the ferrule 213. After the optical filters 221 and 222 are attached to the metal frame 214, the metal paste is melted by heating, and the metal paste is infiltrated into the gap between the metallized film 231 and the metal frame 214 using a capillary phenomenon. Then, after the metal paste penetrates into the gap, the metal paste is cooled.
なお、光学フィルター221、222の厚さ方向の一部においてのみフィルター外周部221a、222aを覆う接合用金属材241は、図10Bに示すように、レンズ215側(言い換えれば、プローブ先端部11b)にあっても良い。
Note that the bonding metal member 241 that covers the filter outer peripheral portions 221a and 222a only in a part of the thickness direction of the optical filters 221 and 222 is on the lens 215 side (in other words, the probe tip portion 11b) as shown in FIG. 10B. It may be.
また、メタライズ膜厚を例えば100μm未満、特に10μm程度に設定した場合には、メタライズ処理コストを安価に抑えることができる。ただし、この場合は、メタライズ膜231のみでは十分な遮光性の確保は容易ではない。よって、例えば図10Cに示すように、光学フィルター221、222と金属枠214との間に介在する接合用金属材241が、光学フィルター221、222の厚さ方向全域に回り込み、厚さ方向全域においてフィルター外周部221a、222aを覆うように、配置されていることが好ましい。
Further, when the metallized film thickness is set to, for example, less than 100 μm, particularly about 10 μm, the metallization processing cost can be suppressed at a low cost. However, in this case, it is not easy to secure sufficient light shielding properties only with the metallized film 231. Therefore, for example, as shown in FIG. 10C, the bonding metal material 241 interposed between the optical filters 221 and 222 and the metal frame 214 wraps around the entire area in the thickness direction of the optical filters 221 and 222. It is preferable that the filter is disposed so as to cover the filter outer peripheral portions 221a and 222a.
(実施の形態3)
図11は、本発明の実施の形態3に係るプローブの要部構成を示す断面図である。図11に示す本実施の形態のプローブ20の要部構成は、図9に示す実施の形態2のプローブ15の要部構成と類似する。よって、本実施の形態では、実施の形態2で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略し、実施の形態2との相違点を中心に説明する。 (Embodiment 3)
FIG. 11 is a cross-sectional view showing the main configuration of the probe according toEmbodiment 3 of the present invention. The main configuration of the probe 20 of the present embodiment shown in FIG. 11 is similar to the main configuration of the probe 15 of the second embodiment shown in FIG. Therefore, in the present embodiment, the same or corresponding components as those described in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted, and the difference from the second embodiment. The explanation will be focused on.
図11は、本発明の実施の形態3に係るプローブの要部構成を示す断面図である。図11に示す本実施の形態のプローブ20の要部構成は、図9に示す実施の形態2のプローブ15の要部構成と類似する。よって、本実施の形態では、実施の形態2で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略し、実施の形態2との相違点を中心に説明する。 (Embodiment 3)
FIG. 11 is a cross-sectional view showing the main configuration of the probe according to
図11に示すように、プローブ20においては、照射用光ファイバー211及び受光用光ファイバー212がフェルール213からプローブ先端部11b側に突出している。そのため、フェルール213から光学フィルター221、222まで延在する突出部211b、212bが、照射用光ファイバー211及び受光用光ファイバー212において形成されている。
As shown in FIG. 11, in the probe 20, the irradiation optical fiber 211 and the light receiving optical fiber 212 protrude from the ferrule 213 toward the probe tip 11b. Therefore, protrusions 211 b and 212 b extending from the ferrule 213 to the optical filters 221 and 222 are formed in the irradiation optical fiber 211 and the light receiving optical fiber 212.
フェルール213と照射用光ファイバー211及び受光用光ファイバー212との間の接合には通常、エポキシ系の接着剤を使用することができるが、この接着剤が突出部211b、212b側にはみ出る虞がある。
In general, an epoxy-based adhesive can be used for bonding between the ferrule 213 and the irradiation optical fiber 211 and the light-receiving optical fiber 212, but there is a possibility that the adhesive protrudes to the protruding portions 211b and 212b.
そこで、突出部211b、212bの外周部であるファイバー外周部211c、212cは、それぞれ全体に、光学フィルター221、222と同様のメタライズ処理を施されている。そのため、ファイバー外周部211c、212c上には、メタライズ膜232が形成されている。
Therefore, the fiber outer peripheral portions 211c and 212c, which are the outer peripheral portions of the protruding portions 211b and 212b, are subjected to the same metallization processing as the optical filters 221 and 222, respectively. Therefore, a metallized film 232 is formed on the fiber outer peripheral portions 211c and 212c.
