WO2012066989A1 - Glass composition for chemical strengthening - Google Patents
Glass composition for chemical strengthening Download PDFInfo
- Publication number
- WO2012066989A1 WO2012066989A1 PCT/JP2011/075776 JP2011075776W WO2012066989A1 WO 2012066989 A1 WO2012066989 A1 WO 2012066989A1 JP 2011075776 W JP2011075776 W JP 2011075776W WO 2012066989 A1 WO2012066989 A1 WO 2012066989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- ion exchange
- glass composition
- chemical strengthening
- ion
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
Definitions
- the present invention relates to a glass composition having high heat resistance and capable of providing a strengthening layer having high mechanical strength by chemical strengthening treatment accompanying ion exchange.
- glass Since glass has excellent properties such as high surface smoothness and large surface strength, it is widely used for display substrates such as touch panels and color filters.
- the chemical tempering treatment by ion exchange is a tempering treatment suitable for a display substrate material and the like because it is easily tempered even if the thickness of the glass is small compared to other tempering treatments.
- the chemical strengthening treatment gives compressive stress to the glass surface by exchanging ions (generally Na) in the vicinity of the surface of the glass with ions having a larger ion radius. Is naturally influenced by the composition of the glass.
- Chemically strengthened glass has resistance to scratches on the glass surface due to the mechanical strength of the strengthening layer, and the resistance to scratches increases as the mechanical strength of the strengthening layer increases.
- the reinforcing layer is also correlated with the amount of ion exchange in ion exchange.
- the ease of strengthening and the magnitude of the mechanical strength of the reinforcing layer are affected by the composition of the glass.
- the one described in JP-A-2000-7372 requires Li 2 O, P 2 O 5 , and ZnO, and contains a large amount, so that the glass transition point is low, and warping is likely to occur during strengthening. Also, poor chemical durability to contain P 2 O 5.
- the present invention aims to provide a glass composition that is resistant to surface scratches even when used as, for example, glass for a touch panel display, and that can impart a high mechanical strength by chemical strengthening treatment.
- the present invention is expressed in mass%, SiO 2 53-62%, Al 2 O 3 11-17%, Na 2 O 10-15%, K 2 O 3-9%, CaO 0-4%, MgO 0-4%, SrO 0-6%, BaO 0-5%, ZrO 2 1-4%, It is characterized by containing 2 to 5% of TiO 2 .
- the ion exchange capacity (ion exchange weight per glass surface area in the chemical strengthening treatment) is 0.2 mg / cm 2 or more in the chemical strengthening treatment of a potassium nitrate solution having a temperature 0.9 times the glass strain point. It is a glass composition.
- this invention is said glass composition whose glass transition point is 580 degreeC or more.
- the present invention by immersing a glass article containing the above glass composition in a molten salt containing a monovalent cation having an ionic radius larger than the Na ion radius, the Na ion contained in the glass article and the above one.
- the present invention provides a chemically strengthened article obtained by ion exchange with a valent cation.
- the present invention performs chemical strengthening treatment with a potassium nitrate solution having a temperature 0.9 times the glass strain point, and thus has an ion exchange capacity (ion exchange weight per glass surface area in the chemical strengthening treatment) of 0.2 mg / cm 2 or more. It is a manufacturing method of said glass composition.
- this invention is a manufacturing method of said glass composition which makes a glass transition point 580 degreeC or more.
- the Na ion contained in the glass article is ion-exchanged with the monovalent cation by immersing in a molten salt containing a monovalent cation having an ion radius larger than the Na ion radius. It is a manufacturing method of the glass article containing a glass composition.
- the glass composition of the present invention can be chemically strengthened to obtain a chemically strengthened layer having high mechanical strength. Further, even when the glass is heated to a high temperature, deformation due to heat hardly occurs.
- the glass composition of the present invention is expressed in mass%, SiO 2 53-62%, Al 2 O 3 11-17%, Na 2 O 10-15%, K 2 O 3-9%, CaO 0-4%, MgO 0-4%, SrO 0-6%, BaO 0-5%, ZrO 2 1-4%, It is preferably composed of 2 to 5% of TiO 2 .
- the glass composition having this preferred glass composition can be more reliably imparted with a chemical strengthening layer having a high mechanical strength by being chemically strengthened.
- the glass composition preferably has a glass transition point of at least 580 ° C. Even if this glass composition is subjected to a high-temperature heat treatment such as heating in a molten salt during chemical strengthening, for example, the glass is not easily deformed.
- the chemically strengthened glass article of the present invention since a large reinforcing layer is formed on the surface of the glass article, the mechanical strength is increased and the glass can be prevented from being broken when an impact is applied from the outside. .
- the chemically tempered glass article of the present invention is strong against surface scratches because it has a strengthened layer having a large mechanical strength formed on the surface of the glass article, so that there is little deterioration in strength due to scratching from the outside or scratches due to scratches.
- SiO 2 is a component that forms glass, and is preferably contained in an amount of 53 to 62% by mass. If the SiO 2 content is less than 53%, the chemical durability is poor. If it exceeds 62%, the melting temperature of the glass becomes high and it becomes difficult to obtain a homogeneous glass.
- Al 2 O 3 is a component that increases the ion exchange rate and improves the water resistance of the glass, and is preferably contained in an amount of 11 to 17% by mass. If Al 2 O 3 is less than 11%, it is difficult to obtain the effect. On the other hand, if it exceeds 17%, the viscosity of the glass melt becomes high and it becomes difficult to obtain a homogeneous glass, which is not suitable. More preferably, it is 11 to 15%.
- Li 2 O is a component that improves the strength of the glass by exchanging Li ions with other cations such as Na ions and K ions in the molten salt.
- the content of Li 2 O is desirably 5% or less.
- Na 2 O is a component that improves the strength of the glass as well as improving the strength of the glass by ion exchange of Na ions with other cations such as K ions in the molten salt. If it is 10% or less, the effect is not sufficient and the meltability is poor. On the other hand, if it exceeds 15%, chemical durability deteriorates.
