WO2013002053A1 - 有機電界発光素子用重合体及びそれを用いた有機電界発光素子 - Google Patents

有機電界発光素子用重合体及びそれを用いた有機電界発光素子 Download PDF

Info

Publication number
WO2013002053A1
WO2013002053A1 PCT/JP2012/065489 JP2012065489W WO2013002053A1 WO 2013002053 A1 WO2013002053 A1 WO 2013002053A1 JP 2012065489 W JP2012065489 W JP 2012065489W WO 2013002053 A1 WO2013002053 A1 WO 2013002053A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic electroluminescent
polymer
layer
groups
Prior art date
Application number
PCT/JP2012/065489
Other languages
English (en)
French (fr)
Inventor
田中 博茂
徹 浅利
白石 和人
坂井 満
将司 新名
和明 吉村
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to CN201280025740.XA priority Critical patent/CN103688383B/zh
Priority to US14/118,866 priority patent/US10193069B2/en
Priority to JP2013522759A priority patent/JP6031030B2/ja
Priority to KR1020147002064A priority patent/KR101941532B1/ko
Priority to EP12804346.0A priority patent/EP2725633B1/en
Publication of WO2013002053A1 publication Critical patent/WO2013002053A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to a polymer for an organic electroluminescence device having a structure in which an indolocarbazole unit is contained in the main chain, and an organic electroluminescence device using the same.
  • electroluminescent elements include inorganic electroluminescent elements using inorganic compounds and organic electroluminescent elements using organic compounds.
  • organic light emitting devices with low voltage and high luminance can be obtained. Research on practical application of electroluminescent devices is actively conducted.
  • the structure of the organic electroluminescence device is that a hole injection layer is formed on a glass plate on which a thin film of an anode material such as indium-tin oxide (ITO) is deposited, and an organic thin film layer such as a light emitting layer is further formed thereon.
  • a device is formed by forming a thin film of a cathode material, and there is an element in which a hole transport layer and an electron transport layer are appropriately provided in this basic structure.
  • the layer structure of the organic electroluminescent device is, for example, anode / hole injection layer / light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode, etc. is there.
  • Hole transport materials used for the hole transport layer of the organic electroluminescence device are roughly classified into low molecular weight hole transport materials and high molecular weight hole transport materials.
  • a vacuum deposition method is mainly used.
  • various materials having different functions can be easily multilayered.
  • high-performance organic electroluminescent elements can be formed, it is difficult to uniformly control the film thickness and paint separately due to the large screen and high definition of the panel. There is a problem of becoming higher.
  • a solution coating method such as a spin coating method, a printing method, an ink jet method or the like is used.
  • This method is easy to enlarge the screen and is excellent in mass production, but has a problem that it is difficult to laminate the coating film and impurities are easily mixed therein. Therefore, an element using a high molecular weight hole transport material is inferior in element performance such as element efficiency and lifetime as compared with a low molecular weight hole transport material. Accordingly, there has been a demand for a polymer-based hole transport material having both excellent hole transport performance and good film forming properties.
  • Non-Patent Document 1 is linked with polyvinylcarbazole and polysilane
  • Patent Document 2 and Non-Patent Document 2 are linked with vinyltriphenylamine and triphenylamine with methylene. Structured polymers have been reported. However, organic electroluminescence devices using these have poor luminous efficiency and device stability, and have not been sufficiently improved.
  • Patent Document 3 discloses a conjugated polymer bonded at the peripheral position of indolocarbazole
  • Patent Document 4 discloses a conjugated polymer in which an indolocarbazole unit is introduced into a polyarylene main chain.
  • soot polymer In order to apply the soot polymer to an organic electroluminescent device, it is necessary to improve the light emitting efficiency of the device and improve the stability of the film, the solubility in a solvent and the film forming property.
  • This invention is made
  • Another object of the present invention is to provide an organic electroluminescent element using the polymer used for a lighting device, an image display device, a backlight for a display device, and the like.
  • the present invention relates to a polymer for an organic electroluminescent device containing an indolocarbazole skeleton in a polymer main chain, and an organic electroluminescent device having an organic layer between an anode layer and a cathode layer laminated on a substrate.
  • the present invention relates to an organic electroluminescent device in which at least one of the organic layers is a layer containing the polymer.
  • the present invention relates to a polymer for an organic electroluminescence device characterized by having a repeating unit represented by the following general formula (1) in a repeating unit constituting a main chain.
  • Z is one or more repeating units selected from groups derived from indolocarbazole represented by the following formulas (1a) to (1e), and A is Z Different repeating units.
  • l and m represent a molar ratio, where l is 5 to 100 mol% and m is 0 to 95 mol%, assuming that all repeating units are 100 mol%.
  • n represents the average number of repetitions and is 2 to 10,000.
  • Ar 1 is independently a substituted or unsubstituted C 6 -C 18 arylene group or a substituted or unsubstituted C 3 -C 18 heteroarylene group.
  • R 1 is independently hydrogen, C 1 -C 12 alkyl group, C 1 -C 12 alkoxy group, C 6 -C 18 aryl group, C 6 -C 18 aryloxy group, C 7 -C 18 30 arylalkyl groups, C 7 -C 30 arylalkyloxy groups, C 3 -C 18 heteroaryl groups, C 3 -C 18 heteroaryloxy groups, or C 3 -C 18 cycloalkyl groups. .
  • the present invention relates to a polymer for an organic electroluminescent element in the general formula (1), wherein Ar 1 is a group independently represented by the following formula (2) in the above formulas (1a) to (1e).
  • each X is independently N or CL.
  • L independently represents a hydrogen atom, a C 6 -C 18 aryl group, a C 3 -C 18 heteroaryl group, a C 12 -C 36 diarylamino group or a bond, and one of L is a bond is there.
  • this invention relates to the polymer for organic electroluminescent elements whose A is a repeating unit represented by following formula (3) in General formula (1).
  • Ar 2 is independently a substituted or unsubstituted C 6 -C 18 arylene group or a substituted or unsubstituted C 3 -C 18 heteroarylene group.
  • Y is a C 1 to C 12 alkylene group, O, S, NR 2 , CO, CO 2 , SO, SO 2 , SCO, NR 2 CO, CONR 2 CO, or a single bond.
  • p and q represent an integer of 0 to 3, at least one of p and q is an integer of 1 or more, and when one of p and q is 0, Y is a single bond.
  • R 2 is a hydrogen atom, a C 1 -C 12 alkyl group, a C 3 -C 18 cycloalkyl group, a C 6 -C 18 aryl group, a C 7 -C 30 arylalkyl group, a C 3 A C 18 heteroaryl group or a C 4 -C 30 heteroarylalkyl group;
  • the present invention relates to a polymer for an organic electroluminescent element in which A is a repeating unit represented by the following formula (4a) or (4b) in the general formula (1).
  • A is a repeating unit represented by the following formula (4a) or (4b) in the general formula (1).
  • Y 1 is a substituted or unsubstituted C 1 -C 6 alkylene group, N—R 4 group, O, S or a single bond
  • Y 2 is a C— (R 4 ) 2 group, N—R 4 groups, O, or S.
  • R 3 are each independently a hydrogen atom, an alkyl group of C 1 ⁇ C 12, alkoxy group of C 1 ⁇ C 12, C 6 aryl group ⁇ C 18, an aryloxy group of C 6 ⁇ C 18, C 7 ⁇ A C 30 arylalkyl group, a C 7 -C 30 arylalkyloxy group, a C 3 -C 18 heteroaryl group, a C 3 -C 18 heteroaryloxy group, or a C 3 -C 18 cycloalkyl group is there.
  • R 4 is a hydrogen atom, a C 1 -C 12 alkyl group, a C 3 -C 18 cycloalkyl group, a C 6 -C 18 aryl group, a C 7 -C 30 arylalkyl group, a C 3 -C 18 Or a C 4 -C 30 heteroarylalkyl group.
  • the present invention relates to a polymer for an organic electroluminescence device having a weight average molecular weight of 1,000 to 1,000,000 in the general formula (1).
  • the present invention also relates to a polymer for an organic electroluminescence device, wherein in the general formula (1), m representing an existing molar ratio is 10 to 90 mol%.
  • this invention relates to the polymer for organic electroluminescent elements which is an alternating copolymer in which A and Z which are repeating units couple
  • the present invention is an organic electroluminescent device having an organic layer between an anode layer and a cathode layer laminated on a substrate, wherein the organic layer contains the polymer for an organic electroluminescent device in at least one layer of the organic layer.
  • the present invention relates to an organic electroluminescent device characterized by the following.
  • a hole transport layer is mentioned as an organic layer containing the said polymer for organic electroluminescent elements.
  • Organic electroluminescence in which the difference between the HOMO energy of the polymer for organic electroluminescence device contained in the hole transport layer and the HOMO energy of the host material contained in the light emitting layer including the guest material and the host material is within ⁇ 0.5 eV An element is preferred.
  • the polymer for organic electroluminescent elements of the present invention is an oligomer or a polymer represented by the general formula (1).
  • the polymer for organic electroluminescent elements of the present invention can be a homopolymer or a copolymer.
  • the polymer for an organic electroluminescence device of the present invention has an indolocarbazole skeleton capable of imparting excellent charge transporting ability, particularly hole transporting ability, in the repeating unit constituting the main chain.
  • the number of repeating units constituting the main chain is not limited to one, but may be two or more.
  • Z is included as an essential repeating unit
  • A is included as an arbitrary repeating unit.
  • n is the number of repetitions and is determined by the weight average molecular weight, but the average (number average) number of repetitions is 2 to 10,000, preferably 5 to 1,000.
  • l and m represent the abundance ratios of Z and A as repeating units, and l representing the abundance ratio of Z is 5 to 100 mol% when all the repeating units are 100 mol%, and m is 0 to 95 Mol%.
  • it is 10 to 90 mol%, more preferably 30 to 80 mol%.
  • l is 100 mol%.
  • m is preferably 10 to 90 mol%, more preferably 20 to 70 mol%.
  • the polymer for organic electroluminescent elements of the present invention may contain terminal groups other than the repeating units Z and A represented by the general formula (1).
  • the repeating unit A is a repeating unit other than the repeating unit Z, and may be one type or may be composed of two or more types of repeating units.
  • Z is one or more repeating units selected from groups derived from indolocarbazole represented by the above formulas (1a) to (1e). It is a divalent group having two bonds from Ar 1 bonded to two Ns of the carbazole ring. Hereinafter, this divalent group is also referred to as an indolocarbazolyl group that bonds at the N-position.
  • the indolocarbazolyl group bonded at the N-position can have a substituent on the carbon constituting the indolocarbazole ring.
  • the indolocarbazolyl group bonded at the N-position has a plurality of condensable positions of the indole ring and the carbazole ring, so that the five types of structural isomer groups of the above formulas (1a) to (1e) are represented. Any structural isomer may be used.
  • the indolocarbazolyl group bonded at the N-position represented by Z in the general formula (1) is any one selected from the group consisting of the structures represented by the above formulas (1a) to (1e), Or two or more indolocarbazolyl groups.
