WO2012060067A1 - 無線通信端末装置及び電力割当方法 - Google Patents

無線通信端末装置及び電力割当方法 Download PDF

Info

Publication number
WO2012060067A1
WO2012060067A1 PCT/JP2011/005906 JP2011005906W WO2012060067A1 WO 2012060067 A1 WO2012060067 A1 WO 2012060067A1 JP 2011005906 W JP2011005906 W JP 2011005906W WO 2012060067 A1 WO2012060067 A1 WO 2012060067A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
srs
transmission power
transmission
power scaling
Prior art date
Application number
PCT/JP2011/005906
Other languages
English (en)
French (fr)
Inventor
辰輔 高岡
鈴木 秀俊
西尾 昭彦
岩井 敬
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012541727A priority Critical patent/JP5898087B2/ja
Priority to US13/883,100 priority patent/US9661588B2/en
Publication of WO2012060067A1 publication Critical patent/WO2012060067A1/ja
Priority to US15/492,827 priority patent/US9894622B2/en
Priority to US15/860,381 priority patent/US10051583B2/en
Priority to US16/019,336 priority patent/US10313988B2/en
Priority to US16/384,505 priority patent/US10560906B2/en
Priority to US16/723,123 priority patent/US11356960B2/en
Priority to US17/737,803 priority patent/US11683765B2/en
Priority to US18/313,986 priority patent/US12035254B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading

Definitions

  • the present invention relates to a radio communication terminal apparatus and a power allocation method.
  • LTE-advanced (hereinafter abbreviated as “LTE-A”) is being studied.
  • LTE-A introduction of a band expansion technique called carrier aggregation (CA) is being studied.
  • CA carrier aggregation
  • CC Component Carrier
  • DL Downlink
  • UL uplink
  • LTE-A studies are made with a view to introducing five CCs, that is, band expansion up to 100 MHz.
  • a transmission power is controlled for each CC (CC-specific).
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • UCI is an abbreviation of Uplink Control Information, and specifically includes the following control information.
  • ACK / NACK Acknowledgment / NonknowAcknowledgment
  • RI Rank Indicator
  • CQI Choannel Quality Information
  • PMI Pre-coding Matrix Indicator
  • CSI Channel State Information
  • PUSCH with UCI indicates a PUSCH that multiplexes UCI
  • PUSCH without UCI indicates a PUSCH that does not multiplex UCI. Therefore, if power scaling occurs during simultaneous transmission of multiple UL channels, the first is the PUCCH transmission power, the second is the PUSCH transmission power that multiplexes UCI, and the third is the PUSCH transmission power that does not multiplex UCI. Assign transmit power in order. This rule applies regardless of whether each of these channels is in the same CC or in a different CC.
  • Non-Patent Document 1 describes the priority when power scaling occurs as shown below. PUCCH>SRS> PUSCH
  • Non-Patent Document 2 Priority between periodic SRS and aperiodic SRS. That is, Non-Patent Document 2 describes the priority when power scaling occurs as shown below.
  • Non-Patent Document 1 describes a power allocation priority rule in a case where a plurality of periodic SRSs are transmitted simultaneously between a plurality of CCs. Specifically, as shown in FIG. 1, a method for determining the priority of the transmission power of the periodic SRS according to the UL ⁇ ⁇ CC ⁇ ID number is disclosed.
  • FIG. 1 shows a conceptual diagram in which large transmission power is allocated in descending order of UL CC ID numbers when power scaling occurs when transmitting periodic SRS with three CCs simultaneously. Thereby, even when power scaling occurs during periodic SRS simultaneous transmission with a plurality of CCs, the terminal can appropriately determine the transmission power of the periodic SRS of each CC according to this rule.
  • Non-Patent Document 1 has the following problems. That is, when simultaneously transmitting a plurality of periodic SRSs using a plurality of CCs, the influence of a CC selection method for multiplexing important UCIs to which retransmission is not applied is not considered in the power allocation priority when power scaling occurs. Since UCI needs to be notified from the terminal to the eNB with low delay, only transmission in one transmission is supported.
  • a CC with a low power allocation priority set based on the technology disclosed in Non-Patent Document 1 corresponds to a CC that multiplexes UCI.
  • the communication quality for example, SINR: Signal-to-Interference plus Noise power Ratio
  • SINR Signal-to-Interference plus Noise power Ratio
  • MCS Modulation & channel? Coding? Scheme
  • the power scaling is transmission power control information related to UE-specific PA (Power Amplifier) that cannot be known by the eNB, for example, a parameter (MPR: which determines the maximum transmission power for each UE or each CC of the UE. E.g. Maximum Power Reduction), the eNB basically does not know the occurrence of power scaling.
  • MPR Maximum Power Reduction
  • the UE since the maximum transmission power specific to the UE has been exceeded during simultaneous transmission of multiple SRSs in multiple CCs, the UE is changed to an SRS of a CC with a small UL CC ID number based on the technology disclosed in Non-Patent Document 1 above.
  • the eNB measures the communication quality of the corresponding CC using the received SRS whose reception level is reduced.
  • the reason for reducing the reception level of the SRS is not the occurrence of power scaling at the terminal but the time.
  • the object of the present invention is to accurately estimate Pcell propagation channel quality information with a high probability of UCI multiplexing by SRS having a high power allocation priority, and the eNB is suitable for the UL channel transmitting the subsequent UCI.
  • the wireless communication terminal apparatus of the present invention uses the transmission power calculation means for calculating transmission power of a plurality of uplink channels of a plurality of component carriers constituting a carrier aggregation, and the plurality of components using the calculated transmission power.
  • Power scaling detection means that detects whether the total transmission power of the uplink channel transmitted on the carrier exceeds the maximum transmission power specific to its own device and power scaling occurs, and is detected when power scaling occurs
  • a power scaling control means for allocating transmission power in preference to the primary cell reference signal over the secondary cell reference signal when transmitting a plurality of reference signals using the primary cell and the secondary cell.
  • the power allocation method of the present invention includes a transmission power calculation step of calculating transmission power of a plurality of uplink channels of a plurality of component carriers constituting a carrier aggregation, and using the calculated transmission power, the plurality of component carriers
  • a power scaling detection step for detecting whether or not power scaling occurs when the total value of the transmission power of uplink channels transmitted in exceeds the maximum transmission power specific to the own device, and is detected when power scaling occurs,
  • a power scaling control step of allocating transmission power by giving priority to the reference signal of the primary cell over the reference signal of the secondary cell did.
  • Pcell propagation channel quality information with a high probability of UCI multiplexing can be estimated with high accuracy by SRS having a high power allocation priority, and the eNB is suitable for the UL channel transmitting the subsequent UCI.
  • the transmission power can be indicated.
  • FIG. 1 is a block diagram showing a configuration of a radio communication terminal apparatus according to Embodiments 1 and 2 of the present invention
  • the figure which shows the outline of power scaling method 1 The figure which shows the outline of power scaling method 2
  • summary of the power scaling method 5 The figure which shows the outline
  • summary of the power scaling method 12 The figure which shows the structure which multiplexes PUCCH and periodic SRS within 1 sub-frame.
  • summary of the power scaling method 13 1 is a block diagram showing a configuration of a wireless communication terminal apparatus according to Embodiment 1 of the present invention.
  • summary of the power scaling method 14 The figure which shows the outline
  • the present inventor came to make the present invention by paying attention to the following points. That is, in LTE-A, when PUSCH is scheduled (transmitted with transmission allocation (UL grant)) in Pcell (Primary Cell) or PCC (Primary Component Carrier), the PUSCH of Pcell (PCC) Multiplexing UCI is used as a method for selecting a CC (PUSCH) for multiplexing UCI. Moreover, CC which transmits PUCCH (multiplexes only UCI) is limited only to Pcell (PCC). Therefore, when compared with Scell (Secondary cell) or SCC (Secondary Component Carrier), there is a higher probability that a highly important UCI to which retransmission is not applied in Pcell (PCC) is transmitted.
  • PUCCH When operating the system, when there is little traffic, generally only Pcell is used preferentially (by selecting Pcell as a cell that is easy to communicate over a long period of time), the system bandwidth (entire CC) Improve usage efficiency in When Pcell is used, PUCCH is changed to LTE Rel. 8 is backward compatible, enabling efficient transmission on PUCCH where only UCI is transmitted (LTE-A will be released as Rel. 10) .
  • Pcell (PCC) and Scell (SCC) are configured (configured) by the eNB to be UE-specific (UE-specific), and eNB-to-terminal (for example, upper layer signaling with a very low transmission error probability)
  • Pcell (PCC) and Scell (SCC) can be recognized in advance between the eNB and each UE.
  • FIG. 2 is a block diagram showing a configuration of radio communication terminal apparatus (hereinafter referred to as “terminal”) 100 according to Embodiment 1 of the present invention.
  • terminal radio communication terminal apparatus
  • the radio reception processing unit 102 receives the OFDM signal transmitted from the base station (eNB) from the antenna 101, performs predetermined RF processing such as down-conversion and A / D conversion on the received OFDM signal, and performs the OFDM demodulation unit 103. Output to.
  • predetermined RF processing such as down-conversion and A / D conversion
  • the OFDM demodulator 103 removes the guard interval (GI) of the OFDM signal output from the radio reception processor 102, and performs a discrete Fourier transform (DFT: Discrete Fourier Transform) on the OFDM signal from which the GI has been removed. Convert to region signal. Next, the OFDM demodulator 103 performs frequency domain equalization (FDE) on each component in the frequency domain, removes the distortion of the signal, and outputs the result to the demodulator 104.
  • GI guard interval
  • DFT Discrete Fourier Transform
  • Demodulation section 104 performs predetermined demodulation processing on the modulation scheme such as QPSK, 16QAM (Quadrature Amplitude Modulation), etc., on the signal output from OFDM demodulation section 103 and outputs the result to channel decoding section 105.
  • modulation scheme such as QPSK, 16QAM (Quadrature Amplitude Modulation), etc.
  • Channel decoding section 105 subjects the signal output from demodulation section 104 to decoding processing (iterative MAP decoding, Viterbi decoding) for error correction coding such as turbo coding and convolutional coding, and outputs the result to control information extraction section 106 To do.
  • decoding processing iterative MAP decoding, Viterbi decoding
  • error correction coding such as turbo coding and convolutional coding
  • the control information extraction unit 106 determines UL grant (UL grant) information (allocated bandwidth, MCS set, transmission power information such as PUSCH, SRS, PUCCH, etc. (TPC command, MCS, etc.) from the signal output from the channel decoding unit 105. Transmission format existing value ⁇ TF etc., SRS offset value P SRS_offset ), aperiodic SRS trigger information, etc.), DL grant information (transmission power information such as PUCCH, aperiodic SRS trigger information, etc.), UCI request Control information such as (trigger) information, CC / cell information such as Pcell / Scell, PCC / SCC, and the like is extracted and output to the transmission power calculation unit 107.
  • UL grant UL grant
  • MCS transmission power information
  • TPC command, MCS, etc. Transmission format existing value ⁇ TF etc., SRS offset value P SRS_offset ), aperiodic SRS trigger information, etc.
  • DL grant information transmission power information
  • the transmission power calculation unit 107 control information output from the control information extraction unit 106, CC individual (each UL channel) maximum transmission power (PA power class, MPR, etc.), path loss (estimated value) information, transmission in the upper layer
  • the transmission power of a plurality of UL channels (for each CC) is calculated using power-related notification information (path loss compensation coefficient, P_o (target reception level value), etc.).
  • P_o target reception level value
  • PUSCH, PUCCH, and SRS transmission power calculation formulas described in Non-Patent Document 3 are used.
  • the transmission power calculation unit 107 outputs transmission power values of a plurality of UL channels (per CC) to the power scaling detection unit 108 and the power scaling control unit 109.
  • the power scaling detection unit 108 calculates the total transmission power of a plurality of CCs (all UL channels) from the transmission power values of the plurality of UL channels output from the transmission power calculation unit 107, and the calculated total transmission power and the input UE Comparison is made with the specific maximum transmission power (Pcmax). If the total transmission power is smaller than the maximum transmission power unique to the UE, control information “no need for power scaling” is output to the power scaling control section 109. Conversely, if the total transmission power is greater than the maximum transmission power specific to the UE, control information “necessity of power scaling” is output to the power scaling control unit 109.
  • each UL channel SRS , PUSCH, PUCCH, etc.
  • the transmission power is scaled to determine the transmission power for each of the multiple UL channels (CC).
  • the transmission power information after power scaling is output to transmission power setting sections 112-1 to 112-N. The details of the SRS power scaling method will be described later.
  • the encoding / modulation units 110-1 to 110-N perform predetermined error correction coding such as turbo coding and predetermined values such as QPSK and 16QAM on the input transport block (TB) for each CC. Modulation processing is performed and output to multiplexing sections 111-1 to 111-N.
  • Multiplexers 111-1 to 111-N receive the input periodic SRS (when triggered by upper layer control information) or aperiodic SRS (when triggered by PDCCH of the physical layer control channel).
  • the signal is multiplexed on the modulation symbol sequence and output to transmission power setting sections 112-1 to 112-N.
  • LTE LTE-A
  • SRS is multiplexed only in the last symbol of one subframe composed of 14SC-FDMA symbols.
  • the SRS is multiplexed at the rear end of the modulation symbol so that time axis multiplexing is possible.
  • FIG. 3 shows a case where a demodulation reference signal (DMRS: DeModulationModReference Symbol) is multiplexed by about 3 symbols in the center portion of one subframe.
  • DMRS DeModulationModReference Symbol
  • the transmission power setting sections 112-1 to 112-N use the transmission power information for each of the plurality of UL channels (CC) output from the power scaling control section 109 to transmit each UL channel (SRS, PUSCH, PUCCH, etc.).
  • the power is set and output to SC-FDMA modulators 113-1 to 113-N.
  • SC-FDMA modulation sections 113-1 to 113-N perform precoding by performing DFT on the symbol series after transmission power setting output from transmission power setting sections 112-1 to 112-N. . And after mapping a DFT precoding signal to the predetermined
  • the synthesizing unit 114 synthesizes a plurality of SC-FDMA signals output from the SC-FDMA modulation units 113-1 to 113-N and outputs them to the radio transmission processing unit 115.
  • the wireless transmission processing unit 115 performs predetermined RF processing such as D / A conversion, amplification processing, and up-conversion on the signal output from the combining unit 114, and transmits the signal from the antenna 101.
  • the transmission power calculation unit 107 calculates the transmission power of multiple UL channels of multiple CCs.
  • the power scaling detection unit 108 detects whether or not the total transmission power value of the UL channel transmitted by a plurality of CCs exceeds the UE-specific maximum transmission power (whether or not power scaling occurs).
  • the power scaling control unit 109 when simultaneously transmitting a plurality (periodic or aperiodic) SRS using Pcell (PCC) and Scell (SCC), when power scaling occurs, transmission is performed simultaneously.
  • PCC Pcell
  • SCC Scell
  • power allocation is performed with priority given to the transmission power of the Pcell SRS over the SRS of the Scell.
  • Fig. 4 shows an outline of power scaling method 1.
  • SRS is simultaneously transmitted in 3CC (CC # 0 to CC # 2).
  • CC # 0 is set to Scell
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell by the control signal notified from a base station (by higher layer signaling).
  • Pcell is set to Pcell from CC # 0 and CC # 2 set in Scell.
  • movement which allocates transmission power preferentially with respect to SRS of CC # 1 currently set to is shown.
  • the propagation channel quality information (CQI: Channel Quality Indicator) of Pcell with a high probability that UCI is multiplexed can be estimated with high accuracy by the SRS having a high power allocation priority, and the eNB can transmit the UL channel (for example, the subsequent UCI) , PUSCH with data and UCI multiplexing, PUCCH with which UCI is multiplexed, and the like can be instructed with appropriate transmission power (MCS). That is, the transmission format used for the UL channel for transmitting UCI can be transmitted without excessive quality. Also, it is possible to transmit without increasing the co-channel interference to other cells and the power consumption of the terminal unnecessarily.
  • CQI Channel Quality Indicator
  • the power scaling control unit 109 sets the transmission power of the Pcell SRS to be equal to or less than the maximum transmission power for each CC (for each UL channel) (while satisfying the condition for the maximum transmission power for each CC).
  • the Pcell SRS transmission power is maintained (not changed), and power scaling is performed by reducing the Scell transmission power.
  • Fig. 5 shows an outline of power scaling method 2.
  • 3 CC (CC # 0 to CC # 2)
  • SRS is transmitted simultaneously
  • CC # 0 is Scell
  • CC # 1 is CC # 1 by the control signal notified from the base station (by higher layer signaling)
  • Pcell and CC # 2 are set to Scell.
  • the SRS power of CC # 1 set in the Pcell is maintained ( The operation of power scaling is shown by reducing the transmission power of SRSs of CC # 0 and CC # 2 set in Scell (without changing).
  • the transmission power of the Pcell SRS is less than or equal to the maximum transmission power for each CC (each UL channel)
  • the co-channel interference to other cells for each CC can be maintained below a certain predetermined value.
  • scheduling for each CC and cross carrier scheduling can be easily performed in each eNB.
  • the propagation channel quality measurement of the Pcell (periodic or aperiodic) SRS can be further improved as compared with the case of the power scaling method 1. Can be done with precision.
  • the Pcell communication quality information obtained from the Pcell reception SRS can be changed to information that is not affected by power scaling at the terminal (no misrecognition regarding the UE transmission power occurs between the eNB and the UE). Therefore, the eNB can be more appropriately operated in the subsequent scheduling (resource allocation) and transmission power (AMC: AdaptiveAdModulation channel Coding) control in the Pcell where UCI is likely to be transmitted. Therefore, it is possible to obtain an effect that it is not necessary to perform passive control that takes a large margin in transmission power (AMC) control or the like.
  • AMC AdaptiveAdModulation channel Coding
  • Fig. 6 shows the outline of power scaling method 3.
  • the SRS is simultaneously transmitted, and the CC is transmitted by the control signal notified from the base station (by higher layer signaling).
  • # 0 is set to Scell
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell.
  • the SRS power of CC # 1 set in the Pcell is maintained ( The operation of performing power scaling by dropping the SRS of CC # 2 set in Scell is shown.
  • the eNB when the eNB detects a significant decrease in the SRS reception level (a value equivalent to the noise level), the eNB newly instructs an appropriate transmission power value for the SRS to the terminal and retransmits the SRS. (Trigger) can be instructed.
  • the power scaling method 3 is applied when simultaneous transmission of multiple SRSs in multiple CCs and power scaling occurs.
  • Pcell And Scell simultaneous transmission in Scell Scell SRS may be dropped.
  • FIG. 7 shows a case where two SRSs of CC # 0 and CC # 2 of Scell are dropped when SRSs are transmitted simultaneously in CC # 0 to CC # 2.
  • calculations necessary for power allocation processing between CCs can be omitted.
  • the number of test steps for terminals (or eNBs) related to power scaling which is indispensable for commercialization of LTE-A, is greatly increased. Can be reduced.
  • periodic SRS when periodic SRS and aperiodic SRS are transmitted by Scell, periodic SRS may be dropped preferentially over aperiodic SRS. Also, this method is (A) simultaneous transmission of multiple SRSs in multiple CCs, and when power scaling occurs, and (B) simultaneous transmission of SRSs in Pcell and Scell without power scaling. This may be applied in either case.
  • Aperiodic SRS is newly introduced in LTE-A, and is triggered by PDCCH, which is a physical layer downlink control channel, for eNB to measure new quality information with low delay.