- K 2 O is a component that improves the solubility of glass in the same manner as Na 2 O, and for that reason, 3% or more is preferable.
- chemical strengthening normally uses potassium nitrate molten salt, if the content of K 2 O exceeds 9%, sufficient ion exchange does not occur. Therefore, 9% or less is preferable.
- MgO is a component that lowers the viscosity of the glass and improves the solubility, but is preferably contained in an amount of 0 to 4% by mass in order to increase the devitrification temperature of the glass.
- CaO like MgO, is a component that lowers the viscosity of the glass and improves the solubility, but it increases the devitrification temperature of the glass. Therefore, it is preferable to contain 0 to 5% by mass.
- SrO like MgO and CaO, is a component that lowers the viscosity of the glass and improves the solubility. However, SrO is preferably contained in an amount of 0 to 6% by mass in order to prevent the movement of alkali components in the glass. .
- BaO like MgO and CaO, is a component that lowers the viscosity of the glass and improves the solubility. However, since BaO hinders the movement of the alkali component in the glass, it is preferably 5% or less by mass.
- ZrO 2 is a component that increases the ion exchange rate and improves the water resistance of the glass. If it is 1% or less, its effect is not sufficient, and if it exceeds 4%, the melting temperature becomes high, so it is contained in 1 to 4%. Is preferred.
- TiO 2 is a component that lowers the viscosity of the glass and improves the solubility, but it does not deteriorate the chemical durability as much as the alkali component, so 2% or more is essential, and if the content of TiO 2 exceeds 5% Since the devitrification temperature rises and the moldability is hindered, 2 to 5% by mass is preferable. More preferably, it is 4 to 5%.
- Examples of the glass composition of the present invention were produced by melting experiments with the glass compositions shown in Examples 1 to 11, and the melting temperature, working temperature, thermal expansion coefficient, glass transition point (° C.) of the obtained glass, Table 1 shows the measurement results of strain point, devitrification temperature (° C.), and ion exchange capacity (mg / cm 2 ). Comparative examples are shown in Table 2. “ND” in the devitrification temperature column indicates that no devitrification was observed.
- Sample glass is processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, and a thermal expansion coefficient of 30 ° C. to 300 ° C. according to JIS R3102, 3103 using a differential thermal dilatometer (Thermoplus manufactured by RIGAKU Corporation, TMA8310). And the glass transition point was measured.
- the high temperature viscosity log ⁇ 2 and 4 were measured using an Opto ball pulling viscometer BVB-13LH.
- the bending point was measured by using a beam bending viscometer BBVM-900 (manufactured by Opto) to determine the strain point. (Conforms to JIS R3103-2) After holding at a predetermined temperature for 2 hours using a temperature gradient furnace (manufactured by Eiko), the presence or absence of crystals was confirmed using a polarizing microscope ECLIPSE E600 POL (manufactured by Nikon), and the devitrification temperature was measured.
- the ion exchange capacity was defined as the increased weight per glass surface area due to the exchange of Na + for K + .
- the glass is optically polished to about 40 ⁇ 40 ⁇ 3 mm, ion-exchanged in potassium nitrate at a temperature 0.9 times the strain point for 4 hours, and the weight (0.1 mg unit) and dimensions before and after the treatment are measured. The increased weight per surface area was calculated.
- the glass transition points of Examples 1 to 10 in the present invention are heat resistant at 580 ° C. or higher.
- the ion exchange capacity is 0.2 mg / cm 2 or more, which makes it easy to exchange ions. If the amount of ion exchange is large, the ion exchange layer from the glass surface to the inside becomes deep and it can be said that the glass is resistant to scratches on the surface. .
- Comparative Example 1 is a general float glass, but its ion exchange capacity is as low as 0.06 mg / cm 2 and can be said to be a glass that is vulnerable to scratches.
- Comparative Example 2 is the glass of Example 4 of JP-A No. 2000-7372, but has a low glass transition point of 450 ° C. and low heat resistance.
- Comparative Example 3 is the glass of Example 5 of JP-A-2005-15328, but has a low ion exchange capacity of 0.17 mg / cm 2 .
- Comparative Example 4 has a high BaO content of 8.9% and a low ion exchange capacity of 0.17 mg / cm 2 .
- the present invention provides a glass composition that is resistant to external surface scratches such as scratches on a display substrate such as a touch panel, and can be imparted with high mechanical strength by chemical strengthening treatment.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Liquid Crystal (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
[Problem] To provide a glass composition which has excellent heat resistance and excellent ion exchange ability and is capable of providing high strength through a chemical strengthening treatment by means of ion exchange.
[Solution] A glass composition of the present invention contains, in mass%, 53-62% of SiO2, 11-17% of Al2O3, 0-5% of Li2O, 10-15% of Na2O, 3-9% of K2O, 0-4% of MgO, 0-4% of CaO, 0-6% of SrO, 0-5% of BaO, 1-4% of ZrO2 and 2-6% of TiO2.
Description
本発明は、高耐熱性を有し、かつイオン交換に伴う化学強化処理により機械的強度の大きい強化層を付与することが可能なガラス組成物に関する。
The present invention relates to a glass composition having high heat resistance and capable of providing a strengthening layer having high mechanical strength by chemical strengthening treatment accompanying ion exchange.
ガラスは、高い表面平滑性や大きな表面強度などの優れた性質を持つため、タッチパネルやカラーフィルターなどのディスプレー用基板に広く使用されている。
Since glass has excellent properties such as high surface smoothness and large surface strength, it is widely used for display substrates such as touch panels and color filters.
しかし、ガラスは割れやすいという欠点がある。その対策として急冷やイオン交換による表面への圧縮応力の付与、いわゆる強化処理が行なわれてきた。強化処理のなかでも、イオン交換による化学強化処理は、他の強化処理と比較して、ガラスの板厚が薄くても強化しやすいため、ディスプレー基板材料などに対して好適な強化処理である。
However, there is a drawback that glass is easily broken. As countermeasures, so-called strengthening treatment has been performed by applying compressive stress to the surface by rapid cooling or ion exchange. Among the tempering treatments, the chemical tempering treatment by ion exchange is a tempering treatment suitable for a display substrate material and the like because it is easily tempered even if the thickness of the glass is small compared to other tempering treatments.