  • Z in the general formula (1) is composed of two or more kinds of indolocarbazolyl groups.
  • Ar 1 is a substituted or unsubstituted C 6 -C 18 arylene group or a substituted or unsubstituted C 3 -C 18 heteroarylene group.
  • unsubstituted arylene group and heteroarylene group include benzene, pentalene, indene, naphthalene, azulene, heptalene, octalene, indacene, acenaphthylene, phenalene, phenanthrene, anthracene, trindene, fluoranthene, acephenanthrylene, and ASEAN.
  • Tolylene triphenylene, pyrene, chrysene, tetraphen, tetracene, pleiaden, picene, perylene, pentaphen, pentacene, tetraphenylene, cholantolylene, helicene, hexaphen, rubicene, coronene, trinaphthylene, heptaphene, pyranthrene, ovalen, corannulene, fluorene, Anthanthrene, zetrene, terylene, naphthacenonaphthacene, truxene, furan, benzofuran, isobenzofuran, Santen, Oxatrene, Dibenzofuran, Perixanthenoxanthene, Thiophene, Thioxanthene, Thianthrene, Phenoxathiin, Thionaphthene, Isothianaphthene, Thioften
  • the arylene group or heteroarylene group may have a substituent.
  • the total number of substituents is 1 to 10, preferably 1 to 6, and more preferably 1 to 4.
  • the substituent is not limited, and preferred examples include a C 1 to C 12 linear, branched, and cyclic alkyl group, a C 6 to C 12 aryl group, and a C 3 to C 12 heteroaryl group. .
  • substituents include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, cyclopentyl, cyclohexyl, phenyl, naphthyl, quinolyl, and indolyl.
  • Ar 1 is more preferably a divalent group represented by the above formula (2).
  • each X is independently either N or CL.
  • Preferably 0 to 3 of X are N.
  • L independently represents a hydrogen atom, a C 6 -C 18 aryl group, a C 3 -C 18 heteroaryl group, a C 12 -C 36 diarylamino group or a bond, and one of L is a bond is there. This bond is one of the two bonds that appear in equation (2).
  • preferred aryl group, heteroaryl group, or aryl group of diarylamino group includes benzene, pentalene, indene, naphthalene, azulene, heptalene, octalene, indacene, acenaphthylene, phenalene, phenanthrene, anthracene, tridene, fluoranthene, aceto Phenanthrylene, aseantrilene, triphenylene, pyrene, chrysene, tetraphen, tetracene, pleiaden, picene, perylene, pentaphen, pentacene, tetraphenylene, cholanthrylene, helicene, hexaphene, rubicene, coronene, trinaphthylene, heptaphene, pyranthrene, overene , Coranulene, fluorene, an
  • More preferable examples include a group formed by removing hydrogen from benzene, naphthalene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, indole, carbazole, dibenzofuran, or dibenzothiophene, and a diphenylamino group.
  • the aryl group of the aryl group, heteroaryl group, or diarylamino group may have a substituent, and when it has a substituent, the total number of substituents is 1 to 10, preferably 1 to 6. Yes, more preferably 1 to 4.
  • the substituent is not particularly limited as long as it does not impair performance, but may be a C 1 to C 6 alkyl group, a C 5 to C 10 cycloalkyl group, a C 6 to C 12 aryl group, or C 3 -C 12 heteroaryl groups are preferred, and specific examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, cyclopentyl, cyclohexyl, phenyl Group, naphthyl group, quinolyl group, indolyl group, furanyl group, pyrrolyl group, thiophenyl group, pyridyl group, pyrimidyl
  • R 1 is independently a hydrogen atom, a C 1 -C 12 alkyl group, a C 1 -C 12 alkoxy group, a C 6 -C 18 aryl group, 6 to C 18 aryloxy group, C 7 to C 30 arylalkyl group, C 7 to C 30 arylalkyloxy group, C 3 to C 18 heteroaryl group, C 3 to C 18 heteroaryloxy group Or a C 3 -C 18 cycloalkyl group, which may be the same or different.
  • these groups contain a hydrocarbon chain, it may be a straight chain or a branched chain, and may be substituted with a halogen such as Cl or F.
  • a hydrogen atom Preferably, a hydrogen atom, C 1 -C 10 alkyl group, C 1 -C 10 alkoxy group, C 6 -C 12 aryl group, C 6 -C 12 aryloxy group, C 7 -C 22 aryl
  • An alkyl group, a C 7 -C 22 arylalkyloxy group, a C 3 -C 12 heteroaryl group, a C 3 -C 12 heteroaryloxy group, or a C 3 -C 12 cycloalkyl group more preferably Is a hydrogen atom, a C 1 -C 6 alkyl group, a C 6 -C 12 aryl group, or a C 3 -C 12 heteroaryl group.
  • these groups may further have a substituent.
  • the substituent is not particularly limited as long as it does not impair performance, but may be a C 1 to C 6 alkyl group, a C 5 to C 10 cycloalkyl group, a C 6 to C 12 aryl group, or C 3 -C 12 heteroaryl groups are preferred, and specific examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, cyclopentyl, cyclohexyl, phenyl Group, naphthyl group, quinolyl group, indolyl group, furanyl group, pyrrolyl group, thiophenyl group, pyridyl group, pyrimidyl group, triazinyl group, carbazolyl group, benzofuranyl group, dibenzofuranyl group, benzothiophenyl group, dibenzothiophenyl group, etc.
  • A is a repeating unit different from Z, and A is not particularly limited as long as it consists of a divalent group, but is preferably a charge transporting group, Preferable A is a divalent group represented by the formula (3).
  • Y is a C 1 to C 12 alkylene group, O, S, NR 2 , CO, CO 2 , SO, SO 2 , SCO, NR 2 CO, CONR 2 CO, or a single bond, Preferably, it is a C 1 to C 12 alkylene group, O, S, NR 2 , or a single bond.
  • R 2 is preferably a hydrogen atom, a C 1 -C 6 alkyl group, a C 6 -C 12 aryl group or a C 3 -C 12 heteroaryl group.
  • Specific examples include a methyl group, an ethyl group, n -Propyl, i-propyl, n-butyl, t-butyl, phenyl, naphthyl, quinolyl, indolyl, furanyl, pyrrolyl, thiophenyl, pyridyl, pyrimidyl, triazinyl, carbazolyl Group, benzofuranyl group, dibenzofuranyl group, benzothiophenyl group, dibenzothiophenyl group and the like, and when the substituent is an aryl group or heteroaryl group, it may further have a similar substituent.
  • P and q each represents an integer of 0 to 3, preferably 0 to 2. However, when one of p and q is 0, Y is a single bond.
  • Ar 2 is independently a substituted or unsubstituted C 6 -C 18 arylene group or a substituted or unsubstituted C 3 -C 18 heteroarylene group.
  • Preferred Ar 2 is the same as the arylene group or heteroarylene group described for Ar 1 in the formulas (1a) to (1e).
  • the description is the same as the explanation of the arylene group or the substituent of the heteroarylene group described for Ar 1 in the formulas (1a) to (1e).
  • Y 1 is a substituted or unsubstituted C 1 -C 6 alkylene group, N—R 4 group, O, S, or a single bond
  • Y 2 is C— (R 4 ) 2 group, N—R 4 group, O or S.
  • R 3 is the same as R 1 described in the above formulas (1a) to (1e).
  • R 4 is the same as R 2 described in the above formula (3).
  • Y 1 is preferably a C 1 -C 3 alkylene group, or O, S, or a single bond, because the charge transport capability in the repeating unit decreases as the chain length increases and also becomes thermally unstable.
  • Y 2 is preferably a C— (R 4 ) 2 group, O, or S.
  • the polymer for an organic electroluminescent device having an indolocarbazole ring in the main chain of the present invention is easily produced by producing a monomer that gives the repeating unit Z or Z and A and polymerizing the monomer by a known method. can do. For example, it can be produced by the following reaction formula.
  • the polymerization method may be either polycondensation or addition polymerization, but polycondensation by Suzuki coupling reaction is desirable from a general viewpoint.
  • the repeating unit Z is a divalent group in which R 3 is substituted with two N of indolocarbazole, A is R 4 , and ZA is bonded alternately
  • X in the above reaction examples means halogen.
  • the weight average molecular weight Mw of the indolocarbazole polymer of the present invention is 1,000 to 1,000,000, preferably 2,000 to 300,000. If Mw is less than 1,000, it is difficult to form a uniform film, and if it exceeds 1,000,000, the solubility in organic solvents becomes extremely poor, and solution coating becomes difficult.
  • polymers having an indolocarbazole skeleton of the present invention are shown below, but are not limited thereto.
  • the polymer for organic electroluminescent elements of the present invention may be a homopolymer or a copolymer.
  • the polymerization mode may be random, block, or alternating, but it is preferable to alternately polymerize as shown in the above formula.
  • the polymer for organic electroluminescent elements of the present invention gives an excellent organic electroluminescent element by being contained in the organic layer of the organic EL element.
  • at least one organic layer selected from a light emitting layer, a hole transport layer, an electron transport layer, and a hole blocking layer may be contained. More preferably, it may be contained as a hole transport layer.
  • the light emitting layer is preferably a fluorescent or phosphorescent light emitting layer containing a host material and a guest material, and more preferably a phosphorescent light emitting layer.
  • the HOMO energy of the polymer for an organic electroluminescence device of the present invention when contained in the hole transport layer, has a small difference between the HOMO energy of the host material contained in the light emitting layer adjacent to the hole transport layer. Is preferred. Moreover, when the adjacent light emitting layer contains a several compound, it is preferable that the difference with the compound used as the main component is small.
  • the difference between the HOMO energy of the polymer for an organic electroluminescent element and the HOMO energy of the compound contained in the light emitting layer is ⁇ 0. 5 eV or less, preferably ⁇ 0.3 eV or less.
  • the values of LUMO energy and HOMO energy in this specification are values obtained using Gaussian 03, a molecular orbital calculation software manufactured by Gaussian, USA, and structure optimization calculation at B3LYP / 6-31G * level. It is defined as the value calculated by Since the polymer had the same value for trimers or more, it was calculated by calculation with trimers.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view schematically showing a structural example of a general organic EL element used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, Represents an electron and / or exciton blocking layer (EB layer), 6 represents a light emitting layer, 7 represents an electron transport layer, and 8 represents a cathode.
  • the organic EL device of the present invention has an anode, a hole transport layer, a light emitting layer, and a cathode as essential layers. Preferably, it has an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
  • the organic EL device of the present invention can also have an electron transport layer, an electron injection layer, an EB layer, and a hole blocking layer in layers other than the essential layers.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • the organic EL device of the present invention has a structure opposite to that shown in FIG. 1, that is, a cathode 8, an electron transport layer 7, a light emitting layer 6, an EB layer 5, a hole transport layer 4 and an anode 2 on the substrate 1 in this order. Stacking is also possible, and in this case, layers can be added or omitted as necessary.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • the light emitting layer is a layer containing a light emitting material, and may be either a fluorescent light emitting layer or a phosphorescent light emitting layer, but is preferably a phosphorescent light emitting layer.
  • the fluorescent light emitting material may be at least one kind of fluorescent light emitting material, but it is preferable to use the fluorescent light emitting material as a fluorescent light emitting dopant and include a host material. .
  • a polymer for an organic electroluminescent device represented by the general formula (1) can be used as the fluorescent light emitting material in the light emitting layer.
  • the compound is used in any other organic layer, Since it is known from patent documents and the like, it can be selected from them.
  • benzoxazole derivatives benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, condensed aromatic compounds, perinone derivatives, oxadiazole derivatives, Oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styrylamine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidine compounds, Represented by metal complexes of 8-quinolinol derivatives, metal complexes of pyromethene derivatives, rare earth complexes
