WO2013047778A1 - Battery and method for manufacturing same - Google Patents

Battery and method for manufacturing same Download PDF

Info

Publication number
WO2013047778A1
WO2013047778A1 PCT/JP2012/075144 JP2012075144W WO2013047778A1 WO 2013047778 A1 WO2013047778 A1 WO 2013047778A1 JP 2012075144 W JP2012075144 W JP 2012075144W WO 2013047778 A1 WO2013047778 A1 WO 2013047778A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
layer
battery
laminate
electrode
Prior art date
Application number
PCT/JP2012/075144
Other languages
French (fr)
Japanese (ja)
Inventor
丹上 雄児
眞一郎 坂口
愛佳 木村
水田 政智
Original Assignee
オートモーティブエナジーサプライ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011214399A external-priority patent/JP5851785B2/en
Priority claimed from JP2011222757A external-priority patent/JP5785843B2/en
Application filed by オートモーティブエナジーサプライ株式会社 filed Critical オートモーティブエナジーサプライ株式会社
Priority to EP12836801.6A priority Critical patent/EP2747167B1/en
Publication of WO2013047778A1 publication Critical patent/WO2013047778A1/en
Priority to US14/221,988 priority patent/US9847514B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery and a manufacturing method thereof.
  • Patent Documents 1 to 4 have been proposed for the purpose of suppressing the movement of the electrode laminate inside a package made of a pair of laminate films.
  • At least one separator is formed in a larger planar shape than the other separators and electrodes constituting the electrode stack, and a part of the large planar separator is formed. It extends so as to protrude to the side of the electrode laminate. And the part which protrudes to the side of an electrode laminated body of this big planar separator is pinched
  • the electrode and the separator are alternately laminated
  • Patent Document 4 a through-hole is formed in the center portion of the electrode laminate including a plurality of electrode layers and a separator layer as viewed in plan, and this electrode laminate is covered with a pair of laminate films from both sides, A configuration is disclosed in which laminate films are brought into direct contact with each other through a through hole and fused together.
  • the extension portion of the separator is fixed by joining the peripheral portions of the laminate film positioned around the separator, so that the reliability of preventing the movement of the electrode laminate is increased.
  • the fusing property may be poor with the heat fusible resin on the inner surface of the laminate film 20 that requires heat fusing property. Therefore, since the extending part of the separator is interposed between the peripheral parts of the laminate filmate, there is a problem that the bonding force between the peripheral parts of the laminate film is lowered and the sealing performance is lowered.
  • Patent Document 3 neither discloses nor suggests a configuration in the case where there are a plurality of separators. Rather, assuming that there are a plurality of separators, there are not only a large number of joints between the separator and the laminate film in the space sealed by the laminate film, but also the joints to the laminate film for each separator. In order to ensure, the shape of a separator will become complicated. Therefore, in the case of Patent Document 2, it is not realistic to assume a plurality of separators.
  • Patent Document 3 in the case where the through hole is formed in the central portion of the electrode laminate as viewed in a plan view, electrical connection is made between the electrode layer and the metal layer of the laminate film. May cause a short circuit.
  • One reason for this is that the edges of the inner surfaces of the through holes of the plurality of electrode layers come into contact with the inner surfaces of the laminate films that enter the inside of the through holes and are fused together, and the edges of the inner surfaces of the through holes are the laminate films. Is hurting the inner surface. In that case, there is a possibility that the electrode layer and the metal layer of the laminate film come into contact with each other at the damaged portion of the inner surface of the laminate film.
  • an object of the present invention is a battery using a plurality of separators, and effectively suppresses the movement of the electrode laminate in the package while preventing a decrease in sealing performance due to the outer package film serving as the package. It is in providing the battery which can be manufactured, and its manufacturing method.
  • Another object of the present invention is to prevent the electrode laminate including the positive electrode layer, the negative electrode layer, and the separator layer from moving or being displaced within the exterior body, and to provide a metal layer and an electrode within the exterior body.
  • An object of the present invention is to provide a battery capable of preventing an electrical short circuit with a laminate and a method for manufacturing the same.
  • the battery according to the present invention includes an electrode laminate in which a plurality of electrodes and a plurality of separators are alternately laminated, and a package film that forms a package that encloses the electrode laminate by joining the peripheral portions to each other.
  • the plurality of separators include a large planar separator and a small planar separator, the large planar separator projecting to the side of the electrode stack when viewed in plan, and the periphery of the film It is characterized in that the film is bonded to the film on the inner side of the bonding part between the parts.
  • the separator and the exterior body film are joined, the movement of the electrode laminate in the package can be suppressed, and more than the joint portion between the peripheral portions of the exterior body film. Since the separator having a large planar shape and the exterior body film are bonded to each other on the inner side, the separator does not intervene at the joint portion between the peripheral portions of the exterior body film, and the deterioration of the sealing performance can be suppressed. Furthermore, even in a battery having a plurality of separators, only a large planar separator, which is a part of them, is bonded to the exterior body film, so that the energy required for joining can be reduced, and the exterior body film It is possible to reduce damage to the joint portion between the peripheral portions.
  • Another battery of the present invention includes an electrode laminate including a separator layer and a positive electrode layer and a negative electrode layer that are overlapped with each other with the separator layer interposed therebetween, and an exterior body that surrounds the electrode laminate.
  • the layer has a non-covered portion that is not covered by the positive electrode layer and the negative electrode layer on a part of the outer periphery of the separator layer, and a through hole is provided in the non-covered portion.
  • the laminate film is composed of a pair of laminated sheets including a metal layer and a single folded laminated film, and the laminated films are fused to each other through a through-hole of an uncoated portion of the separator layer.
  • the through-hole is provided in the non-covered portion of the separator layer, and the laminate films are fused to each other through the through-hole, movement and displacement of the electrode stack in the exterior body are suppressed. It is done. Moreover, since no electrode is present in the through hole, there is little risk of an electrical short circuit between the electrode layer and the metal layer included in the laminate film.
  • the through hole is formed only in the separator layer, the portion where the through hole is formed is thinner than the total thickness of the electrode laminate, and the separator layer is made of a material softer than the electrode layer. The possibility of damaging the heat-fusible resin due to the end portions is also reduced.
  • through-holes can be formed in the non-covered portion of the separator layer.
  • the through holes can be formed in the plurality of separator layers all at once, so that the working efficiency is very good and the manufacturing cost can be reduced.
  • FIG. 1 is a schematic plan view showing a state in which one laminate film is removed from the battery according to the first embodiment of the present invention, and (b) is a cross-sectional view taken along line XX of FIG. (A), (b) is typical sectional drawing which shows the manufacturing process of the battery shown in FIG. 1 in order.
  • (A) is a plan view schematically showing an electrode laminate of a battery according to a second embodiment of the present invention, (b) is a cross-sectional view taken along line YY of (a), and (c) is a set of FIG. 2 is an enlarged cross-sectional view schematically showing the intermediate electrode laminate and the electrode, taken along line YY in FIG.
  • FIG. 4 schematically shows a battery including the electrode stack shown in FIGS.
  • FIG. 3A and 3B is a cross-sectional view taken along line YY in FIG. It is sectional drawing which shows the battery unit of the 3rd Embodiment of this invention. It is a top view which shows typically the battery of the 4th Embodiment of this invention.
  • FIG. 7 is an enlarged cross-sectional view of a main part of the battery shown in FIG. 6 cut along line AA.
  • (A) is a principal part expanded sectional view which shows the state which comprised the electrode laminated body in the manufacturing method of the battery shown in FIG. 6,
  • (b) is a principal part expanded sectional view which shows the process of forming a through-hole. It is a top view which shows typically the battery of the 5th Embodiment of this invention.
  • FIG. 15 It is a top view which shows typically the battery of the 6th Embodiment of this invention. It is a top view which shows typically the battery of the 7th Embodiment of this invention. It is a top view which shows typically the battery of the 8th Embodiment of this invention. It is a top view which shows typically the battery of the 9th Embodiment of this invention. It is a top view which shows typically the battery of the 10th Embodiment of this invention.
  • (A) is a top view which shows typically the battery of the 11th Embodiment of this invention, (b), (c) is the top view and side view which respectively show two types of battery holders which hold
  • (A) is a perspective view which shows the principal part of the battery module containing the battery and battery holder shown in FIG. 15, (b) is the sectional drawing.
  • FIG. 1A and 1B are schematic views of a battery according to a first embodiment of the present invention.
  • FIG. 1A shows a state in which one laminate film is removed for easy understanding.
  • the battery A of the present embodiment is an example of a lithium ion secondary battery.
  • An electrode laminate 3 in which a plurality of electrodes 1 and a plurality of separators 2 are alternately laminated is enclosed in a package composed of a pair of exterior body films (laminate films) 4A and 4B joined together.
  • the electrode laminate 3 is configured by stacking the positive electrode 1A and the negative electrode 1B so as to overlap each other with the separator 2 interposed therebetween.
  • the positive electrode 1A lithium manganese oxide, lithium nickel oxide, or the like can be used.
  • the negative electrode 1B graphite, amorphous carbon, or the like can be used.
  • As the separator 2 a polyolefin sheet such as polypropylene can be used.
  • the large planar separators 2A and the small planar separators 2B are alternately arranged along the stacking direction.
  • the small planar shape separator 2B has a slightly larger planar shape and size than both electrodes 1A and 1B, and the large planar shape separator 2A corresponds to both the electrodes 1A and 1B and the small planar shape separator 2B. In comparison, it has a long shape in the longitudinal direction (left-right direction in FIG. 1). Accordingly, a part (extended portion) of the large planar separator 2 ⁇ / b> A protrudes toward the side of the electrode laminate 3.
  • Laminate film 4A and laminate film 4B have their peripheral portions overlapped and joined to each other by thermal fusion or the like (in FIG. 1 (a), the joined portion is shown by hatching).
  • the package which accommodates the electrode laminated body 3 is comprised by the laminate films 4A and 4B by which the peripheral parts were mutually joined.
  • an electrolytic solution is also enclosed in the package.
  • the laminate films 4A and 4B are laminated in the order of a polyolefin resin layer such as polypropylene, a metal layer, and a protective layer from the bonded side to the outside.
  • lead electrode 5A connected to the positive electrode 1A and the lead electrode 5B connected to the negative electrode 1B extend to the outside of the package through the joint portions of the peripheral portions of the laminate films 4A and 4B. .
  • the part which protrudes to the side of the electrode laminated body 3 of the separator 2A with a large planar shape inside a package ie, the inner side of the junction part of the peripheral parts of laminate film 4A, 4B ( The extending portion) is joined to the laminate films 4A and 4B by a method such as ultrasonic welding (the joining portion is shown by hatching in FIG. 1A).
  • FIG. 2A a plurality of electrodes 1 and separators 2 are laminated to form an electrode laminate 3. Specifically, as described above, the negative electrode 1B, the large planar separator 2A, the positive electrode 1A, and the small planar separator 2B are repeatedly laminated in this order. Then, the extraction electrode 5B is connected to the negative electrode 1B, and the extraction electrode 5A is connected to the positive electrode 1A. As shown in FIG. 2A, the negative electrode 1B, the large planar separator 2A, the positive electrode 1A, and the small planar separator 2B are repeatedly laminated in this order. Then, the extraction electrode 5B is connected to the negative electrode 1B, and the extraction electrode 5A is connected to the positive electrode 1A. As shown in FIG.
  • the laminate film 4A is disposed on one side of the electrode laminate 3, the laminate film 4B is disposed on the other side, and the electrode laminate 3 is formed by the laminate films 4A and 4B. Sandwich. Then, the peripheral portions of the laminate films 4A and 4B are brought into close contact with each other leaving one side for injecting the electrolytic solution, and bonded by a method such as heat fusion.
  • the side into which the electrolytic solution is injected is a side where the large planar separator 2 ⁇ / b> A does not protrude from the electrode stack 3. And when injection
  • the laminate films 4A and 4B are formed on the extended portions of the separator 2A having a large planar shape protruding to the side of the electrode laminate 3 inside the periphery of the laminate films 4A and 4B when viewed in a plan view. Are brought into contact with each other and joined together by a method such as ultrasonic welding. Thereby, the laminated film 4A, the large planar separator 2A in the outermost layer, the large planar separator 2A at the intermediate position in the laminating direction, the large outer planar separator 2A, and the laminated film 4B are laminated together. Be joined. Thus, the battery A shown in FIGS. 1A and 1B is completed.
  • the separator when joining 2A and laminate films 4A and 4B, the influence of, for example, heat and vibration does not affect the joining of the peripheral portions of laminate films 4A and 4B, and sealing performance can be ensured.
  • every other separator 2 is bonded to the laminate films 4A and 4B. Therefore, it is effective for suppressing the movement of the electrode laminate 3 in the package.
  • the configuration is not limited to every other sheet, and a configuration in which large planar separators 2A bonded to the laminate films 4A and 4B at intervals such as every two sheets or every three sheets may be arranged. As the number of sheets, one large planar separator 2A joined to the laminate films 4A and 4B may be one, or two or more.
  • the location where the separator 2A having a large planar shape is joined to the laminate films 4A and 4B may be located anywhere other than the joining location of the peripheral portions of the laminate films 4A and 4B, as shown in FIG.
  • the location where the separator 2A having a large planar shape is joined to the laminate films 4A and 4B is at a position opposite to the lead electrodes 5A and 5B with respect to the electrode laminate, the pole laminate is formed in the package in the same direction. There is an inhibitory effect on the movement of 3.
  • the separator 2A having a large planar shape and the laminate films 4A and 4B may be joined by any method (for example, ultrasonic welding or spot welding), but is a method that does not involve heating such as ultrasonic welding. It is preferable. In general, bonding between the peripheral portions of the laminate films 4A and 4B is often performed by thermal fusion. In this embodiment, a separator having a large planar shape is formed after bonding between the peripheral portions of the laminate films 4A and 4B. This is because 2A and the laminate films 4A and 4B are joined.
  • any method for example, ultrasonic welding or spot welding
  • bonding between the peripheral portions of the laminate films 4A and 4B is often performed by thermal fusion.
  • a separator having a large planar shape is formed after bonding between the peripheral portions of the laminate films 4A and 4B. This is because 2A and the laminate films 4A and 4B are joined.
  • the separator 2A having a large planar shape and the laminate films 4A and 4B are joined by a method such as heat fusion and heat is generated, the peripheral edges of the laminate films 4A and 4B that have been joined first are formed. This is because there is a possibility that the influence of heat on the joint (heat-sealed part) and the joint strength may decrease.
  • FIGS. 3A to 3C the two adjacent separators 2 are joined in a state where at least one side is not joined and several other sides are joined together in advance.
  • An intermediate electrode body 6 is configured by interposing a first electrode (for example, positive electrode 1A) between the two separators 2.
  • the intermediate electrode body 6 and the electrode of the second electrode are stacked on each other to constitute the electrode stack 3.
  • FIG. 1A first electrode
  • FIG. 1B negative electrode
  • the separator 2A having a large planar shape and the separator 2B having a small planar shape are arranged at two locations on two sides perpendicular to the side where the extraction electrodes 5A and 5B are located in a plan view. At a total of four joint points 7 each, they are joined together by thermal fusion. Thereby, the two separators 2A and 2B are formed in a bag shape. A positive electrode 1A is disposed between the bag-like separators 2A and 2B. Thus, the intermediate electrode body 6 (see FIG. 3C) is configured. Further, as shown in FIGS.
  • the electrode laminate 3 is configured by alternately laminating a plurality of intermediate electrode bodies 6 and a plurality of negative electrodes 1B. Thereafter, as shown in FIG. 4, the joining of the peripheral portions of the laminate films 4A and 4B and the joining of the separator 2A having a large planar shape and the laminate films 4A and 4B are performed in the same manner as in the first embodiment. Is called.
  • the separator 2A when a force is applied to the electrode laminate 3, the separator 2A is pulled by the joining of the separator 2A and the laminate films 4A and 4b.
  • the separator 2 ⁇ / b> B that has been joined and is similarly pulled is effective in suppressing movement of the electrode laminate 3 within the package.
  • a third embodiment of the present invention will be described.
  • a plurality of batteries A similar to those in the first embodiment or the second embodiment are stacked in the housing 8 to constitute a battery unit.
  • the casing 8 of the present embodiment has an upper plate 9 and a lower plate 10 each including pressurizing portions 9a and 10a shaped to elastically pressurize a plurality of stacked batteries A.
  • the upper plate 9 and the lower plate 10 are fixed to each other by a fixing tool (for example, a bolt 11 and a nut 12). Therefore, in the present embodiment, each battery A is held in a pressurized state. This applied pressure acts as a force for suppressing the movement of the electrode laminate 3 in the package of each battery A. Therefore, the effect of preventing movement of the electrode laminate 3 is further improved.
  • a package of a type in which two laminate films are bonded to each other has been described.
  • a single laminate film is bent on one side and the periphery is bonded.
  • a type of package configured as described above may be adopted.
  • the battery type is not limited to the lithium ion secondary battery.
  • FIG. 6 shows a schematic plan view of the battery 100 of the present embodiment
  • FIG. 7 shows an enlarged view of the AA cross section of FIG.
  • the laminate films are shown while clearly showing each member such as an electrode laminate inside the exterior body for easy viewing. The fused part is also clearly indicated by hatching.