  • PDCCH which is a physical layer downlink control channel
  • the periodic SRS (the transmission cycle, trigger, timer, etc.) is configured by higher layer signaling, and therefore only low speed control can be performed. Therefore, the same effect as described above can be obtained while reflecting the characteristics of this aperiodic SRS (the latest eNB determination regarding CQI measurement using SRS) in the power scaling process. Further, in the case of (B) above, an effect that the number of test steps of the terminal (or eNB) relating to power scaling can be reduced is obtained.
  • FIG. 8 shows that at the same symbol position of the same subframe (for example, the final symbol position of the subframe), the aperiodic SRS is triggered by CC # 0 of Scell, the periodic SRS is triggered by CC # 2 of Scell, and Pcell When nothing is transmitted in CC # 1, the periodic SRS in CC # 2 in Scell is dropped.
  • Fig. 9 shows an outline of power scaling method 4.
  • SRS is simultaneously transmitted, and the control signal notified from the base station (by higher layer signaling) # 0 is set to Scell, CC # 1 is set to Pcell, and CC # 2 is set to Scell.
  • the transmission power of the Scell SRS before power scaling is larger for the CC # 2 SRS than for the CC # 0 SRS.
  • Power scaling is performed by preferentially dropping the CC # 0 SRS.
  • the SRS with lower transmission power is more likely to fall below the SRS detection level that can be received at the eNB (for example, the noise level at the eNB), so the SRS transmission power with lower Scell transmission power is preferentially reduced.
  • the measurement accuracy using Scell's SRS that does not reduce transmission power can be maintained while maintaining high-accuracy quality measurement in Pcell.
  • Power scaling method 5 In the power scaling method 5, when there are a plurality of Scell SRSs, the power scaling control unit 109 uniformly reduces the Scell multiple SRS transmission power (holds (does not change) the transmission power of the Pcell SRS) ( The same transmission power value is reduced and the same scaling (weight) is applied).
  • Fig. 10 shows an outline of power scaling method 5.
  • SRS is simultaneously transmitted in 3CC (CC # 0 to CC # 2), and CC # 0 is Scell by the control signal notified from the base station (by higher layer signaling).
  • CC # 1 is set to Pcell, and CC # 2 is set to Scell.
  • a method of uniformly reducing the transmission power a method of reducing the same transmission power value (true value, decibel value), applying the same scaling (weight) (applied in LTE-A), or the like is used. Also good.
  • the scaling weight for SRS may be used, and the same scaling weight as another UL channel (for example, PUSCH) may be used for SRS.
  • the scaling weight is a parameter notified from the eNB to the terminal in advance.
  • FIG. 11 shows an outline of the power scaling method 6.
  • SRS is simultaneously transmitted in 3CC (CC # 0 to CC # 2), and CC # 0 is Scell by the control signal notified from the base station (by higher layer signaling).
  • CC # 1 is set to Pcell, and CC # 2 is set to Scell.
  • the SRSs of CC # 0 and CC # 2 set in the Scell are used. It shows how to drop uniformly.
  • all SRSs may be dropped in the order of CC (cell) numbers (ascending / descending order) without dropping all SRSs uniformly.
  • FIG. 12 shows an outline of the power scaling method 7.
  • 3CC CC # 0 to CC # 2
  • SRS is simultaneously transmitted, and CC # 0 is set to Scell by a control signal notified from the base station (by higher layer signaling).
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell.
  • the transmission power of the SRS having the maximum transmission power among the multiple SRSs When the difference from Scell's SRS transmission power is equal to or greater than a predetermined threshold, the Scell's SRS is dropped. In FIG. 12, this corresponds to the case where the SRS of Scell CC # 2 is equal to or greater than a predetermined value from the maximum transmission power of the Pcell CC # 1 SRS.
  • the SRS intermodulation distortion of CCs with large transmission power may be larger than the transmission powers of SRSs of different CCs.
  • This intermodulation distortion cannot be removed by the transmission filter. That is, if it transmits as it is in such a case, eNB will measure the communication quality of applicable CC by SRS which received the influence of the intermodulation distortion, and cannot perform correct scheduling and transmission power control. Therefore, when the SRS SRS transmission power is equal to or higher than a predetermined threshold from the maximum SRS transmission power, the above problem can be avoided by dropping the Scell SRS.
  • the value may be adaptively changed according to a path loss (measurement) value or the like.
  • the transmission power of the channel having the maximum transmission power in the simultaneous transmission UL channel may be used as the reference value instead of the transmission power of the SRS having the maximum transmission power of the plurality of SRSs. Thereby, the same effect is acquired.
  • FIG. 13 shows an outline of the power scaling method 8.
  • SRS is simultaneously transmitted in 3 CCs (CC # 0 to CC # 2), and CC # 0 is Scell by the control signal notified from the base station (by higher layer signaling).
  • CC # 1 is set to Pcell, and CC # 2 is set to Scell.
  • the SRS SRS transmission power of the Scell is below a certain threshold value in the multiple SRSs. In this case, the state of dropping Scell SRS is shown.
  • the transmission power of the CC SRS is too small, the transmission signal cannot be expressed correctly at the resolution of the D / A (Digital / Analog) converter of the terminal (transmission side).
  • D / A Digital / Analog
  • the threshold by introducing a threshold and dropping an SRS having a transmission power equal to or lower than the threshold, useless transmission processing (a complicated design of D / A considering (covering) a low transmission power value) can be avoided. (Useless transmission power consumption can be avoided).
  • the power scaling control unit 109 drops according to the length of the periodic SRS transmission period (reducing power allocation priority, reducing transmission power, not transmitting, and transmitting power to zero).
  • Select the CC SRS Specifically, the periodic SRS having a long transmission cycle is selected as the SRS of the CC to be preferentially dropped, or the periodic SRS having the short transmission cycle is selected as the SRS of the CC to be preferentially dropped.
  • Adaptive modulation / demodulation (AMC) and time-frequency domain scheduling can be controlled with high accuracy, and UE individual throughput and system throughput due to multi-user diversity can be improved.
  • the power scaling control unit 109 drops according to the bandwidth of the SRS (reducing power allocation priority, reducing transmission power, not transmitting, setting transmission power to zero) CC SRS is selected. Specifically, SRS having a wide bandwidth is preferentially dropped over SRS having a narrow bandwidth, or SRS having a narrow bandwidth is preferentially dropped over SRS having a wide bandwidth.
  • the transmission power of the LTE-A (LTE) UL channel is determined by the transmission bandwidth and power spectrum density (PSD). Therefore, the number of dropped SRSs can be reduced as much as possible by lowering the transmission power allocation priority of the wide bandwidth SRS that has a large influence on the total transmission power. For example, when the SRS bandwidth of 1 CC is B under the condition that the SRS total bandwidth of multiple CCs is B, and the case where the SRS bandwidth of each CC is 2/2 in 2 CCs, If the SRS bandwidth drops B preferentially, the number of dropped CCs can be reduced.
  • LTE LTE-A
  • PDD power spectrum density
  • a threshold value may be introduced in the bandwidth determination, and the corresponding SRS may be preferentially dropped when the bandwidth between SRSs or a difference between them exceeds the threshold value.
  • the SRS power allocation priority of the corresponding CC may be lowered as the ratio between the bandwidth for each CC and the SRS bandwidth (for example, SRS bandwidth / bandwidth for each CC) increases.
  • a threshold value may be introduced in the bandwidth determination, and the corresponding SRS may be preferentially dropped when the bandwidth between SRSs or a difference between them exceeds the threshold value.
  • the SRS power allocation priority of the corresponding CC may be lowered as the ratio between the bandwidth for each CC and the SRS bandwidth (for example, SRS bandwidth / bandwidth for each CC) is smaller.
  • the power scaling control unit 109 controls the control information (UL or DL grant) included in the control channel PDCCH of the physical layer among the SRSs of the plurality of Scells, or Increase the SRS power allocation priority of the CC for which UCI is triggered by the control information notified by higher layer signaling. For example, the SRS power allocation priority of the CC in which UCI such as aperiodic CSI is triggered is increased.
  • the power scaling control unit 109 is notified (or is notified by control information (UL or DL grant) included in the control channel PDCCH of the physical layer or signaling of an upper layer) ) Decrease the SRS power allocation priority of the CC for which UCI is not triggered by the control information (not drop) (preferentially drop, reduce transmission power, stop transmission, or set transmission power to zero). For example, the SRS power allocation priority of the CC in which UCI such as aperiodic CSI is not triggered (not) by the UL grant is lowered.
  • FIG. 14 shows an outline of the power scaling method 11.
  • SRS is simultaneously transmitted in SCC 2CC (CC # 0, CC # 2), and CC # 0 is Scell, CC # by a control signal notified from the base station (by higher layer signaling). 1 is set to Pcell, and CC # 2 is set to Scell.
  • UCI such as aperiodic CSI is used in UL grant in 2Scell 2SRS. Increase the SRS power allocation priority of the CC that is triggered.
  • UCI is triggered in the past subframe
  • CC # 0 shows a case where UCI is not triggered.
  • the triggered Scell may retain its priority for a predetermined period. Further, the priority may be maintained until UCI is newly triggered by another CC. Further, when there are a plurality of Scells triggered by UCI, SRS power scaling may be performed according to the latest trigger information. Moreover, when there are a plurality of Scells in which UCI is triggered and they are triggered at the same time, the power scaling priority may be determined according to the UL CC ID number (ascending order / descending order).
  • the power scaling control unit 109 preferentially drops an SRS having a low PSD over an SRS having a high PSD (reducing power allocation priority, reducing transmission power, not transmitting, transmission power). To zero).
  • the SRS intermodulation distortion of CCs with large PSDs may be larger than the SRS PSDs of different CCs.
  • This intermodulation distortion cannot be removed by the transmission filter. That is, if it transmits as it is in such a case, eNB will measure the communication quality of applicable CC by SRS which received the influence of the intermodulation distortion, and cannot perform correct scheduling and transmission power control. In response to this problem, the corresponding CC can be accurately measured by transmitting only the SRS having a high PSD that is not easily affected by the intermodulation distortion.
  • FIG. 15 shows an outline of the power scaling method 12.
  • SRS is simultaneously transmitted in 2CC (CC # 0, CC # 1) of Scell, and CC # 0 is Scell, CC # by a control signal notified from the base station (by higher layer signaling). 1 is set to Scell.
  • harmonic distortion intermodulation distortion
  • SRS having a low PSD that is susceptible to intermodulation distortion is dropped.
  • the SRS may be based on (PUSCH, SRS) transmission power control parameters related to calculating the PSD value. For example, these values such as TPC command accumulated value, transport block size, offset parameter (TF) related to MCS level, SRS offset value for transmission power of PUSCH, number of bits per RE (TB size / assigned RE number), etc. Since the SRS becomes higher as the SRS becomes higher, the SRS to be dropped may be selected based on these values. Also, the smaller the number of allocated REs (Resource Elements) or the number of allocated subcarriers, the higher the SRS with the PSD. Therefore, the SRS to be dropped may be selected based on these values.
  • threshold values may be introduced for the PSD and each of the above parameters, and when those values exceed the threshold values, the corresponding SRS may be preferentially dropped.
  • Embodiment 1 when multiple SRSs are transmitted simultaneously using Pcells and Scells, when power scaling occurs, transmission power allocation is performed with priority given to Pcell SRSs over Scell SRSs.
  • the CC of the SRS having a low power allocation priority is the same CC as the CC that multiplexes UCI. Therefore, the propagation channel quality information of Pcell with a high probability of UCI being multiplexed can be estimated with high accuracy by SRS having a high power allocation priority, and the eNB can appropriately transmit to the UL channel transmitting the subsequent UCI. Power can be commanded.
  • the method described on the assumption that the above-described multiple Scells are applied to multiple SRSs can be similarly applied when multiple SRSs exist in Pcells and multiple SRSs exist in multiple Pcells.
  • the transmission power is reduced by using the scaling weight for SRS notified from the eNB to the terminal (by higher layer signaling). Also good.
  • w_Pcell_SRS is a scaling weight applied to the Pcell SRS
  • w_Scell_SRS is a scaling weight applied to the Scell SRS
  • w_Pcell_SRS> w_Scell_SRS may be set (defined).
  • Power scaling method 13 In the power scaling method 13, when (periodic / aperiodic) SRS and PUCCH are transmitted simultaneously, Rel. In 8 LTE, only 1 CC having a band such as 20 MHz is used. In simultaneous transmission of SRS and PUCCH within 1 CC, in order to avoid an increase in PAPR (Peak-to-Average Power Ratio) of transmission signals (multi-carrier transmission), for PUCCH, the final of one subframe is obtained by rate matching. A short-format PUCCH that does not transmit an SC-FDMA symbol is used, and only a periodic SRS is transmitted in the last SC-FDMA symbol of one subframe (see FIG. 16).
  • PAPR Peak-to-Average Power Ratio
  • Non-Patent Document 1 describes priorities when power scaling occurs as described below. PUCCH>SRS> PUSCH
  • Non-Patent Document 1 has the following problems when (periodic / aperidic) SRS and PUCCH are transmitted simultaneously. That is, when the SRS transmission power is reduced (halfway) based on the rule of lowering the power allocation priority of the transmission power of the SRS from the transmission power of the PUCCH so as to satisfy the maximum transmission power of each UE, As described above, the eNB basically does not have information such as when the power scaling of the terminal has occurred. For this reason, it is misrecognized that the quality of the propagation channel of mobile communication that is likely to fluctuate in time is deteriorated, not the occurrence of power scaling at the terminal, because the reception level of SRS is lowered.
  • a notification is made to use a large transmission power value (low MCS value) that is higher than a value necessary to satisfy the predetermined reception quality.
  • a large transmission power value low MCS value
  • PUSCH multiplexed UCI
  • excessive quality UL channel transmission is performed in the subsequent UL channel such as PUSCH (if the instruction is made to increase the transmission power, the co-channel interference to other cells is increased. It also causes new problems such as unnecessarily increasing the power consumption of the terminal).
  • FIG. 17 shows an outline of the power scaling method 13.
  • CC # 0 does not transmit
  • CC # 1 transmits PUCCH
  • CC # 2 transmits SRS simultaneously
  • CC # 0 is Scell by the control signal notified from the base station (by higher layer signaling).
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell.
  • the PUCCH power of CC # 1 set in Pcell is maintained ( The operation of performing power scaling by dropping the SRS of CC # 2 set in Scell is shown.
  • FIG. 18 shows a transmitter configuration when PUCCH and SRS are simultaneously transmitted between different CCs.
  • control information (ACK / NACK, CQI, etc.) to be transmitted on the PUCCH is input to the encoding / modulation unit 110-1, processing is performed in the same manner as in the above embodiment, and the transmission power setting unit 112-1 The transmission power of PUCCH is set based on information input from power scaling control section 109. Subsequent processing (in the case of FIG. 2) is the same as described above, and will be omitted. Further, in the CC in which the SRS is transmitted, the SRS is input to the transmission power setting unit 112-N, and the transmission power of the SRS is set based on the information input from the power scaling control unit 109.
  • the UE miss-detection trigger information of the aperiodic SRS newly introduced in LTE-A and notified by the physical channel control channel PDCCH the UE does not transmit the SRS (corresponding CC (resource) Transmission power at 0). That is, the same UE operation can be equivalently performed when power scaling occurs and when UE miss detection occurs. Therefore, in both cases where power scaling occurs and when UE miss detection occurs, in the blind detection process of SRS received power in the eNB, for example, the eNB has a noise level in a section in which the SRS is received.
  • the eNB When the eNB can measure only the received SRS level equivalent to the above, the eNB newly instructs the terminal to newly transmit an appropriate transmission power value for the SRS and to perform an instruction to retransmit (trigger) the SRS. It becomes possible to cope with.
  • all SRSs of the Scells may be dropped.
  • Power scaling method 14 In the power scaling method 14, when (periodic / aperiodic) SRS and PUSCH are transmitted simultaneously, Rel.
  • 8 LTE since only 1 CC having a bandwidth of 20 MHz or the like is used, an increase in PAPR (Peak-to-Average Power Ratio) of a transmission signal (multi-carrier transmission) at the time of simultaneous transmission of SRS and PUSCH within 1 CC
  • PAPR Peak-to-Average Power Ratio
  • For PUSCH PUSCH that does not transmit the last SC-FDMA symbol of one subframe is used for PUSCH by rate matching (puncturing), and only periodic SRS is used in the last SC-FDMA symbol of one subframe. Is transmitted (see FIG. 19).
  • Non-Patent Document 1 describes priorities when power scaling occurs as described below.
  • Non-Patent Document 1 when transmitting (periodic / aperiodic) SRS and PUSCH simultaneously, Non-Patent Document 1 has the following problems. That is, when the PUSCH transmission power is reduced (halfway) based on the rule that the power allocation priority of the PUSCH transmission power is lower than the transmission power of the SRS so as to satisfy the maximum transmission power of each UE, the PUSCH When multi-value amplitude modulation such as 16QAM or 64QAM is used for data to be transmitted (or control information), the probability that the eNB cannot correctly receive power-scaled multi-value amplitude modulation increases.
  • multi-value amplitude modulation such as 16QAM or 64QAM
  • the power scaling increases the probability that the modulation accuracy, EVM (Error Vector Magnitude) of the power-scaled multilevel modulation signal does not satisfy the predetermined condition at the time of transmission.
  • EVM Error Vector Magnitude
  • multi-value amplitude modulation such as 16QAM puts information on the amplitude (square root of power), but as described above, the eNB basically uses information such as when the power scaling of the terminal has occurred. Since the eNB demodulates and decodes the PUSCH assuming that the power is not scaled, the probability that the eNB cannot be received correctly increases.
  • the same effect as the power scaling method 3 can be obtained, and in addition, complicated power allocation control between CCs can be simplified.
  • the test man-hours can be reduced as described above.
  • the occurrence of the above-described problem of PUSCH can be avoided, and the probability that multi-value amplitude modulation such as 16QAM can be correctly transmitted increases.
  • FIG. 20 shows an outline of the power scaling method 14.
  • CC # 0 does not transmit
  • CC # 1 transmits PUSCH (with UCI)
  • CC # 2 transmits SRS at the same time.
  • the control signal notified from the base station (by higher layer signaling) # 0 is set to Scell
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell.
  • the PUSCH (with UCI) power of CC # 1 is maintained.
  • the operation of performing power scaling by dropping the SRS of CC # 2 set in Scell is shown (without changing).
  • the power scaling method 14 is preferably used as a power scaling method when UCI is multiplexed on the PUSCH, that is, when PUSCH with UCI multiplexing and (periodic / aperiodic) SRS are simultaneously transmitted. Thereby, it is possible to increase the probability that UCI having high importance that is not applied to retransmission can be correctly transmitted to the eNB.
  • the priority of SRS may be increased for a PUSCH without UCI multiplexing, that is, a PUSCH without UCI multiplexing to which retransmission is applied. Thereby, the measurement accuracy of SRS can be improved similarly to the said method 3, performing the power allocation process between simple CC.
  • FIG. 21 shows an outline of the power scaling method 15.
  • CC # 0 does not transmit
  • CC # 1 simultaneously transmits SRS
  • CC # 2 simultaneously transmits PUSCH (without UCI).
  • # 0 is set to Scell
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell.
  • the SRS power of CC # 1 is maintained (changed).
  • 3) shows an operation for performing power scaling by dropping the PUSCH (without UCI) of CC # 2 set in Scell.
  • power scaling method 14 when simultaneously transmitting (periodic / aperiodic) SRS and PUSCH with UCI multiplexing, power scaling method 14 is used when simultaneously transmitting (periodic / aperiodic) SRS and PUSCH without UCI multiplexing.
  • the power scaling method 15 may be used by switching. In other words, as shown in FIG. 20, when transmitting PUSCH ⁇ with UCI in Pcell and transmitting SRS in Scell, power scaling method 14 is used, and as shown in FIG. 21, SRS is transmitted in Pcell and Scell. In the case of transmitting PUSCH without ⁇ ⁇ UCI, the power scaling method 15 may be used. Thereby, the measurement precision of SRS can be improved similarly to the said power scaling method 3, maintaining the high quality transmission of UCI.