  • Preferred examples include condensed aromatic compounds, styryl compounds, diketopyrrolopyrrole compounds, oxazine compounds, pyromethene metal complexes, transition metal complexes, and lanthanoid complexes. More preferred are naphthacene, pyrene, chrysene, triphenylene, benzo [c] phenanthrene.
  • the amount of the fluorescent light emitting dopant contained in the light emitting layer is 0.01 to 20% by weight, preferably 0.1 to 10% by weight. It should be in range.
  • an organic EL element injects electric charges into a luminescent material from both an anode and a cathode, generates an excited luminescent material, and emits light.
  • a charge injection type organic EL element it is said that 25% of the generated excitons are excited to the excited singlet state and the remaining 75% are excited to the excited triplet state.
  • certain fluorescent substances emit triplet-triplet annihilation or thermal energy after energy transition to the excited triplet state due to intersystem crossing, etc. It is known that, due to absorption, the excited singlet state is crossed back to back to emit fluorescence and to express thermally activated delayed fluorescence.
  • An organic EL device using the compound of the present invention can also exhibit delayed fluorescence. In this case, both fluorescence emission and delayed fluorescence emission can be included. However, light emission from the host material may be partly or partly emitted.
  • the phosphorescent material includes a phosphorescent dopant and a host material.
  • the phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold.
  • organometallic complexes are known in many patent documents and the like, and these can be selected and used.
  • Phosphorescent materials for obtaining high luminous efficiency include complexes such as Ir (ppy) 3 having a precious metal element such as Ir as a central metal, complexes such as Ir (bt) 2 ⁇ acac 3 , and PtOEt 3 Complexes are mentioned. Specific examples of phosphorescent light emitting materials are shown below, but are not limited thereto.
  • an organic electroluminescent device having various emission wavelengths can be obtained.
  • the amount contained in the light emitting layer is preferably in the range of 1 to 50% by weight. More preferably, it is 5 to 30% by weight.
  • the host material in the light emitting layer a known host material can be used, and the polymer of the present invention can also be used as the host material. Moreover, you may use the polymer of this invention, and another host material together.
  • a known host compound that can be used is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents a long wavelength of light emission, and has a high glass transition temperature.
  • host materials are known from a large number of patent documents and can be selected from them.
  • Specific examples of host materials are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine.
  • arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene,
  • metal complexes typified by metal complexes of Russianine derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes of benzoxazole and benzothiazole derivatives, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, Examples thereof include polymer compounds such
  • the hole transporting compound that forms the hole transporting layer the polymer for organic electroluminescent elements of the present invention is advantageously used. If necessary, a tertiary amine triphenylamine derivative, carbazole derivative and the like are exemplified as long as the object of the present invention is not impaired.
  • One or more low molecular hole transporting compounds may be blended as an additive and used as a composition. Specific examples of the hole transporting compound are shown below, but are not limited thereto.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer.
  • Examples of the material for the electron blocking layer include:
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided between the child blocking layer.
  • exciton blocking layers examples include 1,3-dicarbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenolatoaluminum (III) ( BAlq).
  • the EB layer is an electron blocking layer, an exciton blocking layer, or a layer having a function of both.
  • Examples of a material for forming the EB layer include 1,3-dicarbazolylbenzene (MCP).
  • the electron transporting compound that forms the electron transporting layer include oxadiazole derivatives, imidazole derivatives, and triazole derivatives. If necessary, one or two or more low molecular electron transport compounds may be blended as additives and used as a composition within a range not impairing the object of the present invention. Specific examples of the electron transporting compound are shown below, but are not limited thereto.
  • a hole injection layer may be inserted between the anode and the hole transport layer or the light emitting layer.
  • a hole injection material for forming the hole injection layer conductive polymers such as polythiophene derivatives and polypyrrole derivatives can be used. Of these, poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid (PEDOT / PSS), which is a polythiophene derivative, is preferable from the viewpoint of hole injection efficiency.
  • the thickness is preferably 200 nm or less, more preferably 100 nm or less.
  • the anode supplies holes to a hole injection layer, a hole transport layer, a light emitting layer, or the like, and is generally formed on a glass substrate.
  • the anode material used in the present invention is not particularly limited, and specific examples include conductive metal oxides such as indium-tin oxide (ITO) and tin oxide, and metals such as gold, silver, and platinum.
  • ITO indium-tin oxide
  • tin oxide tin oxide
  • metals such as gold, silver, and platinum.
  • Commercially available glass with ITO can also be used.
  • Commercially available glass with ITO is usually used after cleaning with a cleaning agent aqueous solution and a solvent, and then cleaning with a UV ozone irradiation device or a plasma irradiation device.
  • the cathode supplies electrons to the electron transport layer or the light emitting layer
  • the anode material used in the present invention is not particularly limited.
  • metals such as Li, Mg, Ca, Al and alloys thereof,
  • Mg—Ag alloy, Mg—Al alloy and the like can be mentioned.
  • the cathode and anode can be formed by a known method, that is, vacuum deposition or sputtering.
  • the thickness of the cathode is preferably 300 nm or less, more preferably 200 nm or less, while the thickness of the anode is preferably 200 nm or less, more preferably 100 nm or less.
  • the compounds synthesized in the examples were identified by one or more analytical methods selected from 1 H-NMR (solvent: deuterated chloroform), FD-MS, GPC, TGA, DSC, UV and IR analysis.
  • Example 1 According to the following scheme, compound (A-2) and compound (B-4) are synthesized, and then polymer (P-1) is synthesized.
  • the compound (A-2) and the compound (B-4) were polymerized to synthesize a polymer (P-1). Specifically, 0.66 g (1.0 mmol) of the compound (A-2) and 0.44 g (1.00 mmol) of the compound (B-4) were dissolved in 20 ml of toluene, and tetrakistriphenylphosphine palladium (catalyst) was used as a catalyst. 0) 10 mg, 2 ml of 2M Na 2 CO 3 aqueous solution was added, and the reaction was carried out at 70 ° C. for 3 and a half hours after nitrogen substitution.
  • Example 2 The device of the polymer (P-1) obtained in Example 1 was evaluated. First, a glass substrate with ITO having a film thickness of 150 nm subjected to solvent washing and UV ozone treatment, and poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid (PEDOT / PSS) as a hole injection layer: (H.C.) -Stark Co., Ltd. product name: Clevios PCH8000) was formed to a film thickness of 25 nm. Next, the synthesized polymer (P-1) was dissolved in THF to prepare a 0.4 wt% solution, and a film having a thickness of 20 nm was formed as a hole transport layer by spin coating.
  • PEDOT / PSS polystyrene sulfonic acid
  • the organic electroluminescent device When an external power source was connected to the organic electroluminescent device thus obtained and a DC voltage of 0 to 10 V was applied, it was confirmed that the organic EL device had the light emission characteristics as shown in Table 1.
  • the luminance, voltage, and light emission efficiency show values at the time of driving at 20 mA / cm 2 .
  • the maximum wavelength of the device emission spectrum was 550 nm, and green emission derived from an iridium complex was observed.
  • Example 3 When polymerizing the compound (A-2) and the compound (B-4), 0.66 g (1.0 mmol) of the compound (A-2) and 0.40 g (0.9 mmol) of the compound (B-4) were used. Except for the above, a polymer (P-2) was obtained in the same manner as in Example 1. The polymer had a Mw of 2,500 and a molecular weight distribution of 1.5. The element evaluation was performed in the same manner as in Example 2.
  • Example 4 A polymer (P-3) is synthesized from the compound (A-2) and 1,3-diiodobenzene according to the following scheme.
  • Example 5 Compound (B-5) is synthesized according to the following scheme, and then polymer (P-4) is synthesized from compound (A-2) and compound (B-5).
  • the polymer (P--) was changed in the same manner as in Example 1 except that the compound (A-2) was changed to 0.66 g (1.0 mmol) and the compound (B-5) 0.31 g (1.0 mmol). 4) was obtained.
  • the polymer had an Mw of 3,500 and a molecular weight distribution of 1.7. Element evaluation was performed in the same manner as in Example 2. *
  • Example 6 A polymer (P-5) is synthesized from the compound (A-2) and bis (4-bromophenyl) ether according to the following scheme.
  • Example 2 Polymerization and post-treatment were performed in the same manner as in Example 1 except that 0.66 g (1.0 mmol) of compound (A-2) and 0.33 g (1.0 mmol) of bis (4-bromophenyl) ether were used. 0.10 g of (P-5) was obtained. This polymer had Mw of 5,200 and a molecular weight distribution of 1.9.
  • the element evaluation was performed in the same manner as in Example 2.
  • Example 7 A polymer (P-6) is synthesized from the compound (A-2) and N-butylphenyl-N, N′-bisdibromodiphenylamine according to the following scheme.
  • Example 2 Polymerization and post-treatment were carried out in the same manner as in Example 1 except that 0.66 g (1.0 mmol) of the compound (A-2) and 0.46 g (1.0 mmol) of N-butylphenyl-N, N′-bisdibromodiphenylamine were used. Treatment gave 0.33 g of polymer (P-6). The polymer had an Mw of 15,000 and a molecular weight distribution of 1.9. The element evaluation was performed in the same manner as in Example 2.
  • Example 8 A polymer (P-7) is synthesized from the compound (A-3) and the compound (B-4) according to the following scheme.
  • Example 2 Polymerization and post-treatment were performed in the same manner as in Example 1 except that the compound (A-1) was changed to 0.66 g (1.0 mmol) of the compound (A-3) to obtain 0.32 g of the polymer (P-7). Obtained. This polymer had Mw of 5,200 and a molecular weight distribution of 1.8. The element evaluation was performed in the same manner as in Example 2.
  • Example 9 (comparison) A polymer (EP-1) is synthesized using compound (B-5) according to the following scheme.
  • Table 2 shows the polymers used for device evaluation and the evaluation results. All the polymers were used for the hole transport layer. The maximum wavelength of the device emission spectrum was 550 nm, and green emission derived from an iridium complex was observed.
  • the hole injection property of the organic electroluminescence device is improved and the light emission efficiency is excellent.
  • a large-area element can be easily manufactured by a coating film forming method or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 素子の発光効率を改善し、かつウエットプロセスに適用可能な有機電界発光素子用重合体とそれから得られる有機電界発光素子を開示する。 この有機電界発光素子用重合体は、主鎖を構成する繰り返し単位中に、[-(Z)l- -(A)m-]nで表される繰り返し単位を有する。また、有機電界発光素子は、基板上に積層された陽極と陰極の間に正孔輸送層及び発光層を含む有機層を有し、この有機層の少なくとも1層に上記有機電界発光素子用重合体を含む。上記繰り返し単位において、ZはN-インドロカルバゾリル基であり、AはZとは異なる繰り返し単位であり、l及びmは存在モル比を表わし、lは5~100モル%、mは0~95モル%であり、nは2~10000である。