  • an electrode laminate 33 in which a plurality of positive electrode layers 31a and a plurality of negative electrode layers 31b and a separator layer 32 interposed therebetween are laminated includes a pair of laminate films 34a. 34 is surrounded by 34. The plurality of positive electrode layers 31a of the electrode laminate 33 are connected to the positive electrode terminal 35a, and the plurality of negative electrode layers 31b are connected to the negative electrode terminal 35b.
  • separator layer 32 for example, a layer made of a polyolefin resin such as polyethylene or polypropylene can be used. Furthermore, a film obtained by making a polyester resin material such as polyethylene terephthalate or a polyamide resin material porous by stretching or the like, or a nonwoven fabric made of the resin material described above can also be used.
  • a polyolefin resin such as polyethylene or polypropylene
  • a film obtained by making a polyester resin material such as polyethylene terephthalate or a polyamide resin material porous by stretching or the like, or a nonwoven fabric made of the resin material described above can also be used.
  • inorganic fine powders such as silica and alumina adhered to the surface of these films and nonwoven fabrics in a porous state, and inorganic fine powders such as silica and alumina were dispersed inside these films and nonwoven fabrics. Those can also be used as the separator layer 32.
  • the separator layer 32 when the separator layer 32 is fixed to the exterior body 34 made of the laminate film 34a, the laminate films 34a are fused together through the through holes 36. There is no need to consider a combination with a good fusibility between the material of the heat fusible resin and the material of the separator layer 32.
  • a polyester resin is provided on one side of a metal layer such as aluminum, and a polyolefin resin such as polyethylene or polypropylene is provided on the other side.
  • a heat-sealable resin can be used.
  • an uncovered portion 32a that is not covered by the positive electrode layer 31a and the negative electrode layer 31b is provided on a part of the outer periphery of the separator layer 32.
  • the positive electrode layer 31a and the negative electrode layer 31b of the present embodiment have a square (rectangular) planar shape, and the uncovered portion 32a of the separator layer 32 is seen in a plan view.
  • the positive electrode layer 31a and the negative electrode layer 31b protrude outward from the rectangular planar shape.
  • the through-hole 36 is opened in this non-coating part 32a.
  • the laminate films 34a constituting the exterior body 34 are directly connected to each other through the through-hole 36.
  • Laminate films 34 a are fused together at an outer peripheral portion 37 located outside the electrode laminate 33 to form a bag-shaped exterior body 34.
  • the positive electrode terminal 35a and the negative electrode terminal 35b are drawn out from one side of the outer peripheral portion 37 of the exterior body 34 via the fusion portion.
  • the positive electrode terminal 35a and the negative electrode terminal 35b are fused to the laminate film 34a via a metal fusible resin (not shown), so that the positive electrode terminal 35a and the negative electrode terminal 35b are fixed to the exterior body 34.
  • the laminate films 34 a are fused not only at the outer peripheral portion 37 but also at the portions that are in contact with each other through the through hole 36. This fusion part is referred to as “separator layer fixing fusion part 38” for convenience.
  • the separator layer 32 is planar only within the range of play between the through hole 36 and the separator layer fixing fusion portion 38. Cannot be moved to and is substantially fixed. That is, the through hole 36 and the separator layer fixing fused portion 38 substantially prevent the electrode stack 33 from moving and misaligned inside the exterior body 34.
  • the positive electrode terminal 35a and the negative electrode terminal 35b are formed on the side portion (the right side in FIG. 6) opposite to the side portion (the left side in FIG. 6) that protrudes outside the electrode stack 33.
  • 36 and the separator layer fixing fusion part 38 are located. That is, the positive electrode terminal 35a and the negative electrode terminal 35b fixed to the positive electrode layer 31a and the negative electrode layer 31b are sandwiched between the pair of laminate films 34a, thereby contributing to the fixing of the electrode laminate 33, as described above.
  • the through holes 36 and the separator layer fixing fusion portion 38 are provided on the opposite side portions, not on the same side portion in a plan view, but on the portions that contribute to fixing the electrode laminate 33. .
  • This means that the electrode laminate 33 is fixed on both sides, and prevents the electrode laminate 33 from moving and misaligned due to the force applied in the direction in which the positive electrode terminal 35a and the negative electrode terminal 35b extend. Therefore, it is more effective.
  • the electrode stack 33 is similarly effective in preventing the movement and displacement of the electrode stack 33.
  • the plurality of through holes 36 and the separator layer fixing fused portion 38 are arranged side by side in a direction orthogonal to the extending direction of the positive electrode terminal 35a and the negative electrode terminal 35b. Therefore, even when a tensile or compressive force is applied to the positive electrode terminal 35a and the negative electrode terminal 35b, a plurality of fixing portions (separator layer fixing fusion portions 38) arranged in a direction orthogonal to the direction of the force are provided in the electrode laminate 33. Suppresses movement and displacement.
  • the fixing hole of the electrode laminate 33 is formed in the uncovered portion 32a of the separator layer 32 located in the region outside the electrodes 31a and 31b.
  • the through hole 36 there is no electrode that may cause a short circuit, and a short circuit with the metal layer of the laminate film 34a can be prevented.
  • the laminate film 32 can be used to suppress planar movement and displacement of the separator layer 32.
  • the combination range of the material of the fusion layer and the separator layer 32 can be widened, and there is no electrode in the through hole 36 where the laminate films 34a are fused together, and an insulating separator layer 32 is provided between the electrodes. Since the through-hole 36 is arranged with the interposition, the possibility of causing an electrical short can be reduced.
  • the electrode layer 33 is formed by superposing the positive electrode layer 31a and the negative electrode layer 31b with the separator layer 32 interposed therebetween.
  • the electrode laminate 33 may be a combination of the positive electrode layer 31a, the negative electrode layer 31b, and one separator layer 32, but may be a combination of a plurality of positive electrode layers 31a and negative electrode layers 31b and two or more separator layers 32. There may be.
  • a part of the outer periphery of the separator layer 32 is provided with an uncoated portion 32a that is not covered by the positive electrode layer 31a and the negative electrode layer 31b. As an example, as shown in FIG.
  • each positive electrode layer 31a is electrically connected to the positive electrode terminal 35a and each negative electrode layer 31b is electrically connected to the negative electrode terminal 35b on the side opposite to the non-covered portion 32a in plan view.
  • the through-hole 36 is formed in the non-coating part 32a of the electrode laminated body 33.
  • FIG. 8 (a) a plurality of separator layers 32 are stacked on the non-covering portion 32a.
  • a plurality of separator layers 32 are formed using a punch 39 and a die 40.
  • the through holes 36 are formed collectively.
  • the electrode laminate 33 includes a plurality of separator layers 32, only one separator layer 32 of the plurality is positive electrode so that only one separator layer 32 exists in the uncovered portion 32a. You may make it the structure extended to the outer side of the layer 31a and the negative electrode layer 31b.
  • the electrode laminate 33 in which the positive electrode terminal 35a and the negative electrode terminal 35b are connected and the through hole 36 is formed in the uncovered portion 32a is covered from both the front and back surfaces with a pair of laminate films 34a.
  • the laminate films 34a are joined to each other by a method such as heat fusion or ultrasonic fusion in the outer peripheral portion 37, leaving one side that becomes a liquid injection port.
  • the laminate films 34a are brought into direct contact with each other and fused together.
  • an elongated heater having a diameter smaller than that of the through hole 36 is brought into contact with the outside to heat-bond the laminate films 34a to each other.
  • an electrolyte solution (not shown) is injected from the injection port, and the final sealing side is fused.
  • the laminate films 34a may be fused together in the through holes 36 after injecting the electrolytic solution.
  • the hole forming process for forming the through hole 36 is only required once, the working efficiency is very good and the manufacturing cost is reduced.
  • a large number of through-holes 36 and separator layer fixing fused portions 38 are formed and arranged so as to form two staggered rows. Therefore, an uncovered portion 32a having a larger area than that of the fourth embodiment is provided. According to this configuration, since there are many separator layer fixing fused portions 38, the effect of preventing the movement and displacement of the electrode laminate 33 is great. Further, even if the separator layer 32 between the separator layer fixing fusion portions 38 in one row receives a force to move parallel to the extending direction of the positive electrode terminal 35a and the negative electrode terminal 35b, the other row Since the separator layer fixing fused portion 38 resists the force, the electrode laminate 33 can be fixed more firmly.
  • the plurality of through holes 36 and the separator layer fixing fusion portion 38 are formed on the side opposite to the side where the positive electrode terminal 35 a and the negative electrode terminal 35 b protrude from the electrode stack 33. Since the terminal 35a and the negative electrode terminal 35b are located side by side in a direction orthogonal to the protruding direction, the electrode laminate 33 is unlikely to move or shift.
  • the through holes 36 and the separator layer fixing fusion portions 38 may be formed in three or more rows.
  • the positive electrode layer 31a and the negative electrode layer 31b have a rectangular planar shape
  • the separator layer 32 is a rectangular plane that is slightly larger than the positive electrode layer 31a and the negative electrode layer 31b.
  • the separator layer 32 is on the opposite side of the positive electrode layer 31a and the negative electrode layer 31b from the side (the left side in FIG. 9) from which the positive electrode terminal 35a and the negative electrode terminal 35b protrude outside the electrode stack 33. It protrudes toward the part (right side of FIG. 9).
  • the protruding portion is an uncovered portion 32 a, and a plurality of through holes 36 and a separator layer fixing fusion portion 38 are provided in a line over the entire length of the separator layer 32.
  • the plurality of through holes 36 and the separator layer fixing fusion portion 38 are formed on the side opposite to the side where the positive electrode terminal 35 a and the negative electrode terminal 35 b protrude from the electrode stack 33. Since the terminal 35a and the negative electrode terminal 35b are located side by side in a direction orthogonal to the protruding direction, the electrode laminate 33 is unlikely to move or shift. Furthermore, in the case of the present embodiment, the planar shape of the electrode laminate 33, and hence the planar shape of the battery 100, can be made into a quadrangle, and storage, handling, and arrangement are easy.
  • the portion where the separator layer 32 protrudes beyond the positive electrode layer 31a and the negative electrode layer 31b, that is, the non-covered portion 32a may be provided on any side of the quadrangular separator layer 32 when viewed in plan, and a plurality of sides May be provided respectively.
  • the separator layer 32 has a square planar shape, and part of the outer periphery of the positive electrode layer 31 a and the negative electrode layer 31 b is from the rectangular planar shape of the separator layer 32. It is formed in a shape that recedes inward. In this way, the separator layer 32 faces the portion of the outer periphery of the positive electrode layer 31a and the negative electrode layer 31b that has receded inward in plan view, and the opposite portion of the separator layer 32 covers the positive electrode layer 31a and the negative electrode layer 31b. The uncovered portion 32a is not broken.
  • a through-hole 36 is formed in the uncovered portion 32a, and the laminate films 34a are brought into direct contact with each other through the through-hole 36 to be fused.
  • the planar shape of the electrode laminate 33 and the battery 100 can be made square to facilitate storage, handling and arrangement. In addition, it is space efficient and suitable for downsizing. Further, the shapes of the positive electrode layer 31a and the negative electrode layer 31b that are receded inward from the rectangular planar shape of the separator layer 32 have a curved (arc-shaped) outline 41. The possibility of damaging the inner surface is low.
  • portions of the positive electrode layer 31a and the negative electrode layer 31b that are receded inward from the rectangular planar shape of the separator layer 32 are arranged so that the positive electrode layer 31a and the negative electrode layer 31b face each other. It can also be provided on the sides or on all four sides of the electrode 31.
  • two separator layer fixing fusion portions 38 are provided not on the same side portion but on the opposite side portions in plan view.
  • the electrode laminate 33 is fixed on both sides, which is effective for preventing the movement and displacement of the electrode laminate 33 due to the vertical force in FIG.
  • the separator layer 32 has a square planar shape, and the positive electrode layer 31a and the negative electrode layer 31b are chamfered at portions located at two corners of the square. It is retreating. Thereby, the opposing part of the separator layer 32 is formed in the area
  • a plurality of through holes 36 and separator layer fixing fusion portions 38 are provided at both ends of the side portion opposite to the side portion where the positive electrode terminal 35 a and the negative electrode terminal 35 b protrude from the electrode stack 33.
  • the electrode laminate 33 is unlikely to move or shift.
  • the planar shape of the electrode laminate 33 and the battery 100 can be made square to facilitate storage, handling, and arrangement, and space efficiency is further improved, which is suitable for downsizing.
  • the shapes of the positive electrode layer 31a and the negative electrode layer 31b that are recessed inward from the rectangular planar shape of the separator layer 32 have curved (arc-shaped) contours 41, and thus damage the inner surface of the laminate film 34a. Less likely.
  • the positive electrode layer 31a and the negative electrode layer 31b have a square planar shape, and the separator layer 32 is formed at two square corners of the positive electrode layer 31a and the negative electrode layer 31b.
  • the positive electrode layer 31a and the negative electrode layer 31b may have a shape protruding outward from the rectangular planar shape. It is only necessary to appropriately determine which of the positive electrode layer 31a, the negative electrode layer 31b, and the separator layer 32 is formed into a quadrangular planar shape, and determine whether or not to adopt this modification.
  • a separator is formed on one side of the positive electrode layer 31a and the negative electrode layer 31b in the vicinity of the center of the side, as in the seventh embodiment.
  • a portion having a shape retreated inward from the rectangular planar shape of the layer 32 is provided, and the opposite side to the side is formed from the rectangular planar shape of the separator layer 32 at both ends, as in the ninth embodiment.
  • non-covered portions 32a are provided at a total of three locations near the center of one side and both ends of the opposite sides, and each through-hole 36 and separator layer fixing fusion portion 38 are provided in each non-covered portion 32a. Is formed. In this configuration, the effect of preventing the movement and displacement of the electrode stack 33 is great by fixing at three positions.
  • the separator layer 32 has a square planar shape, and the separator layer 32 includes the positive electrode layer 31 a and the negative electrode layer 31 b at the four corners. In this configuration, a shape retreated inward from the 32 rectangular planar shapes is located. According to the present embodiment, in addition to the effects of the ninth embodiment, the effect of being able to more firmly fix the electrode laminate 33 by positioning the separator layer fixing fused portions 38 at the four corners is great.
  • the shapes of the positive electrode layer 31a and the negative electrode layer 31b that are receded from the square planar shape of the separator layer 32 are curved (arc-shaped). ) May be a shape in which corners are linearly cut into triangles.
  • the battery module includes a module case 42 that is a housing that houses a plurality of batteries 100, and a plurality of battery holders 43 for holding individual batteries 100 in the module case 42.
  • the through hole 36 is provided in the non-covering portion 32a of the separator layer 32, and the inside of the through hole 36 is the separator layer fixing fusion portion, as in the above-described embodiments. It is 38.
  • a hole 46 penetrating the separator layer fixing fused portion 38 is further provided.
  • a hole 46 is provided in the outer peripheral portion 37 in a side portion where the non-covering portion 32a does not exist (a side portion where the positive electrode terminal 35a and the negative electrode terminal 35b are connected). Then, the battery 100 is placed on the battery holder 43 while the pins 43 b provided on the battery holder 43 are respectively passed through the holes 46.
  • one battery 100 is configured to be held by two battery holders 43 positioned on both sides thereof.
  • the pin 43 b of the battery holder 43 passes through the hole 46 of the battery 100, so that the battery 100 is aligned with the battery holder 43.
  • the penetration bolt 44 penetrates the positioning hole 43a each provided in the some battery holder 43 continuously.
  • the through bolts 44 pass through the positioning holes 43a provided in the battery holders 43, respectively.
  • the electrode stack 33 including the positive electrode layer 31a and the negative electrode layer 31b can be prevented from moving and misaligned. This leads to preventing the movement and displacement of the electrode stack 33 of the battery 100 at once.
  • the hole 46 used for positioning of the battery 100 is provided in the fusion part of the laminate film 34a (particularly the fusion part 38 for fixing the separator layer), a hole for alignment is separately formed. There is no need to do this, and space efficiency is high, contributing to downsizing.
  • the pin 43 b of the battery holder 43 is inserted into the hole 46, the battery holder 43 directly contributes to preventing the battery stack 33 from being displaced. This is because the position of the hole 46 contributes not only to the exterior body 34 of the battery 100 but also to the fixing of the separator layer 32.
  • the battery 100 according to the present embodiment is a battery in which a hole 46 is formed in the separator layer fixing fused portion 38 of the fourth to tenth embodiments and the modifications described above (the outer periphery if necessary)
  • the portion 37 may be formed with a hole), and the arrangement of the non-covered portion 32a, the through hole 36, and the separator layer fixing fusion portion 38 is described in the fourth to tenth embodiments described above. And any one of the modified examples.
  • the fourth to tenth embodiments of the present invention are not limited to the above-described embodiments.
  • the electrode laminate may be a wound type or a folded type.
  • the exterior body may be configured by folding a single laminate film and fusing three sides. Further, in order to suppress the movement of the electrode stack 33, it is sufficient that there is an uncovered portion 32a provided with a through hole 36 on at least one side of the electrode stack 33.
  • the positive electrode terminal 35 a and the negative electrode terminal 35 b and the through hole 36 are on the opposite sides of the electrode stack 33, and the through holes 36 are on the opposite sides of the electrode stack 33. An example is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