  • SRS and PUSCH may be simultaneously transmitted between a plurality of CCs.
  • Embodiment 2 In Embodiment 1, when multiple uplink channels (SRS, PUSCH, PUCCH, etc.) are transmitted simultaneously, the total transmission power value of multiple uplink channels transmitted by multiple CCs (cells) is the UE-specific maximum transmission power. The power scaling method when exceeding is described.
  • a plurality of cells for example, Pcell and a plurality of Scells
  • a plurality of CCs for example, a PCC and a plurality of SCCs
  • a plurality of uplink channels simultaneous transmission of SRS, simultaneous transmission of SRS and PUSCH, SRS
  • the power scaling method described in Embodiment 1 will be described in detail again in the event that simultaneous transmission of PUCCH and the like occurs.
  • PA Power Amplifier
  • the cost of the terminal is increased. Since this is a factor that prevents miniaturization of the terminal (increases the terminal size), a plurality of UL channels (CC, Cell, carrier wave, frequency band, etc.) are covered by one PA, that is, transmission signals of a plurality of UL channels are covered.
  • a terminal mounting method of amplifying with one PA is also used.
  • a large PAPR Peak-to-Average Power Ratio
  • PAPR Peak-to-Average Power Ratio
  • the power efficiency of PA is degraded.
  • large nonlinear distortion is generated in the amplified signal.
  • PHR Power Head Room
  • the transmission power of a certain UL channel is reduced in the multiple UL channels in order to reduce the influence of the transmission signals of the multiple UL channels on the PA (to avoid an increase in PAPR of the transmission signals).
  • a method of setting a UL channel not to be transmitted are used. That is, multiple uplink channel simultaneous transmission (simultaneous transmission of SRS, simultaneous transmission of SRS and PUSCH, simultaneous transmission of SRS and PUCCH, multiple cells (for example, Pcell and multiple Scells), or multiple CCs (for example, PCC and multiple SCCs) When simultaneous transmission or the like occurs, power scaling is applied to a plurality of UL channels.
  • Non-Patent Document 1 has the following problems. That is, when simultaneously transmitting multiple periodic SRSs with multiple CCs, the power allocation priority when applying power scaling takes into account the influence of the CC selection method of multiplexing UCI with high importance, to which retransmission is not applied. Not. Since UCI needs to be notified from the terminal to the eNB with low delay, only transmission in one transmission is supported.
  • a CC with a low power allocation priority set based on the technology disclosed in Non-Patent Document 1 (a CC with a high possibility that a CQI measurement error at the eNB is large (measurement accuracy is degraded)) is UCI.
  • the communication quality for example, SINR: Signal-to-Interference plus Noise power Ratio
  • SINR Signal-to-Interference plus Noise power Ratio
  • MCS Modulation / channel / Coding / Scheme
  • the UE performs power scaling (reduction of transmission power) with respect to SRSs of CCs having a small ULUCC ID number based on the technique disclosed in Non-Patent Document 1
  • the eNB measures the communication quality of the corresponding CC using the received SRS whose reception level is reduced.
  • the eNB may misrecognize the reason why the reception level of the SRS is lowered, not the influence of power scaling at the terminal, but the quality of the propagation channel of mobile communication that is likely to vary with time. Also, power scaling (reduction of transmission power) is performed for an SRS whose transmission power is correctly controlled so that a predetermined required condition value necessary for reception quality measurement is satisfied by transmission power control for each UL channel. ) Will not meet the requirements.
  • the eNB uses a communication quality measurement value obtained from a received SRS that has been misrecognized or does not satisfy a predetermined required value, for a subsequent transmission of a UL channel such as PUSCH.
  • the terminal is notified to use a large transmission power value (low MCS value) that is greater than or equal to the value necessary to satisfy the above condition.
  • a large transmission power value low MCS value
  • excessive quality UL channel transmission is performed in the subsequent UL channel such as PUSCH (if the instruction is made to increase the transmission power, the co-channel interference to other cells is increased. It also causes new problems such as unnecessarily increasing the power consumption of the terminal).
  • a transmission power value (MCS value) that is not appropriate for PUSCH or PUCCH in which UCI with high importance is multiplexed using a communication quality measurement value obtained from a received SRS whose eNB does not satisfy a predetermined required value.
  • MCS value transmission power value
  • the same problem as in the first embodiment occurs. Therefore, in the second embodiment, the same power scaling method as that in the first embodiment has been invented based on the above-mentioned focus.
  • the series of processing up to the control information extraction unit 106 is the same as that in the first embodiment, and the control information extraction unit 106 uses the UL grant (UL grant) information (from the signal output from the channel decoding unit 105). allocated bandwidth, MCS set, transmit power information such as PUSCH and SRS or PUCCH (TPC COMMAND, transmission format dependent value delta TF such as MCS, an offset value for SRS P SRS_offset etc.), etc.
  • Aperio Dick SRS trigger information such as DL grant information (transmission power information such as PUCCH, aperiodic SRS trigger information, etc.), UCI request (trigger) information, CC / cell information such as Pcell / Scell, PCC / SCC, etc. It outputs to the transmission power calculation part 107.
  • the transmission power calculation unit 107 transmits control information output from the control information extraction unit 106, CC individual (each UL channel) maximum transmission power (PA power class, MPR, etc.), path loss (estimated value) information, and higher layer transmission
  • the transmission power of a plurality of UL channels (for each CC) is calculated using power-related notification information (path loss compensation coefficient, P_o (target reception level value), etc.).
  • P_o target reception level value
  • PUSCH, PUCCH, and SRS transmission power calculation formulas described in Non-Patent Document 3 are used.
  • the transmission power calculation unit 107 outputs transmission power values of a plurality of UL channels (per CC) to the power scaling detection unit 108 and the power scaling control unit 109.
  • the power scaling detection unit 108 detects whether there are a plurality of UL channel transmission power values output from the transmission power calculation unit 107 (detects whether simultaneous transmission of a plurality of UL channels occurs). When there are no plural (single) transmission power values of the UL channel, control information “no need for power scaling” is output to the power scaling control section 109. Conversely, when there are a plurality of UL channel transmission power values, the control information “power scaling is necessary” is output to the power scaling control unit 109.
  • each UL channel SRS , PUSCH, PUCCH, etc.
  • the transmission power is scaled to determine the transmission power for each of the multiple UL channels (CC).
  • the transmission power information after power scaling is output to transmission power setting sections 112-1 to 112-N. The details of the SRS power scaling method will be described later.
  • Subsequent processing in the case of FIG. 2 and a series of processing from the encoding / modulating units 110-1 to 110-N to the wireless transmission processing unit 115 are the same as those in the first embodiment, and are therefore omitted.
  • the SRS is input to the transmission power setting units 112-1 to 112-N, and the transmission power of the SRS is set based on the information input from the power scaling control unit 109.
  • the power scaling method 1-A to 12-A for SRS at the time of simultaneous transmission of a plurality of SRS will be described.
  • Power scaling method 1-A In power scaling method 1-A, first, transmission power calculation section 107 calculates the transmission power of multiple UL channels of multiple CCs.
  • the power scaling detection unit 108 detects whether or not there are a plurality of transmission power values of UL channels transmitted by a plurality of CCs (detects whether or not simultaneous transmission of a plurality of UL channels occurs). That is, it is detected whether power scaling occurs.
  • power scaling control unit 109 when multiple (periodic or aperiodic) SRSs are simultaneously transmitted using Pcell (PCC) and Scell (SCC), power scaling (simultaneous transmission of multiple UL channels) is performed. In the case of occurrence, power allocation is performed with priority given to the transmission power of the Pcell SRS over the Scell SRS among a plurality (periodic or aperiodic) SRS transmitted simultaneously.
  • Fig. 4 shows an outline of the power scaling method 1-A.
  • SRS is simultaneously transmitted in 3CC (CC # 0 to CC # 2).
  • CC # 0 is set to Scell
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell by the control signal notified from a base station (by higher layer signaling).
  • the propagation channel quality information (CQI: Channel Quality Indicator) of Pcell with a high probability that UCI is multiplexed can be estimated with high accuracy by the SRS having a high power allocation priority, and the eNB can transmit the UL channel (for example, the subsequent UCI) , PUSCH with data and UCI multiplexing, PUCCH with which UCI is multiplexed, and the like can be instructed with appropriate transmission power (MCS). That is, the transmission format used for the UL channel for transmitting UCI can be transmitted without excessive quality. Also, it is possible to transmit without increasing the co-channel interference to other cells and the power consumption of the terminal unnecessarily.
  • CQI Channel Quality Indicator
  • the eNB uses a communication quality measurement value obtained from the received SRS of the Pcell satisfying a predetermined request value, and an appropriate transmission power value (MCS) for the PUSCH or PUCCH multiplexed with a high importance UCI. Value) and UCI to which retransmission is not applied can be transmitted correctly.
  • MCS transmission power value
  • the power scaling control unit 109 sets the transmission power of the Pcell SRS to be equal to or less than the maximum transmission power for each CC (for each UL channel) (while satisfying the condition for the maximum transmission power for each CC).
  • the Pcell SRS transmission power is maintained (not changed), and power scaling is performed by reducing the Scell transmission power.
  • Fig. 5 shows the outline of power scaling method 2-A.
  • SRS is transmitted simultaneously
  • CC # 0 is Scell
  • CC # 1 is CC # 1 by the control signal notified from the base station (by higher layer signaling)
  • Pcell and CC # 2 are set to Scell.
  • CC # set in Pcell 1 shows an operation of performing power scaling by maintaining (without changing) the SRS power of 1 and reducing the transmission power of the SRSs of CC # 0 and CC # 2 set in Scell.
  • the CC of the CC set to be used preferentially Co-channel interference to other cells can be maintained below a predetermined value, and scheduling for each CC and cross carrier scheduling can be easily performed in each eNB.
  • the transmission power level of the Pcell (periodic or aperiodic) SRS can be measured by reliably maintaining (not changing) the transmission power level of the Pcell SRS as compared with the case of the power scaling method 1-A. Further, it can be performed with high accuracy.
  • the Pcell communication quality information obtained from the Pcell reception SRS can be changed to information that is not affected by power scaling at the terminal (no misrecognition regarding the UE transmission power occurs between the eNB and the UE). Or the communication quality measurement value obtained from the received SRS satisfying the predetermined required value can be used), so that the eNB performs subsequent scheduling (resource allocation) in the Pcell where the UCI is likely to be transmitted.
  • AMC AdaptiveAdModulation channel Coding
  • Fig. 6 shows the outline of power scaling method 3-A.
  • the SRS is simultaneously transmitted, and the CC is transmitted by the control signal notified from the base station (by higher layer signaling).
  • # 0 is set to Scell
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell.
  • SRS power of 1 is maintained (without changing), and the power scaling is performed by dropping the SRS of CC # 2 set in Scell.
  • all SRSs of a plurality of Scells may be dropped uniformly.
  • FIG. 7 shows a case where two SRSs of CC # 0 and CC # 2 of Scell are dropped when SRSs are transmitted simultaneously in CC # 0 to CC # 2.
  • calculations necessary for power allocation processing between CCs can be omitted.
  • the number of test steps for terminals (or eNBs) related to power scaling which is indispensable for commercialization of LTE-A, is greatly increased. Can be reduced. In addition, unnecessary power consumption of the terminal can be further reduced.
  • periodic SRS and aperiodic SRS are transmitted by Scell, periodic SRS may be dropped preferentially over aperiodic SRS.
  • Aperiodic SRS is newly introduced in LTE-A, and is triggered by PDCCH, which is a physical layer downlink control channel, for eNB to measure new quality information with low delay.
  • PDCCH which is a physical layer downlink control channel
  • the periodic SRS (the transmission cycle, trigger, timer, etc.) is configured by higher layer signaling, and therefore only low speed control can be performed. Therefore, the same effect as described above can be obtained while reflecting the characteristics of this aperiodic SRS (the latest eNB determination regarding CQI measurement using SRS) in the power scaling process.
  • FIG. 8 shows that at the same symbol position of the same subframe (for example, the final symbol position of the subframe), the aperiodic SRS is triggered by CC # 0 of Scell, the periodic SRS is triggered by CC # 2 of Scell, and Pcell When nothing is transmitted in CC # 1, the periodic SRS in CC # 2 in Scell is dropped.
  • Fig. 9 shows the outline of power scaling method 4-A.
  • SRS is simultaneously transmitted, and the control signal notified from the base station (by higher layer signaling) # 0 is set to Scell, CC # 1 is set to Pcell, and CC # 2 is set to Scell.
  • the transmission power of the Scell SRS before power scaling is larger for the CC # 2 SRS than for the CC # 0 SRS.
  • the SRS with lower transmission power is more likely to fall below the SRS detection level that can be received at the eNB (for example, the noise level at the eNB), so the SRS transmission power with lower Scell transmission power is preferentially reduced.
  • the measurement accuracy using Scell's SRS that does not reduce transmission power can be maintained while maintaining high-accuracy quality measurement in Pcell.
  • Power scaling method 5-A when there are a plurality of Scell SRSs, the power scaling control unit 109 maintains the Pcell SRS transmission power (does not change it) and uniformly distributes the Scell SRS transmission powers. Reduction (reduction of the same transmission power value, application of the same scaling (weight)).
  • Fig. 10 shows an outline of the power scaling method 5-A.
  • SRS is simultaneously transmitted in 3CC (CC # 0 to CC # 2), and CC # 0 is Scell by the control signal notified from the base station (by higher layer signaling).
  • CC # 1 is set to Pcell, and CC # 2 is set to Scell.
  • CC # set in Scell It shows how the transmission powers of 0 and CC # 2 are uniformly reduced.
  • the scaling weight for SRS may be used as the scaling weight used to reduce the transmission power of SRS, and the same scaling weight as other UL channels (for example, PUSCH, PUSCH with UCI, PUSCH without UCI) is assigned to SRS. It may be used.
  • the scaling weight is a parameter notified from the eNB to the terminal in advance.
  • FIG. 11 shows an outline of the power scaling method 6-A.
  • SRS is simultaneously transmitted in 3CC (CC # 0 to CC # 2), and CC # 0 is Scell by the control signal notified from the base station (by higher layer signaling).
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell.
  • CC # set in Scell It shows how the SRSs of 0 and CC # 2 are uniformly dropped.
  • all SRSs may be dropped in the order of CC (cell) numbers (ascending / descending order) without dropping all SRSs uniformly.
  • FIG. 12 shows an outline of the power scaling method 7-A.
  • 3CC CC # 0 to CC # 2
  • SRS is simultaneously transmitted, and CC # 0 is set to Scell by a control signal notified from the base station (by higher layer signaling).
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell.
  • the SRS transmission power of the Scell is equal to or greater than a predetermined threshold
  • the Scell SRS is dropped. In FIG. 12, this corresponds to the case where the SRS of Scell CC # 2 is equal to or greater than a predetermined value from the maximum transmission power of the Pcell CC # 1 SRS.
  • the SRS intermodulation distortion of CCs with large transmission power may be larger than the transmission powers of SRSs of different CCs.
  • This intermodulation distortion cannot be removed by the transmission filter. That is, if it transmits as it is in such a case, eNB will measure the communication quality of applicable CC by SRS which received the influence of the intermodulation distortion, and cannot perform correct scheduling and transmission power control. Therefore, when the SRS SRS transmission power is equal to or higher than a predetermined threshold from the maximum SRS transmission power, the above problem can be avoided by dropping the Scell SRS.
  • the value may be adaptively changed according to a path loss (measurement) value or the like.
  • the transmission power of the channel having the maximum transmission power in the simultaneous transmission UL channel may be used as the reference value instead of the transmission power of the SRS having the maximum transmission power of the plurality of SRSs. Thereby, the same effect is acquired.
  • FIG. 13 shows an outline of the power scaling method 8-A.
  • SRS is simultaneously transmitted in 3 CCs (CC # 0 to CC # 2), and CC # 0 is Scell by the control signal notified from the base station (by higher layer signaling).
  • CC # 1 is set to Pcell, and CC # 2 is set to Scell.
  • the SRS SRS transmission power of the Scell is equal to or less than a certain threshold. In this case, the state of dropping Scell SRS is shown.
  • the transmission power of the CC SRS is too small, the transmission signal cannot be expressed correctly at the resolution of the D / A (Digital / Analog) converter of the terminal (transmission side).
  • D / A Digital / Analog
  • the threshold by introducing a threshold and dropping an SRS having a transmission power equal to or lower than the threshold, useless transmission processing (a complicated design of D / A considering (covering) a low transmission power value) can be avoided. (Useless transmission power consumption can be avoided).
  • Power scaling method 9-A power scaling control section 109 drops according to the length of the transmission period of periodic SRS (reducing power allocation priority, reducing transmission power, not transmitting, transmission power Select the SRS of the CC. Specifically, the periodic SRS having a long transmission cycle is selected as the SRS of the CC to be preferentially dropped, or the periodic SRS having the short transmission cycle is selected as the SRS of the CC to be preferentially dropped.
  • adaptive modulation / demodulation AMC: Adaptive Modulation and Channel Coding
  • time-frequency domain scheduling can be controlled with high accuracy, and UE specific throughput and system throughput due to multiuser diversity can be improved.
  • Power scaling method 10-A the power scaling control unit 109 performs drop according to the bandwidth of the SRS (reducing power allocation priority, reducing transmission power, not transmitting, and setting transmission power to zero) ) Select CC SRS. Specifically, SRS having a wide bandwidth is preferentially dropped over SRS having a narrow bandwidth, or SRS having a narrow bandwidth is preferentially dropped over SRS having a wide bandwidth.
  • the transmission power of the LTE-A (LTE) UL channel is determined by the transmission bandwidth and power spectrum density (PSD). Therefore, the number of dropped SRSs can be reduced as much as possible by lowering the transmission power allocation priority of the wide bandwidth SRS that has a large influence on the total transmission power. For example, when the SRS bandwidth of 1 CC is B under the condition that the SRS total bandwidth of multiple CCs is B, and the case where the SRS bandwidth of each CC is 2/2 in 2 CCs, If the SRS bandwidth drops B preferentially, the number of dropped CCs can be reduced.
  • LTE LTE-A
  • PDD power spectrum density
  • a threshold value may be introduced in the bandwidth determination, and the corresponding SRS may be preferentially dropped when the bandwidth between SRSs or a difference between them exceeds the threshold value.
  • the SRS power allocation priority of the corresponding CC may be lowered as the ratio between the bandwidth for each CC and the SRS bandwidth (for example, SRS bandwidth / bandwidth for each CC) increases.
  • a threshold value may be introduced in the bandwidth determination, and the corresponding SRS may be preferentially dropped when the bandwidth between SRSs or a difference between them exceeds the threshold value.
  • the SRS power allocation priority of the corresponding CC may be lowered as the ratio between the bandwidth for each CC and the SRS bandwidth (for example, SRS bandwidth / bandwidth for each CC) is smaller.
  • the power scaling control unit 109 controls the control information (UL or DL grant) included in the control channel PDCCH of the physical layer among the SRSs of the plurality of Scells, Alternatively, the SRS power allocation priority of the CC for which the UCI (CQI, PMI, etc.) report is triggered by the control information notified by the higher layer signaling is increased. For example, the SRS power allocation priority of the CC where the UCI report such as aperiodic CSI is triggered is increased.
  • Scell used for periodic CQI (PMI) reporting indicated by eNB to higher layer signaling such as RRC (Radio Resource Control)
  • PMI periodic CQI
  • RRC Radio Resource Control
  • the SRS power allocation priority of the Cell (CC) having a high priority instructed from the eNB is increased.