Description

有機電界発光素子用重合体及びそれを用いた有機電界発光素子
  本発明は、主鎖にインドロカルバゾール単位が含まれた構造を有する有機電界発光素子用重合体、及びそれを用いた有機電界発光素子に関するものである。
  一般的に電界発光素子には、発光素子に無機化合物を用いる無機電界発光素子と、有機化合物を用いる有機電界発光素子があり、近年、低電圧で且つ高輝度の発光が得られるという特徴から有機電界発光素子の実用化研究が積極的に行われている。
  有機電界発光素子の構造は、インジウム-スズ酸化物(ITO)等の陽極材料の薄膜を蒸着したガラス板上に正孔注入層、更に発光層等の有機薄膜層を形成し、さらにその上に陰極材料の薄膜を形成して作られるものが基本であり、この基本構造に正孔輸送層や電子輸送層が適宜設けられた素子がある。有機電界発光素子の層構成は、例えば、陽極/正孔注入層/発光層/電子輸送層/陰極や、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極などである。
  近年、発光層と陽極の間に正孔注入層及び正孔輸送層等の電荷輸送層を組み込むことにより、発光層への正孔注入性が改善されること、電荷のバランスを最適化する緩衝層として作用し、素子の発光効率や寿命が大きく改善されることがわかっている。
  有機電界発光素子の正孔輸送層に用いられる正孔輸送材料には、大きく分類すると低分子系正孔輸送材料と高分子系正孔輸送材料がある。
  低分子系正孔輸送材料を用いた正孔輸送層の製膜方法としては、主に真空蒸着法が用いられており、その特徴として、異なる機能を持った種々の材料を容易に多層化でき、高性能な有機電界発光素子を形成できる反面、パネルの大画面化、高精細化に伴う膜厚の均一制御や塗り分けが難しく、さらには大掛かりな真空装置を必要とするため、製造コストが高くなるという問題がある。
  また、低分子系正孔輸送材料を用いた正孔輸送層の製膜方法として、低分子系正孔輸送材料の溶液塗布による製膜法についても実用化研究がなされているが、この手法では低分子化合物の結晶化に伴う偏析や相分離が観察され、実用化には改善が必要である。
  一方、高分子系正孔輸送材料の製膜方法としては、真空蒸着法では蒸着できない材料が殆どであるため、スピンコート法、印刷法やインクジェット法等の溶液塗布法が用いられる。この方法は、大画面化が容易であり、量産化に優れている反面、塗膜の積層化が困難で、不純物が混入し易いという問題点がある。そのため、高分子系正孔輸送材料を用いた素子は、低分子系正孔輸送材料と比較すると、素子効率や寿命等の素子性能が劣っている。そこで、優れた正孔輸送性能と良好な製膜性を併せ持つ高分子系正孔輸送材料が求められていた。
  このような要求特性を発現させるための試みとして、例えば非特許文献1には、ポリビニルカルバゾールやポリシランが、特許文献2や非特許文献2にはビニルトリフェニルアミンやトリフェニルアミンがメチレンで連結した構造を有する高分子が報告されている。しかしながら、これらを用いた有機電界発光素子では、発光効率と素子の安定性が悪く、十分な改善には至っていない。
  また、有機電界発光素子の発光効率を高める手法として、π共役高分子の主鎖にインドロカルバゾール単位が組み込まれた高分子材料及び発光素子が開示されている。すなわち、特許文献3では、インドロカルバゾールのペリフェラル位で結合した共役系高分子が、また特許文献4では、インドロカルバゾール単位がポリアリレン主鎖に導入された共役系高分子が開示されている。しかし、これらはいづれもインドロカルバゾール骨格がペリフェラル位で結合したπ共役高分子であり、これらは電荷移動性はよくなるもののHOMOエネルギーレベルが浅く、ホスト材料のエネルギーレベルとの差が大きくなり、結果として正孔注入性が悪くなり、発光効率が十分改善されているとはいえない。
特開平5-205377公報 特開平11-256148公報 特開2006-193729公報 特許4019042号公報
Appl.Phys.Lett.,59,2760(1995) Synthetic Metals, 55-57, 4163, (1993)
  重合体を有機電界発光素子に応用するためには、素子の発光効率を改善し、且つ膜の安定性、溶剤に対する溶解性や製膜性を向上させる必要がある。
  本発明は、上記の課題に鑑みてなされたものであり、高発光効率でウエットプロセスに適用可能な有機電界発光素子用の重合体を提供することを目的とする。また本発明は、照明装置、画像表示装置、表示装置用バックライト等に用いられる前記重合体を用いた有機電界発光素子を提供することを目的とする。
  本発明者は、鋭意検討した結果、インドロカルバゾール骨格のN位で結合した共役及び非共役系重合体を用いることにより、発光性能が向上することを見出し、本発明を完成するに至った。
  本発明は、インドロカルバゾール骨格を高分子主鎖に含有する有機電界発光素子用重合体、及び基板上に積層された陽極層と陰極層の間に有機層を有する有機電界発光素子において、該有機層のうち少なくとも一層が該重合体を含有する層である有機電界発光素子に関する。
 本発明は、主鎖を構成する繰り返し単位中に、下記一般式(1)で表される繰り返し単位を有することを特徴とする有機電界発光素子用重合体に関する。
Figure JPOXMLDOC01-appb-I000006
 
 一般式(1)中、Zは下記式(1a)~(1e)で表わされるインドロカルバゾールから誘導される基から選択される1種又は2種以上の繰り返し単位であり、AはZとは異なる繰り返し単位である。l及びmは存在モル比を表わし、全繰り返し単位を100モル%としたとき、lは5~100モル%、mは0~95モル%である。nは平均の繰り返し数を表わし、2~10000である。
Figure JPOXMLDOC01-appb-I000007
 
 式(1a)~(1e)中、Arは独立に置換もしくは未置換のC6~C18のアリーレン基、または置換もしくは未置換のC3~C18のヘテロアリーレン基である。R1はそれぞれ独立に、水素、C1~C12のアルキル基、C1~C12のアルコキシ基、C6~C18のアリール基、C6~C18のアリールオキシ基、C7~C30のアリールアルキル基、C7~C30のアリールアルキルオキシ基、C3~C18のヘテロアリール基、C3~C18のヘテロアリールオキシ基、又はC3~C18のシクロアルキル基である。
 本発明は、前記一般式(1)において、上記式(1a)~(1e)中、Arが独立に下記式(2)で表される基である有機電界発光素子用重合体に関する。
Figure JPOXMLDOC01-appb-I000008
 
 式(2)中、Xは各々独立にN又はC-Lの何れかである。Lは独立に水素原子、C6~C18のアリール基、C3~C18のヘテロアリール基、C12~C36のジアリールアミノ基又は結合手を表し、Lのうち1つは結合手である。
 また、本発明は、一般式(1)において、Aが下記式(3)で表わされる繰り返し単位である有機電界発光素子用重合体に関する。
Figure JPOXMLDOC01-appb-I000009
 
 ここで、Arは独立に置換もしくは未置換のC6~C18のアリーレン基、または置換もしくは未置換のC3~C18のヘテロアリーレン基である。また、YはC1~C12のアルキレン基、O、S、NR2、CO、CO2、SO、SO2、SCO、NR2CO、CONR2CO又は単結合である。pおよびqは0~3の整数を表わし、pおよびqの少なくとも1方は1以上の整数であり、pおよびqの1方が0の場合、Yは単結合である。ここで、R2は、水素原子、C1~C12のアルキル基、C3~C18のシクロアルキル基、C6~C18のアリール基、C7~C30のアリールアルキル基、C3~C18のヘテロアリール基、又はC4~C30のヘテロアリールアルキル基である。
 本発明は、一般式(1)において、Aが下記式(4a)又は(4b)で表わされる繰り返し単位である有機電界発光素子用重合体に関する。
Figure JPOXMLDOC01-appb-I000010
 