A battery (A) has: an electrode stacked body (3) in which a plurality of electrodes (1) and a plurality of separators (2) are alternately stacked; and exterior body films (4A, 4B) constituting a package into which the electrode stacked body (3) is sealed by overlapping and joining the rim portions with each other. The plurality of separators (2) includes a large planar-shaped separator (2A) and a small planar-shaped separator (2B). The large planar-shaped separator (2A) projects toward a side of the electrode stacked body (3) in a planar view and is joined to the exterior body films (4A, 4B) at a more inner side than the portion where the rim portions of the exterior body films (4A, 4B) are joined to each other. This structure can effectively prevent the electrode stacked body (3) from moving within the package while preventing the degradation of performance of sealing by the exterior body films (4A, 4B) constituting the package.

Description

電池とその製造方法Battery and manufacturing method thereof
 本発明は電池とその製造方法に関する。 The present invention relates to a battery and a manufacturing method thereof.
 複数の電極と電極同士の間に挟まれるセパレータとからなる電極積層体を一対のラミネートフィルムで封止した構成の電池が存在する。このような電池において、衝撃などでラミネートフィルムパッケージ内で電極積層体が移動すると、電池として不具合が生じる可能性があるため、一対のラミネートフィルムからなるパッケージの内部で電極積層体が移動するのを抑えることが望ましい。 There exists a battery having a configuration in which an electrode laminate composed of a plurality of electrodes and a separator sandwiched between the electrodes is sealed with a pair of laminate films. In such a battery, if the electrode laminate moves in the laminate film package due to an impact or the like, there is a possibility that a malfunction may occur as the battery. Therefore, the electrode laminate moves within the package made of a pair of laminate films. It is desirable to suppress.
 そこで、一対のラミネートフィルムからなるパッケージの内部で電極積層体が移動するのを抑えることを目的として特許文献1~4に記載の技術が提案されている。 Therefore, techniques described in Patent Documents 1 to 4 have been proposed for the purpose of suppressing the movement of the electrode laminate inside a package made of a pair of laminate films.
 特許文献1,2に開示された構成では、少なくとも一つのセパレータが、電極積層体を構成する他のセパレータや電極よりも大きな平面形状に形成されており、その平面形状の大きなセパレータの一部が電極積層体の側方に突出するように延びている。そして、この平面形状の大きなセパレータの、電極積層体の側方に突出する部分が、一対のラミネートフィルムの周縁部に挟み込まれている。すなわち、ラミネートフィルム同士の周縁部に、セパレータの一部(延出部)が進入しており、ラミネートフィルムの周縁部同士が熱融着等により接合される際に、ラミネートフィルムの周縁部同士の間に位置するセパレータの延出部も熱融着され、電極積層体がラミネートフィルムからなるパッケージ内に固定される。 In the configurations disclosed in Patent Documents 1 and 2, at least one separator is formed in a larger planar shape than the other separators and electrodes constituting the electrode stack, and a part of the large planar separator is formed. It extends so as to protrude to the side of the electrode laminate. And the part which protrudes to the side of an electrode laminated body of this big planar separator is pinched | interposed into the peripheral part of a pair of laminate film. That is, when a part (extension part) of the separator has entered the peripheral part between the laminate films and the peripheral parts of the laminate film are joined together by thermal fusion or the like, The extending portion of the separator located between them is also heat-sealed, and the electrode laminate is fixed in a package made of a laminate film.
 また、特許文献3に開示されている構成では、一枚のラミネートフィルムの上に電極とセパレータが交互に積層されており、電極またはセパレータが積層されるたびに、電極に接着されたタブフィルム、またはセパレータ自体が、ラミネートフィルムに熱融着等により接合されている。そして、最後に、もう一つのラミネートフィルムが被せられて、ラミネートフィルムの周縁部同士が熱融着等によって互いに接合されている。この構成によっても、電極に接着されたタブフィルムとセパレータがそれぞれラミネートフィルムに接合されているので、電極積層体のパッケージ内での移動が抑えられる。 Moreover, in the structure currently disclosed by patent document 3, the electrode and the separator are alternately laminated | stacked on the laminate film of 1 sheet, and whenever the electrode or the separator is laminated | stacked, the tab film adhere | attached on the electrode, Alternatively, the separator itself is bonded to the laminate film by heat fusion or the like. Finally, another laminate film is covered, and the peripheral portions of the laminate film are joined to each other by heat fusion or the like. Also with this configuration, since the tab film and the separator bonded to the electrode are bonded to the laminate film, movement of the electrode laminate in the package can be suppressed.
 さらに、特許文献4には、複数の電極層とセパレータ層を含む電極積層体の、平面的に見て中央部分に貫通孔を形成し、この電極積層体を一対のラミネートフィルムで両面から覆い、ラミネートフィルム同士を、貫通孔を介して互いに直接接触させて互いに融着させた構成が開示されている。 Furthermore, in Patent Document 4, a through-hole is formed in the center portion of the electrode laminate including a plurality of electrode layers and a separator layer as viewed in plan, and this electrode laminate is covered with a pair of laminate films from both sides, A configuration is disclosed in which laminate films are brought into direct contact with each other through a through hole and fused together.
 特許文献1,2の構成では、セパレータの延出部が、その周囲に位置するラミネートフィルムの周縁部同士の接合によって固定されることで、電極積層体の移動防止の信頼性は高くなるが、例えば耐熱性が要求されるセパレータ層22の材質によっては、熱融着性が要求されるラミネートフィルム20の内面の熱融着性樹脂とは融着性が悪い場合がある。そのため、ラミネートフィルムネート周縁部同士の間にセパレータの延出部が介在するが故に、ラミネートフィルムの周縁部同士の接合力が低下し封止性能が低くなるという問題がある。 In the configurations of Patent Documents 1 and 2, the extension portion of the separator is fixed by joining the peripheral portions of the laminate film positioned around the separator, so that the reliability of preventing the movement of the electrode laminate is increased. For example, depending on the material of the separator layer 22 that requires heat resistance, the fusing property may be poor with the heat fusible resin on the inner surface of the laminate film 20 that requires heat fusing property. Therefore, since the extending part of the separator is interposed between the peripheral parts of the laminate filmate, there is a problem that the bonding force between the peripheral parts of the laminate film is lowered and the sealing performance is lowered.
 また、特許文献3には、複数のセパレータが存在する場合の構成については開示も示唆もされていない。むしろ、複数のセパレータが存在する場合を想定すると、ラミネートフィルムにより封止された空間内に、セパレータとラミネートフィルムの接合部分が多数存在してしまうばかりでなく、セパレータ毎にラミネートフィルムに対する接合箇所を確保するためにセパレータの形状が複雑化してしまう。よって、特許文献2のケースでは、複数のセパレータを想定することは現実的ではない。 Further, Patent Document 3 neither discloses nor suggests a configuration in the case where there are a plurality of separators. Rather, assuming that there are a plurality of separators, there are not only a large number of joints between the separator and the laminate film in the space sealed by the laminate film, but also the joints to the laminate film for each separator. In order to ensure, the shape of a separator will become complicated. Therefore, in the case of Patent Document 2, it is not realistic to assume a plurality of separators.
 さらに、また、特許文献3に示すように、平面的に見て電極積層体の中央部分に貫通孔が形成された構成の場合には、電極層とラミネートフィルムの金属層との間で電気的短絡を生じるおそれがある。その理由の一つは、複数の電極層の貫通孔内面の端縁が、その貫通孔の内部に入り込んで互いに融着されるラミネートフィルムの内面に当接し、貫通孔内面の端縁がラミネートフィルムの内面を傷つけてしまうことである。その場合、ラミネートフィルムの内面の傷ついた部分において電極層とラミネートフィルムの金属層とが接触する可能性がある。 Furthermore, as shown in Patent Document 3, in the case where the through hole is formed in the central portion of the electrode laminate as viewed in a plan view, electrical connection is made between the electrode layer and the metal layer of the laminate film. May cause a short circuit. One reason for this is that the edges of the inner surfaces of the through holes of the plurality of electrode layers come into contact with the inner surfaces of the laminate films that enter the inside of the through holes and are fused together, and the edges of the inner surfaces of the through holes are the laminate films. Is hurting the inner surface. In that case, there is a possibility that the electrode layer and the metal layer of the laminate film come into contact with each other at the damaged portion of the inner surface of the laminate film.
特開2007-311323号公報JP 2007-31323 A 特開2000-277062号公報JP 2000-277062 A 特開2010-277925号公報JP 2010-277925 A 実開平03-079162号公報Japanese Utility Model Publication No. 03-079162
 そこで本発明の目的は、複数のセパレータを使用した電池であって、パッケージとなる外装体フィルムによる封止性能の低下を防止しつつ、パッケージ内での電極積層体の移動を有効に抑えることができる電池とその製造方法を提供することにある。 Accordingly, an object of the present invention is a battery using a plurality of separators, and effectively suppresses the movement of the electrode laminate in the package while preventing a decrease in sealing performance due to the outer package film serving as the package. It is in providing the battery which can be manufactured, and its manufacturing method.
 さらに、本発明の他の目的は、正極層、負極層、及びセパレータ層を含む電極積層体が外装体の内部で移動したり位置ずれしたりすることを抑えるとともに、外装体内の金属層と電極積層体との電気的短絡を防ぐことができる電池及びその製造方法を提供することにある。 Furthermore, another object of the present invention is to prevent the electrode laminate including the positive electrode layer, the negative electrode layer, and the separator layer from moving or being displaced within the exterior body, and to provide a metal layer and an electrode within the exterior body. An object of the present invention is to provide a battery capable of preventing an electrical short circuit with a laminate and a method for manufacturing the same.
 本発明の電池は、複数の電極と複数のセパレータが交互に積層された電極積層体と、周縁部同士が互いに重ね合わされて接合されることによって電極積層体を封入するパッケージを構成する外装体フィルムと、を有し、複数のセパレータは、平面形状の大きなセパレータと平面形状の小さなセパレータとを含み、平面形状の大きなセパレータは、平面的に見て電極積層体の側方に突出し、フィルムの周縁部同士の接合部分よりも内側でフィルムに接合されていることを特徴とする。 The battery according to the present invention includes an electrode laminate in which a plurality of electrodes and a plurality of separators are alternately laminated, and a package film that forms a package that encloses the electrode laminate by joining the peripheral portions to each other. The plurality of separators include a large planar separator and a small planar separator, the large planar separator projecting to the side of the electrode stack when viewed in plan, and the periphery of the film It is characterized in that the film is bonded to the film on the inner side of the bonding part between the parts.
 この電池の構造によれば、セパレータと外装体フィルムとが接合されているため、パッケージ内での電極積層体の移動を抑制することができると共に、外装体フィルムの周縁部同士の接合部分よりも内側で平面形状の大きなセパレータと外装体フィルムとが接合されているため、外装体フィルムの周縁部同士の接合部分にセパレータが介在することがなく、封止性能の低下を抑制することができる。さらに、複数のセパレータを有する電池であってもそのうちの一部である、平面形状の大きなセパレータのみを外装体フィルムに接合しているため、接合に要するエネルギーを低減することができ、外装体フィルムの周縁部同士の接合部分へのダメージを低減することができる。 According to the structure of this battery, since the separator and the exterior body film are joined, the movement of the electrode laminate in the package can be suppressed, and more than the joint portion between the peripheral portions of the exterior body film. Since the separator having a large planar shape and the exterior body film are bonded to each other on the inner side, the separator does not intervene at the joint portion between the peripheral portions of the exterior body film, and the deterioration of the sealing performance can be suppressed. Furthermore, even in a battery having a plurality of separators, only a large planar separator, which is a part of them, is bonded to the exterior body film, so that the energy required for joining can be reduced, and the exterior body film It is possible to reduce damage to the joint portion between the peripheral portions.
 本発明の別の電池は、セパレータ層とセパレータ層を間に挟んで互いに重ね合わされる正極層及び負極層とを含む電極積層体と、電極積層体を包囲する外装体と、を有し、セパレータ層は、セパレータ層の外周の一部に前記正極層及び負極層に覆われていない非被覆部を有し、非被覆部に貫通孔が設けられており、外装体は少なくとも熱融着性樹脂と金属層とを含む一対もしくは折り返された一枚のラミネートフィルムからなり、ラミネートフィルム同士は、セパレータ層の非被覆部の貫通孔を介して互いに融着していることを特徴とする。 Another battery of the present invention includes an electrode laminate including a separator layer and a positive electrode layer and a negative electrode layer that are overlapped with each other with the separator layer interposed therebetween, and an exterior body that surrounds the electrode laminate. The layer has a non-covered portion that is not covered by the positive electrode layer and the negative electrode layer on a part of the outer periphery of the separator layer, and a through hole is provided in the non-covered portion. The laminate film is composed of a pair of laminated sheets including a metal layer and a single folded laminated film, and the laminated films are fused to each other through a through-hole of an uncoated portion of the separator layer.
 この電池によれば、セパレータ層の非被覆部に貫通孔が設けられ、この貫通孔を介してラミネートフィルム同士が融着されているため、電極積層体の外装体内での移動や位置ずれが抑えられる。また、貫通孔には電極が存在しないため、電極層とラミネートフィルムに含まれる金属層との間で電気的短絡を生じる危険性が小さい。また、貫通孔はセパレータ層のみに形成されており、貫通孔が形成される部分は電極積層体の全厚に比べて薄く、かつセパレータ層は電極層と比べてやわらかい材質からなるため、貫通孔の端部により熱融着性樹脂が損傷する可能性も低減される。 According to this battery, since the through-hole is provided in the non-covered portion of the separator layer, and the laminate films are fused to each other through the through-hole, movement and displacement of the electrode stack in the exterior body are suppressed. It is done. Moreover, since no electrode is present in the through hole, there is little risk of an electrical short circuit between the electrode layer and the metal layer included in the laminate film. In addition, the through hole is formed only in the separator layer, the portion where the through hole is formed is thinner than the total thickness of the electrode laminate, and the separator layer is made of a material softer than the electrode layer. The possibility of damaging the heat-fusible resin due to the end portions is also reduced.
 さらに、電極積層体を構成した後に、セパレータ層の非被覆部に貫通孔を形成することができる。特に非被覆部に複数のセパレータ層が存在する場合には、複数のセパレータ層に一括して貫通孔を形成できるので、作業効率が非常に良好で製造コストの低減が図れる。 Furthermore, after constructing the electrode laminate, through-holes can be formed in the non-covered portion of the separator layer. In particular, when there are a plurality of separator layers in the non-covered portion, the through holes can be formed in the plurality of separator layers all at once, so that the working efficiency is very good and the manufacturing cost can be reduced.
(a)は本発明の第1の実施形態の電池における一方のラミネートフィルムを外した状態を示す模式的平面図、(b)は同図(a)のX-X線断面図である。(A) is a schematic plan view showing a state in which one laminate film is removed from the battery according to the first embodiment of the present invention, and (b) is a cross-sectional view taken along line XX of FIG. (a),(b)は図1に示す電池の製造工程を順番に示す模式的断面図である。(A), (b) is typical sectional drawing which shows the manufacturing process of the battery shown in FIG. 1 in order. (a)は本発明の第2の実施形態の電池の電極積層体を模式的に示す平面図、(b)は同図(a)のY-Y線断面図、(c)は一組の中間電極積層体および電極を模式的に示していて、同図(a)のY-Y線に沿う拡大断面図である。(A) is a plan view schematically showing an electrode laminate of a battery according to a second embodiment of the present invention, (b) is a cross-sectional view taken along line YY of (a), and (c) is a set of FIG. 2 is an enlarged cross-sectional view schematically showing the intermediate electrode laminate and the electrode, taken along line YY in FIG. 図3の(a),(b)に示す電極積層体を含む電池を模式的に示していて、図3(a)のY-Y線に沿う断面図である。FIG. 4 schematically shows a battery including the electrode stack shown in FIGS. 3A and 3B, and is a cross-sectional view taken along line YY in FIG. 本発明の第3の実施形態の電池ユニットを示す断面図である。It is sectional drawing which shows the battery unit of the 3rd Embodiment of this invention. 本発明の第4の実施形態の電池を模式的に示す平面図である。It is a top view which shows typically the battery of the 4th Embodiment of this invention. 図6に示す電池をA-A線で切断した要部拡大断面図である。FIG. 7 is an enlarged cross-sectional view of a main part of the battery shown in FIG. 6 cut along line AA. (a)は図6に示す電池の製造方法において電極積層体を構成した状態を示す要部拡大断面図、(b)は貫通孔を形成する工程を示す要部拡大断面図である。(A) is a principal part expanded sectional view which shows the state which comprised the electrode laminated body in the manufacturing method of the battery shown in FIG. 6, (b) is a principal part expanded sectional view which shows the process of forming a through-hole. 本発明の第5の実施形態の電池を模式的に示す平面図である。It is a top view which shows typically the battery of the 5th Embodiment of this invention. 本発明の第6の実施形態の電池を模式的に示す平面図である。It is a top view which shows typically the battery of the 6th Embodiment of this invention. 本発明の第7の実施形態の電池を模式的に示す平面図である。It is a top view which shows typically the battery of the 7th Embodiment of this invention. 本発明の第8の実施形態の電池を模式的に示す平面図である。It is a top view which shows typically the battery of the 8th Embodiment of this invention. 本発明の第9の実施形態の電池を模式的に示す平面図である。It is a top view which shows typically the battery of the 9th Embodiment of this invention. 本発明の第10の実施形態の電池を模式的に示す平面図である。It is a top view which shows typically the battery of the 10th Embodiment of this invention. (a)は本発明の第11の実施形態の電池を模式的に示す平面図、(b),(c)はその電池を保持する二種類の電池ホルダーをそれぞれ示す平面図及び側面図である。(A) is a top view which shows typically the battery of the 11th Embodiment of this invention, (b), (c) is the top view and side view which respectively show two types of battery holders which hold | maintain the battery. . (a)は図15に示す電池及び電池ホルダーを含む電池モジュールの要部を示す斜視図、(b)はその断面図である。(A) is a perspective view which shows the principal part of the battery module containing the battery and battery holder shown in FIG. 15, (b) is the sectional drawing.
 以下、本発明の実施の形態について図面を参照して説明する。図1(a),(b)に本発明の第1の実施の形態の電池の模式図が示されている。図1(a)では、わかりやすくするために一方のラミネートフィルムを外した状態が示されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1A and 1B are schematic views of a battery according to a first embodiment of the present invention. FIG. 1A shows a state in which one laminate film is removed for easy understanding.