この構成によれば、接着剤がフェルール213から突出部211b、212b側にはみ出ても、その接着剤は、メタライズ膜232とファイバー外周部211c、212cとの間に進入せず、メタライズ膜232外側の空隙に出ることとなる。したがって、光路が、フェルール213からはみ出た接着剤による影響を受けることを、メタライズ膜232によって確実に防ぐことができる。
According to this configuration, even if the adhesive protrudes from the ferrule 213 to the protruding portions 211b and 212b, the adhesive does not enter between the metallized film 232 and the fiber outer peripheral parts 211c and 212c, and the metallized film 232 outside. It will come out in the gap. Therefore, the metallized film 232 can reliably prevent the optical path from being affected by the adhesive protruding from the ferrule 213.
(実施の形態4)
図12は、本発明の実施の形態4に係るプローブの要部構成を示す断面図である。図12に示す本実施の形態のプローブ30の要部構成は、図9、11に示す実施の形態2、3のプローブ15、20の要部構成、特にプローブ20の要部構成と類似する。よって、本実施の形態では、実施の形態2、3で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略し、実施の形態2、3との相違点を中心に説明する。 (Embodiment 4)
FIG. 12 is a cross-sectional view showing the main configuration of the probe according to Embodiment 4 of the present invention. The main configuration of theprobe 30 of the present embodiment shown in FIG. 12 is similar to the main configuration of the probes 15 and 20 of the second and third embodiments shown in FIGS. Therefore, in this embodiment, the same or corresponding components as those described in Embodiments 2 and 3 are denoted by the same reference numerals, and detailed description thereof is omitted, and Embodiments 2 and 3 are omitted. The difference will be mainly described.
図12は、本発明の実施の形態4に係るプローブの要部構成を示す断面図である。図12に示す本実施の形態のプローブ30の要部構成は、図9、11に示す実施の形態2、3のプローブ15、20の要部構成、特にプローブ20の要部構成と類似する。よって、本実施の形態では、実施の形態2、3で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略し、実施の形態2、3との相違点を中心に説明する。 (Embodiment 4)
FIG. 12 is a cross-sectional view showing the main configuration of the probe according to Embodiment 4 of the present invention. The main configuration of the
図12に示すように、プローブ30においては、フィルター外周部221a、222aがファイバー外周部211c、212cと面一となるように、光学フィルター221、222が照射用光ファイバー211及び受光用光ファイバー212と同等の大きさ(横断面)に加工されている。そして、メタライズ膜231、232をそれぞれ有するフィルター外周部221a、222a及びファイバー外周部211c、212cにおいてろう付け又は半田付けが施されている。そのため、接合用金属材241、242によって、光学フィルター221と照射用光ファイバー211との間の接合及び光学フィルター222と受光用光ファイバー212との間の接合が、形成されている。
As shown in FIG. 12, in the probe 30, the optical filters 221 and 222 are equivalent to the irradiation optical fiber 211 and the light receiving optical fiber 212 so that the filter outer peripheral parts 221a and 222a are flush with the fiber outer peripheral parts 211c and 212c. Is processed into a size (cross section). The filter outer peripheral portions 221a and 222a and the fiber outer peripheral portions 211c and 212c having the metallized films 231 and 232 are brazed or soldered, respectively. Therefore, the bonding between the optical filter 221 and the irradiation optical fiber 211 and the bonding between the optical filter 222 and the light receiving optical fiber 212 are formed by the bonding metal materials 241 and 242.
この構成によれば、メタライズ処理とろう付け又は半田付けとによる気密接合が、光学フィルター221、222と照射用光ファイバー211及び受光用光ファイバー212との間において形成されている。よって、光学フィルター221、222は、照射用光ファイバー211及び受光用光ファイバー212に直結される。したがって、ノイズ光が回り込む可能性がある空隙を、光学フィルター221、222と照射用光ファイバー211及び受光用光ファイバー212との間に介在させないようにすることができる。
According to this configuration, an airtight joint by metallization processing and brazing or soldering is formed between the optical filters 221 and 222, the irradiation optical fiber 211, and the light receiving optical fiber 212. Therefore, the optical filters 221 and 222 are directly connected to the irradiation optical fiber 211 and the light receiving optical fiber 212. Therefore, it is possible to prevent a gap in which noise light may circulate between the optical filters 221 and 222, the irradiation optical fiber 211, and the light receiving optical fiber 212.