 ここで、Y1は置換もしくは未置換のC1~C6のアルキレン基、N-R4基、O、S又は単結合であり、Y2はC-(R42基、N-R4基、O、又はSである。R3はそれぞれ独立に、水素原子、C1~C12のアルキル基、C1~C12のアルコキシ基、C6~C18のアリール基、C6~C18のアリールオキシ基、C7~C30のアリールアルキル基、C7~C30のアリールアルキルオキシ基、C3~C18のヘテロアリール基、C3~C18のヘテロアリールオキシ基、又はC3~C18のシクロアルキル基である。R4は、水素原子、C1~C12のアルキル基、C3~C18のシクロアルキル基、C6~C18のアリール基、C7~C30のアリールアルキル基、C3~C18のヘテロアリール基、又はC4~C30のヘテロアリールアルキル基である。
 本発明は、一般式(1)において、重量平均分子量が1000~1000000である有機電界発光素子用重合体に関する。また、本発明は、一般式(1)において、存在モル比を表すmが10~90モル%である有機電界発光素子用重合体に関する。更に、本発明は、一般式(1)において、繰り返し単位であるA及びZが交互に結合した交互共重合体である有機電界発光素子用重合体に関する。
 本発明は、基板上に積層された陽極層及び陰極層の間に有機層を有する有機電界発光素子であって、該有機層の少なくとも一層に上記の有機電界発光素子用重合体を含有することを特徴とする有機電界発光素子に関する。前記有機電界発光素子用重合体を含有する有機層としては、正孔輸送層が挙げられる。正孔輸送層に含有される有機電界発光素子用重合体のHOMOエネルギーとゲスト材とホスト材を含む発光層に含有されるホスト材料のHOMOエネルギーの差が±0.5eV以内である有機電界発光素子であることが好ましい。
有機EL素子の構造例を示す断面図である。
  以下、本発明の実施の形態を詳細に説明する。本発明の有機電界発光素子用重合体は、一般式(1)で表されるオリゴマー又は高分子である。ここで、本発明の有機電界発光素子用重合体は単独重合体であることも、共重合体であることもできる。
  本発明の有機電界発光素子用重合体は、優れた電荷輸送能力、特に正孔輸送能力を付与できるインドロカルバゾール骨格を、主鎖を構成する繰り返し単位中に有している。ここで、主鎖を構成する繰り返し単位は1種だけでなく、2種以上であってもよい。そして、必須の繰り返し単位としてZを含み、任意の繰り返し単位としてAを含む。
  一般式(1)において、nは繰り返し数であり、重量平均分子量によって定まるが、平均(数平均)の繰り返し数としては2~10000、好ましくは5~1000である。l及びmは、繰り返し単位としてZ及びAの存在割合を示し、Zの存在割合を示すlは、全繰り返し単位を100モル%とするとき、5~100モル%であり、mは0~95モル%である。好ましくは、10~90モル%、より好ましくは30~80モル%である。なお、lは100モル%であることも好ましい。mは、好ましくは10~90モル%、より好ましくは20~70モル%である。
 また、本発明の有機電界発光素子用重合体は、一般式(1)に表われる繰り返し単位Z及びA以外の末端基を含んでもよい。繰り返し単位Aは、繰り返し単位Z以外の繰り返し単位であり、1種であっても2種以上の繰り返し単位からなるものであってもよい。
  一般式(1)において、Zは、上記式(1a)~(1e)で表わされるインドロカルバゾールから誘導される基から選択される1種又は2種以上の繰り返し単位であり、これはインドロカルバゾール環の2つのNに結合する2つのArからの結合手を有する2価の基である。以下、この2価の基をN位で結合するインドロカルバゾリル基ともいう。また、このN位で結合するインドロカルバゾリル基は、インドロカルバゾール環を構成する炭素に置換基を有することができる。
 このN位で結合するインドロカルバゾリル基は、インドール環とカルバゾール環との縮合可能な位置が複数存在するため、上記式(1a)~(1e)の5種類の構造異性体の基をとり得るが、いずれの構造異性体であってもよい。
  一般式(1)中のZで表されるN位で結合するインドロカルバゾリル基としては、上記式(1a)~(1e)に示す構造からなる群より選択されるいずれか1つ、もしくは2つ以上のインドロカルバゾリル基である。2つ以上である場合は、一般式(1)中のZは、2種類以上のインドロカルバゾリル基からなることになる。
 前記式(1a)~(1e)において、Arは置換もしくは未置換のC6~C18のアリーレン基、または置換もしくは未置換のC3~C18のヘテロアリーレン基である。
 上記未置換のアリーレン基及びヘテロアリーレン基の具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、オバレン、コラヌレン、フルミネン、アンタントレン、ゼトレン、テリレン、ナフタセノナフタセン、トルキセン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、テベニジン、キンドリン、キニンドリン、アクリンドリン、フタロペリン、トリフェノジチアジン、トリフェノジオキサジン、フェナントラジン、アントラジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、又はベンゾイソチアゾールから選ばれる芳香族化合物の芳香環から2つの水素を除いて生じる2価の基が挙げられるが、これらに限定されるものではない。好ましくは、ベンゼン、ナフタレン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドール、カルバゾール、ジベンゾフラン、ジベンゾチオフェンから選ばれる芳香族化合物の芳香環から2つの水素を除いて生じる2価の基が挙げられる。
 また、前記アリーレン基又はヘテロアリーレン基は、置換基を有していてもよい。置換のアリーレン基又はヘテロアリーレン基の場合、置換基の総数は1~10、好ましくは1~6であり、より好ましくは1~4である。置換基は限定されるものではないが、C1~C12の直鎖、分岐、環状のアルキル基、C6~C12のアリール基またはC3~C12のヘテロアリール基等が好ましく挙げられる。置換基の具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基、フェニル基、ナフチル基、キノリル基、インドリル基、フラニル基、ピローリル基、チオフェニル基、ピリジル基、ピリミジル基、トリアジニル基、カルバゾリル基、ベンゾフラニル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基等があげられ、置換基がアリール基またはヘテロアリール基の場合は、更に同様な置換基を有しても良い。置換基を2つ以上有する場合は、同一であっても異なっていても良い。なお、Arは、2価の基であるが、芳香環を複数有する場合の2つの結合手は、同一の環又は同一の縮合環から生じる。
 また、前記式(1a)~(1e)において、Arは上記式(2)で表される2価の基であることがより好ましい。式(2)において、Xは各々独立にN又はC-Lの何れかである。好ましくはXの0~3個がNである。Lは独立に水素原子、C6~C18のアリール基、C3~C18のヘテロアリール基、C12~C36のジアリールアミノ基又は結合手を表し、Lのうち1つは結合手である。この結合手は、式(2)中に現れる2つの結合手の内の1つである。
  ここで、好ましいアリール基、ヘテロアリール基、又はジアリールアミノ基のアリール基としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、オバレン、コラヌレン、フルミネン、アンタントレン、ゼトレン、テリレン、ナフタセノナフタセン、トルキセン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、テベニジン、キンドリン、キニンドリン、アクリンドリン、フタロペリン、トリフェノジチアジン、トリフェノジオキサジン、フェナントラジン、アントラジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、又はベンゾイソチアゾールから水素を除いて生じる基、ジフェニルアミノ基、ジナフチルアミノ基等が挙げられる。より好ましくはベンゼン、ナフタレン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドール、カルバゾール、ジベンゾフラン、又はジベンゾチオフェンから水素を除いて生じる基、ジフェニルアミノ基が挙げられる。
  また、前記アリール基、ヘテロアリール基、又はジアリールアミノ基のアリール基は、置換基を有していてもよく、置換基を有する場合、置換基の総数は1~10、好ましくは1~6であり、より好ましくは1~4である。その置換基としては、性能を阻害するものでなければ特に限定するものではないが、C1~C6のアルキル基、C5~C10のシクロアルキル基、C6~C12のアリール基又はC3~C12のヘテロアリール基が好ましく、具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基、フェニル基、ナフチル基、キノリル基、インドリル基、フラニル基、ピローリル基、チオフェニル基、ピリジル基、ピリミジル基、トリアジニル基、カルバゾリル基、ベンゾフラニル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基等があげられ、置換基がアリール基またはヘテロアリール基の場合は、更に同様な置換基を有しても良い。
 また、前記式(1a)~(1e)において、R1は独立に、水素原子、C1~C12のアルキル基、C1~C12のアルコキシ基、C6~C18のアリール基、C6~C18のアリールオキシ基、C7~C30のアリールアルキル基、C7~C30のアリールアルキルオキシ基、C3~C18のヘテロアリール基、C3~C18のヘテロアリールオキシ基、又はC3~C18のシクロアルキル基であり、同一であっても異なっていてもよい。これらの基に炭化水素鎖が含まれる場合は、直鎖であっても分岐鎖であってもよく、Cl、F等のハロゲンが置換していても構わない。好ましくは、水素原子、C1~C10のアルキル基、C1~C10のアルコキシ基、C6~C12のアリール基、C6~C12のアリールオキシ基、C7~C22のアリールアルキル基、C7~C22のアリールアルキルオキシ基、C3~C12のヘテロアリール基、C3~C12のヘテロアリールオキシ基、又はC3~C12のシクロアルキル基であり、より好ましくは、水素原子、C1~C6のアルキル基、C6~C12のアリール基、又はC3~C12のヘテロアリール基である。また、これらの基はさらに置換基を有していても良い。その置換基としては、性能を阻害するものでなければ特に限定するものではないが、C1~C6のアルキル基、C5~C10のシクロアルキル基、C6~C12のアリール基又はC3~C12のヘテロアリール基が好ましく、具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基、フェニル基、ナフチル基、キノリル基、インドリル基、フラニル基、ピローリル基、チオフェニル基、ピリジル基、ピリミジル基、トリアジニル基、カルバゾリル基、ベンゾフラニル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基等があげられ、置換基がアリール基またはヘテロアリール基の場合は、更に同様な置換基を有しても良い。
  一般式(1)において、AはZとは異なる繰り返し単位であり、Aは二価の基からなるものであれば特に限定されるものではないが、電荷輸送性の基であることが好ましく、好ましいAとして、前記式(3)で表される二価の基がある。
 式(3)において、YはC1~C12のアルキレン基、O、S、NR2、CO、CO2、SO、SO2、SCO、NR2CO、CONR2CO、又は単結合であり、好ましくは、C1~C12のアルキレン基、O、S、NR2、又は単結合である。これらの基に炭化水素鎖が含まれる場合は、直鎖であっても分岐鎖であってもよく、Cl、F等のハロゲンが置換していても構わない。また、R2は水素原子、C1~C6のアルキル基、C6~C12のアリール基又はC3~C12のヘテロアリール基が好ましく、具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、フェニル基、ナフチル基、キノリル基、インドリル基、フラニル基、ピローリル基、チオフェニル基、ピリジル基、ピリミジル基、トリアジニル基、カルバゾリル基、ベンゾフラニル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基等があげられ、置換基がアリール基またはヘテロアリール基の場合は、更に同様な置換基を有しても良い。また、pおよびqは0~3の整数を表し、好ましくは0~2である。但し、pおよびqの1方が0の場合、Yは単結合である。
 また、式(3)において、Arはそれぞれ独立に置換もしくは未置換のC6~C18のアリーレン基、または置換もしくは未置換のC3~C18のヘテロアリーレン基である。好ましいArは前記式(1a)~(1e)中のArで説明したアリーレン基、またはヘテロアリーレン基と同様である。また、アリーレン基、またはヘテロアリーレン基が置換基を有する場合も前記式(1a)~(1e)中のArで説明したアリーレン基、またはヘテロアリーレン基の置換基の説明と同様である。
 式(3)で表される二価の基としては、前記式(4a)及び(4b)で表される基がより好ましい。Y1は置換もしくは未置換のC1~C6のアルキレン基、N-R4基、O、S又は単結合であり、Y2はC-(R42基、N-R4基、O、又はSである。R3は前記式(1a)~(1e)中で説明したR1と同様である。R4は前記式(3)中で説明したR2と同様である。Y1は鎖長が長くなるほど繰り返し単位中の電荷輸送能力が低下すると共に熱的にも不安定性になるため、C1~C3のアルキレン基、もしくはO、S又は単結合であることが好ましく、Y2はC-(R42基、O、又はSであることが好ましい。
  本発明のインドロカルバゾール環を主鎖に有する有機電界発光素子用重合体は、繰り返し単位Z、又はZとAを与えるモノマーを製造し、このモノマーを公知の方法で重合することにより容易に製造することができる。例えば、以下の反応式により製造することができる。重合方法は、重縮合、付加重合のいずれでもよいが、汎用的観点からスズキカップリング反応による重縮合が望ましい。
Figure JPOXMLDOC01-appb-I000011
 
 上記反応例は、一般式(1)において、繰り返し単位Zがインドロカルバゾールの2つのNにR3が置換した2価の基で、AがR4であって、Z-Aが交互に結合し繰り返し単位となる例であるが、重合反応のハロゲン化合物の種類やモル比を制御することにより、一般式(1)中の存在割合のl、mを制御することが可能である。なお、上記反応例中のXはハロゲンを意味する。
  本発明のインドロカルバゾール系重合体の重量平均分子量Mwは、1,000~1,000,000であり、好ましくは2,000~300,000である。Mwが1,000未満であると均一な膜を形成することが困難となり、1,000,000より大きくなると有機溶剤に対する溶解性が極端に悪くなり溶液塗布が困難となる。
  以下に、本発明のインドロカルバゾール骨格を有する重合体の一例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-I000012
 