 本実施の形態の電池Aは、リチウムイオン二次電池の例である。複数の電極1と複数のセパレータ2が交互に積層された電極積層体3が、互いに接合された一対の外装体フィルム(ラミネートフィルム)4A,4Bからなるパッケージ内に封入された構成である。具体的には、正電極1Aと負電極1Bとがセパレータ2を間に挟んで重なり合うように積み重ねられて、電極積層体3が構成されている。ここで、正電極1Aとしては、リチウムマンガン酸化物やリチウムニッケル酸化物等を使用することができる。負電極1Bとしては、黒鉛、非晶質炭素等を使用することができる。セパレータ2としては、ポリプロピレンなどのポリオレフィンシートを使用できる。 The battery A of the present embodiment is an example of a lithium ion secondary battery. An electrode laminate 3 in which a plurality of electrodes 1 and a plurality of separators 2 are alternately laminated is enclosed in a package composed of a pair of exterior body films (laminate films) 4A and 4B joined together. Specifically, the electrode laminate 3 is configured by stacking the positive electrode 1A and the negative electrode 1B so as to overlap each other with the separator 2 interposed therebetween. Here, as the positive electrode 1A, lithium manganese oxide, lithium nickel oxide, or the like can be used. As the negative electrode 1B, graphite, amorphous carbon, or the like can be used. As the separator 2, a polyolefin sheet such as polypropylene can be used.
 セパレータ2として、平面形状の大きなセパレータ2Aと平面形状の小さなセパレータ2Bの2種類が存在する。具体的には、図1の(b)に示すように、平面形状の大きなセパレータ2Aと平面形状の小さなセパレータ2Bが積層方向に沿って交互に配置されている。本実施の形態では、平面形状の小さなセパレータ2Bは両電極1A,1Bより若干大きい平面形状および大きさであり、平面形状の大きなセパレータ2Aは、両電極1A,1Bおよび平面形状の小さなセパレータ2Bに比べて、長手方向(図1の左右方向)に長い形状を有している。従って、平面形状の大きなセパレータ2Aは、一部(延出部)が電極積層体3の側方に向けて突出している。 There are two types of separators 2, a large planar separator 2 </ b> A and a small planar separator 2 </ b> B. Specifically, as shown in FIG. 1B, the large planar separators 2A and the small planar separators 2B are alternately arranged along the stacking direction. In the present embodiment, the small planar shape separator 2B has a slightly larger planar shape and size than both electrodes 1A and 1B, and the large planar shape separator 2A corresponds to both the electrodes 1A and 1B and the small planar shape separator 2B. In comparison, it has a long shape in the longitudinal direction (left-right direction in FIG. 1). Accordingly, a part (extended portion) of the large planar separator 2 </ b> A protrudes toward the side of the electrode laminate 3.
 この電極積層体3の一方の側(図1の(a)の手前側)がラミネートフィルム4Aによって、他方の側(図1の(a)の奥側)がラミネートフィルム4Bによってそれぞれ覆われている。ラミネートフィルム4Aとラミネートフィルム4Bは、周縁部同士が重ね合わされて、熱融着等によって互いに接合されている(図1の(a)では接合部分をハッチングにて図示)。このように周縁部同士が互いに接合されたラミネートフィルム4A,4Bによって、電極積層体3を収容するパッケージが構成されている。図示しないがパッケージ内には電解液も封入されている。ここでラミネートフィルム4A,4Bは、接合される側から外側に向って、ポリプロピレンなどのポリオレフィン樹脂層、金属層、保護層の順に積層されたものである。 One side (front side of FIG. 1A) of the electrode laminate 3 is covered with a laminate film 4A, and the other side (back side of FIG. 1A) is covered with a laminate film 4B. . Laminate film 4A and laminate film 4B have their peripheral portions overlapped and joined to each other by thermal fusion or the like (in FIG. 1 (a), the joined portion is shown by hatching). Thus, the package which accommodates the electrode laminated body 3 is comprised by the laminate films 4A and 4B by which the peripheral parts were mutually joined. Although not shown, an electrolytic solution is also enclosed in the package. Here, the laminate films 4A and 4B are laminated in the order of a polyolefin resin layer such as polypropylene, a metal layer, and a protective layer from the bonded side to the outside.
 また、正電極1Aに接続されている引き出し電極5Aと負電極1Bに接続されている引き出し電極5Bは、ラミネートフィルム4A,4Bの周縁部の接合部分を通って、パッケージの外側に延出している。 Further, the lead electrode 5A connected to the positive electrode 1A and the lead electrode 5B connected to the negative electrode 1B extend to the outside of the package through the joint portions of the peripheral portions of the laminate films 4A and 4B. .
 そして、本実施の形態では、パッケージ内、すなわちラミネートフィルム4A,4Bの周縁部同士の接合部分よりも内側で、平面形状の大きなセパレータ2Aの、電極積層体3の側方に突出している部分(延出部)が、超音波溶着などの方法でラミネートフィルム4A,4Bに接合されている(図1の(a)では接合部分をハッチングにて図示)。 And in this Embodiment, the part which protrudes to the side of the electrode laminated body 3 of the separator 2A with a large planar shape inside a package, ie, the inner side of the junction part of the peripheral parts of laminate film 4A, 4B ( The extending portion) is joined to the laminate films 4A and 4B by a method such as ultrasonic welding (the joining portion is shown by hatching in FIG. 1A).
 次に、図2の(a),(b)を参照して、本実施の形態の電池Aの製造方法について説明する。まず、図2の(a)に示すように、複数の電極1およびセパレータ2を積層して電極積層体3を形成する。具体的には、先に述べたように、負電極1B、平面形状の大きなセパレータ2A、正電極1A、平面形状の小さなセパレータ2Bの順番に繰り返し積層している。そして、負電極1Bに引き出し電極5Bを接続し、正電極1Aに引き出し電極5Aを接続する。図2の(b)に示すように、電極積層体3の一方の側にラミネートフィルム4Aを配置し、他方の側にラミネートフィルム4Bを配置して、ラミネートフィルム4A,4Bで電極積層体3を挟み込む。そして、ラミネートフィルム4A,4Bの周縁部同士を電解液を注入する一辺を残して互いに密着させて、熱融着等の方法で接合する。なお、電解液を注入する辺は、平面形状の大きなセパレータ2Aが電極積層体3から突出してない辺である。そして、注入が完了したら残りの一辺も熱融着等の方法で接合する。 Next, with reference to FIGS. 2A and 2B, a method for manufacturing the battery A of the present embodiment will be described. First, as shown in FIG. 2A, a plurality of electrodes 1 and separators 2 are laminated to form an electrode laminate 3. Specifically, as described above, the negative electrode 1B, the large planar separator 2A, the positive electrode 1A, and the small planar separator 2B are repeatedly laminated in this order. Then, the extraction electrode 5B is connected to the negative electrode 1B, and the extraction electrode 5A is connected to the positive electrode 1A. As shown in FIG. 2B, the laminate film 4A is disposed on one side of the electrode laminate 3, the laminate film 4B is disposed on the other side, and the electrode laminate 3 is formed by the laminate films 4A and 4B. Sandwich. Then, the peripheral portions of the laminate films 4A and 4B are brought into close contact with each other leaving one side for injecting the electrolytic solution, and bonded by a method such as heat fusion. The side into which the electrolytic solution is injected is a side where the large planar separator 2 </ b> A does not protrude from the electrode stack 3. And when injection | pouring is completed, the remaining one side will be joined by methods, such as heat sealing | fusion.
 続いて、平面的に見てラミネートフィルム4A,4Bの周縁部の内側であって、平面形状の大きなセパレータ2Aの、電極積層体3の側方に突出した延出部に、ラミネートフィルム4A,4Bを当接させて、超音波溶着等の方法で互いに接合する。これにより、ラミネートフィルム4A、最外層の平面形状の大きなセパレータ2A、積層方向の中間位置における平面形状の大きなセパレータ2A、他方の最外層の平面形状の大きなセパレータ2A、ラミネートフィルム4Bが積層状態で互いに接合される。こうして、図1の(a),(b)に示す電池Aが完成する。 Subsequently, the laminate films 4A and 4B are formed on the extended portions of the separator 2A having a large planar shape protruding to the side of the electrode laminate 3 inside the periphery of the laminate films 4A and 4B when viewed in a plan view. Are brought into contact with each other and joined together by a method such as ultrasonic welding. Thereby, the laminated film 4A, the large planar separator 2A in the outermost layer, the large planar separator 2A at the intermediate position in the laminating direction, the large outer planar separator 2A, and the laminated film 4B are laminated together. Be joined. Thus, the battery A shown in FIGS. 1A and 1B is completed.
 この電池Aによると、ラミネートフィルム4A,4Bからなるパッケージ内で、平面形状の大きなセパレータ2Aとラミネートフィルム4A,4Bとが接合されているため、パッケージ内で電極積層体3の移動が抑制されると共に、ラミネートフィルム4A,4Bの周縁部同士の接合部分にセパレータが介在していないため、ラミネートフィルム4A,4Bの周縁部における接合の信頼性低下を抑制することができる。更に複数のセパレータを有する電池であってもそのうちの一部である、平面形状の大きなセパレータのみをラミネートフィルムネート4A,4Bと接合しているため、接合に要するエネルギーを低減することができ、ラミネートフィルム4A,4Bの周縁部同士の接合部分に与える影響を低減することができる。 According to this battery A, since the large planar separator 2A and the laminate films 4A and 4B are joined in the package made of the laminate films 4A and 4B, the movement of the electrode laminate 3 is suppressed in the package. At the same time, since the separator is not interposed at the joint portion between the peripheral portions of the laminate films 4A and 4B, it is possible to suppress a decrease in joint reliability at the peripheral portions of the laminate films 4A and 4B. Furthermore, even a battery having a plurality of separators, only a large planar separator, which is a part of them, is joined to the laminate filmnates 4A and 4B, so that the energy required for joining can be reduced. The influence which it has on the junction part of the peripheral parts of film 4A, 4B can be reduced.
 また、この電池Aの製造方法によると、平面形状が大きなセパレータ2Aとラミネートフィルム4A,4Bの接合が行われる前に、ラミネートフィルム4A,4Bの周縁部同士の接合が行われているため、セパレータ2Aとラミネートフィルム4A,4Bとの接合時の、例えば熱や振動等の影響がラミネートフィルム4A,4Bの周縁部同士の接合に影響せず、封止性能を確保できる。 Further, according to the manufacturing method of the battery A, since the peripheral portions of the laminate films 4A and 4B are bonded to each other before the separator 2A having a large planar shape and the laminate films 4A and 4B are bonded, the separator When joining 2A and laminate films 4A and 4B, the influence of, for example, heat and vibration does not affect the joining of the peripheral portions of laminate films 4A and 4B, and sealing performance can be ensured.
 電極積層体3において、平面形状の大きなセパレータ2Aと平面形状の小さなセパレータ2Bとが積層方向に沿って交互に配置されていると、一枚おきのセパレータ2がラミネートフィルム4A,4Bに接合されるため、パッケージ内での電極積層体3の移動抑制に効果的である。また、一枚おきに限らず、二枚おきや三枚おき等の間隔でラミネートフィルム4A,4Bに接合される平面形状の大きなセパレータ2Aが配置される構成であってもよい。枚数としては、ラミネートフィルム4A,4Bに接合される平面形状の大きなセパレータ2Aが一枚であっても良いが二枚以上であってもよい。二枚の場合、平面形状の大きなセパレータ2Aのうちの最も外側に位置するセパレータ2A同士が接合されると、ラミネートフィルム4A,4Bに接合される2つの平面形状の大きなセパレータ2Aで挟まれた空間に他の全ての電極1およびセパレータ2が挟み込まれるため、パッケージ内の電極積層体3の移動抑制に効果的である。 In the electrode laminate 3, when the large planar separators 2A and the small planar separators 2B are alternately arranged along the laminating direction, every other separator 2 is bonded to the laminate films 4A and 4B. Therefore, it is effective for suppressing the movement of the electrode laminate 3 in the package. Further, the configuration is not limited to every other sheet, and a configuration in which large planar separators 2A bonded to the laminate films 4A and 4B at intervals such as every two sheets or every three sheets may be arranged. As the number of sheets, one large planar separator 2A joined to the laminate films 4A and 4B may be one, or two or more. In the case of two sheets, when the outermost separators 2A of the large planar separators 2A are joined together, the space sandwiched between the two planar large separators 2A joined to the laminate films 4A and 4B Since all the other electrodes 1 and separators 2 are sandwiched between the electrodes, it is effective in suppressing the movement of the electrode laminate 3 in the package.
 平面形状が大きなセパレータ2Aがラミネートフィルム4A,4Bに接合される個所はラミネートフィルム4A,4Bの周縁部の接合箇所以外であればどこに位置していてもよいが、図1の(a)に示すように平面形状が大きなセパレータ2Aがラミネートフィルム4A,4Bに接合される個所が電極積層体に対し引き出し電極5A,5Bの反対側の位置である場合には、同方向のパッケージ内で極積層体3の移動に対する抑制効果がある。 The location where the separator 2A having a large planar shape is joined to the laminate films 4A and 4B may be located anywhere other than the joining location of the peripheral portions of the laminate films 4A and 4B, as shown in FIG. When the location where the separator 2A having a large planar shape is joined to the laminate films 4A and 4B is at a position opposite to the lead electrodes 5A and 5B with respect to the electrode laminate, the pole laminate is formed in the package in the same direction. There is an inhibitory effect on the movement of 3.
 平面形状が大きなセパレータ2Aとラミネートフィルム4A,4Bの接合は、どのような方法(例えば超音波溶着やスポット溶接など)で行われてもよいが、超音波溶着などの加熱を伴わない方法であることが好ましい。これは、一般にラミネートフィルム4A,4Bの周縁部同士の接合は熱融着によって行われることが多く、本実施形態では、ラミネートフィルム4A,4Bの周縁部同士の接合の後に、平面形状が大きなセパレータ2Aとラミネートフィルム4A,4Bが接合されるからである。すなわち、仮に、平面形状が大きなセパレータ2Aとラミネートフィルム4A,4Bの接合が熱融着などの方法で行われて熱が発生すると、先に接合済みであるラミネートフィルム4A,4Bの周縁部同士の接合部(熱融着部)に対して熱による影響が及び接合強度が低下してしまうおそれがあるからである。 The separator 2A having a large planar shape and the laminate films 4A and 4B may be joined by any method (for example, ultrasonic welding or spot welding), but is a method that does not involve heating such as ultrasonic welding. It is preferable. In general, bonding between the peripheral portions of the laminate films 4A and 4B is often performed by thermal fusion. In this embodiment, a separator having a large planar shape is formed after bonding between the peripheral portions of the laminate films 4A and 4B. This is because 2A and the laminate films 4A and 4B are joined. That is, if the separator 2A having a large planar shape and the laminate films 4A and 4B are joined by a method such as heat fusion and heat is generated, the peripheral edges of the laminate films 4A and 4B that have been joined first are formed. This is because there is a possibility that the influence of heat on the joint (heat-sealed part) and the joint strength may decrease.
 次に、本発明の第2の実施の形態について説明する。第1の実施の形態と共通同する部分には同じ番号を付し詳細な説明を省略する。本実施の形態では、図3の(a)~(c)に示すように、隣り合う二つのセパレータ2が、少なくとも一辺は未接合状態とし他の辺は予め数箇所が互いに接合され、接合された二つのセパレータ2同士の間に第1の極の電極(例えば正電極1A)が介在して、中間電極体6が構成されている。中間電極体6と第2の極の電極(例えば負電極1B)とが互いに積層されることによって電極積層体3が構成されている。そして、図4に示すように、第1の実施の形態と同様に、電極積層体3がラミネートフィルム4A,4Bに挟まれた状態で、ラミネートフィルム4A,4Bの周縁部同士が互いに接合され、その後に、電極積層体3内の平面形状が大きなセパレータ2Aがラミネートフィルム4A,4Bに接合されている。 Next, a second embodiment of the present invention will be described. Portions common to those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In the present embodiment, as shown in FIGS. 3A to 3C, the two adjacent separators 2 are joined in a state where at least one side is not joined and several other sides are joined together in advance. An intermediate electrode body 6 is configured by interposing a first electrode (for example, positive electrode 1A) between the two separators 2. The intermediate electrode body 6 and the electrode of the second electrode (for example, the negative electrode 1B) are stacked on each other to constitute the electrode stack 3. And, as shown in FIG. 4, in the state where the electrode laminate 3 is sandwiched between the laminate films 4A and 4B as in the first embodiment, the peripheral portions of the laminate films 4A and 4B are joined to each other, Thereafter, a separator 2A having a large planar shape in the electrode laminate 3 is bonded to the laminate films 4A and 4B.
 より詳細には、本実施の形態では、平面形状が大きなセパレータ2Aと平面形状が小さなセパレータ2Bとが、平面的に見て、引き出し電極5A,5Bが位置する辺に垂直な二辺に二個所ずつの合計四つの接合点7で、熱融着により互いに接合されている。これにより、二つのセパレータ2A,2Bがいわば袋状に構成されている。そして、この袋状のセパレータ2A,2Bの間に正電極1Aが配置されている。こうして、中間電極体6(図3の(c)参照)が構成されている。さらに、図3の(a),(b)に示すように、複数の中間電極体6と複数の負電極1Bとが交互に積層されて電極積層体3が構成されている。その後、図4に示すように、ラミネートフィルム4A,4Bの周縁部同士の接合と、平面形状が大きなセパレータ2Aとラミネートフィルム4A,4Bの接合が、第1の実施の形態と同様の方法で行われる。 More specifically, in the present embodiment, the separator 2A having a large planar shape and the separator 2B having a small planar shape are arranged at two locations on two sides perpendicular to the side where the extraction electrodes 5A and 5B are located in a plan view. At a total of four joint points 7 each, they are joined together by thermal fusion. Thereby, the two separators 2A and 2B are formed in a bag shape. A positive electrode 1A is disposed between the bag- like separators 2A and 2B. Thus, the intermediate electrode body 6 (see FIG. 3C) is configured. Further, as shown in FIGS. 3A and 3B, the electrode laminate 3 is configured by alternately laminating a plurality of intermediate electrode bodies 6 and a plurality of negative electrodes 1B. Thereafter, as shown in FIG. 4, the joining of the peripheral portions of the laminate films 4A and 4B and the joining of the separator 2A having a large planar shape and the laminate films 4A and 4B are performed in the same manner as in the first embodiment. Is called.
 本実施の形態によると、第1の実施の形態と同様な効果に加えて、電極積層体3に力が加わった場合に、セパレータ2Aとラミネートフィルム4A,4bとの接合により、セパレータ2Aが引っ張られると共に接合されているセパレータ2Bも同様に引っ張られることで、電極積層体3のパッケージ内での移動抑止に効果がある。 According to the present embodiment, in addition to the same effects as those of the first embodiment, when a force is applied to the electrode laminate 3, the separator 2A is pulled by the joining of the separator 2A and the laminate films 4A and 4b. In addition, the separator 2 </ b> B that has been joined and is similarly pulled is effective in suppressing movement of the electrode laminate 3 within the package.
 本発明の第3の実施の形態について説明する。本実施の形態では、先の第1の実施の形態または第2の実施の形態と同様な電池Aを複数重ねて筐体8に入れ、電池ユニットを構成している。本実施の形態の筐体8は、積層された複数の電池Aに対して弾性的に加圧するような形状の加圧部9a,10aをそれぞれ含む上板9と下板10を有し、これらの上板9と下板10とが固定具(例えばボルト11およびナット12)によって互いに固定されている。従って、本実施の形態では、各電池Aが加圧された状態で保持される。この加圧力は各電池Aのパッケージ内の電極積層体3の移動を抑える力として働く。従って、電極積層体3の移動防止の効果がさらに向上する。 A third embodiment of the present invention will be described. In the present embodiment, a plurality of batteries A similar to those in the first embodiment or the second embodiment are stacked in the housing 8 to constitute a battery unit. The casing 8 of the present embodiment has an upper plate 9 and a lower plate 10 each including pressurizing portions 9a and 10a shaped to elastically pressurize a plurality of stacked batteries A. The upper plate 9 and the lower plate 10 are fixed to each other by a fixing tool (for example, a bolt 11 and a nut 12). Therefore, in the present embodiment, each battery A is held in a pressurized state. This applied pressure acts as a force for suppressing the movement of the electrode laminate 3 in the package of each battery A. Therefore, the effect of preventing movement of the electrode laminate 3 is further improved.
 なお、上述した第1,第2のの実施の形態では、二枚のラミネートフィルムを互いに接合して構成するタイプのパッケージについて説明したが、一枚のラミネートフィルムを一辺で折り曲げて周囲を接合して構成するタイプのパッケージを採用してもよい。また、パッケージはフィルム状のものであれば電池のタイプはリチウムイオン二次電池に限らない。 In the first and second embodiments described above, a package of a type in which two laminate films are bonded to each other has been described. However, a single laminate film is bent on one side and the periphery is bonded. A type of package configured as described above may be adopted. Further, if the package is a film, the battery type is not limited to the lithium ion secondary battery.