化学強化処理は、ガラス中の表面付近のイオン(一般的にはNa)を、よりイオン半径の大きいイオンと交換することによって、ガラス表面に圧縮応力を与えるものであり、強化のしやすさや強度は、当然ガラスの組成に影響される。
The chemical strengthening treatment gives compressive stress to the glass surface by exchanging ions (generally Na) in the vicinity of the surface of the glass with ions having a larger ion radius. Is naturally influenced by the composition of the glass.
例えば、質量%で示して、SiO2 58~65%、Al2O3 8~15%、Li2O 4~10%、Na2O 9~13%、ZrO2 0.5~2%、ZnO 2~5%、P2O5 0.5~2%、を含有した、化学強化用ガラスが開示されている(特許文献1参照)。
For example, expressed as mass%, SiO 2 58 to 65%, Al 2 O 3 8 to 15%, Li 2 O 4 to 10%, Na 2 O 9 to 13%, ZrO 2 0.5 to 2%, ZnO A glass for chemical strengthening containing 2 to 5% and P 2 O 5 0.5 to 2% is disclosed (see Patent Document 1).
また例えば、質量%で示して、SiO2 59~68%、Al2O3 9.5~15%、Li2O 0~1%、Na2O 3~18%、K2O 0~3.5%、MgO 0~15%、CaO 1~15%、SrO 0~4.5%、BaO 0~1%、ZrO2 1~10%、TiO2 0~2%、を含有した、化学強化用ガラスが開示されている(特許文献2参照)。
Also, for example, expressed as mass%, SiO 2 59 to 68%, Al 2 O 3 9.5 to 15%, Li 2 O 0 to 1%, Na 2 O 3 to 18%, K 2 O 0 to 3. 5%, MgO 0-15%, CaO 1-15%, SrO 0-4.5%, BaO 0-1%, ZrO 2 1-10%, TiO 2 0-2%, for chemical strengthening Glass is disclosed (see Patent Document 2).
化学強化ガラスは、その強化層の機械的強度の大きさでガラス表面キズへの抵抗となり、強化層の機械的強度が大きい程キズへの抵抗が大きくなる。また、強化層はイオン交換におけるイオン交換量とも相関している。
Chemically strengthened glass has resistance to scratches on the glass surface due to the mechanical strength of the strengthening layer, and the resistance to scratches increases as the mechanical strength of the strengthening layer increases. The reinforcing layer is also correlated with the amount of ion exchange in ion exchange.
当然強化のしやすさ、強化層の機械的強度の大きさはガラスの組成によって影響を受ける。例えば、特開2000-7372号公報に記載のものは、Li2O、P2O5、ZnOが必須で、多量に含むため、ガラス転移点が低く強化において反りが生じやすい。また、P2O5を含むために化学的耐久性に劣る。
Naturally, the ease of strengthening and the magnitude of the mechanical strength of the reinforcing layer are affected by the composition of the glass. For example, the one described in JP-A-2000-7372 requires Li 2 O, P 2 O 5 , and ZnO, and contains a large amount, so that the glass transition point is low, and warping is likely to occur during strengthening. Also, poor chemical durability to contain P 2 O 5.
また、特開2005-15328号公報に記載のものは、CaOが、請求範囲は広いものの、実施例では多量に含まれている。一般的に使用される硝酸カリウム液では、CaOの溶解により強化能が著しく低下することがわかっており、化学強化に向いた組成とは言い難い。
In addition, in the examples described in JP-A-2005-15328, CaO is contained in a large amount in the examples although the claim scope is wide. In the potassium nitrate solution generally used, it is known that the strengthening ability is remarkably lowered by dissolution of CaO, and it is difficult to say that the composition is suitable for chemical strengthening.
本発明は、このような従来技術を鑑み、例えばタッチパネルディスプレー用ガラスとして使用しても表面キズに強く、さらに、化学強化処理により、大きな機械的強度を付与できるガラス組成物を提供することを目的とする。
In view of such conventional technology, the present invention aims to provide a glass composition that is resistant to surface scratches even when used as, for example, glass for a touch panel display, and that can impart a high mechanical strength by chemical strengthening treatment. And
本発明は、質量%で示して、
SiO2 53~62%、
Al2O3 11~17%、
Na2O 10~15%、
K2O 3~9%、
CaO 0~4%、
MgO 0~4%、
SrO 0~6%、
BaO 0~5%、
ZrO2 1~4%、
TiO2 2~5%、の成分を含むことを特徴とする。 The present invention is expressed in mass%,
SiO 2 53-62%,
Al 2 O 3 11-17%,
Na 2 O 10-15%,
K 2 O 3-9%,
CaO 0-4%,
MgO 0-4%,
SrO 0-6%,
BaO 0-5%,
ZrO 2 1-4%,
It is characterized by containing 2 to 5% of TiO 2 .
SiO2 53~62%、
Al2O3 11~17%、
Na2O 10~15%、
K2O 3~9%、
CaO 0~4%、
MgO 0~4%、
SrO 0~6%、
BaO 0~5%、
ZrO2 1~4%、
TiO2 2~5%、の成分を含むことを特徴とする。 The present invention is expressed in mass%,
SiO 2 53-62%,
Al 2 O 3 11-17%,
Na 2 O 10-15%,
K 2 O 3-9%,
CaO 0-4%,
MgO 0-4%,
SrO 0-6%,
BaO 0-5%,
ZrO 2 1-4%,
It is characterized by containing 2 to 5% of TiO 2 .
また本発明は、ガラス歪点の0.9倍の温度の硝酸カリウム溶液の化学強化処理においてイオン交換能(化学強化処理においてガラス表面積当たりのイオン交換重量)が0.2mg/cm2以上となる上記のガラス組成物である。
In the present invention, the ion exchange capacity (ion exchange weight per glass surface area in the chemical strengthening treatment) is 0.2 mg / cm 2 or more in the chemical strengthening treatment of a potassium nitrate solution having a temperature 0.9 times the glass strain point. It is a glass composition.