  
Figure JPOXMLDOC01-appb-I000013
 
  
Figure JPOXMLDOC01-appb-I000014
 
  
Figure JPOXMLDOC01-appb-I000015
 
  
Figure JPOXMLDOC01-appb-I000016
 
  
Figure JPOXMLDOC01-appb-I000017
 
  なお、本発明の有機電界発光素子用重合体は、単独重合体であっても、共重合体であってもよい。共重合体の場合の重合形式はランダムであっても、ブロックであっても、交互であっても差し支えないが、好ましくは上記式に示すように交互に重合した形式がよい。
  また、本発明の有機電界発光素子用重合体は、有機EL素子の有機層に含有させることにより、優れた有機電界発光素子を与える。好ましくは、発光層、正孔輸送層、電子輸送層及び正孔阻止層から選ばれる少なくとも一つの有機層に含有させることがよい。更に好ましくは、正孔輸送層として含有させることがよい。発光層はホスト材料とゲスト材料を含む蛍光又は燐光発光型の発光層であることがよく、燐光発光型の発光層であることがより好ましい。
 本発明の有機電界発光素子用重合体のHOMOエネルギーは、正孔輸送層にこれが含有される場合、正孔輸送層と隣接する発光層に含有されるホスト材料のHOMOエネルギーとの差が小さいことが好ましい。また、隣接する発光層が複数の化合物を含む場合は、その主成分となる化合物との差が小さいことが好ましい。有機電界発光素子用重合体のHOMOエネルギーと、発光層に含まれる化合物(ホスト材料とゲスト材料を含む場合は主成分であるホスト材料となる化合物をいう)のHOMOエネルギーの差が、±0.5eV以下、好ましくは±0.3eV以下であることがよい。有機電界発光素子用重合体のHOMOエネルギーと、発光層に含まれる化合物のHOMOエネルギーの差が、±0.5eVを越えると正孔注入性が悪くなり、発光効率が低下する。
 なお、本明細書でいうLUMOエネルギー及びHOMOエネルギーの値は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian03を用いて求めた値であり、B3LYP/6-31G*レベルの構造最適化計算により算出した値と定義する。重合体については3量体以上同様な値となるため、3量体での計算により算出した。
 次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
 図1は本発明に用いられる一般的な有機EL素子の構造例を模式的に示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は電子及び/又は励起子阻止層(EB層)、6は発光層、7は電子輸送層、8は陰極を各々表わす。本発明の有機EL素子では、必須の層として、陽極、正孔輸送層、発光層及び陰極を有する。好ましくは、陽極、正孔輸送層、発光層、電子輸送層及び陰極を有する。
 また、本発明の有機EL素子は必須の層以外の層に、電子輸送層、電子注入層、EB層、正孔阻止層を有することもできる。更に、正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。
 なお、本発明の有機EL素子は、図1とは逆の構造、すなわち、基板1上に陰極8、電子輸送層7、発光層6、EB層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
 以下に、各部材及び各層について説明する。
-基板-
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-発光層-
  発光層は、発光材料を含有する層であり、蛍光発光層、燐光発光層のいずれでも良いが、燐光発光層であることが好ましい。
 発光層が蛍光発光層である場合、蛍光発光材料は少なくとも1種の蛍光発光材料を単独で使用しても構わないが、蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含むことが好ましい。
  発光層における蛍光発光材料としては、一般式(1)で表される有機電界発光素子用重合体を用いることができるが、該化合物を他の何れかの有機層に使用する場合は、多数の特許文献等により知られているので、それらから選択することもできる。例えばベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族化合物、スチリル化合物、ジケトピロロピロール化合物、オキサジン化合物、ピロメテン金属錯体、遷移金属錯体、ランタノイド錯体が挙げられ、より好ましくは、ナフタセン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ベンタセン、ペリレン、フルオランテン、アセナフソフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタセン、ヘキサセン、アンタントレン、ナフト[2,1‐f]イソキノリン、α-ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5‐f]キノリン、ベンゾチオファントレンなどが挙げられる。これらは置換基としてアリール基、ヘテロアリール基、ジアリールアミノ基、アルキル基を有していてもよい。
  前記蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含む場合、蛍光発光ドーパントが発光層中に含有される量は、0.01~20重量%、好ましくは0.1~10重量%の範囲にあることがよい。
 通常、有機EL素子は、陽極、陰極の両電極より発光物質に電荷を注入し、励起状態の発光物質を生成し、発光させる。電荷注入型の有機EL素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起されると言われている。Applied Physics Letters 98, 83302(2011)に示されているように、特定の蛍光発光物質は、系間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆系間交差され蛍光を放射し、熱活性遅延蛍光を発現することが知られている。本発明の化合物を用いた有機EL素子でも遅延蛍光を発現することができる。この場合、蛍光発光及び遅延蛍光発光の両方を含むこともできる。但し、発光の一部或いは部分的にホスト材料からの発光があっても良い。
  一方、燐光発光材料としては、燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。かかる有機金属錯体は、多数の特許文献等で公知であり、これらが選択されて使用可能である。
  高い発光効率を得るための燐光発光材料としては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、Ir(bt)2・acac3等の錯体類、PtOEt3等の錯体類が挙げられる。以下に、燐光発光材料を具体的に例示するが、これらに限定されるものではない。
  
Figure JPOXMLDOC01-appb-I000018
 
  発光材料の種類を変えることによって様々な発光波長を持つ有機電界発光素子とすることができる。
  前記発光材料をドーパントとして使用する場合、発光層中に含有される量は、1~50重量%の範囲にあることが好ましい。より好ましくは5~30重量%である。
  発光層におけるホスト材料としては、公知のホスト材料が使用可能で有り、本発明の重合体をホスト材料として用いることもできる。また、本発明の重合体と他のホスト材料を併用してもよい。
  使用できる公知のホスト化合物としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
  このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8―キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
-正孔輸送層-
  正孔輸送層を形成する正孔輸送性化合物としては、本発明の有機電界発光素子用重合体が有利に使用される。必要に応じて、本発明の目的を損なわない範囲で、第3級アミンのトリフェニルアミン誘導体、カルバゾール誘導体などが例示される。低分子正孔輸送性化合物などを添加剤として1種又は2種以上配合し、組成物として用いてもよい。以下に、正孔輸送性化合物を具体的に例示するが、これらに限定されるものではない。
  
Figure JPOXMLDOC01-appb-I000019
 
-電子阻止層-
 電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。電子阻止層の材料としては、が挙げられる。
-励起子阻止層-
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。
 使用できる公知の励起子阻止層の材料としては、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-電子及び/又は励起子阻止層(EB層)-
 EB層は、電子阻止層、励起子阻止層又は両者の機能を有する層であり、EB層を形成する材料としては、1,3-ジカルバゾリルベンゼン(MCP)等が挙げられる。
-電子輸送層-
  電子輸送層を形成する電子輸送性化合物としては、オキサジアゾール誘導体、イミダゾール誘導体、トリアゾール誘導体などが例示される。必要に応じて、本発明の目的を損なわない範囲で、低分子電子輸送性化合物などを添加剤として1種又は2種以上配合し、組成物として用いてもよい。以下に、電子輸送性化合物を具体的に例示するが、これらに限定されるものではない。
  
Figure JPOXMLDOC01-appb-I000020
 
-正孔注入層-
  陽極からの正孔注入効率を向上させるために陽極と正孔輸送層又は発光層の間に正孔注入層を入れてもよい。正孔注入層を形成する正孔注入材料としては、ポリチオフェン誘導体、ポリピロール誘導体などの導電性高分子が使用できる。中でも、ポリチオフェン誘導体のポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS)が正孔注入効率の点から好ましい。正孔注入層を使用する場合、その厚さは好ましくは200nm以下、より好ましくは100nm以下である。
-陽極-
  陽極は、正孔注入層、正孔輸送層または発光層などに正孔を供給するものであり、一般的にガラス基板上に形成される。本発明に用いられる陽極材料は特に限定されないが、具体的にはインジウム-スズ酸化物(ITO)、スズ酸化物などの導電性金属酸化物や金、銀、白金などの金属が挙げられる。また、市販のITO付ガラスを使用することもできる。市販のITO付ガラスは、通常、洗浄剤水溶液、溶剤洗浄後、UVオゾン照射装置又はプラズマ照射装置により清浄して使用される。
-陰極-
  陰極は、電子輸送層または発光層に電子を供給するものであり、本発明に用いられる陽極材料は特に限定されないが、具体的にはLi、Mg、Ca、Alなどの金属やそれらの合金、例えばMg-Ag合金、Mg-Al合金などが挙げられる。
  陰極及び陽極は公知の方法、つまり真空蒸着法やスパッタリング法によって形成できる。陰極の厚さは、好ましくは300nm以下、より好ましくは200nm以下であり、一方、陽極の厚さは、好ましくは200nm以下、より好ましくは100nm以下である。
  以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
  実施例で合成した化合物は、1H-NMR(溶媒:重クロロホルム)、FD-MS、GPC、TGA、DSC、UV及びIR分析から選ばれる1種類以上の分析法により同定した。
実施例1
 下記スキームに従い、化合物(A-2)及び化合物(B-4)を合成し、次いで重合体(P-1)を合成する。
  
Figure JPOXMLDOC01-appb-I000021
 
  
Figure JPOXMLDOC01-appb-I000022
  窒素雰囲気下、500mlナスフラスコに、化合物(A-1)を10.00g(39.1mmol)、1-ブロモ-3-ヨードベンゼン12.2g(42.9mmol)、ヨウ化銅0.24g(1.2mmol)とリン酸三カリウム33.2g(156.3mmol)、1,4-ジオキサン200mlを加え、室温にて攪拌・溶解した。この後トランス-1,2-シクロヘキサンジアミン1.34g(11.7mmol)を加えてバス温120℃で2.5時間加熱攪拌した。室温まで降温した後、固形分をろ別し、ろ液を減圧留去した。シリカゲルカラムクロマトグラフィーで精製して白色粉末の化合物(B-1)を14.6g(収率91%)得た。
  次いで、窒素雰囲気下、ジムロートを具備した200mlナスフラスコに、化合物(B-1)を6.00g(14.6mmol)、1-ブロモ-3-ヨードベンゼン176g(623mmol)、ヨウ化銅5.57g(29.2mmol)と炭酸カリウム8.1g(58.6mmol)を加え、室温にて攪拌・溶解した。この後7.5時間、バス温190℃にて加熱攪拌した。室温まで降温後、固形分をろ別し、過剰の1-ブロモ-3-ヨードベンゼンを減圧留去し、粗生成物15.1gを得た。シリカゲルカラムクロマトグラフィーにて精製後、ジクロロメタン/ヘキサンにて2回再結晶を行い、化合物(B-2)を3.0g(収率83%)得た。
 得られた化合物(B-2)2.87g(5.07mmol)を窒素雰囲気下、200mlナスフラスコに入れ、次いでビスピナコラートジボロン3.1g(12.21mmol)、酢酸カリウム1.50g(15.27mmol)、1,4-ジオキサン100mlを入れてバス温60℃で30分攪拌した。(1,1‘-ビス(ジフェニルフォスフィノフェロセン))ジクロロパラジウム(II)ジクロロメタン錯体0.25g(0.31mmol)を投入しバス温80℃で6.5時間加熱攪拌した。さらにビスピナコラートジボロン1.55g(6.1mmol)、(1,1‘-ビス(ジフェニルフォスフィノフェロセン))ジクロロパラジウム(II)ジクロロメタン錯体0.25g(0.31mmol)を2回追加添加して40時間加熱攪拌した。室温まで降温後、固形分をろ別し、1,4-ジオキサンを減圧留去し、シリカゲルカラムクロマトグラフィーにて精製後、化合物(A-2)を3.00g(収率90%)得た。
 化合物(A-2)のH-NMR及びFD-MSスペクトルを以下に示す。
H-NMR(400MHz、CDCl3):δ(ppm);8.12-8.17(3H、m)、8.077(1H、dt、J=8,2Hz)、8.002(1H、br  d、J=2Hz)、7.949(1H、ddd、J=1,2,7Hz)、7.63-7.67(4H、m)、7.19-7.33(6H、m)、6.766(1H、ddd、J=2,7,8Hz)、5.935(1H、d、J=8Hz)、1.352(12H、s)、1.261(12H、s)
FD-MSスペクトル:660(M+、base)
 一方、化合物(B-3)32.4g(0.31mmol)を窒素雰囲気下、2000mlナスフラスコに入れ、さらにビス(トリフルオロ酢酸)フェニルヨウ素75.3g(175mmol)、ヨウ素41.9g(165mmol)および四塩化炭素600mlを加えてバス温50℃で2時間加熱攪拌した。室温まで降温後、四塩化炭素を減圧留去し、EtOHを加えると固体が析出、ろ別した。これをEtOHを用いて2回再結晶することにより乾燥することにより化合物(B-4)を35.8g(収率48%)得た。
 化合物(A-2)と化合物(B-4)を重合させて重合体(P-1)を合成した。具体的には、化合物(A-2)0.66g(1.0mmol)と化合物(B-4)0.44g(1.00mmol)をトルエン20mlに溶解した、触媒としてテトラキストリフェニルフォスフィンパラジウム(0)10mg、2MNaCO水溶液10mlを添加し、窒素置換後70℃、3時間半反応させた。室温まで降温後、反応液から水層分離後、フェニルボロン酸243mg(2mmol)、ブロモベンゼン314mg(2mmol)及びテトラキストリフェニルフォスフィンパラジウム(0)10mgを投入し、バス温90℃で20時間反応させて末端封止した。室温まで降温後、MeOHを用いて再沈殿精製させた。精製したポリマー分を回収し、これを再度MeOHに投入して繰り返しリスラリーすることにより、重合体(P-1)を0.40gを得た。得られたポリマーは、GPC、TGA及びDSCで同定した。Mwは、GPC(テトラヒドロフラン:THF)のポリスチレン換算で4,700、分子量分布1.8であった。
実施例2
  実施例1で得た重合体(P-1)の素子評価を行った。まず、溶媒洗浄、UVオゾン処理した膜厚150nmからなるITO付ガラス基板に、正孔注入層としてポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS):(エイチ・シー・シュタルク株式会社製、商品名:クレビオスPCH8000)を膜厚25nmで製膜した。次に、合成した重合体(P-1)をTHFに溶解して0.4wt%溶液に調製し、スピンコート法により正孔輸送層として20nmを製膜した。次に、真空蒸着装置を用いて、発光層ドーパントとしてトリス(2-(p-トリル)ピリジン)イリジウム(III)を、発光層ホストとして4,4’-ビス(9H-カルバゾル-9-イル)ビフェニルを用い、ドーパント濃度が0.6wt%となるように共蒸着し、40nm発光層を製膜した。その後、真空蒸着装置を用いて、トリス(8-ヒドロキシキノリネート)アルミニウム(Alq3)を35nm、陰極としてLiF/Alを膜厚170nmで製膜し、この素子をグローブボックス内で封止することにより有機電界発光素子を作製した。
  こうして得られた有機電界発光素子に外部電源を接続し、0~10Vの直流電圧を印加した時に、表1のような発光特性を有することが確認された。ここで輝度、電圧及び発光効率は、20mA/cm2での駆動時の値を示した。なお、素子発光スペクトルの極大波長は550nmであり、イリジウム錯体由来の緑色発光が観測された。
実施例3
  化合物(A-2)と化合物(B-4)を重合させる際、化合物(A-2)0.66g(1.0mmol)と化合物(B-4)0.40g(0.9mmol)を使用した以外は、実施例1と同様にして重合体(P-2)を得た。このポリマーのMwは2,500、分子量分布1.5であった。また素子評価は、実施例2と同様に行った。
実施例4
  下記スキームに従い化合物(A-2)と1,3-ジヨードベンゼンから重合体(P-3)を合成する。
  