 次に、本発明の第4の実施の形態について説明する。 Next, a fourth embodiment of the present invention will be described.
 図6に本実施の形態の電池100の概略平面図が、図7に図6のA-A断面の拡大図がそれぞれ示されている。なお、以下に説明する各実施の形態の電池100を平面的に見た各図面においては、見やすくするために、外装体の内部の電極積層体等の各部材を明確に示しつつ、ラミネートフィルム同士の融着部もハッチングにて明確に示している。 FIG. 6 shows a schematic plan view of the battery 100 of the present embodiment, and FIG. 7 shows an enlarged view of the AA cross section of FIG. In addition, in each drawing in which the battery 100 of each embodiment described below is viewed in plan, the laminate films are shown while clearly showing each member such as an electrode laminate inside the exterior body for easy viewing. The fused part is also clearly indicated by hatching.
 本実施形態の電池100は、複数の正極層31a及び複数の負極層31bとこれらの間に介在するセパレータ層32とが積層されてなる電極積層体33が、一対のラミネートフィルム34aからなる外装体34によって包囲された構成である。電極積層体33の複数の正極層31aは正極端子35aに、複数の負極層31bは負極端子35bに接続されている。 In the battery 100 according to the present embodiment, an electrode laminate 33 in which a plurality of positive electrode layers 31a and a plurality of negative electrode layers 31b and a separator layer 32 interposed therebetween are laminated includes a pair of laminate films 34a. 34 is surrounded by 34. The plurality of positive electrode layers 31a of the electrode laminate 33 are connected to the positive electrode terminal 35a, and the plurality of negative electrode layers 31b are connected to the negative electrode terminal 35b.
 セパレータ層32としては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂からなるものが使用可能である。さらに、ポリエチレンテレフタレートなどのポリエステル系樹脂材料またはポリアミド系樹脂材料を延伸などにより多孔化したフィルムや、前記した樹脂材料からなる不織布なども使用可能である。 As the separator layer 32, for example, a layer made of a polyolefin resin such as polyethylene or polypropylene can be used. Furthermore, a film obtained by making a polyester resin material such as polyethylene terephthalate or a polyamide resin material porous by stretching or the like, or a nonwoven fabric made of the resin material described above can also be used.
 さらに、これらのフィルムや不織布の表面にシリカやアルミナなどの無機微粉末を多孔質の状態で付着させたものや、これらのフィルムや不織布の内部にシリカやアルミナなどの無機微粉末を分散させたものも、セパレータ層32として用いることができる。 Furthermore, inorganic fine powders such as silica and alumina adhered to the surface of these films and nonwoven fabrics in a porous state, and inorganic fine powders such as silica and alumina were dispersed inside these films and nonwoven fabrics. Those can also be used as the separator layer 32.
 後述するように、本実施の形態では、ラミネートフィルム34aからなる外装体34に対してセパレータ層32を固定するにあたり、貫通孔36を介してラミネートフィルム34a同士を融着するため、ラミネートフィルム34aの熱融着性樹脂の材料とセパレータ層32の材料との融着性のよい組み合わせを考慮する必要がない。 As will be described later, in the present embodiment, when the separator layer 32 is fixed to the exterior body 34 made of the laminate film 34a, the laminate films 34a are fused together through the through holes 36. There is no need to consider a combination with a good fusibility between the material of the heat fusible resin and the material of the separator layer 32.
 外装体34を構成するラミネートフィルム34aとしては、例えば、アルミニウム等の金属層の片面にポリエステル系の樹脂を有し、他方の面にポリエチレンやポリプロピレンなどのポリオレフィン系樹脂を有し、後者の層が熱融着性樹脂であるものを利用できる。 As the laminated film 34a constituting the exterior body 34, for example, a polyester resin is provided on one side of a metal layer such as aluminum, and a polyolefin resin such as polyethylene or polypropylene is provided on the other side. A heat-sealable resin can be used.
 本実施の形態では、セパレータ層32の外周の一部に、正極層31a及び負極層31bに覆われていない非被覆部32aが設けられている。具体的には、図6に示すように本実施形態の正極層31a及び負極層31bは四角形(矩形)の平面形状を有しており、セパレータ層32の非被覆部32aは、平面的に見て正極層31a及び負極層31bの四角形の平面形状から外側に突出する部分である。そして、この非被覆部32aに貫通孔36が開けられている。このように正極層31a及び負極層31bに覆われていない非被覆部32aに貫通孔36が開けられているため、外装体34を構成するラミネートフィルム34a同士は、貫通孔36を介して互いに直接接触する。ラミネートフィルム34a同士は、電極積層体33の外側に位置する外周部分37で互いに融着されて、袋状の外装体34が構成されている。 In the present embodiment, an uncovered portion 32a that is not covered by the positive electrode layer 31a and the negative electrode layer 31b is provided on a part of the outer periphery of the separator layer 32. Specifically, as shown in FIG. 6, the positive electrode layer 31a and the negative electrode layer 31b of the present embodiment have a square (rectangular) planar shape, and the uncovered portion 32a of the separator layer 32 is seen in a plan view. Thus, the positive electrode layer 31a and the negative electrode layer 31b protrude outward from the rectangular planar shape. And the through-hole 36 is opened in this non-coating part 32a. Thus, since the through-hole 36 is opened in the non-covered portion 32a that is not covered with the positive electrode layer 31a and the negative electrode layer 31b, the laminate films 34a constituting the exterior body 34 are directly connected to each other through the through-hole 36. Contact. Laminate films 34 a are fused together at an outer peripheral portion 37 located outside the electrode laminate 33 to form a bag-shaped exterior body 34.
 外装体34の外周部分37の一辺から、正極端子35a及び負極端子35bが融着部分を経由して引き出されている。正極端子35a及び負極端子35bは、図示しない金属融着性樹脂を介してラミネートフィルム34aに融着することで、正極端子35a及び負極端子35bは外装体34に固定される。そして、ラミネートフィルム34a同士は、外周部分37のみならず、貫通孔36を介して互いに接触する部分においても、融着している。この融着部分を、便宜上、「セパレータ層固定用融着部分38」という。このように貫通孔36の内部でラミネートフィルム34a同士が互いに接合しているため、セパレータ層32は、貫通孔36とセパレータ層固定用融着部分38との間の遊びの範囲内でしか平面的に移動することができず、実質的に固定される。すなわち、この貫通孔36及びセパレータ層固定用融着部分38によって、電極積層体33の、外装体34の内部での移動及び位置ずれが実質的に防止される。 The positive electrode terminal 35a and the negative electrode terminal 35b are drawn out from one side of the outer peripheral portion 37 of the exterior body 34 via the fusion portion. The positive electrode terminal 35a and the negative electrode terminal 35b are fused to the laminate film 34a via a metal fusible resin (not shown), so that the positive electrode terminal 35a and the negative electrode terminal 35b are fixed to the exterior body 34. The laminate films 34 a are fused not only at the outer peripheral portion 37 but also at the portions that are in contact with each other through the through hole 36. This fusion part is referred to as “separator layer fixing fusion part 38” for convenience. Thus, since the laminate films 34a are joined to each other inside the through hole 36, the separator layer 32 is planar only within the range of play between the through hole 36 and the separator layer fixing fusion portion 38. Cannot be moved to and is substantially fixed. That is, the through hole 36 and the separator layer fixing fused portion 38 substantially prevent the electrode stack 33 from moving and misaligned inside the exterior body 34.
 特に、本実施の形態では、正極端子35a及び負極端子35bが電極積層体33の外部に突出する側部(図6の左側)とは反対側の側部(図6の右側)に、貫通孔36及びセパレータ層固定用融着部分38が位置している。すなわち、正極層31a及び負極層31bに固定された正極端子35a及び負極端子35bが一対のラミネートフィルム34aに挟み付けられることによって電極積層体33の固定に寄与する部分と、先に述べたように貫通孔36とセパレータ層固定用融着部分38によって電極積層体33の固定に寄与する部分とが、平面的に見て同一の側部ではなく、互いに反対側の側部にそれぞれ設けられている。これは、電極積層体33が両側部でそれぞれ固定されることを意味し、正極端子35a及び負極端子35bが延びている方向に対する力が加わることによる電極積層体33の移動及び位置ずれを防止するためにより効果的である。 In particular, in this embodiment, the positive electrode terminal 35a and the negative electrode terminal 35b are formed on the side portion (the right side in FIG. 6) opposite to the side portion (the left side in FIG. 6) that protrudes outside the electrode stack 33. 36 and the separator layer fixing fusion part 38 are located. That is, the positive electrode terminal 35a and the negative electrode terminal 35b fixed to the positive electrode layer 31a and the negative electrode layer 31b are sandwiched between the pair of laminate films 34a, thereby contributing to the fixing of the electrode laminate 33, as described above. The through holes 36 and the separator layer fixing fusion portion 38 are provided on the opposite side portions, not on the same side portion in a plan view, but on the portions that contribute to fixing the electrode laminate 33. . This means that the electrode laminate 33 is fixed on both sides, and prevents the electrode laminate 33 from moving and misaligned due to the force applied in the direction in which the positive electrode terminal 35a and the negative electrode terminal 35b extend. Therefore, it is more effective.
 なお、図12を使用して後述するが、貫通孔36とセパレータ層固定用融着部分38が複数あって、そのうちの一部の融着部分38と、それとは別の融着部分38とが、電極積層体33の対向する側部にあっても、同様に電極積層体33の移動及び位置ずれ防止において効果的である。 As will be described later with reference to FIG. 12, there are a plurality of through-holes 36 and separator layer fixing fusion portions 38, and one of the fusion portions 38 and another fusion portion 38 are provided. Even in the opposite side portions of the electrode stack 33, the electrode stack 33 is similarly effective in preventing the movement and displacement of the electrode stack 33.
 さらに、本実施の形態では、複数の貫通孔36及びセパレータ層固定用融着部分38が、正極端子35a及び負極端子35bの延びている方向と直交する方向に並んで位置している。従って、正極端子35a及び負極端子35bに引っ張りまたは圧縮の力が加わった場合でも、その力の方向に直交する方向に並ぶ複数の固定部(セパレータ層固定用融着部分38)が電極積層体33の移動や位置ずれを抑える。 Furthermore, in the present embodiment, the plurality of through holes 36 and the separator layer fixing fused portion 38 are arranged side by side in a direction orthogonal to the extending direction of the positive electrode terminal 35a and the negative electrode terminal 35b. Therefore, even when a tensile or compressive force is applied to the positive electrode terminal 35a and the negative electrode terminal 35b, a plurality of fixing portions (separator layer fixing fusion portions 38) arranged in a direction orthogonal to the direction of the force are provided in the electrode laminate 33. Suppresses movement and displacement.
 また、図7に示すように、本実施の形態では、電極積層体33の固定用の穴は電極31a,31bの外側の領域に位置するセパレータ層32の非被覆部32aに形成されているため、貫通孔36には短絡を引き起こすおそれのある電極が存在せず、ラミネートフィルム34aの金属層との短絡が防止できる。 Further, as shown in FIG. 7, in the present embodiment, the fixing hole of the electrode laminate 33 is formed in the uncovered portion 32a of the separator layer 32 located in the region outside the electrodes 31a and 31b. In the through hole 36, there is no electrode that may cause a short circuit, and a short circuit with the metal layer of the laminate film 34a can be prevented.
 すなわち、セパレータ層32の非被覆部32aに設けられた貫通孔36を介してラミネートフィルム34a同士が互いに融着されているため、セパレータ層32の平面的な移動や位置ずれを抑えるにあたり、ラミネートフィルム融着層とセパレータ層32の材料の組合せ範囲を広くできると共に、ラミネートフィルム34a同士が融着される貫通孔36には電極が存在せず、また電極との間に絶縁性のセパレータ層32を介在して貫通孔36が配置されているため、電気的短絡を生じる可能性を低減できる。 That is, since the laminate films 34a are fused to each other through the through holes 36 provided in the non-covered portion 32a of the separator layer 32, the laminate film 32 can be used to suppress planar movement and displacement of the separator layer 32. The combination range of the material of the fusion layer and the separator layer 32 can be widened, and there is no electrode in the through hole 36 where the laminate films 34a are fused together, and an insulating separator layer 32 is provided between the electrodes. Since the through-hole 36 is arranged with the interposition, the possibility of causing an electrical short can be reduced.
 この電池100の製造方法について説明すると、まず、セパレータ層32を間に挟んで正極層31aと負極層31bを重ね合わせて電極積層体33を形成する。電極積層体33は、正極層31aと負極層31bと一層のセパレータ層32との組み合わせであってもよいが、複数の正極層31a及び負極層31bと二層以上のセパレータ層32との組み合わせであってもよい。そして、セパレータ層32の外周の一部には、正極層31aと負極層31bによって覆われない非被覆部分32aが設けられる。一例としては、図6に示すように、平面的に見て四角形状の電極層31a,31bから外側にセパレータ層32が突出した部分が非被覆部32aである。平面的に見て非被覆部32aとは反対側の側部において、各正極層31aを正極端子35aに、各負極層31bを負極端子35bに電気的に接続する。そして、電極積層体33の非被覆部32aに貫通孔36を形成する。図8の(a)に示すように、非被覆部32aにおいて複数のセパレータ層32を重ね、例えば図8の(b)に示すようにパンチ39とダイ40を用いて、複数のセパレータ層32に一括して貫通孔36を形成する。なお、電極積層体33が複数のセパレータ層32を含む場合であっても、非被覆部32aには一層のセパレータ層32のみが存在するように、複数のうちの一層のセパレータ層32のみが正極層31a及び負極層31bの外側まで延びている構成にしてもよい。 The method for manufacturing the battery 100 will be described. First, the electrode layer 33 is formed by superposing the positive electrode layer 31a and the negative electrode layer 31b with the separator layer 32 interposed therebetween. The electrode laminate 33 may be a combination of the positive electrode layer 31a, the negative electrode layer 31b, and one separator layer 32, but may be a combination of a plurality of positive electrode layers 31a and negative electrode layers 31b and two or more separator layers 32. There may be. A part of the outer periphery of the separator layer 32 is provided with an uncoated portion 32a that is not covered by the positive electrode layer 31a and the negative electrode layer 31b. As an example, as shown in FIG. 6, the portion where the separator layer 32 protrudes outward from the rectangular electrode layers 31a and 31b when viewed in plan is the non-covered portion 32a. Each positive electrode layer 31a is electrically connected to the positive electrode terminal 35a and each negative electrode layer 31b is electrically connected to the negative electrode terminal 35b on the side opposite to the non-covered portion 32a in plan view. And the through-hole 36 is formed in the non-coating part 32a of the electrode laminated body 33. FIG. As shown in FIG. 8 (a), a plurality of separator layers 32 are stacked on the non-covering portion 32a. For example, as shown in FIG. 8 (b), a plurality of separator layers 32 are formed using a punch 39 and a die 40. The through holes 36 are formed collectively. Even when the electrode laminate 33 includes a plurality of separator layers 32, only one separator layer 32 of the plurality is positive electrode so that only one separator layer 32 exists in the uncovered portion 32a. You may make it the structure extended to the outer side of the layer 31a and the negative electrode layer 31b.
 このように、正極端子35aと負極端子35bが接続され、非被覆部32aに貫通孔36が形成された電極積層体33を、図7に示すように、一対のラミネートフィルム34aで表裏両面から覆う。続いて、ラミネートフィルム34a同士を、外周部分37において、注液口となる一辺を残して熱融着または超音波融着などの方法で互いに接合する。さらに、非被覆部32aの貫通孔36内において、ラミネートフィルム34a同士を直接接触させ、互いに融着させる。一例としては、貫通孔36よりも細い径を有する細長いヒータを外側から当接させて、ラミネートフィルム34a同士を互いに熱融着させる。次に、図示しない電解液を注液口から注入して、最終封止辺を融着する。なお、電解液を注入した後に貫通孔36においてラミネートフィルム34a同士を融着してもよい。 Thus, as shown in FIG. 7, the electrode laminate 33 in which the positive electrode terminal 35a and the negative electrode terminal 35b are connected and the through hole 36 is formed in the uncovered portion 32a is covered from both the front and back surfaces with a pair of laminate films 34a. . Subsequently, the laminate films 34a are joined to each other by a method such as heat fusion or ultrasonic fusion in the outer peripheral portion 37, leaving one side that becomes a liquid injection port. Furthermore, in the through-hole 36 of the non-coating part 32a, the laminate films 34a are brought into direct contact with each other and fused together. As an example, an elongated heater having a diameter smaller than that of the through hole 36 is brought into contact with the outside to heat-bond the laminate films 34a to each other. Next, an electrolyte solution (not shown) is injected from the injection port, and the final sealing side is fused. Note that the laminate films 34a may be fused together in the through holes 36 after injecting the electrolytic solution.
 本実施の形態の製造方法では、貫通孔36を形成する穴開け工程は一回で済むため、作業効率が非常に良好で製造コストの低減につながる。 In the manufacturing method of the present embodiment, since the hole forming process for forming the through hole 36 is only required once, the working efficiency is very good and the manufacturing cost is reduced.
 図9に示す本発明の第5の実施の形態では、多数の貫通孔36及びセパレータ層固定用融着部分38が形成され、互い違い(千鳥状)の二列をなすように配置されている。そのために、第4の実施の形態よりも大面積の非被覆部32aが設けられている。この構成によると、セパレータ層固定用融着部分38が多いため、電極積層体33の移動及び位置ずれの防止の効果が大きい。さらに、一方の列内のセパレータ層固定用融着部分38同士の間のセパレータ層32が、正極端子35a及び負極端子35bの延びる方向と平行に移動しようとする力を受けても、他方の列のセパレータ層固定用融着部分38がその力に抗するため、電極積層体33をより強固に固定できる。本実施の形態でも、正極端子35a及び負極端子35bが電極積層体33の外部に突出する側部と反対側の側部において、複数の貫通孔36及びセパレータ層固定用融着部分38が、正極端子35a及び負極端子35bが突出する方向と直交する方向に並んで位置しているため、電極積層体33の移動や位置ずれを起こしにくい。貫通孔36及びセパレータ層固定用融着部分38を、三列以上の列をなすように形成してもよい。 In the fifth embodiment of the present invention shown in FIG. 9, a large number of through-holes 36 and separator layer fixing fused portions 38 are formed and arranged so as to form two staggered rows. Therefore, an uncovered portion 32a having a larger area than that of the fourth embodiment is provided. According to this configuration, since there are many separator layer fixing fused portions 38, the effect of preventing the movement and displacement of the electrode laminate 33 is great. Further, even if the separator layer 32 between the separator layer fixing fusion portions 38 in one row receives a force to move parallel to the extending direction of the positive electrode terminal 35a and the negative electrode terminal 35b, the other row Since the separator layer fixing fused portion 38 resists the force, the electrode laminate 33 can be fixed more firmly. Also in the present embodiment, the plurality of through holes 36 and the separator layer fixing fusion portion 38 are formed on the side opposite to the side where the positive electrode terminal 35 a and the negative electrode terminal 35 b protrude from the electrode stack 33. Since the terminal 35a and the negative electrode terminal 35b are located side by side in a direction orthogonal to the protruding direction, the electrode laminate 33 is unlikely to move or shift. The through holes 36 and the separator layer fixing fusion portions 38 may be formed in three or more rows.
