WO2012157682A1 - Method for producing antireflection film, antireflection film, polarizing plate, and image display device - Google Patents
Method for producing antireflection film, antireflection film, polarizing plate, and image display device Download PDFInfo
- Publication number
- WO2012157682A1 WO2012157682A1 PCT/JP2012/062538 JP2012062538W WO2012157682A1 WO 2012157682 A1 WO2012157682 A1 WO 2012157682A1 JP 2012062538 W JP2012062538 W JP 2012062538W WO 2012157682 A1 WO2012157682 A1 WO 2012157682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- layer
- antireflection film
- antifouling
- low refractive
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
Definitions
- the present invention relates to a method for producing an antireflection film, an antireflection film, a polarizing plate, and an image display device.
- the surface of a display such as a liquid crystal display (LCD), a plasma display panel (PDP), or a cathode ray tube display (CRT) has a high surface hardness or a light beam irradiated from an external light source such as an incandescent lamp or a fluorescent lamp.
- An antireflection film is provided in order to provide an antireflection characteristic for preventing reflection.
- an antireflection film has a structure in which a hard coat layer and a low refractive index layer are laminated on a transparent substrate, and the low refractive index layer has a lower refractive index in order to contribute to antireflection. It is preferable that it is a rate.
- Patent Document 1 discloses an antireflection film in which specific fine particles are contained in a refractive index control layer.
- the performance required for the antireflection film is that the surface of the display as described above is scratch resistant, or is not easily soiled by fingerprints, sebum, magic, etc. Dirty is mentioned.
- an antifouling agent such as a fluorine-containing antifouling agent (for example, Patent Document 1).
- Patent Document 1 in order to suppress a decrease in performance due to white turbidity of a composition containing an antifouling agent, the compatibility with each component in the composition is improved, that is, the weight average molecular weight is less than about 5000. It was necessary to use a low molecular weight fluorine-containing antifouling agent, and the resulting antifouling property was not sufficient.
- Patent Document 2 As a method for imparting antifouling property, a specific amount of fluorine in relation to silicon element, carbon element, and fluorine element by using a fluorine-containing compound having a perfluoroalkyl group in the antifouling layer provided on the surface thereof A technique for causing atoms to exist is also proposed (for example, Patent Document 2).
- the fluorine-containing compound having a perfluoroalkyl group or the like used in Patent Document 2 is a material having excellent antifouling properties, it has poor compatibility with other materials that form an antifouling layer, such as a binder resin. It is known that when a resin composition containing the fluorine-containing compound is applied to form an antifouling layer, it is difficult to form a stable antifouling layer or whitening occurs. Sometimes it occurred.
- Patent Document 2 since compatibility with other components is remarkably deteriorated, silicon element, carbon element, In addition, a specific amount of fluorine atoms is present in relation to fluorine element, and a certain level of compatibility is obtained to form an antifouling layer, thereby suppressing the formation of a stable antifouling layer and the occurrence of whitening (patent) Reference 2, paragraph [0039]).
- the antireflection film is also required to have high performance, and in particular, the demand for whitening is increasing. Conventionally, whitening is whitening to the extent that the transparency of the film is lowered, which can be discriminated at a glance, and it has been demanded to reduce such whitening.
- the surface of the coating film is not uniform and uniform and may be slightly distorted.
- Patent Document 3 a technique for forming an antifouling layer by depositing a perfluoropolyether group-containing silane coupling agent on a transparent film substrate provided with an antireflection layer.
- the fluorine-containing compound having a perfluoroalkyl group or the like as described above generally has poor compatibility with other materials forming the antifouling layer, and the fluorine-containing compound It is difficult to form an antifouling layer by applying it as a resin composition containing an antifouling agent comprising the fluorine-containing compound using a technique called vapor deposition that can form a layer without using other materials.
- the antifouling layer is generally very thin with a thickness on the order of nm, and in addition to excellent antifouling properties, it is necessary to suppress the occurrence of slight whitening, which satisfies this simultaneously.
- it has been thought that it cannot be achieved without further development while using components having compatibility with each other as components for forming the antifouling layer.
- JP 2010-152111 A International Publication No. 2008/38714 Pamphlet JP 2001-188102 A
- Antireflection film 1.
- Transparent substrate Low refractive index layer 4.
- Hard coat layer Medium refractive index layer 6.
- High refractive index layer Middle and high refractive index layer 8.
- the present invention has excellent antireflection properties, excellent scratch resistance and antifouling properties, and suppresses the occurrence of subtle whitening that has never been questioned. It is an object of the present invention to provide a production method, an antireflection film, a polarizing plate and an image display device using the film, which can easily produce the antireflection film.
- the present inventors formed an antifouling layer by the method of Patent Document 2, and a cured product of the composition forming the antifouling layer was formed on the surface thereof.
- a sea-island structure with unevenly distributed or circular or elliptical holes, and the underlying layer such as the base material is exposed, and the occurrence of this structure hinders the formation of a stable antifouling layer
- a slight whitening that has not been questioned until now is developed. That is, although the technique disclosed in Patent Document 2 has a certain amount of fluorine atoms and obtains a certain compatibility, the ease of forming the antifouling layer is improved.
- the present inventors use a composition for forming a low refractive index layer containing a specific fluorine-containing compound containing a large number of fluorine atoms that are poorly compatible, rather than trying to improve compatibility as in the past.
- the present invention [1] It includes at least a transparent substrate, a low refractive index layer, and an antifouling layer in order, which include the following steps (1) to (3) in order, and X-ray photoelectron spectroscopy (XPS) from the antifouling layer side
- XPS X-ray photoelectron spectroscopy
- a method for producing an antireflection film Step (1) Step of forming a coating film by applying a composition for forming a low refractive index layer containing at least a fluorine-containing compound, fine particles and a binder resin on a transparent substrate (2) Low coating film with a low refractive index (3) Heating the low refractive index phase and the antifouling phase, or irradiating the low refractive index phase and the antifouling phase with ionizing radiation
- An image display device having a
- an antireflection film having excellent antireflection properties, excellent scratch resistance, and antifouling properties, and suppressing the occurrence of slight whitening that has never been questioned. Can be easily obtained, and a polarizing plate and an image display device using the antireflection film can be obtained.
- the method for producing an antireflection film of the present invention comprises a step (1) of forming a coating film by applying a composition for forming a low refractive index layer containing at least a fluorine-containing compound, fine particles and a binder resin on a transparent substrate. Step (2) Step of separating the coating film into a low refractive index phase and an antifouling phase, and Step (3) heating the low refractive index phase and the antifouling phase, or the low refractive index.
- the antireflection film having a ratio of less than 0.25 and an average surface roughness (Ra ′) of the antifouling layer of 10 nm or less This is a method for manufacturing a product.
- the low refractive index phase and the antifouling phase formed in the step (2) are phases formed in the coating film coated with the low refractive index layer forming composition, and the binder resin in the low refractive index layer forming composition. Is in an uncured state, and the solvent preferably contained in the composition is in an evaporated state to the extent that phase separation is completed. On the other hand, these phases pass through the step (3), so that the binder resin is cured in the layer, the solvent is evaporated, and most of them are not present. Become.
- the states present in the coating film are referred to as a low refractive index phase and an antifouling phase, and are referred to as a low refractive index layer and an antifouling layer through the step (3), respectively.
- the uncured state means a state in which the composition for forming a low refractive index layer has physical fluidity, that is, a state where viscosity can be measured, and a cured state means low refraction. It means that the composition for forming the rate layer does not have physical fluidity, that is, a state in which the viscosity cannot be measured.
- Step (1) is a coating film forming process in which a coating film is formed by applying a composition for forming a low refractive index layer containing at least a fluorine-containing compound, fine particles and a binder resin on a transparent substrate.
- the coating film forming step preferably comprises preparing a transparent substrate, and separately preparing a composition for forming a low refractive index layer, and forming the composition for forming a low refractive index layer on the transparent substrate. This is done by applying an object.
- composition for forming a low refractive index layer is prepared by mixing homogeneously the fluorine-containing compound, fine particles, binder resin, and preferably used fluorine-containing polymer and various additives described later, and dissolving them in a solvent as necessary.
- the low refractive index forming composition is preferably in the form of a liquid dissolved in a solvent in consideration of productivity.
- the viscosity of the liquid composition for forming a low refractive index layer is not particularly limited as long as it is a viscosity capable of forming a coating film on the surface of the transparent substrate by a coating method described later.
- the formation of the coating film is a gravure coat with a composition for forming a low refractive index layer prepared as described above, on the surface of the transparent substrate, so that the thickness after curing becomes a predetermined thickness described later,
- the coating is performed by a known method such as bar coating, roll coating, reverse roll coating, comma coating or die coating, preferably gravure coating or die coating.
- each component which forms a transparent base material and the composition for low-refractive-index layer formation is demonstrated.
- the transparent substrate used in the present invention is not particularly limited as long as it is a transparent substrate generally used as a substrate for an antireflection film, but preferably a plastic film, a plastic sheet or the like is appropriately selected according to the application. Can do.
- plastic film or plastic sheet examples include those made of various synthetic resins.
- Synthetic resins include polyethylene resins, ethylene ⁇ -olefin copolymers, polypropylene resins, polymethylpentene resins, polybutene resins, ethylene-propylene copolymers, propylene-butene copolymers, olefinic thermoplastic elastomers, or mixtures thereof.
- Linear or cyclic polyolefin resins such as polyethylene terephthalate resin (PET), polybutylene terephthalate resin, polyethylene naphthalate-isophthalate copolymer resin, polyester-based thermoplastic elastomer, and other polyester resins; poly (meth) acrylate methyl Resin, acrylic resin such as poly (meth) acrylic acid ethyl resin, poly (meth) butyl butyl resin; polyamide resin represented by nylon 6 or nylon 66; triacetyl cellulose Cellulose resins such as fat (TAC), diacetyl cellulose, acetate butyrate cellulose, cellophane; cyclopolyolefin resins obtained from cycloolefins such as norbornene, dicyclopentadiene, tetracyclododecene; polystyrene resins; polycarbonate resins; polyarylate resins Or a polyimide resin.
- PET polyethylene ter
- the transparent substrate it can be used alone or in a mixture of two or more of the above-described plastic film and plastic sheet, but from the viewpoint of mechanical strength, polyethylene terephthalate resin and acrylic resin are preferable, From the viewpoint of optical anisotropy, triacetyl cellulose resin and cyclopolyolefin are preferable.
- the thickness of the transparent substrate is not particularly limited, but is usually about 5 to 1000 ⁇ m, and is preferably 15 to 80 ⁇ m and more preferably 20 to 60 ⁇ m in view of durability and handling properties.
- composition for forming a low refractive index layer used in the present invention is a resin composition containing a fluorine-containing compound, fine particles and a binder resin.
- a fluorine-containing compound fine particles
- a binder resin a binder resin
- the composition for forming a low refractive index layer contains a fluorine-containing compound for the purpose of forming an antifouling layer on the antireflection film of the present invention.
- a fluorine-containing compound used in the present invention a compound having a reactive group and a perfluoropolyether group is preferable, and among them, a silane unit having a reactive group and a compound containing a silane unit having a perfluoropolyether group are preferable.
- a silane unit having a reactive group and a compound containing a silane unit having a perfluoropolyether group are preferable.
- a silane unit having a reactive group and a compound containing a silane unit having a perfluoropolyether group are preferable.
- a silane unit having a reactive group and a compound containing a silane unit having a perfluoropolyether group are preferable.
- the fluorine-containing compound since the fluorine-containing compound has a reactive group, it becomes easy to bond with other components in the composition, so that it is possible to form a stronger layer, and as a result, it is thin and scratch resistant. An excellent layer is obtained.
- that the scratch resistance of the outermost surface of the antireflection film is excellent means that the outermost layer is also excellent in adhesion to the lower layer at the same time. That is, when the fluorine-containing compound in the composition for forming a low refractive index layer is present in the low refractive index phase and the antifouling phase so as to be abundant in the antifouling phase and is cured in the step (3) described later.
- the reactive groups in the fluorine-containing compound contained in each phase react with each other, very excellent adhesion between the low refractive index layer and the antifouling layer can be obtained. Furthermore, the reaction between the reactive group of the fluorine-containing compound and the reactive group of the binder resin, and the curing of the binder resin itself further improve the adhesion of the antifouling layer, increase the hardness, and improve the overall resistance. It becomes a layer with excellent scratch resistance.
- the compound containing a silane unit as described above has an affinity with the fine particles contained in the low refractive index phase, when the antifouling phase is formed on the surface of the low refractive index phase, the entire surface is wetted.
- the silane unit is a unit represented by the following general formula (1).
- X represents a single bond or an oxygen atom
- R 1 and R 2 represent a monovalent organic group
- at least one of R 1 and R 2 represents a reactive group or a perfluoropolyether group.
- a silane unit is a monovalent organic group containing a silane units and R 1 is a perfluoropolyether group is a monovalent organic radical containing, for example, R 1 is a reactive group Or a silane unit in which R 1 is a monovalent organic group containing a reactive group and R 2 is a monovalent organic group containing a perfluoropolyether group. May be.
- R 1 , R 2 and X are independent, that is, the fluorine-containing compound of the present invention has at least a silane unit having a reactive group and a silane unit having a perfluoropolyether group. As long as it has, it may have various silane units.
- these silane units are preferably units having a siloxane skeleton. That is, in the above formula (1), X is preferably an oxygen atom. Since the fluorine-containing compound has a siloxane skeleton, as described above, the affinity with the fine particles contained in the low refractive index layer is improved, so that the antifouling property is uniform, uniform, and has excellent antifouling properties. A layer is obtained and slight whitening hardly occurs.
- the weight average molecular weight (polystyrene equivalent weight average molecular weight measured by GPC method) of the fluorine-containing compound is preferably 5,000 or more, more preferably 5,000 to 100,000, and still more preferably 5,000 to 50. , 000. If the fluorine-containing compound has a weight average molecular weight of 5,000 or more, excellent antifouling property is obtained, and if it is 100,000 or less, good solubility in an organic solvent is obtained, so that a uniform and uniform surface is obtained. It becomes easy to obtain.
- the reactive group include a reactive group having an ethylenically unsaturated double bond group such as a (meth) acryloyl group and a vinyl group, an epoxy group, a carboxyl group, an amino group, a hydroxyl group, and the like.
- a reactive group having an ethylenically unsaturated double bond group such as a (meth) acryloyl group or a vinyl group is preferred.
- the reactive group is the above group, it easily binds to other components in the composition for forming a low refractive index layer, so that the adhesion between the low refractive index layer and the antifouling layer is stronger as described above. It is preferable because a thin layer can be formed and a thin layer having excellent scratch resistance can be obtained.
- Preferred examples of the perfluoropolyether group include those represented by the following general formula (2).
- a to e are integers of 0 to 50, and may be the same or different.
- a to d are preferably integers such that the weight average molecular weight of the perfluoropolyether group represented by the formula (2) is in the range of 200 to 6000, and e is preferably 0 to 2.
- Xa, xb, xc, and xd are integers of 1 to 4, and may be the same or different.
- xa, xb, xc, and when xd is 3 and 4, -C xa F 2xa, -C xb F 2xb, -C xc F 2xc, and -C xd F 2xd is a by branched be linear May be.
- the content of fluorine atoms in the fluorine-containing compound is preferably 5 to 80 parts by mass, more preferably 10 to 70 parts by mass, and still more preferably 20 to 60 parts by mass.
- the fluorine atom content in the fluorine-containing compound is 5 parts by mass or more, excellent antifouling property is obtained, and when it is 80 parts by mass or less, good solubility in a solvent is obtained, so that it is uniform and uniform. A surface is easily obtained.
- the solid content of the fluorine-containing compound is the total amount (solid) of fine particles described later in the composition for forming a low refractive index layer and a binder resin (including these when a fluorine-containing monomer and a fluorine-containing polymer are used).
- Min It is preferably 5 to 30 parts by mass with respect to 100 parts by mass.
- fine-particles, and binder resin are commercially available, it is common to be sold in the form contained in a solvent. In that case, the amount of these solids is the amount obtained by removing the solvent from the total amount of the commercial product.
- the photopolymerization initiator is one of arbitrary solids contained in the composition, but is not used for calculating the content of the fluorine-containing compound.
- the content of the fluorine-containing compound is 5 parts by mass or more, the entire surface can be covered with a uniform and uniform antifouling layer with the fluorine-containing compound, so that the sea-island structure does not appear and slight whitening does not occur. .
- the coating film surface is not flat, and the coating film surface is not rough, such as unevenness, and a uniform and uniform antifouling layer can be obtained. Excellent scratch resistance is obtained without any occurrence.
- an average surface roughness (Ra ′) of 10 nm or less is uniform and uniform, and a smooth antifouling layer is obtained.
- the content of the fluorine-containing compound is more preferably 5 to 20 parts by mass, and the maximum content is more preferably 10 parts by mass.
- the composition for forming a low refractive index layer contains fine particles.
- the fine particles are used for decreasing the refractive index of the layer, that is, for the purpose of improving the antireflection characteristics.
- Fine particles can be used without limitation whether they are inorganic or organic. From the viewpoint of improving the antireflection properties and ensuring good surface hardness, silica fine particles and fluoro Preferred examples thereof include magnesium halide fine particles, and fine particles having a spherical shape from the point of shape and having voids themselves are preferably used. Moreover, when it has a space
- silica fine particles are preferable from the viewpoint of the material in consideration of durability to wet heat.
- a combination of materials forming these layers is one of the important conditions. Since the fine particles are present in a nearly densely packed state over the entire surface of the low refractive index layer, the surface properties of the low refractive index layer tend to be affected by the fine particles. The higher the affinity between the fine particles contained in the low refractive index layer and the material forming the antifouling layer, the easier the antifouling layer is formed to cover the entire surface of the low refractive index layer.
- the antifouling phase when the antifouling phase is phase-separated from the low refractive index phase, the antifouling phase has wettability over the entire surface of the low refractive index phase, and the wettability remains until step (3) is completed. This is because it can be held.
- a combination in which the fine particles are silica fine particles made of silica and the fluorine-containing compound has a silane unit and further a siloxane unit, that is, a fluorine-containing compound containing a silica atom is particularly preferable.
- Fine particles having voids themselves have fine voids on the outside and inside, and are filled with a gas such as air having a refractive index of 1.0, for example, so that the refractive index of the particles itself is low.
- a gas such as air having a refractive index of 1.0, for example, so that the refractive index of the particles itself is low.
- Such fine particles having voids include inorganic or organic porous fine particles and hollow fine particles.
- porous silica fine particles, hollow silica fine particles, porous polymer fine particles using acrylic resin, etc. Polymer fine particles are preferred.
- silica fine particles having voids prepared using the technique disclosed in Japanese Patent Laid-Open No. 2001-233611 are used, and as the organic fine particles, the technique disclosed in Japanese Patent Laid-Open No. 2002-80503 is disclosed.
- a hollow polymer fine particle prepared by using, for example, can be mentioned as a preferred example.
- Silica having voids as described above or porous silica has a refractive index of about 1.20 to 1.44, and a refractive index lower than that of general silica fine particles having a refractive index of about 1.45. Therefore, it is preferable from the viewpoint of lowering the refractive index of the low refractive index layer.
- fine particles capable of forming a nanoporous structure in at least a part of the inside and / or the surface depending on the form, structure, aggregated state, and dispersed state in the film are also preferable.
- Such fine particles are produced for the purpose of increasing the specific surface area of the above-mentioned silica fine particles, and are used for the release column for absorbing various chemical substances in the packing column and the porous portion of the surface, and for fixing the catalyst. Examples thereof include porous fine particles used, and dispersions and aggregates of hollow fine particles intended to be used for heat insulating materials and low dielectric materials.
- the average primary particle size of the fine particles is preferably 5 to 200 nm, more preferably 5 to 100 nm, and even more preferably 10 to 80 nm.
- the average particle diameter of the fine particles is 5 nm or more, an excellent refractive index lowering effect is obtained, and when it is 200 nm or less, the transparency of the low refractive index layer 3 is not impaired, and a good fine particle dispersion state is obtained.
- the fine particles may be formed in a chain.
- the average particle diameter of the primary particles of the fine particles is obtained by observing the cross section of the antireflection film for any three visual fields using a transmission electron microscope (TEM), and arbitrary 20 particles existing in the cross section. The diameter of the particles (total of 60 particles for three fields of view) was measured on a photograph to obtain an average particle diameter.
- TEM transmission electron microscope
- the fine particles used in the present invention are preferably surface-treated.
- a surface treatment using a silane coupling agent is preferably exemplified, and among these, a surface treatment using a silane coupling agent having a (meth) acryloyl group is preferable.
- the affinity with the binder resin which will be described later, is improved, the fine particles are dispersed uniformly, and the fine particles are less likely to aggregate. Reduction, applicability of the composition for forming a low refractive index layer, and reduction in coating film strength of the composition are suppressed.
- the silane coupling agent has a (meth) acryloyl group
- the silane coupling agent has ionizing radiation curability, and therefore easily reacts with a binder resin described later. Therefore, the composition for forming a low refractive index layer In the coating film, fine particles are fixed to the binder resin. That is, the fine particles have a function as a crosslinking agent in the binder resin. Thereby, the tightening effect of the whole coating film is obtained, and it is possible to impart excellent surface hardness to the low refractive index layer while leaving the flexibility inherent to the binder resin. Therefore, since the low refractive index layer is deformed by utilizing its own flexibility, it has the ability to absorb and restore external impacts, so that the generation of scratches is suppressed and the surface hardness is excellent with excellent scratch resistance. It will have.
- silane coupling agent examples include 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3 Examples thereof include-(meth) acryloxypropylmethyldiethoxysilane, 2- (meth) acryloxypropyltrimethoxysilane, 2- (meth) acryloxypropyltriethoxysilane and the like.
- the content of fine particles in the low refractive index layer is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, and further preferably 30 to 90% by mass.
- the content of the fine particles in the low refractive index layer is the total solid content of the composition for the low refractive index layer, that is, a fluorine-containing polymer, fluorine-containing optionally used in addition to the fluorine-containing compound, fine particles, and binder resin. It is synonymous with the content of fine particles in the total amount of monomers and additives such as a polymerization initiator (total amount of all compounds other than the solvent contained in the composition).
- the content of the fine particles is 10% by mass or more, the effect of using the fine particles is sufficiently obtained, and when the content is 95% or less, the average surface roughness (Ra ′) of the antifouling layer can be reduced. Since the gap between the fine particles can be satisfactorily filled with resin, excellent surface hardness can be obtained.
- solid fine particles having no voids can be used at the same time for the purpose of improving the scratch resistance.
- the average primary particle size of the solid fine particles is preferably 1 to 200 nm, more preferably 1 to 100 nm, and even more preferably 5 to 20 nm. If it is 1 nm or less, the contribution to the surface hardness improvement is small, and if it is 200 nm or more, the transparency of the low refractive index layer is impaired, and it is difficult to obtain a good dispersed state of fine particles.
- the content of the solid particles may be appropriately adjusted according to the scratch resistance, refractive index and the like required for the low refractive index layer.
- the content is preferably 1 to 30% by mass and more preferably 5 to 20% by mass with respect to the total mass of the total solid content of the low refractive index layer composition. It is desirable from the viewpoint of scratch resistance and transparency that the surface treatment is performed in the same manner as the fine particles having voids.
- solid particles used in conventionally known antireflection films and hard coat films can be used.
- Commercially available products include, for example, trade names MIBK-ST (average primary particle size: 12 nm) and MIBK-ST-ZL (average primary particle size: 88 nm) manufactured by Nissan Chemical Industries, Ltd., or JGC Catalysts & Chemicals, Inc.
- the product name OSCAL series (average primary particle size: 7 to 100 nm) manufactured by KK) is preferred.
- the composition for forming a low refractive index layer contains a binder resin from the viewpoints of film formability and film strength.
- the binder resin the low refractive index layer is irradiated with ionizing radiation such as ultraviolet rays and electron beams into the layer of the low refractive index layer, including the above-mentioned fluorine-containing compounds and fine particles, as well as other components added as necessary.
- a resin that can be fixed by being cured a resin having a low compatibility with the fluorine-containing compound is used so that the above fluorine-containing compound is efficiently phase-separated to obtain an antifouling layer that completely covers the low refractive index layer. preferable.
- binder resin examples include thermosetting resins such as melamine, urea, epoxy, ketone, diallyl phthalate, unsaturated polyester, and phenol, or ionizing radiation curable resins.
- thermosetting resins such as melamine, urea, epoxy, ketone, diallyl phthalate, unsaturated polyester, and phenol
- ionizing radiation curable resins are preferable.
- the ionizing radiation curable resin refers to a resin that has an energy quantum capable of polymerizing molecules in electromagnetic waves or charged particle beams, that is, a resin that is cured by irradiation with ultraviolet rays or electron beams. Specifically, it can be appropriately selected from polymerizable monomers and polymerizable oligomers (or prepolymers) conventionally used as ionizing radiation curable resins.
- a (meth) acrylate monomer having a radically polymerizable unsaturated group in the molecule is preferable, and a polyfunctional (meth) acrylate monomer is particularly preferable.
- the polyfunctional (meth) acrylate monomer is not particularly limited as long as it is a (meth) acrylate monomer having two or more ethylenically unsaturated bonds in the molecule.
- ethylene glycol di (meth) acrylate ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, pentaerythritol di (meth) acrylate monostearate, dicyclopentanyl di (meth) acrylate, isocyanurate di (meth) acrylate, etc.
- Bifunctional (meth) acrylate Bifunctional (meth) acrylate; trifunctional (meth) acrylate such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris (acryloxyethyl) isocyanurate; pentaerythritol tetra (meth) acrylate , Dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.
- the above-mentioned polyfunctional (meth) acrylate monomers of ethylene oxide-modified products, caprolactone modified products, such as propionic acid-modified products are preferably exemplified.
- a trifunctional or higher functional (meth) acrylate is preferable from the viewpoint of obtaining excellent scratch resistance.
- These polyfunctional (meth) acrylate monomers may be used individually by 1 type, and may be used in combination of 2 or more type. More specifically, in the present invention, the desired effects such as antifouling property, scratch resistance (adhesiveness), and slight whitening prevention property can be obtained preferably by trimethylolpropane tri (meth) acrylate, pentaerythritol.
- Trifunctional (meth) acrylates such as tri (meth) acrylate and tris (acryloxyethyl) isocyanurate; pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, A tetra- or higher functional (meth) acrylate such as dipentaerythritol hexa (meth) acrylate is preferable, and pentaerythritol tri (meth) acrylate is particularly preferable.
- a monofunctional (meth) acrylate monomer is used in combination with the above-described polyfunctional (meth) acrylate monomer as long as the purpose of the present invention is not impaired, for the purpose of, for example, reducing the viscosity. Can do.
- the following polymerizable oligomers and polymers can be used for proper application adjustment by increasing the viscosity and prevention of curling due to curing shrinkage.
- an oligomer having a radically polymerizable unsaturated group in the molecule for example, epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, polyether (meth) Examples include acrylate oligomers.
- methyl methacrylate and glycidyl methacrylate are previously polymerized to obtain a copolymer, and then obtained by condensing the glycidyl group of the copolymer with the carboxyl group of methacrylic acid or acrylic acid.
- a reactive polymer is available as a commercial product, and examples of the commercial product include “macromonomer (trade name)” manufactured by Toagosei Co., Ltd.
- an ultraviolet curable resin or an electron beam curable resin can be preferably used as the ionizing radiation curable resin.
- an ultraviolet curable resin When an ultraviolet curable resin is used as the ionizing radiation curable resin, it is preferable to add about 0.5 to 10 parts by mass of a photopolymerization initiator with respect to 100 parts by mass of the ultraviolet curable resin. The addition of 5 parts by mass is more preferable.
- the photopolymerization initiator can be appropriately selected from those conventionally used, and is not particularly limited. For example, for a polymerizable monomer or polymerizable oligomer having a radical polymerizable unsaturated group in the molecule. And photopolymerization initiators such as acetophenone, benzophenone, benzoin, ketal, anthraquinone, disulfide, thioxanthone, thiuram, and fluoroamine.
- photopolymerization initiators are available as commercial products. For example, “Irgacure 184 (trade name)”, “Irgacure 907 (trade name)”, “Irgacure 127 (trade name)” (both Ciba Specialty Chemicals ( Etc.).
- the content of the binder resin is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the total solid content in the composition for forming a low refractive index layer. .
- the content of the binder resin is within the above range, excellent scratch resistance can be obtained, and the fluorine-containing compound can be efficiently phase separated.
- the composition for forming a low refractive index layer used in the present invention preferably contains a fluorine-containing polymer from the viewpoint of reducing the refractive index.
- a fluorine-containing polymer examples include (meth) acrylic acid moieties and fully fluorinated alkyl, alkenyl, aryl esters, fully or partially fluorinated vinyl ethers, fully or partially fluorinated vinyl esters, and fully or partially fluorinated vinyl ketones. Etc. are preferred.
- silicone containing vinylidene fluoride copolymer which made the copolymer contain the silicone component is mentioned preferably.
- silicone components in this case include (poly) dimethylsiloxane, (poly) diethylsiloxane, (poly) diphenylsiloxane, (poly) methylphenylsiloxane, alkyl-modified (poly) dimethylsiloxane, azo group-containing (poly) dimethylsiloxane, , Dimethyl silicone, phenylmethyl silicone, alkyl aralkyl modified silicone, fluorosilicone, polyether modified silicone, fatty acid ester modified silicone, methyl hydrogen silicone, silanol group containing silicone, alkoxy group containing silicone, phenol group containing silicone, methacryl modified silicone, Acrylic modified silicone, amino modified silicone, carboxylic acid modified silicone, carb
- a compound having at least one isocyanato group and fluorine in the molecule and a compound having at least one functional group in the molecule that reacts with an isocyanato group such as an amino group, a hydroxyl group, and a carboxyl group
- an isocyanato group such as an amino group, a hydroxyl group, and a carboxyl group
- a compound or the like can also be used as the fluorine-containing polymer.
- the refractive index of the fluoropolymer is preferably 1.37 to 1.45.
- the refractive index is 1.37 or more, good solubility in a solvent can be obtained, and handling is easy.
- the refractive index of the low-refractive-index layer to form can be reduced to a desired range as it is 1.45 or less.
- Such a fluorine-containing polymer is commercially available, for example, OPSTAR TU2181-6, OPSTAR TU2181-7, OPSTAR TU2202, manufactured by JSR, OPSTAR JN35, OPSTAR TU2224, OPTOOL AR110 manufactured by Daikin Industries, Ltd., OPTOOL AR100 etc. are mentioned preferably.
- the content of the fluoropolymer is preferably 1 to 30 parts by mass, more preferably 5 to 25 parts by mass with respect to 100 parts by mass of the total solid content in the composition for forming a low refractive index layer.
- the refractive index can be efficiently reduced.
- the composition for forming a low refractive index layer used in the present invention preferably contains a fluorine-containing monomer from the viewpoint of reducing the refractive index.
- the fluorine-containing monomer preferably has two or more reactive functional groups in one molecule from the viewpoint of efficiently curing to form a low refractive index layer and obtaining excellent hardness.
- Examples of such a fluorinated monomer include a fluorinated monomer having a pentaerythritol skeleton, a fluorinated monomer having a dipentaerythritol skeleton, a fluorinated monomer having a trimethylolpropane skeleton, a fluorinated monomer having a cyclohexyl skeleton, and a linear skeleton.
- the refractive index of the fluorine-containing monomer is preferably 1.35 to 1.48, more preferably 1.37 to 1.45.
- the refractive index of the fluorine-containing monomer is 1.35 or more, good solubility in a solvent can be obtained, and handling is easy.
- the refractive index of the low refractive index layer to form can be reduced to a desired range as it is 1.48 or less.
- Such a fluorine-containing monomer is available as a commercial product, and preferred examples include LINC series such as LINC3A having a pentaerythritol skeleton and LINC102A having a cyclohexyl skeleton manufactured by Kyoeisha Chemical Co., Ltd.
- LINC series such as LINC3A having a pentaerythritol skeleton and LINC102A having a cyclohexyl skeleton manufactured by Kyoeisha Chemical Co., Ltd.
- the content of the fluorine-containing monomer is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the total solid content in the composition for forming a low refractive index layer.
- the refractive index can be efficiently reduced.
- additives are blended in the composition for forming a low refractive index layer used in the present invention in accordance with desired physical properties.
- the additive include a weather resistance improver, an abrasion resistance improver, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an adhesion improver, an antioxidant, a leveling agent, a thixotropic agent, a coupling agent, and a plasticizer.
- Preferable examples include agents, antifoaming agents, fillers, and solvents.
- solvent preferably used in the composition for forming a low refractive index layer is not particularly limited.
- alcohols such as methanol, ethanol and isopropyl alcohol (IPA); ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
- Esters such as ethyl acetate and butyl acetate; halogenated hydrocarbons; aromatic hydrocarbons such as toluene and xylene; propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether
- Preferable examples include glycol ethers such as acetate and dipropylene glycol monoethyl ether, or mixtures thereof.
- ketones and glycol ethers having high affinity with fluorine-containing compounds are preferred, and particularly preferred solvents are methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, Propylene glycol monoethyl ether acetate.
- ketones or glycol ethers When a solvent other than ketones or glycol ethers is used, it is preferable to contain ketones or glycol ethers at least 50% or more, preferably 70% or more of the total solvent amount. Particularly when ketones are used, the coating property of the composition for forming a low refractive index layer is improved, and the evaporation rate of the solvent after application of the composition is moderate, so that uneven drying is less likely to occur, and the solvent is evaporated. Accordingly, the fluorine-containing compound can be efficiently phase-separated, so that a uniform and uniform large-area coating film (antifouling layer) can be easily obtained.
- the amount of the solvent is appropriately adjusted so that each component can be uniformly dissolved and dispersed, and does not aggregate during storage after preparation of the composition, and does not become too dilute during application.
- the content of the solvent in the composition for forming a low refractive index layer is preferably 50 to 99.5% by mass, more preferably 70 to 98% by mass. By setting it as such content, the composition excellent in especially dispersion stability and suitable for long-term storage is obtained.
- the solvent used for the composition for low refractive index layer formation evaporates by drying or hardening performed after apply
- Step (2) is a step of separating the coating film formed in the above step (1) into a low refractive index phase and an antifouling phase.
- a heating method such as a method of heating the coating film in the air, a method of holding the coating film in steam or in an autoclave, and the like are preferable. Further, it may be simply left until phase separation without heating.
- the composition for forming a low refractive index layer is applied and before the binder resin in the composition is cured, the composition is heated or simply left as described above in this step.
- the fluorine-containing compound in the product is easily raised on the outermost surface side (the side opposite to the transparent substrate) of the coating film.
- the content of the fluorine-containing compound is relatively high, and the content of the fluorine-containing compound is relatively low, and the content of the fluorine-containing compound is relatively low.
- Phase-separation into a low-refractive index phase that exhibits low refractive index properties, heating the antifouling phase formed on the outermost surface side, or irradiating with ionizing radiation to cover the entire surface of the low-refractive index layer By forming the fouling layer, excellent antifouling properties can be obtained.
- a coating film when a coating film is formed by applying the composition for forming a low refractive index layer, it is separated into two phases in the coating film, and the coating film is divided into a low refractive index phase and an antifouling phase. And the two phases respectively form a low refractive index layer and an antifouling layer by passing through the step (3) described below, and in other words, a low refractive index layer having an antifouling layer is formed. It can be said that it forms.
- the time for heating or simply leaving as described above may be about the time for the fluorine-containing compound to float on the outermost surface side of the coating film, and is usually about 1 to 30 seconds.
- the solvent preferably contained in the composition for forming a low refractive index layer can be evaporated by heating as described above or simply leaving it, and the solvent can be actively dried for the purpose of evaporating the solvent.
- the drying temperature condition is preferably in the range of 20 to 120 ° C., more preferably 40 to 100 ° C.
- the drying time is preferably 10 to 180 seconds, more preferably 15 to 90 seconds.
- the upper limit temperature of the drying temperature is appropriately selected depending on the material of the transparent substrate to be used.
- the lower limit temperature of 20 ° C. is preferably selected from the viewpoint of forming the antifouling layer by quickly and reliably phase-separating the fluorine-containing compound to the outermost surface.
- 40 degreeC or more is more preferably selected from a viewpoint of carrying out phase separation of an antifouling phase stably and forming an antifouling layer.
- the coating film after phase separation is heated, or the coating film is irradiated with ionizing radiation, and the low refractive index phase and the antifouling phase in the coating film are each formed into a low refractive index layer.
- the low refractive index layer is a layer having antireflection properties because fine particles are present in the layer
- the antifouling layer is a layer having antifouling properties since a fluorine-containing compound is present in the layer. It is.
- a layer containing a relatively small amount of a fluorine-containing compound has a superior antireflection property, and is therefore referred to as a low refractive index layer (low refractive index phase before heating or irradiation with ionizing radiation).
- the layer containing a relatively large amount of the fluorine-containing compound has a better antifouling property, and therefore is called an antifouling layer (antifouling phase before heating or irradiation with ionizing radiation).
- thermosetting resin a thermosetting resin
- the heating conditions can be appropriately set according to the curing temperature of the thermosetting resin to be used, and can be set to 60 to 100 ° C., for example.
- the acceleration voltage can be appropriately selected according to the resin used and the thickness of the layer, but the coating film is usually applied at an acceleration voltage of about 70 to 300 kV. It is preferable to cure.
- the transmission capability increases as the acceleration voltage increases.
- the transmission depth of the electron beam and the thickness of the coating film are By selecting the accelerating voltage so as to be substantially equal, it is possible to suppress the irradiation of the extra electron beam to the base material, and to minimize the deterioration of the base material due to the excess electron beam.
- the irradiation dose is preferably such that the crosslinking density of the curable resin in the low refractive index layer is saturated, and is usually selected in the range of 5 to 300 kGy (0.5 to 30 Mrad), preferably 10 to 50 kGy (1 to 5 Mrad).
- the electron beam source is not particularly limited.
- various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. Can be used.
- ultraviolet rays When ultraviolet rays are used as the ionizing radiation, for example, ultraviolet rays emitted from an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, or the like is used.
- the irradiation amount of the energy ray source is preferably about 50 to 500 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
- the ultraviolet irradiation is preferably performed in a nitrogen atmosphere, for example, in an atmosphere having an oxygen concentration of 1000 ppm or less.
- ultraviolet irradiation is most preferable in that the low refractive index phase and the antifouling phase can be cured quickly and stably after phase separation.
- the solvent is almost completely evaporated and dried by the curing in the step (3) and hardly exists in the layer.
- the solvent is almost evaporated in the step (2), but the solvent remaining in the layer at the end of the step (2) is considered to be almost completely evaporated in the step (3).
- the antireflection film of the present invention is obtained by the production method of the present invention, and more specifically, at least a transparent substrate, a low refractive index layer, and an antifouling layer covering the entire surface of the low refractive index layer in order.
- the low refractive index layer and the antifouling layer comprise a composition for forming a low refractive index layer containing a fluorine-containing compound, fine particles and a binder resin, and X-ray photoelectron spectroscopy is performed from the antifouling layer side.
- the fluorine atom / carbon atom ratio measured by (XPS) is 0.6 to 1.0 and the silicon atom / carbon atom ratio is less than 0.25, and the average surface roughness (Ra ′) of the antifouling layer is ) Is 10 nm or less.
- FIG. 1 is a schematic view showing a cross section of the antireflection film of the present invention
- FIGS. 2 and 3 are schematic views showing the cross section of a preferred layer structure of the antireflection film of the present invention as an example.
- An antireflection film 1 shown in FIG. 1 has a low refractive index layer 3 and an antifouling layer 8 on a transparent substrate 2.
- the antireflection film 1 shown in FIG. 2 has a hard coat layer 4, a medium / high refractive index layer 7, and a low refractive index layer 3 in this order on a transparent substrate 2, and the antireflection film shown in FIG. 3.
- the film 1 has a hard coat layer 4, a medium refractive index layer 5, a high refractive index layer 6, a low refractive index layer 3, and an antifouling layer 8 in this order on a transparent substrate 2.
- the layer structure of the antireflection film 1 of the present invention is not particularly limited as long as it has a low refractive index layer 3 and an antifouling layer 8 in this order on the transparent substrate 2, and for example, transparent substrate / Low refractive index layer / antifouling layer, transparent substrate / hard coat layer / low refractive index layer / antifouling layer, transparent substrate / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index layer / antifouling Stain layer, transparent substrate / hard coat layer / high refractive index layer / medium refractive index layer / low refractive index layer / antifouling layer, transparent substrate / medium high refractive index layer / low refractive index layer / antif
- the low refractive index layer 3 and the antifouling layer 8 are layers formed by using a low refractive index layer forming composition containing a fluorine-containing compound, fine particles and a binder resin. These layers are formed by the above-described method for producing an antireflection film of the present invention, that is, the low refractive index layer-forming composition is applied onto a transparent substrate to form a coating film, and the coating is performed. By phase-separating the film, a low refractive index phase and an antifouling phase are formed as two phases in the coating film, and these coating films are heated or irradiated with ionizing radiation, respectively.
- the content of the fluorine-containing compound contained in the low refractive index layer 3 is relatively smaller than the content of the fluorine-containing compound contained in the antifouling layer 8, and conversely the content of the fluorine-containing compound.
- the antifouling layer 8 having a relatively large amount becomes a layer that more strongly exhibits antifouling properties.
- the low refractive index layer 3 is most preferably a layer of N 1/2 when the refractive index of the layer provided immediately below is N and the refractive index of air is 1, for example,
- N of the hard coat layer is 1.49 to 1.53.
- 0.01 is preferably a layer having a lower N and a refractive index of 1.48 to 1.52. The lower the refractive index, the better.
- 1.25 to 1.45 is more preferable, and 1.25 to 1.35 is more preferable.
- This refractive index can be easily controlled by the type of fine particles and their content, or the amount of fluorine-containing compound used.
- the film thickness and the refractive index of the low refractive index layer 3 satisfy the relationship calculated from the following formula (I).
- d A m ⁇ / (4n A ) (I)
- n A represents the refractive index of the low refractive index layer
- m represents a positive odd number, preferably 1 (air)
- the film thickness is preferably from the viewpoint of reducing the refractive index. 120 ⁇ n A d A ⁇ 145 (II) When the refractive index is in the preferred range as described above, 1.25 to 1.45, the film thickness is preferably about 80 nm to 120 nm. However, since the antireflective effect is obtained when the refractive index is lower than that of the lower layer, the film thickness may be about 120 nm to 1 ⁇ m so as to be out of this range. In the present invention, the total thickness of the low refractive index layer and the antifouling layer is preferably within the above range.
- the antifouling layer 8 is present so as to uniformly and uniformly cover the entire surface of the low refractive index layer 3 having an average surface roughness (Ra ′) of 10 nm or less, and is antifouling to the antireflection film of the present invention. It is a layer which gives.
- the average surface roughness (Ra ′) of the antifouling layer 8 is a layer of 10 nm or less, and is a uniform and uniform layer. Further, the average surface roughness (Ra ′) of the antifouling layer 8 is preferably from 0.1 to 10 nm, more preferably from 0.1 to 7 nm, and even more preferably 0 that provides the most improved scratch resistance. .1-5 nm.
- the average surface roughness (Ra ′) is a three-dimensional extension of the centerline average roughness (Ra) defined in JIS B 0601 to the measurement surface. It is a numerical value expressed by the following equation, expressed as “average value of absolute values of deviations to the surface”. For example, the average surface roughness (Ra ′) is obtained by observing the surface shape with an atomic force microscope (AFM) and performing image analysis on the obtained image using attached analysis software (for example, SPIwin). It only has to be obtained.
- AFM atomic force microscope
- the average surface roughness of the antifouling layer 8 is very small, uniform and uniform, has excellent scratch resistance and antifouling properties, and has excellent antireflection properties. It is preferable to be provided on the outermost surface of the antireflection film of the invention.
- the uniform and uniform state of the antifouling layer 8 can be specifically confirmed not only by this average surface roughness (Ra ') but also by observation with an atomic force microscope (AFM). That is, when the antifouling layer 8 is observed with an atomic force microscope (AFM), the cured product of the composition for forming a low refractive index layer is not unevenly distributed in the shape image and the phase image, or is prevented by the cured product. A circular or elliptical hole is unevenly distributed in the dirty layer, and the lower layer such as a low refractive index layer or a transparent substrate is exposed, that is, it is formed over the entire surface of the antireflection film 1 without exhibiting a sea-island structure. It is in the state.
- the fluorine atom / carbon atom ratio measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer 8 side is 0.6 to 1.0, and the silicon atom / carbon atom ratio is less than 0.25. Cost.
- XPS X-ray photoelectron spectroscopy
- the fluorine atom / carbon atom ratio and silicon atom / carbon atom ratio were measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer side of the antireflection film, and the composition of fluorine atoms, carbon atoms, and silicon atoms. It is a value calculated from the ratio.
- the fluorine atom in the antifouling layer 8 when the fluorine atom in the antifouling layer 8 is present at a certain level or more and the silicon atom is present at a certain level or less, that is, by using a predetermined fluorine-containing compound in a predetermined amount, an excellent antifouling property is obtained. Can be obtained, and an antireflection film that does not cause faint whitening can be obtained.
- the antifouling layer is uniformly and uniformly formed on the entire surface, by having the above atomic ratio over the entire surface, better antifouling properties can be obtained and the occurrence of slight whitening can be reduced. it can.
- the fluorine atom / carbon atom ratio is more preferably 0.7 to 1.0, and the silicon atom / carbon atom ratio is more preferably 0.01 to 0.2. If the fluorine atom / carbon atom ratio is less than 0.6, the antifouling property will be insufficient. On the other hand, when it becomes larger than 1.0, handling of the agent used for achieving this, that is, the fluorine-containing compound becomes extremely difficult. In addition, when the silicon atom / carbon atom ratio is 0.25 or more, the antifouling property becomes insufficient. Therefore, in the present invention, the ratio is less than 0.25, but such a range is set. Therefore, excellent slip resistance can be expected because of improved slipperiness.
- the atomic ratio measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer side does not fall within the range of the atomic ratio as described above. That is, in the coating film obtained by applying the composition for forming a low refractive index layer, phase separation into a low refractive index phase and an antifouling phase, and further, the antifouling layer is uniform on the low refractive index layer.
- XPS X-ray photoelectron spectroscopy
- the formation of a uniform layer means that the above-mentioned atomic ratio defined in the present invention is measured, and that the antifouling layer is a uniform and uniform layer is also measured by an atomic force microscope (AFM). Is to be confirmed. Therefore, the antifouling layer has an average surface roughness and an atomic ratio specified in the present invention, and in addition to excellent antifouling properties, it is possible to obtain an antireflection film that can provide scratch resistance and does not exhibit slight whitening. It can be said that.
- the average surface roughness (Ra ′) measurement by the atomic force microscope (AFM), the shape image and the phase image observation, and the atomic ratio measured by X-ray photoelectron spectroscopy (XPS) are used.
- the antifouling layer is formed by a vapor deposition method such as chemical vapor deposition (CVD) or physical vapor deposition (PVD), unlike the manufacturing method of the present invention, the antifouling layer and the low refractive index layer are formed of each layer. Since it does not react with the reactive group which material has, since adhesiveness is weak, scratch resistance becomes weak.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- the difference in manufacturing method can be confirmed by the scratch resistance evaluation.
- the scratch resistance evaluation was performed by applying a load of 300 g / cm 2 or more to steel wool (Bonstar # 0000 manufactured by Nippon Steel Wool Co., Ltd.), and rubbing the surface of the antireflection film 10 times, thereby causing scratches on the surface. This is by visually checking the number.
- Silicon atoms in the low refractive index layer and the antifouling layer exist in the form of SiO 2 or C—Si—O.
- silicon atoms derived from SiO 2 are referred to as inorganic silicon atoms
- C A silicon atom derived from —Si—O is referred to as an organosilicon atom. That is, in the present invention, the silicon atoms in the low refractive index layer and the antifouling layer have an organic silicon atom and an inorganic silicon atom. It is considered that inorganic silicon atoms and organic silicon atoms are separated in the Si2p spectrum because of different bond energies.
- a peak in the vicinity of 103 to 104 eV on the high bond energy side was an inorganic silicon atom
- a peak in the vicinity of 101 to 102 eV on the low bond energy side was an organosilicon atom.
- the silicon atom in the above silicon atom / carbon atom ratio is the total amount of inorganic silicon atoms and organic silicon atoms.
- the organosilicon atom / carbon atom ratio measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer side is preferably 0.07 or less, more preferably 0.01 to 0.07. More preferably, it is 0.02 to 0.06.
- the inorganic silicon atom / carbon atom ratio is preferably 0.2 or less, more preferably 0.05 to 0.2, and still more preferably 0.08 to 0.18.
- an antireflection film that exhibits excellent scratch resistance and antifouling properties and does not cause slight whitening is obtained. Can do.
- the surface of the low refractive index layer is formed using the low refractive index layer forming composition without improving the compatibility of the conventional fluorine-containing compound.
- the antifouling layer is uniform and uniform with the average surface roughness being small and the occurrence of the sea-island structure as described above being suppressed.
- a composition for forming a low refractive index layer in which a fluorine-containing compound, fine particles and a binder resin are combined not only a uniform and uniform antifouling layer 8 is obtained, but also an excellent antireflection effect as a result. It is also possible to obtain an antireflection film having characteristics, excellent scratch resistance, antifouling properties, and suppression of slight whitening.
- the contact angle of hexadecane can be measured with a commercially available contact angle meter and a falling angle meter, respectively, using hexadecane as the measurement liquid.
- the contact angle with respect to hexadecane on the surface is preferably 55 to 90 °, more preferably 60 to 90 °, and with respect to hexadecane on the surface.
- the sliding angle is preferably 1 to 25 °, more preferably 1 to 20 °, and the outermost surface thereof is uniform and uniform, that is, the antifouling layer 8 has a smooth structure. Since the fluorine-containing compound contained in the antifouling layer 8 covers the surface, the contact angle and the falling angle are in the above ranges, while the sea-island structure is formed to make the surface uniform and uniform. If it cannot be covered, the contact angle and the falling angle will be out of the above ranges.
- the total thickness of the low refractive index layer 3 and the antifouling layer 8 varies depending on the desired refractive index, but is preferably about 80 to 120 nm as described above from the viewpoint of reducing the reflectance in the visible light region. More preferably, it is 100 to 120 nm. It is estimated that the thickness of the antifouling layer 8 alone is in the range of 1 to 3 nm.
- XPS X-ray photoelectron spectroscopy
- atoms contained in fine particles in the low refractive index layer are also detected, and the depth of information obtained by X-ray photoelectron spectroscopy (XPS) is 1. This is because it is reasonable to assume that the thickness is in the range of 1 to 3 nm in consideration of the thickness of 3 nm.
- the antireflection film 1 of the present invention can have a hard coat layer 4 for the purpose of improving the performance of surface hardness such as scratch resistance on the antireflection film 1.
- the hard coat refers to a performance showing a hardness of “H” or higher in a pencil hardness test specified in JIS 5600-5-4: 1999.
- the hard coat layer is preferably obtained by crosslinking and curing an ionizing radiation curable resin.
- the ionizing radiation curable resin for forming the hard coat layer 4 is appropriately selected from the ionizing radiation curable resins used for the binder resin in the low refractive index layer forming composition described above.
- the photopolymerization initiator used when the ionizing radiation curable resin is an ultraviolet curable resin is also appropriately selected from those exemplified above.
- Various additives used in the above-described composition for forming a low refractive index layer can also be used in the same manner.
- the hard coat layer 4 preferably has a film thickness after curing in the range of 0.1 to 100 ⁇ m, more preferably in the range of 0.8 to 20 ⁇ m, still more preferably in the range of 1 to 8 ⁇ m, particularly 1.5 to A range of 4 ⁇ m is preferred. If the film thickness is within the above range, sufficient hard coat performance can be obtained, and it is difficult to break against external impacts.
- the hard coat layer 4 may have a function of a medium refractive index layer 5 or a high refractive index layer 6 as described below, or may have a function of an antistatic layer. .
- the antireflection film 1 of the present invention can preferably have a medium refractive index layer 5 and a high refractive index layer 6 for the purpose of improving the antireflection performance.
- the middle refractive index layer 5 and the high refractive index layer 6 do not need to be provided at the same time as described above as an aspect of the antireflection film 1, and for example, FIG.
- the medium-high refractive index layer 7 may be provided as a single layer.
- the refractive index of the medium refractive index layer 5, the high refractive index layer 6 or the medium high refractive index layer 7 is preferably in the range of 1.5 to 2.00.
- the middle refractive index layer 5 has a refractive index higher than at least the low refractive index layer 3 described above and lower than the high refractive index layer 6, and the refractive index is relative.
- the refractive indexes of the medium refractive index layer 5 and the high refractive index layer 6 are relative as described above, but the refractive index of the medium refractive index layer 5 is usually in the range of 1.5 to 1.8.
- the refractive index of the refractive index layer 6 is preferably in the range of 1.6 to 2.0.
- These refractive index layers can be formed of, for example, a binder resin and fine particles having a particle diameter of 100 nm or less and having a predetermined refractive index.
- fine particles having a predetermined refractive index include ZnO (1.90), TiO 2 (2.3 to 2.7), CeO 2 (1.95). ), Indium tin oxide (abbreviation; ITO; 1.95), antimony-doped tin oxide (abbreviation ATO; 1.80), Y 2 O 3 (1.87), and ZrO 2 (2.0).
- a binder resin it selects from the above-mentioned binder resin suitably, and is used.
- the refractive index of the fine particles is preferably higher than the refractive index of the cured film of the binder resin alone. Since the refractive index of these refractive index layers is generally determined by the content of fine particles, the refractive index of the refractive index layer increases as the amount of fine particles added increases. Therefore, it is possible to form a refractive index layer having a predetermined refractive index by adjusting the addition ratio of the binder resin and the fine particles. If the fine particles have conductivity, the refractive index layer formed using such fine particles also has antistatic properties.
- These refractive index layers are vapor-deposited films of an inorganic oxide having a high refractive index such as titania or zirconia formed by vapor deposition methods such as chemical vapor deposition (CVD) and physical vapor deposition (PVD), or like titania.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- a cured resin film using a resin composition in which inorganic oxide fine particles having a high refractive index are appropriately dispersed in a binder resin can be obtained.
- the film thickness of these refractive index layers is preferably in the range of 10 to 300 nm, more preferably in the range of 30 to 200 nm.
- the above refractive index layer (medium refractive index layer, high refractive index layer) may be provided directly on the transparent substrate 2, but the hard coat layer 4 is provided on the transparent substrate 2, and the hard coat layer 4 and the low refractive index layer are provided. 3 is preferably provided.
- the antireflection film 1 of the present invention has an antistatic layer from the viewpoint of preventing the adhesion of dust due to the antistatic effect, or obtaining the conductivity and electromagnetic wave shielding effect when the antireflection film of the present invention is used in an image display device.
- the antistatic layer is preferably provided between the transparent substrate 2 and the low refractive index layer 3.
- the antistatic layer is low. It is preferable to provide the refractive index layer 3 on the outermost surface and to be in contact with the low refractive index layer 3.
- the antistatic agent is not particularly limited, and examples thereof include cationic compounds such as quaternary ammonium salts, pyridinium salts, and primary to tertiary amino groups; sulfonate groups, sulfate ester bases, phosphate ester bases, and phosphonate bases.
- Anionic compounds such as amino acids, aminosulfate esters, and the like; nonionic compounds such as amino alcohols, glycerol, and polyethylene glycol; organometallic compounds such as tin and titanium alkoxides; the organometallic compounds Preferred examples thereof include metal chelate compounds such as acetylacetonate salts. Compounds obtained by increasing the molecular weight of the compounds listed above can also be used.
- an organometallic compound such as a coupling agent having a tertiary amino group, a quaternary ammonium group or a metal chelate portion and having a monomer, oligomer or functional group capable of being polymerized by ionizing radiation.
- a polymerizable compound such as is also preferred.
- These antistatic agents may be ionic liquids.
- the antistatic agent include conductive polymers.
- the conductive polymer is not particularly limited.
- aromatic conjugated poly paraphenylene
- heterocyclic conjugated polypyrrole polythiophene
- aliphatic conjugated polyacetylene heteroatom-containing polyaniline
- mixed type Conjugated poly phenylene vinylene
- a double chain conjugated system that has a plurality of conjugated chains in the molecule
- a conductive polymer that is a polymer obtained by grafting or block-copolymerizing the conjugated polymer chain to a saturated polymer. Sex complex and the like.
- the antistatic agent include conductive metal oxide fine particles.
- the conductive metal oxide fine particles are not particularly limited.
- ZnO refractive index: 1.90; hereinafter, all values in parentheses indicate refractive index
- Sb 2 O 2 1.71).
- SnO 2 1.997
- CeO 2 CeO 2 (1.95
- indium tin oxide abbreviation: ITO; 1.95
- In 2 O 3 (2.00), Al 2 O 3 (1.63)
- antimony include doped tin oxide (abbreviation ATO; 2.0) and aluminum-doped zinc oxide (abbreviation AZO; 2.0).
- the content of the antistatic agent in the composition for antistatic layer As the content of the antistatic agent in the composition for antistatic layer, the effect of containing the antistatic agent can be fully enjoyed, and the effect obtained in the optical laminate produced by the present invention described above can be obtained. It is preferable to blend appropriately within a range that does not inhibit.
- the resin used in the antistatic layer that is, the resin used in the composition for the antistatic layer is not particularly limited.
- ionizing radiation that is a resin curable by ultraviolet rays or electron beams similar to the resin described in the hard coat layer described above. Examples thereof include a curable resin, a mixture of an ionizing radiation curable resin and a solvent-drying resin, or a thermosetting resin.
- the antistatic layer is formed by coating the antistatic layer composition prepared using each of the above-described materials on the light-transmitting base material, etc. It can be formed by curing by irradiation or heating.
- the polarizing plate of the present invention has an antireflection film on at least one surface of the polarizing film, and the antireflection film is obtained by the production method of the present invention, that is, at least a transparent substrate, a low refractive index layer, And an antifouling layer covering the entire surface of the low refractive index layer in order, wherein the low refractive index layer and the antifouling layer contain a fluorine-containing compound, fine particles and a binder resin.
- the fluorine atom / carbon atom ratio measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer side is 0.6 to 1.0, and the silicon atom / carbon atom ratio is less than 0.25.
- the average surface roughness (Ra ′) of the antifouling layer is 10 nm or less.
- the polarizing plate is provided with protective films on both sides of the polarizing film, but the polarizing plate of the present invention is provided with the antireflection film of the present invention on at least one of them.
- the antireflection film of the present invention can be provided on one surface or both surfaces of the polarizing film.
- an optical compensation film (retardation film) having an optical compensation layer including an optically anisotropic layer on the other surface is preferable. .
- the antireflection film of the present invention When using the antireflection film of the present invention as a protective film, it is particularly preferable to use a triacetyl cellulose film as the transparent support.
- the transparent support of the protective film using the antireflection film is preferably adhered to the polarizing film through an adhesive layer made of polyvinyl alcohol, if necessary.
- a structure having a protective film, preferably the above-described optical compensation film (retardation film) on the other side of the polarizing film is preferable. You may have an adhesive layer in the surface on the opposite side to the polarizing film of the other protective film. By setting it as such a structure, the polarizing plate of this invention can improve the contrast in the bright room of a liquid crystal display device, and the viewing angle of up and down, right and left.
- the image display device of the present invention has an antireflection film or a polarizing plate having an antireflection film on at least one side of a polarizing film on the outermost surface of the display, and the antireflection film is obtained by the production method of the present invention.
- at least a transparent substrate, a low refractive index layer, and an antifouling layer covering the entire surface of the low refractive index layer are sequentially provided, and the low refractive index layer and the antifouling layer comprise a fluorine-containing compound and fine particles.
- XPS X-ray photoelectron spectroscopy
- the silicon atom / carbon atom ratio is less than 0.25, and the average surface roughness (Ra ′) of the antifouling layer is 10 nm or less.
- the display include a liquid crystal display (LCD), a plasma display panel (PDP), a cathode ray tube display (CRT), an inorganic and organic electroluminescence display, a rear projection display, a fluorescent display tube (VFD), a touch panel, and a mobile PC.
- Preferable examples include displays such as electronic paper.
- the apparatus provided with these displays for example, a personal computer, a portable information terminal, a game machine, a digital camera, a digital video camera etc. are mentioned preferably.
- the surface (antifouling layer) of the antireflection film obtained in each Example and Comparative Example was analyzed by X-ray photoelectron spectroscopy (XPS), and a fluorine-containing compound
- XPS X-ray photoelectron spectroscopy
- the atomic ratio which is an index of how much phase separation occurs to form an antifouling layer, was obtained by the following method.
- the apparatus used is an XPS apparatus (“ESCALAB 220i-XL (model number)”, manufactured by Thermo Fisher Scientific), X-ray output: 10 kV ⁇ 16 mA (160 W), lens: Large Area XL (magnetic lens), aperture Opening angle: F.F. O. V.
- an inorganic silicon component (SiO 2 ) in which a peak is detected in the vicinity of 103 to 104 eV and an organic silicon component (C—) in which a peak is detected in the vicinity of 101 to 102 eV by peak separation analysis of the Si2p spectrum The atomic composition was measured separately for Si—O), and the inorganic silicon atom / carbon atom ratio and the organic silicon atom / carbon atom ratio were calculated. 6).
- Shape images and phase images were observed at a scanning frequency of 0.4 to 1.0 Hz and a scanning range of 3 ⁇ m.
- the cantilever “OMCL-AC160TS-C2 (model number)” (manufactured by KS Olympus Corporation, spring constant: 42 N / m) was used.
- the cantilever used for observation was always a new cantilever so as not to reduce the resolution due to probe contamination.
- it was performed under the condition that the load applied to the probe is as small as possible without sacrificing the resolution, and observation was performed with a resolution of 512 pixels ⁇ 256 pixels. After observation, the inclination of the data was corrected with the attached software.
- the antifouling layer is formed by phase separation on the entire surface of the low refractive index layer, a uniform and uniform state can be confirmed, while on the other hand, the antifouling layer is phase separated on the entire surface.
- the surface can be confirmed as a sea-island pattern of unevenness due to the phase-separated portion and the non-phase-separated portion.
- it is uniform and uniform, it can be said that there is no slight whitening or roughening of the coated surface even when visually observed, and the low refractive index layer and the antifouling layer are well formed.
- ⁇ The antifouling layer was uniform and uniform.
- the antifouling layer did not have a sea-island structure, but a slight distortion was observed when compared with the evaluation of the above ⁇ .
- X The antifouling layer has a sea-island structure, and slight whitening and roughening of the coated surface were visually observed.
- Measurement of average surface roughness (Ra ') Surface shape is observed with the above atomic force microscope (AFM), and image analysis is performed using analysis software (SPIwin) to obtain average surface roughness (Ra'). It was.
- Preparation Example 1 Preparation of Composition 1 for Forming Low Refractive Index Layer
- Components of the following composition were mixed at the following mass ratio to prepare Composition 1 for forming a low refractive index layer.
- Composition 1 for forming a low refractive index layer Pentaerythritol triacrylate (PETA): 0.10 parts by mass Fluorine-containing compound * 1 : 1.23 parts by mass Hollow silica particle dispersion * 2 : 6.69 parts by mass Solid silica particle dispersion * 3 : 0.74 parts by mass Part Fluoropolymer * 4 : 2.79 parts by mass Fluorine monomer * 5 : 2.23 parts by mass
- Photopolymerization initiator * 6 0.08 parts by mass Methyl isobutyl ketone: 57.03 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass * 1, “X-71-1203M (trade name)” manufactured by Shin-Etsu Chemical Co., Ltd.
- the content of hollow silica particles in the dispersion is 20% by mass, and the content of solvent (methyl isobutyl ketone) is 80% by mass. Moreover, the average particle diameter of hollow silica particles is 60 nm, and has a photocurable reactive group by surface treatment. * 3, “MIBK-SD (trade name)”, average primary particle size: 12 nm, solid content: 30% by mass, solvent: methyl isobutyl ketone, solid silica particles are methacryloyl which is a photo-curable reactive group by surface treatment. Has a group.
- Preparation Example 2 Preparation of hard coat layer forming composition 1 The components of the following composition were mixed at the following mass ratio to prepare hard coat layer forming composition 1.
- Hard coat layer forming composition 1 Urethane acrylate * 7 : 15 parts by weight Isocyanuric acid EO-modified triacrylate * 8 : 15 parts by weight Polymerization initiator * 9 : 2 parts by weight Methyl ethyl ketone: 70 parts by weight * 7, “UV1700B (trade name)”, Nippon Synthetic Chemical Co., Ltd. * 8, "M315 (trade name)", Toagosei Co., Ltd. * 9, "Irgacure 184 (trade name)”: Ciba Specialty Chemicals
- Example 1 A hard coat layer-forming composition 1 is bar-coated on a triacetylcellulose (TAC) resin film having a thickness of 80 ⁇ m, dried at 50 ° C. for 1 minute, and after removing the solvent, an ultraviolet irradiation device (fusion UV) Using a light source H bulb manufactured by System Japan Co., Ltd., it was cured by irradiation with ultraviolet rays at an irradiation dose of 30 mJ / cm 2 to obtain a hard coat layer having a thickness of about 10 ⁇ m. Next, on the obtained hard coat layer, the low refractive index layer-forming composition 1 prepared in Preparation Example 1 is bar-coated to form a coating film (step (1)) at 50 ° C. for 1 minute.
- TAC triacetylcellulose
- the coating film is phase-separated into a low refractive index phase and an antifouling phase, and after removing the solvent (step (2)), it is cured by irradiation with ultraviolet rays at an irradiation dose of 200 mJ / cm 2 , A low refractive index layer and an antifouling layer were formed (step (3)) to obtain an antireflection film having a transparent substrate, a hard coat layer, a low refractive index layer, and an antifouling layer. During the curing, the solvent was almost completely evaporated, and the total thickness of the low refractive index layer and the antifouling layer was about 100 nm.
- XPS X-ray photoelectron spectroscopy
- Example 2 In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 2 for forming a low refractive index layer described below. Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method. Further, an atomic force microscope image (shape image and phase image) is shown in FIG.
- Composition 2 for forming a low refractive index layer Pentaerythritol triacrylate (PETA): 1.32 parts by mass Fluorine-containing compound * 1 : 1.32 parts by mass Hollow silica particle dispersion * 2 : 6.61 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl Isobutyl ketone: 61.03 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
- Example 3 In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 3 for forming a low refractive index layer described below. Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method. Further, an atomic force microscope image (shape image and phase image) is shown in FIG.
- Pentaerythritol triacrylate PETA: 0.12 parts by mass Fluorine-containing compound * 1 : 2.07 parts by mass Hollow silica particle dispersion * 2 : 6.28 parts by mass Solid silica particle dispersion * 3 : 0.7 mass Part Fluoropolymer * 4 : 2.62 parts by mass Fluoromonomer * 5 : 2.09 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 56.96 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
- PETA Pentaerythritol triacrylate
- Preparation Example 3 Preparation Example of Composition for Forming High Refractive Index Layer Rutile-type titanium oxide (“TTO51 (C) (trade name)”, manufactured by Ishihara Sangyo Co., Ltd., primary particle size: 0.01 to 0.03 ⁇ m): 10 parts by mass, anionic group-containing dispersant ("Disperbic 163 (trade name)", manufactured by Big Chemie Japan): 2 parts by mass, and methyl isobutyl ketone: 48 parts by mass in a mayonnaise bottle Produced. The resulting mixture was stirred for 10 hours with a paint shaker using about 4 times the amount of zirconia beads ( ⁇ 0.3 mm) to prepare a composition for forming a high refractive index layer.
- TTO51 (C) (trade name)
- anionic group-containing dispersant (“Disperbic 163 (trade name)", manufactured by Big Chemie Japan)
- methyl isobutyl ketone 48 parts by mass in a mayonnaise bottle Produced.
- Preparation Example 4 Preparation Example of Medium Refractive Index Layer Composition
- rutile titanium oxide was converted to antimony-doped tin oxide (“SN-100P (trade name)”, Ishihara Sangyo Co., Ltd.) and the preparation of the composition for forming a high refractive index layer except that the anionic group-containing dispersant is “Dispervic 111 (trade name)” (manufactured by Big Chemie Japan).
- SN-100P antimony-doped tin oxide
- the anionic group-containing dispersant is “Dispervic 111 (trade name)” (manufactured by Big Chemie Japan).
- Example 4 The hard coat layer forming composition 1 is bar coated on a triacetyl cellulose (TAC) resin film having a thickness of 80 ⁇ m, dried at 50 ° C. for 1 minute, and after removing the solvent, an ultraviolet irradiation device ( Using a fusion UV system Japan Co., Ltd. light source H bulb), an ultraviolet ray was irradiated at an irradiation dose of 30 mJ / cm 2 and cured to obtain a hard coat layer having a thickness of about 10 ⁇ m.
- TAC triacetyl cellulose
- the composition for forming a medium refractive index layer obtained in Preparation Example 4 is bar-coated, cured by irradiation with ultraviolet rays at an irradiation dose of 200 mJ / cm 2 , and a high thickness of about 120 nm.
- a refractive index layer is formed, and the composition for forming a high refractive index layer obtained in Preparation Example 3 is bar-coated, cured by irradiation with ultraviolet rays at an irradiation dose of 200 mJ / cm 2 , and a high refractive index of about 60 nm in thickness.
- a layer was formed.
- the following low refractive index layer-forming composition 4 is bar coated to form a coating film (step (1)), and subjected to a heat treatment at 50 ° C. for 1 minute so that the coating film is antifouling with a low refractive index phase.
- UV irradiation is performed at an irradiation dose of 200 mJ / cm 2 to cure to form a low refractive index layer and an antifouling layer (step (step (2)). 3)
- an antireflection film having a transparent substrate, a hard coat layer, a medium refractive index layer, a high refractive index layer, a low refractive index layer, and an antifouling layer was obtained.
- the solvent was almost completely evaporated, and the total thickness of the low refractive index layer and the antifouling layer was about 100 nm. Further, when the atomic ratio was measured by X-ray photoelectron spectroscopy (XPS), atoms contained in the fine particles in the low refractive index layer were also detected. Considering that the thickness of the X-ray photoelectron spectroscopy (XPS) antifouling layer is 1 to 3 nm, the thickness of the obtained antifouling layer is estimated to be in the range of 1 to 3 nm. Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method. Further, an atomic force microscope image (shape image and phase image) is shown in FIG.
- XPS X-ray photoelectron spectroscopy
- Composition 4 for forming a low refractive index layer Pentaerythritol triacrylate (PETA): 0.32 parts by mass Fluorine-containing compound * 1 : 0.71 parts by mass Hollow silica particle dispersion * 2 : 6.42 parts by mass Solid silica particle dispersion * 3 : 1.43 parts by mass Part Fluoropolymer * 4 : 3.21 parts by mass Fluoromonomer * 5 : 0.54 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 58.2 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
- PETA Pentaerythritol triacrylate
- Example 5 an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 5 for forming a low refractive index layer described below.
- Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method. Further, an atomic force microscope image (shape image and phase image) is shown in FIG.
- Pentaerythritol triacrylate PETA: 0.10 parts by mass Fluorine compound * 10 : 1.23 parts by mass Hollow silica particle dispersion * 2 : 6.69 parts by mass Solid silica particle dispersion * 3 : 0.74 parts by mass Part Fluoropolymer * 4 : 2.79 parts by mass Fluorine monomer * 5 : 2.23 parts by mass Photopolymerization initiator * 6 : 0.08 parts by mass Methyl isobutyl ketone: 57.04 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass * 10, “X-71-1205 (trade name)”: manufactured by Shin-Etsu Chemical Co., Ltd., 20% by mass solution (solvent: mixture of methyl isobutyl ketone and methyl ethyl ketone, photocurable reactive group: (meth) A fluorinated compound having an acryloyl group,
- Example 6 an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 6 for forming a low refractive index layer described below. Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method.
- Low refractive index layer-forming composition 6 Dipentaerythritol hexaacrylate (DPHA): 1.32 parts by mass Fluorine-containing compound * 1 : 1.32 parts by mass Hollow silica particle dispersion * 2 : 6.61 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 61.03 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
- DPHA Dipentaerythritol hexaacrylate
- Example 7 an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 7 for forming a low refractive index layer described below. Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method.
- Pentaerythritol triacrylate PETA: 0.10 parts by mass Fluorine-containing compound * 1 : 2.93 parts by mass Hollow silica particle dispersion * 2 : 5.86 parts by mass Solid silica particle dispersion * 3 : 0.65 mass Part Fluoropolymer * 4 : 2.44 parts by mass Fluoromonomer * 5 : 1.95 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 56.89 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
- PETA Pentaerythritol triacrylate
- Example 8 In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 8 for forming a low refractive index layer described below. Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method.
- Pentaerythritol triacrylate PETA: 1.32 parts by mass Fluorine-containing compound * 1 : 1.32 parts by mass Hollow silica particle dispersion * 2 : 6.61 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl Isobutyl ketone: 61.03 parts by mass Toluene: 29.1 parts by mass
- Example 9 In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 9 for forming a low refractive index layer described below. Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method.
- Example 1 an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 10 for forming a low refractive index layer described below.
- Table 2 The results obtained by evaluating the obtained antireflection film by the above evaluation method are shown in Table 2. Further, an atomic force microscope image (shape image and phase image) is shown in FIG.
- Composition 10 for forming a low refractive index layer Pentaerythritol triacrylate (PETA): 0.12 parts by mass Fluorine-containing compound * 1 : 0.52 parts by mass Hollow silica particle dispersion * 2 : 7.04 parts by mass Solid silica particle dispersion * 3 : 0.78 parts by mass Part Fluoropolymer * 4 : 2.93 parts by mass Fluoromonomer * 5 : 2.35 parts by mass Photopolymerization initiator * 6 : 0.08 parts by mass Methyl isobutyl ketone: 57.09 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
- PETA Pentaerythritol triacrylate
- Example 2 an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 11 for forming a low refractive index layer described below.
- Table 2 The results obtained by evaluating the obtained antireflection film by the above evaluation method are shown in Table 2. Further, an atomic force microscope image (shape image and phase image) is shown in FIG.
- Composition 11 for forming a low refractive index layer Pentaerythritol triacrylate (PETA): 0.09 parts by mass Fluorine-containing compound * 1 : 3.79 parts by mass Hollow silica particle dispersion * 2 : 5.44 parts by mass Solid silica particle dispersion * 3 : 0.6 mass Part Fluoropolymer * 4 : 2.27 parts by mass Fluoromonomer * 5 : 1.81 parts by mass Photopolymerization initiator * 6 : 0.06 parts by mass Methyl isobutyl ketone: 56.82 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
- PETA Pentaerythritol triacrylate
- Example 3 an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 12 for forming a low refractive index layer described below.
- Table 2 The results obtained by evaluating the obtained antireflection film by the above evaluation method are shown in Table 2. Further, an atomic force microscope image (shape image and phase image) is shown in FIG.
- Pentaerythritol triacrylate PETA
- Hollow silica particle dispersion * 2 6.42 parts by mass
- Solid silica particle dispersion * 3 1.43 parts by mass
- Fluoropolymer * 4 3.21 parts by mass Part
- Fluorinated monomer * 5 0.54 part by weight
- Photopolymerization initiator * 6 0.07 part by weight
- Methyl isobutyl ketone 58.2 parts by weight
- Propylene glycol monomethyl ether acetate 29.1 parts by weight
- Example 2 an antireflection film was obtained in the same manner as in Example 1 except that the composition 1 for forming a low refractive index layer was replaced with the composition 13 for forming a low refractive index layer described below.
- Table 2 The results obtained by evaluating the obtained antireflection film by the above evaluation method are shown in Table 2.
- Pentaerythritol triacrylate PETA: 2.64 parts by mass Fluorine-containing compound * 1 : 1.32 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 95.42 parts by mass
- Comparative Example 5 A solution having a solid content concentration of 3% by mass obtained by diluting the fluorine-containing compound used in Example 1 with metaxylene hexafluoride was prepared as an antifouling film deposition source.
- a hard coat layer forming composition 1 is gravure-coated on a triacetyl cellulose (TAC) resin film having a width of 500 mm, a thickness of 80 ⁇ m, and a length of 500 m, and the following low refractive index layer forming composition 13 is prepared. After gravure coating, drying at 70 ° C.
- TAC triacetyl cellulose
- a refractive index layer was formed to obtain a laminate having a transparent substrate / hard coat layer / low refractive index layer.
- the antifouling film deposition source and the laminate are set in a wind-up type vapor deposition apparatus, and after evacuation to 1e -4 Torr or less, winding of the laminate starts at a traveling speed of 5 m / min.
- the antifouling film deposition source was evaporated with a non-contact heating type lamp heater to form an antifouling film on the low refractive index layer side of the laminate to obtain an antireflection film.
- the results obtained by evaluating the obtained antireflection film by the above evaluation method are shown in Table 2.
- the antireflection films obtained in Examples 1 to 5 are excellent in all evaluations, have excellent antireflection characteristics, have excellent scratch resistance and antifouling properties, and can be whitened. And a uniform and uniform surface from the results of contact angle and sliding angle. Further, Examples 1 to 5 have a uniform and uniform surface from the average surface roughness or the result of observation by an atomic force microscope, and the antifouling layer covers the entire surface on the low refractive index layer. It was confirmed that the film was uniformly and uniformly formed so as to cover it. In Example 6 in which the binder resin was changed from PETA to DPHA, generally good physical properties were obtained. However, although the coated surface was generally uniform and uniform, the surface was slightly roughened and the scratch resistance was slightly decreased.
- Example 7 where the content of the fluorine-containing compound was large, generally good physical properties were obtained, but the surface state was generally uniform and uniform, but slightly roughened, and the scratch resistance was slightly decreased.
- Example 8 in which the glycol ether was replaced with toluene as the solvent, it was estimated that there was some influence on the dispersibility of the fine particles, and although the scratch resistance was slightly reduced, generally good results were obtained.
- the antifouling layer did not have a sea-island structure, and a good one without slight whitening was obtained. Was slightly inferior, and a slight distortion was confirmed. From this, it was confirmed that the fluorine-containing compound preferably has a silane unit.
- the total thickness of the low refractive index layer and the antifouling layer is about 100 nm, and the thickness of the antifouling layer is estimated to be in the range of 1 to 3 nm.
- Comparative Example 2 containing an excessive amount of the fluorine-containing compound, excessive phase separation occurs in the entire low refractive index layer, the entire surface of the low refractive index layer is extremely rough, and a uniform and uniform antifouling layer is not formed. It was. This roughness is considered to be caused by the excessive fluorine-containing compound as a result of the protrusions of the fine particles in the low refractive index layer, resulting in the entire surface of the layer. Moreover, since the average surface roughness is large and the amount of the fluorine-containing compound contained in the antifouling layer is large, the antifouling layer becomes soft, and if it is wiped off during the evaluation of the antifouling property, there is a scratch. Oops.
- Comparative Example 3 that does not contain a fluorine-containing compound and the fluorine atom / carbon atom ratio is smaller than 0.6, a uniform surface was obtained, but the amount of fluorine was small, so that the antifouling property was not sufficient. There wasn't.
- Comparative Example 4 is an example in which fine particles were not used, but the entire coating film turned white when the coating film was dried due to poor compatibility between the binder resin and the fluorine-containing compound, and evaluation was possible. There wasn't. From this result, it is understood that the function of the fine particles is indispensable in order to maintain the balance between the binder resin and the fluorine-containing compound that is incompatible with the binder resin and to obtain a final target configuration.