Figure JPOXMLDOC01-appb-I000023
 
 具体的には、化合物(A-2)を0.66g(1.0mmol)と1,3-ジヨードベンゼン0.33g(1.0mmol)に変更した以外は、実施例1と同様にして重合体(P-3)を得た。このポリマーのMwは7,500、分子量分布2.2であった。また素子評価は、実施例2と同様に行った。  
実施例5
  下記スキームに従い化合物(B-5)を合成し、次いで化合物(A-2)と化合物(B-5)から重合体(P-4)を合成する。
  
Figure JPOXMLDOC01-appb-I000024
 
  温度計、還流管、窒素導入管を備えた2L四つ口ナスフラスコに、1-ブロモ-3-ヨードベンゼンを50.0g(177mmol)、m-ブロモフェニルボロン酸35.5g(177mmol)、トリフェニルホスフィンパラジウム(0)3.37g(2.92mmol)、トルエン600ml、EtOH225mlを入れて溶解した。窒素置換後、これに炭酸ナトリウム112.4g(1.06mol)および純水300mlを加えて、バス温100℃6時間加熱攪拌した。室温まで降温後、分液漏斗に移して油水分離した。有機層を洗浄後、無水硫酸マグネシウムで脱水し、溶媒を減圧留去し粗生成物62.1gを得た。これを減圧蒸留することにより、化合物(B-5)を44.8g(収率81%)得た。
 次いで、化合物(A-2)を0.66g(1.0mmol)と化合物(B-5)0.31g(1.0mmol)に変更した以外は、実施例1と同様にして重合体(P-4)を得た。このポリマーのMwは3,500、分子量分布1.7であった。また、素子評価は、実施例2と同様に行った。 
実施例6
  下記スキームに従い化合物(A-2)とビス(4-ブロモフェニル)エーテルから重合体(P-5)を合成する。
  
Figure JPOXMLDOC01-appb-I000025
 化合物(A-2)0.66g(1.0mmol)とビス(4-ブロモフェニル)エーテル0.33g(1.0mmol)を使用した以外は実施例1と同様に重合及び後処理して重合体(P-5)0.10gを得た。このポリマーのMwは5,200、分子量分布1.9であった。また素子評価は、実施例2と同様に行った。
実施例7
  下記スキームに従い化合物(A-2)とN-ブチルフェニル-N,N‘-ビスジブロモジフェニルアミンから重合体(P-6)を合成する。
  
Figure JPOXMLDOC01-appb-I000026
 
 化合物(A-2)0.66g(1.0mmol)とN-ブチルフェニル-N,N‘-ビスジブロモジフェニルアミン0.46g(1.0mmol)を使用した以外は実施例1と同様に重合及び後処理して重合体(P-6)0.33gを得た。このポリマーのMwは15,000、分子量分布1.9であった。また素子評価は、実施例2と同様に行った。
実施例8
  下記スキームに従い化合物(A-3)と化合物(B-4)から重合体(P-7)を合成する。
  
Figure JPOXMLDOC01-appb-I000027
 
  化合物(A-1)を、化合物(A-3)0.66g(1.0mmol)に変更した以外は実施例1と同様に重合及び後処理して重合体(P-7)0.32gを得た。このポリマーのMwは5,200、分子量分布1.8であった。また素子評価は、実施例2と同様に行った。
例9(比較)
  下記スキームに従い化合物(B-5)を用いて重合体(EP-1)を合成する。
  
Figure JPOXMLDOC01-appb-I000028
 
  50mlナス型フラスコに、塩化鉄(III)0.7g(4.3mmol)、モノクロロベンゼン20mlを入れ窒素置換後、予め溶解した化合物(C-1)0.7g(1.1mmol)のモノクロロベンゼン10ml溶液を加えてバス温50℃で44時間重合した。重合液をメタノールを用いて再沈殿精製させた。精製したポリマー分を回収し、これをナス型フラスコに移し、5%アンモニア水20mlを投入して攪拌し沈殿物をろ過し、純水50mlで2回、MeOH50mlで3回繰り返し洗浄し乾燥することにより、重合体(EP-1)0.67gを得た。このポリマーのMwは4,200、分子量分布1.5であった。また素子評価は、実施例2と同様に行った。
 Gaussian03を用い、B3LYP/6-31G*レベルの構造最適化計算により、ホスト材料としての4,4’-ビス(9H-カルバゾル-9-イル)ビフェニルのHOMOエネルギー値と、重合体P-1、P-3、P-6、EP-1の三量体単位のHOMOエネルギー値を算出し、ホスト材料と各重合体の差を計算し各々表1に示した。
Figure JPOXMLDOC01-appb-T000029
 
  素子評価に使用した重合体と評価結果を表2に示す。重合体はいずれも正孔輸送層に使用したものである。なお、素子発光スペクトルの極大波長は550nmであり、イリジウム錯体由来の緑色発光が観測された。
Figure JPOXMLDOC01-appb-T000030
 
産業上の利用の可能性
  本発明の有機電界発光素子用重合体を用いることにより、有機電界発光素子の正孔注入性が改善され、発光効率に優れるものとなる。また、塗布成膜法等による大面積素子が容易に作製可能となる。

Claims (10)

  1.  主鎖を構成する繰り返し単位中に、下記一般式(1)で表される繰り返し単位を有することを特徴とする有機電界発光素子用重合体。
    Figure JPOXMLDOC01-appb-I000001
     
     ここで、Zは下記式(1a)~(1e)で表わされるインドロカルバゾールから誘導される基から選択される1種又は2種以上の繰り返し単位であり、AはZとは異なる1種又は2種以上の繰り返し単位である。l及びmは存在モル比を表わし、全繰り返し単位を100モル%としたとき、lは5~100モル%、mは0~95モル%である。nは平均の繰り返し数を表わし、2~10000である。
    Figure JPOXMLDOC01-appb-I000002
     
     式(1a)~(1e)中、Arは独立に置換もしくは未置換のC6~C18のアリーレン基、または置換もしくは未置換のC3~C18のヘテロアリーレン基である。R1はそれぞれ独立に、水素、C1~C12のアルキル基、C1~C12のアルコキシ基、C6~C18のアリール基、C6~C18のアリールオキシ基、C7~C30のアリールアルキル基、C7~C30のアリールアルキルオキシ基、C3~C18のヘテロアリール基、C3~C18のヘテロアリールオキシ基、又はC3~C18のシクロアルキル基である。
  2.  式(1a)~(1e)において、Arが独立に下記式(2)で表される基である請求項1記載の有機電界発光素子用重合体。
    Figure JPOXMLDOC01-appb-I000003
     
     ここで、Xは各々独立にN又はC-Lの何れかである。Lは独立に水素原子、C6~C18のアリール基、C3~C18のヘテロアリール基、C12~C36のジアリールアミノ基又は結合手を表し、Lのうち1つは結合手である。
  3.  一般式(1)において、Aが下記式(3)で表わされる繰り返し単位である請求項1に記載の有機電界発光素子用重合体。
    Figure JPOXMLDOC01-appb-I000004
     
     ここで、Arは独立に置換もしくは未置換のC6~C18のアリーレン基、または置換もしくは未置換のC3~C18のヘテロアリーレン基である。YはC1~C12のアルキレン基、O、S、NR2、CO、CO2、SO、SO2、SCO、NR2CO、CONR2COもしくは単結合である。pおよびqは0~3の整数を表わし、pおよびqの少なくとも1方は1以上の整数であり、p又はqが0の場合は、Yは単結合である。ここで、R2は水素原子、C1~C12のアルキル基、C3~C18のシクロアルキル基、C6~C18のアリール基、C7~C30のアリールアルキル基、C3~C18のヘテロアリール基、又はC4~C30のヘテロアリールアルキル基である。
  4.  一般式(1)において、Aが下記式(4a)又は(4b)で表わされる繰り返し単位である請求項1に記載の有機電界発光素子用重合体。
    Figure JPOXMLDOC01-appb-I000005
     