 図10に示す本発明の第6の実施の形態では、正極層31a及び負極層31bが四角形の平面形状を有し、セパレータ層32は正極層31a及び負極層31bよりも一回り大きい四角形の平面形状を有し、セパレータ層32が、正極層31a及び負極層31bよりも、正極端子35a及び負極端子35bが電極積層体33の外部に突出する側部(図9の左側)と反対側の側部(図9の右側)の方にはみ出している。このはみ出した部分が非被覆部32aであり、複数の貫通孔36及びセパレータ層固定用融着部分38が、セパレータ層32の全長にわたって一列に並んで設けられている。本実施の形態でも、正極端子35a及び負極端子35bが電極積層体33の外部に突出する側部と反対側の側部において、複数の貫通孔36及びセパレータ層固定用融着部分38が、正極端子35a及び負極端子35bが突出する方向と直交する方向に並んで位置しているため、電極積層体33の移動や位置ずれを起こしにくい。さらに、本実施の形態の場合、電極積層体33の平面形状、ひいては電池100の平面形状を四角形にすることができ、保管や取り扱いや配置が容易である。 In the sixth embodiment of the present invention shown in FIG. 10, the positive electrode layer 31a and the negative electrode layer 31b have a rectangular planar shape, and the separator layer 32 is a rectangular plane that is slightly larger than the positive electrode layer 31a and the negative electrode layer 31b. The separator layer 32 is on the opposite side of the positive electrode layer 31a and the negative electrode layer 31b from the side (the left side in FIG. 9) from which the positive electrode terminal 35a and the negative electrode terminal 35b protrude outside the electrode stack 33. It protrudes toward the part (right side of FIG. 9). The protruding portion is an uncovered portion 32 a, and a plurality of through holes 36 and a separator layer fixing fusion portion 38 are provided in a line over the entire length of the separator layer 32. Also in the present embodiment, the plurality of through holes 36 and the separator layer fixing fusion portion 38 are formed on the side opposite to the side where the positive electrode terminal 35 a and the negative electrode terminal 35 b protrude from the electrode stack 33. Since the terminal 35a and the negative electrode terminal 35b are located side by side in a direction orthogonal to the protruding direction, the electrode laminate 33 is unlikely to move or shift. Furthermore, in the case of the present embodiment, the planar shape of the electrode laminate 33, and hence the planar shape of the battery 100, can be made into a quadrangle, and storage, handling, and arrangement are easy.
 セパレータ層32が正極層31a及び負極層31bよりもはみ出している部分、すなわち非被覆部32aが、平面的に見て四角形のセパレータ層32のいずれの辺に設けられていてもよく、複数の辺にそれぞれ設けられていてもよい。 The portion where the separator layer 32 protrudes beyond the positive electrode layer 31a and the negative electrode layer 31b, that is, the non-covered portion 32a may be provided on any side of the quadrangular separator layer 32 when viewed in plan, and a plurality of sides May be provided respectively.
 図11に示す本発明の第7の実施の形態では、セパレータ層32が四角形の平面形状を有し、正極層31a及び負極層31bの外周の一部が、セパレータ層32の四角形の平面形状から内側に後退した形状に形成されている。このように正極層31a及び負極層31bの外周の平面的に見て内側に後退した部分にセパレータ層32が対向し、このセパレータ層32の対向する部分が、正極層31a及び負極層31bに覆われない非被覆部32aになっている。そこで、この非被覆部32aに貫通孔36を形成し、貫通孔36を介してラミネートフィルム34a同士を互いに直接接触させ、融着させている。本実施の形態の場合、第5の実施形態と同様に、電極積層体33及び電池100の平面形状を四角形にして保管や取り扱いや配置を容易にできる。また、スペース効率が良く小型化に適する。さらに、正極層31a及び負極層31bの、セパレータ層32の四角形の平面形状から内側に後退した形状が、曲線状(円弧状)の輪郭41を有しているので、この部分がラミネートフィルム34aの内面を傷つける可能性が低い。 In the seventh embodiment of the present invention shown in FIG. 11, the separator layer 32 has a square planar shape, and part of the outer periphery of the positive electrode layer 31 a and the negative electrode layer 31 b is from the rectangular planar shape of the separator layer 32. It is formed in a shape that recedes inward. In this way, the separator layer 32 faces the portion of the outer periphery of the positive electrode layer 31a and the negative electrode layer 31b that has receded inward in plan view, and the opposite portion of the separator layer 32 covers the positive electrode layer 31a and the negative electrode layer 31b. The uncovered portion 32a is not broken. Therefore, a through-hole 36 is formed in the uncovered portion 32a, and the laminate films 34a are brought into direct contact with each other through the through-hole 36 to be fused. In the case of the present embodiment, similarly to the fifth embodiment, the planar shape of the electrode laminate 33 and the battery 100 can be made square to facilitate storage, handling and arrangement. In addition, it is space efficient and suitable for downsizing. Further, the shapes of the positive electrode layer 31a and the negative electrode layer 31b that are receded inward from the rectangular planar shape of the separator layer 32 have a curved (arc-shaped) outline 41. The possibility of damaging the inner surface is low.
 なお、本実施の形態の変形例として、正極層31a及び負極層31bの、セパレータ層32の四角形の平面形状から内側に後退した形状の部分を、正極層31a及び負極層31bの互いに対向する二辺に設けたり、電極31の四辺全てに設けたりすることもできる。 As a modification of the present embodiment, portions of the positive electrode layer 31a and the negative electrode layer 31b that are receded inward from the rectangular planar shape of the separator layer 32 are arranged so that the positive electrode layer 31a and the negative electrode layer 31b face each other. It can also be provided on the sides or on all four sides of the electrode 31.
 図12に示す本発明の第8の実施の形態では、二つのセパレータ層固定用融着部分38が平面的に見て同一の側部ではなく、互いに反対側の側部にそれぞれ設けられている。この場合、電極積層体33が両側部でそれぞれ固定されることになり、図13の上下方向の力が加わることによる電極積層体33の移動及び位置ずれを防止するために効果的である。 In the eighth embodiment of the present invention shown in FIG. 12, two separator layer fixing fusion portions 38 are provided not on the same side portion but on the opposite side portions in plan view. . In this case, the electrode laminate 33 is fixed on both sides, which is effective for preventing the movement and displacement of the electrode laminate 33 due to the vertical force in FIG.
 図13に示す本発明の第9の実施の形態では、セパレータ層32が四角形の平面形状を有し、正極層31a及び負極層31bは、その四角形の二つの角部に位置する部分が面取りされて後退している。これにより電極の外側の領域にセパレータ層32の対向部分が形成されて非被覆部32aとなっている。そして、この非被覆部32aに貫通孔36を形成し、貫通孔36を介してラミネートフィルム34a同士を互いに直接接触させ、融着させている。本実施の形態でも、正極端子35a及び負極端子35bが電極積層体33の外部に突出する側部と反対側の側部の両端において、複数の貫通孔36及びセパレータ層固定用融着部分38が、正極端子35a及び負極端子35bが突出する方向と直交する方向に並んで位置しているため、電極積層体33の移動や位置ずれを起こしにくい。また、本実施の形態は、電極積層体33及び電池100の平面形状を四角形にして保管や取り扱いや配置を容易できるとともに、スペース効率がさらに向上し小型化に適する。しかも、正極層31a及び負極層31bの、セパレータ層32の四角形の平面形状から内側に後退した形状が、曲線状(円弧状)の輪郭41を有しているので、ラミネートフィルム34aの内面を傷つける可能性が低い。 In the ninth embodiment of the present invention shown in FIG. 13, the separator layer 32 has a square planar shape, and the positive electrode layer 31a and the negative electrode layer 31b are chamfered at portions located at two corners of the square. It is retreating. Thereby, the opposing part of the separator layer 32 is formed in the area | region outside an electrode, and becomes the non-coating part 32a. A through hole 36 is formed in the non-covered portion 32a, and the laminate films 34a are brought into direct contact with each other through the through hole 36 and fused. Also in the present embodiment, a plurality of through holes 36 and separator layer fixing fusion portions 38 are provided at both ends of the side portion opposite to the side portion where the positive electrode terminal 35 a and the negative electrode terminal 35 b protrude from the electrode stack 33. In addition, since the positive electrode terminal 35a and the negative electrode terminal 35b are arranged side by side in a direction orthogonal to the protruding direction, the electrode laminate 33 is unlikely to move or shift. In addition, in the present embodiment, the planar shape of the electrode laminate 33 and the battery 100 can be made square to facilitate storage, handling, and arrangement, and space efficiency is further improved, which is suitable for downsizing. In addition, the shapes of the positive electrode layer 31a and the negative electrode layer 31b that are recessed inward from the rectangular planar shape of the separator layer 32 have curved (arc-shaped) contours 41, and thus damage the inner surface of the laminate film 34a. Less likely.
 第9の実施の形態の変形例として、図示しないが、正極層31a及び負極層31bが四角形の平面形状を有し、正極層31a及び負極層31bの四角形の二つの角部において、セパレータ層32が、正極層31a及び負極層31bの四角形の平面形状から外側に突出した形状になっていてもよい。正極層31a及び負極層31bとセパレータ層32のいずれを四角形の平面形状に形成した方が有利であるかを適宜に判断して、この変形例を採用するか否かを決定すればよい。 As a modification of the ninth embodiment, although not shown, the positive electrode layer 31a and the negative electrode layer 31b have a square planar shape, and the separator layer 32 is formed at two square corners of the positive electrode layer 31a and the negative electrode layer 31b. However, the positive electrode layer 31a and the negative electrode layer 31b may have a shape protruding outward from the rectangular planar shape. It is only necessary to appropriately determine which of the positive electrode layer 31a, the negative electrode layer 31b, and the separator layer 32 is formed into a quadrangular planar shape, and determine whether or not to adopt this modification.
 先の第7の実施の形態と第9の実施の形態とを組み合わせて、正極層31a及び負極層31bの一辺には、第7の実施の形態と同様に、その辺の中央付近に、セパレータ層32の四角形の平面形状から内側に後退した形状の部分を設け、その辺に対向する辺には、第9の実施の形態と同様に、両端部に、セパレータ層32の四角形の平面形状から内側に後退した形状の部分を設けてもよい。この場合、一辺の中央付近と、それに対向する辺の両端部との合計三個所に非被覆部32aが設けられ、各非被覆部32aにそれぞれ貫通孔36及びセパレータ層固定用融着部分38が形成されている。この構成では、三個所で固定することにより、電極積層体33の移動及び位置ずれの防止の効果が大きい。 By combining the previous seventh embodiment and the ninth embodiment, a separator is formed on one side of the positive electrode layer 31a and the negative electrode layer 31b in the vicinity of the center of the side, as in the seventh embodiment. A portion having a shape retreated inward from the rectangular planar shape of the layer 32 is provided, and the opposite side to the side is formed from the rectangular planar shape of the separator layer 32 at both ends, as in the ninth embodiment. You may provide the part of the shape retreated inside. In this case, non-covered portions 32a are provided at a total of three locations near the center of one side and both ends of the opposite sides, and each through-hole 36 and separator layer fixing fusion portion 38 are provided in each non-covered portion 32a. Is formed. In this configuration, the effect of preventing the movement and displacement of the electrode stack 33 is great by fixing at three positions.
 図14に示す本発明の第10の実施の形態は、セパレータ層32が四角形の平面形状を有し、セパレータ層32の四角形の四つの角部に、正極層31a及び負極層31bの、セパレータ層32の四角形の平面形状から内側に後退した形状が位置する構成である。本実施の形態によると、第9の実施の形態の効果に加えて、セパレータ層固定用融着部分38が四隅に位置することにより電極積層体33をより強固に固定できるという効果が大きい。 In the tenth embodiment of the present invention shown in FIG. 14, the separator layer 32 has a square planar shape, and the separator layer 32 includes the positive electrode layer 31 a and the negative electrode layer 31 b at the four corners. In this configuration, a shape retreated inward from the 32 rectangular planar shapes is located. According to the present embodiment, in addition to the effects of the ninth embodiment, the effect of being able to more firmly fix the electrode laminate 33 by positioning the separator layer fixing fused portions 38 at the four corners is great.
 さらに、第9,10の実施の形態及びその変形例において、図示しないが、正極層31a及び負極層31bの、セパレータ層32の四角形の平面形状から内側に後退した形状が、曲線状(円弧状)の輪郭41ではなく、角部を直線的に三角に切り落とした形状であってもよい。 Further, in the ninth and tenth embodiments and modifications thereof, although not shown, the shapes of the positive electrode layer 31a and the negative electrode layer 31b that are receded from the square planar shape of the separator layer 32 are curved (arc-shaped). ) May be a shape in which corners are linearly cut into triangles.
 図15,16には、本発明の第11の実施の形態の電池100を含む電池モジュールを示している。この電池モジュールは、互いに重ね合わせた複数の電池100を含む構成である。図16の(b)に示すように、電池モジュールは、複数の電池100を収容する筐体であるモジュールケース42と、モジュールケース42内で個々の電池100を保持するための複数の電池ホルダー43と、重ね合わせられた複数の電池ホルダー43にそれぞれ設けられた位置決め穴43aを貫通しながらモジュールケース42を貫通する位置決めする貫通ボルト44と、モジュールケース42を貫通した貫通ボルト44がねじ込まれるナット45と、を含んでいる。 15 and 16 show a battery module including the battery 100 according to the eleventh embodiment of the present invention. This battery module is configured to include a plurality of batteries 100 superimposed on each other. As shown in FIG. 16B, the battery module includes a module case 42 that is a housing that houses a plurality of batteries 100, and a plurality of battery holders 43 for holding individual batteries 100 in the module case 42. A through bolt 44 for positioning through the module case 42 while penetrating the positioning holes 43a respectively provided in the plurality of stacked battery holders 43, and a nut 45 into which the through bolt 44 passing through the module case 42 is screwed. And.
 本実施の形態の電池100は、先に述べた各実施の形態と同様に、セパレータ層32の非被覆部32aに貫通孔36が設けられ、貫通孔36の内部がセパレータ層固定用融着部分38になっている。そして、本実施の形態では、セパレータ層固定用融着部分38を貫通する穴46がさらに設けられている。また、非被覆部32aが存在しない側部(正極端子35a及び負極端子35bが接続されている側部)においては、外周部分37に穴46が設けられている。そして、これらの穴46に、電池ホルダー43に設けられたピン43bをそれぞれ貫通させながら、電池100が電池ホルダー43上に置かれている。 In the battery 100 of the present embodiment, the through hole 36 is provided in the non-covering portion 32a of the separator layer 32, and the inside of the through hole 36 is the separator layer fixing fusion portion, as in the above-described embodiments. It is 38. In the present embodiment, a hole 46 penetrating the separator layer fixing fused portion 38 is further provided. In addition, a hole 46 is provided in the outer peripheral portion 37 in a side portion where the non-covering portion 32a does not exist (a side portion where the positive electrode terminal 35a and the negative electrode terminal 35b are connected). Then, the battery 100 is placed on the battery holder 43 while the pins 43 b provided on the battery holder 43 are respectively passed through the holes 46.
 本実施の形態では、1つの電池100が、その両側部にそれぞれ位置する二つの電池ホルダー43によって保持される構成になっている。このように、本実施の形態では、電池ホルダー43のピン43bが、電池100の穴46に貫通することによって、電池ホルダー43に対する電池100の位置合わせが行われている。そして、貫通ボルト44が、複数の電池ホルダー43にそれぞれ設けられた位置決め穴43aを連続的に貫通する。ピン43bと穴46の嵌合によって電池100を精度良く保持する電池ホルダー43が複数重ね合わされた状態で、各電池ホルダー43にそれぞれ設けられた位置決め穴43aを貫通ボルト44が貫通する。それによって、モジュールケース42内で、各電池ホルダー43が位置精度良く保持され、ひいては各電池100が位置精度良く保持される。しかも、先に述べた各実施の形態にて説明したとおり、各電池100において正極層31a及び負極層31bを含む電極積層体33の移動や位置ずれが防止できるため、この電池モジュールは、複数の電池100の電極積層体33の移動や位置ずれを一括して防止することにつながっている。 In this embodiment, one battery 100 is configured to be held by two battery holders 43 positioned on both sides thereof. As described above, in the present embodiment, the pin 43 b of the battery holder 43 passes through the hole 46 of the battery 100, so that the battery 100 is aligned with the battery holder 43. And the penetration bolt 44 penetrates the positioning hole 43a each provided in the some battery holder 43 continuously. In a state where a plurality of battery holders 43 that hold the battery 100 with high precision are fitted together by fitting the pins 43b and the holes 46, the through bolts 44 pass through the positioning holes 43a provided in the battery holders 43, respectively. As a result, each battery holder 43 is held in the module case 42 with high positional accuracy, and as a result, each battery 100 is held with high positional accuracy. In addition, as described in each of the embodiments described above, in each battery 100, the electrode stack 33 including the positive electrode layer 31a and the negative electrode layer 31b can be prevented from moving and misaligned. This leads to preventing the movement and displacement of the electrode stack 33 of the battery 100 at once.
 本実施の形態では、電池100の位置決めに用いられる穴46が、ラミネートフィルム34aの融着部分(特にセパレータ層固定用融着部分38)に設けられているため、位置合わせ用の穴を別途形成する必要はなく、スペース効率がよく小型化に寄与する。また、電池ホルダー43のピン43bが穴46に挿入されていることにより、電池ホルダー43が直接的に電池積層体33の位置ずれ防止に寄与している。これは、穴46の位置が、電池100の外装体34のみならずセパレータ層32の固定にも寄与する位置であるからである。 In this embodiment, since the hole 46 used for positioning of the battery 100 is provided in the fusion part of the laminate film 34a (particularly the fusion part 38 for fixing the separator layer), a hole for alignment is separately formed. There is no need to do this, and space efficiency is high, contributing to downsizing. In addition, since the pin 43 b of the battery holder 43 is inserted into the hole 46, the battery holder 43 directly contributes to preventing the battery stack 33 from being displaced. This is because the position of the hole 46 contributes not only to the exterior body 34 of the battery 100 but also to the fixing of the separator layer 32.
 なお、本実施の形態の電池100は、先に述べた第4~第10の実施の形態及びその変形例のセパレータ層固定用融着部分38に穴46を形成したもの(必要に応じて外周部分37にも穴を形成したもの)であってよく、非被覆部32a、貫通孔36及びセパレータ層固定用融着部分38の配置については、先に述べた第4~第10の実施の形態及びその変形例のいずれかと同じであっても構わない。 The battery 100 according to the present embodiment is a battery in which a hole 46 is formed in the separator layer fixing fused portion 38 of the fourth to tenth embodiments and the modifications described above (the outer periphery if necessary) The portion 37 may be formed with a hole), and the arrangement of the non-covered portion 32a, the through hole 36, and the separator layer fixing fusion portion 38 is described in the fourth to tenth embodiments described above. And any one of the modified examples.
 本発明の第4~第10の実施の形態は、上述した形態に限定されるものではない。電極積層体は巻回型であってもよく、折り曲げ型であってもよい。外装体は一枚のラミネートフィルムを折り返して三辺を融着してなる構成であってもよい。また、電極積層体33の移動を抑制するために、少なくとも電極積層体33の一辺側に、貫通孔36を設けた非被覆部32aがあればよいが、より効果的なものとするために、先に述べた各実施の形態では、正極端子35a及び負極端子35bと貫通孔36とが電極積層体33の対向する辺にある例及び各貫通孔36が電極積層体33の対向する辺にある例を示している。 The fourth to tenth embodiments of the present invention are not limited to the above-described embodiments. The electrode laminate may be a wound type or a folded type. The exterior body may be configured by folding a single laminate film and fusing three sides. Further, in order to suppress the movement of the electrode stack 33, it is sufficient that there is an uncovered portion 32a provided with a through hole 36 on at least one side of the electrode stack 33. In each of the above-described embodiments, the positive electrode terminal 35 a and the negative electrode terminal 35 b and the through hole 36 are on the opposite sides of the electrode stack 33, and the through holes 36 are on the opposite sides of the electrode stack 33. An example is shown.