  • the power scaling control unit 109 is notified (or is notified by control information (UL or DL grant) included in the control channel PDCCH of the physical layer or signaling of an upper layer) ) USI (CQI, PMI, etc.) report is not triggered by control information (not done)
  • SRS power allocation priority of CC is lowered (preferentially dropped, transmission power is reduced, transmission is stopped, or transmission power is Set to zero).
  • the SRS power allocation priority of a CC in which UCI reporting such as aperiodic CSI is not triggered (not done) by the UL grant is lowered.
  • SRS of CC set to Scell with lower priority Lower power allocation priority.
  • the Cell (CC) instructed by the eNB not to transmit UCI with PUSCH (multiplexed UCI on PUSCH), or Cell (CC) that transmits UCI with PUSCH (multiplexed UCI on PUSCH)
  • the SRS power allocation priority of the Cell (CC) having a low priority instructed to the eNB is lowered.
  • CC CC
  • PMI periodic CQI
  • eNB higher layer signaling
  • RRC higher layer signaling
  • the probability of transmitting (for example, aperiodic) SRS is high. This is because if the power allocation priority of the SRS transmitted in that CC (aperiodic) is lowered (or dropped), MCS selection and transmission power control for UCI transmitted in the subsequent subframe are not performed correctly. Because.
  • FIG. 14 shows an outline of the power scaling method 11-A.
  • SRS is simultaneously transmitted in SCC 2CC (CC # 0, CC # 2), and CC # 0 is Scell by the control signal notified from the base station (by higher layer signaling such as RRC).
  • CC # 1 is set to Pcell
  • CC # 2 is set to Scell.
  • UCI such as aperiodic CSI is used in UL grant in 2Scells of 2SRS.
  • UCI is triggered in the past subframe
  • CC # 0 shows a case where UCI is not triggered.
  • the triggered Scell may retain its priority for a predetermined period. Further, the priority may be maintained until UCI is newly triggered by another CC. Further, when there are a plurality of Scells triggered by UCI, SRS power scaling may be performed according to the latest trigger information. Moreover, when there are a plurality of Scells in which UCI is triggered and they are triggered at the same time, the power scaling priority may be determined according to the UL CC ID number (ascending order / descending order).
  • the priority order information of CCs that transmit UCI among a plurality of Scells notified (instructed) by higher layer signaling may be retained for a certain predetermined period (the power according to the information for a certain predetermined period) Scaling may be performed). Further, the priority may be maintained until the above-described priority order is newly notified (instructed) by the eNB depending on higher layer signaling. If a new priority order is notified (instructed), power scaling may be performed according to the new priority order.
  • the SRS power allocation of CC based on the priority of Scell used for periodic CQI (PMI) report, etc. indicated by higher layer signaling such as RRC (Radio Resource Control) from eNB A priority may be set. For example, in a cell (CC) instructed by an eNB to transmit UCI with PUSCH in a plurality of Scells, or in a cell (CC) in which UCI is transmitted with PUSCH in a plurality of Scells, the eNB is instructed. The SRS power allocation priority of the Cell (CC) having a higher priority is increased.
  • a cell (CC) instructed by an eNB not to transmit UCI together with PUSCH or in a plurality of Scells, instructed to eNB in a cell (CC) transmitting UCI together with PUSCH.
  • the SRS power allocation priority of the lower priority Cell (CC) is lowered.
  • SRS transmission power (PSD) of Scell with the highest priority is set. In the power scaling process, it may be held (it is not necessary to change).
  • the eNB can provide appropriate transmission power (MCS) used for UCI transmission to the terminal. You can be notified.
  • MCS transmission power
  • Scells with lower priority may be selected as SRS to be dropped.
  • eNB in eNB (not shown), periodic CQI among multiple Scells using Scell and Pcell information set in each terminal, uplink interference status for each CC (Cell), and the like.
  • PMI Determination of priority for each terminal of Scell used for reporting, etc., selection of cell (CC) for each terminal that transmits UCI together with PUSCH (multiple UCI on PUSCH) among multiple Scells, etc. I do.
  • information such as the determined priority order and the selected priority order is notified to the terminal using higher layer (RCC) signaling.
  • the terminal that has received the information uses the information for power scaling when simultaneous transmission of multiple UL channels (such as SRS) occurs.
  • the power scaling control unit 109 preferentially drops the SRS having the lower PSD than the SRS having the higher PSD (reducing the power allocation priority, reducing the transmission power, not transmitting, Set transmit power to zero).
  • the SRS intermodulation distortion of CCs with large PSDs may be larger than the SRS PSDs of different CCs.
  • This intermodulation distortion cannot be removed by the transmission filter. That is, if it transmits as it is in such a case, eNB will measure the communication quality of applicable CC by SRS which received the influence of the intermodulation distortion, and cannot perform correct scheduling and transmission power control. In response to this problem, the corresponding CC can be accurately measured by transmitting only the SRS having a high PSD that is not easily affected by the intermodulation distortion.
  • FIG. 15 shows an outline of the power scaling method 12-A.
  • SRS is simultaneously transmitted in 2CC (CC # 0, CC # 1) of Scell, and CC # 0 is Scell, CC # by a control signal notified from the base station (by higher layer signaling). 1 is set to Scell.
  • harmonic distortion intermodulation distortion
  • SRS having a low PSD that is susceptible to intermodulation distortion is dropped.
  • the SRS may be based on (PUSCH, SRS) transmission power control parameters related to calculating the PSD value. For example, these values such as TPC command accumulated value, transport block size, offset parameter (TF) related to MCS level, SRS offset value for transmission power of PUSCH, number of bits per RE (TB size / assigned RE number), etc. Since the SRS becomes higher as the SRS becomes higher, the SRS to be dropped may be selected based on these values. Also, the smaller the number of allocated REs (Resource Elements) or the number of allocated subcarriers, the higher the SRS with the PSD. Therefore, the SRS to be dropped may be selected based on these values.
  • threshold values may be introduced for the PSD and each of the above parameters, and when those values exceed the threshold values, the corresponding SRS may be preferentially dropped.
  • the second embodiment when a plurality of SRSs are simultaneously transmitted using Pcell and Scell, power allocation priority is given by performing transmission power allocation in preference to Pcell SRS over Scell SRS. It is possible to reduce the probability that a low SRS CC becomes the same CC as a CC that multiplexes UCI. Therefore, the propagation channel quality information of Pcell with a high probability of UCI being multiplexed can be estimated with high accuracy by SRS having a high power allocation priority, and the eNB can appropriately transmit to the UL channel transmitting the subsequent UCI. Power can be commanded.
  • the method described on the assumption that the above-described multiple Scells are applied to multiple SRSs can be similarly applied when multiple SRSs exist in Pcells and multiple SRSs exist in multiple Pcells.
  • the transmission power is reduced by using the scaling weight for SRS notified from the eNB to the terminal (through higher layer signaling). May be.
  • w_Pcell_SRS is a scaling weight applied to the Pcell SRS
  • w_Scell_SRS is a scaling weight applied to the Scell SRS
  • w_Pcell_SRS> w_Scell_SRS may be set (defined).
  • w_Scell_SRS 0 may be set.
  • power scaling can also be performed when multiple uplink channels are simultaneously transmitted by multiple cells or multiple CCs.
  • An example (power scaling method 16-A) in the case where power scaling methods 3 (3-A) and 12 (12-A) described in the first embodiment (2) are combined will be described below.
  • Power scaling method 16-A the power scaling control unit 109 uses the PUSCH transport block (TB) size included in the UL grant notified from the eNB to the terminal when there are multiple SRSs in the multiple Scells.
  • the power priority of SRS is determined based on the magnitude of.
  • the priority of the SRS transmission power of the CC (Cell) in which the PUSCH to which the TB having a large TB size is mapped is transmitted is increased.
  • the priority of SRS transmission power of CC (Cell) in which PUSCH to which TB having a small TB size is mapped is transmitted is lowered.
  • the SRS transmission power of the CC (Cell) in which the PUSCH having the largest TB size is transmitted may be retained (not changed), and the SRS transmission power of other Scell (CC) may be reduced.
  • the power priority of the SRS set according to the power scaling method 16-A may hold the priority for a predetermined period. Moreover, you may maintain the priority between several Scells until the combination of several TB size which newly differs between several Scells is transmitted.
  • the SRS power priority set by the power scaling method 16-A may be SRS power scaled according to the latest priority.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • Antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • 3GPP LTE it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • the radio communication terminal apparatus and power allocation method according to the present invention can be applied to a mobile communication system such as LTE-A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 UCIが多重される確率の高いPcellの伝搬チャネル品質情報を電力割当優先度の高いSRSにより高精度に推定でき、eNBは後続のUCIを伝送するULチャネルに対して適切な送信電力を指示できる無線通信端末装置及び電力割当方法を提供する。送信電力計算部(107)において、複数CCの複数ULチャネルの送信電力を計算する。電力スケーリング検出部(108)において、複数CCで送信されるULチャネルの送信電力合計値がUE固有の最大送信電力を超えるか否かを検出する。電力スケーリング制御部(109)において、Pcell及びScellを用いて、複数SRSを同時送信する場合において、電力スケーリングが発生した場合には、同時送信複数SRSの中で、ScellのSRSより、PcellのSRSの送信電力を優先して電力割当を行う。

Description

無線通信端末装置及び電力割当方法
 本発明は、無線通信端末装置及び電力割当方法に関する。
 3GPP (3rd Generation Partnership Project)において、LTE-advanced(以下、「LTE-A」と省略する)の検討が進められている。LTE-Aでは、キャリアアグリゲーション(CA:Carrier Aggregation)という帯域拡張技術の導入の検討がなされている。LTE-AのCAでは、20MHz等から構成される1つの単位キャリア(CC:Component Carrier)を複数束ねることにより複数のキャリアをアグリゲーションし、高速伝送の実現を図るアプローチがダウンリンンク(DL:Downlink)及びアップリンク(UL:Uplink)チャネルで取られる。LTE-Aでは、5個のCCの導入、つまり、100MHzまでの帯域拡張を視野に検討がなされている。
 そこで、UL CAを対象とした送信電力制御方法の検討も同時になされている。LTE-AのUL送信電力制御の検討において、以下の事項(A)~(C)が合意されている。(A)CC個別(CC-specific)に送信電力の制御が行われる。(B)CC個別の(各ULチャネルに対する)最大送信電力Pcmax,c、及び、UE(User Equipment)固有の(UE-specific)最大総送信電力Pcmax(複数CCでの合計最大送信電力上限値)を設けている。そして、1CC内で送信される各ULチャネルの送信電力が、CC個別の(各ULチャネルに対する)最大送信電力を超えた場合、また、複数ULチャネルの同時送信時に、複数(全)CCで送信されるULチャネル送信電力合計値がUE固有の最大送信電力を超えた場合には、ULチャネルの送信電力を低減する電力スケーリングという制御が行われる。(C)UL CAにおいて、複数ULチャネルの同時送信時に電力スケーリングが発生した場合における、複数ULチャネルに対する電力割当優先度ルールは以下のように合意されている。