また本発明は、ガラス転移点が580℃以上である上記のガラス組成物である。
Moreover, this invention is said glass composition whose glass transition point is 580 degreeC or more.
さらに本発明は、上記のガラス組成物を含むガラス物品をNaイオン半径より大きいイオン半径を有する一価の陽イオンを含む溶融塩に浸漬することにより、上記ガラス物品に含まれるNaイオンと上記一価の陽イオンとイオン交換して得た化学強化物品を提供するものである。
Further, according to the present invention, by immersing a glass article containing the above glass composition in a molten salt containing a monovalent cation having an ionic radius larger than the Na ion radius, the Na ion contained in the glass article and the above one. The present invention provides a chemically strengthened article obtained by ion exchange with a valent cation.
さらに本発明は、ガラス歪点の0.9倍の温度の硝酸カリウム溶液で化学強化処理を行い、もってイオン交換能(化学強化処理においてガラス表面積当たりのイオン交換重量)を0.2mg/cm2以上とする、上記のガラス組成物の製造方法である。
Furthermore, the present invention performs chemical strengthening treatment with a potassium nitrate solution having a temperature 0.9 times the glass strain point, and thus has an ion exchange capacity (ion exchange weight per glass surface area in the chemical strengthening treatment) of 0.2 mg / cm 2 or more. It is a manufacturing method of said glass composition.
さらに本発明は、ガラス転移点を580℃以上とする、上記のガラス組成物の製造方法である。
Furthermore, this invention is a manufacturing method of said glass composition which makes a glass transition point 580 degreeC or more.
さらに本発明は、Naイオン半径より大きいイオン半径を有する一価の陽イオンを含む溶融塩に浸漬することによりガラス物品に含まれるNaイオンと前記一価の陽イオンとをイオン交換した、上記のガラス組成物を含むガラス物品の製造方法である。
Further, in the present invention, the Na ion contained in the glass article is ion-exchanged with the monovalent cation by immersing in a molten salt containing a monovalent cation having an ion radius larger than the Na ion radius. It is a manufacturing method of the glass article containing a glass composition.
本発明のガラス組成物は、化学強化することにより機械的強度の大きな化学強化層を得ることができる。また、ガラスを高温に加熱しても熱による変形が生じ難い。
The glass composition of the present invention can be chemically strengthened to obtain a chemically strengthened layer having high mechanical strength. Further, even when the glass is heated to a high temperature, deformation due to heat hardly occurs.
本発明のガラス組成物は、質量%で示して、
SiO2 53~62%、
Al2O3 11~17%、
Na2O 10~15%、
K2O 3~9%、
CaO 0~4%、
MgO 0~4%、
SrO 0~6%、
BaO 0~5%、
ZrO2 1~4%、
TiO2 2~5%、からなることが好ましい。この好ましいガラス組成を有するガラス組成物は、化学強化処理することによって、より確実に機械的強度の大きな化学強化層を付与できる。 The glass composition of the present invention is expressed in mass%,
SiO 2 53-62%,
Al 2 O 3 11-17%,
Na 2 O 10-15%,
K 2 O 3-9%,
CaO 0-4%,
MgO 0-4%,
SrO 0-6%,
BaO 0-5%,
ZrO 2 1-4%,
It is preferably composed of 2 to 5% of TiO 2 . The glass composition having this preferred glass composition can be more reliably imparted with a chemical strengthening layer having a high mechanical strength by being chemically strengthened.
SiO2 53~62%、
Al2O3 11~17%、
Na2O 10~15%、
K2O 3~9%、
CaO 0~4%、
MgO 0~4%、
SrO 0~6%、
BaO 0~5%、
ZrO2 1~4%、
TiO2 2~5%、からなることが好ましい。この好ましいガラス組成を有するガラス組成物は、化学強化処理することによって、より確実に機械的強度の大きな化学強化層を付与できる。 The glass composition of the present invention is expressed in mass%,
SiO 2 53-62%,
Al 2 O 3 11-17%,
Na 2 O 10-15%,
K 2 O 3-9%,
CaO 0-4%,
MgO 0-4%,
SrO 0-6%,
BaO 0-5%,
ZrO 2 1-4%,
It is preferably composed of 2 to 5% of TiO 2 . The glass composition having this preferred glass composition can be more reliably imparted with a chemical strengthening layer having a high mechanical strength by being chemically strengthened.
本ガラス組成物、ガラス転移点が少なくとも580℃であることが好ましい。このガラス組成物は、例えば、化学強化するときの溶融塩中の加熱など高温の熱処理を受けても、ガラスの変形が生じにくい。
The glass composition preferably has a glass transition point of at least 580 ° C. Even if this glass composition is subjected to a high-temperature heat treatment such as heating in a molten salt during chemical strengthening, for example, the glass is not easily deformed.
本発明の化学強化ガラス物品によれば、ガラス物品の表面に大きな強化層が形成されるので、機械的強度が増し、外部から衝撃が加えられたときに、ガラスの破壊を防止することができる。
According to the chemically strengthened glass article of the present invention, since a large reinforcing layer is formed on the surface of the glass article, the mechanical strength is increased and the glass can be prevented from being broken when an impact is applied from the outside. .
さらにまた、本発明の化学強化ガラス物品は、ガラス物品の表面により機械的強度の大きな強化層が形成されるため外部からのこすれや、引っかきによるキズによる強度低下が少なく表面キズに強い。
Furthermore, the chemically tempered glass article of the present invention is strong against surface scratches because it has a strengthened layer having a large mechanical strength formed on the surface of the glass article, so that there is little deterioration in strength due to scratching from the outside or scratches due to scratches.
以下、本発明のガラス組成物について、組成の限定理由を説明する。なお、以下の記述において、組成を示す%表示は全て質量%である。
Hereinafter, the reasons for limiting the composition of the glass composition of the present invention will be described. In the following description, all percentages indicating the composition are mass%.