Claims (18)

  1.  複数の電極と複数のセパレータが交互に積層された電極積層体と、周縁部同士が互いに重ね合わされて接合されることによって前記電極積層体を封入するパッケージを構成する外装体フィルムと、を有し、
     前記複数のセパレータは、平面形状の大きなセパレータと平面形状の小さなセパレータとを含み、前記平面形状の大きなセパレータは、平面的に見て前記電極積層体の側方に突出し、前記外装体フィルムの周縁部同士の接合部分よりも内側で前記外装体フィルムに接合されている電池。
    An electrode laminate in which a plurality of electrodes and a plurality of separators are alternately laminated, and an outer package film that constitutes a package that encloses the electrode laminate by joining the peripheral edge portions to each other. ,
    The plurality of separators include a large planar separator and a small planar separator, and the large planar separator protrudes to the side of the electrode stack when seen in a plan view, and the periphery of the exterior body film The battery joined to the said exterior body film inside the junction part of parts.
  2.  複数の前記平面形状の大きなセパレータと、複数の前記平面形状の小さなセパレータとが、積層方向に沿って交互に配置されている請求項1に記載の電池。 2. The battery according to claim 1, wherein a plurality of large planar separators and a plurality of small planar separators are alternately arranged in the stacking direction.
  3.  前記外装体フィルムの前記周縁部同士は熱融着によって互いに接合されており、前記平面形状の大きなセパレータは超音波接合によって前記外装体フィルムに接合されている請求項1または2に記載の電池。 The battery according to claim 1 or 2, wherein the peripheral portions of the exterior body film are joined to each other by thermal fusion, and the large planar separator is joined to the exterior body film by ultrasonic joining.
  4.  前記電極積層体における一方の電極とセパレータは、隣り合う二つの前記セパレータが少なくとも一辺において少なくとも部分的に接合され、該接合された二つの前記セパレータ同士の間に前記一方の電極が介在している請求項1~3のいずれか一つに記載の電池。 One electrode and the separator in the electrode laminate are at least partially joined at least one side of the two adjacent separators, and the one electrode is interposed between the two joined separators. The battery according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか一つに記載の電池を含む電池ユニットであって、
     互いに重ね合わされている複数の前記電池と、
     複数の前記電池に対して、積層方向に沿う押圧力を加えつつ、複数の前記電池を収容する筐体と、
     を有する電池ユニット。
    A battery unit comprising the battery according to any one of claims 1 to 4,
    A plurality of said batteries superimposed on each other;
    A housing that accommodates the plurality of batteries while applying a pressing force along the stacking direction to the plurality of batteries,
    A battery unit.
  6.  平面形状の小さなセパレータおよび平面形状の大きなセパレータを含む複数のセパレータと複数の電極とを交互に積層した電極積層体を、外装体フィルムによって覆うステップと、
     前記電極積層体を覆う前記外装体フィルムの周縁部同士を互いに接合することによって、前記電極積層体を封入するパッケージを構成するステップと、
     前記外装体フィルムの周縁部同士を互いに接合した後で、前記複数のセパレータのうちの平面形状の大きなセパレータを、平面的に見て前記電極積層体の側方かつ前記外装体フィルムの周縁部同士の接合部分よりも内側で、前記外装体フィルムに接合するステップと、
     を含む電池の製造方法。
    A step of covering an electrode laminate in which a plurality of separators and a plurality of electrodes including a plane-shaped small separator and a plane-shaped large separator are alternately laminated with an exterior body film;
    Forming a package enclosing the electrode laminate by bonding the peripheral portions of the outer package film covering the electrode laminate together;
    After joining the peripheral portions of the exterior body film to each other, the planar separator of the plurality of separators is seen from the side of the electrode laminate and the peripheral portions of the exterior body film. A step of bonding to the exterior body film inside the bonding portion of
    The manufacturing method of the battery containing this.
  7.  前記電極積層体を封入するパッケージを構成するステップは、前記外装体フィルムの前記周縁部同士を熱融着によって互いに接合する工程を含み、
     前記平面形状の大きなセパレータを前記外装体フィルムに接合するステップは、前記平面形状の大きなセパレータを超音波接合によって前記外装体フィルムに接合するものである請求項6に記載の電池の製造方法。
    The step of configuring the package enclosing the electrode laminate includes a step of bonding the peripheral portions of the exterior body film to each other by thermal fusion,
    The battery manufacturing method according to claim 6, wherein the step of bonding the large planar separator to the outer package film is performed by bonding the large planar separator to the outer package film by ultrasonic bonding.
  8.  セパレータ層と前記セパレータ層を間に挟んで互いに重ね合わされる正極層及び負極層とを含む電極積層体と、該電極積層体を包囲する外装体と、を有し、
     前記セパレータ層は、前記セパレータ層の外周の一部に前記正極層及び前記負極層に覆われていない非被覆部を有し、該非被覆部に貫通孔が設けられており、
     前記外装体は熱融着性樹脂と金属層とを含む一対もしくは折り返された一枚のラミネートフィルムからなり、前記ラミネートフィルム同士は、前記セパレータ層の前記非被覆部の前記貫通孔を介して互いに融着している電池。
    An electrode laminate including a separator layer and a positive electrode layer and a negative electrode layer that are overlapped with each other with the separator layer interposed therebetween, and an exterior body that surrounds the electrode laminate,
    The separator layer has a non-covered portion that is not covered by the positive electrode layer and the negative electrode layer on a part of the outer periphery of the separator layer, and a through hole is provided in the non-covered portion,
    The exterior body is composed of a pair of folded laminate films including a heat-fusible resin and a metal layer, and the laminate films are mutually connected via the through holes of the non-covered portion of the separator layer. Fused battery.
  9.  前記正極層及び前記負極層は四角形の平面形状を有し、前記セパレータ層の前記非被覆部は、平面的に見て前記正極層及び前記負極層の四角形の平面形状から外側に突出する部分である請求項8に記載の電池。 The positive electrode layer and the negative electrode layer have a rectangular planar shape, and the uncovered portion of the separator layer is a portion protruding outward from the rectangular planar shape of the positive electrode layer and the negative electrode layer when viewed in a plan view. The battery according to claim 8.
  10.  前記セパレータ層は四角形の平面形状を有し、前記セパレータ層の前記非被覆部は、平面的に見て、前記正極層及び前記負極層が前記セパレータ層の四角形の平面形状から内側に後退した形状に形成された部分に対向する部分である請求項8に記載の電池。 The separator layer has a quadrangular planar shape, and the uncovered portion of the separator layer has a shape in which the positive electrode layer and the negative electrode layer recede inward from the quadrangular planar shape of the separator layer when viewed in plan. The battery according to claim 8, wherein the battery is a part facing a part formed on the battery.
  11.  前記セパレータ層の前記非被覆部は、該セパレータ層の四角形の平面形状の少なくとも一つの角部に位置する請求項10に記載の電池。 The battery according to claim 10, wherein the non-covered portion of the separator layer is located at at least one corner of the quadrangular planar shape of the separator layer.
  12.  平面的に見て前記正極層及び前記負極層が前記セパレータ層の四角形の平面形状から内側に後退した形状に形成された部分は、曲線的な輪郭を有している請求項10または11に記載の電池。 The portion where the positive electrode layer and the negative electrode layer are formed in a shape that recedes inwardly from a quadrangular planar shape of the separator layer as viewed in a plan view has a curved outline. Battery.
  13.  前記正極層及び前記負極層に接続されており、前記外装体を貫通して外部に突出する端子をさらに有し、
     前記非被覆部は、平面的に見て、前記セパレータ層の、前記端子が外部に突出する側部と反対側の側部に位置する請求項8~12のいずれか一つに記載の電池。
    Connected to the positive electrode layer and the negative electrode layer, further having a terminal penetrating the exterior body and projecting to the outside;
    The battery according to any one of claims 8 to 12, wherein the non-covering portion is located on a side portion of the separator layer opposite to a side portion where the terminal protrudes to the outside in plan view.
  14.  複数の前記貫通孔を有し、該複数の貫通孔は、前記端子が突出する方向と直交する方向に並んで位置している請求項13に記載の電池。 14. The battery according to claim 13, wherein the battery has a plurality of through holes, and the plurality of through holes are arranged side by side in a direction orthogonal to a direction in which the terminals protrude.
  15.  前記貫通孔を介して互いに融着している前記ラミネートフィルムには、該融着部分を貫通する穴が設けられている請求項8~14のいずれか一つに記載の電池。 The battery according to any one of claims 8 to 14, wherein the laminated film that is fused to each other through the through hole is provided with a hole that penetrates the fused portion.
  16.  請求項15に記載の電池と、前記電池の前記融着部分に設けられた前記穴を貫通するピンを備えた電池ホルダーとの組み合わせが、複数重ね合わせて保持されている電池モジュール。 A battery module in which a plurality of combinations of the battery according to claim 15 and a battery holder including a pin penetrating the hole provided in the fusion part of the battery are held in an overlapping manner.
  17.  正極層及び負極層を、セパレータ層を間に挟んで互いに重ね合わせて、電極積層体を構成するステップと、
     前記電極積層体中の前記セパレータ層の外周の一部であって、前記正極層及び前記負極層に覆われていない非被覆部に、貫通孔を形成するステップと、
     前記貫通孔を形成するステップの後に、前記電極積層体を、一対もしくは折り返された一枚のラミネートフィルムで覆うステップと、
     前記ラミネートフィルム同士の、前記貫通孔を介して互いに接触している部分を、互いに融着させるステップと、
     を含む電池の製造方法。
    Superposing the positive electrode layer and the negative electrode layer on each other with the separator layer in between to form an electrode laminate;
    Forming a through hole in a part of the outer periphery of the separator layer in the electrode laminate, and not covered with the positive electrode layer and the negative electrode layer;
    After the step of forming the through hole, the step of covering the electrode laminate with a pair or one folded laminate film;
    The portions of the laminate films that are in contact with each other through the through-holes are fused together;
    The manufacturing method of the battery containing this.
  18.  前記電極積層体を形成するステップでは、複数の前記正極層及び前記負極層と二層以上の前記セパレータ層とを重ね合わせて前記電極積層体を構成し、
     前記貫通孔を形成するステップでは、二層以上の前記セパレータ層の前記非被覆部に対して一括して前記貫通孔を形成する請求項17に記載の電池の製造方法。
    In the step of forming the electrode stack, a plurality of the positive electrode layer and the negative electrode layer and two or more separator layers are stacked to form the electrode stack,
    The method for manufacturing a battery according to claim 17, wherein in the step of forming the through hole, the through hole is collectively formed with respect to the uncovered portion of the two or more separator layers.
PCT/JP2012/075144 2011-09-29 2012-09-28 Battery and method for manufacturing same WO2013047778A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12836801.6A EP2747167B1 (en) 2011-09-29 2012-09-28 Battery and method for manufacturing same
US14/221,988 US9847514B2 (en) 2011-09-29 2014-03-21 Battery and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011214399A JP5851785B2 (en) 2011-09-29 2011-09-29 Battery and manufacturing method thereof
JP2011-214399 2011-09-29
JP2011-222757 2011-10-07
JP2011222757A JP5785843B2 (en) 2011-10-07 2011-10-07 Battery and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/221,988 Continuation US9847514B2 (en) 2011-09-29 2014-03-21 Battery and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013047778A1 true WO2013047778A1 (en) 2013-04-04