- Comparative Example 5 in which the antifouling layer was formed by vapor deposition, the antifouling property and the surface state were generally good, but the reactive functional group in the antifouling phase and the low refractive index phase as in the present invention were used. Since there was no reaction curing with any reactive functional group, the adhesion between the antifouling layer and the low refractive index layer after curing was weak and the scratch resistance was poor.
- an antireflection film having excellent antireflection properties, excellent scratch resistance, and antifouling properties, and suppressing the occurrence of slight whitening that has never been questioned. Can be easily manufactured.
- the obtained antireflection film is suitably provided in a polarizing plate and an image display device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
- Polarising Elements (AREA)
Abstract
Description
近年では上記のようなディスプレイの高性能化に伴い、反射防止フィルムも高性能化が求められており、とりわけ白化に対する要求が高くなっている。従来は、白化といえば一見して判別できるような、フィルムの透明性を低下させる程度の白化であり、そのような白化を低減させることが求められてきた。しかし、近年においては、従来の白化に加えて、一見すると高い透明性を有していると思わせるフィルムにおいて、当業者がようやく視認できる程度の、これまで問われることのなかった微かな白化の抑制が求められるようになっており、特許文献2によっては塗膜面が均一で一様ではなく若干歪む場合があるなど十分に対応しきれない場合があった。 In this respect, in
In recent years, with the improvement in performance of the display as described above, the antireflection film is also required to have high performance, and in particular, the demand for whitening is increasing. Conventionally, whitening is whitening to the extent that the transparency of the film is lowered, which can be discriminated at a glance, and it has been demanded to reduce such whitening. However, in recent years, in addition to the conventional whitening, in a film that seems to have a high transparency at first glance, the slight whitening that has never been questioned so far can be visually recognized by those skilled in the art. In some cases, the surface of the coating film is not uniform and uniform and may be slightly distorted.
防汚層は、その厚さをnmオーダー程度と非常に薄くすることが一般的であり、優れた防汚性に加えて、微かな白化の発生を抑制する必要があり、これを同時に満足させるには、防汚層を形成する成分として互いに相溶性を有するものを用いながら、さらに開発をしていかなければ達成しえないと考えられてきた。 In addition, as a technique for imparting antifouling properties to the film, a technique for forming an antifouling layer by depositing a perfluoropolyether group-containing silane coupling agent on a transparent film substrate provided with an antireflection layer has been proposed. (For example, Patent Document 3). In the method described in
The antifouling layer is generally very thin with a thickness on the order of nm, and in addition to excellent antifouling properties, it is necessary to suppress the occurrence of slight whitening, which satisfies this simultaneously. However, it has been thought that it cannot be achieved without further development while using components having compatibility with each other as components for forming the antifouling layer.
2.透明基材
3.低屈折率層
4.ハードコート層
5.中屈折率層
6.高屈折率層
7.中高屈折率層
8.防汚層 1. 1.
そこで、本発明者らは、従来のように相溶性の向上を図ることではなく、あえて相溶性が悪いフッ素原子を多く含む特定の含フッ素化合物を含む低屈折率層形成用組成物を用い、かつ該組成物を塗布した後に相分離させるという手法を採用し、フィルムの表面全体を該組成物で覆うように層を形成することにより、上記のような海島構造の発生が抑えられた平均面粗さが小さい均一で一様な低屈折率層を得ることができ、前記課題を解決し得ることを見出した。
更に、フッ素原子の含有量が多い含フッ素化合物は防汚性に優れるものの、相溶性が悪いため、樹脂組成物に含有して用いることは従来考えもしないことであったが、本願発明において該含フッ素化合物を用いることができるようになり、極めて優れた防汚性を得ることが可能となった。本発明は、かかる知見に基づいて完成したものである。 As a result of intensive studies to achieve the above object, the present inventors formed an antifouling layer by the method of
Therefore, the present inventors use a composition for forming a low refractive index layer containing a specific fluorine-containing compound containing a large number of fluorine atoms that are poorly compatible, rather than trying to improve compatibility as in the past. And by adopting a method of phase separation after applying the composition, by forming a layer so as to cover the entire surface of the film with the composition, an average surface in which the occurrence of the sea island structure as described above is suppressed It has been found that a uniform and uniform low refractive index layer having a small roughness can be obtained and the above-mentioned problems can be solved.
Furthermore, although fluorine-containing compounds with a high fluorine atom content are excellent in antifouling properties, they are poorly compatible, so it has never been considered to be used in resin compositions. Fluorine-containing compounds can be used, and extremely excellent antifouling properties can be obtained. The present invention has been completed based on such findings.
〔1〕以下の工程(1)~(3)を順に含む、少なくとも透明基材、低屈折率層、及び防汚層を順に有し、該防汚層側からX線光電子分光法(XPS)により測定したフッ素原子/炭素原子比が0.6~1.0であり、かつケイ素原子/炭素原子比が0.25未満であり、該防汚層の平均面粗さ(Ra’)が10nm以下である反射防止フィルムの製造方法、
工程(1)含フッ素化合物、微粒子及びバインダー樹脂を少なくとも含有する低屈折率層形成用組成物を透明基材上に塗布して塗膜を形成する工程
工程(2)該塗膜を低屈折率相と防汚相とに相分離させる工程
工程(3)該低屈折率相と該防汚相とを加熱して、又は該低屈折率相と該防汚相とに電離放射線を照射して、低屈折率層と該低屈折率層の全面を覆う防汚層とを形成する工程
〔2〕上記〔1〕に記載の反射防止フィルムの製造方法により製造される反射防止フィルム、
〔3〕偏光膜の少なくとも片面に反射防止フィルムを有し、該反射防止フィルムが上記〔2〕に記載の反射防止フィルムである、偏光板、及び
〔4〕反射防止フィルム、又は偏光膜の少なくとも片面に反射防止フィルムを有する偏光板をディスプレイの最表面に有し、該反射防止フィルムが上記〔2〕に記載の反射防止フィルムである、画像表示装置、
を提供するものである。 That is, the present invention
[1] It includes at least a transparent substrate, a low refractive index layer, and an antifouling layer in order, which include the following steps (1) to (3) in order, and X-ray photoelectron spectroscopy (XPS) from the antifouling layer side The fluorine atom / carbon atom ratio measured by the above is 0.6 to 1.0, the silicon atom / carbon atom ratio is less than 0.25, and the average surface roughness (Ra ′) of the antifouling layer is 10 nm. A method for producing an antireflection film,
Step (1) Step of forming a coating film by applying a composition for forming a low refractive index layer containing at least a fluorine-containing compound, fine particles and a binder resin on a transparent substrate (2) Low coating film with a low refractive index (3) Heating the low refractive index phase and the antifouling phase, or irradiating the low refractive index phase and the antifouling phase with ionizing radiation A step of forming a low refractive index layer and an antifouling layer covering the entire surface of the low refractive index layer [2] an antireflection film produced by the method of producing an antireflection film according to [1],
[3] A polarizing plate having an antireflection film on at least one surface of the polarizing film, wherein the antireflection film is the antireflection film according to [2], and [4] at least one of the antireflection film and the polarizing film. An image display device having a polarizing plate having an antireflection film on one surface on the outermost surface of the display, wherein the antireflection film is the antireflection film according to [2] above,
Is to provide.
本発明の反射防止フィルムの製造方法は、工程(1)含フッ素化合物、微粒子及びバインダー樹脂を少なくとも含有する低屈折率層形成用組成物を透明基材上に塗布して塗膜を形成する工程、工程(2)該塗膜を低屈折率相と防汚相とに相分離させる工程、及び工程(3)該低屈折率相と該防汚相とを加熱して、又は該低屈折率相と該防汚相とに電離放射線を照射して、低屈折率層と該低屈折率層の全面を覆う防汚層とを形成する工程を順に含み、少なくとも透明基材、低屈折率層、及び防汚層を順に有し、該防汚層側からX線光電子分光法(XPS)により測定したフッ素原子/炭素原子比が0.6~1.0であり、かつケイ素原子/炭素原子比が0.25未満であり、該防汚層の平均面粗さ(Ra’)が10nm以下である反射防止フィルムを製造する方法である。
工程(2)で形成する低屈折率相及び防汚相は、低屈折率層形成用組成物を塗布した塗膜内に形成する相であり、低屈折率層形成用組成物中のバインダー樹脂は未硬化の状態にあり、また、該組成物中に好ましく含まれる溶剤は相分離を完了する程度に蒸発した状態にある。一方、これらの相は、工程(3)を経ることにより、該層中ではバインダー樹脂は硬化した状態となり、溶剤は蒸発してその大半は存在していない、低屈折率層及び防汚層となる。そこで、本発明においては、塗膜中に存在する状態を低屈折率相、防汚相と称し、工程(3)を経ることで各々低屈折率層、防汚層と称することとする。なお、本発明において、未硬化の状態とは低屈折率層形成用組成物が物理的に流動性を有する状態、すなわち粘度を測定しうる状態であることをいい、硬化した状態とは低屈折率層形成用組成物が物理的に流動性を有しない状態、すなわち粘度を測定しえない状態であることをいう。
以下、各工程について説明する。 [Method for producing antireflection film]
The method for producing an antireflection film of the present invention comprises a step (1) of forming a coating film by applying a composition for forming a low refractive index layer containing at least a fluorine-containing compound, fine particles and a binder resin on a transparent substrate. Step (2) Step of separating the coating film into a low refractive index phase and an antifouling phase, and Step (3) heating the low refractive index phase and the antifouling phase, or the low refractive index. A step of irradiating the phase and the antifouling phase with ionizing radiation to form a low refractive index layer and an antifouling layer covering the entire surface of the low refractive index layer in order, at least a transparent substrate, a low refractive index layer And an antifouling layer in order, the fluorine atom / carbon atom ratio measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer side is 0.6 to 1.0, and silicon atom / carbon atom The antireflection film having a ratio of less than 0.25 and an average surface roughness (Ra ′) of the antifouling layer of 10 nm or less This is a method for manufacturing a product.
The low refractive index phase and the antifouling phase formed in the step (2) are phases formed in the coating film coated with the low refractive index layer forming composition, and the binder resin in the low refractive index layer forming composition. Is in an uncured state, and the solvent preferably contained in the composition is in an evaporated state to the extent that phase separation is completed. On the other hand, these phases pass through the step (3), so that the binder resin is cured in the layer, the solvent is evaporated, and most of them are not present. Become. Therefore, in the present invention, the states present in the coating film are referred to as a low refractive index phase and an antifouling phase, and are referred to as a low refractive index layer and an antifouling layer through the step (3), respectively. In the present invention, the uncured state means a state in which the composition for forming a low refractive index layer has physical fluidity, that is, a state where viscosity can be measured, and a cured state means low refraction. It means that the composition for forming the rate layer does not have physical fluidity, that is, a state in which the viscosity cannot be measured.
Hereinafter, each step will be described.
工程(1)は、含フッ素化合物、微粒子及びバインダー樹脂を少なくとも含有する低屈折率層形成用組成物を透明基材上に塗布して塗膜を形成する、塗膜形成工程である。
本発明において、塗膜形成工程は、好ましくは、透明基材を準備し、これとは別に、低屈折率層形成用組成物を調製し、該透明基材に該低屈折率層形成用組成物を塗布することにより行われる。 (Process (1))
Step (1) is a coating film forming process in which a coating film is formed by applying a composition for forming a low refractive index layer containing at least a fluorine-containing compound, fine particles and a binder resin on a transparent substrate.
In the present invention, the coating film forming step preferably comprises preparing a transparent substrate, and separately preparing a composition for forming a low refractive index layer, and forming the composition for forming a low refractive index layer on the transparent substrate. This is done by applying an object.
低屈折率層形成用組成物は、後述する含フッ素化合物、微粒子、バインダー樹脂、及び好ましく用いられる含フッ素ポリマーや各種添加剤などを、均質に混合して、必要に応じて溶剤に溶解させて調製する。
該低屈折率形成用組成物は、生産性を考慮すると溶剤に溶解させた液状であることが好ましい。液状の低屈折率層形成用組成物の粘度は、後述の塗工方式により、透明基材の表面に塗膜を形成し得る粘度であればよく、特に制限はない。 (Preparation of composition for forming low refractive index layer)
The composition for forming a low refractive index layer is prepared by mixing homogeneously the fluorine-containing compound, fine particles, binder resin, and preferably used fluorine-containing polymer and various additives described later, and dissolving them in a solvent as necessary. Prepare.
The low refractive index forming composition is preferably in the form of a liquid dissolved in a solvent in consideration of productivity. The viscosity of the liquid composition for forming a low refractive index layer is not particularly limited as long as it is a viscosity capable of forming a coating film on the surface of the transparent substrate by a coating method described later.
塗膜の形成は、上記のようにして調製された低屈折率層形成用組成物を、透明基材の表面に、硬化後の厚さが後述する所定の厚さとなるように、グラビアコート、バーコート、ロールコート、リバースロールコート、コンマコート、ダイコートなどの公知の方式、好ましくはグラビアコート、ダイコートにより塗布して行う。
次に、透明基材、及び低屈折率層形成用組成物を形成する各成分について説明する。 (Formation of coating film)
The formation of the coating film is a gravure coat with a composition for forming a low refractive index layer prepared as described above, on the surface of the transparent substrate, so that the thickness after curing becomes a predetermined thickness described later, The coating is performed by a known method such as bar coating, roll coating, reverse roll coating, comma coating or die coating, preferably gravure coating or die coating.
Next, each component which forms a transparent base material and the composition for low-refractive-index layer formation is demonstrated.
本発明で用いられる透明基材は、一般的に反射防止膜の基材として用いられる透明なものであれば特に限定されないが、好ましくはプラスチックフィルム、プラスチックシートなどを用途に応じて適宜選択することができる。 (Transparent substrate)
The transparent substrate used in the present invention is not particularly limited as long as it is a transparent substrate generally used as a substrate for an antireflection film, but preferably a plastic film, a plastic sheet or the like is appropriately selected according to the application. Can do.
透明基材の厚さについては特に制限はないが、通常5~1000μm程度であり、耐久性やハンドリング性などを考慮すると、15~80μmが好ましく、20~60μmがより好ましい。 As the transparent substrate, it can be used alone or in a mixture of two or more of the above-described plastic film and plastic sheet, but from the viewpoint of mechanical strength, polyethylene terephthalate resin and acrylic resin are preferable, From the viewpoint of optical anisotropy, triacetyl cellulose resin and cyclopolyolefin are preferable.
The thickness of the transparent substrate is not particularly limited, but is usually about 5 to 1000 μm, and is preferably 15 to 80 μm and more preferably 20 to 60 μm in view of durability and handling properties.
本発明において用いられる低屈折率層形成用組成物は、含フッ素化合物、微粒子及びバインダー樹脂を含有する樹脂組成物である。以下、各成分について説明する。 (Composition for forming a low refractive index layer)
The composition for forming a low refractive index layer used in the present invention is a resin composition containing a fluorine-containing compound, fine particles and a binder resin. Hereinafter, each component will be described.
低屈折率層形成用組成物は、本発明の反射防止フィルムに防汚層を形成する目的で、含フッ素化合物を含む。本発明で用いられる含フッ素化合物としては、反応性基及びパーフルオロポリエーテル基を有する化合物が好ましく、なかでも反応性基を有するシラン単位、及びパーフルオロポリエーテル基を有するシラン単位を含む化合物が好ましく挙げられる。本発明において、含フッ素化合物が反応性基を有することで、組成物中の他の成分と結合しやすくなるため、より強固な層を形成することが可能となり、結果として薄く、耐擦傷性に優れた層が得られる。なお、本発明において反射防止フィルム最表面の耐擦傷性が優れるとは、最表面の層がその下層との密着性にも同時に優れていることをいう。すなわち、低屈折率層形成用組成物中の含フッ素化合物が、低屈折率相及び防汚相に該防汚相により多量となるように存在し、後述する工程(3)において硬化する際に、各相に含まれる該含フッ素化合物中の反応性基同士が反応することにより、低屈折率層と防汚層との非常に優れた密着性が得られる。さらに、該含フッ素化合物の反応性基とバインダー樹脂の反応性基との反応や、バインダー樹脂自体の硬化により、防汚層の密着性が更に向上し、かつ硬度が高くなり、総合的に耐擦傷性が非常に優れた層となる。
また、上記のようなシラン単位を含む化合物は、低屈折率相に含まれる微粒子と親和性を有するため、低屈折率相の表面に防汚相が形成する際に、該表面の全面にわたって濡れ性を付与することができ、また溶剤が相中からほぼ蒸発した状態においても濡れ性を保持できるので、該表面の全面に均一で一様な防汚層を得る点で重要である。さらに、このような化合物は柔軟であるため、滑り性が向上するので、耐擦傷性に優れた層が得られる。そして、親和性を有することから、継続して安定的に濡れ性が得られるため、溶剤が蒸発するときにハジキを生じたり、海島構造が生じたり、これらに起因した微かな白化の発生を抑えることが可能となる。さらに、シラン単位とパーフルオロエーテル基を同一分子内に有する含フッ素化合物を用いることで、シラン単位とパーフルオロポリエーテルとの相分離を抑制し、より一層、均一で一様な表面が得られやすくなる。ここで、シラン単位は、以下の一般式(1)で示される単位である。 (Fluorine-containing compounds)
The composition for forming a low refractive index layer contains a fluorine-containing compound for the purpose of forming an antifouling layer on the antireflection film of the present invention. As the fluorine-containing compound used in the present invention, a compound having a reactive group and a perfluoropolyether group is preferable, and among them, a silane unit having a reactive group and a compound containing a silane unit having a perfluoropolyether group are preferable. Preferably mentioned. In the present invention, since the fluorine-containing compound has a reactive group, it becomes easy to bond with other components in the composition, so that it is possible to form a stronger layer, and as a result, it is thin and scratch resistant. An excellent layer is obtained. In the present invention, that the scratch resistance of the outermost surface of the antireflection film is excellent means that the outermost layer is also excellent in adhesion to the lower layer at the same time. That is, when the fluorine-containing compound in the composition for forming a low refractive index layer is present in the low refractive index phase and the antifouling phase so as to be abundant in the antifouling phase and is cured in the step (3) described later. When the reactive groups in the fluorine-containing compound contained in each phase react with each other, very excellent adhesion between the low refractive index layer and the antifouling layer can be obtained. Furthermore, the reaction between the reactive group of the fluorine-containing compound and the reactive group of the binder resin, and the curing of the binder resin itself further improve the adhesion of the antifouling layer, increase the hardness, and improve the overall resistance. It becomes a layer with excellent scratch resistance.
In addition, since the compound containing a silane unit as described above has an affinity with the fine particles contained in the low refractive index phase, when the antifouling phase is formed on the surface of the low refractive index phase, the entire surface is wetted. It is important in that a uniform and uniform antifouling layer can be obtained on the entire surface because the wettability can be maintained even when the solvent is almost evaporated from the phase. Furthermore, since such a compound is flexible, the slipperiness is improved, so that a layer having excellent scratch resistance can be obtained. And since it has affinity, wettability can be obtained stably and continuously, so that when the solvent evaporates, cissing occurs, a sea-island structure occurs, and slight whitening caused by these is suppressed. It becomes possible. Furthermore, by using a fluorine-containing compound having a silane unit and a perfluoroether group in the same molecule, phase separation between the silane unit and the perfluoropolyether is suppressed, and a more uniform and uniform surface can be obtained. It becomes easy. Here, the silane unit is a unit represented by the following general formula (1).
含フッ素化合物の含有量が5質量部以上であると含フッ素化合物で表面全面を均一で一様な防汚層で覆うことができるので、海島構造が発現することなく、微かな白化も生じない。また、30質量部以下であると、塗膜面が平坦ではなく、凹凸が表れるなどの塗膜面の荒れを生じることがなく均一で一様な防汚層が得られ、また微かな白化を生じることもなく、優れた耐擦傷性が得られる。すなわち、含フッ素化合物の含有量を上記の範囲内とすることにより、平均面粗さ(Ra’)が10nm以下という均一で一様であり、平滑な防汚層が得られる。
これと同様の理由から、含フッ素化合物の含有量は、5~20質量部がより好ましく、5~15質量部、最大含有量としては10質量部がさらに好ましい。最大含有量を10質量部とすることにより、後述する平均面粗さ(Ra’)をさらに5nm以下とすることが可能となり、より一層滑らかな表面となり耐擦傷性も良好にすることができる。 The solid content of the fluorine-containing compound is the total amount (solid) of fine particles described later in the composition for forming a low refractive index layer and a binder resin (including these when a fluorine-containing monomer and a fluorine-containing polymer are used). Min) It is preferably 5 to 30 parts by mass with respect to 100 parts by mass. In addition, although a fluorine-containing compound, microparticles | fine-particles, and binder resin are commercially available, it is common to be sold in the form contained in a solvent. In that case, the amount of these solids is the amount obtained by removing the solvent from the total amount of the commercial product. For example, the photopolymerization initiator is one of arbitrary solids contained in the composition, but is not used for calculating the content of the fluorine-containing compound.
When the content of the fluorine-containing compound is 5 parts by mass or more, the entire surface can be covered with a uniform and uniform antifouling layer with the fluorine-containing compound, so that the sea-island structure does not appear and slight whitening does not occur. . Moreover, if it is 30 parts by mass or less, the coating film surface is not flat, and the coating film surface is not rough, such as unevenness, and a uniform and uniform antifouling layer can be obtained. Excellent scratch resistance is obtained without any occurrence. That is, by setting the content of the fluorine-containing compound within the above range, an average surface roughness (Ra ′) of 10 nm or less is uniform and uniform, and a smooth antifouling layer is obtained.
For the same reason, the content of the fluorine-containing compound is more preferably 5 to 20 parts by mass, and the maximum content is more preferably 10 parts by mass. By setting the maximum content to 10 parts by mass, the average surface roughness (Ra ′) described later can be further reduced to 5 nm or less, and a smoother surface can be obtained and the scratch resistance can be improved.
低屈折率層形成用組成物は、微粒子を含有する。微粒子は、層の屈折率を低下させるため、すなわち反射防止特性を向上させる目的で用いられるものである。
微粒子としては、無機系、有機系のいずれであっても制限なく用いることができ、反射防止特性をより向上させ、かつ良好な表面硬度を確保する観点から、材質の点からはシリカ微粒子、フッ化マグネシウム微粒子などが好ましく挙げられ、形状の点からは球状であり、かつそれ自身が空隙を有する微粒子が好ましく用いられる。また、空隙を有する場合には、通常バインダー樹脂の硬化膜よりも高屈折率であるアルミナ微粒子を用いることも可能である。
これらのなかでも、材質の点からは、湿熱への耐久性などを考慮するとシリカ微粒子が好ましい。本発明において、低屈折率層の全面に防汚層が被覆するように形成するには、これらの層を形成する材料の組み合わせが重要な条件の一つとなる。微粒子は低屈折率層の表面全面においてほぼ細密充填された状態で存在するため、該低屈折率層の表面の性状は微粒子の影響を受ける傾向にある。低屈折率層に含まれる微粒子と、防汚層を形成する材料との親和性は高いほど、防汚層は該低屈折率層の全面に覆うように形成しやすくなる。これは、低屈折率相から防汚相が相分離する際に、該防汚相が低屈折率相の表面の全面に濡れ性を有し、かつ工程(3)が完了するまで濡れ性を保持できるようになるからである。このような観点から、微粒子がシリカを材料とするシリカ微粒子であり、含フッ素化合物がシラン単位、さらにはシロキサン単位を有する、すなわちシリカ原子を含む含フッ素化合物であるという組み合わせが特に好ましい。 (Fine particles)
The composition for forming a low refractive index layer contains fine particles. The fine particles are used for decreasing the refractive index of the layer, that is, for the purpose of improving the antireflection characteristics.
Fine particles can be used without limitation whether they are inorganic or organic. From the viewpoint of improving the antireflection properties and ensuring good surface hardness, silica fine particles and fluoro Preferred examples thereof include magnesium halide fine particles, and fine particles having a spherical shape from the point of shape and having voids themselves are preferably used. Moreover, when it has a space | gap, it is also possible to use the alumina fine particle which is normally higher refractive index than the cured film of binder resin.
Among these, silica fine particles are preferable from the viewpoint of the material in consideration of durability to wet heat. In the present invention, in order to form an antifouling layer on the entire surface of the low refractive index layer, a combination of materials forming these layers is one of the important conditions. Since the fine particles are present in a nearly densely packed state over the entire surface of the low refractive index layer, the surface properties of the low refractive index layer tend to be affected by the fine particles. The higher the affinity between the fine particles contained in the low refractive index layer and the material forming the antifouling layer, the easier the antifouling layer is formed to cover the entire surface of the low refractive index layer. This is because when the antifouling phase is phase-separated from the low refractive index phase, the antifouling phase has wettability over the entire surface of the low refractive index phase, and the wettability remains until step (3) is completed. This is because it can be held. From such a viewpoint, a combination in which the fine particles are silica fine particles made of silica and the fluorine-containing compound has a silane unit and further a siloxane unit, that is, a fluorine-containing compound containing a silica atom is particularly preferable.
上記のような空隙を有するシリカ、あるいは多孔質シリカは、その屈折率が1.20~1.44程度であり、屈折率が1.45程度である一般的なシリカ微粒子よりも屈折率が低いため、低屈折率層の低屈折率化の観点から好ましい。 Fine particles having voids themselves have fine voids on the outside and inside, and are filled with a gas such as air having a refractive index of 1.0, for example, so that the refractive index of the particles itself is low. Have. Examples of such fine particles having voids include inorganic or organic porous fine particles and hollow fine particles. For example, porous silica fine particles, hollow silica fine particles, porous polymer fine particles using acrylic resin, etc. Polymer fine particles are preferred. As the inorganic fine particles, silica fine particles having voids prepared using the technique disclosed in Japanese Patent Laid-Open No. 2001-233611 are used, and as the organic fine particles, the technique disclosed in Japanese Patent Laid-Open No. 2002-80503 is disclosed. A hollow polymer fine particle prepared by using, for example, can be mentioned as a preferred example.
Silica having voids as described above or porous silica has a refractive index of about 1.20 to 1.44, and a refractive index lower than that of general silica fine particles having a refractive index of about 1.45. Therefore, it is preferable from the viewpoint of lowering the refractive index of the low refractive index layer.