   PUCCH>PUSCH with UCI>PUSCH without UCI
 ここで、PUCCHはPhysical Uplink Control CHannel、PUSCHはPhysical Uplink Shared CHannelである。UCIはUplink Control Informationの略語であり、具体的には以下の制御情報等がある。ACK/NACK(Acknowledgment/Non Acknowledgment)、RI(Rank Indicator)、CQI(Channel Quality Information)、PMI(Pre-coding Matrix Indicator)、CSI(Channel State Information)等があり、CSI、CQI等の情報の送信には、ピリオディック(periodic)とアペリオディック(aperiodic)な送信方法がある。
 また、PUSCH with UCIは、UCIを多重するPUSCHのことを示し、PUSCH without UCIは、UCIを多重しないPUSCHのことを示す。従って、複数ULチャネルの同時送信時に電力スケーリングが発生した場合には、第1にPUCCHの送信電力、第2にUCIを多重するPUSCHの送信電力、第3にUCIを多重しないPUSCHの送信電力に順番に送信電力を割り当てる。このルールは、これらの各チャネルが同一CC内に存在するか、または異なるCCに存在するかにかかわらず適用される。
 一方で、CQI等の伝搬路の品質を測定する(sounding)ために用いられる、ピリオディックSRS又はアペリオディックSRS(Sounding Reference Symbol)に関連する電力スケーリング発生時の電力割当ルールも検討されている。例えば、以下の3つの場合(A)~(C)に分類することができる。
 (A)(ピリオディック/アペリオディック)SRSと他ULチャネル(PUCCH、PUSCH等)間の優先度。すなわち、非文献文献1において、以下に示すような電力スケーリング発生時の優先度が記載されている。
   PUCCH>SRS>PUSCH
 従って、電力スケーリングが発生した場合には、第1にPUCCH、第2にSRS、第3にPUSCHの順番に端末の送信電力の割り当てを優先する。
 (B)ピリオディックSRSとアペリオディックSRS間の優先度。すなわち、非文献文献2において、以下に示すような電力スケーリング発生時の優先度が記載されている。
   アペリオディックSRS>ピリオディックSRS
 従って、ピリオディックSRSとアペリオディックSRSの同時送信時に電力スケーリングが発生した場合には、第1にアペリオディックSRSの送信電力、第2にピリオディックSRSの送信電力の割り当てを優先する。
 (C)複数(ピリオディック又はアペリオディック)SRS間の優先度。
 非特許文献1において、複数ピリオディックSRSを複数CC間で同時送信する場合における、電力割当優先度ルールが記載されている。具体的には、図1に示すように、UL CC ID番号に応じて、ピリオディックSRSの送信電力の優先度を決定する方法が開示されている。図1では、3個のCCでピリオディックSRSを同時に送信する場合に電力スケーリングが発生する場合おいて、UL CC ID番号が大きい順に大きな送信電力を割り当てる概念図を示している。これにより、複数CCでのピリオディックSRS同時送信時に電力スケーリングが発生した場合においても、このルールに従い、端末は各CCのピリオディックSRSの送信電力を適切に決定することができる。
R1-105376, Discussion on multiplexing SRSand PUSCH in an SC-FDMA symbol in carrier-aggregated system, 3GPP TSG RAN WG1 #62bs, Xi’an, China, October 11 - 15, 2010 R1-105508, Power control for SRStransmission in CA, 3GPP TSG RAN WG1 #62bs, Xi’an, China, October 11 - 15, 2010 3GPP TS 36.213 V8.8.0 (2009-09)
 しかしながら、上記非特許文献1に開示の技術では、以下に示す課題がある。すなわち、複数ピリオディックSRSを複数CCで同時送信する際に、電力スケーリングが発生した場合の電力割当優先度に、再送が適用されない重要なUCIを多重するCC選択方法の影響が考慮されていない。UCIは、低遅延で端末からeNBに通知する必要があるため、1回の送信での伝送だけがサポートされる。
 従って、上記非特許文献1に開示の技術に基づいて設定された電力割当優先度の低いCC(eNBでの、CQI測定誤差が大きくなる可能性の高いCC)がUCIを多重するCCに該当する場合、該当CCでは、電力スケーリング(送信電力が低減)されたSRSを用いて導出された通信品質(例えば、SINR:Signal-to-Interference plus Noise power Ratio)測定誤差が大きいため、eNBは後続のサブフレームで伝送するUCIに対して適切な送信電力(または、MCS:Modulation and channel Coding Scheme)値を通知できない。なお、電力スケーリングは、eNBが知ることができないUE固有のPA(Power Amplifier)に関連した送信電力制御情報、例えば、UE毎、又は、UEのCC毎の最大送信電力を決定するパラメータ(MPR:Maximum Power Reduction等)によって生じるため、基本的にeNBは電力スケーリングの発生が分からない。
 例えば、複数SRSの複数CCでの同時送信時にUE固有の最大送信電力を超えたため、そのUEが、上記非特許文献1に開示の技術に基づいて、あるUL CC ID番号の小さいCCのSRSに対して電力スケーリング(送信電力の低減)を行った場合、eNBは、受信レベルが低下した受信SRSを用いて該当CCの通信品質の測定を行う。しかしながら、上記したように、eNBは端末の電力スケーリングがいつ発生したか等の情報を基本的には持ち合わせないため、SRSの受信レベル低下理由を、端末での電力スケーリングの発生ではなく、時間的に変動しやすい移動通信の伝搬チャネルの品質が劣悪になったと誤認識する。そして、後続の(UCIが多重された)PUSCH等のULチャネルの伝送において、所定受信品質を満たすのに必要な値以上の大きな送信電力値(低いMCS値)を用いるように通知してしまう。つまり、この場合、後続のPUSCH等のULチャネルにおいて、過剰な品質のULチャネルの伝送が行われてしまう(送信電力を大きくするように指示した場合は、他セルへの同一チャネル干渉を増加させてしまう。また、端末の消費電力を不必要に増加させてしまう等の新たな課題を引き起こす)。
 本発明の目的は、UCIが多重される確率の高いPcellの伝搬チャネル品質情報を電力割当優先度の高いSRSにより高精度に推定でき、eNBは後続のUCIを伝送するULチャネルに対して適切な送信電力を指示できる無線通信端末装置及び電力割当方法を提供することである。
 本発明の無線通信端末装置は、キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算手段と、計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出手段と、電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御手段と、を具備する構成を採る。
 本発明の電力割当方法は、キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算工程と、計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出工程と、電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御工程と、を具備するようにした。
 本発明によれば、UCIが多重される確率の高いPcellの伝搬チャネル品質情報を電力割当優先度の高いSRSにより高精度に推定でき、eNBは後続のUCIを伝送するULチャネルに対して適切な送信電力を指示できる。
非特許文献1に開示の送信電力の優先度を決定する方法を示す図 本発明の実施の形態1及び2に係る無線通信端末装置の構成を示すブロック図 1サブフレームの後端にSRSを多重する構成を示す図 電力スケーリング方法1の概要を示す図 電力スケーリング方法2の概要を示す図 電力スケーリング方法3の概要を示す図 2つのSRSをドロップする様子を示す図 ピリオディックSRSをドロップする様子を示す図 電力スケーリング方法4の概要を示す図 電力スケーリング方法5の概要を示す図 電力スケーリング方法6の概要を示す図 電力スケーリング方法7の概要を示す図 電力スケーリング方法8の概要を示す図 電力スケーリング方法11の概要を示す図 電力スケーリング方法12の概要を示す図 1サブフレーム内でPUCCHとピリオディックSRSを多重する構成を示す図 電力スケーリング方法13の概要を示す図 本発明の実施の形態1に係る無線通信端末装置の構成を示すブロック図 1サブフレーム内でPUSCHとピリオディックSRSを多重する構成を示す図 電力スケーリング方法14の概要を示す図 電力スケーリング方法15の概要を示す図
 本発明者は、以下の点に着眼して本発明をなすに到った。すなわち、LTE-Aでは、Pcell(Primary Cell)、又は、PCC(Primary Component Carrier)にPUSCHがスケジューリングされる(送信される、送信割当(UL grant)ありの)場合、Pcell(PCC)のPUSCHにUCIを多重することが、UCIを多重するCC(PUSCH)の選択方法として用いられる。また、(UCIだけを多重する)PUCCHを送信するCCはPcell(PCC)だけに限定される。従って、Scell(Secondary cell)、または、SCC(Secondary Component Carrier)と比較すると、Pcell(PCC)で再送が適用されない重要度の高いUCIが送信される確率が高い。
 また、システムをオペレーションする場合においてトラフィックが少ない場合には、一般にPcellのみを優先して使う(長時間で見て通信しやすいセルとしてPcellを選択する)ことにより、システム帯域幅(CC間全体)での利用効率を向上させる。また、Pcellを使用する場合には、PUCCHがLTE Rel.8と後方互換性(compatible)を有する送信のため、UCIだけが送信されるPUCCH上においても効率が良い伝送が可能となる(なお、LTE-AはRel.10とリリースされる予定である)。
 また、Pcell(PCC)、及び、Scell(SCC)は、eNBにより、UE個別(UE-specific)に設定(configure)され、eNBから端末に(例えば、伝送誤り確率の極めて低い上位レイヤのシグナリングを用いて)通知するため、eNB及び各UE間で、Pcell(PCC)、及び、Scell(SCC)の設定(configuration)を事前に認識できる。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (実施の形態1)
 図2は、本発明の実施の形態1に係る無線通信端末装置(以下、「端末」という)100の構成を示すブロック図である。以下、図2を用いて端末100の構成について説明する。
 無線受信処理部102は、基地局(eNB)から送信されたOFDM信号をアンテナ101から受信し、受信したOFDM信号にダウンコンバート、A/D変換等の所定のRF処理を施してOFDM復調部103に出力する。
 OFDM復調部103は、無線受信処理部102から出力されたOFDM信号のガードインターバル(GI)を除去し、GIを除去したOFDM信号に対して離散フーリエ変換(DFT:Discrete Fourier Transform)を施して周波数領域信号に変換する。次に、OFDM復調部103は、周波数領域の各成分に対して、周波数領域等化(FDE:Frequency-domain Equalization)を施し、信号の歪を取り除き、復調部104に出力する。
 復調部104は、OFDM復調部103から出力された信号に対して、QPSK、16QAM(Quadrature Amplitude Modulation)等の変調方式に対する所定の復調処理を施してチャネル復号部105に出力する。
 チャネル復号部105は、復調部104から出力された信号に、ターボ符号化、畳み込み符号化等の誤り訂正符号化に対する復号処理(繰り返しMAP復号、ビタビ復号)を施して制御情報抽出部106に出力する。
 制御情報抽出部106は、チャネル復号部105から出力された信号から、ULグラント(UL grant)情報(割当帯域幅、MCSセット、PUSCHやSRSやPUCCH等の送信電力情報(TPC command、MCS等の送信フォーマット既存値ΔTF等、SRS用のオフセット値PSRS_offset)、アペリオディックSRSトリガー情報など)、DLグラント(DL grant)情報(PUCCH等の送信電力情報、アペリオディックSRSトリガー情報など)、UCI要求(トリガー)情報、Pcell/Scell、PCC/SCCなどのCC/cell情報等、制御情報を抽出して送信電力計算部107に出力する。
 送信電力計算部107は、制御情報抽出部106から出力された制御情報、CC個別(各ULチャネル)最大送信電力(PAのパワクラス、MPR等)、パスロス(推定値)情報、上位層での送信電力関連通知情報(パスロス補償係数、P_o(ターゲット受信レベル値)等)などを用いて、複数ULチャネル(CC毎)の送信電力を計算する。具体的な計算方法は、非特許文献3に記載のPUSCH、PUCCH及びSRSの送信電力計算式などを用いる。送信電力計算部107は、複数ULチャネル(CC毎)の送信電力値を電力スケーリング検出部108及び電力スケーリング制御部109に出力する。
 電力スケーリング検出部108は、送信電力計算部107から出力された複数ULチャネルの送信電力値から複数CC(全ULチャネル)の総送信電力を計算し、計算した総送信電力と、入力されるUE固有の最大送信電力(Pcmax)との比較を行う。総送信電力がUE固有の最大送信電力より小さければ、「電力スケーリングの必要なし」という制御情報を電力スケーリング制御部109に出力する。逆に、総送信電力がUE固有の最大送信電力より大きければ、「電力スケーリングの必要あり」という制御情報を電力スケーリング制御部109に出力する。
 電力スケーリング制御部109では、電力スケーリング検出部108から出力された電力スケーリング発生の有無情報「電力スケーリングの必要なし、または、あり」に従って、「電力スケーリングの必要あり」の場合は各ULチャネル(SRS、PUSCH、PUCCHなど)に対して送信電力のスケーリングを行い、複数ULチャネル(CC)毎の送信電力を決定する。電力スケーリング後の送信電力情報を送信電力設定部112-1~112-Nに出力する。なお、SRSの電力スケーリング方法の詳細は後述する。
 符号化及び変調部110-1~110-Nは、入力されるCC毎のトランスポートブロック(TB:Transport Block)に対して、ターボ符号化等の誤り訂正符号化及びQPSKや16QAM等の所定の変調処理を施して多重部111-1~111-Nに出力する。
 多重部111-1~111-Nは、入力されるピリオディックSRS(上位層の制御情報によってトリガーされた場合)、または、アペリオディックSRS(物理層の制御チャネルのPDCCHによってトリガーされた場合)を変調シンボル系列に多重して送信電力設定部112-1~112-Nに出力する。LTE(LTE-A)では、図3(PUSCHにSRSを時間多重する場合)に示すように、14SC-FDMAシンボルから構成される1サブフレームの最終シンボルだけにSRSが多重されるため、そのような時間軸多重が行えるようにSRSを変調シンボルの後端に多重する。なお、図3では、1サブフレームの中心部分に3シンボル程復調用参照信号(DMRS:DeModulation Reference Symbol)が多重されている場合を示している。
 送信電力設定部112-1~112-Nは、電力スケーリング制御部109から出力された複数ULチャネル(CC)毎の送信電力情報を用いて、各ULチャネル(SRS、PUSCH、PUCCHなど)の送信電力を設定してSC-FDMA変調部113-1~113-Nに出力する。
 SC-FDMA変調部113-1~113-Nは、送信電力設定部112-1~112-Nから出力された送信電力設定後のシンボル系列に対して、DFTを施すことにより、プレコーディングを行う。そして、eNBから指示された所定の周波数リソースにDFTプレコーディング信号をマッピングした後、IDFTで時間領域信号に変換する。最後に、ガードインターバルを付加して合成部114に出力する。
 合成部114は、SC-FDMA変調部113-1~113-Nから出力された複数のSC-FDMA信号を合成し、無線送信処理部115に出力する。
 無線送信処理部115は、合成部114から出力された信号にD/A変換、増幅処理、アップコンバート等の所定のRF処理を施し、アンテナ101より送信する。
 次に、複数SRS同時送信時のSRSに対する電力スケーリング方法1~12について説明する。
 電力スケーリング方法1
 電力スケーリング方法1では、まず、送信電力計算部107において、複数CCの複数ULチャネルの送信電力を計算する。
 次に、電力スケーリング検出部108において、複数CCで送信されるULチャネルの送信電力合計値がUE固有の最大送信電力を超えるか否か(電力スケーリングが発生するか否か)を検出する。
 次に、電力スケーリング制御部109において、Pcell(PCC)及びScell(SCC)を用いて、複数(ピリオディック又はアペリオディック)SRSを同時送信する場合において、電力スケーリングが発生した場合には、同時に送信する複数(ピリオディック又はアペリオディック)SRSの中で、ScellのSRSより、PcellのSRSの送信電力を優先して電力割当を行う。
 図4に、電力スケーリング方法1の概要を示す。図4では、3CC(CC#0~CC#2)において、SRSを同時に送信している。例えば、1サブフレームの最終シンボル位置(図3)において、3CCでSRSだけ送信している。そして、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Scellに設定されているCC#0及びCC#2より、Pcellに設定されているCC#1のSRSに対して送信電力を優先的に割り当てる動作を示している。
 これにより、電力割当優先度の低いSRSのCC(CQI測定誤差が大きくなる確率の高いCC)が、UCIを多重するCCと同一のCCとなる確率を低減できる。例えば、図4に示すように、電力割当優先度の低いScellのCC#0とCC#2が、UCIが多重されるCCと同一のCCとなる可能性を低減できる。従って、UCIが多重される確率の高いPcellの伝搬チャネル品質情報(CQI:Channel Quality Indicator)を電力割当優先度の高いSRSにより高精度に推定でき、eNBは後続のUCIを伝送するULチャネル(例えば、データとUCI多重ありのPUSCH、UCIを多重するPUCCHなど)に対して適切な送信電力(MCS)を指示できる。すなわち、UCIを送信するULチャネルに用いる送信フォーマットを過剰品質にすることなく送信することができる。また、他セルへの同一チャネル干渉、端末の消費電力を不必要に増加させずに伝送することができる。
 電力スケーリング方法2
 電力スケーリング方法2では、電力スケーリング制御部109において、PcellのSRSの送信電力を、CC個別の(各ULチャネルに対する)最大送信電力以下に設定し(CC個別な最大送信電力の条件は満たしつつ)、PcellのSRSの送信電力は保持し(変化させず)、Scellの送信電力を低減することにより、電力スケーリングを行う。
 図5に、電力スケーリング方法2の概要を示す。図5では、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Pcellに設定されているCC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#0及びCC#2のSRSの送信電力を低減させることにより、電力スケーリングを行う動作を示している。
 これにより、PcellのSRSの送信電力を、CC毎(各ULチャネル)の最大送信電力以下にするという条件を満たすことにより、CC毎の他セルへの同一チャネル干渉をある所定値以下に維持でき、各eNBでCC毎のスケジューリングやクロスキャリアスケジューリングを行いやすくできる。また、PcellのSRSの送信電力レベルは確実に保持する(変化させない)ことにより、電力スケーリング方法1の場合と比較して、Pcellの(ピリオディック又はアペリオディック)SRSの伝搬チャネル品質測定を更に高精度に行うことができる。
 つまり、Pcellの受信SRSから求めたPcellの通信品質情報を、端末での電力スケーリングの影響を受けていない情報にすることができる(eNBとUE間で、UEの送信電力に関する誤認識を生じさせない)ため、eNBは、UCIが送信される可能性の高いPcellにおいて、後続するスケジューリング(リソース割当)、送信電力(AMC:Adaptive Modulation channel Coding)制御において、更に適切に動作させることができる。よって、送信電力(AMC)制御などにおいて大きなマージンを取るような消極的な制御を行わなくてもよいという効果が得られる。
 電力スケーリング方法3
 電力スケーリング方法3では、電力スケーリング制御部109において、PcellのSRSの送信電力は保持し(変化させず)、ScellのSRSをドロップする(送信しない、または送信電力=0に設定する)ことにより、電力スケーリングを行う。
 図6に、電力スケーリング方法3の概要を示す。図6では、図4及び図5と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Pcellに設定されているCC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#2のSRSをドロップすることにより、電力スケーリングを行う動作を示している。
 これにより、ScellのSRSをドロップすることにより、電力スケーリング方法1の効果に加えて、CC間での複雑な電力割当制御を簡単化できる。また、LTE-Aでは、SRSを送信する場合は、14シンボルから構成される1サブフレームの最終シンボルだけにSRSが多重されるため、そのシンボルだけをドロップしても、spectrum efficiencyに与える影響は小さい。例えば、1CCだけでSRSを送信する場合においては1/14=7%のインパクトで済む。更に、SRSが送信される頻度(周期)は、例えば、ピリオディックSRSの場合は10msに1回程度であり、データが送信される頻度に比べて大幅に小さいため、spectrum efficiencyに与える影響は更に小さくなる(データの場合、最小1msに1回の伝送が可能である)。
 また、SRSをドロップすることにより、eNBでのSRS受信電力のブラインド検出処理において、端末での電力スケーリング発生を検出しやすくすることができる。これは、複数SRS同時送信時に電力スケーリングが発生した場合に、Scell(SCC)のSRSの送信電力をゼロに設定する(送信しない)ことにより、例えば、eNBは、SRSを受信する区間において雑音レベルと同等の受信SRSレベルしか測定できない場合には、容易に、電力スケーリングが発生したと判断することができるためである。これにより、後続サブフレームの端末への送信電力(MCS)の誤った指示(過剰品質となる指示など)を回避できる。例えば、eNBがSRS受信レベルの大幅な低下(雑音レベルと同等の値)を検出した場合、eNBは、端末に対して、SRSに対する適切な送信電力値を新たに指示すると共に、SRSの再送信(トリガー)を指示することが可能となる。
 なお、本実施の形態においては、複数CCでの複数SRSの同時送信、かつ、電力スケーリングが発生した場合に電力スケーリング方法3を適用することを述べたが、電力スケーリングが発生せずとも、PcellとScellでのSRS同時送信が発生した場合において、ScellのSRSをドロップしてもよい。更に、一律に、複数Scellの全SRSをドロップしてもよい。図7では、CC#0~CC#2で同時にSRSを送信する場合において、ScellのCC#0とCC#2の2つのSRSをドロップする場合を示している。これにより、CC間での電力割当処理に必要な演算を省略でき、上記と同様の効果を得つつ、LTE-Aの商用化において不可欠な、電力スケーリングに関する端末(又はeNB)のテスト工数を大幅に削減できる。
 また、ScellでピリオディックSRSとアペリオディックSRSが送信される場合には、アペリオディックSRSよりピリオディックSRSを優先的にドロップしてもよい。また、この方法を、(A)複数CCでの複数SRSの同時送信、かつ、電力スケーリングが発生した場合、また、(B)電力スケーリングが発生せず、かつ、PcellとScellでのSRS同時送信が発生した場合、どちらの場合に適用してもよい。