Family

ID=47995801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075144 WO2013047778A1 (en) 2011-09-29 2012-09-28 Battery and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013047778A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285065A1 (en) * 2015-03-25 2016-09-29 Automotive Energy Supply Corporation Lithium ion secondary battery
JP2016225237A (en) * 2015-06-03 2016-12-28 オートモーティブエナジーサプライ株式会社 Secondary battery manufacturing method
JP2018045949A (en) * 2016-09-16 2018-03-22 トヨタ自動車株式会社 Aqueous battery
US10502698B2 (en) 2015-04-20 2019-12-10 Job Corporation Data processing apparatus and data processing method for X-ray examination, and X-ray examination system provided with the data processing apparatus
CN111247659A (en) * 2017-09-14 2020-06-05 远景Aesc日本有限公司 Laminated battery and battery module
EP3683877A4 (en) * 2017-09-14 2021-07-21 Envision AESC Japan Ltd. Stacked battery, and battery module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379162U (en) 1989-12-01 1991-08-12
JP2000277062A (en) 1999-03-29 2000-10-06 Sanyo Electric Co Ltd Thin battery
JP2007018917A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Stacked battery, and battery pack
JP2007311323A (en) 2006-05-15 2007-11-29 Lg Chem Ltd Secondary battery which has fixed separator to battery case and raised stability
JP2010135111A (en) * 2008-12-02 2010-06-17 Nec Tokin Corp Lithium-ion secondary battery
JP2010277925A (en) 2009-05-29 2010-12-09 Sanyo Electric Co Ltd Paper battery and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379162U (en) 1989-12-01 1991-08-12
JP2000277062A (en) 1999-03-29 2000-10-06 Sanyo Electric Co Ltd Thin battery
JP2007018917A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Stacked battery, and battery pack
JP2007311323A (en) 2006-05-15 2007-11-29 Lg Chem Ltd Secondary battery which has fixed separator to battery case and raised stability
JP2010135111A (en) * 2008-12-02 2010-06-17 Nec Tokin Corp Lithium-ion secondary battery
JP2010277925A (en) 2009-05-29 2010-12-09 Sanyo Electric Co Ltd Paper battery and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2747167A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285065A1 (en) * 2015-03-25 2016-09-29 Automotive Energy Supply Corporation Lithium ion secondary battery
US10236491B2 (en) * 2015-03-25 2019-03-19 Automotive Energy Supply Corporation Lithium ion secondary battery
US10502698B2 (en) 2015-04-20 2019-12-10 Job Corporation Data processing apparatus and data processing method for X-ray examination, and X-ray examination system provided with the data processing apparatus
JP2016225237A (en) * 2015-06-03 2016-12-28 オートモーティブエナジーサプライ株式会社 Secondary battery manufacturing method
JP2018045949A (en) * 2016-09-16 2018-03-22 トヨタ自動車株式会社 Aqueous battery
CN111247659A (en) * 2017-09-14 2020-06-05 远景Aesc日本有限公司 Laminated battery and battery module
EP3683857A4 (en) * 2017-09-14 2021-07-21 Envision AESC Japan Ltd. Stacked battery, and battery module
EP3683877A4 (en) * 2017-09-14 2021-07-21 Envision AESC Japan Ltd. Stacked battery, and battery module
US11276897B2 (en) 2017-09-14 2022-03-15 Envision Aesc Japan Ltd. Stacked battery and battery module
CN111247659B (en) * 2017-09-14 2022-08-30 远景Aesc日本有限公司 Laminated battery and battery module

Similar Documents

Publication Publication Date Title
EP2747167B1 (en) Battery and method for manufacturing same
JP5495192B2 (en) Film exterior electrical device and battery pack
JP6721053B2 (en) Power storage device and method of manufacturing power storage device
JP6053227B2 (en) Battery assembly having a single electrode terminal coupling part
WO2013047778A1 (en) Battery and method for manufacturing same
TWI437595B (en) Electrochemical device
JP2009021632A (en) Supercapacitor
JP5785843B2 (en) Battery and manufacturing method thereof
WO2016208238A1 (en) Method for manufacturing electrochemical device
KR102342211B1 (en) Laminate type battery and manufacturing method thereof
KR20140040637A (en) Energy storage device
KR102689862B1 (en) Secondary battery
JP2013254629A (en) Power storage device and secondary battery
JP2014022224A (en) Electricity storage element
JP2007250310A (en) Film-armored electric device, and method of manufacturing same
KR101999405B1 (en) Battery pack and method for manufacturing the same
JP2017118017A (en) Electrochemical device
JP5838837B2 (en) Electrode storage separator, power storage device, and vehicle
JP2019194949A (en) Laminate type battery
JP6560876B2 (en) Laminated battery and method of manufacturing the same
JP6959523B2 (en) Power storage module and manufacturing method of power storage module
US20200052278A1 (en) Method for bonding separators, method for manufacturing electrochemical device, and electrochemical device
JP2018195393A (en) Manufacturing method of film sheathing battery and film sheathing battery
KR102464974B1 (en) Battery Cell Comprising Battery Case with Laminate Sheet and Metal Plates and Method for Preparing Thereof
JP6561866B2 (en) Stacked battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836801

Country of ref document: EP

Kind code of ref document: A1

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 2011-222757

Country of ref document: JP

Date of ref document: 20140124

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

REEP Request for entry into the european phase

Ref document number: 2012836801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012836801

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE