WO2012152352A1 - Hydraulische fahrzeug-bremsanlage mit elektromechanischem aktuator und verfahren zum betrieben einer derartigen hydraulischen fahrzeug-bremsanlage - Google Patents

Hydraulische fahrzeug-bremsanlage mit elektromechanischem aktuator und verfahren zum betrieben einer derartigen hydraulischen fahrzeug-bremsanlage Download PDF

Info

Publication number
WO2012152352A1
WO2012152352A1 PCT/EP2012/001119 EP2012001119W WO2012152352A1 WO 2012152352 A1 WO2012152352 A1 WO 2012152352A1 EP 2012001119 W EP2012001119 W EP 2012001119W WO 2012152352 A1 WO2012152352 A1 WO 2012152352A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
brake system
master cylinder
valve
hydraulic
Prior art date
Application number
PCT/EP2012/001119
Other languages
English (en)
French (fr)
Inventor
Leo Gilles
Original Assignee
Lucas Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucas Automotive Gmbh filed Critical Lucas Automotive Gmbh
Priority to CN201280021840.5A priority Critical patent/CN103635367B/zh
Priority to US14/116,349 priority patent/US9227611B2/en
Priority to EP12710140.0A priority patent/EP2707262B1/de
Publication of WO2012152352A1 publication Critical patent/WO2012152352A1/de
Priority to US14/935,495 priority patent/US10259440B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/143Master cylinder mechanically coupled with booster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/175Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3255Systems in which the braking action is dependent on brake pedal data
    • B60T8/3275Systems with a braking assistant function, i.e. automatic full braking initiation in dependence of brake pedal velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4077Systems in which the booster is used as an auxiliary pressure source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/42Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition having expanding chambers for controlling pressure, i.e. closed systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/42Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition having expanding chambers for controlling pressure, i.e. closed systems
    • B60T8/4275Pump-back systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4845Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems using a booster or a master cylinder for traction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems

Definitions

  • HYDRAULIC VEHICLE BRAKING SYSTEM WITH ELECTROMECHANICAL ACTUATOR AND METHOD FOR OPERATING SUCH A HYDRAULIC VEHICLE BRAKING SYSTEM
  • the present disclosure generally relates to the field of vehicle brake systems. More specifically, a vehicle hydraulic brake system equipped with an electromechanical actuator will be described.
  • Electromechanical actuators have been used for some time in vehicle brake systems or have been proposed for such use.
  • electromechanical actuators are used, for example, to realize an electric parking brake function (EPB).
  • EMB electric parking brake function
  • EMB electromechanical brake systems
  • ABS antilock brake system
  • ASR traction control
  • ESP electronic stability program
  • VSC Vehicle Stability Control
  • WO 2006/111393 AI teaches a hydraulic brake system with a highly dynamic electromechanical actuator, which takes over the pressure modulation in the brake control mode.
  • the actuator is intended to be a master cylinder of the
  • the hydraulic components of the known from WO 2006/111393 AI brake system can be reduced to a single 2/2-way valve per wheel.
  • the valves are then controlled individually or in groups in multiplex mode.
  • a vehicle hydraulic brake system is angege ⁇ ben, comprising: a master cylinder with at least one displaceable piston received therein, one with a brake pedal coupled or can be coupled mechanical actuator for actuating the piston, an electromechanical actuator for actuating the piston, wherein the electromechanical actuator at least for brake booster or braking force generation is actuated upon actuation of the brake pedal, and a first valve assembly per wheel brake has a first valve for selectively disconnecting the wheel brake from the master cylinder and a second valve for selective brake pressure reduction at the wheel ⁇ brake, wherein the first valve arrangement can be controlled at least in the context of an ABS control operation.
  • the electromechanical actuator for actuating the master cylinder piston is formed in the context of a brake booster.
  • the braking force to be amplified can be applied in this case to the master cylinder piston by means of the mechanical actuator.
  • the electromechanical actuator for actuating the master cylinder piston is formed for braking force generation.
  • This variant can be used, for example, in the context of a brake-by-wire (BBW) operation, in which the brake pedal is normally mechanically decoupled from the master cylinder piston.
  • BBW brake-by-wire
  • the mechanical actuator comes about Failure of a BBW component (ie emergency braking) to operate the master cylinder piston used.
  • the brake system may have suitable control devices.
  • These drive devices may comprise electrical, electronic or program-controlled assemblies as well as combinations thereof.
  • the control devices can be provided in a common or in separate control units (Electronic Control Units, ECUs).
  • the electromechanical actuator may have an electric motor and a transmission coupled on the output side with the electric motor.
  • the transmission may extend concentrically or parallel to the mechanical actuator.
  • the transmission is designed as a nut / spindle arrangement (for example as a ball screw drive), but other variants (for example a rack thread) are also conceivable.
  • the electric motor of the electromechanical actuator may have a concentric with the mechanical actuator extending rotor.
  • the rotor may drive a thread formed as a nut / spindle assembly or form a component of the nut / spindle assembly.
  • the hydraulic vehicle brake system further comprises a decoupling device for selectively decoupling the brake pedal from the master cylinder piston.
  • a simulation device can be provided which provides a pedal reaction behavior familiar to the driver when the brake pedal is decoupled from the piston.
  • the simulation device can be based on a hydraulic operating principle.
  • the simulation device can be designed, for example, as a cylinder / piston arrangement for the reaction of receiving hydraulic fluid.
  • the selective decoupling of the brake pedal from the master cylinder piston by means of the decoupling device can be done for different purposes.
  • a decoupling can take place at least in the context of a regenerative braking operation (generator operation).
  • the decoupling and the simulation device can be completely eliminated.
  • the vehicle brake system may further comprise at least one low-pressure accumulator which receives hydraulic fluid discharged from the wheel brakes as part of a brake pressure reduction.
  • the at least one low-pressure accumulator can be coupled to the corresponding wheel brake via the second valve assigned to each wheel brake.
  • the low-pressure accumulator may be coupled to an input side of the first valve via a non-return valve for delivering the absorbed hydraulic fluid.
  • the check valve is connected according to a design such that no displaced from the master cylinder hydraulic fluid can pass directly into the low-pressure accumulator.
  • the vehicle brake system comprises an electrically operated and additionally provided to the master cylinder hydraulic pressure generator.
  • the hydraulic pressure generator may comprise, for example, a hydraulic pump or a Plunger arrangement and an electric motor for actuating the same.
  • the at least one low pressure accumulator may be coupled to an input side of the hydraulic pressure generator for delivery of the received hydraulic fluid. In this way, the hydraulic fluid delivered by the hydraulic pressure generator (also) can be removed from the low pressure accumulator.
  • the hydraulic pressure generator may be controllable in a different from the brake booster or braking force generation brake control operation.
  • a corresponding drive device may comprise a suitably programmed control device.
  • the electromechanical actuator can be actuated exclusively for the purpose of brake booster or brake force generation upon actuation of the brake pedal.
  • the electromechanical actuator can additionally be controlled in at least one of the ABS control mode different brake control operation, in which case the hydraulic pressure generator can be controlled only in ABS control mode.
  • This different from the ABS control mode brake control operation may include a slip control operation and / or an electronic stability program (ESP).
  • ESP electronic stability program
  • a second valve arrangement can be provided, which enables a selective decoupling of the master cylinder from an output side of the hydraulic pressure generator in the mentioned modes (slip control operation / ESP).
  • the second valve arrangement may comprise, for example per brake circuit, a 2/2-way valve.
  • this does not include any additional hydraulic motor generator that can be actuated by an electric motor and is provided in addition to the main cylinder.
  • all the pressure modulations occurring in the context of a brake control operation can be realized by means of the electromechanical actuator.
  • the electromechanical actuator can thus also be controlled in the context of a brake control operation (including an ABS control operation) in addition to the brake booster or braking force generation upon actuation of the brake pedal (especially in the event of service braking).
  • the vehicle brake system comprises a third valve arrangement, which enables the reduction of hydraulic pressure at the wheel brakes in the event of failure of the electromechanical actuator.
  • the third valve arrangement can be designed to selectively couple the associated wheel brake to the hydraulic pressure reduction with an unpressurized hydraulic reservoir when the first valve is open.
  • the third or a fourth valve arrangement may also be designed to selectively couple at least one chamber of the master cylinder, in which the master cylinder piston is received, with a pressureless hydraulic fluid reservoir.
  • a coupling may be desirable, for example, in regenerative braking operation.
  • the hydraulic fluid can pass from the at least one master cylinder chamber to the pressureless hydraulic fluid reservoir, without resulting in a (in regenerative braking operation usually undesirable) brake pressure build-up on the wheel brakes.
  • the vehicle brake system has a master cylinder with at least one piston slidably received therein, one with a
  • Brake pedal coupled or coupled mechanical actuator for actuating the piston, an electromechanical actuator for actuating the piston and a first valve assembly having per wheel brake a first valve for selectively disconnecting the wheel brake from the master cylinder and a second valve for selective braking pressure reduction at the wheel brake.
  • the method comprises controlling the electromechanical actuator at least for brake booster or braking force generation during actuation of the brake pedal, as well as driving the first valve arrangement, at least in the context of an ABS control operation.
  • the driving of the electromechanical actuator and the first valve arrangement can be offset in time or overlapping in time.
  • FIG. 1 shows a first embodiment of a hydraulic vehicle brake system.
  • FIG. 2 shows a second embodiment of a hydraulic vehicle brake system.
  • FIG. 3 shows a third embodiment of a hydraulic vehicle brake system. Detailed description
  • the brake system 100 includes a master cylinder assembly 104 mounted on a bulkhead 108 of the vehicle, a hydraulic control unit (HCU) 112 operatively connected between the master cylinder assembly 104 and wheel brakes 116, 120, 124, 128 of the FIG Vehicle is arranged, and a simulation device 132 for providing a pedal reaction behavior.
  • the HCU 112 is formed as an integrated assembly and includes a plurality of individual components and a plurality of fluid inlets and fluid outlets.
  • the master cylinder assembly 104 has a master cylinder 136 with a piston 140 slidably received therein.
  • the master cylinder piston 140 is as Tandem piston formed and defined in the master cylinder 136 two separate hydraulic chambers 144, 148.
  • the two hydraulic chambers 144, 148 of the master cylinder 136 are connected to the supply of hydraulic fluid via a respective connection 152, 154 with a non-pressurized hydraulic fluid reservoir (not shown).
  • the hydraulic assembly 104 further includes an electromechanical actuator 158 and a mechanical actuator 162. Both the electromechanical actuator 158 and the mechanical actuator 162 allow actuation of the master cylinder piston 140 and act on an input side end face of the master cylinder piston 140 a.
  • the actuators 158, 162 are designed such that they are able to actuate the master cylinder piston 140 independently of one another.
  • the mechanical actuator 162 has an actuating member 174, which is rod-shaped and can act directly on the input-side end face of the master cylinder piston 140. Furthermore, the mechanical actuator 162 has an input member 178. The input member 178 is configured to be pivotally coupled to a brake pedal (not shown).
  • a decoupler 182 is provided functionally between the input member 178 and the actuator 174.
  • the decoupling device 182 which can be considered as part of the mechanical actuator 162, allows selective decoupling of the master cylinder piston 140 from the brake pedal.
  • the decoupling device 182 comprises a hydraulic chamber 186 and a plunger piston 190 slidably received in the hydraulic chamber 186.
  • the plunger piston 190 is coupled to the input member 178 on the input side via a ball joint.
  • the plunger piston 190 acts in emergency braking mode directly on the end face of the actuating member 174 facing away from the master cylinder piston 140.
  • the operation of the decoupler 182 will be explained later in connection with the HCU 112 in more detail.
  • the electromechanical actuator 158 has an electric motor 194 and a transmission 198 following the engine 194 on the output side.
  • the motor 194 has a cylindrical shape and extends concentrically with the master cylinder piston 140 and the actuator 174 of the mechanical actuator 162. More specifically, the motor 194 is disposed radially outward of these components 140, 174.
  • the motor 194 comprises a stator 202 and a rotor 206 provided radially inwardly of the stator 202. The rotor 206 extends concentrically to the master cylinder piston 140 and to the actuating member 174 of the mechanical actuator 162.
  • the rotor 206 of the motor 194 is rotatably coupled to the trained as a ball screw gear 198.
  • the rotor 206 drives an axially non-displaceably mounted sleeve member 210 of the transmission 198.
  • the rotational movement of the sleeve member 210 is transmitted via a plurality of spherical bodies 214 to an axially displaceably mounted hollow spindle 218 of the transmission 198, so that the rotational movement of the sleeve member 210 leads to an axial displacement of the hollow spindle 218.
  • the left in Fig. 1 end face of the hollow spindle 218 can get into abutment with the right in Fig.
  • the master cylinder piston 140 can also be moved to the left by the actuating member 174 of the mechanical actuator 162 in FIG. 1 extending through the hollow spindle 218.
  • a displacement of the master cylinder piston 140 in Fig. 1 to the right is accomplished by means of the pressure prevailing in the hydraulic chambers 144, 148 hydraulic pressure (when releasing the brake pedal and moving the hollow spindle 118 to the right).
  • the vehicle brake system comprises two brake circuits, wherein the two hydraulic chambers 114, 148 of the master cylinder 136 are each associated with a brake circuit.
  • the HCL ) 112 has per brake circuit one with the respective hydraulic chamber 144, 148 coupled inlet 240, 244 for hydraulic fluid and a respective outlet 248, 252.
  • the two outlets 248, 252 are via corresponding annular chambers in the master cylinder 138 and the master cylinder ports 152nd , 154 connected to the not shown in Fig. 1 unpressurized hydraulic fluid reservoir.
  • the HCL! 112 further has a hydraulic connection 256 for the hydraulic chamber 186 of the decoupling device 182 and a further hydraulic connection 260 for the simulation device 132.
  • the inlet 240 and the outlet 248 of the hydraulic chamber 144 may be connected to each other via a 2/2-way valve 272. Also, between the inlet 244 and the outlet 252 of the hydraulic chamber 148, a 2/2-way valve 268 is arranged.
  • the two valves 264, 272 allow the reduction of hydraulic pressure at the wheel brakes 116, 120, 124, 128 in case of failure (eg blocking) of the electromechanical niche actuator 158.
  • the two valves 268, 272 are transferred to their open position, whereby hydraulic fluid from the wheel brakes 116, 120, 124, 128 can flow back through the ports 152, 154 in the pressureless hydraulic fluid reservoir.
  • the two valves 264, 272 also allow in regenerative braking operation (generator operation) a targeted hydraulic short circuit between the two master cylinder chambers 144, 148 on the one hand and on the other side the pressureless hydraulic fluid reservoir, which via the ports 152, 154 with the chambers 144, 148 is connected. Due to this hydraulic short circuit, the hydraulic fluid displaced from the chambers 144, 148 during a conveying movement of the master cylinder piston 140 is not conveyed to the wheel brakes 116, 120, 124, 128, but can pass directly to the unpressurized hydraulic fluid reservoir without causing any (in the FIG regenerative braking operation usually unwanted) hydraulic pressure build-up on the wheel brakes 116, 120, 124, 128 would come.
  • the regenerative braking operation may be implemented on an axle-by-axle basis. Therefore, in the case of an axle-related brake circuit split in regenerative braking operation, one of the two valves 272, 268 can be closed and the other can be opened.
  • Another 2/2-way valve 264 is provided between the hydraulic port 256 for the hydraulic chamber 186 and the outlet 252. The valve 264 enables selective activation of the simulation device 132 and the decoupler 182.
  • the vehicle brake system 100 is based on the principle of the brake-by-wire (BBW).
  • BBW brake-by-wire
  • the brake pedal is decoupled from the piston 140 of the master cylinder 136 and the simulation device 132 is activated.
  • a coupling of the master cylinder piston 140 with the brake pedal takes place, for example, in case of failure of a BBW component of the electromechanical actuator 158, ie in emergency braking operation.
  • valve 264 of the HCU 112 is in an open position, as illustrated in FIG. 1, while the two other valves 268, 272 are in a closed position.
  • the decoupling device 182 assumes its coupling position.
  • the brake pedal is coupled to the piston 140 of the master cylinder 136.
  • the emergency braking is initiated by depressing the brake pedal, whereby the input member 178 moves in Fig. 1 to the left. From this displacement of the input member 178 and the plunger piston 190 is detected, which then also shifts to the left.
  • the displacement of the plunger piston 190 causes hydraulic fluid is displaced from the hydraulic chamber 186 of the decoupler 182 and passes through the valve 264, the annular chamber formed in the master cylinder 136 and the port 154 in the pressureless hydraulic fluid reservoir.
  • the displacement of the plunger piston 190 in Fig. 1 is transmitted to the master cylinder piston 140 via the actuator 174.
  • the master cylinder piston 140 in Fig. 1 shifts to the left, whereby hydraulic fluid from the hydraulic chambers 144, 148 of the master cylinder 136 via the HCU 112 to the wheel brakes 116, 120, 124, 128 is promoted.
  • the valve 264 is closed.
  • the hydraulic fluid displaced from the hydraulic chamber 186 of the decoupling device 182 during an actuation of the brake pedal can no longer reach the pressureless hydraulic fluid reservoir, but is conveyed via a throttle device 284 with a parallel-connected check valve into the simulation device 132.
  • the simulation device 132 has a hydraulic chamber with a spring-loaded simulator piston 288 arranged therein. The characteristic of the coil spring 292 biasing the simulator piston 288 is selected such that the pedal reaction behavior resulting from displacement of the master cylinder piston 140 is simulated.
  • the electromechanical actuator 158 assumes a braking force generation function in the BBW mode.
  • the braking force requested by depressing the brake pedal is thereby generated by means of the electric motor 194, the hollow spindle 198 moves in Fig. 1 to the left and thereby a force is exerted on the master cylinder piston 140.
  • the amount of the resulting braking force is adjusted as a function of the sensed brake pedal operation.
  • a pedal travel sensor 276 is provided, whose Output signal from a the electric motor 194 controlling controller (not shown) is evaluated.
  • the pedal travel sensor 276 comprises a signal transmitter 280 rigidly coupled to the plunger piston 190 and a detector (not shown) which detects the signal transmitter 280.
  • This distance corresponds to a decoupling of the brake pedal from the piston 140 of the master cylinder 136 and thus an activation of the decoupling 182.
  • the HCU 112 has in relation to the brake control operation (ABS, ASR, ESP, etc.) in principle a conventional structure with a total of 12 valves (in addition to the previously discussed valves 264, 268, 272). Since the electromechanical actuator 158 can only be actuated as part of a braking force generation due to a corresponding design of the control device assigned to this actuator 158, the additional brake control functions are accomplished in a known manner by means of the HCU 112. For this purpose, the HCU 112 has a conventional ABS valve assembly 300, which will be described in more detail below with reference to the wheel brake 116.
  • the ABS valve assembly 300 for the wheel brake 116 (as well as for the further wheel brakes 120, 124, 128) includes a first valve 304 for selectively disengaging the wheel brake 116 from the master cylinder 136 and a second valve 308 for selective brake pressure reduction on the wheel brake 116.
  • the two valves 304, 308 are in the position illustrated in Fig. 1, so that hydraulic fluid from the hydraulic chamber 144 of the master cylinder 136 to the wheel brake 116 (and back) can pass.
  • valves 304, 308 are actuated by an ABS control unit (not shown) in order to realize pressure increase, pressure maintenance and pressure reduction phases. provides) in a suitable manner.
  • pressure maintenance phases both valves 304, 308 are closed, while in depressurization phases, the valve 304 is closed and the valve 308 is opened so that hydraulic fluid can pass from the wheel brake 116 into the low-pressure accumulator 312.
  • a hydraulic pressure generator in the form of a hydraulic pump 316 is provided with an associated electric motor 320.
  • the hydraulic pump 316 is used in particular for pressure modulation in ABS operation.
  • driver-independent brake pressure build-up can also be required, for example, in the context of a slip-control operation and / or an ESP intervention.
  • driver-independent brake pressure build-up first the master cylinder 136 is decoupled from the output of the hydraulic pump 316 by closing a check valve 324, while the two valves 304, 308 of the ABS valve assembly 300 assume the position illustrated in Figure 1 and a check valve 328 is opened.
  • the hydraulic fluid delivered by the hydraulic pump 316 is either taken from the low-pressure accumulator 312 or (via the open shut-off valve 328) of the chamber 144.
  • the electromechanical actuator 158 assumes exclusively the function of a brake booster, to which a conventional brake control system (HCU 112) in the hydraulic connection to the wheel brakes 116, 120, 124, 128 is connected downstream. All brake control functions (ABS, ASR, ESP, etc.) are therefore implemented in a conventional manner by means of the HCU 112.
  • Fig. 2 shows a vehicle brake system 400 according to an alternative embodiment. Since the embodiment according to FIG. 2 is based on the exemplary embodiment described above according to FIG. 1, only the differences will be explained below.
  • the vehicle brake system 400 according to FIG. 2 has a modified HCU 112 compared to the first exemplary embodiment. More specifically, the HCU 112 according to FIG. 2 still comprises the ABS valve arrangement 300 with the hydraulic pump 316 assigned to the ABS control mode and the corresponding low-pressure accumulator 312. However, the valves for the different from the ABS control mode brake control operation (eg, the ASR and ESP operation) are omitted (see valves 324 and 328 in Fig. 1).
  • the ABS control mode brake control operation eg, the ASR and ESP operation
  • the hydraulic pressure modulation takes place at a brake control mode different from the ABS control mode by means of the electromechanical actuator 158.
  • the electromechanical actuator 158 according to the second exemplary embodiment is not only used for braking force generation during service braking , but also controlled, for example, in ASR and / or ESP control mode.
  • the corresponding control unit of the electro-mechanical actuator 158 is therefore also modified from the first embodiment.
  • FIG. 3 shows a vehicle brake system 500 according to a further exemplary embodiment.
  • the embodiment of FIG. 3 is based on the embodiment of FIG. 2, so that only the differences are explained in more detail below.
  • the hydraulic pressure generator has no HCL 112 (compare hydraulic pump 316 and the electric motor 320 associated therewith in FIG. Further, a check valve 350 is provided between the low pressure accumulator 312 and the input side of the ABS valve 304. The check valve 350 is switched such that hydraulic fluid delivered from the hydraulic chamber 144 of the master cylinder 136 can not enter the low-pressure accumulator 312.
  • the electromechanical actuator 158 takes over in the brake system 500 of FIG. 3 additionally the pressure modulation in the context of the ABS control operation.
  • a corresponding control mechanism is for this purpose implemented in the control unit provided for the electromechanical actuator 158.
  • the HCU 112 proposed in the various embodiments ensures some redundancy, which also increases security.
  • a redundant system for driver independent hydraulic assembly is provided.
  • an automatic braking operation in particular emergency braking, may still be initiated.
  • the vehicle brake system can also be a regenerative vehicle brake system or a conventional vehicle brake system that is not operated according to the BBW principle. Even in such embodiments, the technique described here can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

Es werden drei hydraulische Fahrzeug - Bremsanlage (100,400,500) beschrieben. Die Bremsanlagen (100,400,500) umfassen je einen Hauptzylinder (136) mit wenigstens einem darin verschieblich aufgenommenen Kolben (140), einen mit einem Bremspedal gekoppelten oder koppelbaren mechanischen Aktuator (162) zur Betätigung des Kolbens (140) sowie einen elektromechanischen Aktuator (158). Der elektromechanische Aktuator ist ebenfalls zur Betätigung des Kolbens (140) vorgesehen und ist zumindest zur Bremskraftverstärkung oder Bremskrafterzeugung bei einer Betätigung des Bremspedals ansteuerbar. Ferner ist eine Ventilanordnung (300) vorgesehen, die pro Radbremse (116) in ein erstes Ventil (304) zum selektiven Abkoppeln der Radbremse (116) vom Hauptzylinder (136) und ein zweites Ventil (308) zum selektiven Bremsdruckabbau an der Radbremse (116) besitzt. Die Ventilanordnung (300) ist dabei zumindest im Rahmen eines ABS - Regelbetriebs ansteuerbar.