 アペリオディックSRSは、LTE-Aで新たに導入されるSRSであり、eNBが新しい品質情報を低遅延で測定するために、物理層のダウンリンク制御チャネルであるPDCCHによってトリガーされる。一方、ピリオディックSRS(の送信周期、トリガー、タイマー等)は、上位層のシグナリングでconfigurationされるため、低速な制御しか行うことができない。従って、このアペリオディックSRSの特長(SRSを用いたCQI測定に関するeNBの直近の判断)を電力スケーリング処理に反映しつつ、上記と同様の効果が得られる。また、上記(B)の場合においては、電力スケーリングに関する端末(又はeNB)のテスト工数を削減できるという効果が得られる。
 図8は、同一サブフレームの同一シンボル位置(例えば、サブフレームの最終シンボル位置)において、ScellのCC#0にアペリオディックSRSがトリガーされ、ScellのCC#2にピリオディックSRSがトリガーされ、PcellのCC#1では何も送信されない場合において、ScellのCC#2におけるピリオディックSRSがドロップされる様子を示している。
 電力スケーリング方法4
 電力スケーリング方法4では、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、(PcellのSRSの送信電力は保持し(変化させず))送信電力が小さい(又は最小の)ScellのSRS送信電力から順番に、送信電力を低減(ドロップ、送信電力=0設定(送信しない))する。
 図9に、電力スケーリング方法4の概要を示す。図9では、図4及び図5と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。また、電力スケーリング前のScellのSRSの送信電力は、CC#0のSRSよりCC#2のSRSの方が大きい。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、送信電力が小さい(又は最小の)Scellに設定されている送信CC#0のSRSを優先的にドロップすることにより、電力スケーリングを行う。
 これにより、送信電力が小さいSRSほど、eNBにおいて受信可能なSRS検出レベル(例えば、eNBでの雑音レベル)を下回る可能性が高いため、Scellの送信電力が小さいSRSの送信電力を優先的に低減することで、Pcellでの高精度品質測定を維持しつつ、送信電力を低減しないScellのSRSを用いた測定精度を維持できる。
 電力スケーリング方法5
 電力スケーリング方法5では、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、(PcellのSRSの送信電力は保持し(変化させず))Scellの複数SRS送信電力を一様に低減(同一の送信電力値の低減、同一のスケーリング(ウェイト)を適用)する。
 図10に、電力スケーリング方法5の概要を示す。図10では、上記と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Scellに設定されているCC#0及びCC#2の送信電力を一様に低減している様子を示している。一様に送信電力を低減する方法としては、同一の送信電力値(真値、デシベル値)の低減、同一の(LTE-Aで適用される)スケーリング(ウェイト)を適用する方法などを用いてもよい。なお、SRSの送信電力低減に用いるスケーリングウェイトとして、SRS用のスケーリングウェイトを用いてもよいし、他のULチャネル(例えば、PUSCH)と同一のスケーリングウェイトをSRSに用いてもよい。なお、スケーリングウェイトは、eNBから端末へ事前に通知するパラメータである。
 これにより、Pcellでの高精度品質測定を維持しつつ、CC間での複雑な電力割当制御を簡単化できる。
 電力スケーリング方法6
 電力スケーリング方法6では、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、Scellの全SRS(ScellのSRSを一律に)ドロップする(送信しない、または送信電力=0に設定)。
 図11に、電力スケーリング方法6の概要を示す。図11では、上記と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Scellに設定されているCC#0及びCC#2のSRSを一律にドロップする様子を示している。
 これにより、上記電力スケーリング方法3と同様の効果を得つつ、CC間での複雑な電力割当制御を簡単化できる。また、LTE-Aの商用化において、不可欠な端末(又はeNB)のテスト工数を大幅に削減できる。例えば、複数ScellのSRSの全ての送信組合せに対してテストを行うための仕様などを決定しなければならないが、そのテスト自体、テスト仕様の策定の工数自体を削減することができる。
 なお、Scellに複数SRSがある場合に、一律に全てのSRSをドロップせずに、CC(cell)番号の順(昇順/降順)にドロップしてもよい。
 電力スケーリング方法7
 電力スケーリング方法7では、電力スケーリング制御部109は、複数SRSの中で最大送信電力を有するSRSの送信電力から、ScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSの送信電力を低減又はドロップする(送信しない、または送信電力=0に設定)。
 図12に、電力スケーリング方法7の概要を示す。図12では、上記と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、複数SRSの中で最大送信電力を有するSRSの送信電力と、ScellのSRS送信電力との差が所定の閾値以上の場合に、ScellのSRSをドロップする様子を示している。図12では、ScellのCC#2のSRSが、PcellのCC#1のSRSの最大送信電力から所定値以上の場合に該当している。
 CC間でのSRSの送信電力差が大きい場合、送信電力の大きいCCのSRSの相互変調歪が、異なるCCのSRSの送信電力より大きくなる場合が生じる。この相互変調歪は、送信フィルタで取り除くことができない。すなわち、このような場合にそのまま送信してしまうと、eNBは相互変調歪の影響を受けたSRSで該当CCの通信品質を測定してしまい、正しいスケジューリング、送信電力制御ができない。従って、SRSの最大送信電力からScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSをドロップすることにより、上記課題を回避することができる。
 なお、閾値の設定方法として、パスロス(測定)値等に応じて適応的にその値を変化させてもよい。
 また、基準値として、複数SRSの最大送信電力を有するSRSの送信電力ではなく、同時送信ULチャネル中で最大送信電力を有するチャネルの送信電力としてもよい。これにより、同様の効果が得られる。
 電力スケーリング方法8
 電力スケーリング方法8では、電力スケーリング制御部109は、ScellのSRS送信電力がある閾値以下の場合に、ScellのSRSの送信電力を低減又はドロップする(送信しない、または送信電力=0に設定)。
 図13に、電力スケーリング方法8の概要を示す。図13では、上記と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、複数SRSの中で、ScellのSRS送信電力がある閾値以下の場合に、ScellのSRSをドロップする様子を示している。
 CCのSRSの送信電力が小さすぎる場合には、端末(送信側)のD/A(Digital/Analog)変換器の解像度において、送信信号を正しく表現することができなくなる。しかしながら、閾値を導入し、閾値以下の送信電力を有するSRSをドロップすることにより、無駄な送信処理(低い送信電力値まで考慮(カバー)したD/Aの複雑な設計)を回避することができる(無駄な送信電力の消費を回避することができる)。
 電力スケーリング方法9
 電力スケーリング方法9では、電力スケーリング制御部109は、ピリオディックSRSの送信周期の長さに応じて、ドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)CCのSRSを選択する。具体的には、送信周期が長いピリオディックSRSを優先的にドロップするCCのSRSとして選択するか、または、送信周期が短いピリオディックSRSを優先的にドロップするCCのSRSとして選択する。
 送信周期が長いSRSを優先的にドロップするCCのSRSとして選択する場合、電力スケーリング方法3と同様の効果を維持しつつ、短区間チャネル変動に優先的に追随し、短区間フェージング変動に応じた適応変復調(AMC:Adaptive Modulation and channel Coding)、時間-周波数領域スケジューリングを高精度に制御することが可能となり、UE個別のスループット、マルチユーザダイバーシチによるシステムスループットを改善することができる。
 また、送信周期が短いSRSを優先的にドロップするCCのSRSとして選択する場合、電力スケーリング方法3と同様の効果を維持しつつ、長区間のチャネル測定精度を高精度化することが可能となり、データ及び制御情報を送信するのに用いるCCの選択を適応的に行う、クロスキャリアスケジューリング制御を高精度に行うことが可能となる。
 電力スケーリング方法10
 電力スケーリング方法10では、電力スケーリング制御部109は、SRSの帯域幅に応じて、ドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)CCのSRSを選択する。具体的には、狭い帯域幅を有するSRSより、広い帯域幅を有するSRSを優先的にドロップするか、または、広い帯域幅を有するSRSより、狭い帯域幅を有するSRSを優先的にドロップする。
 狭い帯域幅を有するSRSより、広い帯域幅を有するSRSを優先的にドロップする場合、以下の効果が得られる。LTE-A(LTE)のULチャネル(PUSCH及びSRS等)の送信電力は、送信帯域幅と電力スペクトラム密度(PSD:Power Spectrum Density)によって決定される。従って、総送信電力の大きさへ与える影響が大きい帯域幅の広いSRSの送信電力割当優先度を低くすることにより、できるだけ少ないドロップSRS数を可能とする。例えば、複数CCでのSRS総帯域幅がBという条件下で、1CCのSRSの帯域幅がBの場合と、2CCで各CCのSRS帯域幅がB/2の場合を比較した場合、1CCのSRSの帯域幅がBを優先的にドロップするほうが、ドロップするCC数を削減できる。これは、データや制御情報などを伝送するCCを選択するために、SRSを用いてできるだけ多くのCCのサウンディング(sounding)を行う場合に、非常に有用である。また、帯域幅が広いほど相互変調歪の広がりも大きくなるため、帯域幅が広いSRSの電力割当優先度を低くすることにより、他CCへの広範囲にわたる帯域外漏洩電力(相互変調歪)の影響を軽減できる。
 なお、ここで、帯域幅の判定に閾値を導入し、SRS間の帯域幅、又は、それらの差が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
 また、CC毎の帯域幅とSRS帯域幅の比(例えば、SRS帯域幅/CC毎の帯域幅)が大きいほど、該当するCCのSRSの電力割当優先度を下げてもよい。
 一方、広い帯域幅を有するSRSより、狭い帯域幅を有するSRSを優先的にドロップする場合、以下の効果が得られる。1CC内だけの広い帯域幅にわたって伝搬チャネルの測定を行い、品質のよい周波数リソースに割り当てを行う場合において、広範囲の周波数帯の測定を一度に実施することができる。
 なお、ここで、帯域幅の判定に閾値を導入し、SRS間の帯域幅、又は、それらの差が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
 また、CC毎の帯域幅とSRS帯域幅の比(例えば、SRS帯域幅/CC毎の帯域幅)が小さいほど、該当するCCのSRSの電力割当優先度を下げてもよい。
 電力スケーリング方法11
 電力スケーリング方法11では、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、複数ScellのSRSの中で、物理層の制御チャネルPDCCHに含まれる制御情報(UL又はDLグラント)、または、上位層のシグナリングで通知された(される)制御情報でUCIがトリガーされた(される)CCのSRS電力割当優先度を高くする。例えば、アペリオディックCSI等のUCIがトリガーされた、CCのSRS電力割当優先度を高くする。反対に、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、物理層の制御チャネルPDCCHに含まれる制御情報(UL又はDLグラント)、または、上位層のシグナリングで通知された(される)制御情報でUCIがトリガーされない(されていない)CCのSRS電力割当優先度を低くする(優先的にドロップする、送信電力を低減する、送信停止、または送信電力をゼロに設定する)。例えば、ULグラントでアペリオディックCSI等のUCIがトリガーされない(されていない)CCのSRS電力割当優先度を低くする。
 図14に、電力スケーリング方法11の概要を示す。図14では、Scellの2CC(CC#0、CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される2CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、2Scellの2SRSの中で、ULグラントでアペリオディックCSI等のUCIがトリガーされた(される)CCのSRS電力割当優先度を高くする。図14では、ScellのCC#2において、過去のサブフレームにおいて、UCIがトリガーされており、CC#0はUCIがトリガーされていない場合を示している。
 これにより、電力スケーリング方法1及び電力スケーリング方法3と同様の効果を、複数Scell(SCC)の中で得ることができる。
 なお、トリガーされたScellはある所定の期間、その優先度を保持してもよい。また、新たに別CCでUCIがトリガーされるまでその優先度を維持してもよい。また、UCIがトリガーされたScellが複数ある場合は、直近のトリガー情報に従って、SRSの電力スケーリングを行ってもよい。また、UCIがトリガーされたScellが複数あり、同一時点でそれらがトリガーされた場合は、UL CC ID番号(昇順・降順)に応じて電力スケーリング優先度を決定してもよい。
 電力スケーリング方法12
 電力スケーリング方法12では、電力スケーリング制御部109は、高いPSDを有するSRSより、低いPSDのSRSを優先的にドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)。
 CC間でのSRSのPSDの差が大きい場合、PSDの大きいCCのSRSの相互変調歪が、異なるCCのSRSのPSDより大きくなる場合が生じる。この相互変調歪は、送信フィルタで取り除くことができない。すなわち、このような場合にそのまま送信してしまうと、eNBは相互変調歪の影響を受けたSRSで該当CCの通信品質を測定してしまい、正しいスケジューリング、送信電力制御ができない。この課題に対して、相互変調歪みの影響を受けにくい高いPSDを持つSRSだけを送信することにより、該当CCを精度よく測定できる。
 図15に、電力スケーリング方法12の概要を示す。図15では、Scellの2CC(CC#0、CC#1)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はScellに設定されている。図15では、高調波歪(相互変調歪み)を点線で示している。このような状況下において、相互変調歪みの影響を受けやすい低いPSDを持つSRSをドロップする。
 なお、PSDの値を計算するのに関連する(PUSCH、SRS)送信電力制御パラメータに基づいてもよい。例えば、TPCコマンド累積値、トランスポートブロックサイズ、MCSレベルに関連するオフセットパラメータ(TF)、PUSCHの送信電力に対するSRSオフセット値、1RE当たりのビット数(TBサイズ/割当RE数)など、これらの値が大きいほど、高いPSDを有するSRSとなるため、これらの値に基づいて、ドロップするSRSを選択してもよい。また、割当RE(Resource Element)数、または、割当サブキャリア数が少ないほど、高いPSDを有するSRSとなるため、これらの値に基づいて、ドロップするSRSを選択してもよい。
 また、PSDや、上記各パラメータに対して、閾値を導入し、それらの値が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
 このように、実施の形態1によれば、Pcell及びScellを用いて複数SRSを同時送信する際、電力スケーリングが発生した場合、ScellのSRSよりPcellのSRSを優先して送信電力割当を行うことにより、電力割当優先度の低いSRSのCCが、UCIを多重するCCと同一のCCとなる確率を低減することができる。よって、UCIが多重される確率の高いPcellの伝搬チャネル品質情報を電力割当優先度の高いSRSにより高精度に推定することができ、eNBは後続のUCIを伝送するULチャネルに対して適切な送信電力を指示することができる。
 なお、上記では、CC間の場合について説明したが、CC内の複数SRSに上記方法を適用してもよい。
 また、上記各電力スケーリング方法を組み合わせて使用してもよい。
 また、上記複数Scellの複数SRSへの適用を前提に述べた方法を、Pcellに複数SRS、複数Pcellに複数SRSが存在する場合には、同様に適用することができる。
 また、上記した、電力割当優先度の低いSRSの送信電力を低減する方法として、eNBから端末へ(上位レイヤのシグナリングで)通知されるSRS用のスケーリングウェイトを用いて、送信電力を低減してもよい。w_Pcell_SRSをPcellのSRSに適用するスケーリングウェイト、w_Scell_SRSをScellのSRSに適用するスケーリングウェイトとした場合、w_Pcell_SRS>w_Scell_SRSと設定(定義)すればよい。また、w_Pcell_SRS=1、w_Scell_SRS<1と定義してもよい。
 また、上記では、電力スケーリング発生時の、複数(ピリオディック又はアペリオディック)SRS間の優先度に関して述べたが、(ピリオディック/アペリオディック)SRSと他ULチャネル(PUCCH、PUSCH等)間の電力優先度に関しては、以下に述べる方法を用いればよい。
 電力スケーリング方法13
 電力スケーリング方法13では、(ピリオディック/アペリオディック)SRSとPUCCHを同時送信する場合、Rel.8 LTEにおいて、20MHz等の帯域を有する1CCだけでの運用である。1CC内でのSRSとPUCCHの同時送信時には、送信信号のPAPR(Peak-to-Average Power Ratio)の増加(マルチキャリア送信)を避けるため、PUCCHに対しては、レートマッチングにより1サブフレームの最終SC-FDMAシンボルを送信しないshorten formatのPUCCHが用いられ、1サブフレームの最終SC-FDMAシンボルでは、ピリオディックSRSだけが送信される(図16参照)。
 一方、複数CCを用いるLTE-Aでは、PUCCHを送信するCCとSRSを送信するCCの複数CCでの同時送信の導入の検討が行われている。従って、1サブフレームの最終SC-FDMAシンボルでのCC間でのPUCCHとSRSの同時送信時に、UE個別の最大送信電力を超えた場合においては、電力スケーリングを行う必要がある。すなわち、PUCCHとSRSの電力割当優先度を決める必要がある。
 非文献文献1において、以下に示すような電力スケーリング発生時の優先度が記載されている。
   PUCCH>SRS>PUSCH
 しかしながら、非文献文献1には、(ピリオディック/アペリオディック)SRSとPUCCHを同時送信する場合において、以下に示す課題がある。すなわち、PUCCHの送信電力よりSRSの送信電力の電力割当優先度を低くするというルールに基づき、UE個別の最大送信電力を満たすように、SRSの送信電力を(中途半端に)低減した場合、上記したように、eNBは端末の電力スケーリングがいつ発生したか等の情報を基本的には持ち合わせない。このため、SRSの受信レベル低下理由を、端末での電力スケーリングの発生ではなく、時間的に変動しやすい移動通信の伝搬チャネルの品質が劣悪になったと誤認識する。そして、後続の(UCIが多重された)PUSCH等のULチャネルの伝送において、所定受信品質を満たすのに必要な値以上の大きな送信電力値(低いMCS値)を用いるように通知してしまう。つまり、この場合、後続のPUSCH等のULチャネルにおいて、過剰な品質のULチャネルの伝送が行われてしまう(送信電力を大きくするように指示した場合は、他セルへの同一チャネル干渉を増加させてしまう。また、端末の消費電力を不必要に増加させてしまう等の新たな課題を引き起こす)。
 そこで、(ピリオディック/アペリオディック)SRSとPUCCHを同時送信する場合の電力スケーリング方法では、電力スケーリング制御部109において、PcellのPUCCHの送信電力は保持し(変化させず)、ScellのSRSをドロップする(送信しない、または送信電力=0に設定する)ことにより、電力スケーリングを行う。
 図17に、電力スケーリング方法13の概要を示す。図17では、CC#0では送信なし、CC#1ではPUCCH、CC#2ではSRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信されるPUCCHとSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Pcellに設定されているCC#1のPUCCH電力は維持し(変化させずに)、Scellに設定されているCC#2のSRSをドロップすることにより、電力スケーリングを行う動作を示している。
 図18に、PUCCHとSRSを異なるCC間で同時送信する場合の送信機構成を示す。図18では、符号化及び変調部110-1にPUCCH上で送信する制御情報(ACK/NACK、CQI等)が入力され、上記実施例と同様に処理が行われ、送信電力設定部112-1において、電力スケーリング制御部109から入力された情報に基づいてPUCCHの送信電力が設定される。以降の処理(図2の場合)は上記と同じため省略する。また、SRSが送信されるCCでは、送信電力設定部112-NにSRSが入力され、電力スケーリング制御部109から入力された情報に基づいてSRSの送信電力が設定される。
 これにより、ScellのSRSをドロップすることにより、電力スケーリング方法3と同様の効果が得られるのに加えて、CC間での複雑な電力割当制御を簡単化できる。また、上記と同様にテスト工数を削減することもできる。
 また、LTE-Aで新たに導入される、物理層の制御チャネルPDCCHで通知されるアペリオディックSRSのトリガー情報をUEがmiss detectionした場合には、UEはSRSを送信しない(該当CC(リソース)での送信電力=0)。すなわち、電力スケーリング発生した場合とUEのmiss detectionが発生した場合とを、等価的に同じUE動作にすることができる(簡略化できる)。従って、電力スケーリングが発生した場合及びUEのmiss detectionが発生した場合の両方の場合に対して、eNBでのSRS受信電力のブラインド検出処理において、例えば、eNBは、SRSを受信する区間において雑音レベルと同等の受信SRSレベルしか測定できない場合には、eNBは、端末に対して、SRSに対する適切な送信電力値を新たに指示すると共に、SRSを再送信(トリガー)する指示を行うという1つの動作で対応することが可能となる。
 なお、複数Scellに複数SRSがある場合においては、Scellの全てのSRSをドロップしてもよい。また、上記の複数Scellに複数SRSがある場合の電力スケーリング方法を、適用してもよい。
 なお、上記では、SRSとPUCCHを同時送信する場合において、電力スケーリングが発生する場合に関して述べたが、発生しない場合においては、SRSとPUCCHを複数CC間で同時送信すればよい。
 電力スケーリング方法14
 電力スケーリング方法14では、(ピリオディック/アペリオディック)SRSとPUSCHを同時送信する場合、Rel.8 LTEにおいて、20MHz等の帯域を有する1CCだけでの運用であるため、1CC内でのSRSとPUSCHの同時送信時には、送信信号のPAPR(Peak-to-Average Power Ratio)の増加(マルチキャリア送信)を避けるため、PUSCHに対しては、レートマッチング(パンクチャリング)により1サブフレームの最終SC-FDMAシンボルを送信しないPUSCHが用いられ、1サブフレームの最終SC-FDMAシンボルでは、ピリオディックSRSだけが送信される(図19参照)。
 一方、複数CCを用いるLTE-Aでは、PUSCHを送信するCCとSRSを送信するCCの複数CCでの同時送信の導入が検討されている。従って、1サブフレームの最終SC-FDMAシンボルでのCC間でのPUSCHとSRSの同時送信時に、UE個別の最大送信電力を超えた場合においては、電力スケーリングを行う必要がある。すなわち、PUSCHとSRSの電力割当優先度を決める必要がある。
 上記したように、非文献文献1において、以下に示すような電力スケーリング発生時の優先度が記載されている。
   PUCCH>SRS>PUSCH