SiO2は、ガラスを形成する成分で、質量%で53~62%含有することが好ましい。SiO2が53%より少ないと、化学的耐久性が悪く。62%より多いと、ガラスの溶融温度が高くなり均質なガラスを得難くなるため不適である。
SiO 2 is a component that forms glass, and is preferably contained in an amount of 53 to 62% by mass. If the SiO 2 content is less than 53%, the chemical durability is poor. If it exceeds 62%, the melting temperature of the glass becomes high and it becomes difficult to obtain a homogeneous glass.
Al2O3は、SiO2と同様にガラスの主成分であるとともに、イオン交換速度を速め、ガラスの耐水性を向上させる成分であり、質量%で11~17%含有することが好ましい。Al2O3が11%より少ないと、その効果は出しにくくなる。一方、17%より多いと、ガラス融液の粘度が高くなり均質なガラスを得難くなるため不適である。さらに望ましくは11~15%である。
Like SiO 2 , Al 2 O 3 is a component that increases the ion exchange rate and improves the water resistance of the glass, and is preferably contained in an amount of 11 to 17% by mass. If Al 2 O 3 is less than 11%, it is difficult to obtain the effect. On the other hand, if it exceeds 17%, the viscosity of the glass melt becomes high and it becomes difficult to obtain a homogeneous glass, which is not suitable. More preferably, it is 11 to 15%.
Li2Oは、溶融塩中でLiイオンがNaイオン、Kイオンなどの他の陽イオンとイオン交換されることによりガラスの強度を向上させる成分である。しかし、その含有率が多いとガラスの耐熱性を損ねるという欠点をもつ。したがって、Li2Oの含有率は5%以下が望ましい。
Li 2 O is a component that improves the strength of the glass by exchanging Li ions with other cations such as Na ions and K ions in the molten salt. However, when the content is large, there is a drawback that the heat resistance of the glass is impaired. Therefore, the content of Li 2 O is desirably 5% or less.
Na2Oは、溶融塩中でNaイオンがKイオンなど他の陽イオンとイオン交換されることによりガラスの強度を向上させる成分であるとともに溶融性を高める成分である。10%以下では、その効果が十分でなく、溶融性も悪い。一方、15%を越えると化学的耐久性が悪化する。
Na 2 O is a component that improves the strength of the glass as well as improving the strength of the glass by ion exchange of Na ions with other cations such as K ions in the molten salt. If it is 10% or less, the effect is not sufficient and the meltability is poor. On the other hand, if it exceeds 15%, chemical durability deteriorates.
K2Oは、Na2Oと同様にガラスの溶解性を向上させる成分であり、そのために3%以上が好ましい。しかし、通常、化学強化は硝酸カリウム溶融塩が用いられているためK2Oの含有量が9%を越えると、十分なイオン交換が起こらない。したがって9%以下が好ましい。
K 2 O is a component that improves the solubility of glass in the same manner as Na 2 O, and for that reason, 3% or more is preferable. However, since chemical strengthening normally uses potassium nitrate molten salt, if the content of K 2 O exceeds 9%, sufficient ion exchange does not occur. Therefore, 9% or less is preferable.
MgOは、ガラスの粘性を下げて溶解性を向上させる成分であるが、ガラスの失透温度を上昇させるため、質量%で0~4%含有することが好ましい。
MgO is a component that lowers the viscosity of the glass and improves the solubility, but is preferably contained in an amount of 0 to 4% by mass in order to increase the devitrification temperature of the glass.
CaOもMgOと同様に、ガラスの粘性を下げて溶解性を向上させる成分であるが、ガラスの失透温度を上昇させるそのため、質量%で0~5%含有することが好ましい。
CaO, like MgO, is a component that lowers the viscosity of the glass and improves the solubility, but it increases the devitrification temperature of the glass. Therefore, it is preferable to contain 0 to 5% by mass.
SrOもMgO、CaOと同様に、ガラスの粘性を下げて溶解性を向上させる成分であるが、SrOはガラス中のアルカリ成分の移動を妨げるため、質量%で0~6%含有することが好ましい。
SrO, like MgO and CaO, is a component that lowers the viscosity of the glass and improves the solubility. However, SrO is preferably contained in an amount of 0 to 6% by mass in order to prevent the movement of alkali components in the glass. .
BaOもMgO、CaOと同様に、ガラスの粘性を下げて溶解性を向上させる成分であるが、BaOはガラス中のアルカリ成分の移動を妨げるため、質量%で5%以下が好ましい。
BaO, like MgO and CaO, is a component that lowers the viscosity of the glass and improves the solubility. However, since BaO hinders the movement of the alkali component in the glass, it is preferably 5% or less by mass.
ZrO2は、イオン交換速度を速めガラスの耐水性も向上させる成分であり、1%以下では、その効果が十分ではなく、4%を越えると溶融温度が高くなることから1~4%の含有が好ましい。
ZrO 2 is a component that increases the ion exchange rate and improves the water resistance of the glass. If it is 1% or less, its effect is not sufficient, and if it exceeds 4%, the melting temperature becomes high, so it is contained in 1 to 4%. Is preferred.
TiO2は、ガラスの粘性を下げて溶解性を向上させる成分であるが、アルカリ成分ほど化学的耐久性を悪くしないので2%以上は必須であり、TiO2の含有量が5%を越えると失透温度が上昇して成形性を妨げるため、質量%で2~5%が好ましい。より好ましくは4~5%である。
TiO 2 is a component that lowers the viscosity of the glass and improves the solubility, but it does not deteriorate the chemical durability as much as the alkali component, so 2% or more is essential, and if the content of TiO 2 exceeds 5% Since the devitrification temperature rises and the moldability is hindered, 2 to 5% by mass is preferable. More preferably, it is 4 to 5%.
また、必要に応じて清澄剤としてAs2O3、Sb2O3、SnO2を合計で質量%で1%まで含有してもよい。
It may also contain up to 1% in mass% in total of As 2 O 3, Sb 2 O 3, SnO 2 as a fining agent, if necessary.
以下、実施例に基づき、説明する。本発明のガラス組成物の実施例を1~11に示したガラス組成を有するガラスを溶融実験により作製し、得られたガラスの溶融温度、作業温度、熱膨張係数、ガラス転移点(℃)、歪点、失透温度(℃)、イオン交換能(mg/cm2)の測定結果を表1に示す。また、比較例を表2に示した。
失透温度欄の「ND」は、失透が見られなかったことを表す。
Hereinafter, a description will be given based on examples. Examples of the glass composition of the present invention were produced by melting experiments with the glass compositions shown in Examples 1 to 11, and the melting temperature, working temperature, thermal expansion coefficient, glass transition point (° C.) of the obtained glass, Table 1 shows the measurement results of strain point, devitrification temperature (° C.), and ion exchange capacity (mg / cm 2 ). Comparative examples are shown in Table 2.
“ND” in the devitrification temperature column indicates that no devitrification was observed.
失透温度欄の「ND」は、失透が見られなかったことを表す。
“ND” in the devitrification temperature column indicates that no devitrification was observed.
実施例1~10および比較例1~4のガラス作製および得られたガラスの物性は、以下の手順にしたがって実施した。
The glass production of Examples 1 to 10 and Comparative Examples 1 to 4 and the physical properties of the obtained glasses were performed according to the following procedure.
(ガラスの作製)
表1、または表2に示すガラス組成となるように、通常のガラス原料であるシリカ、アルミナ、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酸化チタニウム、珪酸ジルコニウムを用いてガラス原料(バッチ)を調合した。調合したバッチを混合した後、白金ルツボに投入し、電気炉内において1600℃で3時間加熱保持後白金棒で2度撹拌した。再度2時間加熱保持したのち1500℃でカーボン板上に流しだし、ただちに650℃の徐冷炉へ投入し550℃まで4時間で降温後炉内放冷し、ガラスブロックとした。 (Production of glass)
Conventional glass materials such as silica, alumina, lithium carbonate, sodium carbonate, potassium carbonate, magnesium oxide, calcium carbonate, strontium carbonate, barium carbonate, titanium oxide, silicic acid so as to have the glass composition shown in Table 1 or Table 2 Glass raw material (batch) was prepared using zirconium. After mixing the prepared batch, the mixture was put into a platinum crucible, heated in an electric furnace at 1600 ° C. for 3 hours, and then stirred twice with a platinum rod. After heating and holding again for 2 hours, it was poured onto a carbon plate at 1500 ° C., immediately put into a 650 ° C. slow cooling furnace, cooled to 550 ° C. in 4 hours, and then allowed to cool in the furnace to obtain a glass block.
表1、または表2に示すガラス組成となるように、通常のガラス原料であるシリカ、アルミナ、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酸化チタニウム、珪酸ジルコニウムを用いてガラス原料(バッチ)を調合した。調合したバッチを混合した後、白金ルツボに投入し、電気炉内において1600℃で3時間加熱保持後白金棒で2度撹拌した。再度2時間加熱保持したのち1500℃でカーボン板上に流しだし、ただちに650℃の徐冷炉へ投入し550℃まで4時間で降温後炉内放冷し、ガラスブロックとした。 (Production of glass)
Conventional glass materials such as silica, alumina, lithium carbonate, sodium carbonate, potassium carbonate, magnesium oxide, calcium carbonate, strontium carbonate, barium carbonate, titanium oxide, silicic acid so as to have the glass composition shown in Table 1 or Table 2 Glass raw material (batch) was prepared using zirconium. After mixing the prepared batch, the mixture was put into a platinum crucible, heated in an electric furnace at 1600 ° C. for 3 hours, and then stirred twice with a platinum rod. After heating and holding again for 2 hours, it was poured onto a carbon plate at 1500 ° C., immediately put into a 650 ° C. slow cooling furnace, cooled to 550 ° C. in 4 hours, and then allowed to cool in the furnace to obtain a glass block.
(物性測定)
試料ガラスをΦ5mm、長さ20mmの円柱状に加工し、示差熱膨張計(株式会社RIGAKU製サーモプラス、TMA8310)を用いて、JIS R3102、3103に準拠して30℃~300℃の熱膨張係数およびガラス転移点を測定した。 (Physical property measurement)
Sample glass is processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, and a thermal expansion coefficient of 30 ° C. to 300 ° C. according to JIS R3102, 3103 using a differential thermal dilatometer (Thermoplus manufactured by RIGAKU Corporation, TMA8310). And the glass transition point was measured.
試料ガラスをΦ5mm、長さ20mmの円柱状に加工し、示差熱膨張計(株式会社RIGAKU製サーモプラス、TMA8310)を用いて、JIS R3102、3103に準拠して30℃~300℃の熱膨張係数およびガラス転移点を測定した。 (Physical property measurement)
Sample glass is processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm, and a thermal expansion coefficient of 30 ° C. to 300 ° C. according to JIS R3102, 3103 using a differential thermal dilatometer (Thermoplus manufactured by RIGAKU Corporation, TMA8310). And the glass transition point was measured.
高温粘度のlogη=2と4はオプト製球引き上げ粘度計BVB-13LHを用いて測定した。
The high temperature viscosity log η = 2 and 4 were measured using an Opto ball pulling viscometer BVB-13LH.
ビームベンディング式粘度計BBVM-900(オプト社製)を用いて撓み速度を測定して歪点を求めた。(JIS R3103-2に準拠)
温度傾斜炉(英興製)を用いて所定の温度で2時間保持後、偏光顕微鏡ECLIPSE E600 POL(Nikon製)を用いて結晶の有無を確認し失透温度を測定した。 The bending point was measured by using a beam bending viscometer BBVM-900 (manufactured by Opto) to determine the strain point. (Conforms to JIS R3103-2)
After holding at a predetermined temperature for 2 hours using a temperature gradient furnace (manufactured by Eiko), the presence or absence of crystals was confirmed using a polarizing microscope ECLIPSE E600 POL (manufactured by Nikon), and the devitrification temperature was measured.
温度傾斜炉(英興製)を用いて所定の温度で2時間保持後、偏光顕微鏡ECLIPSE E600 POL(Nikon製)を用いて結晶の有無を確認し失透温度を測定した。 The bending point was measured by using a beam bending viscometer BBVM-900 (manufactured by Opto) to determine the strain point. (Conforms to JIS R3103-2)
After holding at a predetermined temperature for 2 hours using a temperature gradient furnace (manufactured by Eiko), the presence or absence of crystals was confirmed using a polarizing microscope ECLIPSE E600 POL (manufactured by Nikon), and the devitrification temperature was measured.
イオン交換能は、Na+がK+に交換したことによるガラス表面積当たりの増加重量をイオン交換能とした。増加量が多い方が、イオン交換能が高いことになる。
The ion exchange capacity was defined as the increased weight per glass surface area due to the exchange of Na + for K + . The larger the amount of increase, the higher the ion exchange capacity.
ガラスを約40×40×3mmに光学研磨し、歪点の0.9倍の温度の硝酸カリウム中で4時間イオン交換処理して、処理前後の重量(0.1mg単位)と寸法を測定し、表面積当たりの増加重量を算出した。
The glass is optically polished to about 40 × 40 × 3 mm, ion-exchanged in potassium nitrate at a temperature 0.9 times the strain point for 4 hours, and the weight (0.1 mg unit) and dimensions before and after the treatment are measured. The increased weight per surface area was calculated.
表1および表2に示すように、本発明における実施例1~10のガラス転移点は580℃以上で耐熱性がある。また、イオン交換能も0.2mg/cm2以上とイオン交換し易いガラスであり、イオン交換量が多いとそのガラス表面からの内部へのイオン交換層も深くなり表面のキズに強いガラスといえる。
As shown in Tables 1 and 2, the glass transition points of Examples 1 to 10 in the present invention are heat resistant at 580 ° C. or higher. In addition, the ion exchange capacity is 0.2 mg / cm 2 or more, which makes it easy to exchange ions. If the amount of ion exchange is large, the ion exchange layer from the glass surface to the inside becomes deep and it can be said that the glass is resistant to scratches on the surface. .
これに対し、比較例1は、一般的なフロートガラスであるが、そのイオン交換能は0.06mg/cm2と低くキズに弱いガラスといえる。
また、比較例2は、特開2000-7372号公報の実施例4のガラスであるが、ガラス転移点が450℃と低く耐熱性が低い。
また、比較例3は、特開2005-15328号公報の実施例5のガラスであるが、イオン交換能が0.17mg/cm2と少ない。 On the other hand, Comparative Example 1 is a general float glass, but its ion exchange capacity is as low as 0.06 mg / cm 2 and can be said to be a glass that is vulnerable to scratches.
Comparative Example 2 is the glass of Example 4 of JP-A No. 2000-7372, but has a low glass transition point of 450 ° C. and low heat resistance.
Comparative Example 3 is the glass of Example 5 of JP-A-2005-15328, but has a low ion exchange capacity of 0.17 mg / cm 2 .
また、比較例2は、特開2000-7372号公報の実施例4のガラスであるが、ガラス転移点が450℃と低く耐熱性が低い。
また、比較例3は、特開2005-15328号公報の実施例5のガラスであるが、イオン交換能が0.17mg/cm2と少ない。 On the other hand, Comparative Example 1 is a general float glass, but its ion exchange capacity is as low as 0.06 mg / cm 2 and can be said to be a glass that is vulnerable to scratches.
Comparative Example 2 is the glass of Example 4 of JP-A No. 2000-7372, but has a low glass transition point of 450 ° C. and low heat resistance.
Comparative Example 3 is the glass of Example 5 of JP-A-2005-15328, but has a low ion exchange capacity of 0.17 mg / cm 2 .
比較例4は、BaOが8.9%と多くイオン交換能が0.17mg/cm2と少ない。
Comparative Example 4 has a high BaO content of 8.9% and a low ion exchange capacity of 0.17 mg / cm 2 .
本発明は、例えばタッチパネル等のディスプレー基板で、キズなどの外的表面キズに強く、さらに、化学強化処理により、大きな機械的強度を付与できるガラス組成物を提供するものである。
The present invention provides a glass composition that is resistant to external surface scratches such as scratches on a display substrate such as a touch panel, and can be imparted with high mechanical strength by chemical strengthening treatment.
Claims (7)
- 質量%で示して、
SiO2 53~62%、
Al2O3 11~17%、
Na2O 10~15%、
K2O 3~9%、
CaO 0~4%、
MgO 0~4%、
SrO 0~6%、
BaO 0~5%、
ZrO2 1~4%、
TiO2 2~5%、を含むガラス組成物。 Indicated by mass%
SiO 2 53-62%,
Al 2 O 3 11-17%,
Na 2 O 10-15%,
K 2 O 3-9%,
CaO 0-4%,
MgO 0-4%,
SrO 0-6%,
BaO 0-5%,
ZrO 2 1-4%,
A glass composition containing 2 to 5% of TiO 2 . - ガラス歪点の0.9倍の温度の硝酸カリウム溶液の化学強化処理においてイオン交換能(化学強化処理においてガラス表面積当たりのイオン交換重量)が0.2mg/cm2以上となる請求項1に記載のガラス組成物。 2. The ion exchange capacity (ion exchange weight per glass surface area in the chemical strengthening treatment) is 0.2 mg / cm 2 or more in the chemical strengthening treatment of a potassium nitrate solution having a temperature 0.9 times the glass strain point. Glass composition.
- ガラス転移点が580℃以上の請求項1または2に記載のガラス組成物。 The glass composition according to claim 1 or 2, having a glass transition point of 580 ° C or higher.
- 請求項1~3のいずれか1項に記載のガラス組成物を含むガラス物品をNaイオン半径より大きいイオン半径を有する一価の陽イオンを含む溶融塩に浸漬することにより、前記ガラス物品に含まれるNaイオンと前記一価の陽イオンとをイオン交換した化学強化ガラス物品。 A glass article comprising the glass composition according to any one of claims 1 to 3 is contained in the glass article by immersing it in a molten salt containing a monovalent cation having an ionic radius larger than the Na ion radius. Chemically tempered glass article obtained by ion-exchange of Na ions and the monovalent cations.