なお、本実施の形態では、照射用光ファイバー211及び受光用光ファイバー212においては、メタライズ膜232があるため、金属めっき層の形成は不要である。
In the present embodiment, since the irradiation optical fiber 211 and the light receiving optical fiber 212 have the metallized film 232, it is not necessary to form a metal plating layer.
(実施の形態5)
図13は、本発明の実施の形態5に係るプローブの要部構成を示す断面図である。図13に示す本実施の形態のプローブ40の要部構成は、図9、11、12に示す実施の形態2~4のプローブ15、20、30の要部構成と類似する。よって、本実施の形態では、実施の形態2~4で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略し、実施の形態2~4との相違点を中心に説明する。 (Embodiment 5)
FIG. 13 is a cross-sectional view showing the main configuration of the probe according toEmbodiment 5 of the present invention. The main configuration of the probe 40 of the present embodiment shown in FIG. 13 is similar to the main configuration of the probes 15, 20, 30 of the second to fourth embodiments shown in FIGS. Therefore, in the present embodiment, the same or corresponding components as those described in Embodiments 2 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted, and Embodiments 2 to 4 are omitted. The difference will be mainly described.
図13は、本発明の実施の形態5に係るプローブの要部構成を示す断面図である。図13に示す本実施の形態のプローブ40の要部構成は、図9、11、12に示す実施の形態2~4のプローブ15、20、30の要部構成と類似する。よって、本実施の形態では、実施の形態2~4で説明したものと同一の又は対応する構成要素には同一の参照符号を付してその詳細な説明を省略し、実施の形態2~4との相違点を中心に説明する。 (Embodiment 5)
FIG. 13 is a cross-sectional view showing the main configuration of the probe according to
図13に示すように、プローブ40においては、ファイバー先端部212aがファイバー先端部211aよりもプローブ先端部11b側に配置されており、これにより受光用光ファイバー212の長さが照射用光ファイバー211の長さよりも長くなっている。
As shown in FIG. 13, in the probe 40, the fiber tip portion 212a is disposed closer to the probe tip portion 11b than the fiber tip portion 211a, so that the length of the light receiving optical fiber 212 is the length of the irradiation optical fiber 211. It is longer than that.
この構成によれば、照射光に比べて光量が非常に小さいラマン散乱光を、受光用光ファイバー212において効率的に集光することができる。
According to this configuration, it is possible to efficiently collect Raman scattered light having a light amount that is much smaller than the irradiation light in the optical fiber 212 for light reception.
より具体的には、照射用光ファイバー211から出射される光及び受光用光ファイバー212に入射する光にケラレが発生することを防ぐことができる。一般に、光ファイバーから出射される光或いは光ファイバーに入射する光は発散光又は収束光であり、例えば石英ファイバーの場合はN.A.(Numerical Aperture:開口数)は約0.2程度である。観察対象部位からの反射を効率良く受光するためには、光ファイバーのN.A.を最大(フルN.A.)にする必要がある。図9~12に示す構成例では、照射用光ファイバー211の前方に配置された光学フィルター221及びその周囲にあるメタライズ膜231等によりケラレが発生して受光効率の向上を妨げる虞があるが、図13に示す構成例では、照射用光ファイバー211と受光用光ファイバー212との間隔を空けたことにより、ケラレ発生を予防することができる。
More specifically, vignetting can be prevented from occurring in the light emitted from the irradiation optical fiber 211 and the light incident on the light receiving optical fiber 212. In general, light emitted from an optical fiber or light incident on an optical fiber is divergent light or convergent light. For example, in the case of quartz fiber, NA (Numerical Aperture: numerical aperture) is about 0.2. In order to efficiently receive the reflection from the site to be observed, it is necessary to maximize the NA of the optical fiber (full NA). In the configuration examples shown in FIGS. 9 to 12, there is a possibility that vignetting may occur due to the optical filter 221 disposed in front of the irradiation optical fiber 211 and the metallized film 231 and the like around the optical filter 221 to hinder improvement in light receiving efficiency. In the configuration example shown in FIG. 13, the occurrence of vignetting can be prevented by separating the irradiation optical fiber 211 and the light receiving optical fiber 212 from each other.
また、光による観察においては生体からの散乱光を受光する必要がある。そのためには、照射に関しては広い面積にわたって測定対象部位を照射し且つ受光に関してはファイバー先端部212aに集光するレイアウトが、好ましい。図13に示す構成例では、観察対象部位に対して、照射用光ファイバー211を相対的に遠ざけ、受光用光ファイバー212を相対的に近づけることができる。そのため、照射用光ファイバー211からの出射光を広い面積で観察対象部位に当てることができ、受光用光ファイバー212に光を集光させることもできる。
Moreover, it is necessary to receive scattered light from a living body for observation with light. For this purpose, a layout in which the measurement target region is irradiated over a wide area with respect to irradiation and the light is focused on the fiber tip portion 212a is preferable. In the configuration example illustrated in FIG. 13, the irradiation optical fiber 211 can be relatively distant from the observation target part, and the light receiving optical fiber 212 can be relatively close. Therefore, the emitted light from the irradiating optical fiber 211 can be applied to the observation target area in a wide area, and the light can be condensed on the light receiving optical fiber 212.
また、図13に示すように、照射用光ファイバー211と受光用光ファイバー212との間にフェルール213を介在させ、これらが互いに離間するようにしても良い。この場合は、照射用光ファイバー211における照射も、受光用光ファイバー212における受光も、ファイバーのフルN.A.で行うことができ、照射及び受光の双方の効率向上を図ることができる。
Further, as shown in FIG. 13, a ferrule 213 may be interposed between the irradiation optical fiber 211 and the light receiving optical fiber 212 so that they are separated from each other. In this case, both the irradiation with the irradiation optical fiber 211 and the light reception with the light receiving optical fiber 212 can be performed with the full NA of the fiber, and the efficiency of both irradiation and light reception can be improved.
以上、本発明の各実施の形態について説明した。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiments of the present invention have been described above. The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
2011年11月25日出願の特願2011-257360及び2011年10月25日出願の特願2011-233809の日本出願に含まれる明細書、図面及び要約書の開示内容は、全て本願に援用される。
The disclosures of the description, drawings and abstract contained in Japanese Patent Application No. 2011-257360 filed on November 25, 2011 and Japanese Patent Application No. 2011-233809 filed on October 25, 2011 are all incorporated herein. The
1 診断システム
2 内視鏡
3 内視鏡プロセッサー
4 ベースユニット
5 入力装置
6、7 モニター
10、15、20、30、40 プローブ
11 プローブ本体
11a プローブ基端部
11b プローブ先端部
11c、11d コネクター
110、211 照射用光ファイバー
111、121 ファイバー先端領域
112、122 金属めっき層
120、212 受光用光ファイバー
130 保持部
132、213 フェルール
134 外皮
141、142、221、222 光学フィルター
150、215 レンズ
211a、212a ファイバー先端部
211b、212b 突出部
211c、212c ファイバー外周部
214 金属枠
221a、222a フィルター外周部
231、232 メタライズ膜
241、242 接合用金属材 DESCRIPTION OFSYMBOLS 1 Diagnostic system 2 Endoscope 3 Endoscope processor 4 Base unit 5 Input device 6, 7 Monitor 10, 15, 20, 30, 40 Probe 11 Probe body 11a Probe base end part 11b Probe tip part 11c, 11d Connector 110, 211 Optical fiber for irradiation 111, 121 Fiber tip region 112, 122 Metal plating layer 120, 212 Optical fiber for receiving light 130 Holding part 132, 213 Ferrule 134 Outer skin 141, 142, 221, 222 Optical filter 150, 215 Lens 211a, 212a Fiber tip part 211b, 212b Protruding part 211c, 212c Fiber outer peripheral part 214 Metal frame 221a, 222a Filter outer peripheral part 231 232 Metallized film 241 242 Metal material for joining
2 内視鏡
3 内視鏡プロセッサー
4 ベースユニット
5 入力装置
6、7 モニター
10、15、20、30、40 プローブ
11 プローブ本体
11a プローブ基端部
11b プローブ先端部
11c、11d コネクター
110、211 照射用光ファイバー
111、121 ファイバー先端領域
112、122 金属めっき層
120、212 受光用光ファイバー
130 保持部
132、213 フェルール
134 外皮
141、142、221、222 光学フィルター
150、215 レンズ
211a、212a ファイバー先端部
211b、212b 突出部
211c、212c ファイバー外周部
214 金属枠
221a、222a フィルター外周部
231、232 メタライズ膜
241、242 接合用金属材 DESCRIPTION OF
Claims (24)
- プラスチックジャケットを有し、体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
プラスチックジャケットを有し、前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
前記第1のファイバー先端部に配置された第1の光学フィルターと、
前記第2のファイバー先端部に配置された第2の光学フィルターと、を有し、
前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルターおよび前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理が施されている、
光学プローブ。 A first optical fiber having a plastic jacket and having a first fiber tip that emits irradiation light to a site to be observed in a body cavity;
A second optical fiber having a plastic jacket and having a second fiber tip for receiving fluorescence or Raman scattered light from the observation site;
A first optical filter disposed at the tip of the first fiber;
A second optical filter disposed at the tip of the second fiber,
A process of forming a metal film is performed on at least one of the first optical fiber, the second optical fiber, the first optical filter, and the second optical filter.
Optical probe. - 前記第1及び第2の光ファイバーは、プラスチックファイバーである、
請求項1に記載の光学プローブ。 The first and second optical fibers are plastic fibers;
The optical probe according to claim 1. - 前記第1及び第2の光ファイバーの先端領域を、前記第1及び第2の光ファイバーが束を成すように保持する保持部と、を有する、
請求項1に記載の光学プローブ。 A holding portion for holding the tip regions of the first and second optical fibers so that the first and second optical fibers form a bundle,
The optical probe according to claim 1. - 前記保持部は、チューブであり、
前記第2の光ファイバーが前記第1の光ファイバーに当接した状態で、前記第1及び第2の光ファイバーの先端領域は、前記チューブに挿入されている、
請求項3に記載の光学プローブ。 The holding part is a tube,
With the second optical fiber in contact with the first optical fiber, the tip regions of the first and second optical fibers are inserted into the tube,
The optical probe according to claim 3. - 前記保持部は、フェルールであり、
前記第1及び第2の光ファイバーの先端領域は、前記フェルールに形成されている孔に挿入されている、
請求項3に記載の光学プローブ。 The holding unit is a ferrule,
The tip regions of the first and second optical fibers are inserted into holes formed in the ferrule,
The optical probe according to claim 3. - 前記第1及び第2のファイバーの先端面は、前記フェルールの先端面と同一面に形成されている、
請求項5に記載の光学プローブ。 The tip surfaces of the first and second fibers are formed in the same plane as the tip surface of the ferrule.
The optical probe according to claim 5. - 前記第1及び第2のファイバーの少なくとも一方は、前記フェルールの先端面から突出している、
請求項5に記載の光学プローブ。 At least one of the first and second fibers protrudes from the front end surface of the ferrule.
The optical probe according to claim 5. - 前記第1及び第2の光ファイバーの少なくとも一方において前記保持部により保持された先端領域には、金属めっきが施されており、
前記保持部により保持され且つ前記金属めっきを施された先端領域においては、プラスチックジャケットが除去されている、
請求項3に記載の光学プローブ。 The tip region held by the holding portion in at least one of the first and second optical fibers is subjected to metal plating,
In the tip region held by the holding part and subjected to the metal plating, the plastic jacket is removed,
The optical probe according to claim 3. - 前記第1及び第2の光ファイバーは、前記保持部からプローブ先端部側に突出し、
前記第1及び第2の光ファイバーの突出部は、それぞれ全体にメタライズ処理を施された第1及び第2のファイバー外周部を有する、
請求項3に記載の光学プローブ。 The first and second optical fibers protrude from the holding portion toward the probe tip,
The protruding portions of the first and second optical fibers have first and second fiber outer peripheral portions that are respectively subjected to metallization processing.
The optical probe according to claim 3. - 前記第1の光ファイバーは、前記保持部からプローブ先端部側に突出し、
前記第1の光ファイバーの突出部は、全体にメタライズ処理を施された第1のファイバー外周部を有する、
請求項3に記載の光学プローブ。 The first optical fiber protrudes from the holding portion toward the probe tip,
The protruding part of the first optical fiber has a first fiber outer peripheral part subjected to metallization processing on the whole,
The optical probe according to claim 3. - 前記第2の光ファイバーは、前記保持部からプローブ先端部側に突出し、
前記第2の光ファイバーの突出部は、全体にメタライズ処理を施された第2のファイバー外周部を有する、
請求項3に記載の光学プローブ。 The second optical fiber protrudes from the holding portion toward the probe tip,
The protruding portion of the second optical fiber has a second fiber outer peripheral portion subjected to metallization processing on the whole,
The optical probe according to claim 3. - 前記第1の光学フィルターは、全体にメタライズ処理を施された第1のフィルター外周部を有し、
前記第2の光学フィルターは、全体にメタライズ処理を施された第2のフィルター外周部を有する、
請求項1に記載の光学プローブ。 The first optical filter has a first filter outer peripheral portion subjected to metallization processing on the whole,
The second optical filter has a second filter outer peripheral portion subjected to metallization processing on the whole,
The optical probe according to claim 1. - 前記第1及び第2の光学フィルターは、前記第1及び第2のフィルター外周部において施されたろう付け又は半田付けにより、互いに接合されている、
請求項12に記載の光学プローブ。 The first and second optical filters are joined to each other by brazing or soldering performed on the outer periphery of the first and second filters.