Description

HYDRAULISCHE FAHRZEUG - BREMSANLAGE MIT ELEKTROMECHANISCHEM AKTUATOR UND VERFAHREN UM BETREIBEN EINER DERARTIGEN HYDRAULISCHEN FAHRZEUG - BREMSANLAGE
Technisches Gebiet
Die vorliegende Offenbarung betrifft allgemein das Gebiet der Fahrzeug- Bremsanlagen. Genauer gesagt wird eine hydraulische Fahrzeug-Bremsanlage beschrieben, die mit einem elektromechanischen Aktuator ausgerüstet ist.
Hintergrund
Elektromechanische Aktuatoren finden bereits seit geraumer Zeit in Fahrzeug-Bremsanlagen Verwendung oder wurden für eine solche Verwendung vorgeschlagen. Bei hydraulischen Bremsanlagen gelangen elektromechanische Aktuatoren beispielsweise zur Realisierung einer elektrischen Parkbremsfunktion (EPB) zum Einsatz. Bei elektromechanischen Bremsanlagen (EMB) ersetzen sie die herkömmlichen Hydraulikzylinder an den Radbremsen.
Aufgrund technischer Fortschritte hat sich die Leistungsfähigkeit der elektromechanischen Aktuatoren fortlaufend erhöht. Es wurde daher in Erwägung gezogen, derartige Aktuatoren auch zur Implementierung moderner Bremsregelfunktionen heranzuziehen. Zu solchen Bremsregelfunktionen zählen ein Antiblockiersystem (ABS), eine Antriebsschlupfregelung (ASR) oder ein elektronischen Stabilitätsprogramm (ESP), auch als Fahrzeugstabilitätsregelung (Vehicle Stability Control, VSC) bezeichnet. So lehrt die WO 2006/111393 AI eine hydraulische Bremsanlage mit einem hochdynamischen elektromechanischen Aktuator, der die Druckmodulation im Bremsregelbetrieb übernimmt. Der Aktuator ist dazu vorgesehen, einen Hauptzylinder der
Bremsanlage zu betätigen.
Aufgrund der hohen Dynamik des elektromechanschen Aktuators lassen sich die hydraulischen Komponenten der aus der WO 2006/111393 AI bekannten Bremsanlage auf ein einziges 2/2-Wege-Ventil pro Radbremse reduzieren. Zur Realisierung radindividueller Druckmodulationen werden die Ventile dann einzeln oder gruppenweise im Multiplex-Betrieb angesteuert.
Aus der Minimierung auf lediglich ein Ventil pro Radbremse resultieren jedoch auch Probleme, wie ein ungewollter Druckausgleich bei gleichzeitig geöffneten Ventilen, die auf aufwändige Weise wieder gelöst werden müssen (vgl. WO 2010/091883 AI). Nachteilig ist ferner, dass der Multiplexbetrieb einen elektromechanischen Aktuator erfordert, dessen Dynamikbereich gegenüber herkömmlichen elektromechanischen Aktuatoren um wenigstens einen Faktor in der Größenordnung von 4 höher sein muss.
Kurzer Abriss
Es ist daher eine hydraulische Fahrzeug-Bremsanlage mit einem elektromechanischen Aktuator bereitzustellen, welche einen oder mehrere der mit dem Multiplex- Betrieb einhergehenden Nachteile vermeidet.
Gemäß einem ersten Aspekt wird eine hydraulische Fahrzeug-Bremsanlage angege¬ ben, die Folgendes umfasst: einen Hauptzylinder mit wenigstens einem darin verschieblich aufgenommenen Kolben, einen mit einem Bremspedal gekoppelten oder koppelbaren mechanischen Aktuator zur Betätigung des Kolbens, einen elektromechanischen Aktuator zur Betätigung des Kolbens, wobei der elektromechanische Aktuator zumindest zur Bremskraftverstärkung oder Bremskrafterzeugung bei einer Betätigung des Bremspedals ansteuerbar ist, und eine erste Ventilanordnung, die pro Radbremse ein erstes Ventil zum selektiven Abkoppeln der Radbremse vom Hauptzylinder und ein zweites Ventil zum selektiven Bremsdruckabbau an der Rad¬ bremse besitzt, wobei die erste Ventilanordnung zumindest im Rahmen eines ABS- Regelbetriebs ansteuerbar ist.
Gemäß einer ersten Variante ist der elektromechanische Aktuator zur Betätigung des Hauptzylinder-Kolbens im Rahmen einer Bremskraftverstärkung ausgebildet. Die zu verstärkende Bremskraft kann in diesem Fall auf den Hauptzylinder-Kolben mittels des mechanischen Aktuators ausgeübt werden. Gemäß einer anderen Variante ist der elektromechanische Aktuator zur Betätigung des Hauptzylinder-Kolbens zur Bremskrafterzeugung ausgebildet. Diese Variante kann beispielsweise im Rahmen eines Brake-By-Wire (BBW)-Betriebs zum Einsatz kommen, in dem das Bremspedal vom Hauptzylinder-Kolben normalerweise mechanisch entkoppelt ist. Bei einer für den BBW-Betrieb ausgelegten Bremsanlage kommt der mechanische Aktuator etwa bei Ausfall einer BBW-Komponente (also bei einer Notbremsung) zur Betätigung des Hauptzylinder-Kolbens zum Einsatz.
Zur Ansteuerung des elektromechanischen Aktuators, der ersten Ventilanordnung sowie optionaler weiterer Komponenten der Fahrzeug-Bremsanlage kann die Bremsanlage geeignete Ansteuereinrichtungen aufweisen. Diese Ansteuereinrichtungen können elektrische, elektronische oder programmgesteuerte Baugruppen sowie Kombinationen hiervon umfassen. Beispielsweise können die Ansteuereinrichtungen in einem gemeinsamen oder aber in getrennten Steuergeräten (Electronic Control Units, ECUs) bereitgestellt werden.
Der elektromechanische Aktuator kann einen Elektromotor sowie ein abtriebsseitig mit dem Elektromotor gekoppeltes Getriebe aufweisen. Das Getriebe kann sich konzentrisch oder auch parallel zum mechanischen Aktuator erstrecken. Gemäß einer Variante ist das Getriebe als eine Mutter/Spindel-Anordnung (z.B. als Kugelgewindetrieb) ausgebildet, es sind jedoch auch andere Varianten (z.B. ein Zahnstangen- Gewinde) denkbar.
Der Elektromotor des elektromechanischen Aktuators kann einen sich konzentrisch zum mechanischen Aktuator erstreckenden Rotor aufweisen. Der Rotor kann ein als Mutter/Spindel-Anordnung ausgebildete Gewinde antreiben oder eine Komponente der Mutter/Spindel-Anordnung bilden.
Gemäß einer Variante umfasst die hydraulische Fahrzeug-Bremsanlage ferner eine Entkoppeleinrichtung zum selektiven Entkoppeln des Bremspedals vom Hauptzylinder-Kolben. Ferner kann eine Simulationseinrichtung vorgesehen sein, welche ein für den Fahrer gewohntes Pedalrückwirkungsverhalten bei vom Kolben entkoppeltem Bremspedal bereitstellt. Die Simulationseinrichtung kann auf einem hydraulischen Funktionsprinzip basieren. So kann die Simulationseinrichtung beispielsweise als Zylinder/Kolben-Anordnung zur rückwirkungsbehafteten Aufnahme von Hydraulikfluid ausgebildet sein.
Je nach Ausgestaltung der Fahrzeug-Bremsanlage kann das selektive Entkoppeln des Bremspedals vom Hauptzylinder-Kolben mittels der Entkoppeleinrichtung zu unterschiedlichen Zwecken geschehen. Bei einer gemäß dem BBW-Prinzip ausgelegten Bremsanlage kann abgesehen von einem Notbremsbetrieb (in dem das Bremspedal über den mechanischen Aktuator mit dem Hauptzylinder-Kolben gekoppelt ist) eine ständige Entkopplung vorgesehen sein. Bei einer regenerativen Bremsanlage kann eine derartige Entkoppelung zumindest im Rahmen eines regenerativen Bremsbetriebs (Generatorbetrieb) erfolgen. Bei anderen Bremsanlagen können die Entkoppeleinrichtung sowie die Simulationseinrichtung auch völlig entfallen.
Die Fahrzeug-Bremsanlage kann ferner wenigstens einen Niederdruckspeicher umfassen, der im Rahmen eines Bremsdruckabbaus aus den Radbremsen abgelassenes Hydraulikfluid aufnimmt. Der wenigstens eine Niederdruckspeicher kann über das jeder Radbremse zugeordnete zweite Ventil mit der entsprechenden Radbremse koppelbar sein. Ferner kann der Niederdruckspeicher zur Abgabe des aufgenommenen Hydraulikfluids über ein Rückschlagventil mit einer Eingangsseite des ersten Ventils gekoppelt sein. Das Rückschlagventil ist gemäß einer Ausbildung derart geschaltet, dass kein aus dem Hauptzylinder verdrängtes Hydraulikfluid unmittelbar in den Niederdruckspeicher gelangen kann.
Als Option umfasst die Fahrzeug-Bremsanlage einen elektrisch betriebenen und zusätzlich zum Hauptzylinder vorgesehenen Hydraulikdruckerzeuger. Der Hydraulikdruckerzeuger kann beispielsweise eine Hydraulikpumpe oder eine Plunger- Anordnung sowie einen Elektromotor zur Betätigung derselben umfassen. Der wenigstens eine Niederdruckspeicher kann zur Abgabe des aufgenommenen Hydraulikfluids an eine Eingangsseite des Hydraulikdruckerzeugers gekoppelt sein. Auf diese Weise kann das vom Hydraulikdruckerzeuger geförderte Hydraulikfluid (auch) aus dem Niederdruckspeicher entnommen werden.
Der Hydraulikdruckerzeuger kann in einem von der Bremskraftverstärkung oder Bremskrafterzeugung verschiedenen Bremsregelbetrieb ansteuerbar sein. Wie bereits oben erläutert, kann eine entsprechende Ansteuereinrichtung ein geeignet programmiertes Steuergerät umfassen. Bei Vorsehen des Hydraulikdruckerzeugers, der in einem von der Bremskraftverstärkung oder Bremskrafterzeugung verschiedenen Bremsregelbetrieb ansteuerbar ist, kann gemäß einer Variante der elektromechani- sche Aktuator ausschließlich für den Zweck der Bremskraftverstärkung oder Brems- krafterzeugung bei Betätigung des Bremspedals ansteuerbar sein. Alternativ hierzu kann der elektromechanische Aktuator zusätzlich in wenigstens einem vom ABS- Regelbetrieb verschiedenen Bremsregel betrieb ansteuerbar sein, wobei in diesem Fall der Hydraulikdruckerzeuger ausschließlich im ABS-Regelbetrieb ansteuerbar sein kann. Dieser vom ABS-Regelbetrieb verschiedene Bremsregel betrieb kann einen Schlupfregelbetrieb und/oder ein elektronische Stabilitätsprogramm (ESP) umfassen. Im Hinblick auf den Schlupfregelbetrieb sowie das elektronische Stabilitätsprogramm kann eine zweite Ventilanordnung vorgesehen sein, die ein selektives Abkoppeln des Hauptzylinders von einer Ausgangsseite des Hydraulikdruckerzeugers in den genannten Betriebsarten (Schlupfregelbetrieb/ESP) ermöglicht. Die zweite Ventilanordnung kann beispielsweise pro Bremskreis ein 2/2-Wege-Ventil umfassen.
Bei einer alternativen Ausgestaltung der hydraulischen Fahrzeug-Bremsanlage um- fasst diese keinen zusätzlich zum Hauptzylinder vorgesehenen, elektromotorisch betätigbaren Hydraulikdruckerzeuger. In diesem Fall können sämtliche im Rahmen eines Bremsregelbetriebs anfallenden Druckmodulationen mittels des elektromecha- nischen Aktuators realisiert werden. Der elektromechanische Aktuator kann somit zusätzlich zur Bremskraftverstärkung oder Bremskrafterzeugung bei einer Betätigung des Bremspedals (v.a. bei einer Betriebsbremsung) auch im Rahmen eines Bremsregelbetriebs (einschließlich eines ABS-Regelbetriebs) ansteuerbar sein.
Gemäß einer Realisierung umfasst die Fahrzeug-Bremsanlage eine dritte Ventilanordnung, die den Abbau von Hydraulikdruck an den Radbremsen bei Ausfall des elekt- romechanischen Aktuators ermöglicht. Die dritte Ventilanordnung kann dazu ausgebildet sein, bei geöffnetem ersten Ventil die zugehörige Radbremse zum Hydraulikdruckabbau selektiv mit einem drucklosen Hydraulikreservoir zu koppeln.
Alternativ oder zusätzlich zum Hydraulikdruckabbau kann die dritte oder eine vierte Ventilanordnung auch dazu ausgelegt sein, wenigstens eine Kammer des Hauptzylinders, in welcher der Hauptzylinder-Kolben aufgenommen ist, selektiv mit einem drucklosen Hydraulikfluidreservoir zu koppeln. Eine derartige Kopplung kann beispielsweise im regenerativen Bremsbetrieb wünschenswert sein. Auf diese Weise kann im regenerativen Bremsbetrieb bei einer Betätigung des Hauptzylinder-Kolbens das Hydraulikfluid aus der wenigstens einen Hauptzylinder-Kammer zum drucklosen Hydraulikfluidreservoir gelangen, ohne dass es zu einem (im regenerativen Bremsbetrieb in der Regel unerwünschten) Bremsdruckaufbau an den Radbremsen kommt.
Es wird ferner ein Verfahren zum Betreiben einer hydraulischen Fahrzeug-Bremsanlage angegeben. Die Fahrzeug-Bremsanlage besitzt einen Hauptzylinder mit wenigstens einem darin verschieblich aufgenommenen Kolben, einen mit einem
Bremspedal gekoppelten oder koppelbaren mechanischen Aktuator zur Betätigung des Kolbens, einen elektromechanischen Aktuator zur Betätigung des Kolbens sowie eine erste Ventilanordnung, die pro Radbremse ein erstes Ventil zum selektiven Abkoppeln der Radbremse vom Hauptzylinder und ein zweites Ventil zum selektiven Bremsdruckabbau an der Radbremse besitzt. Das Verfahren umfasst das Ansteuern des elektromechanischen Aktuators zumindest zur Bremskraftverstärkung oder Bremskrafterzeugung bei einer Betätigung des Bremspedals sowie das Ansteuern der ersten Ventilanordnung zumindest im Rahmen eines ABS-Regelbetriebs. Das Ansteuern des elektromechanischen Aktuators sowie der ersten Ventilanordnung kann zeitlich versetzt oder zeitlich überlappend erfolgen.
Kurze Beschreibung der Zeichnungen
Weitere Vorteile, Aspekte und Einzelheiten der hier vorgestellten hydraulischen Fahrzeug-Bremsanlage ergeben sich aus der nachfolgenden Beschreibung exemplarischer Ausführungsbeispiele sowie aus den Figuren. Es zeigen:
Fig. 1 ein erstes Ausführungsbeispiel einer hydraulischen Fahrzeug-Bremsanlage;
Fig. 2 ein zweites Ausführungsbeispiel einer hydraulischen Fahrzeug-Bremsanlage; und
Fig. 3 ein drittes Ausführungsbeispiel einer hydraulischen Fahrzeug-Bremsanlage; Detaillierte Beschreibung
Fig. 1 zeigt ein erstes Ausführungsbeispiel einer hydraulischen Fahrzeug-Bremsanlage 100, die auf dem Brake-By-Wire (BBW)-Prinzip basiert und optional (z. B. bei Hybrid-Fahrzeugen) auch in einem regenerativen Modus betrieben werden kann. Die Bremsanlage 100 umfasst eine Hauptzylinder-Baugruppe 104, die an einer Spritzwand 108 des Fahrzeugs montiert ist, eine hydraulische Steuereinheit (Hydraulic Control Unit, HCU) 112, die funktional zwischen der Hauptzylinder-Baugruppe 104 und Radbremsen 116, 120, 124, 128 des Fahrzeugs angeordnet ist, sowie eine Simulationseinrichtung 132 zum Bereitstellen eines Pedalrückwirkungsverhaltens. Die HCU 112 ist als integrierte Baugruppe ausgebildet und umfasst eine Vielzahl von Einzelkomponenten sowie mehrere Fluideinlässe und Fluidauslässe.
Die Hauptzylinder-Baugruppe 104 weist einen Hauptzylinder 136 mit einem darin verschieblich aufgenommenen Kolben 140 auf. Der Hauptzylinder-Kolben 140 ist als Tandemkolben ausgebildet und definiert im Hauptzylinder 136 zwei voneinander getrennte Hydraulikkammern 144, 148. Die beiden Hydraulikkammern 144, 148 des Hauptzylinders 136 sind zur Versorgung mit Hydraulikfluid über jeweils einen An- schluss 152, 154 mit einem drucklosen Hydraulikfluid-Reservoir (nicht dargestellt) verbunden.
Die Hydraulik-Baugruppe 104 umfasst ferner einen elektromechanischen Aktuator 158 sowie einen mechanischen Aktuator 162. Sowohl der elektromechanische Aktuator 158 als auch der mechanische Aktuator 162 ermöglichen eine Betätigung des Hauptzylinder-Kolbens 140 und wirken dazu auf eine eingangsseitige Stirnfläche des Hauptzylinder-Kolbens 140 ein. Die Aktuatoren 158, 162 sind derart ausgebildet, dass sie unabhängig voneinander den Hauptzylinder-Kolben 140 zu betätigen vermögen.
Der mechanische Aktuator 162 besitzt ein Betätigungsglied 174, das stangenförmig ausgebildet ist und unmittelbar auf die eingangsseitige Stirnfläche des Hauptzylinder- Kolbens 140 einzuwirken vermag. Ferner weist der mechanische Aktuator 162 ein Eingangsglied 178 auf. Das Eingangsglied 178 ist dazu ausgebildet, gelenkig mit einem Bremspedal (nicht dargestellt) gekoppelt zu werden.
Eine Entkoppeleinrichtung 182 ist funktional zwischen dem Eingangsglied 178 und dem Betätigungsglied 174 vorgesehen. Die Entkoppeleinrichtung 182, welche als Teil des mechanischen Aktuators 162 aufgefasst werden kann, ermöglicht ein selektives Entkoppeln des Hauptzylinder-Kolbens 140 vom Bremspedal. Hierzu umfasst die Entkoppeleinrichtung 182 eine Hydraulikkammer 186 sowie einen in der Hydraulikkammer 186 verschieblich aufgenommenen Stößelkolben 190. Der Stößelkolben 190 ist eingangsseitig über ein Kugelgelenk mit dem Eingangsglied 178 gekoppelt. Aus- gangsseitig wirkt der Stößelkolben 190 im Notbremsbetrieb unmittelbar auf die dem Hauptzylinder-Kolben 140 abgewandte Stirnseite des Betätigungsglieds 174 ein. Die Funktionsweise der Entkoppeleinrichtung 182 wird später im Zusammenhang mit der HCU 112 näher erläutert.
Der elektromechanische Aktuator 158 weist einen Elektromotor 194 sowie ein dem Motor 194 abtriebsseitig nachfolgendes Getriebe 198 auf. Der Motor 194 besitzt eine zylindrische Bauform und erstreckt sich konzentrisch zum Hauptzylinder-Kolben 140 sowie zum Betätigungsglied 174 des mechanischen Aktuators 162. Genauer gesagt ist der Motor 194 radial außen bezüglich dieser Komponenten 140, 174 angeordnet. Der Motor 194 umfasst einen Stator 202 sowie einen radial innen bezüglich des Stators 202 vorgesehenen Rotor 206. Der Rotor 206 erstreckt sich konzentrisch zum Hauptzylinder-Kolben 140 sowie zum Betätigungsglied 174 des mechanischen Aktua- tors 162.
Der Rotor 206 des Motors 194 ist drehfest mit dem als Kugelgewindetrieb ausgebildeten Getriebe 198 gekoppelt. Hierbei treibt der Rotor 206 ein axial unverschieblich gelagertes Hülsenglied 210 des Getriebes 198 an. Die Drehbewegung des Hülsenglieds 210 überträgt sich über eine Vielzahl von Kugelkörpern 214 auf eine axial verschieblich gelagerte Hohlspindel 218 des Getriebes 198, so dass die Drehbewegung des Hülsenglieds 210 zu einer axialen Verschiebung der Hohlspindel 218 führt. Die in Fig. 1 linke Stirnseite der Hohlspindel 218 kann dabei in Anlage an die in Fig. 1 rechte Stirnseite des Hauptzylinder-Kolbens 140 gelangen und in Folge dessen den Hauptzylinder-Kolben 140 in Fig. 1 nach links verschieben. Alternativ hierzu lässt sich der Hauptzylinder-Kolben 140 auch von dem sich durch die Hohlspindel 218 erstreckenden Betätigungsglied 174 des mechanischen Aktuators 162 in Fig. 1 nach links verschieben. Ein Verschieben des Hauptzylinder-Kolbens 140 in Fig. 1 nach rechts wird mittels des in den Hydraulikkammern 144, 148 herrschenden Hydraulikdrucks (bei Loslassen des Bremspedals und Verschieben der Hohlspindel 118 nach rechts) bewerkstelligt.
In dem in Fig. 1 veranschaulichten Ausführungsbeispiel umfasst die Fahrzeug-Bremsanlage zwei Bremskreise, wobei die beiden Hydraulikkammern 114, 148 des Hauptzylinders 136 jeweils einem Bremskreis zugeordnet sind. Die HCL) 112 besitzt pro Bremskreis einen mit der jeweiligen Hydraulikkammer 144, 148 gekoppelten Einlass 240, 244 für Hydraulikfluid sowie jeweils einen entsprechenden Auslass 248, 252. Die beiden Auslässe 248, 252 sind über entsprechende Ringkammern im Hauptzylinder 138 und die Hauptzylinder-Anschlüsse 152, 154 mit dem in Fig. 1 nicht dargestellten drucklosen Hydraulikfluid-Reservoir verbunden. Die HCL! 112 besitzt ferner einen Hydraulikanschluss 256 für die Hydraulikkammer 186 der Entkoppeleinrichtung 182 sowie einen weiteren Hydraulikanschluss 260 für die Simulationseinrichtung 132.
Der Einlass 240 und der Auslass 248 der Hydraulikkammer 144 können über ein 2/2- Wege-Ventil 272 miteinander verbunden werden. Auch zwischen dem Einlass 244 und dem Auslass 252 der Hydraulikkammer 148 ist ein 2/2-Wege-Ventil 268 angeordnet. Die beiden Ventile 264, 272 ermöglichen den Abbau von Hydraulikdruck an den Radbremsen 116, 120, 124, 128 bei Ausfall (z.B. Blockierung) des elektromecha- nischen Aktuators 158. Zu diesem Zweck werden die beiden Ventile 268, 272 in ihre geöffnete Stellung übergeführt, wodurch Hydraulikfluid aus den Radbremsen 116, 120, 124, 128 über die Anschlüsse 152, 154 in das drucklose Hydraulikfluid-Reservoir zurückströmen kann.
Die beiden Ventile 264, 272 ermöglichen darüber hinaus im regenerativen Bremsbetrieb (Generatorbetrieb) einen gezielten hydraulischen Kurzschluss zwischen den beiden Hauptzylinder-Kammern 144, 148 einerseits und auf der anderen Seite dem drucklosen Hydraulikfluidreservoir, welches über die Anschlüsse 152, 154 mit den Kammern 144, 148 verbunden wird. Aufgrund dieses hydraulischen Kurzschlusses wird das bei einer Förderbewegung des Hauptzylinder-Kolbens 140 aus den Kammern 144, 148 verdrängte Hydraulikfluid nicht zu den Radbremsen 116, 120, 124, 128 befördert, sondern kann unmittelbar zum drucklosen Hydraulikfluidreservoir gelangen, ohne dass es zu einem (im regenerativen Bremsbetrieb in der Regel unerwünschten) Hydraulikdruckaufbau an den Radbremsen 116, 120, 124, 128 käme. Es ist darauf hinzuweisen, dass der regenerative Bremsbetrieb achsweise implementiert sein kann. Daher kann im Fall einer achsbezogenen Bremskreisaufteilung im regenerativen Bremsbetrieb eines der beiden Ventile 272, 268 geschlossen und das andere geöffnet sein.
Ein weiteres 2/2-Wege-Ventil 264 ist zwischen dem Hydraulikanschluss 256 für die Hydraulikkammer 186 sowie dem Auslass 252 vorgesehen. Das Ventil 264 ermöglicht eine selektive Aktivierung der Simulationseinrichtung 132 und der Entkoppeleinrichtung 182.
Nachfolgend wird zunächst die Funktionsweise der HCL! 112 in Bezug auf die Entkoppeleinrichtung 182 und die Simulationseinrichtung 132 erläutert. In diesem Zusammenhang ist nochmals darauf hinzuweisen, dass die Fahrzeug-Bremsanlage 100 gemäß dem Ausführungsbeispiel in Fig. 1 auf dem Prinzip des Brake-By-Wire (BBW) basiert. Dies bedeutet, dass im Rahmen einer normalen Betriebsbremsung das Bremspedal vom Kolben 140 des Hauptzylinders 136 entkoppelt und die Simulationseinrichtung 132 aktiviert ist. Eine Koppelung des Hauptzylinder-Kolbens 140 mit dem Bremspedal (über das Betätigungsglied 174) erfolgt beispielsweise bei Ausfall einer BBW-Komponente des elektromechanischen Aktuators 158, also im Notbremsbetrieb.
Für eine Notbremsung befindet sich das Ventil 264 der HCU 112, wie in Fig. 1 veranschaulicht, in einer geöffneten Stellung, während die beiden weiteren Ventile 268, 272 sich in einer geschlossenen Stellung befinden. In der geöffneten Stellung des Ventils 264 nimmt die Entkoppeleinrichtung 182 ihre Koppelstellung ein. In der Koppelstellung ist das Bremspedal mit dem Kolben 140 des Hauptzylinders 136 gekoppelt.
Die Notbremsung wird eingeleitet durch Niedertreten des Bremspedals, wodurch sich das Eingangsglied 178 in Fig. 1 nach links verschiebt. Von dieser Verschiebung des Eingangsglieds 178 wird auch der Stößelkolben 190 erfasst, der sich daraufhin ebenfalls nach links verschiebt. Die Verschiebung des Stößelkolbens 190 führt dazu, dass Hydraulikfluid aus der Hydraulikkammer 186 der Entkoppeleinrichtung 182 verdrängt wird und über das Ventil 264, die im Hauptzylinder 136 ausgebildete Ringkammer sowie den Anschluss 154 in das drucklose Hydraulikfluid-Reservoir gelangt. Die Verschiebung des Stößelkolbens 190 in Fig. 1 überträgt sich über das Betätigungsglied 174 auf den Hauptzylinder-Kolben 140. In Folge dessen verschiebt sich auch der Hauptzylinder-Kolben 140 in Fig. 1 nach links, wodurch Hydraulikfluid aus den Hydraulikkammern 144, 148 des Hauptzylinders 136 über die HCU 112 zu den Radbremsen 116, 120, 124, 128 gefördert wird.
Bei einer Betriebsbremsung ist hingegen zur Aktivierung der Simulationseinrichtung 132 und der Entkoppeleinrichtung 182 das Ventil 264 geschlossen. Aus diesem Grund kann das bei einer Betätigung des Bremspedals aus der Hydraulikkammer 186 der Entkoppeleinrichtung 182 verdrängte Hydraulikfluid nicht mehr zum drucklosen Hydraulikfluid-Reservoir gelangen, sondern wird über eine Drosseleinrichtung 284 mit parallel geschaltetem Rückschlagventil in die Simulationseinrichtung 132 gefördert. Die Simulationseinrichtung 132 besitzt eine Hydraulikkammer mit einem darin angeordneten, federkraftbeaufschlagten Simulatorkolben 288. Die Kennlinie der den Simulatorkolben 288 vorspannenden Schraubenfeder 292 ist derart gewählt, dass das aus einem Verschieben des Hauptzylinder-Kolbens 140 resultierende Pedalrückwirkungsverhalten simuliert wird.
Im Rahmen der Betriebsbremsung übernimmt der elektromechanische Aktuator 158 im BBW-Modus eine Bremskrafterzeugungsfunktion. Dabei wird die durch Niedertreten des Bremspedals angeforderte Bremskraft dadurch erzeugt, dass mittels des Elektromotors 194 die Hohlspindel 198 in Fig. 1 nach links bewegt und dadurch eine Kraft auf den Hauptzylinder-Kolben 140 ausgeübt wird. Die Höhe der daraus resultierenden Bremskraft wird in Abhängigkeit der sensorisch erfassten Bremspedalbetätigung eingestellt. Zu diesem Zweck ist ein Pedalwegsensor 276 vorgesehen, dessen Ausgangssignal von einem den Elektromotor 194 ansteuernden Steuergerät (nicht dargestellt) ausgewertet wird. Der Pedalwegsensor 276 umfasst einen starr mit dem Stößelkolben 190 gekoppelten Signalgeber 280 sowie einen den Signalgeber 280 erfassenden Detektor (nicht dargestellt).
Bei einer Betriebsbremsung im BBW-Modus wird stets sichergestellt, dass, wie in Fig. 1 erkennbar, ein gewisser Abstand zwischen den einander zugewendeten Stirnseiten des Betätigungsglieds 174 einerseits und des Stößelkolbens 190 andererseits herrscht. Dieser Abstand entspricht einer Entkopplung des Bremspedals vom Kolben 140 des Hauptzylinders 136 und damit einer Aktivierung der Entkoppeleinrichtung 182. Zur Aufrechterhaltung des Abstands wird die Position des Stößelkolbens 190 (bzw. des Bremspedals) mittels des Sensors 276 fortlaufend erfasst und der Elektromotor 194 in Abhängigkeit der Position des Stößelkolbens 190 derart angesteuert, dass das magnetisch mit der Hohlspindel 218 gekoppelte Betätigungsglied 174 (unter Betätigung des Kolbens 140 des Hauptzylinders 136) zusammen mit der Hohlspindel 218 in Fig. 1 nach links bewegt wird.
Die HCU 112 besitzt in Bezug auf den Bremsregel betrieb (ABS, ASR, ESP, etc.) einen im Prinzip herkömmlichen Aufbau mit insgesamt 12 Ventilen (zusätzlich zu den bereits erläuterten Ventilen 264, 268, 272). Da der elektromechanische Aktuator 158 aufgrund einer entsprechenden Auslegung des diesem Aktuator 158 zugeordneten Steuergeräts lediglich im Rahmen einer Bremskrafterzeugung ansteuerbar ist, werden die zusätzlichen Bremsregelfunktionen in bekannter Weise mittels der HCU 112 bewerkstelligt. Zu diesem Zweck besitzt die HCU 112 eine herkömmliche ABS- Ventilanordnung 300, die nachfolgend unter beispielhafter Bezugnahme auf die Radbremse 116 näher erläutert wird.
Wie in Fig. 1 veranschaulicht, umfasst die ABS-Ventilanordnung 300 für die Radbremse 116 (wie auch für die weiteren Radbremsen 120, 124, 128) je ein erstes Ventil 304 zum selektiven Abkoppeln der Radbremse 116 vom Hauptzylinder 136 sowie ein zweites Ventil 308 zum selektiven Bremsdruckabbau an der Radbremse 116. Bei einer Betriebsbremsung befinden sich die beiden Ventile 304, 308 in der in Fig. 1 veranschaulichten Stellung, so dass Hydraulikfluid aus der Hydraulikkammer 144 des Hauptzylinders 136 zur Radbremse 116 (und wieder zurück) gelangen kann.
Im ABS-Regel betrieb werden zur Realisierung von Druckerhöhungs-, Druckhalte- und Druckabbauphasen die Ventile 304, 308 von einem ABS-Steuergerät (nicht darge- stellt) in geeigneter Weise angesteuert. So werden in Druckhaltephasen beide Ventile 304, 308 geschlossen, während in Druckabbauphasen das Ventil 304 geschlossen und das Ventil 308 geöffnet wird, so dass Hydraulikfluid aus der Radbremse 116 in den Niederdruckspeicher 312 gelangen kann.
Zum Bremsdruckaufbau im Bremsregel betrieb (also unabhängig von einer Betätigung des Bremspedals durch den Fahrer) ist ein Hydraulikdruckerzeuger in Gestalt einer Hydraulikpumpe 316 mit einem zugeordneten Elektromotor 320 vorgesehen. Die Hydraulikpumpe 316 wird insbesondere zur Druckmodulation im ABS-Betrieb eingesetzt.
Ein fahrerunabhängiger Bremsdruckaufbau kann aber auch beispielsweise im Rahmen eines Schlupfregelbetriebs und/oder eines ESP-Eingriffs erforderlich werden. Zum fahrerunabhängigen Bremsdruckaufbau wird zunächst der Hauptzylinder 136 von dem Ausgang der Hydraulikpumpe 316 abgekoppelt, indem ein Sperrventil 324 geschlossen wird, während die beiden Ventile 304, 308 der ABS-Ventilanordnung 300 die in Fig. 1 veranschaulichte Stellung annehmen und ein Absperrventil 328 geöffnet wird. Das von der Hydraulikpumpe 316 geförderte Hydraulikfluid wird dabei entweder dem Niederdruckspeicher 312 entnommen oder (über das geöffnete Absperrventil 328) der Kammer 144.
Bei der in Fig. 1 veranschaulichten Ausführungsform übernimmt der elektromechani- sche Aktuator 158 ausschließlich die Funktion eines Bremskraftverstärkers, dem ein konventionelles Bremsregelsystem (HCU 112) in der hydraulischen Verbindung zu den Radbremsen 116, 120, 124, 128 nachgeschaltet ist. Sämtliche Bremsregelfunktionen (ABS, ASR, ESP, etc.) werden daher in herkömmlicher Weise mittels der HCU 112 implementiert.
Fig. 2 zeigt eine Fahrzeug-Bremsanlage 400 gemäß einem alternativen Ausführungsbeispiel. Da das Ausführungsbeispiel gemäß Fig. 2 auf dem oben beschriebenen Ausführungsbeispiel gemäß Fig. 1 basiert, werden im Folgenden lediglich die Unterschiede besonders erläutert.
Die Fahrzeug-Bremsanlage 400 gemäß Fig. 2 besitzt eine gegenüber dem ersten Ausführungsbeispiel modifizierte HCU 112. Genauer gesagt umfasst die HCU 112 gemäß Fig. 2 zwar noch die ABS-Ventilanordnung 300 mit dem ABS-Regelbetrieb zugeordneter Hydraulikpumpe 316 und entsprechendem Niederdruckspeicher 312. Die Ventile für den vom ABS-Regelbetrieb verschiedenen Bremsregelbetrieb (z.B. den ASR- und ESP-Betrieb) sind jedoch entfallen (vgl. Ventile 324 und 328 in Fig. 1).
Bei der Bremsanlage 400 gemäß Fig. 2 erfolgt die Hydrauklikdruckmodulation bei einem vom ABS-Regelbetrieb verschiedenen Bremsregel betrieb mittels des elektro- mechanischen Aktuators 158. Mit anderen Worten wird der elektromechanische Ak- tuator 158 gemäß dem zweiten Ausführungsbeispiel nicht nur zur Bremskrafterzeugung im Rahmen einer Betriebsbremsung, sondern auch beispielsweise im ASR- und/oder ESP-Regelbetrieb angesteuert. Das entsprechende Steuergerät des elekt- romechanischen Aktuators 158 ist daher gegenüber dem ersten Ausführungsbeispiel ebenfalls modifiziert.
Fig. 3 zeigt eine Fahrzeug-Bremsanlage 500 gemäß einem weiteren Ausführungsbeispiel. Das Ausführungsbeispiel gemäß Fig. 3 basiert auf dem Ausführungsbeispiel gemäß Fig. 2, so dass im Folgenden lediglich die Unterschiede näher erläutert werden.
Gegenüber dem Ausführungsbeispiel gemäß Fig. 2 wurde bei der Bremsanlage 500 auf den Hydraulikdruckerzeuger der HCL) 112 verzichtet (vgl. Hydraulikpumpe 316 und den dieser zugeordneten Elektromotor 320 in Fig. 2). Ferner ist ein Rückschlagventil 350 zwischen dem Niederdruckspeicher 312 und der Eingangsseite des ABS- Ventils 304 vorgesehen. Das Rückschlagventil 350 ist derart geschaltet, dass aus der Hydraulikkammer 144 des Hauptzylinders 136 gefördertes Hydraulikfluid nicht in den Niederdruckspeicher 312 gelangen kann.
Der elektromechanische Aktuator 158 übernimmt bei der Bremsanlage 500 gemäß Fig. 3 zusätzlich noch die Druckmodulation im Rahmen des ABS-Regelbetriebs. Ein entsprechender Regelmechanismus wird hierzu in das für den elektromechanischen Aktuator 158 vorgesehene Steuergerät implementiert.
Wie sich aus der vorstehenden Beschreibung exemplarischer Ausführungsbeispiele ergibt, werden an den (zumindest) für die Bremskrafterzeugung bei einer Pedalbetätigung vorgesehenen elektromechanischen Aktuator 158 lediglich herkömmliche Dynamikanforderungen gestellt, da bei den Fahrzeug-Bremsanlagen 100, 400, 500 eine herkömmliche ABS-Ventilanordnung 300 zum Einsatz gelangen kann. Die Dynamikanforderungen an den elektromechanischen Aktuator 158 sind daher insbesondere gering im Vergleich zu Fahrzeug-Bremsanlagen gemäß dem„Multiplex"-Konzept. Folglich ist der technische Aufwand für den elektromechanischen Aktuator 158 verhältnismäßig gering.
Darüber hinaus kann in Bezug auf die HCl) 112 auf seit vielen Jahren in der Serie bewährte Komponenten zurückgegriffen werden. Diese Tatsache gewährleistet eine hohe Sicherheit in Kombination mit Kostenvorteilen.
Ferner gewährleistet die in den verschiedenen Ausführungsbeispielen vorgeschlagene HCU 112 eine gewisse Redundanz, welche ebenfalls die Sicherheit erhöht. So wird beispielsweise in Bezug auf die Fahrzeug-Bremsanlage 100 gemäß Fig. 1 ein redundantes System zum fahrerunabhängigen Hydraulikaufbau bereitgestellt. In Folge dessen kann bei Ausfall oder Störung des elektromechanischen Aktuators 158 noch immer ein automatischer Bremsvorgang, insbesondere eine Notbremsung, eingeleitet werden.
Es versteht sich, dass gemäß alternative Ausführungsbeispielen die Fahrzeug- Bremsanlage auch eine regenerative Fahrzeug-Bremsanlage oder eine herkömmliche, nicht nach dem BBW-Prinzip betriebene Fahrzeug-Bremsanlage sein kann. Auch bei solchen Ausführungsbeispielen kann die hier beschriebene Technik zum Einsatz gelangen.