このような微粒子としては、上記したシリカの微粒子や、比表面積を大きくすることを目的として製造され、充填用カラム及び表面の多孔質部に各種化学物質を吸収させる除放材、触媒固定用に使用される多孔質微粒子、又は断熱材や低誘電材に用いられることを目的とする中空微粒子の分散体や凝集体などが挙げられる。具体例としては、例えば「Nipsil(商品名)」、「Nipgel(商品名)」:日本シリカ工業株式会社製や、「コロイダルシリカUPシリーズ(商品名)」:日産化学工業株式会社などが挙げられる。 Further, as the fine particles, fine particles capable of forming a nanoporous structure in at least a part of the inside and / or the surface depending on the form, structure, aggregated state, and dispersed state in the film are also preferable.
Such fine particles are produced for the purpose of increasing the specific surface area of the above-mentioned silica fine particles, and are used for the release column for absorbing various chemical substances in the packing column and the porous portion of the surface, and for fixing the catalyst. Examples thereof include porous fine particles used, and dispersions and aggregates of hollow fine particles intended to be used for heat insulating materials and low dielectric materials. Specific examples include “Nipsil (trade name)”, “Nipgel (trade name)” manufactured by Nippon Silica Industry Co., Ltd., “Colloidal Silica UP Series (trade name)”: Nissan Chemical Industries, Ltd., and the like. .
中実粒子の含有量は、低屈折率層の要求される耐擦傷性、屈折率等に応じて適宜調節すれば良い。例えば、低屈折率層用組成物の全固形分の合計質量に対して、1~30質量%であることが好ましく、5~20質量%であることがより好ましい。
上記空隙を有する微粒子と同様に表面処理を行っていることが耐擦傷性・透明性の観点から望ましい。 In the present invention, solid fine particles having no voids can be used at the same time for the purpose of improving the scratch resistance. The average primary particle size of the solid fine particles is preferably 1 to 200 nm, more preferably 1 to 100 nm, and even more preferably 5 to 20 nm. If it is 1 nm or less, the contribution to the surface hardness improvement is small, and if it is 200 nm or more, the transparency of the low refractive index layer is impaired, and it is difficult to obtain a good dispersed state of fine particles.
The content of the solid particles may be appropriately adjusted according to the scratch resistance, refractive index and the like required for the low refractive index layer. For example, the content is preferably 1 to 30% by mass and more preferably 5 to 20% by mass with respect to the total mass of the total solid content of the low refractive index layer composition.
It is desirable from the viewpoint of scratch resistance and transparency that the surface treatment is performed in the same manner as the fine particles having voids.
低屈折率層形成用組成物は、成膜性や膜強度などの観点から、バインダー樹脂を含有する。バインダー樹脂としては、上記した含フッ素化合物、微粒子をはじめとし、必要に応じて加えられるその他の成分などを低屈折率層の層中に、加熱あるいは紫外線、電子線などの電離放射線を照射することにより硬化することで固定化できる樹脂が好ましく挙げられる。また、本発明においては、上記の含フッ素化合物を効率的に相分離させて、低屈折率層を完全に覆う防汚層が得られるように、該含フッ素化合物との相溶性が低い樹脂が好ましい。
より具体的には、バインダー樹脂としては、例えば、メラミン系、ユリア系、エポキシ系、ケトン系、ジアリルフタレート系、不飽和ポリエステル系、及びフェノール系などの熱硬化性樹脂、あるいは電離放射線硬化性樹脂が好ましく挙げられる。なかでも、電離放射線硬化性樹脂が好ましい。 (Binder resin)
The composition for forming a low refractive index layer contains a binder resin from the viewpoints of film formability and film strength. As the binder resin, the low refractive index layer is irradiated with ionizing radiation such as ultraviolet rays and electron beams into the layer of the low refractive index layer, including the above-mentioned fluorine-containing compounds and fine particles, as well as other components added as necessary. Preferred is a resin that can be fixed by being cured. In the present invention, a resin having a low compatibility with the fluorine-containing compound is used so that the above fluorine-containing compound is efficiently phase-separated to obtain an antifouling layer that completely covers the low refractive index layer. preferable.
More specifically, examples of the binder resin include thermosetting resins such as melamine, urea, epoxy, ketone, diallyl phthalate, unsaturated polyester, and phenol, or ionizing radiation curable resins. Are preferred. Among these, ionizing radiation curable resins are preferable.
多官能性(メタ)アクリレートモノマーとしては、分子内にエチレン性不飽和結合を2個以上有する(メタ)アクリレートモノマーであればよく、特に制限はない。具体的にはエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、ジシクロペンタニルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレートなどの2官能の(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレートなどの3官能の(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの4官能以上の(メタ)アクリレート;上記した多官能性(メタ)アクリレートモノマーのエチレンオキシド変性品、カプロラクトン変性品、プロピオン酸変性品などが好ましく挙げられる。
これらのなかでも、優れた耐擦傷性が得られる観点から、3官能以上の(メタ)アクリレートが好ましい。これらの多官能性(メタ)アクリレートモノマーは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。より具体的には、本発明において防汚性、耐擦傷性(密着性)、微かな白化防止性など目的の効果を好ましく得ることができるのは、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレートなどの3官能の(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの4官能以上の(メタ)アクリレートが好ましく、特に好ましいのはペンタエリスリトールトリ(メタ)アクリレートである。 As the polymerizable monomer, a (meth) acrylate monomer having a radically polymerizable unsaturated group in the molecule is preferable, and a polyfunctional (meth) acrylate monomer is particularly preferable.
The polyfunctional (meth) acrylate monomer is not particularly limited as long as it is a (meth) acrylate monomer having two or more ethylenically unsaturated bonds in the molecule. Specifically, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, pentaerythritol di (meth) acrylate monostearate, dicyclopentanyl di (meth) acrylate, isocyanurate di (meth) acrylate, etc. Bifunctional (meth) acrylate; trifunctional (meth) acrylate such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris (acryloxyethyl) isocyanurate; pentaerythritol tetra (meth) acrylate , Dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. Acrylate; the above-mentioned polyfunctional (meth) acrylate monomers of ethylene oxide-modified products, caprolactone modified products, such as propionic acid-modified products are preferably exemplified.
Among these, a trifunctional or higher functional (meth) acrylate is preferable from the viewpoint of obtaining excellent scratch resistance. These polyfunctional (meth) acrylate monomers may be used individually by 1 type, and may be used in combination of 2 or more type. More specifically, in the present invention, the desired effects such as antifouling property, scratch resistance (adhesiveness), and slight whitening prevention property can be obtained preferably by trimethylolpropane tri (meth) acrylate, pentaerythritol. Trifunctional (meth) acrylates such as tri (meth) acrylate and tris (acryloxyethyl) isocyanurate; pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, A tetra- or higher functional (meth) acrylate such as dipentaerythritol hexa (meth) acrylate is preferable, and pentaerythritol tri (meth) acrylate is particularly preferable.
本発明で用いられる低屈折率層形成用組成物は、屈折率を低下させる観点から、含フッ素ポリマーを含むことが好ましい。含フッ素ポリマーとしては、例えば(メタ)アクリル酸の部分及び完全フッ素化アルキル、アルケニル、アリールエステル類、完全又は部分フッ素化ビニルエーテル類、完全又は部分フッ素化ビニルエステル類、完全又は部分フッ素化ビニルケトン類などが好ましく挙げられる。
また、含フッ素ポリマーとしては、フッ素のほかにケイ素を含むものが好ましく、例えば、共重合体にシリコーン成分を含有させたシリコーン含有フッ化ビニリデン共重合体が好ましく挙げられる。この場合のシリコーン成分としては、(ポリ)ジメチルシロキサン、(ポリ)ジエチルシロキサン、(ポリ)ジフェニルシロキサン、(ポリ)メチルフェニルシロキサン、アルキル変性(ポリ)ジメチルシロキサン、アゾ基含有(ポリ)ジメチルシロキサンや、ジメチルシリコーン、フェニルメチルシリコーン、アルキル・アラルキル変性シリコーン、フルオロシリコーン、ポリエーテル変性シリコーン、脂肪酸エステル変性シリコーン、メチル水素シリコーン、シラノール基含有シリコーン、アルコキシ基含有シリコーン、フェノール基含有シリコーン、メタクリル変性シリコーン、アクリル変性シリコーン、アミノ変性シリコーン、カルボン酸変性シリコーン、カルビノール変性シリコーン、エポキシ変性シリコーン、メルカプト変性シリコーン、フッ素変性シリコーン、ポリエーテル変性シリコーンなどが挙げられる。なかでも、ジメチルシロキサン構造を有するものが好ましい。 (Fluoropolymer)
The composition for forming a low refractive index layer used in the present invention preferably contains a fluorine-containing polymer from the viewpoint of reducing the refractive index. Examples of the fluorine-containing polymer include (meth) acrylic acid moieties and fully fluorinated alkyl, alkenyl, aryl esters, fully or partially fluorinated vinyl ethers, fully or partially fluorinated vinyl esters, and fully or partially fluorinated vinyl ketones. Etc. are preferred.
Moreover, as a fluorine-containing polymer, what contains silicon other than a fluorine is preferable, for example, the silicone containing vinylidene fluoride copolymer which made the copolymer contain the silicone component is mentioned preferably. Examples of silicone components in this case include (poly) dimethylsiloxane, (poly) diethylsiloxane, (poly) diphenylsiloxane, (poly) methylphenylsiloxane, alkyl-modified (poly) dimethylsiloxane, azo group-containing (poly) dimethylsiloxane, , Dimethyl silicone, phenylmethyl silicone, alkyl aralkyl modified silicone, fluorosilicone, polyether modified silicone, fatty acid ester modified silicone, methyl hydrogen silicone, silanol group containing silicone, alkoxy group containing silicone, phenol group containing silicone, methacryl modified silicone, Acrylic modified silicone, amino modified silicone, carboxylic acid modified silicone, carbinol modified silicone, epoxy modified silicone, mercapto modified silicone Corn, fluorine-modified silicones, polyether-modified silicone. Of these, those having a dimethylsiloxane structure are preferred.
本発明で用いられる低屈折率層形成用組成物は、屈折率を低下させる観点から、含フッ素モノマーを含むことが好ましい。含フッ素モノマーは、効率よく硬化して低屈折率層を形成し、かつ優れた硬度が得られる観点から、1分子中に反応性官能基を2以上有することが好ましい。このような含フッ素モノマーとしては、ペンタエリスリトール骨格を有する含フッ素モノマー、ジペンタエリスリトール骨格を有する含フッ素モノマー、トリメチロールプロパン骨格を有する含フッ素モノマー、シクロヘキシル骨格を有する含フッ素モノマー、直鎖状骨格を有する含フッ素モノマーなどが好ましく挙げられる。これらのなかでも、ペンタエリスリトール骨格を有する化合物であることが好ましい。 (Fluorine-containing monomer)
The composition for forming a low refractive index layer used in the present invention preferably contains a fluorine-containing monomer from the viewpoint of reducing the refractive index. The fluorine-containing monomer preferably has two or more reactive functional groups in one molecule from the viewpoint of efficiently curing to form a low refractive index layer and obtaining excellent hardness. Examples of such a fluorinated monomer include a fluorinated monomer having a pentaerythritol skeleton, a fluorinated monomer having a dipentaerythritol skeleton, a fluorinated monomer having a trimethylolpropane skeleton, a fluorinated monomer having a cyclohexyl skeleton, and a linear skeleton. Preferred are fluorine-containing monomers having Among these, a compound having a pentaerythritol skeleton is preferable.
本発明で用いられる低屈折率層形成用組成物には、所望される物性に応じて、各種添加剤が配合される。添加剤としては、例えば耐候性改善剤、耐摩耗性向上剤、重合禁止剤、架橋剤、赤外線吸収剤、接着性向上剤、酸化防止剤、レベリング剤、チクソ性付与剤、カップリング剤、可塑剤、消泡剤、充填剤、溶剤などが好ましく挙げられる。 (Various additives)
Various additives are blended in the composition for forming a low refractive index layer used in the present invention in accordance with desired physical properties. Examples of the additive include a weather resistance improver, an abrasion resistance improver, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an adhesion improver, an antioxidant, a leveling agent, a thixotropic agent, a coupling agent, and a plasticizer. Preferable examples include agents, antifoaming agents, fillers, and solvents.
また、低屈折率層形成用組成物に好ましく用いられる溶剤としては、特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)などのアルコール類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチルなどのエステル類;ハロゲン化炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルなどのグリコールエーテル類、あるいはこれらの混合物などが好ましく挙げられる。これらのなかでも、含フッ素化合物と親和性が高いケトン類、グリコールエーテル類が好ましく、特に好ましい溶剤は、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートである。これらを単独または混合して用いることによって、組成物中の各化合物の分散性を維持でき、かつ相分離工程(2)において低屈折率相と防汚相との相分離を好ましく完了させることができる。
また、ケトン類やグリコールエーテル類以外の溶剤を用いる場合には、ケトン類またはグリコールエーテル類を全溶剤量の少なくとも50%以上、好ましくは70%以上含有することが好ましい。特にケトン類を用いた場合、低屈折率層形成用組成物の塗布性が向上し、該組成物の塗布後における溶剤の蒸発速度が適度であるため乾燥むらが生じにくく、また溶剤の蒸発に伴い、効率的に含フッ素化合物を相分離させることができるので、均一で一様な大面積塗膜(防汚層)を容易に得ることができる。 (solvent)
Further, the solvent preferably used in the composition for forming a low refractive index layer is not particularly limited. For example, alcohols such as methanol, ethanol and isopropyl alcohol (IPA); ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. Esters such as ethyl acetate and butyl acetate; halogenated hydrocarbons; aromatic hydrocarbons such as toluene and xylene; propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether Preferable examples include glycol ethers such as acetate and dipropylene glycol monoethyl ether, or mixtures thereof. Among these, ketones and glycol ethers having high affinity with fluorine-containing compounds are preferred, and particularly preferred solvents are methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, Propylene glycol monoethyl ether acetate. By using these alone or in combination, the dispersibility of each compound in the composition can be maintained, and the phase separation between the low refractive index phase and the antifouling phase can be preferably completed in the phase separation step (2). it can.
When a solvent other than ketones or glycol ethers is used, it is preferable to contain ketones or glycol ethers at least 50% or more, preferably 70% or more of the total solvent amount. Particularly when ketones are used, the coating property of the composition for forming a low refractive index layer is improved, and the evaporation rate of the solvent after application of the composition is moderate, so that uneven drying is less likely to occur, and the solvent is evaporated. Accordingly, the fluorine-containing compound can be efficiently phase-separated, so that a uniform and uniform large-area coating film (antifouling layer) can be easily obtained.
工程(2)は、上記の工程(1)で形成した塗膜を低屈折率相と防汚相とに相分離させる工程である。相分離を促進する方法としては、例えば、塗膜を空気中で加熱する方法、蒸気中やオートクレーブ内などで保持する方法などの加熱する方法が好ましく挙げられる。また、加熱などを行うことなく相分離するまで単に放置してもよい。
本発明においては、低屈折率層形成用組成物を塗布した後、かつ該組成物中のバインダー樹脂を硬化させる前に、この工程で上記のような加熱、あるいは単に放置することにより、該組成物中の含フッ素化合物が塗膜の最表面側(透明基材とは反対側)に浮き出しやすくなる。その結果、低屈折率層形成用組成物の塗膜中において、含フッ素化合物の含有量が相対的に多い防汚性を発現する防汚相と、含フッ素化合物の含有量が相対的に少ない低屈折率性を発現する低屈折率相とに相分離し、最表面側に形成した防汚相を加熱して、あるいは電離放射線を照射して、低屈折率層の全面を覆うような防汚層を形成することで、優れた防汚性が得られる。すなわち、本発明においては、低屈折率層形成用組成物を塗布して塗膜を形成すると、該塗膜内で二つの相に分離して、該塗膜は低屈折率相と防汚相とを有しており、後述する工程(3)を経ることで、二つの相は各々低屈折率層と防汚層とを形成する、さらに言い換えれば、防汚層を有する低屈折率層が形成するというようにもいえる。
上記のような加熱、あるいは単に放置する時間は、含フッ素化合物が塗膜の最表面側に浮き出る時間程度であればよく、通常1~30秒程度である。 (Process (2))
Step (2) is a step of separating the coating film formed in the above step (1) into a low refractive index phase and an antifouling phase. As a method for promoting the phase separation, for example, a heating method such as a method of heating the coating film in the air, a method of holding the coating film in steam or in an autoclave, and the like are preferable. Further, it may be simply left until phase separation without heating.
In the present invention, after the composition for forming a low refractive index layer is applied and before the binder resin in the composition is cured, the composition is heated or simply left as described above in this step. The fluorine-containing compound in the product is easily raised on the outermost surface side (the side opposite to the transparent substrate) of the coating film. As a result, in the coating film of the composition for forming a low refractive index layer, the content of the fluorine-containing compound is relatively high, and the content of the fluorine-containing compound is relatively low, and the content of the fluorine-containing compound is relatively low. Phase-separation into a low-refractive index phase that exhibits low refractive index properties, heating the antifouling phase formed on the outermost surface side, or irradiating with ionizing radiation to cover the entire surface of the low-refractive index layer By forming the fouling layer, excellent antifouling properties can be obtained. That is, in the present invention, when a coating film is formed by applying the composition for forming a low refractive index layer, it is separated into two phases in the coating film, and the coating film is divided into a low refractive index phase and an antifouling phase. And the two phases respectively form a low refractive index layer and an antifouling layer by passing through the step (3) described below, and in other words, a low refractive index layer having an antifouling layer is formed. It can be said that it forms.
The time for heating or simply leaving as described above may be about the time for the fluorine-containing compound to float on the outermost surface side of the coating film, and is usually about 1 to 30 seconds.
工程(3)は、相分離させた後の塗膜を加熱して、又は塗膜に電離放射線を照射して、該塗膜中の低屈折率相と防汚相とを各々低屈折率層と防汚層とにする工程である。ここで、低屈折率層は該層中に微粒子が存在することから反射防止特性を有する層であり、また防汚層は該層中に含フッ素化合物が存在することから防汚性を有する層である。本明細書においては、便宜上、含フッ素化合物を相対的に少なく含む層はより優れた反射防止特性を有することから低屈折率層(加熱や電離放射線を照射する前は低屈折率相)と称し、含フッ素化合物を相対的に多く含む層はより優れた防汚性を有することから防汚層(加熱や電離放射線を照射する前は防汚相)と称するものである。 (Process (3))
In the step (3), the coating film after phase separation is heated, or the coating film is irradiated with ionizing radiation, and the low refractive index phase and the antifouling phase in the coating film are each formed into a low refractive index layer. And a process for making an antifouling layer. Here, the low refractive index layer is a layer having antireflection properties because fine particles are present in the layer, and the antifouling layer is a layer having antifouling properties since a fluorine-containing compound is present in the layer. It is. In this specification, for the sake of convenience, a layer containing a relatively small amount of a fluorine-containing compound has a superior antireflection property, and is therefore referred to as a low refractive index layer (low refractive index phase before heating or irradiation with ionizing radiation). The layer containing a relatively large amount of the fluorine-containing compound has a better antifouling property, and therefore is called an antifouling layer (antifouling phase before heating or irradiation with ionizing radiation).
なお、電子線の照射においては、加速電圧が高いほど透過能力が増加するため、基材として電子線により劣化する基材を使用する場合には、電子線の透過深さと塗膜の厚みとが実質的に等しくなるように、加速電圧を選定することにより、基材への余分の電子線の照射を抑制することができ、過剰電子線による基材の劣化を最小限にとどめることができる。 Moreover, what is necessary is just to irradiate an ionizing radiation to a coating film, when employ | adopting ionizing radiation curable resin as binder resin. When an electron beam is used as the ionizing radiation when curing the coating film, the acceleration voltage can be appropriately selected according to the resin used and the thickness of the layer, but the coating film is usually applied at an acceleration voltage of about 70 to 300 kV. It is preferable to cure.
In addition, in electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam as the base material, the transmission depth of the electron beam and the thickness of the coating film are By selecting the accelerating voltage so as to be substantially equal, it is possible to suppress the irradiation of the extra electron beam to the base material, and to minimize the deterioration of the base material due to the excess electron beam.
さらに、電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型などの各種電子線加速器を用いることができる。 The irradiation dose is preferably such that the crosslinking density of the curable resin in the low refractive index layer is saturated, and is usually selected in the range of 5 to 300 kGy (0.5 to 30 Mrad), preferably 10 to 50 kGy (1 to 5 Mrad). .
Further, the electron beam source is not particularly limited. For example, various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. Can be used.
なお、工程(3)の硬化により、溶剤はほぼ完全に蒸発、乾燥し、層中にはほとんど存在しなくなる。溶剤は、工程(2)においてほとんど蒸発するが、工程(2)の終了時点で層中に残留している溶剤は、工程(3)においてほぼ完全に蒸発すると考えられる。 From the viewpoint of preventing oxygen inhibition on the surface of the resin composition for a low refractive index layer, the ultraviolet irradiation is preferably performed in a nitrogen atmosphere, for example, in an atmosphere having an oxygen concentration of 1000 ppm or less. In the present invention, ultraviolet irradiation is most preferable in that the low refractive index phase and the antifouling phase can be cured quickly and stably after phase separation.
The solvent is almost completely evaporated and dried by the curing in the step (3) and hardly exists in the layer. The solvent is almost evaporated in the step (2), but the solvent remaining in the layer at the end of the step (2) is considered to be almost completely evaporated in the step (3).
本発明の反射防止フィルムは、上記の本発明の製造方法により得られ、より具体的には、少なくとも透明基材、低屈折率層、及び該低屈折率層の全面を覆う防汚層を順に有し、該低屈折率層と該防汚層とが含フッ素化合物、微粒子及びバインダー樹脂を含有する低屈折率層形成用組成物を用いてなり、該防汚層側からX線光電子分光法(XPS)により測定したフッ素原子/炭素原子比が0.6~1.0であり、かつケイ素原子/炭素原子比が0.25未満であり、該防汚層の平均面粗さ(Ra’)が10nm以下であることを特徴とするものである。 [Antireflection film]
The antireflection film of the present invention is obtained by the production method of the present invention, and more specifically, at least a transparent substrate, a low refractive index layer, and an antifouling layer covering the entire surface of the low refractive index layer in order. The low refractive index layer and the antifouling layer comprise a composition for forming a low refractive index layer containing a fluorine-containing compound, fine particles and a binder resin, and X-ray photoelectron spectroscopy is performed from the antifouling layer side. The fluorine atom / carbon atom ratio measured by (XPS) is 0.6 to 1.0 and the silicon atom / carbon atom ratio is less than 0.25, and the average surface roughness (Ra ′) of the antifouling layer is ) Is 10 nm or less.
低屈折率層3及び防汚層8は、含フッ素化合物、微粒子及びバインダー樹脂を含有する低屈折率層形成用組成物を用いてなる層である。これらの層は、上記の本発明の反射防止フィルムの製造方法により形成される層、すなわち、該低屈折率層形成用組成物を透明基材上に塗布して塗膜を形成し、該塗膜を相分離させることにより、該塗膜中に二つの相として低屈折率相と防汚相とを形成し、これらの塗膜を加熱、あるいは電離放射線を照射することにより、各々低屈折率層3と防汚層8として形成される層である。そして、該低屈折率層3中に含まれる含フッ素化合物の含有量は、該防汚層8に含まれる含フッ素化合物の含有量に比べて相対的に少なく、また逆に含フッ素化合物の含有量が相対的に多い防汚層8は、防汚性をより強く発現する層となることは、上記の通りである。 (Low
The low
低屈折率層3は、その屈折率が直下に設けられる層の屈折率をNとし、空気の屈折率を1としたときにN1/2の層であることが最も好ましく、例えば、該低屈折率層3の直下の層が汎用の多官能(メタ)アクリル系の電離放射線硬化性樹脂を用いて形成したハードコート層である場合、該ハードコート層のNが1.49~1.53であることを考慮すると、これよりも0.01はNの低い、屈折率が1.48~1.52の層であることが好ましい。また、屈折率は低ければ低いほど好ましいが、反射防止特性と表面硬度とのバランスを考慮すると、1.25~1.45がより好ましく、1.25~1.35がさらに好ましい。この屈折率は、微粒子の種類、及びその含有量、あるいは含フッ素化合物の使用量などによって、容易に制御が可能である。 (Low refractive index layer 3)
The low
dA=mλ/(4nA) (I)
数式(I)中、nAは低屈折率層の屈折率を表し、mは正の奇数を表し、好ましくは1(空気)を表し、λは波長であり、好ましくは480~580nmの範囲の値である。よって、本発明においては、上記の数式(I)においてm=1とし、かつλを人間が最も眩しさを感じる波長である480~580nmとした、以下の数式(II)から算出される屈折率及び膜厚であることが、低屈折率化を図る観点から好ましい。
120<nAdA<145 (II)
屈折率が上記したような好ましい範囲、1.25~1.45である場合には、膜厚は、およそ80nm~120nmであることが好ましい。しかしながら、屈折率が下層よりも低いことで反射防止効果は得られるため、膜厚はこの範囲を外れるような120nm~1μm程度でもよい。本発明では、低屈折率層及び防汚層の合計の厚さが上記範囲であることが好ましい。 In order to obtain the most antireflection effect, it is preferable that the film thickness and the refractive index of the low
d A = mλ / (4n A ) (I)
In the formula (I), n A represents the refractive index of the low refractive index layer, m represents a positive odd number, preferably 1 (air), λ is a wavelength, preferably in the range of 480 to 580 nm. Value. Therefore, in the present invention, the refractive index calculated from the following formula (II) where m = 1 in the above formula (I) and λ is 480 to 580 nm, which is the wavelength at which humans feel the most glare. The film thickness is preferably from the viewpoint of reducing the refractive index.
120 <n A d A <145 (II)
When the refractive index is in the preferred range as described above, 1.25 to 1.45, the film thickness is preferably about 80 nm to 120 nm. However, since the antireflective effect is obtained when the refractive index is lower than that of the lower layer, the film thickness may be about 120 nm to 1 μm so as to be out of this range. In the present invention, the total thickness of the low refractive index layer and the antifouling layer is preferably within the above range.