The optical probe according to claim 12. - 前記第1及び第2の光ファイバーは、前記保持部からプローブ先端部側に突出し、
前記第1及び第2の光ファイバーの突出部は、それぞれ全体にメタライズ処理を施された第1及び第2のファイバー外周部を有し、
前記第1の光学フィルターは、全体にメタライズ処理を施された第1のフィルター外周部を有し、
前記第2の光学フィルターは、全体にメタライズ処理を施された第2のフィルター外周部を有する、
請求項1に記載の光学プローブ。 The first and second optical fibers protrude from the holding portion toward the probe tip,
The protrusions of the first and second optical fibers respectively have first and second fiber outer peripheral portions that are subjected to metallization processing on the whole,
The first optical filter has a first filter outer peripheral portion subjected to metallization processing on the whole,
The second optical filter has a second filter outer peripheral portion subjected to metallization processing on the whole,
The optical probe according to claim 1. - 前記第1及び第2の光学フィルターは、前記第1及び第2のフィルター外周部並びに前記第1及び第2のファイバー外周部において施されたろう付け又は半田付けにより、前記前記第1及び第2の光ファイバーに接合されている、
請求項14に記載の光学プローブ。 The first and second optical filters are formed by brazing or soldering applied to the outer peripheral portions of the first and second filters and the outer peripheral portions of the first and second fibers. Bonded to optical fiber,
The optical probe according to claim 14. - 前記第1及び第2のファイバー先端部並びに前記第1及び第2の光学フィルターを収納する筒状の金属枠を有し、
前記第1の光学フィルターは、全体にメタライズ処理を施された第1のフィルター外周部を有し、
前記第2の光学フィルターは、全体にメタライズ処理を施された第2のフィルター外周部を有し、
前記第1及び第2の光学フィルターは、前記第1及び第2のフィルター外周部において施されたろう付け又は半田付けにより、前記金属枠に接合されている、
請求項7に記載の光学プローブ。 A cylindrical metal frame that houses the first and second fiber tips and the first and second optical filters;
The first optical filter has a first filter outer peripheral portion subjected to metallization processing on the whole,
The second optical filter has a second filter outer peripheral portion subjected to a metallization process on the whole,
The first and second optical filters are joined to the metal frame by brazing or soldering performed on the outer periphery of the first and second filters,
The optical probe according to claim 7. - 前記第1及び第2の光学フィルターと前記金属枠とを接合するろう材又は半田は、前記第1及び第2の光学フィルターの厚さ方向の少なくとも一部において前記第1及び第2のフィルター外周部を覆っている、
請求項16に記載の光学プローブ。 The brazing material or solder that joins the first and second optical filters and the metal frame is the outer periphery of the first and second filters in at least part of the thickness direction of the first and second optical filters. Covering the part,
The optical probe according to claim 16. - 前記第2のファイバー先端部は、前記第1のファイバー先端部に比べて、プローブ先端部側に配置されている、
請求項7に記載の光学プローブ。 The second fiber tip is disposed closer to the probe tip than the first fiber tip.
The optical probe according to claim 7. - 前記第2のファイバー先端部は、前記第1のファイバー先端部に比べて、プローブ先端部側に配置されている、
請求項16に記載の光学プローブ。 The second fiber tip is disposed closer to the probe tip than the first fiber tip.
The optical probe according to claim 16. - 前記第2の光学フィルターは、前記第1の光学フィルターに比べて、プローブ先端部側に配置されている、
請求項7に記載の光学プローブ。 The second optical filter is disposed closer to the probe tip than the first optical filter.
The optical probe according to claim 7. - 前記第2の光学フィルターは、前記第1の光学フィルターに比べて、プローブ先端部側に配置されている、
請求項16に記載の光学プローブ。 The second optical filter is disposed closer to the probe tip than the first optical filter.
The optical probe according to claim 16. - 前記第2の光学フィルターは、前記第1の光学フィルターに比べて、プローブ先端部側に配置されている、
請求項18に記載の光学プローブ。 The second optical filter is disposed closer to the probe tip than the first optical filter.
The optical probe according to claim 18. - 前記第2の光学フィルターは、前記第1の光学フィルターに比べて、プローブ先端部側に配置されている、
請求項19に記載の光学プローブ。 The second optical filter is disposed closer to the probe tip than the first optical filter.