 しかしながら、(ピリオディック/アペリオディック)SRSとPUSCHを同時送信する場合おいて、非文献文献1には以下に示す課題がある。すなわち、SRSの送信電力よりPUSCHの送信電力の電力割当優先度を低くするというルールに基づき、UE個別の最大送信電力を満たすようにPUSCHの送信電力を(中途半端に)低減した場合、PUSCHで送信するデータ(又は、制御情報)に16QAMや64QAM等の多値振幅変調を用いる場合においては、eNBは電力スケーリングされた多値振幅変調を正しく受信できない確率が増加する。例えば、電力スケーリングにより、送信時点においてすでに、電力スケーリングされた多値変調信号の変調精度、EVM(Error Vector Magnitude)が所定条件を満たしていなくなる確率が増加する。また、例えば、16QAM等の多値振幅変調は振幅(電力の平方根)に情報を載せているが、上記したように、eNBは端末の電力スケーリングがいつ発生したか等の情報を基本的には持ち合わせないため、eNBは、PUSCHが電力スケーリングされていないものと仮定して復調及び復号するため、正しく受信できなくなる確率も増加する。
 そこで、(ピリオディック/アペリオディック)SRSとPUSCHを同時送信する場合の電力スケーリング方法14では、電力スケーリング制御部109において、PUSCHの送信電力は保持し(変化させず)、(Scellの)SRSの送信電力をドロップする(送信しない、または送信電力=0に設定する)ことにより、電力スケーリングを行う。
 これにより、SRSをドロップすることにより、電力スケーリング方法3と同様の効果が得られるのに加えて、CC間での複雑な電力割当制御を簡単化できる。また、上記と同様にテスト工数を削減することもできる。また、PUSCHの上記問題が発生することを回避でき、16QAM等の多値振幅変調も正しく送信できる確率が増加する。
 図20に、電力スケーリング方法14の概要を示す。図20では、CC#0では送信なし、CC#1ではPUSCH(with UCI)、CC#2ではSRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信されるPUSCH(with UCI)とSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、CC#1のPUSCH(with UCI)電力は維持し(変化させずに)、Scellに設定されているCC#2のSRSをドロップすることにより、電力スケーリングを行う動作を示している。
 上記電力スケーリング方法14は、PUSCHにUCIを多重する場合、すなわち、UCI多重ありのPUSCHと(ピリオディック/アペリオディック)SRSを同時送信する場合の電力スケーリング方法として用いるのが望ましい。これにより、再送に適用されない重要度の高いUCIを正しくeNBに伝送できる確率を高めることができる。
 電力スケーリング方法15
 PUSCHにUCIを多重しない場合においては、電力スケーリング方法14とは反対に、(ピリオディック/アペリオディック)SRSとPUSCHを同時送信する場合の電力スケーリング方法15として、電力スケーリング制御部109において、SRSの送信電力は保持し(変化させず)、PUSCHの送信電力をドロップする(送信しない、または送信電力=0に設定する)ことにより、電力スケーリングを行ってもよい。UCI多重なしのPUSCH、つまり、再送が適用されるUCI多重なしのPUSCHに対しては、SRSの優先度を高めてもよい。これにより、シンプルなCC間での電力割当処理を行いつつ、上記方法3と同様にSRSの測定精度を高められる。
 図21に、電力スケーリング方法15の概要を示す。図21では、CC#0では送信なし、CC#1ではSRS、CC#2ではPUSCH(without UCI)を同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信されるPUSCH(without UCI)とSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、CC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#2のPUSCH(without UCI)をドロップすることにより、電力スケーリングを行う動作を示している。
 なお、(ピリオディック/アペリオディック)SRSとUCI多重ありPUSCHを同時送信する場合には、電力スケーリング方法14を、(ピリオディック/アペリオディック)SRSとUCI多重なしPUSCHを同時送信する場合には、電力スケーリング方法15を、切り替えて使用してもよい。換言すると、図20に示すように、PcellでPUSCH with UCIを送信し、ScellでSRSを送信する場合には電力スケーリング方法14を用い、図21に示すように、PcellでSRSを送信し、ScellでPUSCH without UCIを送信する場合には電力スケーリング方法15を用いればよい。これにより、UCIの高品質な伝送を維持しつつ、上記電力スケーリング方法3と同様にSRSの測定精度を高めることができる。
 なお、上記では、SRSとPUSCHを同時送信する場合において、電力スケーリングが発生する場合に関して述べたが、発生しない場合においては、SRSとPUSCHを複数CC間で同時送信すればよい。
 また、上記各電力スケーリング方法を組み合わせて使用してもよい。
 (実施の形態2)
 実施の形態1では、複数アップリンクチャネル(SRS、PUSCH、PUCCH等)を同時送信する場合において、複数CC(cell)で送信される複数アップリンクチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合の電力スケーリング方法を述べた。しかしながら、実施の形態1に記載の全ての電力スケーリング方法は、複数CC(cell)で送信される複数アップリンクチャネルの送信電力合計値がUE固有の最大送信電力を超えない場合、かつ、複数cell(例えば、Pcell及び複数Scell)、又は、複数CC(例えば、PCC及び複数SCC)での複数アップリンクチャネル同時送信(SRSの同時送信、SRSとPUSCHの同時送信、SRSとPUCCHの同時送信など)が発生した場合にも用いることができる。
 実施の形態2では、複数cell(例えば、Pcell及び複数Scell)、又は、複数CC(例えば、PCC及び複数SCC)で複数アップリンクチャネル同時送信(SRSの同時送信、SRSとPUSCHの同時送信、SRSとPUCCHの同時送信など)が発生した場合における、実施の形態1に記載の電力スケーリング方法に関して改めて詳述する。
 まず、実施の形態2の背景を簡単に述べる。
 端末からの複数ULチャネルの送信信号の増幅のために、各ULチャネルに対して1つの増幅器(PA:Power Amplifier)を用い、複数のPAを端末に搭載すると、端末のコストを増加させ、また、端末の小型化を妨げる(端末サイズを増加させる)要因となるため、複数ULチャネル(CC、Cell、搬送波、周波数帯域など)を1つのPAでカバー、即ち、複数のULチャネルの送信信号を1つのPAで増幅するという端末の実装方法も用いられる。この場合、複数のULチャネルの同時送信(マルチキャリア送信)信号の大きなPAPR(Peak-to-Average Power Ratio)が、電力(電圧)の入出力特性に非線形性を有するPAに大きな影響を与える。例えば、PAの電力効率を劣化させる。または、増幅後の信号に大きな非線形歪を発生させる。特に、大きな送信電力を必要とする、送信電力に余力のない(PHR(Power Head Room)の値が小さい)セルエッジ端末などへの影響が大きい。
 従って、複数ULチャネルの同時送信時に、複数ULチャネルの送信信号がPAへ与える影響を和らげる(送信信号のPAPRの増加を避ける)ため、複数ULチャネルの中で、あるULチャネルの送信電力を低減する方法、送信しないULチャネルを設定する方法が用いられる。即ち、複数cell(例えば、Pcell及び複数Scell)、又は、複数CC(例えば、PCC及び複数SCC)での複数アップリンクチャネル同時送信(SRSの同時送信、SRSとPUSCHの同時送信、SRSとPUCCHの同時送信など)が発生した場合に、複数ULチャネルに対して電力スケーリングを適用する。
 従って、複数CC(cell)で送信される複数アップリンクチャネルの送信電力合計値がUE固有の最大送信電力を超えない場合においても、複数cell、又は、複数CCでの複数アップリンクチャネル同時送信が発生した場合には、上記した実施の形態1と同様の課題が発生する。つまり、上記非特許文献1に開示の技術では、以下に示す課題がある。すなわち、複数ピリオディックSRSを複数CCで同時送信する際に、電力スケーリングを適用する場合の電力割当優先度に、再送が適用されない、重要度の高いUCIを多重するCC選択方法の影響が考慮されていない。UCIは、低遅延で端末からeNBに通知する必要があるため、1回の送信での伝送だけがサポートされる。
 従って、上記非特許文献1に開示の技術に基づいて設定された電力割当優先度の低いCC(eNBでの、CQI測定誤差が大きくなる(測定精度が悪くなる)可能性の高いCC)がUCIを多重するCCに該当する場合、該当CCでは、電力スケーリング(送信電力が低減)されたSRSを用いて導出された通信品質(例えば、SINR:Signal-to-Interference plus Noise power Ratio)測定誤差が大きい(測定精度が悪い)ため、eNBは後続のサブフレームで伝送するUCIに対して適切な送信電力(または、MCS:Modulation and channel Coding Scheme)値を通知できない。
 例えば、複数SRSの複数CCでの同時送信時に、UEが、上記非特許文献1に開示の技術に基づいて、あるUL CC ID番号の小さいCCのSRSに対して電力スケーリング(送信電力の低減)を行った場合、eNBは、受信レベルが低下した受信SRSを用いて該当CCの通信品質を測定する。
 しかしながら、eNBはSRSの受信レベル低下理由を、端末での電力スケーリングの影響ではなく、時間的に変動しやすい移動通信の伝搬チャネルの品質が劣悪になったと誤認識する可能性がある。また、各ULチャネル用の送信電力制御によって、受信品質測定のために必要な所定の要求条件値を満たすように、正しく送信電力が制御されているSRSに対して、電力スケーリング(送信電力の低減)を行った場合、その要求条件を満たさなくなる。
 従って、eNBは、誤認識した、または、所定の要求値を満たしていない受信SRSから得られた通信品質測定値を用いて、後続の、PUSCH等のULチャネルの伝送に対して、所定受信品質を満たすのに必要な値以上の大きな送信電力値(低いMCS値)を用いるように端末に通知してしまう。つまり、この場合、後続のPUSCH等のULチャネルにおいて、過剰な品質のULチャネルの伝送が行われてしまう(送信電力を大きくするように指示した場合は、他セルへの同一チャネル干渉を増加させてしまう。また、端末の消費電力を不必要に増加させてしまう等の新たな課題を引き起こす)。特に、eNBが所定の要求値を満たしていない受信SRSから得られた通信品質測定値を用いて、重要度の高いUCIが多重されたPUSCHやPUCCHに対して適切ではない送信電力値(MCS値)を通知した場合には、UCIには再送が適用されないため、システムの制御に大きな影響を与える。
 つまり、実施の形態1と同様の課題が発生する。従って、実施の形態2でも、上記した着眼点に基づいて、実施の形態1と同様の電力スケーリング方法の発明をなすに到った。
 以下、図2を用いて、実施の形態2の端末100の構成および処理について説明する。ただし、実施の形態1と実施の形態2の相違する点に焦点を当てて説明する。
 制御情報抽出部106までの一連の処理は、実施の形態1と同様の処理が行われ、制御情報抽出部106は、チャネル復号部105から出力された信号から、ULグラント(UL grant)情報(割当帯域幅、MCSセット、PUSCHやSRSやPUCCH等の送信電力情報(TPC command、MCS等の送信フォーマット依存値ΔTF、SRS用のオフセット値PSRS_offset等)、アペリオディックSRSトリガー情報など)、DLグラント(DL grant)情報(PUCCH等の送信電力情報、アペリオディックSRSトリガー情報など)、UCI要求(トリガー)情報、Pcell/Scell、PCC/SCCなどのCC/cell情報等、制御情報を抽出して送信電力計算部107に出力する。
 送信電力計算部107は、制御情報抽出部106から出力された制御情報、CC個別(各ULチャネル)最大送信電力(PAのパワクラス、MPR等)、パスロス(推定値)情報、上位層での送信電力関連通知情報(パスロス補償係数、P_o(ターゲット受信レベル値)等)などを用いて、複数ULチャネル(CC毎)の送信電力を計算する。具体的な計算方法は、非特許文献3に記載のPUSCH、PUCCH及びSRSの送信電力計算式などを用いる。送信電力計算部107は、複数ULチャネル(CC毎)の送信電力値を電力スケーリング検出部108及び電力スケーリング制御部109に出力する。
 電力スケーリング検出部108は、送信電力計算部107から出力されたULチャネルの送信電力値が複数あるか否かの検出を行う(複数ULチャネルの同時送信が発生するか否かを検出する)。ULチャネルの送信電力値が複数ない(単数の)場合は、「電力スケーリングの必要なし」という制御情報を電力スケーリング制御部109に出力する。逆に、ULチャネルの送信電力値が複数ある場合は、「電力スケーリングの必要あり」という制御情報を電力スケーリング制御部109に出力する。
 電力スケーリング制御部109では、電力スケーリング検出部108から出力された電力スケーリング発生の有無情報「電力スケーリングの必要なし、または、あり」に従って、「電力スケーリングの必要あり」の場合は各ULチャネル(SRS、PUSCH、PUCCHなど)に対して送信電力のスケーリングを行い、複数ULチャネル(CC)毎の送信電力を決定する。電力スケーリング後の送信電力情報を送信電力設定部112-1~112-Nに出力する。なお、SRSの電力スケーリング方法の詳細は後述する。
 以降の処理(図2の場合)、符号化及び変調部110-1~110-Nから無線送信処理部115までの一連の処理は、実施の形態1と同じため省略する。SRSが送信されるCCでは、送信電力設定部112-1~112-NにSRSが入力され、電力スケーリング制御部109から入力された情報に基づいてSRSの送信電力が設定される。
 複数SRS同時送信時のSRSに対する電力スケーリング方法1-A~12-Aについて説明する。
 電力スケーリング方法1-A
 電力スケーリング方法1-Aでは、まず、送信電力計算部107において、複数CCの複数ULチャネルの送信電力を計算する。
 次に、電力スケーリング検出部108において、複数CCで送信されるULチャネルの送信電力値が複数あるか否かの検出を行う(複数ULチャネルの同時送信が発生するか否かを検出する)。すなわち、電力スケーリングが発生するか否かを検出する。
 次に、電力スケーリング制御部109において、Pcell(PCC)及びScell(SCC)を用いて、複数(ピリオディック又はアペリオディック)SRSを同時送信する場合において、電力スケーリング(複数ULチャネルの同時送信)が発生した場合には、同時に送信する複数(ピリオディック又はアペリオディック)SRSの中で、ScellのSRSより、PcellのSRSの送信電力を優先して電力割当を行う。
 図4に、電力スケーリング方法1-Aの概要を示す。図4では、3CC(CC#0~CC#2)において、SRSを同時に送信している。例えば、1サブフレームの最終シンボル位置(図3)において、3CCでSRSだけ送信している。そして、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数SRSチャネルの同時送信が発生する)場合、Scellに設定されているCC#0及びCC#2より、Pcellに設定されているCC#1のSRSに対して送信電力を優先的に割り当てる動作を示している。
 これにより、電力割当優先度の低いSRSのCC(CQI測定誤差が大きくなる確率の高いCC)が、UCIを多重するCCと同一のCCとなる確率を低減できる。例えば、図4に示すように、電力割当優先度の低いScellのCC#0とCC#2が、UCIが多重されるCCと同一のCCとなる可能性を低減できる。従って、UCIが多重される確率の高いPcellの伝搬チャネル品質情報(CQI:Channel Quality Indicator)を電力割当優先度の高いSRSにより高精度に推定でき、eNBは後続のUCIを伝送するULチャネル(例えば、データとUCI多重ありのPUSCH、UCIを多重するPUCCHなど)に対して適切な送信電力(MCS)を指示できる。すなわち、UCIを送信するULチャネルに用いる送信フォーマットを過剰品質にすることなく送信することができる。また、他セルへの同一チャネル干渉、端末の消費電力を不必要に増加させずに伝送することができる。つまり、eNBは、所定の要求値を満たしたPcellの受信SRSから得られた通信品質測定値を用いて、重要度の高いUCIが多重されたPUSCHやPUCCHに対して適切な送信電力値(MCS値)を通知でき、再送が適用されないUCIを正しく伝送することができる。
 電力スケーリング方法2-A
 電力スケーリング方法2では、電力スケーリング制御部109において、PcellのSRSの送信電力を、CC個別の(各ULチャネルに対する)最大送信電力以下に設定し(CC個別な最大送信電力の条件は満たしつつ)、PcellのSRSの送信電力は保持し(変化させず)、Scellの送信電力を低減することにより、電力スケーリングを行う。
 図5に、電力スケーリング方法2-Aの概要を示す。図5では、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数SRSチャネルの同時送信が発生する)場合、Pcellに設定されているCC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#0及びCC#2のSRSの送信電力を低減させることにより、電力スケーリングを行う動作を示している。
 これにより、端末毎に設定されるPcellのSRSの送信電力を、CC毎(各ULチャネル)の最大送信電力以下にするという条件を満たすことにより、優先して使われるPcellに設定されるCCの他セルへの同一チャネル干渉をある所定値以下に維持でき、各eNBでCC毎のスケジューリングやクロスキャリアスケジューリングを行いやすくできる。また、PcellのSRSの送信電力レベルは確実に保持する(変化させない)ことにより、電力スケーリング方法1-Aの場合と比較して、Pcellの(ピリオディック又はアペリオディック)SRSの伝搬チャネル品質測定を更に高精度に行うことができる。
 つまり、Pcellの受信SRSから求めたPcellの通信品質情報を、端末での電力スケーリングの影響を受けていない情報にすることができる(eNBとUE間で、UEの送信電力に関する誤認識を生じさせない、または、所定の要求値を満たした受信SRSから得られた通信品質測定値を用いることができる)ため、eNBは、UCIが送信される可能性の高いPcellにおいて、後続するスケジューリング(リソース割当)、送信電力(AMC:Adaptive Modulation channel Coding)制御において、更に適切に動作させることができる。よって、送信電力(AMC)制御などにおいて大きなマージンを取るような消極的な制御を行わなくてもよいという効果が得られる。
 電力スケーリング方法3-A
 電力スケーリング方法3-Aでは、電力スケーリング制御部109において、PcellのSRSの送信電力は保持し(変化させず)、ScellのSRSをドロップする(送信しない、または、送信電力=0に設定する)ことにより、電力スケーリングを行う。
 図6に、電力スケーリング方法3-Aの概要を示す。図6では、図4及び図5と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数SRSチャネルの同時送信が発生する)場合、Pcellに設定されているCC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#2のSRSをドロップすることにより、電力スケーリングを行う動作を示している。
 これにより、ScellのSRSをドロップすることにより、電力スケーリング方法1-Aの効果に加えて、CC間での複雑な電力割当制御を簡単化できる。また、LTE-Aでは、SRSを送信する場合は、14シンボルから構成される1サブフレームの最終シンボルだけにSRSが多重されるため、そのシンボルだけをドロップしても、spectrum efficiencyに与える影響は小さい。例えば、1CCだけでSRSを送信する場合においては1/14=7%のインパクトで済む。更に、SRSが送信される頻度(周期)は、例えば、ピリオディックSRSの場合は10msに1回程度であり、データが送信される頻度に比べて大幅に小さいため、spectrum efficiencyに与える影響は更に小さくなる(データの場合、最小1msに1回の伝送が可能である)。
 また、SRSをドロップすることにより、eNBが伝搬チャネルの品質が劣悪になったと誤認識する可能性を低減でき、また、受信品質測定のための所定の要求条件値を満たさなくなる、(スケーリングされた)無駄なSRSの送信を回避することができる。つまり、端末の不必要な電力消費を低減することができる。
 なお、実施の形態2において、一律に、複数Scellの全SRSをドロップしてもよい。図7では、CC#0~CC#2で同時にSRSを送信する場合において、ScellのCC#0とCC#2の2つのSRSをドロップする場合を示している。これにより、CC間での電力割当処理に必要な演算を省略でき、上記と同様の効果を得つつ、LTE-Aの商用化において不可欠な、電力スケーリングに関する端末(又はeNB)のテスト工数を大幅に削減できる。また、端末の不必要な電力消費を更に低減することができる。
 また、ScellでピリオディックSRSとアペリオディックSRSが送信される場合には、アペリオディックSRSよりピリオディックSRSを優先的にドロップしてもよい。
 アペリオディックSRSは、LTE-Aで新たに導入されるSRSであり、eNBが新しい品質情報を低遅延で測定するために、物理層のダウンリンク制御チャネルであるPDCCHによってトリガーされる。一方、ピリオディックSRS(の送信周期、トリガー、タイマー等)は、上位層のシグナリングでconfigurationされるため、低速な制御しか行うことができない。従って、このアペリオディックSRSの特長(SRSを用いたCQI測定に関するeNBの直近の判断)を電力スケーリング処理に反映しつつ、上記と同様の効果が得られる。
 図8は、同一サブフレームの同一シンボル位置(例えば、サブフレームの最終シンボル位置)において、ScellのCC#0にアペリオディックSRSがトリガーされ、ScellのCC#2にピリオディックSRSがトリガーされ、PcellのCC#1では何も送信されない場合において、ScellのCC#2におけるピリオディックSRSがドロップされる様子を示している。
 電力スケーリング方法4-A
 電力スケーリング方法4-Aでは、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、(PcellのSRSの送信電力は保持し(変化させず))送信電力が小さい(又は最小の)ScellのSRS送信電力から順番に、送信電力を低減(ドロップ、送信電力=0に設定(送信しない))する。
 図9に、電力スケーリング方法4-Aの概要を示す。図9では、図4及び図5と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。また、電力スケーリング前のScellのSRSの送信電力は、CC#0のSRSよりCC#2のSRSの方が大きい。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、送信電力が小さい(又は最小の)Scellに設定されている送信CC#0のSRSを優先的にドロップすることにより、電力スケーリングを行う。
 これにより、送信電力が小さいSRSほど、eNBにおいて受信可能なSRS検出レベル(例えば、eNBでの雑音レベル)を下回る可能性が高いため、Scellの送信電力が小さいSRSの送信電力を優先的に低減することで、Pcellでの高精度品質測定を維持しつつ、送信電力を低減しないScellのSRSを用いた測定精度を維持できる。
 電力スケーリング方法5-A
 電力スケーリング方法5-Aでは、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、(PcellのSRSの送信電力は保持し(変化させず))Scellの複数SRS送信電力を一様に低減(同一の送信電力値の低減、同一のスケーリング(ウェイト)を適用)する。
 図10に、電力スケーリング方法5-Aの概要を示す。図10では、上記と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、Scellに設定されているCC#0及びCC#2の送信電力を一様に低減している様子を示している。一様に送信電力を低減する方法としては、同一の送信電力値(真値、デシベル値)の低減、同一の(LTE-Aで適用される)スケーリング(ウェイト)を適用する方法などを用いてもよい。なお、SRSの送信電力低減に用いるスケーリングウェイトとして、SRS用のスケーリングウェイトを用いてもよいし、他のULチャネル(例えば、PUSCH、PUSCH with UCI、PUSCH without UCI)と同一のスケーリングウェイトをSRSに用いてもよい。ここで、スケーリングウェイトとは、eNBから端末へ事前に通知するパラメータである。
 これにより、Pcellでの高精度品質測定を維持しつつ、CC間での複雑な電力割当制御を簡単化できる。
 電力スケーリング方法6-A