- ガラス歪点の0.9倍の温度の硝酸カリウム溶液で化学強化処理を行い、もってイオン交換能(化学強化処理においてガラス表面積当たりのイオン交換重量)を0.2mg/cm2以上とする、請求項1に記載のガラス組成物の製造方法。 The chemical strengthening treatment is performed with a potassium nitrate solution having a temperature of 0.9 times the glass strain point, so that the ion exchange capacity (ion exchange weight per glass surface area in the chemical strengthening treatment) is 0.2 mg / cm 2 or more. The manufacturing method of the glass composition of 1.
- ガラス転移点を580℃以上とする、請求項1または2に記載のガラス組成物の製造方法。 The manufacturing method of the glass composition of Claim 1 or 2 which makes a glass transition point 580 degreeC or more.
- Naイオン半径より大きいイオン半径を有する一価の陽イオンを含む溶融塩に浸漬することによりガラス物品に含まれるNaイオンと前記一価の陽イオンとをイオン交換した、請求項1~3のいずれか1項に記載のガラス組成物を含むガラス物品の製造方法。 4. The ion exchange between Na ions contained in a glass article and the monovalent cations by immersing in a molten salt containing monovalent cations having an ion radius larger than the Na ion radius. A method for producing a glass article comprising the glass composition according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010258916A JP2012106897A (en) | 2010-11-19 | 2010-11-19 | Glass composition for chemical strengthening |
JP2010-258916 | 2010-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012066989A1 true WO2012066989A1 (en) | 2012-05-24 |
Family
ID=46083923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075776 WO2012066989A1 (en) | 2010-11-19 | 2011-11-09 | Glass composition for chemical strengthening |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2012106897A (en) |
TW (1) | TW201228974A (en) |
WO (1) | WO2012066989A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103990445A (en) * | 2014-05-14 | 2014-08-20 | 湖北智展光学科技有限公司 | Ion exchange catalyst for toughening of novel ultrathin integrated touch screen and application method thereof |
CN106746741A (en) * | 2014-12-23 | 2017-05-31 | 中国南玻集团股份有限公司 | Alumina silicate glass, the intensifying method of alumina silicate glass and strengthened glass |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9796191B2 (en) * | 2015-03-20 | 2017-10-24 | Corning Incorporated | Method of inkjet printing decorations on substrates |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008195602A (en) * | 2007-01-16 | 2008-08-28 | Nippon Electric Glass Co Ltd | Method for manufacturing tempered glass substrate and tempered glass substrate |
JP2010116276A (en) * | 2008-11-11 | 2010-05-27 | Nippon Electric Glass Co Ltd | Tempered glass substrate and producing method of the same |
-
2010
- 2010-11-19 JP JP2010258916A patent/JP2012106897A/en active Pending
-
2011
- 2011-11-09 WO PCT/JP2011/075776 patent/WO2012066989A1/en active Application Filing
- 2011-11-18 TW TW100142418A patent/TW201228974A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008195602A (en) * | 2007-01-16 | 2008-08-28 | Nippon Electric Glass Co Ltd | Method for manufacturing tempered glass substrate and tempered glass substrate |
JP2010116276A (en) * | 2008-11-11 | 2010-05-27 | Nippon Electric Glass Co Ltd | Tempered glass substrate and producing method of the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103990445A (en) * | 2014-05-14 | 2014-08-20 | 湖北智展光学科技有限公司 | Ion exchange catalyst for toughening of novel ultrathin integrated touch screen and application method thereof |
CN106746741A (en) * | 2014-12-23 | 2017-05-31 | 中国南玻集团股份有限公司 | Alumina silicate glass, the intensifying method of alumina silicate glass and strengthened glass |
Also Published As
Publication number | Publication date |
---|---|
TW201228974A (en) | 2012-07-16 |
JP2012106897A (en) | 2012-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7184073B2 (en) | glass for chemical strengthening | |
JP5977841B2 (en) | Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display | |
JP5957097B2 (en) | Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display | |
US9764980B2 (en) | Glass composition, glass composition for chemical strengthening, strengthened glass article, and cover glass for display | |
JP6542758B2 (en) | Glass composition, glass plate for chemical strengthening, tempered glass plate and tempered glass substrate for display | |
JP6130503B2 (en) | Ion-exchangeable Li-containing glass composition for 3D molding | |
JP5767253B2 (en) | Lithium aluminosilicate glass having high elastic modulus and method for producing the same | |
JP7431872B2 (en) | Thin glass with improved bendability and chemical strengthening | |
TW201726575A (en) | Chemically strengthened glass, and glass for chemical strengthening | |
TW201742841A (en) | Glass compositions that retain high compressive stress after post-ion exchange heat treatment | |
US20160355430A1 (en) | Glass for chemical strengthening, chemically-strengthened glass, and method for producing chemically-strengthened glass | |
JP2013193887A (en) | Glass composition, glass composition for chemical strengthening, strengtheneded glass product, cover glass for display and method for producing strengthened glass product | |
JP7248020B2 (en) | glass for chemical strengthening | |
WO2020246274A1 (en) | Glass, chemically tempered glass, and method for producing same | |
WO2009081906A1 (en) | Glass composition | |
WO2012066989A1 (en) | Glass composition for chemical strengthening | |
JP2017078011A (en) | Glass plate for chemical strengthening and manufacturing method of glass plate for chemical strengthening | |
JP2017114718A (en) | Glass sheet for chemical reinforcement and manufacturing method of glass sheet for chemical reinforcement | |
WO2023286668A1 (en) | Glass plate for tempering, and tempered glass plate | |
WO2023243574A1 (en) | Glass for chemical strengthening, and glass | |
WO2017068857A1 (en) | Glass sheet for chemical reinforcement and method for producing chemically reinforced glass sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11840837 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11840837 Country of ref document: EP Kind code of ref document: A1 |