The optical probe according to claim 19. - プラスチックジャケットを有し、体腔内の観察対象部位への照射光を出射する第1のファイバー先端部を有する第1の光ファイバーと、
プラスチックジャケットを有し、前記観察対象部位からの蛍光又はラマン散乱光を受光する第2のファイバー先端部を有する第2の光ファイバーと、
前記第1のファイバー先端部に配置された第1の光学フィルターと、
前記第2のファイバー先端部に配置された第2の光学フィルターと、を有する光学プローブの製造方法であって、
前記第1の光ファイバー、前記第2の光ファイバー、前記第1の光学フィルターおよび前記第2の光学フィルターの少なくとも一つについて、金属膜を形成する処理を施す、
光学プローブの製造方法。 A first optical fiber having a plastic jacket and having a first fiber tip that emits irradiation light to a site to be observed in a body cavity;
A second optical fiber having a plastic jacket and having a second fiber tip for receiving fluorescence or Raman scattered light from the observation site;
A first optical filter disposed at the tip of the first fiber;
A second optical filter disposed at the tip of the second fiber, and a method of manufacturing an optical probe comprising:
A process of forming a metal film is performed on at least one of the first optical fiber, the second optical fiber, the first optical filter, and the second optical filter.
Manufacturing method of optical probe.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-233809 | 2011-10-25 | ||
JP2011233809 | 2011-10-25 | ||
JP2011-257360 | 2011-11-25 | ||
JP2011257360 | 2011-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013061590A1 true WO2013061590A1 (en) | 2013-05-02 |
Family
ID=48167441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/006835 WO2013061590A1 (en) | 2011-10-25 | 2012-10-25 | Optical probe and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013061590A1 (en) |
WO (1) | WO2013061590A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104013377A (en) * | 2014-06-10 | 2014-09-03 | 上海大学 | Optical fiber bundle endoscope tube capable of being deformed by bending |
JP2015056278A (en) * | 2013-09-12 | 2015-03-23 | 中村 正一 | Medical lighting device |
KR101790561B1 (en) | 2016-08-10 | 2017-10-26 | 경희대학교 산학협력단 | Raman fiber probe aparatus |
KR101806745B1 (en) * | 2016-11-04 | 2017-12-07 | 경희대학교 산학협력단 | Raman probe apparatus |
KR20180073060A (en) * | 2016-12-22 | 2018-07-02 | 테라셈 주식회사 | Probe unit and optical imaging apparatus therewith and controlling method thereof |
KR101872127B1 (en) * | 2016-12-14 | 2018-07-02 | 한국광기술원 | Raman signal eliminated optical fiber module |
KR101942911B1 (en) | 2017-07-24 | 2019-01-28 | 주식회사 에스에스솔루션 | Optical sensor for detection of gas by sers |
CN110235036A (en) * | 2017-01-27 | 2019-09-13 | 瑞尼斯豪公司 | Laser direct-writing and chemical etching and optical device |
EP3553502A4 (en) * | 2016-12-08 | 2020-07-22 | Nuctech Company Limited | Non-contact type security inspection system and method |
WO2021215433A1 (en) * | 2020-04-24 | 2021-10-28 | パナソニックIpマネジメント株式会社 | Illumination system |
US11860508B2 (en) | 2020-04-24 | 2024-01-02 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107870399A (en) * | 2016-09-27 | 2018-04-03 | 福州高意光学有限公司 | A kind of special light receives structure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003521293A (en) * | 1998-11-02 | 2003-07-15 | スペクトリクス,インコーポレイテッド | Method for protecting fiber optic probe and resulting fiber optic probe |
JP2006317319A (en) * | 2005-05-13 | 2006-11-24 | Institute Of Physical & Chemical Research | Spectroscopic probe for blood vessel diagnosis |
JP2009042678A (en) * | 2007-08-10 | 2009-02-26 | Olympus Corp | Fiber light source |
JP2010249835A (en) * | 2002-04-05 | 2010-11-04 | Massachusetts Inst Of Technol <Mit> | System and method for spectroscopy of biological tissue |
WO2011062087A1 (en) * | 2009-11-17 | 2011-05-26 | コニカミノルタオプト株式会社 | Probe for optical tomographic image measurement device and method for adjusting probe |
-
2012
- 2012-10-25 JP JP2013540657A patent/JPWO2013061590A1/en not_active Withdrawn
- 2012-10-25 WO PCT/JP2012/006835 patent/WO2013061590A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003521293A (en) * | 1998-11-02 | 2003-07-15 | スペクトリクス,インコーポレイテッド | Method for protecting fiber optic probe and resulting fiber optic probe |