防汚層8は、平均面粗さ(Ra’)が10nm以下という、低屈折率層3の上の全面に均一で一様に覆うように存在し、本発明の反射防止フィルムに防汚性を付与する層である。 (Anti-fouling layer 8)
The
本発明では、防汚層8におけるフッ素原子が一定以上で存在し、かつケイ素原子が一定以下で存在することにより、すなわち、所定の含フッ素化合物を所定量で用いることにより、優れた防汚性が発現し、また微かな白化することがない反射防止フィルムを得ることができる。また、全面にわたって均一で一様に防汚層が形成しているため、全面にわたって上記の原子比を有することにより、より優れた防汚性が得られ、微かな白化の発生を低減することができる。
このような観点から、フッ素原子/炭素原子比が0.7~1.0であることがより好ましく、かつケイ素原子/炭素原子比が0.01~0.2であることがより好ましい。フッ素原子/炭素原子比が0.6未満であると、防汚性が不十分となってしまう。一方、1.0よりも大きくなると、これを達成するために用いる剤、すなわち含フッ素化合物の取扱いが著しく困難となってしまう。また、ケイ素原子/炭素原子比が0.25以上となると、防汚性が不十分となってしまうことから、本発明においては当該比率を0.25未満とするが、このような範囲とすることで、滑り性が向上するため優れた耐擦傷性が期待できる。 The fluorine atom / carbon atom ratio measured by X-ray photoelectron spectroscopy (XPS) from the
In the present invention, when the fluorine atom in the
From such a viewpoint, the fluorine atom / carbon atom ratio is more preferably 0.7 to 1.0, and the silicon atom / carbon atom ratio is more preferably 0.01 to 0.2. If the fluorine atom / carbon atom ratio is less than 0.6, the antifouling property will be insufficient. On the other hand, when it becomes larger than 1.0, handling of the agent used for achieving this, that is, the fluorine-containing compound becomes extremely difficult. In addition, when the silicon atom / carbon atom ratio is 0.25 or more, the antifouling property becomes insufficient. Therefore, in the present invention, the ratio is less than 0.25, but such a range is set. Therefore, excellent slip resistance can be expected because of improved slipperiness.
無機ケイ素原子、及び有機ケイ素原子は、結合エネルギーが異なるため、Si2pスペクトルにおいて分かれて出てくると考えられる。ピーク分離解析により、高結合エネルギー側の103~104eV付近のピークを無機ケイ素原子、低結合エネルギー側の101~102eV付近にピークを有機ケイ素原子とした。上記のケイ素原子/炭素原子比におけるケイ素原子は、無機ケイ素原子と有機ケイ素原子との合計量としたものである。
本発明において、防汚層側からX線光電子分光法(XPS)によって測定した有機ケイ素原子/炭素原子比は0.07以下であることが好ましく、より好ましくは0.01~0.07であり、さらに好ましくは0.02~0.06である。また、無機ケイ素原子/炭素原子比が0.2以下であることが好ましく、より好ましくは0.05~0.2であり、さらに好ましくは0.08~0.18である。有機ケイ素原子/炭素原子比、無機ケイ素原子/炭素原子比が上記範囲内であると、優れた耐擦傷性と防汚性が発現し、また微かな白化することがない反射防止フィルムを得ることができる。 Silicon atoms in the low refractive index layer and the antifouling layer exist in the form of SiO 2 or C—Si—O. In the present invention, silicon atoms derived from SiO 2 are referred to as inorganic silicon atoms, and C A silicon atom derived from —Si—O is referred to as an organosilicon atom. That is, in the present invention, the silicon atoms in the low refractive index layer and the antifouling layer have an organic silicon atom and an inorganic silicon atom.
It is considered that inorganic silicon atoms and organic silicon atoms are separated in the Si2p spectrum because of different bond energies. According to the peak separation analysis, a peak in the vicinity of 103 to 104 eV on the high bond energy side was an inorganic silicon atom, and a peak in the vicinity of 101 to 102 eV on the low bond energy side was an organosilicon atom. The silicon atom in the above silicon atom / carbon atom ratio is the total amount of inorganic silicon atoms and organic silicon atoms.
In the present invention, the organosilicon atom / carbon atom ratio measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer side is preferably 0.07 or less, more preferably 0.01 to 0.07. More preferably, it is 0.02 to 0.06. The inorganic silicon atom / carbon atom ratio is preferably 0.2 or less, more preferably 0.05 to 0.2, and still more preferably 0.08 to 0.18. When the organic silicon atom / carbon atom ratio and the inorganic silicon atom / carbon atom ratio are within the above ranges, an antireflection film that exhibits excellent scratch resistance and antifouling properties and does not cause slight whitening is obtained. Can do.
また、含フッ素化合物と、微粒子及びバインダー樹脂とを組み合わせた低屈折率層形成用組成物を用いることで、均一で一様な防汚層8が得られるだけでなく、結果として優れた反射防止特性を有し、優れた耐擦傷性、及び防汚性を有し、かつ微かな白化の発生が抑制された反射防止フィルムを得ることも可能となる。 In the present invention, by satisfying the above atomic ratio, the surface of the low refractive index layer is formed using the low refractive index layer forming composition without improving the compatibility of the conventional fluorine-containing compound. By forming the antifouling layer so as to cover the whole using the method of phase separation, the antifouling layer is uniform and uniform with the average surface roughness being small and the occurrence of the sea-island structure as described above being suppressed. Become a layer.
Further, by using a composition for forming a low refractive index layer in which a fluorine-containing compound, fine particles and a binder resin are combined, not only a uniform and
本発明の反射防止フィルム1は、その最表面を防汚層8とした場合、表面のヘキサデカンに対する接触角が好ましくは55~90°、より好ましくは60~90°であり、かつ表面のヘキサデカンに対する転落角が好ましくは1~25°、より好ましくは1~20°であり、その最表面は均一で一様、すなわち防汚層8は平滑な構造を有している。防汚層8に含まれる含フッ素化合物が表面を覆っていることで、接触角及び転落角は上記の範囲となっており、一方、海島構造を形成してしまうことにより表面を均一で一様に覆えなくなると接触角及び転落角は上記の範囲から外れてしまう。 If the surface is smooth, it is theoretically impossible for the contact angle of hexadecane to exceed 90 ° with an organic compound that forms an antifouling layer. Therefore, the contact angle and the falling angle can be measured with a commercially available contact angle meter and a falling angle meter, respectively, using hexadecane as the measurement liquid.
When the outermost surface of the
防汚層8のみの厚さは、1~3nmの範囲内であると推測される。上述したX線光電子分光法(XPS)による分析の際に、低屈折率層中の微粒子に含まれる原子も検出されており、X線光電子分光法(XPS)で得られる情報の深さが1~3nmであることを考慮すると、1~3nmの範囲内であると推測するのが妥当だからである。 The total thickness of the low
It is estimated that the thickness of the
本発明の反射防止フィルム1は、反射防止フィルム1に耐擦傷性などの表面硬度の性能を向上させる目的で、ハードコート層4を有することができる。ここで、ハードコートとは、JIS5600-5-4:1999で規定される鉛筆硬度試験で「H」以上の硬度を示す性能のことをいう。
ハードコート層は、電離放射線硬化性樹脂を架橋硬化させて得られるものが好ましい。ハードコート層4を形成する電離放射線硬化性樹脂は、上記した低屈折率層形成用組成物中のバインダー樹脂に用いられる電離放射線硬化性樹脂のなかから適宜選択して用いられる。電離放射線硬化性樹脂が紫外線硬化性樹脂の場合に用いられる光重合開始剤も、先に例示したものの中から適宜選定して用いられる。また、上記した低屈折率層形成用組成物に用いられる各種添加剤も、同様に使用可能である。 (Hard coat layer 4)
The
The hard coat layer is preferably obtained by crosslinking and curing an ionizing radiation curable resin. The ionizing radiation curable resin for forming the
本発明の反射防止フィルム1は、反射防止性能を向上させる目的で、中屈折率層5及び高屈折率層6を好ましく有することができる。ここで、中屈折率層5及び高屈折率層6は、反射防止フィルム1の態様として上記したように、中屈折率層5及び高屈折率層6は同時に設けられる必要はなく、例えば図2に示されるように中高屈折率層7として一層で設けられていてもよい。
中屈折率層5、高屈折率層6あるいは中高屈折率層7(以下、これらの屈折率層ということがある。)の屈折率は、好ましくは1.5~2.00の範囲内で任意に設定することができる。すなわち、中屈折率層5は、少なくとも上記した低屈折率層3よりも屈折率が高く、高屈折率層6よりも屈折率が低いものであり、屈折率の高低は相対的なものである。中屈折率層5及び高屈折率層6の屈折率は上記したように相対的なものであるが、通常中屈折率層5の屈折率は1.5~1.8の範囲であり、高屈折率層6の屈折率は1.6~2.0の範囲であることが好ましい。 (Medium
The
The refractive index of the medium
本発明の反射防止フィルム1は、帯電防止効果により、ホコリの付着防止、あるいは本発明の反射防止フィルムを画像表示装置に用いた場合の導電性や電磁波シールド効果を得る観点から、帯電防止層を好ましく有することができる。帯電防止層は、透明基材2と低屈折率層3との間に設けることが好ましく、上記したハードコート層4、中屈折率層5、あるいは高屈折率層6が設けられる場合は、低屈折率層3を最表面に設け、かつ該低屈折率層3に接するように設けることが好ましい。 (Antistatic layer)
The
帯電防止剤としては特に限定されず、例えば、第4級アンモニウム塩、ピリジニウム塩、第1~第3アミノ基などのカチオン性化合物;スルホン酸塩基、硫酸エステル塩基、リン酸エステル塩基、ホスホン酸塩基などのアニオン性化合物;アミノ酸系、アミノ硫酸エステル系などの両性化合物;アミノアルコール系、グリセリン系、ポリエチレングリコール系などのノニオン性化合物;スズ及びチタンのアルコキシドのような有機金属化合物;該有機金属化合物のアセチルアセトナート塩のような金属キレート化合物などが好ましく挙げられる。上記に列記した化合物を高分子量化した化合物も使用することができる。 It does not specifically limit as an antistatic layer, For example, what is formed with the composition for antistatic layers containing resin and an antistatic agent is mentioned preferably.
The antistatic agent is not particularly limited, and examples thereof include cationic compounds such as quaternary ammonium salts, pyridinium salts, and primary to tertiary amino groups; sulfonate groups, sulfate ester bases, phosphate ester bases, and phosphonate bases. Anionic compounds such as amino acids, aminosulfate esters, and the like; nonionic compounds such as amino alcohols, glycerol, and polyethylene glycol; organometallic compounds such as tin and titanium alkoxides; the organometallic compounds Preferred examples thereof include metal chelate compounds such as acetylacetonate salts. Compounds obtained by increasing the molecular weight of the compounds listed above can also be used.
帯電防止層における樹脂、すなわち帯電防止層用組成物に用いられる樹脂としては特に限定されず、例えば、上述したハードコート層において説明した樹脂と同様の紫外線若しくは電子線により硬化する樹脂である電離放射線硬化型樹脂、電離放射線硬化型樹脂と溶剤乾燥型樹脂との混合物、又は、熱硬化型樹脂などが挙げられる。
帯電防止層は、上述した各材料を用いて調製した帯電防止層用組成物を、上記光透過性基材などの上に塗布して形成した塗膜を、必要に応じて乾燥し、電離放射線照射又は加熱などにより硬化させることで形成することができる。 As the content of the antistatic agent in the composition for antistatic layer, the effect of containing the antistatic agent can be fully enjoyed, and the effect obtained in the optical laminate produced by the present invention described above can be obtained. It is preferable to blend appropriately within a range that does not inhibit.
The resin used in the antistatic layer, that is, the resin used in the composition for the antistatic layer is not particularly limited. For example, ionizing radiation that is a resin curable by ultraviolet rays or electron beams similar to the resin described in the hard coat layer described above. Examples thereof include a curable resin, a mixture of an ionizing radiation curable resin and a solvent-drying resin, or a thermosetting resin.
The antistatic layer is formed by coating the antistatic layer composition prepared using each of the above-described materials on the light-transmitting base material, etc. It can be formed by curing by irradiation or heating.
本発明の偏光板は、偏光膜の少なくとも片面に反射防止フィルムを有し、該反射防止フィルムが上記の本発明の製造方法により得られたもの、すなわち、少なくとも透明基材、低屈折率層、及び該低屈折率層の全面を覆う防汚層を順に有し、該低屈折率層と該防汚層とが含フッ素化合物、微粒子及びバインダー樹脂を含有する低屈折率層形成用組成物を用いてなり、該防汚層側からX線光電子分光法(XPS)により測定したフッ素原子/炭素原子比が0.6~1.0であり、かつケイ素原子/炭素原子比が0.25未満であり、該防汚層の平均面粗さ(Ra’)が10nm以下であることを特徴とするものである。このような構成とすることで、本発明の偏光板は、物理強度、耐光性に優れた反射防止機能を有するものとなり、また大幅なコスト削減、表示装置の薄手化が可能となる。 [Polarizer]
The polarizing plate of the present invention has an antireflection film on at least one surface of the polarizing film, and the antireflection film is obtained by the production method of the present invention, that is, at least a transparent substrate, a low refractive index layer, And an antifouling layer covering the entire surface of the low refractive index layer in order, wherein the low refractive index layer and the antifouling layer contain a fluorine-containing compound, fine particles and a binder resin. The fluorine atom / carbon atom ratio measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer side is 0.6 to 1.0, and the silicon atom / carbon atom ratio is less than 0.25. The average surface roughness (Ra ′) of the antifouling layer is 10 nm or less. With such a configuration, the polarizing plate of the present invention has an antireflection function excellent in physical strength and light resistance, and can greatly reduce the cost and thin the display device.
本発明の画像表示装置は、反射防止フィルム、又は偏光膜の少なくとも片面に反射防止フィルムを有する偏光板をディスプレイの最表面に有し、該反射防止フィルムが上記の本発明の製造方法により得られたもの、すなわち、少なくとも透明基材、低屈折率層、及び該低屈折率層の全面を覆う防汚層を順に有し、該低屈折率層と該防汚層とが含フッ素化合物、微粒子及びバインダー樹脂を含有する低屈折率層形成用組成物を用いてなり、該防汚層側からX線光電子分光法(XPS)により測定したフッ素原子/炭素原子比が0.6~1.0であり、かつケイ素原子/炭素原子比が0.25未満であり、該防汚層の平均面粗さ(Ra’)が10nm以下であることを特徴とするものである。
ディスプレイとしては、例えば、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、陰極管表示装置(CRT)、無機及び有機エレクトロルミネッセンスディスプレイ、背面投写型ディスプレイ、蛍光表示管(VFD)、タッチパネル、モバイルPC、電子ペーパーなどのディスプレイなどが好ましく挙げられる。また、画像表示装置としては、これらのディスプレイを備えた装置、例えば、パソコン、携帯情報端末、ゲーム機、デジタルカメラ、デジタルビデオカメラなどが好ましく挙げられる。 [Image display device]
The image display device of the present invention has an antireflection film or a polarizing plate having an antireflection film on at least one side of a polarizing film on the outermost surface of the display, and the antireflection film is obtained by the production method of the present invention. In other words, at least a transparent substrate, a low refractive index layer, and an antifouling layer covering the entire surface of the low refractive index layer are sequentially provided, and the low refractive index layer and the antifouling layer comprise a fluorine-containing compound and fine particles. And a fluorine atom / carbon atom ratio measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer side from 0.6 to 1.0. And the silicon atom / carbon atom ratio is less than 0.25, and the average surface roughness (Ra ′) of the antifouling layer is 10 nm or less.
Examples of the display include a liquid crystal display (LCD), a plasma display panel (PDP), a cathode ray tube display (CRT), an inorganic and organic electroluminescence display, a rear projection display, a fluorescent display tube (VFD), a touch panel, and a mobile PC. Preferable examples include displays such as electronic paper. Moreover, as an image display apparatus, the apparatus provided with these displays, for example, a personal computer, a portable information terminal, a game machine, a digital camera, a digital video camera etc. are mentioned preferably.
1.最低反射率(反射防止特性の評価)
各実施例及び比較例で得られた反射防止フィルムについて、該フィルムの裏面反射を防止するための黒色テープを透明基材の低屈折率層を設けない側に貼り、低屈折率層の面から、5度の正反射測定装置を備えた分光度計(「UV-2550(型番)」:島津製作所(株)製)を用いて反射率を測定し、波長域380~780nmにおける最小値を最低反射率とした。最低反射率が小さいほど、反射防止フィルムは優れた反射防止特性を有することを示す。
2.塗布面の評価
低屈折率層が形成されていない側のフィルム表面に黒色テープを貼り、低屈折率層が形成されている面から、三波長ランプにて目視で観察し、結果を下記の基準にて評価した。
○ :低屈折率層の面は均一で一様であった。
△ :低屈折率層の面は上記の○の評価と比較すると、かすかな歪みが観察された。
× :低屈折率層の面はわずかに白色を呈していた。
3.表面の耐擦傷性及び密着性の評価
各実施例及び比較例で得られた反射防止フィルムについて、スチールウール(日本スチールウール株式会社製 ボンスター#0000)に300g/cm2の荷重をかけて10往復摩擦して、目視した結果を下記の基準で評価した。傷が少なければ少ないほど、耐擦傷性及び低屈折率層と防汚層との密着性に優れることを示す。
○ :全く傷がつかなかった
△ :傷の本数が1~5本であった
× :傷の本数が6本以上であった
4.防汚性の評価
(1)指紋に対する防汚性
各実施例及び比較例で得られた反射防止フィルムの表面に指紋を付着させて後、ベンコットM-3(旭化成株式会社製)で拭取り、拭取りやすさを目視で確認し、下記の基準で評価した。
○ :指紋が容易に拭取れた
△ :指紋が拭取れる
× :指紋が拭取れない
(2)各実施例及び比較例で得られた反射防止フィルムの表面に油性マジックで描いた際の状態と、布で拭取った後の状態を目視で確認し、下記の基準で評価した。
◎ :インクが球状にはじかれ、拭取りが容易であった
○ :インクがはじかれ、線が細くなっており、拭取りが容易であった
× :拭取り後にインクの跡が残った
5.低屈折率層のX線光電子分光による原子比の測定
各実施例及び比較例で得られた反射防止フィルムの表面(防汚層)を、X線光電子分光(XPS)により分析し、含フッ素化合物がどの程度相分離して防汚層を形成しているのかの指標となる原子比を以下の方法により得た。
使用装置は、XPS装置(「ESCALAB 220i-XL(型番)」,サーモフィッシャーサイエンティフィック社製)であり、X線出力:10kV・16mA(160W)、レンズ:Large Area XL(磁場レンズ)、アパーチャ開度:F.O.V.=open,A.A.=open、測定領域:700μmφ、光電子取込角度:90度(試料法線上にインプットレンズを配置)、帯電中和:電子中和銃+4(V)・0.08(mA)、中和補助用金属マスク使用にて分析を行った。この測定により得られた、反射防止フィルムの表面の炭素原子、窒素原子、酸素原子、フッ素原子、及びケイ素原子の原子組成を用いて、フッ素原子/炭素原子比、及びケイ素原子/炭素原子比を算出した。さらに、ケイ素原子については、Si2pスペクトルのピーク分離解析により、103~104eV付近にピークが検出される無機ケイ素成分(SiO2)と、101~102eV付近にピークが検出される有機ケイ素成分(C-Si-O)とに分けて、原子組成を測定し、無機ケイ素原子/炭素原子比、及び有機ケイ素原子/炭素原子比を算出した。
6.表面状態の評価(接触角及び転落角の測定)
各実施例及び比較例で得られた反射防止フィルムについて、測定液体としてヘキサデカンを用い、測定器(「DM-500(型番)」,協和界面科学株式会社製)を用いて各々接触角及び転落角を測定した。液滴の量は2μlとした。
7.表面状態の評価(原子間力顕微鏡による表面観察の評価)
各実施例及び比較例で得られた反射防止フィルムの表面を、原子間力顕微鏡(AFM)(「L-trace(型番)」,エスアイアイ・ナノテクノロジー株式会社製)を用いてダイナミックフォースモードで走査振動数:0.4~1.0Hz、走査範囲:3μmで形状像及び位相像を観察した。カンチレバーは「OMCL-AC160TS-C2(型番)」(ケイエスオリンパス株式会社製,バネ定数:42N/m)を用いた。ここで、観察に用いるカンチレバーは探針汚染による分解能低下がないように常に新品のものを使用した。また観察時における磨耗劣化を防ぐために、分解能を犠牲にしない範囲でできる限り探針にかかる負荷が小さい条件で行い、分解能512ピクセル×256ピクセルで観察することで行った。観察後付属のソフトウエアによりデータの傾斜を補正した。
この表面観察により、低屈折率層の表面全面に相分離して防汚層が形成している場合は、均一で一様な状態を確認でき、一方、表面全面に相分離して防汚層が形成していない場合は、表面は相分離した部分と相分離してない部分とによるむら模様が海島模様として確認できる。ここで、均一で一様な状態であれば、目視しても微かな白化や塗布面の荒れはなく、良好に低屈折率層及び防汚層が形成しているといえる。
○ :防汚層は均一で一様であった
△ :防汚層に海島構造はなかったが、上記の○の評価と比較すると、かすかな歪みが観察された。
× :防汚層は海島構造を呈しており、目視で微かな白化や塗布面の荒れが観察された
8.平均面粗さ(Ra’)の測定
上記の原子間力顕微鏡(AFM)により表面形状を観察し、解析用ソフトウェア(SPIwin)を用いて画像解析して、平均面粗さ(Ra’)を得た。 (Evaluation methods)
1. Minimum reflectance (evaluation of antireflection characteristics)
About the antireflection film obtained in each of Examples and Comparative Examples, a black tape for preventing back reflection of the film is attached to the side of the transparent base material where the low refractive index layer is not provided, and from the surface of the low refractive index layer. The reflectance is measured using a spectrophotometer (“UV-2550 (model number)” manufactured by Shimadzu Corporation) equipped with a 5 ° specular reflection measuring device, and the minimum value in the wavelength range of 380 to 780 nm is the lowest. The reflectance was used. It shows that an antireflection film has the outstanding antireflection property, so that the minimum reflectance is small.
2. Evaluation of coated surface A black tape is applied to the surface of the film on which the low refractive index layer is not formed, and the surface on which the low refractive index layer is formed is visually observed with a three-wavelength lamp. Evaluated.
○: The surface of the low refractive index layer was uniform and uniform.
Δ: A slight distortion was observed on the surface of the low refractive index layer as compared with the above evaluation of ○.
X: The surface of the low refractive index layer was slightly white.
3. Evaluation of surface scratch resistance and adhesion The antireflection film obtained in each example and comparative example was subjected to 10 reciprocations by applying a load of 300 g / cm 2 to steel wool (Bonstar # 0000, manufactured by Nippon Steel Wool Co., Ltd.). The result of rubbing and visual observation was evaluated according to the following criteria. The smaller the scratches, the better the scratch resistance and the adhesion between the low refractive index layer and the antifouling layer.
○: No scratch was found Δ: The number of scratches was 1 to 5 ×: The number of scratches was 6 or more Evaluation of antifouling property (1) Antifouling property against fingerprints After attaching a fingerprint to the surface of the antireflection film obtained in each of Examples and Comparative Examples, wiping with Bencott M-3 (manufactured by Asahi Kasei Corporation) Ease of wiping was visually confirmed and evaluated according to the following criteria.
○: Fingerprints were easily wiped off △: Fingerprints were wiped off ×: Fingerprints were not wiped away (2) The state when drawn with oily magic on the surface of the antireflection film obtained in each Example and Comparative Example The condition after wiping with a cloth was visually confirmed and evaluated according to the following criteria.
A: The ink was repelled in a spherical shape and was easy to wipe off. ○: The ink was repelled and the line was thinned, so that it was easy to wipe off. Measurement of atomic ratio of low refractive index layer by X-ray photoelectron spectroscopy The surface (antifouling layer) of the antireflection film obtained in each Example and Comparative Example was analyzed by X-ray photoelectron spectroscopy (XPS), and a fluorine-containing compound The atomic ratio, which is an index of how much phase separation occurs to form an antifouling layer, was obtained by the following method.
The apparatus used is an XPS apparatus (“ESCALAB 220i-XL (model number)”, manufactured by Thermo Fisher Scientific), X-ray output: 10 kV · 16 mA (160 W), lens: Large Area XL (magnetic lens), aperture Opening angle: F.F. O. V. = Open, A. A. = Open, measurement area: 700 μmφ, photoelectron capture angle: 90 degrees (with input lens on the sample normal), charge neutralization: electron neutralization gun +4 (V) · 0.08 (mA), for neutralization assistance Analysis was performed using a metal mask. Using the atomic composition of carbon atoms, nitrogen atoms, oxygen atoms, fluorine atoms and silicon atoms on the surface of the antireflection film obtained by this measurement, the fluorine atom / carbon atom ratio and the silicon atom / carbon atom ratio were determined. Calculated. Further, with respect to silicon atoms, an inorganic silicon component (SiO 2 ) in which a peak is detected in the vicinity of 103 to 104 eV and an organic silicon component (C—) in which a peak is detected in the vicinity of 101 to 102 eV by peak separation analysis of the Si2p spectrum. The atomic composition was measured separately for Si—O), and the inorganic silicon atom / carbon atom ratio and the organic silicon atom / carbon atom ratio were calculated.
6). Evaluation of surface condition (measurement of contact angle and sliding angle)
For the antireflection films obtained in each of Examples and Comparative Examples, hexadecane was used as the measurement liquid, and the contact angle and the tumbling angle were measured using a measuring instrument (“DM-500 (model number)”, manufactured by Kyowa Interface Science Co., Ltd.). Was measured. The droplet volume was 2 μl.
7. Evaluation of surface condition (Evaluation of surface observation by atomic force microscope)
The surface of the antireflection film obtained in each example and comparative example was subjected to dynamic force mode using an atomic force microscope (AFM) (“L-trace (model number)”, manufactured by SII Nanotechnology Co., Ltd.). Shape images and phase images were observed at a scanning frequency of 0.4 to 1.0 Hz and a scanning range of 3 μm. As the cantilever, “OMCL-AC160TS-C2 (model number)” (manufactured by KS Olympus Corporation, spring constant: 42 N / m) was used. Here, the cantilever used for observation was always a new cantilever so as not to reduce the resolution due to probe contamination. Further, in order to prevent wear deterioration during observation, it was performed under the condition that the load applied to the probe is as small as possible without sacrificing the resolution, and observation was performed with a resolution of 512 pixels × 256 pixels. After observation, the inclination of the data was corrected with the attached software.
By this surface observation, when the antifouling layer is formed by phase separation on the entire surface of the low refractive index layer, a uniform and uniform state can be confirmed, while on the other hand, the antifouling layer is phase separated on the entire surface. In the case where no is formed, the surface can be confirmed as a sea-island pattern of unevenness due to the phase-separated portion and the non-phase-separated portion. Here, if it is uniform and uniform, it can be said that there is no slight whitening or roughening of the coated surface even when visually observed, and the low refractive index layer and the antifouling layer are well formed.
○: The antifouling layer was uniform and uniform. Δ: The antifouling layer did not have a sea-island structure, but a slight distortion was observed when compared with the evaluation of the above ○.