     ここで、Y1は置換もしくは未置換のC1~C6のアルキレン基、N-R4基、O、S又は単結合であり、Y2はC-(R42基、N-R4基、O、又はSである。R3はそれぞれ独立に、水素、C1~C12のアルキル基、C1~C12のアルコキシ基、C6~C18のアリール基、C6~C18のアリールオキシ基、C7~C30のアリールアルキル基、C7~C30のアリールアルキルオキシ基、C3~C18のヘテロアリール基、C3~C18のヘテロアリールオキシ基、又はC3~C18のシクロアルキル基である。R4は、水素原子、C1~C12のアルキル基、C3~C18のシクロアルキル基、C6~C18のアリール基、C7~C30のアリールアルキル基、C3~C18のヘテロアリール基、又はC4~C30のヘテロアリールアルキル基である。
  5.  重量平均分子量が1,000~1,000,000である請求項1に記載の有機電界発光素子用重合体。
  6.  一般式(1)において、存在モル比を表すmが10~90モル%である請求項1に記載の有機電界発光素子用重合体。
  7.  一般式(1)において、繰り返し単位であるA及びZが交互に結合した交互共重合体である請求項1に記載の有機電界発光素子用重合体。
  8.  基板上に積層された陽極層及び陰極層の間に少なくとも正孔輸送層と発光層及び電子輸送層を含む有機層を有する有機電界発光素子であって、該有機層の少なくとも一層に請求項1~7のいずれかに記載の有機電界発光素子用重合体を含有することを特徴とする有機電界発光素子。
  9.  請求項1~7のいずれかに記載の有機電界発光素子用重合体を含有する有機層が正孔輸送層である請求項8に記載の有機電界発光素子。
  10.  発光層が、ゲスト材料とホスト材料とを含む発光層であり、正孔輸送層に含有される有機電界発光素子用重合体のHOMOエネルギーと、発光層に含有されるホスト材料のHOMOエネルギーの差が±0.5eV以内であることを特徴とする請求項9に記載の有機電界発光素子。
PCT/JP2012/065489 2011-06-27 2012-06-18 有機電界発光素子用重合体及びそれを用いた有機電界発光素子 WO2013002053A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280025740.XA CN103688383B (zh) 2011-06-27 2012-06-18 有机电致发光元件用聚合物及使用了其的有机电致发光元件
US14/118,866 US10193069B2 (en) 2011-06-27 2012-06-18 Polymer for use in organic electroluminescent element and organic electroluminescent element employing same
JP2013522759A JP6031030B2 (ja) 2011-06-27 2012-06-18 有機電界発光素子用重合体及びそれを用いた有機電界発光素子
KR1020147002064A KR101941532B1 (ko) 2011-06-27 2012-06-18 유기 전계발광 소자용 중합체 및 그것을 이용한 유기 전계발광 소자
EP12804346.0A EP2725633B1 (en) 2011-06-27 2012-06-18 Polymer for use in organic electroluminescent element and organic electroluminescent element employing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011141640 2011-06-27
JP2011-141640 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013002053A1 true WO2013002053A1 (ja) 2013-01-03

Family

ID=47423951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065489 WO2013002053A1 (ja) 2011-06-27 2012-06-18 有機電界発光素子用重合体及びそれを用いた有機電界発光素子

Country Status (7)

Country Link
US (1) US10193069B2 (ja)
EP (1) EP2725633B1 (ja)
JP (1) JP6031030B2 (ja)
KR (1) KR101941532B1 (ja)
CN (1) CN103688383B (ja)
TW (1) TWI525123B (ja)
WO (1) WO2013002053A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042997A1 (ja) * 2014-09-17 2016-03-24 新日鉄住金化学株式会社 有機電界発光素子
EP2903048A4 (en) * 2012-09-28 2016-05-18 Nippon Steel & Sumikin Chem Co COMPOUND FOR ORGANIC ELECTROLUMINESCENT ELEMENTS, AND ORGANIC ELECTROLUMINESCENT ELEMENT
KR20170027790A (ko) 2014-07-09 2017-03-10 닛산 가가쿠 고교 가부시키 가이샤 전하 수송성 바니시, 전하 수송성 박막 및 그 제조 방법, 그리고 유기 일렉트로 루미네선스 소자 및 그 제조 방법
WO2018083801A1 (ja) * 2016-11-07 2018-05-11 日立化成株式会社 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
US11508909B2 (en) 2017-03-02 2022-11-22 Showa Denko Materials Co., Ltd. Organic electronic material and use of same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014166572A1 (de) * 2013-04-08 2014-10-16 Merck Patent Gmbh Organische lichtemittierende vorrichtung mit verzögerter fluoreszenz
KR102148918B1 (ko) * 2016-05-10 2020-08-28 히타치가세이가부시끼가이샤 전하 수송성 재료, 유기 일렉트로닉스 소자, 및 유기 일렉트로루미네센스 소자

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205377A (ja) 1992-01-24 1993-08-13 Mitsubishi Electric Corp 光ディスク装置
JPH11256148A (ja) 1998-03-12 1999-09-21 Oki Electric Ind Co Ltd 発光用材料およびこれを用いた有機el素子
JP2006193729A (ja) 2004-12-14 2006-07-27 Xerox Corp インドロカルバゾール残基を含む化合物、ならびにそのような化合物を含む電子デバイス及び薄膜トランジスタ
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
JP4019042B2 (ja) 2002-12-24 2007-12-05 三星エスディアイ株式会社 青色発光高分子及びこれを採用した有機el素子
WO2010098246A1 (ja) * 2009-02-27 2010-09-02 新日鐵化学株式会社 有機電界発光素子
JP2011071460A (ja) * 2009-08-31 2011-04-07 Fujifilm Corp 有機電界発光素子
JP2011077032A (ja) * 2009-09-04 2011-04-14 Semiconductor Energy Lab Co Ltd 発光素子、発光装置及びその作製方法
WO2011136755A1 (en) * 2010-04-28 2011-11-03 Universal Display Corporation Depositing premixed materials
WO2012087955A1 (en) * 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Compositions for electronic applications

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649042A (en) 1987-07-01 1989-01-12 Kanto Jidosha Kogyo Kk Thigh supporting device for seat cushion
US5942340A (en) * 1997-10-02 1999-08-24 Xerox Corporation Indolocarbazole electroluminescent devices
DE10304819A1 (de) * 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte Polymere und Blends, deren Darstellung und Verwendung
DE10337346A1 (de) * 2003-08-12 2005-03-31 Covion Organic Semiconductors Gmbh Konjugierte Polymere enthaltend Dihydrophenanthren-Einheiten und deren Verwendung
KR101030010B1 (ko) * 2004-09-18 2011-04-20 삼성모바일디스플레이주식회사 청색 발광 고분자 및 이를 채용한 유기 전계 발광 소자
CN102084514A (zh) * 2008-07-01 2011-06-01 东丽株式会社 发光元件
JP5491796B2 (ja) * 2008-08-11 2014-05-14 三菱化学株式会社 電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
US8905071B2 (en) 2010-10-26 2014-12-09 Air Lift Company Integrated manifold system for controlling an air suspension
WO2012132501A1 (ja) * 2011-03-28 2012-10-04 新日鐵化学株式会社 硬化性組成物、硬化物及びそれを用いた有機電界発光素子
CN103403045B (zh) 2011-03-31 2015-10-14 新日铁住金化学株式会社 有机电致发光元件用聚合物及使用了其固化物的有机电致发光元件
CN104169336B (zh) 2011-12-12 2016-08-31 新日铁住金化学株式会社 固化性组合物、固化物及使用其的有机电致发光元件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205377A (ja) 1992-01-24 1993-08-13 Mitsubishi Electric Corp 光ディスク装置
JPH11256148A (ja) 1998-03-12 1999-09-21 Oki Electric Ind Co Ltd 発光用材料およびこれを用いた有機el素子
JP4019042B2 (ja) 2002-12-24 2007-12-05 三星エスディアイ株式会社 青色発光高分子及びこれを採用した有機el素子
JP2006193729A (ja) 2004-12-14 2006-07-27 Xerox Corp インドロカルバゾール残基を含む化合物、ならびにそのような化合物を含む電子デバイス及び薄膜トランジスタ
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2010098246A1 (ja) * 2009-02-27 2010-09-02 新日鐵化学株式会社 有機電界発光素子
JP2011071460A (ja) * 2009-08-31 2011-04-07 Fujifilm Corp 有機電界発光素子
JP2011077032A (ja) * 2009-09-04 2011-04-14 Semiconductor Energy Lab Co Ltd 発光素子、発光装置及びその作製方法
WO2011136755A1 (en) * 2010-04-28 2011-11-03 Universal Display Corporation Depositing premixed materials
WO2012087955A1 (en) * 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Compositions for electronic applications

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 59, 1995, pages 2760
APPLIED PHYSICS LETTERS, vol. 98, 2011, pages 83302
See also references of EP2725633A4
SYNTHETIC METALS, vol. 55-57, 1993, pages 4163

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2903048A4 (en) * 2012-09-28 2016-05-18 Nippon Steel & Sumikin Chem Co COMPOUND FOR ORGANIC ELECTROLUMINESCENT ELEMENTS, AND ORGANIC ELECTROLUMINESCENT ELEMENT
KR20170027790A (ko) 2014-07-09 2017-03-10 닛산 가가쿠 고교 가부시키 가이샤 전하 수송성 바니시, 전하 수송성 박막 및 그 제조 방법, 그리고 유기 일렉트로 루미네선스 소자 및 그 제조 방법
US10211412B2 (en) 2014-07-09 2019-02-19 Nissan Chemical Industries, Ltd. Charge-transporting varnish, charge-transporting thin film and method for manufacturing same, and organic electroluminescent element and method for manufacturing same
WO2016042997A1 (ja) * 2014-09-17 2016-03-24 新日鉄住金化学株式会社 有機電界発光素子
JPWO2016042997A1 (ja) * 2014-09-17 2017-06-29 新日鉄住金化学株式会社 有機電界発光素子
WO2018083801A1 (ja) * 2016-11-07 2018-05-11 日立化成株式会社 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
WO2018084009A1 (ja) * 2016-11-07 2018-05-11 日立化成株式会社 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
JPWO2018084009A1 (ja) * 2016-11-07 2019-09-26 日立化成株式会社 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
US11398604B2 (en) 2016-11-07 2022-07-26 Showa Denko Materials Co., Ltd. Organic electronic material, organic layer, organic electronic element, organic electroluminescent element, display element, illumination device, and display device
US11508909B2 (en) 2017-03-02 2022-11-22 Showa Denko Materials Co., Ltd. Organic electronic material and use of same

Also Published As

Publication number Publication date
EP2725633B1 (en) 2018-08-01
US20140084279A1 (en) 2014-03-27
EP2725633A1 (en) 2014-04-30
JPWO2013002053A1 (ja) 2015-02-23
US10193069B2 (en) 2019-01-29
JP6031030B2 (ja) 2016-11-24
EP2725633A4 (en) 2015-07-15
CN103688383B (zh) 2016-01-20
KR20140058512A (ko) 2014-05-14
TWI525123B (zh) 2016-03-11
TW201313773A (zh) 2013-04-01
KR101941532B1 (ko) 2019-01-23
CN103688383A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5581341B2 (ja) 有機電界発光素子
JP6153522B2 (ja) 有機電界発光素子用材料及び有機電界発光素子
JP6031030B2 (ja) 有機電界発光素子用重合体及びそれを用いた有機電界発光素子
JP6589241B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、電子機器、及び化合物の製造方法
JP5976532B2 (ja) 有機電界発光素子用重合体及びそれを用いた有機電界発光素子
JP5390441B2 (ja) 有機電界発光素子
JP5796063B2 (ja) 有機電界発光素子用重合体及びその硬化物を用いた有機電界発光素子
JP5577122B2 (ja) 有機電界発光素子
JP7472106B2 (ja) 有機電界発光素子用重合体及び有機電界発光素子
KR20200133760A (ko) 중합체, 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 유기 el 표시 장치, 유기 el 조명 및 유기 전계 발광 소자의 제조 방법
KR20160130860A (ko) 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
KR102667976B1 (ko) 유기 전계 발광 소자용 재료 및 유기 전계 발광 소자
KR102730765B1 (ko) 유기 전계 발광 소자용 중합체 및 유기 전계 발광 소자
KR20200133751A (ko) 유기 전계 발광 소자용 중합체 및 유기 전계 발광 소자
JP2010126480A (ja) ベンゾジチオフェン系化合物、該化合物を含有する組成物および有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804346

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013522759

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14118866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147002064

Country of ref document: KR

Kind code of ref document: A