JP2010249835A (en) * | 2002-04-05 | 2010-11-04 | Massachusetts Inst Of Technol <Mit> | System and method for spectroscopy of biological tissue |
JP2006317319A (en) * | 2005-05-13 | 2006-11-24 | Institute Of Physical & Chemical Research | Spectroscopic probe for blood vessel diagnosis |
JP2009042678A (en) * | 2007-08-10 | 2009-02-26 | Olympus Corp | Fiber light source |
WO2011062087A1 (en) * | 2009-11-17 | 2011-05-26 | コニカミノルタオプト株式会社 | Probe for optical tomographic image measurement device and method for adjusting probe |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015056278A (en) * | 2013-09-12 | 2015-03-23 | 中村 正一 | Medical lighting device |
CN104013377A (en) * | 2014-06-10 | 2014-09-03 | 上海大学 | Optical fiber bundle endoscope tube capable of being deformed by bending |
KR101790561B1 (en) | 2016-08-10 | 2017-10-26 | 경희대학교 산학협력단 | Raman fiber probe aparatus |
KR101806745B1 (en) * | 2016-11-04 | 2017-12-07 | 경희대학교 산학협력단 | Raman probe apparatus |
EP3553502A4 (en) * | 2016-12-08 | 2020-07-22 | Nuctech Company Limited | Non-contact type security inspection system and method |
US10823676B2 (en) | 2016-12-08 | 2020-11-03 | Nuctech Company Limited | Non-contact type security inspection system and method |
KR101872127B1 (en) * | 2016-12-14 | 2018-07-02 | 한국광기술원 | Raman signal eliminated optical fiber module |
KR20180073060A (en) * | 2016-12-22 | 2018-07-02 | 테라셈 주식회사 | Probe unit and optical imaging apparatus therewith and controlling method thereof |
KR101944760B1 (en) | 2016-12-22 | 2019-04-17 | 주식회사 모멘텀컨설팅 | Probe unit and optical imaging apparatus therewith and controlling method thereof |
CN110235036A (en) * | 2017-01-27 | 2019-09-13 | 瑞尼斯豪公司 | Laser direct-writing and chemical etching and optical device |
CN110235036B (en) * | 2017-01-27 | 2021-02-26 | 瑞尼斯豪公司 | Laser direct writing and chemical etching and optical device |
KR101942911B1 (en) | 2017-07-24 | 2019-01-28 | 주식회사 에스에스솔루션 | Optical sensor for detection of gas by sers |
WO2021215433A1 (en) * | 2020-04-24 | 2021-10-28 | パナソニックIpマネジメント株式会社 | Illumination system |
JPWO2021215433A1 (en) * | 2020-04-24 | 2021-10-28 | ||
US11860508B2 (en) | 2020-04-24 | 2024-01-02 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting system |
JP7411941B2 (en) | 2020-04-24 | 2024-01-12 | パナソニックIpマネジメント株式会社 | lighting system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013061590A1 (en) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013061590A1 (en) | Optical probe and method for manufacturing same | |
US10890753B2 (en) | Endoscope | |
JP5903893B2 (en) | probe | |
US10560612B2 (en) | Endoscope | |
JP5645385B2 (en) | Endoscopic light projecting unit and endoscopic device equipped with the same | |
US20060276699A1 (en) | Spectral probe for blood vessel diagnosis | |
US9398843B2 (en) | Ultrasonic endoscope | |
EP2712534A1 (en) | Probe | |
JP5485480B1 (en) | Fiber unit | |
US8201997B1 (en) | Imaging temperature sensing system | |
US11478128B2 (en) | Endoscope with cover at distal end of cannula | |
EP3231347B1 (en) | Endoscope | |
CN112165891B (en) | Wafer lens array, laminated lens array, imaging unit, method for manufacturing laminated lens array, and endoscope | |
JP2012120635A (en) | Illumination optical system unit for endoscope and method of manufacturing the same | |
JP2011182871A (en) | Illumination optical system and endoscope | |
JP4137726B2 (en) | Imaging device | |
JP3989721B2 (en) | Probe and endoscope system | |
JP2015042219A (en) | Endoscope | |
JP6240391B2 (en) | Laparoscope | |
JP6744118B2 (en) | Endoscope | |
WO2013035400A1 (en) | Probe | |
WO2012157552A1 (en) | Probe | |
JP2013099469A (en) | Imaging device and endoscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12843701 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013540657 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12843701 Country of ref document: EP Kind code of ref document: A1 |