X: The antifouling layer has a sea-island structure, and slight whitening and roughening of the coated surface were visually observed. Measurement of average surface roughness (Ra ') Surface shape is observed with the above atomic force microscope (AFM), and image analysis is performed using analysis software (SPIwin) to obtain average surface roughness (Ra'). It was.
下記組成の成分を下記の質量比で混合して、低屈折率層形成用組成物1を調製した。
低屈折率層形成用組成物1
ペンタエリスリトールトリアクリレート(PETA):0.10質量部
含フッ素化合物*1:1.23質量部
中空シリカ粒子分散液*2:6.69質量部
中実シリカ粒子分散液*3:0.74質量部
含フッ素ポリマー*4:2.79質量部
含フッ素モノマー*5:2.23質量部
光重合開始剤*6:0.08質量部
メチルイソブチルケトン:57.03質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部
*1,「X-71-1203M(商品名)」:信越化学株式会社製,20質量%溶液(溶剤:メチルイソブチルケトン,光硬化性反応基:(メタ)アクリロイル基、反応性を有するシラン単位、及びパーフルオロポリエーテル基を有するシラン単位を有する含フッ素化合物)
*2,分散液中の中空シリカ粒子含有量は20質量%であり、溶剤(メチルイソブチルケトン)含有量は80質量%である。また、中空シリカ粒子の平均粒径は60nmであり、表面処理により光硬化性反応基を有している。
*3,「MIBK-SD(商品名)」,平均一次粒径:12nm,固形分:30質量%,溶剤:メチルイソブチルケトン,中実シリカ粒子は、表面処理により光硬化性反応基であるメタクリロイル基を有している。
*4,「オプスターJN35(商品名)」,JSR社製,20質量%溶液(溶剤:メチルイソブチルケトン)
*5,「LINC3A(商品名)」:共栄社化学株式会社製,ペンタエリスリトール骨格を有する含フッ素モノマー,20質量%溶液(溶剤:メチルイソブチルケトン)
*6,「イルガキュア127(商品名)」:チバスペシャルティケミカルズ(株)製 Preparation Example 1: Preparation of
Pentaerythritol triacrylate (PETA): 0.10 parts by mass Fluorine-containing compound * 1 : 1.23 parts by mass Hollow silica particle dispersion * 2 : 6.69 parts by mass Solid silica particle dispersion * 3 : 0.74 parts by mass Part Fluoropolymer * 4 : 2.79 parts by mass Fluorine monomer * 5 : 2.23 parts by mass Photopolymerization initiator * 6 : 0.08 parts by mass Methyl isobutyl ketone: 57.03 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by
* 2. The content of hollow silica particles in the dispersion is 20% by mass, and the content of solvent (methyl isobutyl ketone) is 80% by mass. Moreover, the average particle diameter of hollow silica particles is 60 nm, and has a photocurable reactive group by surface treatment.
* 3, “MIBK-SD (trade name)”, average primary particle size: 12 nm, solid content: 30% by mass, solvent: methyl isobutyl ketone, solid silica particles are methacryloyl which is a photo-curable reactive group by surface treatment. Has a group.
* 4, “OPSTAR JN35 (trade name)”, manufactured by JSR, 20% by mass solution (solvent: methyl isobutyl ketone)
* 5, “LINC3A (trade name)”: manufactured by Kyoeisha Chemical Co., Ltd., fluorine-containing monomer having a pentaerythritol skeleton, 20% by mass solution (solvent: methyl isobutyl ketone)
* 6, “Irgacure 127 (trade name)” manufactured by Ciba Specialty Chemicals Co., Ltd.
下記組成の成分を下記の質量比で混合して、ハードコート層形成用組成物1を調製した。
ハードコート層形成用組成物1
ウレタンアクリレート*7:15質量部
イソシアヌル酸EO変性トリアクリレート*8:15質量部
重合開始剤*9:2質量部
メチルエチルケトン:70質量部
*7,「UV1700B(商品名)」,日本合成化学株式会社製
*8,「M315(商品名)」,東亞合成株式会社製
*9,「イルガキュア184(商品名)」:チバスペシャルティケミカルズ(株)製 Preparation Example 2: Preparation of hard coat
Hard coat
Urethane acrylate * 7 : 15 parts by weight Isocyanuric acid EO-modified triacrylate * 8 : 15 parts by weight Polymerization initiator * 9 : 2 parts by weight Methyl ethyl ketone: 70 parts by weight * 7, “UV1700B (trade name)”, Nippon Synthetic Chemical Co., Ltd. * 8, "M315 (trade name)", Toagosei Co., Ltd. * 9, "Irgacure 184 (trade name)": Ciba Specialty Chemicals
厚さ80μmのトリアセチルセルロース(TAC)樹脂フィルム上に、ハードコート層形成用組成物1をバーコーティングし、50℃、1分の乾燥を行い、溶剤を除去した後、紫外線照射装置(フュージョンUVシステムジャパン株式会社製 光源Hバルブ)を用いて、照射線量30mJ/cm2で紫外線照射を行い硬化させて、厚さ約10μmのハードコート層を得た。
次に、得られたハードコート層上に、調製例1で調製した低屈折率層形成用組成物1をバーコーティングして塗膜を形成し(工程(1))、50℃、1分の加熱処理を施して塗膜を低屈折率相と防汚相とに相分離させ、かつ溶剤を除去した後(工程(2))、照射線量200mJ/cm2で紫外線照射を行い硬化させて、低屈折率層と防汚層とを形成し(工程(3))、透明基材、ハードコート層、低屈折率層、及び防汚層を有する反射防止フィルムを得た。硬化の際に溶剤はほぼ完全に蒸発しており、また低屈折率層と防汚層の厚さの合計は約100nmであった。また、X線光電子分光法(XPS)による原子比の測定の際、低屈折率層中の微粒子に含まれる原子も検出された。X線光電子分光法(XPS)防汚層の厚さは1~3nmであることを考慮すると、得られた防汚層の厚さは1~3nmの範囲内にあると推測される。
得られた反射防止フィルムについて、上記の評価方法により評価した結果を第1表に示す。また、原子間力顕微鏡(形状像及び位相像)を図4に示す。 Example 1
A hard coat layer-forming
Next, on the obtained hard coat layer, the low refractive index layer-forming
Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method. An atomic force microscope (shape image and phase image) is shown in FIG.
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物2にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第1表に示す。また、原子間力顕微鏡像(形状像及び位相像)を図5に示す。 Example 2
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):1.32質量部
含フッ素化合物*1:1.32質量部
中空シリカ粒子分散液*2:6.61質量部
光重合開始剤*6:0.07質量部
メチルイソブチルケトン:61.03質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部
Pentaerythritol triacrylate (PETA): 1.32 parts by mass Fluorine-containing compound * 1 : 1.32 parts by mass Hollow silica particle dispersion * 2 : 6.61 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl Isobutyl ketone: 61.03 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物3にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第1表に示す。また、原子間力顕微鏡像(形状像及び位相像)を図6に示す。 Example 3
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):0.12質量部
含フッ素化合物*1:2.07質量部
中空シリカ粒子分散液*2:6.28質量部
中実シリカ粒子分散液*3:0.7質量部
含フッ素ポリマー*4:2.62質量部
含フッ素モノマー*5:2.09質量部
光重合開始剤*6:0.07質量部
メチルイソブチルケトン:56.96質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部
Pentaerythritol triacrylate (PETA): 0.12 parts by mass Fluorine-containing compound * 1 : 2.07 parts by mass Hollow silica particle dispersion * 2 : 6.28 parts by mass Solid silica particle dispersion * 3 : 0.7 mass Part Fluoropolymer * 4 : 2.62 parts by mass Fluoromonomer * 5 : 2.09 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 56.96 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
ルチル型酸化チタン(「TTO51(C)(商品名)」,石原産業株式会社製,一次粒径:0.01~0.03μm):10質量部、アニオン性基含有分散剤(「ディスパービック163(商品名)」,ビックケミー・ジャパン社製):2質量部、及びメチルイソブチルケトン:48質量部をマヨネーズ瓶に入れて混合し混合物を作製した。得られた混合物に対し、その約4倍量のジルコニアビーズ(φ0.3mm)を用いてペイントシェーカーで10時間の攪拌を行いて、高屈折率層形成用組成物を調製した。 Preparation Example 3: Preparation Example of Composition for Forming High Refractive Index Layer Rutile-type titanium oxide (“TTO51 (C) (trade name)”, manufactured by Ishihara Sangyo Co., Ltd., primary particle size: 0.01 to 0.03 μm): 10 parts by mass, anionic group-containing dispersant ("Disperbic 163 (trade name)", manufactured by Big Chemie Japan): 2 parts by mass, and methyl isobutyl ketone: 48 parts by mass in a mayonnaise bottle Produced. The resulting mixture was stirred for 10 hours with a paint shaker using about 4 times the amount of zirconia beads (φ0.3 mm) to prepare a composition for forming a high refractive index layer.
上記の高屈折率層形成用組成物の調製例において、ルチル型酸化チタンをアンチモンドープ酸化錫(「SN-100P(商品名)」,石原産業株式会社製)とし、アニオン性基含有分散剤を「ディスパービック111(商品名)」(ビックケミー・ジャパン社製)とした以外は、高屈折率層形成用組成物の調製例と同様にして中屈折率層形成用組成物を調製した。 Preparation Example 4: Preparation Example of Medium Refractive Index Layer Composition In the above preparation example of the composition for forming a high refractive index layer, rutile titanium oxide was converted to antimony-doped tin oxide (“SN-100P (trade name)”, Ishihara Sangyo Co., Ltd.) and the preparation of the composition for forming a high refractive index layer except that the anionic group-containing dispersant is “Dispervic 111 (trade name)” (manufactured by Big Chemie Japan). Thus, a composition for forming a middle refractive index layer was prepared.
厚さ80μmのトリアセチルセルロース(TAC)樹脂フィルム上に、上記のハードコート層形成用組成物1をバーコーティングし、50℃、1分の乾燥を行い、溶剤を除去した後、紫外線照射装置(フュージョンUVシステムジャパン株式会社製 光源Hバルブ)を用いて、照射線量30mJ/cm2で紫外線照射を行い硬化させて、厚さ約10μmのハードコート層を得た。
得られたハードコート層上に、調製例4で得られた中屈折率層形成用組成物をバーコーティングし、照射線量200mJ/cm2で紫外線照射を行い硬化させて、厚さ約120nmの高屈折率層を形成し、調製例3で得られた高屈折率層形成用組成物をバーコーティングし、照射線量200mJ/cm2で紫外線照射を行い硬化させて、厚さ約60nmの高屈折率層を形成した。次いで、下記低屈折率層形成用組成物4をバーコーティングして塗膜を形成し(工程(1))、50℃、1分の加熱処理を施して塗膜を低屈折率相と防汚相とに相分離させ、かつ溶剤を除去した後(工程(2))、照射線量200mJ/cm2で紫外線照射を行い硬化させて、低屈折率層と防汚層とを形成し(工程(3))、透明基材、ハードコート層、中屈折率層、高屈折率層、低屈折率層、及び防汚層を有する反射防止フィルムを得た。硬化の際に溶剤はほぼ完全に蒸発しており、また低屈折率層と防汚層の厚さの合計は約100nmであった。また、X線光電子分光法(XPS)による原子比の測定の際、低屈折率層中の微粒子に含まれる原子も検出された。X線光電子分光法(XPS)防汚層の厚さは1~3nmであることを考慮すると、得られた防汚層の厚さは1~3nmの範囲内にあると推測される。
得られた反射防止フィルムについて、上記の評価方法により評価した結果を第1表に示す。また、原子間力顕微鏡像(形状像及び位相像)を図7に示す。 Example 4
The hard coat
On the obtained hard coat layer, the composition for forming a medium refractive index layer obtained in Preparation Example 4 is bar-coated, cured by irradiation with ultraviolet rays at an irradiation dose of 200 mJ / cm 2 , and a high thickness of about 120 nm. A refractive index layer is formed, and the composition for forming a high refractive index layer obtained in Preparation Example 3 is bar-coated, cured by irradiation with ultraviolet rays at an irradiation dose of 200 mJ / cm 2 , and a high refractive index of about 60 nm in thickness. A layer was formed. Next, the following low refractive index layer-forming
Table 1 shows the results of evaluation of the obtained antireflection film by the above evaluation method. Further, an atomic force microscope image (shape image and phase image) is shown in FIG.
ペンタエリスリトールトリアクリレート(PETA):0.32質量部
含フッ素化合物*1:0.71質量部
中空シリカ粒子分散液*2:6.42質量部
中実シリカ粒子分散液*3:1.43質量部
含フッ素ポリマー*4:3.21質量部
含フッ素モノマー*5:0.54質量部
光重合開始剤*6:0.07質量部
メチルイソブチルケトン:58.2質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部
Pentaerythritol triacrylate (PETA): 0.32 parts by mass Fluorine-containing compound * 1 : 0.71 parts by mass Hollow silica particle dispersion * 2 : 6.42 parts by mass Solid silica particle dispersion * 3 : 1.43 parts by mass Part Fluoropolymer * 4 : 3.21 parts by mass Fluoromonomer * 5 : 0.54 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 58.2 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物5にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第1表に示す。また、原子間力顕微鏡像(形状像及び位相像)を図8に示す。 Example 5
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):0.10質量部
含フッ素化合物*10:1.23質量部
中空シリカ粒子分散液*2:6.69質量部
中実シリカ粒子分散液*3:0.74質量部
含フッ素ポリマー*4:2.79質量部
含フッ素モノマー*5:2.23質量部
光重合開始剤*6:0.08質量部
メチルイソブチルケトン:57.04質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部
*10,「X-71-1205(商品名)」:信越化学株式会社製,20質量%溶液(溶剤:メチルイソブチルケトン及びメチルエチルケトンの混合物,光硬化性反応基:(メタ)アクリロイル基、反応性を有するシラン単位、及びパーフルオロポリエーテル基を有するシラン単位を有する含フッ素化合物)
Pentaerythritol triacrylate (PETA): 0.10 parts by mass Fluorine compound * 10 : 1.23 parts by mass Hollow silica particle dispersion * 2 : 6.69 parts by mass Solid silica particle dispersion * 3 : 0.74 parts by mass Part Fluoropolymer * 4 : 2.79 parts by mass Fluorine monomer * 5 : 2.23 parts by mass Photopolymerization initiator * 6 : 0.08 parts by mass Methyl isobutyl ketone: 57.04 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass * 10, “X-71-1205 (trade name)”: manufactured by Shin-Etsu Chemical Co., Ltd., 20% by mass solution (solvent: mixture of methyl isobutyl ketone and methyl ethyl ketone, photocurable reactive group: (meth) A fluorinated compound having an acryloyl group, a reactive silane unit, and a silane unit having a perfluoropolyether group)
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物6にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第1表に示す。 Example 6
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ジペンタエリスリトールヘキサアクリレート(DPHA):1.32質量部
含フッ素化合物*1:1.32質量部
中空シリカ粒子分散液*2:6.61質量部
光重合開始剤*6:0.07質量部
メチルイソブチルケトン:61.03質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部 Low refractive index layer-forming
Dipentaerythritol hexaacrylate (DPHA): 1.32 parts by mass Fluorine-containing compound * 1 : 1.32 parts by mass Hollow silica particle dispersion * 2 : 6.61 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 61.03 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物7にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第1表に示す。 Example 7
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):0.10質量部
含フッ素化合物*1:2.93質量部
中空シリカ粒子分散液*2:5.86質量部
中実シリカ粒子分散液*3:0.65質量部
含フッ素ポリマー*4:2.44質量部
含フッ素モノマー*5:1.95質量部
光重合開始剤*6:0.07質量部
メチルイソブチルケトン:56.89質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部 Low refractive index layer-forming composition 7
Pentaerythritol triacrylate (PETA): 0.10 parts by mass Fluorine-containing compound * 1 : 2.93 parts by mass Hollow silica particle dispersion * 2 : 5.86 parts by mass Solid silica particle dispersion * 3 : 0.65 mass Part Fluoropolymer * 4 : 2.44 parts by mass Fluoromonomer * 5 : 1.95 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 56.89 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物8にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第1表に示す。 Example 8
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):1.32質量部
含フッ素化合物*1:1.32質量部
中空シリカ粒子分散液*2:6.61質量部
光重合開始剤*6:0.07質量部
メチルイソブチルケトン:61.03質量部
トルエン:29.1質量部 Low refractive index
Pentaerythritol triacrylate (PETA): 1.32 parts by mass Fluorine-containing compound * 1 : 1.32 parts by mass Hollow silica particle dispersion * 2 : 6.61 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl Isobutyl ketone: 61.03 parts by mass Toluene: 29.1 parts by mass
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物9にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第1表に示す。 Example 9
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):0.11質量部
含フッ素化合物*11:0.25質量部
中空シリカ粒子分散液*2:6.69質量部
中実シリカ粒子分散液*3:0.74質量部
含フッ素ポリマー*12:2.79質量部
含フッ素モノマー*5:2.23質量部
光重合開始剤*6:0.08質量部
メチルイソブチルケトン:58.01質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部
*11,「5101X(商品名)」:ソルベイスペシャルティポリマーズジャパン株式会社製,両末端4官能メタクリレート変性パーフルオロポリエーテル化合物であり、シラン単位を有しない含フッ素化合物である。)
*12,「オプスターTU2224(商品名)」,JSR社製,20質量%溶液(溶剤:メチルイソブチルケトン) Low refractive index layer-forming composition 9
Pentaerythritol triacrylate (PETA): 0.11 parts by mass Fluorine-containing compound * 11 : 0.25 parts by mass Hollow silica particle dispersion * 2 : 6.69 parts by mass Solid silica particle dispersion * 3 : 0.74 parts by mass Part Fluoropolymer * 12 : 2.79 parts by mass Fluorine monomer * 5 : 2.23 parts by mass Photopolymerization initiator * 6 : 0.08 parts by mass Methyl isobutyl ketone: 58.01 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass * 11, “5101X (trade name)”: Solvay Specialty Polymers Japan Co., Ltd., a bifunctional tetrafunctional methacrylate-modified perfluoropolyether compound, and a fluorine-containing compound having no silane unit. )
* 12, “OPSTAR TU2224 (trade name)”, manufactured by JSR, 20% by mass solution (solvent: methyl isobutyl ketone)
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物10にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第2表に示す。また、原子間力顕微鏡像(形状像及び位相像)を図9に示す。 Comparative Example 1
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):0.12質量部
含フッ素化合物*1:0.52質量部
中空シリカ粒子分散液*2:7.04質量部
中実シリカ粒子分散液*3:0.78質量部
含フッ素ポリマー*4:2.93質量部
含フッ素モノマー*5:2.35質量部
光重合開始剤*6:0.08質量部
メチルイソブチルケトン:57.09質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部 Composition 10 for forming a low refractive index layer
Pentaerythritol triacrylate (PETA): 0.12 parts by mass Fluorine-containing compound * 1 : 0.52 parts by mass Hollow silica particle dispersion * 2 : 7.04 parts by mass Solid silica particle dispersion * 3 : 0.78 parts by mass Part Fluoropolymer * 4 : 2.93 parts by mass Fluoromonomer * 5 : 2.35 parts by mass Photopolymerization initiator * 6 : 0.08 parts by mass Methyl isobutyl ketone: 57.09 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物11にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第2表に示す。また、原子間力顕微鏡像(形状像及び位相像)を図10に示す。 Comparative Example 2
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):0.09質量部
含フッ素化合物*1:3.79質量部
中空シリカ粒子分散液*2:5.44質量部
中実シリカ粒子分散液*3:0.6質量部
含フッ素ポリマー*4:2.27質量部
含フッ素モノマー*5:1.81質量部
光重合開始剤*6:0.06質量部
メチルイソブチルケトン:56.82質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部 Composition 11 for forming a low refractive index layer
Pentaerythritol triacrylate (PETA): 0.09 parts by mass Fluorine-containing compound * 1 : 3.79 parts by mass Hollow silica particle dispersion * 2 : 5.44 parts by mass Solid silica particle dispersion * 3 : 0.6 mass Part Fluoropolymer * 4 : 2.27 parts by mass Fluoromonomer * 5 : 1.81 parts by mass Photopolymerization initiator * 6 : 0.06 parts by mass Methyl isobutyl ketone: 56.82 parts by mass Propylene glycol monomethyl ether acetate: 29.1 parts by mass
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物12にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第2表に示す。また、原子間力顕微鏡像(形状像及び位相像)を図11に示す。 Comparative Example 3
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):0.32質量部
中空シリカ粒子分散液*2:6.42質量部
中実シリカ粒子分散液*3:1.43質量部
含フッ素ポリマー*4:3.21質量部
含フッ素モノマー*5:0.54質量部
光重合開始剤*6:0.07質量部
メチルイソブチルケトン:58.2質量部
プロピレングリコールモノメチルエーテルアセテート:29.1質量部 Low refractive index layer forming composition 12
Pentaerythritol triacrylate (PETA): 0.32 parts by mass Hollow silica particle dispersion * 2 : 6.42 parts by mass Solid silica particle dispersion * 3 : 1.43 parts by mass Fluoropolymer * 4 : 3.21 parts by mass Part Fluorinated monomer * 5 : 0.54 part by weight Photopolymerization initiator * 6 : 0.07 part by weight Methyl isobutyl ketone: 58.2 parts by weight Propylene glycol monomethyl ether acetate: 29.1 parts by weight
実施例1において、低屈折率層形成用組成物1を下記の低屈折率層形成用組成物13にかえる以外は、実施例1と同様にして反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第2表に示す。 Comparative Example 4
In Example 1, an antireflection film was obtained in the same manner as in Example 1 except that the
ペンタエリスリトールトリアクリレート(PETA):2.64質量部
含フッ素化合物*1:1.32質量部
光重合開始剤*6:0.07質量部
メチルイソブチルケトン:95.42質量部 Low refractive index layer forming composition 13
Pentaerythritol triacrylate (PETA): 2.64 parts by mass Fluorine-containing compound * 1 : 1.32 parts by mass Photopolymerization initiator * 6 : 0.07 parts by mass Methyl isobutyl ketone: 95.42 parts by mass
実施例1で用いた含フッ素化合物をメタキシレンヘキサフロライドで希釈した固形分濃度3質量%の溶液を防汚膜蒸着源として準備した。
幅:500mm、厚さ:80μm、長さ:500mのトリアセチルセルロース(TAC)樹脂フィルム上に、ハードコート層形成用組成物1をグラビアコーティングし、下記の低屈折率層形成用組成物13をグラビアコーティングし、70℃、1分の乾燥を行い、溶剤を除去した後、照射線量200mJ/cm2で紫外線照射を行い硬化させて、厚さ約10μmのハードコート層と厚さ約100nmの低屈折率層を形成し、透明基材/ハードコート層/低屈折率層を有する積層体を得た。
次いで、巻き取り式蒸着装置に、上記の防汚膜蒸着源と積層体とをセットして、1e-4Torr以下に真空排気した後、該積層体を走行速度5m/分で巻き取りを開始し、該防汚膜蒸着源を非接触加熱式のランプヒーターで蒸発させて、該積層体の低屈折率層側に防汚膜を形成して反射防止フィルムを得た。得られた反射防止フィルムについて、上記の評価方法により評価した結果を第2表に示す。 Comparative Example 5
A solution having a solid content concentration of 3% by mass obtained by diluting the fluorine-containing compound used in Example 1 with metaxylene hexafluoride was prepared as an antifouling film deposition source.
A hard coat
Next, the antifouling film deposition source and the laminate are set in a wind-up type vapor deposition apparatus, and after evacuation to 1e -4 Torr or less, winding of the laminate starts at a traveling speed of 5 m / min. The antifouling film deposition source was evaporated with a non-contact heating type lamp heater to form an antifouling film on the low refractive index layer side of the laminate to obtain an antireflection film. The results obtained by evaluating the obtained antireflection film by the above evaluation method are shown in Table 2.
バインダー樹脂をPETAからDPHAにした実施例6では、概ね良好な物性が得られたが、塗布面は概ね均一で一様だったものの若干荒れ、また若干耐擦傷性が低下した。また、DPHAをトリメチロールプロパントリアクリレート(TMPTA)、及びペンタエリスリトールテトラアクリレート(PETTA)にかえて反射防止フィルムを作製したところ、実施例6とほぼ同等の結果が得られることが確認された。含フッ素化合物の含有量が多い実施例7では、概ね良好な物性が得られたが、表面状態は概ね均一で一様だったものの若干荒れ、また若干耐擦傷性が低下した。溶剤としてグリコールエーテル類をトルエンにかえた実施例8では、微粒子の分散性に若干の影響があったと推測され、若干耐擦傷性が低下したものの、概ね良好な結果が得られた。この結果から、溶剤としてケトン類、グリコールエーテル類を用いることが良好であることが確認された。また、含フッ素化合物として特許文献2で用いられる材料を用いた実施例9では、防汚層に海島構造がなく、微かな白化のない良好なものが得られたが、塗膜面の平滑性が若干劣り微かな歪みが確認された。このことから、含フッ素化合物はシラン単位を有していることが好ましいことが確認された。
また、実施例で得られた反射防止フィルムにおいて、低屈折率層と防汚層の厚さの合計は約100nmであり、防汚層の厚さは1~3nmの範囲内にあると推測される。 The antireflection films obtained in Examples 1 to 5 are excellent in all evaluations, have excellent antireflection characteristics, have excellent scratch resistance and antifouling properties, and can be whitened. And a uniform and uniform surface from the results of contact angle and sliding angle. Further, Examples 1 to 5 have a uniform and uniform surface from the average surface roughness or the result of observation by an atomic force microscope, and the antifouling layer covers the entire surface on the low refractive index layer. It was confirmed that the film was uniformly and uniformly formed so as to cover it.