Claims

Patentansprüche
1. Hydraulische Fahrzeug-Bremsanlage (100; 400; 500), umfassend:
einen Hauptzylinder (136) mit wenigstens einem darin verschieblich aufgenommenen Kolben (140);
einen mit einem Bremspedal gekoppelten oder koppelbaren mechanischen Aktuator (162) zur Betätigung des Kolbens (140);
einen elektromechanischen Aktuator (158) zur Betätigung des Kolbens (140), wobei der elektromechanische Aktuator (158) zumindest zur Bremskraftverstärkung oder Bremskrafterzeugung bei einer Betätigung des Bremspedals ansteuerbar ist; und
eine erste Ventilanordnung (300), die pro Radbremse (116) ein erstes Ventil (304) zum selektiven Abkoppeln der Radbremse (116) vom Hauptzylinder (136) und ein zweites Ventil (308) zum selektiven Bremsdruckabbau an der Radbremse (116) besitzt, wobei die erste Ventilanordnung (300) zumindest im Rahmen eines ABS-Regelbetriebs ansteuerbar ist.
2. Fahrzeug-Bremsanlage nach Anspruch 1, wobei der elektromechanische Aktuator (158) ein sich konzentrisch zum mechanischen Aktuator (162) erstreckendes Getriebe (198) aufweist.
3. Fahrzeug-Bremsanlage nach Anspruch 2, wobei das Getriebe (198) als Mutter/Spindelanordnung (210; 214; 218) ausgebildet ist.
4. Fahrzeug-Bremsanlage nach einem der vorhergehenden Ansprüche, wobei der elektromechanische Aktuator (158) wenigstens einen Elektromotor (194) mit einem sich konzentrisch zum mechanischen Aktuator (162) erstreckenden Rotor (206) aufweist.
5. Fahrzeug-Bremsanlage nach Anspruch 3 und Anspruch 4, wobei der Rotor (206) die Mutter/Spindelanordnung (210) antreibt oder eine Komponente der Mutter/Spindelanordnung bildet.
6. Fahrzeug-Bremsanlage nach einem der vorhergehenden Ansprüche, ferner umfassend:
eine Entkoppeleinrichtung (182) zum selektiven Entkoppeln des Bremspedals vom Kolben (140) des Hauptzylinders (136); und
eine Simulationseinrichtung (132) zum Bereitstellen eines Pedalrückwirkungsverhaltens bei vom Kolben (140) entkoppeltem Bremspedal.
7. Fahrzeug-Bremsanlage nach einem der vorhergehenden Ansprüche, ferner umfassend:
wenigstens einen Niederdruckspeicher (312), der über das jeder Radbremse (116) zugeordnete zweite Ventil (308) mit der Radbremse (116) koppelbar ist, um im Rahmen eines Bremsdruckabbaus abgelassenes
Hydraulikfluid aufzunehmen.
8. Fahrzeug-Bremsanlage nach Anspruch 7, wobei der wenigstens eine Niederdruckspeicher (312) zur Abgabe des aufgenommenen Hydraulikfluids über ein Rückschlagventil (350) mit einer Eingangsseite des ersten Ventils (304) gekoppelt ist.
9. Fahrzeug-Bremsanlage nach einem der vorhergehenden Ansprüche, ferner umfassend:
einen elektrisch betriebenen und zusätzlich zum Hauptzylinder (136) vorgesehenen Hydraulikdruckerzeuger (316; 320), wobei der Hydraulikdruckerzeuger (316; 320) in einem Bremsregelbetrieb ansteuerbar ist, der von der Bremskraftverstärkung oder Bremskrafterzeugung bei einer Betätigung des Bremspedals verschiedenen ist.
10. Fahrzeug-Bremsanlage nach den Ansprüchen 7 und 9, wobei der wenigstens eine Niederdruckspeicher (312) zur Abgabe des aufgenommenen Hydraulikfluids an eine Eingangsseite des Hydraulikdruckerzeugers (316; 320) gekoppelt ist.
11. Fahrzeug-Bremsanlage nach Anspruch 9 oder 10, wobei
der elektromechanische Aktuator (158) ausschließlich für den Zweck der Bremskraftverstärkung oder Bremskrafterzeugung bei einer Betätigung des Bremspedals ansteuerbar ist.
12. Fahrzeug-Bremsanlage nach Anspruch 9 oder 10, wobei der elektromechanischen Aktuator (158) in wenigstens einem vom ABS- Regelbetrieb verschiedenen Bremsregelbetrieb ansteuerbar ist; und
der Hydraulikdruckerzeuger (316; 320) ausschließlich im ABS- Regelbetrieb ansteuerbar ist.
13. Fahrzeug-Bremsanlage nach Anspruch 12, wobei der vom ABS- Regelbetrieb verschiedene Bremsregel betrieb wenigstens eine der folgenden Betriebsarten umfasst:
- einen Schlupfregelbetrieb; und
- ein elektronisches Stabilitätsprogramm, oder ESP.
14. Fahrzeug-Bremsanlage nach einem der Ansprüche 9 bis 13, ferner umfassend:
eine zweite Ventilanordnung (324), die zum selektiven Abkoppeln des Hauptzylinders (136) von einer Ausgangsseite des Hydraulikdruckerzeugers (316; 320) in wenigstens einer der folgenden Betriebsarten ausgebildet ist:
- einem Schlupfregelbetrieb; und
- einem elektronischen Stabilitätsprogramm, oder ESP.
15. Fahrzeug-Bremsanlage nach einem der Ansprüche 1 bis 8, wobei die Fahrzeug-Bremsanlage keinen zusätzlich zum Hauptzylinder (136) vorgesehenen, elektromotorisch betätigbaren Hydraulikdruckerzeuger aufweist.
16. Fahrzeug-Bremsanlage nach Anspruch 15, wobei der elektromechani- sche Aktuator (158) im Rahmen eines Bremsregel betriebs ansteuerbar ist, der verschieden ist von der Bremsdruckverstärkung oder Bremsdruckerzeugung bei einer Betätigung des Bremspedals.
17. Fahrzeug-Bremsanlage nach Anspruch 16, wobei der Bremsregelbetrieb den ABS-Regelbetrieb umfasst.
18. Fahrzeug-Bremsanlage nach einem der vorhergehenden Ansprüche, ferner umfassend:
eine dritte Ventilanordnung (268, 272), die zu wenigstens einem der folgenden Zwecke ausgebildet ist: - zum Abbau von Hydraulikdruck bei Ausfall des elektromechani- schen Aktuators (158); und
- zum selektiven Koppeln wenigstens einer Kammer (144, 148) des Hauptzylinders (136), in welcher der Kolben (140) aufgenommen ist, mit einem drucklosen Hydraulikfluidreservoir.
19. Fahrzeug-Bremsanlage nach Anspruch 18, wobei die dritte Ventilanordnung (268, 272) ausgebildet ist, bei geöffnetem ersten Ventil (304) die zugehörige Radbremse (116) zum Hydraulikdruckabbau selektiv mit einem drucklosen Hydraulikfluidreservoir zu koppeln.
20. Fahrzeug-Bremsanlage nach Anspruch 18 oder 19, wobei die dritte Ventilanordnung (268, 279) ausgebildet ist, im regenerativen Bremsbetrieb die Kammer (144, 148) des Hauptzylinders (136) mit dem drucklosen Hydraulikfluidreservoir zu koppeln.
21. Verfahren zum Betreiben einer hydraulischen Fahrzeug-Bremsanlage (100; 400; 500) mit einem Hauptzylinder (136) mit wenigstens einem darin verschieblich aufgenommenen Kolben (140), einem mit einem Bremspedal gekoppelten oder koppelbaren mechanischen Aktuator (162) zur Betätigung des Kolbens (140), einem elektromechanischen Aktuator (158) zur Betätigung des Kolbens und einer erste Ventilanordnung (300), die pro Radbremse (116) ein erstes Ventil (304) zum selektiven Abkoppeln der Radbremse (116) vom Hauptzylinder (140) und ein zweites Ventil (308) zum selektiven Bremsdruckabbau an der Radbremse (116) besitzt, wobei der elektromechanische Aktuator (158) zumindest zur Bremskraftverstärkung oder Bremskrafterzeugung bei einer Betätigung des Bremspedals angesteuert wird und wobei die erste Ventilanordnung (300) zumindest im Rahmen eines ABS-Regelbetriebs angesteuert wird.
PCT/EP2012/001119 2011-05-10 2012-03-13 Hydraulische fahrzeug-bremsanlage mit elektromechanischem aktuator und verfahren zum betrieben einer derartigen hydraulischen fahrzeug-bremsanlage WO2012152352A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280021840.5A CN103635367B (zh) 2011-05-10 2012-03-13 具有机电致动器的液压式车辆制动系统以及操作该液压式车辆制动系统的方法
US14/116,349 US9227611B2 (en) 2011-05-10 2012-03-13 Hydraulic vehicle braking system with electromechanical actuator, and method for operating such a hydraulic vehicle braking system
EP12710140.0A EP2707262B1 (de) 2011-05-10 2012-03-13 Hydraulische fahrzeug-bremsanlage mit elektromechanischem aktuator und verfahren zum betreiben einer derartigen hydraulischen fahrzeug-bremsanlage
US14/935,495 US10259440B2 (en) 2011-05-10 2015-11-09 Hydraulic vehicle braking system with electromechanical actuator, and method for operating such a hydraulic vehicle braking system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011101066.5A DE102011101066B4 (de) 2011-05-10 2011-05-10 Hydraulische Fahrzeug-Bremsanlage mit elektromechanischem Aktuator
DE102011101066.5 2011-05-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/116,349 A-371-Of-International US9227611B2 (en) 2011-05-10 2012-03-13 Hydraulic vehicle braking system with electromechanical actuator, and method for operating such a hydraulic vehicle braking system
US14/935,495 Continuation US10259440B2 (en) 2011-05-10 2015-11-09 Hydraulic vehicle braking system with electromechanical actuator, and method for operating such a hydraulic vehicle braking system

Publications (1)

Publication Number Publication Date
WO2012152352A1 true WO2012152352A1 (de) 2012-11-15

Family

ID=45876667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/001119 WO2012152352A1 (de) 2011-05-10 2012-03-13 Hydraulische fahrzeug-bremsanlage mit elektromechanischem aktuator und verfahren zum betrieben einer derartigen hydraulischen fahrzeug-bremsanlage

Country Status (5)

Country Link
US (2) US9227611B2 (de)
EP (1) EP2707262B1 (de)
CN (1) CN103635367B (de)
DE (1) DE102011101066B4 (de)
WO (1) WO2012152352A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103847711A (zh) * 2012-12-07 2014-06-11 上海汽车集团股份有限公司 助力制动系统及汽车
DE102012025423A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
WO2014095287A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
DE102012025290A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
WO2014095285A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
WO2014095286A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
FR3005019A1 (fr) * 2013-04-24 2014-10-31 Bosch Gmbh Robert Procede de gestion d'un systeme de freins de vehicule et dispositif de commande mettant en oeuvre le procede
WO2015024795A1 (de) * 2013-08-20 2015-02-26 Continental Teves Ag & Co. Ohg Bremsanlage für kraftfahrzeuge
JP2015051672A (ja) * 2013-09-05 2015-03-19 日立オートモティブシステムズ株式会社 ブレーキシステム及びブレーキ装置及びブレーキ制御方法
DE102013016912A1 (de) 2013-10-11 2015-04-16 Lucas Automotive Gmbh Aktuator-Baugruppe für eine Kraftfahrzeug-Bremsanlage
DE102013018073A1 (de) 2013-11-28 2015-05-28 Lucas Automotive Gmbh Elektrohydraulische Kraftfahrzeug-Bremsanlage
WO2015078635A1 (de) 2013-11-28 2015-06-04 Lucas Automotive Gmbh Elektrohydraulische kraftfahrzeug-bremsanlage und verfahren zum entlüften ihres simulatorkreises; verfahren zum überprüfen der funktionsfähigkeit einer weiteren elektrohydraulischen kraftfahrzeug-bremsanlage und computerprogrammprodukte für die verfahren
EP2969679A4 (de) * 2013-03-13 2016-11-02 Autoliv Asp Inc Bremssystem für ein fahrzeug
WO2016184616A1 (de) 2015-05-21 2016-11-24 Lucas Automotive Gmbh Elektrohydraulische kraftfahrzeug-bremsanlage
WO2016184609A1 (de) 2015-05-21 2016-11-24 Lucas Automotive Gmbh Elektrohydraulische bremskrafterzeugungsvorrichtung für eine elektro-hydraulische kraftfahrzeug-bremsanlage
WO2017194674A1 (de) * 2016-05-13 2017-11-16 Continental Teves Ag & Co. Ohg Bremsgerät für eine hydraulische kraftfahrzeugbremsanlage mit einem kugelgewindetrieb
DE102017002770A1 (de) 2017-03-22 2018-09-27 Lucas Automotive Gmbh Pedalsimulationsvorrichtung mit mehreren Rückstellelementen
WO2020114646A1 (de) * 2018-12-06 2020-06-11 Robert Bosch Gmbh Verfahren zur steuerung eines elektronisch schlupfregelbaren bremssystems für ein kraftfahrzeug

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034661A1 (de) * 2010-09-17 2012-03-22 Ipgate Ag Betätigungsvorrichtung für eine kraftfahrzeug-bremsanlage
CN103802813B (zh) * 2012-11-12 2018-11-06 博世汽车部件(苏州)有限公司 助力器及制动系统
DE102012025292A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Verfahren und Baugruppe zur Bremskraftverstärkung für eine elektrohydraulische Kraftfahrzeug-Bremsanlage
DE102013203672A1 (de) * 2013-03-04 2014-09-04 Bayerische Motoren Werke Aktiengesellschaft Dynamische Zeitsteuerung von Bremsregelsystemen mit Multiplex-Betrieb
DE102013105377A1 (de) * 2013-05-24 2014-11-27 Ipgate Ag Betätigungsvorrichtung für eine Fahrzeug-Bremsanlage
JP2015009701A (ja) * 2013-06-28 2015-01-19 株式会社デンソー 車両用制動装置
KR101500303B1 (ko) * 2013-07-25 2015-03-18 주식회사 만도 전자식 브레이크 장치 및 그 제어 방법
DE102013014188A1 (de) 2013-08-26 2015-02-26 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage mit elektromechanischem Aktuator und Verfahren zum Betreiben der Bremsanlage
DE102013014173A1 (de) 2013-08-26 2015-02-26 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage mit elektromechanischem Aktuator und Verfahren zum Betreiben der Bremsanlage
DE102013223861A1 (de) * 2013-11-21 2015-05-21 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftahrzeuge
DE102014003641A1 (de) * 2014-03-14 2015-09-17 Lucas Automotive Gmbh Kalibrierverfahren für eine elektrohydraulische Kraftfahrzeug-Bremsanlage und Kalibriervorrichtung hierfür
GB2525595B (en) * 2014-04-28 2016-12-14 Caterpillar Sarl Braking system and method for machine
DE102014211008A1 (de) * 2014-06-10 2015-12-17 Robert Bosch Gmbh Sensorvorrichtung und Verfahren zum Ausführen oder Verstärken eines autonomen Bremsdruckaufbaus in einem Bremssystem mittels eines aktiven Bremskraftverstärkers
CN104076810A (zh) * 2014-06-11 2014-10-01 深圳市元征软件开发有限公司 基于手机语音方式的汽车诊断方法
CN104097623B (zh) * 2014-08-06 2016-08-31 邓伟文 一种车辆集成电液制动系统
KR101592166B1 (ko) * 2014-09-02 2016-02-11 현대모비스 주식회사 차량용 제동장치
JP6373715B2 (ja) * 2014-10-16 2018-08-15 Ntn株式会社 電動ブレーキ装置
KR102286743B1 (ko) * 2014-11-05 2021-08-09 현대모비스 주식회사 차량용 회생제동 시스템 제어 방법
DE102015200106B3 (de) * 2015-01-08 2016-05-12 Ford Global Technologies, Llc Steuerungsverfahren für ein hydraulisches Bremssystem eines Kraftfahrzeugs sowie hydraulisches Bremssystem
US9592813B2 (en) 2015-06-25 2017-03-14 Akebono Brake Industry Co., Ltd Actuator assembly for a parking brake system
FR3040957B1 (fr) * 2015-09-14 2017-10-06 Bosch Gmbh Robert Systeme d'assistance de freinage
JP6676368B2 (ja) * 2015-12-25 2020-04-08 日信ブレーキシステムズ株式会社 ブレーキ制御装置
DE102016208396A1 (de) * 2016-05-17 2017-11-23 Robert Bosch Gmbh Verfahren zum Überprüfen der Bremskraft in einem Fahrzeug
CN106114483B (zh) * 2016-07-29 2019-01-08 株洲中车时代电气股份有限公司 基于液压和电子机械相结合的制动方法及制动系统
DE102016218209A1 (de) * 2016-09-22 2018-03-22 Robert Bosch Gmbh Bremssystem-Steuergerät für ein Fahrzeug
DE102017002716A1 (de) * 2017-03-21 2018-09-27 Wabco Gmbh Elektronisch steuerbares Bremssystem sowie Verfahren zum Steuern des elektronisch steuerbaren Bremssystems
FR3067428B1 (fr) * 2017-06-12 2019-07-12 Foundation Brakes France Etrier de frein pour vehicule comprenant une unite de commande de freinage
US10525951B2 (en) * 2017-12-08 2020-01-07 Robert Bosch Gmbh Vehicle braking system and method of operating the same
EP3727968B1 (de) * 2017-12-20 2024-08-21 BREMBO S.p.A. Brake-by-wire-bremssystem für fahrzeuge
DE102018002989A1 (de) * 2018-04-12 2019-10-17 Lucas Automotive Gmbh Hydraulische Kraftfahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
DE102018003001A1 (de) * 2018-04-12 2019-10-17 Lucas Automotive Gmbh Hydraulische Kraftfahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
CN108791260B (zh) * 2018-06-08 2023-08-11 芜湖伯特利电子控制系统有限公司 一种利用epb辅助冗余的线控液压制动系统
DE102018214188A1 (de) 2018-08-22 2020-02-27 Continental Teves Ag & Co. Ohg Elektromechanisch-hydraulischer Kolbenaktuator und Bremssystem
DE102018219922A1 (de) * 2018-11-21 2020-05-28 Continental Teves Ag & Co. Ohg Verfahren zum Betreiben einer hydraulischen Fahrzeugbremsanlage sowie eine hydraulische Fahrzeugbremsanlage
DE102018010167A1 (de) * 2018-12-28 2020-07-02 Zf Active Safety Gmbh Hydraulische Kraftfahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
GB2580641B (en) * 2019-01-18 2021-03-10 Caterpillar Sarl Brake system for a vehicle
DE102019200876A1 (de) * 2019-01-24 2020-07-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Bremssystems, Bremssystem und Fahrzeug
CN110360176B (zh) * 2019-06-18 2020-08-28 浙江吉利控股集团有限公司 一种液压式致动装置及汽车驻车机构
CN111907499B (zh) * 2020-08-07 2021-06-08 格陆博科技有限公司 一种电液制动系统及其制动方法
GB2604147B (en) * 2021-02-26 2023-05-24 Continental Automotive Romania Srl Anti-lock braking system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110840A1 (de) * 2003-06-18 2004-12-23 Volkswagen Aktiengesellschaft Electromechanischer bremskraftverstärker
DE10338046A1 (de) * 2003-08-19 2005-03-10 Volkswagen Ag Kraftfahrzeug-Bremssystem mit einem aktiven Bremskraftverstärker und integrierter ESP-und/oder EDS-und/oder ASR-Funktionalität
FR2874880A1 (fr) * 2004-09-08 2006-03-10 Bosch Gmbh Robert Dispositif de freinage pour vehicule automobile
EP1634787A1 (de) * 2004-09-08 2006-03-15 ROBERT BOSCH GmbH Kraftfahrzeugbremsvorrichtung
WO2006111393A1 (de) 2005-04-21 2006-10-26 Gerber, Wolfram Druckmodulatorsteuerung
EP1738983A2 (de) * 2002-07-09 2007-01-03 Continental Teves AG & Co. oHG By-Wire-Bremsbetätigungsvorrichtung
JP2007131130A (ja) * 2005-11-10 2007-05-31 Hitachi Ltd ブレーキ装置
WO2008122469A1 (de) * 2007-04-10 2008-10-16 Robert Bosch Gmbh Bremssystem für ein fahrzeug
JP2008254586A (ja) * 2007-04-05 2008-10-23 Isao Matsuno 車両用ブレーキ装置
EP2019010A2 (de) * 2007-07-27 2009-01-28 Hitachi Ltd. Hydraulische Bremsvorrichtung
WO2009083216A2 (de) * 2007-12-21 2009-07-09 Ipgate Ag Bremssystem mit adaptiv steuerbarem bremsbelaglüftspiel
EP2103493A1 (de) * 2008-03-20 2009-09-23 Peugeot Citroën Automobiles S.A. Kraftfahrzeugstabilitäts- und Kraftfahrzeugbahnsteuersystem mit aktivem Bremskraftverstärker
WO2010091883A1 (de) 2009-02-13 2010-08-19 Ipgate Ag Bremssystem mit simultanem bzw. teilsimultanem druckauf- und druckabbau in den radbremsen aus unterschiedlichen radzylinderdruckniveaus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263033A (zh) * 2005-09-15 2008-09-10 大陆-特韦斯贸易合伙股份公司及两合公司 用于机动车辆的制动系统
JP4470867B2 (ja) * 2005-11-18 2010-06-02 トヨタ自動車株式会社 ブレーキ制御装置
JP2007284007A (ja) 2006-04-20 2007-11-01 Hitachi Ltd ブレーキ制御装置
DE102008039306A1 (de) 2007-11-21 2009-05-28 Continental Teves Ag & Co. Ohg Bremsbetätigungseinheit
DE102009033499A1 (de) 2008-07-18 2010-01-21 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
JP5212723B2 (ja) * 2009-01-13 2013-06-19 株式会社アドヴィックス ブレーキ装置
FR2949737B1 (fr) * 2009-09-07 2011-10-14 Bosch Gmbh Robert Systeme de freins a servofrein electrique
DE102010024739A1 (de) * 2009-10-31 2011-05-05 Volkswagen Ag Pneumatischer Pedalsimulator und Fahrzeugbremsanlage mit einem solchen
DE102009055721A1 (de) * 2009-11-26 2011-06-01 Ipgate Ag Bremssystem mit Speichereinrichtung mit Mehrfachfunktion
DE102010022493B4 (de) * 2010-06-02 2016-11-17 Ipgate Ag Bremssystem mit einem Bremskraftverstärker sowie Verfahren zur Verwendung eines entsprechenden Bremssystems
DE102010055044A1 (de) 2010-11-08 2012-05-10 Ipgate Ag Kolben-Zylinder-Vorrichtung, zur Förderung einer Hydraulikflüssigkeit, insbesondere für eine Fahrzeugbremse

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1738983A2 (de) * 2002-07-09 2007-01-03 Continental Teves AG & Co. oHG By-Wire-Bremsbetätigungsvorrichtung
WO2004110840A1 (de) * 2003-06-18 2004-12-23 Volkswagen Aktiengesellschaft Electromechanischer bremskraftverstärker
DE10338046A1 (de) * 2003-08-19 2005-03-10 Volkswagen Ag Kraftfahrzeug-Bremssystem mit einem aktiven Bremskraftverstärker und integrierter ESP-und/oder EDS-und/oder ASR-Funktionalität
FR2874880A1 (fr) * 2004-09-08 2006-03-10 Bosch Gmbh Robert Dispositif de freinage pour vehicule automobile
EP1634787A1 (de) * 2004-09-08 2006-03-15 ROBERT BOSCH GmbH Kraftfahrzeugbremsvorrichtung
WO2006111393A1 (de) 2005-04-21 2006-10-26 Gerber, Wolfram Druckmodulatorsteuerung
JP2007131130A (ja) * 2005-11-10 2007-05-31 Hitachi Ltd ブレーキ装置
JP2008254586A (ja) * 2007-04-05 2008-10-23 Isao Matsuno 車両用ブレーキ装置
WO2008122469A1 (de) * 2007-04-10 2008-10-16 Robert Bosch Gmbh Bremssystem für ein fahrzeug
EP2019010A2 (de) * 2007-07-27 2009-01-28 Hitachi Ltd. Hydraulische Bremsvorrichtung
WO2009083216A2 (de) * 2007-12-21 2009-07-09 Ipgate Ag Bremssystem mit adaptiv steuerbarem bremsbelaglüftspiel
EP2103493A1 (de) * 2008-03-20 2009-09-23 Peugeot Citroën Automobiles S.A. Kraftfahrzeugstabilitäts- und Kraftfahrzeugbahnsteuersystem mit aktivem Bremskraftverstärker
WO2010091883A1 (de) 2009-02-13 2010-08-19 Ipgate Ag Bremssystem mit simultanem bzw. teilsimultanem druckauf- und druckabbau in den radbremsen aus unterschiedlichen radzylinderdruckniveaus

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103847711A (zh) * 2012-12-07 2014-06-11 上海汽车集团股份有限公司 助力制动系统及汽车
CN105008192A (zh) * 2012-12-21 2015-10-28 卢卡斯汽车股份有限公司 电动液压机动车制动系统及其操作方法
DE102012025249A1 (de) 2012-12-21 2014-07-10 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
US10029659B2 (en) 2012-12-21 2018-07-24 Lucas Automotive Gmbh Electrohydraulic motor vehicle brake system and method for operating the same
WO2014095283A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
WO2014095285A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
WO2014095286A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
DE102012025291A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
CN104968541B (zh) * 2012-12-21 2017-09-08 卢卡斯汽车股份有限公司 电动液压式机动车制动系统及其操作方法
WO2014095282A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
DE102012025247A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
DE102012025423A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
WO2014095287A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
CN104981385A (zh) * 2012-12-21 2015-10-14 卢卡斯汽车股份有限公司 电动液压式机动车制动系统及其操作方法
CN104981385B (zh) * 2012-12-21 2017-08-04 卢卡斯汽车股份有限公司 电动液压式机动车制动系统及其操作方法
US9616870B2 (en) 2012-12-21 2017-04-11 Lucas Automotive Gmbh Electrohydraulic motor vehicle brake system and method for operating the same
US9586487B2 (en) 2012-12-21 2017-03-07 Lucas Automotive Gmbh Electrohydraulic motor vehicle brake system and method for operating the same
DE102012025290A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
CN104968541A (zh) * 2012-12-21 2015-10-07 卢卡斯汽车股份有限公司 电动液压式机动车制动系统及其操作方法
EP2969679A4 (de) * 2013-03-13 2016-11-02 Autoliv Asp Inc Bremssystem für ein fahrzeug
FR3005019A1 (fr) * 2013-04-24 2014-10-31 Bosch Gmbh Robert Procede de gestion d'un systeme de freins de vehicule et dispositif de commande mettant en oeuvre le procede
WO2015024795A1 (de) * 2013-08-20 2015-02-26 Continental Teves Ag & Co. Ohg Bremsanlage für kraftfahrzeuge
JP2015051672A (ja) * 2013-09-05 2015-03-19 日立オートモティブシステムズ株式会社 ブレーキシステム及びブレーキ装置及びブレーキ制御方法
DE102013016912A1 (de) 2013-10-11 2015-04-16 Lucas Automotive Gmbh Aktuator-Baugruppe für eine Kraftfahrzeug-Bremsanlage
US10029663B2 (en) 2013-11-28 2018-07-24 Lucas Automotive Gmbh Electro-hydraulic motor vehicle brake system and method for the operation thereof
US9956943B2 (en) 2013-11-28 2018-05-01 Lucas Automotive Gmbh Electrohydraulic motor vehicle brake system and method for ventilation of the simulator circuit thereof; method for testing the functionality of a further electrohydraulic motor vehicle brake system, and computer program products for the methods
WO2015078635A1 (de) 2013-11-28 2015-06-04 Lucas Automotive Gmbh Elektrohydraulische kraftfahrzeug-bremsanlage und verfahren zum entlüften ihres simulatorkreises; verfahren zum überprüfen der funktionsfähigkeit einer weiteren elektrohydraulischen kraftfahrzeug-bremsanlage und computerprogrammprodukte für die verfahren
DE102013018073A1 (de) 2013-11-28 2015-05-28 Lucas Automotive Gmbh Elektrohydraulische Kraftfahrzeug-Bremsanlage
EP3418139A1 (de) 2013-11-28 2018-12-26 Lucas Automotive GmbH Elektrohydraulische kraftfahrzeug-bremsanlage und betriebsverfahren dafür.
EP3375678A1 (de) 2013-11-28 2018-09-19 Lucas Automotive GmbH Verfahren zum entlüften des simulatorkreises einer elektrohydraulischen bremsanlage und eine elektrohydraulischen bremsanlage worin das verfahren durchgeführt wird.
DE102013018072A1 (de) 2013-11-28 2015-06-11 Lucas Automotive Gmbh Elektrohydraulische Kraftfahrzeug-Bremsanlage
WO2016184616A1 (de) 2015-05-21 2016-11-24 Lucas Automotive Gmbh Elektrohydraulische kraftfahrzeug-bremsanlage
WO2016184609A1 (de) 2015-05-21 2016-11-24 Lucas Automotive Gmbh Elektrohydraulische bremskrafterzeugungsvorrichtung für eine elektro-hydraulische kraftfahrzeug-bremsanlage
DE102015006396A1 (de) 2015-05-21 2016-11-24 Lucas Automotive Gmbh Elektrohydraulische Bremskrafterzeugungsvorrichtung für eine elektrohydraulische Kraftfahrzeug-Bremsanlage
DE102015006853A1 (de) 2015-05-21 2016-11-24 Lucas Automotive Gmbh Elektrohydraulische Kraftfahrzeug-Bremsanlage
US10525959B2 (en) 2015-05-21 2020-01-07 Lucas Automotive Gmbh Electrohydraulic motor vehicle braking system
US10703350B2 (en) 2015-05-21 2020-07-07 Zf Active Safety Gmbh Electrohydraulic braking-force generation device for an electrohydraulic motor vehicle braking system
WO2017194674A1 (de) * 2016-05-13 2017-11-16 Continental Teves Ag & Co. Ohg Bremsgerät für eine hydraulische kraftfahrzeugbremsanlage mit einem kugelgewindetrieb
US11072316B2 (en) 2016-05-13 2021-07-27 Continental Teves Ag & Co. Ohg Braking device for a hydraulic motor vehicle braking system having a ball screw drive
DE102017002770A1 (de) 2017-03-22 2018-09-27 Lucas Automotive Gmbh Pedalsimulationsvorrichtung mit mehreren Rückstellelementen
WO2018172130A1 (de) 2017-03-22 2018-09-27 Lucas Automotive Gmbh Pedalsimulationsvorrichtung mit mehreren rückstellelementen
US11643061B2 (en) 2017-03-22 2023-05-09 Zf Active Safety Gmbh Pedal simulation device with a plurality of return elements
WO2020114646A1 (de) * 2018-12-06 2020-06-11 Robert Bosch Gmbh Verfahren zur steuerung eines elektronisch schlupfregelbaren bremssystems für ein kraftfahrzeug

Also Published As

Publication number Publication date
EP2707262A1 (de) 2014-03-19
DE102011101066A1 (de) 2012-11-15
CN103635367A (zh) 2014-03-12
EP2707262B1 (de) 2016-06-29
US10259440B2 (en) 2019-04-16
US9227611B2 (en) 2016-01-05
DE102011101066B4 (de) 2024-08-01
US20160059837A1 (en) 2016-03-03
CN103635367B (zh) 2016-05-25
US20140197680A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
EP2707262B1 (de) Hydraulische fahrzeug-bremsanlage mit elektromechanischem aktuator und verfahren zum betreiben einer derartigen hydraulischen fahrzeug-bremsanlage
EP3802247B1 (de) Bremssystem mit zwei druckquellen und verfahren zum betreiben eines bremssystems mit zwei druckquellen
EP2960124B1 (de) Hydraulikbaugruppe für eine fahrzeug-bremsanlage
EP3558771B1 (de) Bremssystem mit zwei druckquellen und zwei verfahren zum betreiben eines bremssystems
EP2934969B1 (de) Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
EP2934961B1 (de) Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
EP2611658B1 (de) Bremsanlage für kraftfahrzeuge
EP2934973B1 (de) Elektrohydraulische fahrzeug-bremsanlage und verfahren zum betreiben derselben
EP3038867B1 (de) Elektrohydraulische fahrzeug-bremsanlage mit elektromechanischem aktuator und verfahren zum betreiben der bremsanlage
EP3271227A2 (de) Bremsanlage mit schwimmkolben-hauptbremszylindereinheit mit neuartiger mux-regelung (mux 2.0) mit mindestens einem auslassventil und verfahren zur druckregelung
DE102015219001A1 (de) Bremssystem und Verfahren zum Betreiben eines Bremssystems
DE102012025423A1 (de) Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
DE102007049620A1 (de) Bremsanlage für Kraftfahrzeuge
DE102012025247A1 (de) Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
DE19953805C1 (de) Kombinierter Betriebs- und Federspeicherbremszylinder und Bremseinrichtung für Nutzfahrzeuge
DE102011116167A1 (de) Elektrohydraulische Betätigungsbaugruppe für eine Fahrzeug-Bremsanlage
WO2020224845A1 (de) Verfahren zur steuerung einer elektronisch schlupfregelbaren fremdkraftbremsanlage un fremdkraftbremsanlage
DE102019215288A1 (de) Verfahren zur Steuerung einer elektronisch schlupfregelbaren Fremdkraftbremsanlage, insbesondere für ein Kraftfahrzeug und elektronisch schlupfregelbaren Fremdkraftbremsanlage, insbesondere für ein Kraftfahrzeug
DE102022213133A1 (de) Elektronisch schlupfregelbare Fremdkraftbremsanlage
DE102022205185A1 (de) Bremssystem für Kraftfahrzeuge mit einer Druckbereitstellungseinrichtung
DE102022210794A1 (de) Hydraulikaggregat mit einem Steuergerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12710140

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012710140

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14116349

Country of ref document: US