In Example 6 in which the binder resin was changed from PETA to DPHA, generally good physical properties were obtained. However, although the coated surface was generally uniform and uniform, the surface was slightly roughened and the scratch resistance was slightly decreased. Moreover, when DPHA was replaced with trimethylolpropane triacrylate (TMPTA) and pentaerythritol tetraacrylate (PETTA) to produce an antireflection film, it was confirmed that the same results as in Example 6 were obtained. In Example 7 where the content of the fluorine-containing compound was large, generally good physical properties were obtained, but the surface state was generally uniform and uniform, but slightly roughened, and the scratch resistance was slightly decreased. In Example 8 in which the glycol ether was replaced with toluene as the solvent, it was estimated that there was some influence on the dispersibility of the fine particles, and although the scratch resistance was slightly reduced, generally good results were obtained. From this result, it was confirmed that it is preferable to use ketones and glycol ethers as the solvent. Further, in Example 9 using the material used in
In addition, in the antireflection films obtained in the examples, the total thickness of the low refractive index layer and the antifouling layer is about 100 nm, and the thickness of the antifouling layer is estimated to be in the range of 1 to 3 nm. The
Claims (13)
- 以下の工程(1)~(3)を順に含む、少なくとも透明基材、低屈折率層、及び防汚層を順に有し、該防汚層側からX線光電子分光法(XPS)により測定したフッ素原子/炭素原子比が0.6~1.0であり、かつケイ素原子/炭素原子比が0.25未満であり、該防汚層の平均面粗さ(Ra’)が10nm以下である反射防止フィルムの製造方法。
工程(1)含フッ素化合物、微粒子及びバインダー樹脂を少なくとも含有する低屈折率層形成用組成物を透明基材上に塗布して塗膜を形成する工程
工程(2)該塗膜を低屈折率相と防汚相とに相分離させる工程
工程(3)該低屈折率相と該防汚相とを加熱して、又は該低屈折率相と該防汚相とに電離放射線を照射して、低屈折率層と該低屈折率層の全面を覆う防汚層とを形成する工程 It has at least a transparent substrate, a low refractive index layer, and an antifouling layer in order, including the following steps (1) to (3) in order, and measured by X-ray photoelectron spectroscopy (XPS) from the antifouling layer side The fluorine atom / carbon atom ratio is 0.6 to 1.0, the silicon atom / carbon atom ratio is less than 0.25, and the average surface roughness (Ra ′) of the antifouling layer is 10 nm or less. A method for producing an antireflection film.
Step (1) Step of forming a coating film by applying a composition for forming a low refractive index layer containing at least a fluorine-containing compound, fine particles and a binder resin on a transparent substrate (2) Low coating film with a low refractive index (3) Heating the low refractive index phase and the antifouling phase, or irradiating the low refractive index phase and the antifouling phase with ionizing radiation Forming a low refractive index layer and an antifouling layer covering the entire surface of the low refractive index layer - 含フッ素化合物が、反応性を有するシラン単位、及びパーフルオロポリエーテル基を有するシラン単位を有するものである請求項1に記載の反射防止フィルムの製造方法。 The method for producing an antireflection film according to claim 1, wherein the fluorine-containing compound has a reactive silane unit and a silane unit having a perfluoropolyether group.
- 反応性を有するシラン単位、及びパーフルオロポリエーテル基を有するシラン単位が、各々シロキサン骨格を有する請求項2に記載の反射防止フィルムの製造方法。 The method for producing an antireflection film according to claim 2, wherein each of the reactive silane unit and the silane unit having a perfluoropolyether group has a siloxane skeleton.
- 反応性基が、(メタ)アクリロイル基、及びビニル基から選ばれる少なくとも一種である請求項2又は3に記載の反射防止フィルムの製造方法。 The method for producing an antireflection film according to claim 2 or 3, wherein the reactive group is at least one selected from a (meth) acryloyl group and a vinyl group.
- 含フッ素化合物の重量平均分子量が5,000以上である請求項1~4のいずれかに記載の反射防止フィルムの製造方法。 The method for producing an antireflection film according to any one of claims 1 to 4, wherein the fluorine-containing compound has a weight average molecular weight of 5,000 or more.
- 微粒子が、シリカ微粒子である請求項1~5のいずれかに記載の反射防止フィルムの製造方法。 6. The method for producing an antireflection film according to claim 1, wherein the fine particles are silica fine particles.
- 微粒子が、空隙を有する微粒子を含む請求項1~6のいずれかに記載の反射防止フィルムの製造方法。 The method for producing an antireflection film according to any one of claims 1 to 6, wherein the fine particles include fine particles having voids.
- 微粒子が、表面処理されたものである請求項1~7のいずれかに記載の反射防止フィルムの製造方法。 The method for producing an antireflection film according to any one of claims 1 to 7, wherein the fine particles are surface-treated.
- バインダー樹脂が、電離放射線硬化性樹脂である請求項1~8のいずれかに記載の反射防止フィルムの製造方法。 The method for producing an antireflection film according to any one of claims 1 to 8, wherein the binder resin is an ionizing radiation curable resin.
- 電離放射線硬化性樹脂が、3官能以上の(メタ)アクリレートを含む請求項9に記載の反射防止フィルムの製造方法。 The method for producing an antireflection film according to claim 9, wherein the ionizing radiation curable resin contains a tri- or higher functional (meth) acrylate.
- 請求項1~10のいずれかに記載の反射防止フィルムの製造方法により製造される反射防止フィルム。 An antireflection film produced by the method for producing an antireflection film according to any one of claims 1 to 10.
- 偏光膜の少なくとも片面に反射防止フィルムを有し、該反射防止フィルムが請求項11に記載の反射防止フィルムである、偏光板。 A polarizing plate having an antireflection film on at least one surface of the polarizing film, wherein the antireflection film is the antireflection film according to claim 11.
- 反射防止フィルム、又は偏光膜の少なくとも片面に反射防止フィルムを有する偏光板をディスプレイの最表面に有し、該反射防止フィルムが請求項11に記載の反射防止フィルムである、画像表示装置。 An image display device comprising an antireflection film or a polarizing plate having an antireflection film on at least one side of a polarizing film on the outermost surface of the display, wherein the antireflection film is the antireflection film according to claim 11.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013515183A JP6040936B2 (en) | 2011-05-16 | 2012-05-16 | Antireflection film manufacturing method, antireflection film, polarizing plate, and image display device |
KR1020137029822A KR101725585B1 (en) | 2011-05-16 | 2012-05-16 | Method for producing antireflection film, antireflection film, polarizing plate, and image display device |
CN201280023924.2A CN103765249B (en) | 2011-05-16 | 2012-05-16 | The manufacture method of antireflection film, antireflection film, polarization plates and image display device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-109550 | 2011-05-16 | ||
JP2011109550 | 2011-05-16 | ||
JP2012003485 | 2012-01-11 | ||
JP2012-003485 | 2012-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012157682A1 true WO2012157682A1 (en) | 2012-11-22 |
Family
ID=47176999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/062538 WO2012157682A1 (en) | 2011-05-16 | 2012-05-16 | Method for producing antireflection film, antireflection film, polarizing plate, and image display device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6040936B2 (en) |
KR (1) | KR101725585B1 (en) |
CN (1) | CN103765249B (en) |
TW (1) | TWI530707B (en) |
WO (1) | WO2012157682A1 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014031397A (en) * | 2012-08-01 | 2014-02-20 | 3M Innovative Properties Co | Antifouling hard coat and antifouling hard coat precursor |
JP2015183168A (en) * | 2014-03-26 | 2015-10-22 | リンテック株式会社 | Hard coat film, transparent conductive film, and capacitive touch panel |
JP2016071369A (en) * | 2014-09-26 | 2016-05-09 | 大日本印刷株式会社 | Anti-reflection film, display device, method of selecting anti-reflection film for display device |
WO2016158097A1 (en) * | 2015-03-31 | 2016-10-06 | 富士フイルム株式会社 | Composition for forming optical function layer, solid-state imaging element using same, and camera module |
JP2017194632A (en) * | 2016-04-22 | 2017-10-26 | キヤノン株式会社 | Heat-blocking film, heat-blocking paint, and optical instrument |
CN108713035A (en) * | 2016-03-22 | 2018-10-26 | 积水化成品工业株式会社 | Hollow particle and application thereof |
JP2018533068A (en) * | 2016-03-09 | 2018-11-08 | エルジー・ケム・リミテッド | Antireflection film |
JP2019508753A (en) * | 2016-07-14 | 2019-03-28 | エルジー・ケム・リミテッド | Antireflective film |
JP2020030363A (en) * | 2018-08-23 | 2020-02-27 | 日東電工株式会社 | Antireflection film, method of manufacturing antireflection film, optical member and image display device |
US10605960B2 (en) | 2016-01-13 | 2020-03-31 | Lg Chem, Ltd. | Antireflection film containing inorganic particles and manufacturing method thereof |
US10627548B2 (en) | 2015-11-04 | 2020-04-21 | Lg Chem, Ltd. | Anti-reflective film and manufacturing method thereof |
US10663623B2 (en) | 2016-07-14 | 2020-05-26 | Lg Chem, Ltd. | Anti-reflective film |
WO2020145373A1 (en) * | 2019-01-10 | 2020-07-16 | 大日本印刷株式会社 | Antireflective member, and polarizing plate, image display device and antireflective article each equipped with same |
CN112437890A (en) * | 2019-03-12 | 2021-03-02 | 株式会社Lg化学 | Antireflection film, polarizing plate and display device |
WO2022014560A1 (en) * | 2020-07-15 | 2022-01-20 | 大日本印刷株式会社 | Antireflective member, and polarizing plate, image display device, and antireflective article in which said antireflective member is used, as well as method for selecting antireflective member |
US11262279B2 (en) | 2017-12-07 | 2022-03-01 | Lg Chem, Ltd. | Specimen for analyzing shape of antistatic antifouling layer and method for preparing same |
US11353628B2 (en) | 2017-04-28 | 2022-06-07 | Lg Chem, Ltd. | Anti-reflective film |
WO2022260152A1 (en) * | 2021-06-11 | 2022-12-15 | 日東電工株式会社 | Hard coat film, optical member, and image display device |
US11680172B2 (en) * | 2016-02-19 | 2023-06-20 | Lg Chem, Ltd. | Photocurable coating composition for forming low refractive layer |
JP7343024B1 (en) | 2022-09-30 | 2023-09-12 | 大日本印刷株式会社 | An optical film, a polarizing plate, a surface plate, an image display panel, and an image display device using the optical film, a method for manufacturing the optical film, a method for selecting an optical film, and a method for evaluating fingerprint wiping performance. |
JP7343023B1 (en) | 2022-09-30 | 2023-09-12 | 大日本印刷株式会社 | An optical film, a polarizing plate, a surface plate, an image display panel, and an image display device using the optical film, a method for manufacturing the optical film, and a method for selecting an optical film |
WO2024070996A1 (en) * | 2022-09-30 | 2024-04-04 | 大日本印刷株式会社 | Optical film, polarizing plate, surface plate, image display panel, and image display device using said optical film, method for manufacturing said optical film, method for selecting optical film, and method for evaluating fingerprint wipe-off properties |
WO2024122489A1 (en) * | 2022-12-05 | 2024-06-13 | 東山フイルム株式会社 | Antireflection film |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6825825B2 (en) * | 2015-05-27 | 2021-02-03 | デクセリアルズ株式会社 | Laminated thin film and manufacturing method of laminated thin film |
KR102017789B1 (en) | 2015-12-03 | 2019-09-03 | 주식회사 엘지화학 | Anti-reflective film |
KR101906492B1 (en) * | 2016-03-14 | 2018-12-05 | 주식회사 엘지화학 | Anti-reflective film |
KR102580078B1 (en) * | 2016-08-18 | 2023-09-18 | 스미또모 가가꾸 가부시키가이샤 | Process for producing polarizing film and apparatus for producing polarizing film |
US10976475B1 (en) | 2016-08-25 | 2021-04-13 | Sharp Kabushiki Kaisha | Antifouling film |
CN107474614B (en) * | 2017-08-04 | 2020-09-18 | 来奇偏光科技(中国)股份有限公司 | Primer formula of anti-reflection film and preparation method |
CN115185021A (en) * | 2017-09-08 | 2022-10-14 | 株式会社大赛璐 | Anti-reflection film |
JP2019091029A (en) * | 2017-11-10 | 2019-06-13 | 住友化学株式会社 | Composite retardation plate, optical laminate, and image display device |
KR102280262B1 (en) * | 2018-05-18 | 2021-07-21 | 주식회사 엘지화학 | Anti-reflective film, polarizing plate, and display apparatus |
TWI684632B (en) | 2018-08-02 | 2020-02-11 | 明基材料股份有限公司 | Anti-reflection film, polarizer comprising the same, and image display comprising the anti-reflection film and/or the polarizer comprising the same |
CN109188572B (en) * | 2018-08-27 | 2021-08-13 | 明基材料有限公司 | Antireflection film, polarizing plate and image display device |
CN113574422B (en) * | 2019-03-13 | 2023-10-13 | 松下知识产权经营株式会社 | Optical element and method for manufacturing the same |
WO2020203759A1 (en) * | 2019-03-29 | 2020-10-08 | 大日本印刷株式会社 | Transfer sheet and manufacturing method for same, method for manufacturing molded body using said transfer sheet and molded body, and front plate using said molded body and image display device |
KR20220007760A (en) * | 2020-07-09 | 2022-01-19 | 삼성디스플레이 주식회사 | Cover window protective film and display device including the same |
CN115867436B (en) * | 2020-07-13 | 2024-01-26 | 日东电工株式会社 | Laminate body |
CN116075425B (en) * | 2020-07-13 | 2024-03-05 | 日东电工株式会社 | Laminate body |
KR20220021079A (en) | 2020-08-12 | 2022-02-22 | 삼성디스플레이 주식회사 | Display apparatus |
JP2022120792A (en) * | 2021-02-05 | 2022-08-18 | 住友化学株式会社 | Cured film and laminate |
CN118033794A (en) * | 2022-09-30 | 2024-05-14 | 大日本印刷株式会社 | Optical film, polarizing plate, surface plate, image display panel, image display device, method for producing and selecting optical film, and method for evaluating fingerprint wiping property |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002277604A (en) * | 2001-03-16 | 2002-09-25 | Toppan Printing Co Ltd | Antireflection film |
WO2008038714A1 (en) * | 2006-09-29 | 2008-04-03 | Dai Nippon Printing Co., Ltd. | Optically functional film |
JP2008146021A (en) * | 2006-09-08 | 2008-06-26 | Fujifilm Corp | Optical film |
JP2010085983A (en) * | 2008-09-05 | 2010-04-15 | Dainippon Printing Co Ltd | Optical layered body, polarizer and image display |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001188102A (en) | 1999-12-27 | 2001-07-10 | Toppan Printing Co Ltd | Antireflection film |
CN100397099C (en) * | 2002-11-25 | 2008-06-25 | 富士胶片株式会社 | Antireflection film, polarizing plate, and liquid crystal display |
JP2008003580A (en) * | 2006-05-23 | 2008-01-10 | Fujifilm Corp | Protective film for polarizing plate and polarizing plate and liquid crystal display device |
KR101476462B1 (en) * | 2006-08-18 | 2014-12-24 | 다이니폰 인사츠 가부시키가이샤 | Method for manufacturing optical laminate, optical laminate, polarizing plate, and image display apparatus |
JP5303836B2 (en) | 2006-12-28 | 2013-10-02 | 大日本印刷株式会社 | Curable resin composition for antiglare layer and antiglare film |
JP2008197320A (en) * | 2007-02-13 | 2008-08-28 | Nippon Paint Co Ltd | Antiglare coating composition, antiglare film, and method for manufacturing the same |
JP2010152311A (en) | 2008-07-22 | 2010-07-08 | Fujifilm Corp | Antireflective film, polarizing plate, and image display |
JP5051088B2 (en) * | 2008-09-30 | 2012-10-17 | 大日本印刷株式会社 | Optical laminate, polarizing plate, and image display device |
-
2012
- 2012-05-16 WO PCT/JP2012/062538 patent/WO2012157682A1/en active Application Filing
- 2012-05-16 CN CN201280023924.2A patent/CN103765249B/en active Active
- 2012-05-16 TW TW101117511A patent/TWI530707B/en active
- 2012-05-16 KR KR1020137029822A patent/KR101725585B1/en active IP Right Grant
- 2012-05-16 JP JP2013515183A patent/JP6040936B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002277604A (en) * | 2001-03-16 | 2002-09-25 | Toppan Printing Co Ltd | Antireflection film |
JP2008146021A (en) * | 2006-09-08 | 2008-06-26 | Fujifilm Corp | Optical film |
WO2008038714A1 (en) * | 2006-09-29 | 2008-04-03 | Dai Nippon Printing Co., Ltd. | Optically functional film |
JP2010085983A (en) * | 2008-09-05 | 2010-04-15 | Dainippon Printing Co Ltd | Optical layered body, polarizer and image display |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014031397A (en) * | 2012-08-01 | 2014-02-20 | 3M Innovative Properties Co | Antifouling hard coat and antifouling hard coat precursor |
JP2015183168A (en) * | 2014-03-26 | 2015-10-22 | リンテック株式会社 | Hard coat film, transparent conductive film, and capacitive touch panel |
JP2016071369A (en) * | 2014-09-26 | 2016-05-09 | 大日本印刷株式会社 | Anti-reflection film, display device, method of selecting anti-reflection film for display device |
WO2016158097A1 (en) * | 2015-03-31 | 2016-10-06 | 富士フイルム株式会社 | Composition for forming optical function layer, solid-state imaging element using same, and camera module |
JPWO2016158097A1 (en) * | 2015-03-31 | 2017-08-03 | 富士フイルム株式会社 | Composition for forming optical functional layer, solid-state imaging device and camera module using the same |
US11415726B2 (en) | 2015-11-04 | 2022-08-16 | Lg Chem, Ltd. | Anti-reflective film and manufacturing method thereof |
JP2021076849A (en) * | 2015-11-04 | 2021-05-20 | エルジー・ケム・リミテッド | Antireflection film and manufacturing method thereof |
US10627548B2 (en) | 2015-11-04 | 2020-04-21 | Lg Chem, Ltd. | Anti-reflective film and manufacturing method thereof |
US10605960B2 (en) | 2016-01-13 | 2020-03-31 | Lg Chem, Ltd. | Antireflection film containing inorganic particles and manufacturing method thereof |
US11680172B2 (en) * | 2016-02-19 | 2023-06-20 | Lg Chem, Ltd. | Photocurable coating composition for forming low refractive layer |
US10802178B2 (en) | 2016-03-09 | 2020-10-13 | Lg Chem, Ltd. | Anti-reflective film |
JP2021076847A (en) * | 2016-03-09 | 2021-05-20 | エルジー・ケム・リミテッド | Antireflection film |
US11275199B2 (en) | 2016-03-09 | 2022-03-15 | Lg Chem, Ltd. | Anti-reflective film |
JP2018533068A (en) * | 2016-03-09 | 2018-11-08 | エルジー・ケム・リミテッド | Antireflection film |
US10627547B2 (en) | 2016-03-09 | 2020-04-21 | Lg Chem, Ltd. | Anti-reflective film |
JP2020024467A (en) * | 2016-03-09 | 2020-02-13 | エルジー・ケム・リミテッド | Antireflection film |
JP2020024468A (en) * | 2016-03-09 | 2020-02-13 | エルジー・ケム・リミテッド | Antireflection film |
JP2021076848A (en) * | 2016-03-09 | 2021-05-20 | エルジー・ケム・リミテッド | Antireflection film |
US11262481B2 (en) | 2016-03-09 | 2022-03-01 | Lg Chem, Ltd. | Anti-reflective film |
US10895667B2 (en) | 2016-03-09 | 2021-01-19 | Lg Chem, Ltd. | Antireflection film |
JP7344865B2 (en) | 2016-03-09 | 2023-09-14 | エルジー・ケム・リミテッド | anti-reflection film |
US10983252B2 (en) | 2016-03-09 | 2021-04-20 | Lg Chem, Ltd. | Anti-reflective film |
CN108713035A (en) * | 2016-03-22 | 2018-10-26 | 积水化成品工业株式会社 | Hollow particle and application thereof |
JP2017194632A (en) * | 2016-04-22 | 2017-10-26 | キヤノン株式会社 | Heat-blocking film, heat-blocking paint, and optical instrument |
US10663623B2 (en) | 2016-07-14 | 2020-05-26 | Lg Chem, Ltd. | Anti-reflective film |
JP2019508753A (en) * | 2016-07-14 | 2019-03-28 | エルジー・ケム・リミテッド | Antireflective film |
US11353628B2 (en) | 2017-04-28 | 2022-06-07 | Lg Chem, Ltd. | Anti-reflective film |
US11262279B2 (en) | 2017-12-07 | 2022-03-01 | Lg Chem, Ltd. | Specimen for analyzing shape of antistatic antifouling layer and method for preparing same |
JP7428468B2 (en) | 2018-08-23 | 2024-02-06 | 日東電工株式会社 | Antireflection film, antireflection film manufacturing method, optical member, and image display device |
JP2020030363A (en) * | 2018-08-23 | 2020-02-27 | 日東電工株式会社 | Antireflection film, method of manufacturing antireflection film, optical member and image display device |
JP7567168B2 (en) | 2019-01-10 | 2024-10-16 | 大日本印刷株式会社 | Anti-reflection member, and polarizing plate, image display device, and anti-reflection article equipped with the same |
JP2020166236A (en) * | 2019-01-10 | 2020-10-08 | 大日本印刷株式会社 | Antireflection member, and polarizer, image display device and antireflection article including antireflection member |
EP3909764A4 (en) * | 2019-01-10 | 2022-09-14 | Dai Nippon Printing Co., Ltd. | Antireflective member, and polarizing plate, image display device and antireflective article each equipped with same |
WO2020145373A1 (en) * | 2019-01-10 | 2020-07-16 | 大日本印刷株式会社 | Antireflective member, and polarizing plate, image display device and antireflective article each equipped with same |
CN112437890A (en) * | 2019-03-12 | 2021-03-02 | 株式会社Lg化学 | Antireflection film, polarizing plate and display device |
JP7150384B2 (en) | 2019-03-12 | 2022-10-11 | エルジー・ケム・リミテッド | Antireflection films, polarizers and display devices |
JP2021531517A (en) * | 2019-03-12 | 2021-11-18 | エルジー・ケム・リミテッド | Anti-reflection film, polarizing plate and display device |
US12050304B2 (en) | 2019-03-12 | 2024-07-30 | Lg Chem, Ltd. | Anti-reflective film, polarizing plate, and display apparatus |
CN112437890B (en) * | 2019-03-12 | 2022-12-30 | 株式会社Lg化学 | Antireflection film, polarizing plate and display device |
WO2022014560A1 (en) * | 2020-07-15 | 2022-01-20 | 大日本印刷株式会社 | Antireflective member, and polarizing plate, image display device, and antireflective article in which said antireflective member is used, as well as method for selecting antireflective member |
WO2022260152A1 (en) * | 2021-06-11 | 2022-12-15 | 日東電工株式会社 | Hard coat film, optical member, and image display device |
WO2024070996A1 (en) * | 2022-09-30 | 2024-04-04 | 大日本印刷株式会社 | Optical film, polarizing plate, surface plate, image display panel, and image display device using said optical film, method for manufacturing said optical film, method for selecting optical film, and method for evaluating fingerprint wipe-off properties |
JP2024051848A (en) * | 2022-09-30 | 2024-04-11 | 大日本印刷株式会社 | Optical film, and polarizer, surface plate, image display panel and image display device using optical film, and manufacturing method of optical film, and selection method of optical film, and evaluation method of fingerprint wiping property |
JP2024051841A (en) * | 2022-09-30 | 2024-04-11 | 大日本印刷株式会社 | Optical film, and polarizing plate, surface plate, image display panel and image display device each using optical film, and manufacturing method of optical film, and selection method of optical film |
JP7343023B1 (en) | 2022-09-30 | 2023-09-12 | 大日本印刷株式会社 | An optical film, a polarizing plate, a surface plate, an image display panel, and an image display device using the optical film, a method for manufacturing the optical film, and a method for selecting an optical film |
JP7343024B1 (en) | 2022-09-30 | 2023-09-12 | 大日本印刷株式会社 | An optical film, a polarizing plate, a surface plate, an image display panel, and an image display device using the optical film, a method for manufacturing the optical film, a method for selecting an optical film, and a method for evaluating fingerprint wiping performance. |
US12135406B2 (en) | 2022-09-30 | 2024-11-05 | Dai Nippon Printing Co., Ltd. | Optical film, and polarizing plate, surface plate, image display panel and image display device using the optical film, and method for producing the optical film, and method for selecting optical film, and evaluation method of finger print wiping property |
WO2024122489A1 (en) * | 2022-12-05 | 2024-06-13 | 東山フイルム株式会社 | Antireflection film |
Also Published As
Publication number | Publication date |
---|---|
TW201303347A (en) | 2013-01-16 |
CN103765249A (en) | 2014-04-30 |
CN103765249B (en) | 2015-11-25 |
KR101725585B1 (en) | 2017-04-10 |
KR20140037080A (en) | 2014-03-26 |
JPWO2012157682A1 (en) | 2014-07-31 |
TWI530707B (en) | 2016-04-21 |
JP6040936B2 (en) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6040936B2 (en) | Antireflection film manufacturing method, antireflection film, polarizing plate, and image display device | |
JP6070195B2 (en) | Antireflection film, method for producing antireflection film, polarizing plate and image display device | |
JP5359137B2 (en) | OPTICAL LAMINATE, ITS MANUFACTURING METHOD, POLARIZING PLATE, AND IMAGE DISPLAY DEVICE | |
JP5531509B2 (en) | Optical laminate, polarizing plate, and image display device | |
TWI384265B (en) | Polarizing plate | |
WO2007116831A1 (en) | Optical laminated body | |
WO2012147527A1 (en) | Antireflection film, polarizing plate, and image display device | |
WO2008020613A1 (en) | Optical laminate, polarizing plate, and image display apparatus | |
JP6825198B2 (en) | Anti-glare optical laminate and image display device | |
WO2005093464A1 (en) | Method for producing antireflective film, antireflective film, polarizing plate and image display | |
JP2013142817A (en) | Antireflection film, polarizer and picture display unit | |
TWI394662B (en) | Optical laminates | |
WO2016152691A1 (en) | Antireflection film, display device in which said antireflection film is used, and method for selecting antireflection film | |
JP6561519B2 (en) | Antireflection film, display device using the antireflection film, and method for selecting antireflection film | |
JP6558007B2 (en) | Antireflection film, display device using the antireflection film, and method for selecting antireflection film | |
JP6028333B2 (en) | Resin composition, optical laminate, polarizing plate and image display device | |
JP6907435B2 (en) | An antireflection film, a display device using the antireflection film, and a method for selecting an antireflection film. | |
JP2009244684A (en) | Anti-reflection stack | |
JP5096069B2 (en) | Optical laminate, polarizing plate, and image display device | |
JP6907436B2 (en) | An antireflection film, a display device using the antireflection film, and a method for selecting an antireflection film. | |
JP5450168B2 (en) | Antistatic optical film, polarizing plate, and image display device | |
TWI383894B (en) | Optical laminate | |
JP6561520B2 (en) | Antireflection film, display device using the antireflection film, and method for selecting antireflection film | |
JP2016164622A (en) | Composition for antireflection layer and manufacturing method of antireflection substrate | |
JP6145984B2 (en) | Resin composition, optical laminate, polarizing plate and image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12785824 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137029822 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013515183 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12785824 Country of ref document: EP Kind code of ref document: A1 |