 電力スケーリング方法6-Aでは、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、Scellの全SRS(ScellのSRSを一律に)ドロップする(送信しない、または送信電力=0に設定)。
 図11に、電力スケーリング方法6-Aの概要を示す。図11では、上記と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、Scellに設定されているCC#0及びCC#2のSRSを一律にドロップする様子を示している。
 これにより、上記電力スケーリング方法3-Aと同様の効果を得つつ、CC間での複雑な電力割当制御を簡単化できる。また、LTE-Aの商用化において、不可欠な端末(又はeNB)のテスト工数を大幅に削減できる。例えば、複数ScellのSRSの全ての送信組合せに対してテストを行うための仕様などを決定しなければならないが、そのテスト自体、テスト仕様の策定の工数自体を削減することができる。また、端末の不必要な電力消費を低減することができる。
 なお、Scellに複数SRSがある場合に、一律に全てのSRSをドロップせずに、CC(cell)番号の順(昇順/降順)にドロップしてもよい。
 電力スケーリング方法7-A
 電力スケーリング方法7-Aでは、電力スケーリング制御部109は、複数SRSの中で最大送信電力を有するSRSの送信電力から、ScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSの送信電力を低減又はドロップする(送信しない、または送信電力=0に設定)。
 図12に、電力スケーリング方法7-Aの概要を示す。図12では、上記と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、複数SRSの中で最大送信電力を有するSRSの送信電力から、ScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSをドロップする様子を示している。図12では、ScellのCC#2のSRSが、PcellのCC#1のSRSの最大送信電力から所定値以上の場合に該当している。
 CC間でのSRSの送信電力差が大きい場合、送信電力の大きいCCのSRSの相互変調歪が、異なるCCのSRSの送信電力より大きくなる場合が生じる。この相互変調歪は、送信フィルタで取り除くことができない。すなわち、このような場合にそのまま送信してしまうと、eNBは相互変調歪の影響を受けたSRSで該当CCの通信品質を測定してしまい、正しいスケジューリング、送信電力制御ができない。従って、SRSの最大送信電力からScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSをドロップすることにより、上記課題を回避することができる。
 なお、閾値の設定方法として、パスロス(測定)値等に応じて適応的にその値を変化させてもよい。
 また、基準値として、複数SRSの最大送信電力を有するSRSの送信電力ではなく、同時送信ULチャネル中で最大送信電力を有するチャネルの送信電力としてもよい。これにより、同様の効果が得られる。
 電力スケーリング方法8-A
 電力スケーリング方法8-Aでは、電力スケーリング制御部109は、ScellのSRS送信電力がある閾値以下の場合に、ScellのSRSの送信電力を低減又はドロップする(送信しない、または送信電力=0に設定)。
 図13に、電力スケーリング方法8-Aの概要を示す。図13では、上記と同様に、3CC(CC#0~CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、複数SRSの中で、ScellのSRS送信電力がある閾値以下の場合に、ScellのSRSをドロップする様子を示している。
 CCのSRSの送信電力が小さすぎる場合には、端末(送信側)のD/A(Digital/Analog)変換器の解像度において、送信信号を正しく表現することができなくなる。しかしながら、閾値を導入し、閾値以下の送信電力を有するSRSをドロップすることにより、無駄な送信処理(低い送信電力値まで考慮(カバー)したD/Aの複雑な設計)を回避することができる(無駄な送信電力の消費を回避することができる)。
 電力スケーリング方法9-A
 電力スケーリング方法9-Aでは、電力スケーリング制御部109は、ピリオディックSRSの送信周期の長さに応じて、ドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)CCのSRSを選択する。具体的には、送信周期が長いピリオディックSRSを優先的にドロップするCCのSRSとして選択するか、または、送信周期が短いピリオディックSRSを優先的にドロップするCCのSRSとして選択する。
 送信周期が長いSRSを優先的にドロップするCCのSRSとして選択する場合、電力スケーリング方法3-Aと同様の効果を維持しつつ、短区間チャネル変動に優先的に追随し、短区間フェージング変動に応じた適応変復調(AMC:Adaptive Modulation and channel Coding)、時間-周波数領域スケジューリングを高精度に制御することが可能となり、UE個別のスループット、マルチユーザダイバーシチによるシステムスループットを改善することができる。
 また、送信周期が短いSRSを優先的にドロップするCCのSRSとして選択する場合、電力スケーリング方法3-Aと同様の効果を維持しつつ、長区間のチャネル測定精度を高精度化することが可能となり、データ及び制御情報を送信するのに用いるCCの選択を適応的に行う、クロスキャリアスケジューリング制御を高精度に行うことが可能となる。
 電力スケーリング方法10-A
 電力スケーリング方法10-Aでは、電力スケーリング制御部109は、SRSの帯域幅に応じて、ドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)CCのSRSを選択する。具体的には、狭い帯域幅を有するSRSより、広い帯域幅を有するSRSを優先的にドロップするか、または、広い帯域幅を有するSRSより、狭い帯域幅を有するSRSを優先的にドロップする。
 狭い帯域幅を有するSRSより、広い帯域幅を有するSRSを優先的にドロップする場合、以下の効果が得られる。LTE-A(LTE)のULチャネル(PUSCH及びSRS等)の送信電力は、送信帯域幅と電力スペクトラム密度(PSD:Power Spectrum Density)によって決定される。従って、総送信電力の大きさへ与える影響が大きい帯域幅の広いSRSの送信電力割当優先度を低くすることにより、できるだけ少ないドロップSRS数を可能とする。例えば、複数CCでのSRS総帯域幅がBという条件下で、1CCのSRSの帯域幅がBの場合と、2CCで各CCのSRS帯域幅がB/2の場合を比較した場合、1CCのSRSの帯域幅がBを優先的にドロップするほうが、ドロップするCC数を削減できる。これは、データや制御情報などを伝送するCCを選択するために、SRSを用いてできるだけ多くのCCのサウンディング(sounding)を行う場合に、非常に有用である。また、帯域幅が広いほど相互変調歪の広がりも大きくなるため、帯域幅が広いSRSの電力割当優先度を低くすることにより、他CCへの広範囲にわたる帯域外漏洩電力(相互変調歪)の影響を軽減できる。
 なお、ここで、帯域幅の判定に閾値を導入し、SRS間の帯域幅、又は、それらの差が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
 また、CC毎の帯域幅とSRS帯域幅の比(例えば、SRS帯域幅/CC毎の帯域幅)が大きいほど、該当するCCのSRSの電力割当優先度を下げてもよい。
 一方、広い帯域幅を有するSRSより、狭い帯域幅を有するSRSを優先的にドロップする場合、以下の効果が得られる。1CC内だけの広い帯域幅にわたって伝搬チャネルの測定を行い、品質のよい周波数リソースに割り当てを行う場合において、広範囲の周波数帯の測定を一度に実施することができる。
 なお、ここで、帯域幅の判定に閾値を導入し、SRS間の帯域幅、又は、それらの差が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
 また、CC毎の帯域幅とSRS帯域幅の比(例えば、SRS帯域幅/CC毎の帯域幅)が小さいほど、該当するCCのSRSの電力割当優先度を下げてもよい。
 電力スケーリング方法11-A
 電力スケーリング方法11-Aでは、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、複数ScellのSRSの中で、物理層の制御チャネルPDCCHに含まれる制御情報(UL又はDLグラント)、または、上位層のシグナリングで通知された(される)制御情報でUCI(CQI、PMI等)報告がトリガーされた(される)CCのSRS電力割当優先度を高くする。例えば、アペリオディックCSI等のUCI報告がトリガーされた、CCのSRS電力割当優先度を高くする。また、例えば、eNBからRRC(Radio Resource Control)などの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告に使用するScellの優先順位に基づいて、その優先順位が高いScellに設定されたCCのSRS電力割当優先度を高くする。
 つまり、UCIをPUSCHと共に(UCIをPUSCHに多重して)送信するようにeNBに指示されたCell(CC)、または、UCIをPUSCHと共に(UCIをPUSCHに多重して)送信するCell(CC)の中で、eNBから指示された優先順位の高いCell(CC)のSRS電力割当優先度を高くする。
 反対に、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、物理層の制御チャネルPDCCHに含まれる制御情報(UL又はDLグラント)、または、上位層のシグナリングで通知された(される)制御情報でUCI(CQI、PMI等)報告がトリガーされない(されていない)CCのSRS電力割当優先度を低くする(優先的にドロップする、送信電力を低減する、送信停止、または送信電力をゼロに設定する)。例えば、ULグラントでアペリオディックCSI等のUCI報告がトリガーされない(されていない)CCのSRS電力割当優先度を低くする。また、例えば、eNBからRRCなどの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位に基づいて、その優先順位が低いScellに設定されたCCのSRS電力割当優先度を低くする。
 つまり、UCIをPUSCHと共に(UCIをPUSCHに多重して)送信しないようにeNBに指示されたCell(CC)、または、UCIをPUSCHと共に(UCIをPUSCHに多重して)送信するCell(CC)の中で、eNBに指示された優先順位の低いCell(CC)のSRS電力割当優先度を低くする。
 これは、eNBからRRCなどの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位が高いCCでは、UCIを送信する前にそのCell(CC)の品質測定を高精度に行う必要があるために、(例えば、アペリオディック)SRSを送信する確率が高い。これは、そのCCで送信する(アペリオディック)SRSの電力割当て優先度を低くする(又は、ドロップしてしまう)と、後続サブフレームで送信するUCIに対するMCS選択や送信電力制御が正しく行われないためである。
 図14に、電力スケーリング方法11-Aの概要を示す。図14では、Scellの2CC(CC#0、CC#2)において、SRSを同時に送信しており、基地局から(RRCなどの上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信されるSRSの送信電力値が複数ある(複数SRSの同時送信が発生する)場合、2Scellの2SRSの中で、ULグラントでアペリオディックCSI等のUCIがトリガーされた(される)CCのSRS電力割当優先度を高くする。図14では、ScellのCC#2において、過去のサブフレームにおいて、UCIがトリガーされており、CC#0はUCIがトリガーされていない場合を示している。
 これにより、電力スケーリング方法1-Aと同様の効果を、複数Scell(SCC)の中で得ることができる。
 なお、トリガーされたScellはある所定の期間、その優先度を保持してもよい。また、新たに別CCでUCIがトリガーされるまでその優先度を維持してもよい。また、UCIがトリガーされたScellが複数ある場合は、直近のトリガー情報に従って、SRSの電力スケーリングを行ってもよい。また、UCIがトリガーされたScellが複数あり、同一時点でそれらがトリガーされた場合は、UL CC ID番号(昇順・降順)に応じて電力スケーリング優先度を決定してもよい。
 また、上位層のシグナリングで通知(指示)された、複数Scellの中でのUCIを送信するCCの優先度順位情報を、ある所定の期間保持してもよい(ある所定期間その情報に従って、電力スケーリングを行ってもよい)。また、上位層のシグナリングに依り、eNBから新たに上記した優先順位などが通知(指示)されるまで、その優先度を維持してもよい。新たな優先順位が通知(指示)されれば、その新たな優先順位に従って、電力スケーリングを行えばよい。
 また、上記したように、eNBからRRC(Radio Resource Control)などの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位に基づいて、CCのSRS電力割当優先度を設定してもよい。例えば、複数Scellの中で、UCIをPUSCHと共に送信するようにeNBに指示されたCell(CC)、または、複数Scellにおいて、UCIをPUSCHと共に送信するCell(CC)の中で、eNBに指示された優先順位の高いCell(CC)のSRS電力割当優先度を高くする。反対に、複数Scellの中で、UCIをPUSCHと共に送信しないようにeNBに指示されたCell(CC)、または、複数Scellにおいて、UCIをPUSCHと共に送信するCell(CC)の中で、eNBに指示された優先順位の低いCell(CC)のSRS電力割当優先度を低くする。
 これにより、上記と同様の効果を得ることができる。
 また、eNBからRRCなどの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位に基づいて、優先順位の最も高いScellのSRSの送信電力(PSD)を、電力スケーリング処理において、保持してもよい(変化させなくてもよい)。
 これにより、上記と同様の効果を得つつ、UCIが送信される確率の高いScellの品質測定を高精度化することができ、eNBはUCIの伝送に用いる適切な送信電力(MCS)を端末に通知することができる。
 また、eNBからRRCなどの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位に基づいて、優先順位の低いScellをドロップするSRSとして選択してもよい。例えば、優先順位の最も高いScellのSRSの送信電力(PSD)を保持し(変化させずに)、それ以外の全ScellのSRSの送信電力(PSD)を全てドロップ(送信電力=0、送信停止、PSD=0、送信電力を低減)してもよい。
 これにより、電力スケーリング方法3-Aと同様の効果を複数Scellの中で得ることができる。即ち、Pcell及び複数Scellで複数SRSを同時送信する全ての場合において、同様の効果を得ることができるようになる。また、優先順位の低いScell(CC)から順番に、ScellのSRSをドロップ(送信電力=0、送信停止、PSD=0に設定)してもよい。これにより、上記と同様の効果を得ることができる。
 なお、上記の方法において、(図示していない)eNBでは、各端末に設定したScellおよびPcell情報やCC(Cell)毎のアップリンク被干渉状況などを用いて、複数Scellの中でピリオディックCQI(PMI)報告等に使用するScellの端末毎の優先順位の決定、又は、複数Scellの中でUCIをPUSCHと共に(UCIをPUSCHに多重して)送信する端末毎のcell(CC)の選択などを行う。そして、決定、選択した優先順位などの情報を上位レイヤの(RCC)シグナリングを用いて、端末に通知する。上記情報を受信した端末は、複数ULチャネル(SRS等)の同時送信が生じた場合において、その情報を電力スケーリングに用いる。
 電力スケーリング方法12-A
 電力スケーリング方法12-Aでは、電力スケーリング制御部109は、高いPSDを有するSRSより、低いPSDのSRSを優先的にドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)。
 CC間でのSRSのPSDの差が大きい場合、PSDの大きいCCのSRSの相互変調歪が、異なるCCのSRSのPSDより大きくなる場合が生じる。この相互変調歪は、送信フィルタで取り除くことができない。すなわち、このような場合にそのまま送信してしまうと、eNBは相互変調歪の影響を受けたSRSで該当CCの通信品質を測定してしまい、正しいスケジューリング、送信電力制御ができない。この課題に対して、相互変調歪みの影響を受けにくい高いPSDを持つSRSだけを送信することにより、該当CCを精度よく測定できる。
 図15に、電力スケーリング方法12-Aの概要を示す。図15では、Scellの2CC(CC#0、CC#1)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はScellに設定されている。図15では、高調波歪(相互変調歪み)を点線で示している。このような状況下において、相互変調歪みの影響を受けやすい低いPSDを持つSRSをドロップする。
 なお、PSDの値を計算するのに関連する(PUSCH、SRS)送信電力制御パラメータに基づいてもよい。例えば、TPCコマンド累積値、トランスポートブロックサイズ、MCSレベルに関連するオフセットパラメータ(TF)、PUSCHの送信電力に対するSRSオフセット値、1RE当たりのビット数(TBサイズ/割当RE数)など、これらの値が大きいほど、高いPSDを有するSRSとなるため、これらの値に基づいて、ドロップするSRSを選択してもよい。また、割当RE(Resource Element)数、または、割当サブキャリア数が少ないほど、高いPSDを有するSRSとなるため、これらの値に基づいて、ドロップするSRSを選択してもよい。
 また、PSDや、上記各パラメータに対して、閾値を導入し、それらの値が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
 このように、実施の形態2によれば、Pcell及びScellを用いて複数SRSを同時送信する場合に、ScellのSRSよりPcellのSRSを優先して送信電力割当を行うことにより、電力割当優先度の低いSRSのCCが、UCIを多重するCCと同一のCCとなる確率を低減することができる。よって、UCIが多重される確率の高いPcellの伝搬チャネル品質情報を電力割当優先度の高いSRSにより高精度に推定することができ、eNBは後続のUCIを伝送するULチャネルに対して適切な送信電力を指示することができる。
 なお、上記では、CC間の場合について説明したが、CC内の複数SRSに上記方法を適用してもよい。
 また、上記各電力スケーリング方法を組み合わせて使用してもよい。
 また、上記複数Scellの複数SRSへの適用を前提に述べた方法を、Pcellに複数SRS、複数Pcellに複数SRSが存在する場合には、同様に適用することができる。
 また、上記に述べた、電力割当優先度の低いSRSの送信電力を低減する方法として、eNBから端末へ(上位レイヤのシグナリングで)通知されるSRS用のスケーリングウェイトを用いて、送信電力を低減してもよい。w_Pcell_SRSをPcellのSRSに適用するスケーリングウェイト、w_Scell_SRSをScellのSRSに適用するスケーリングウェイトとした場合、w_Pcell_SRS>w_Scell_SRSと設定(定義)すればよい。また、w_Pcell_SRS=1、w_Scell_SRS<1と定義してもよい。また、ドロップ(送信停止、送信電力=0)する場合には、w_Scell_SRS=0と設定してもよい。
 また、上記各電力スケーリング方法を組み合わせて使用してもよい。
 実施の形態1及び実施の形態2に記載の各電力スケーリング方法を組み合わせることにより、複数CC(cell)で送信される複数アップリンクチャネルの送信電力合計値がUE固有の最大送信電力を超えない場合、かつ、複数cell、又は、複数CCでの複数アップリンクチャネル同時送信が発生した場合における、電力スケーリングを行うこともできる。以下に、実施の形態1(2)に記載の電力スケーリング方法3(3-A)及び12(12-A)を組み合わせた場合の一例(電力スケーリング方法16-A)を示す。
 電力スケーリング方法16-A
 電力スケーリング方法16-Aでは、電力スケーリング制御部109は、複数Scellに複数SRSがある場合に、eNBから端末へ通知されるULグラントに含まれる、PUSCHのトランスポートブロック(TB:Transport Block)サイズの大きさに基づいて、SRSの電力優先度を決定する。
 UCIのサイズが大きい(ビット数が多い)場合には、TBサイズが小さいPUSCHに、CQIやPMIのUCIが多重することができなくなる問題が生じる。複数CCのCQIやPMI情報を1つのScellのPUSCHでeNBに報告する場合にその問題が更に大きくなる。なお、複数PUSCHにUCIを分割してeNBに報告する方法は、ULマルチキャリア送信になるために、上記したようにPAへ与える影響などを考慮すると望ましくない。従って、複数Scellに複数PUSCHが割当てられた場合においては、TBサイズの大きいPUSCHにUCIを多重する方法を取ることが望ましい。
 従って、電力スケーリング方法16-Aにおいては、例えば、複数Scellにおいて、TBサイズが大きいTBがマッピングされるPUSCHが送信されるCC(Cell)の、SRS送信電力の優先度を高くする。反対に、TBサイズが小さいTBがマッピングされるPUSCHが送信されるCC(Cell)の、SRS送信電力の優先度を低くする。
 なお、上記方法において、TBサイズが最も大きいPUSCHが送信されるCC(Cell)の、SRS送信電力の優先度を高くし、それ以外のScell(CC)のSRS送信電力優先度を低くしてもよい。
 また、TBサイズが最も大きいPUSCHが送信されるCC(Cell)の、SRS送信電力は保持し(変化させず)、それ以外のScell(CC)のSRS送信電力を低減してもよい。
 また、TBサイズが最も大きいPUSCHが送信されるCC(Cell)の、SRS送信電力は保持し(変化させず)、それ以外のScell(CC)のSRSをドロップ(送信電力=0、送信停止、PSD=0に設定する)してもよい。
 また、TBサイズが小さいPUSCHが送信されるScell(CC)から順番に、該当CCのSRSをドロップ(送信電力=0、送信停止、PSD=0に設定)してもよい。
 これにより、上記の実施の形態に記載の各方法と同様の効果を得ることができる。
 なお、上記電力スケーリング方法16-Aに依って設定されたSRSの電力優先度は、ある所定の期間、その優先度を保持してもよい。また、新たに複数Scell間で異なる複数TBサイズの組合せが送信されるまで、その優先度を複数Scell間で維持してもよい。また、上記電力スケーリング方法16-Aに依って設定されたSRSの電力優先度は、直近の優先度に従って、SRSの電力スケーリングを行ってもよい。
 上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアによって実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 なお、上記各実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
 アンテナポートとは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 2010年11月5日出願の特願2010-249005及び2010年11月18日出願の特願2010-258360の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明にかかる無線通信端末装置及び電力割当方法は、LTE-Aなどの移動通信システム等に適用できる。
 101 アンテナ
 102 無線受信処理部
 103 OFDM復調部
 104 復調部
 105 チャネル復号部
 106 制御情報抽出部
 107 送信電力計算部
 108 電力スケーリング検出部
 109 電力スケーリング制御部
 110-1~110-N 符号化及び変調部
 111-1~111-N 多重部
 112-1~112-N 送信電力設定部
 113-1~113-N SC-FDMA変調部
 114 合成部
 115 無線送信処理部

Claims (17)

  1.  キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算手段と、
     計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出手段と、
     電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御手段と、
     を具備する無線通信端末装置。
  2.  前記電力スケーリング制御手段は、プライマリセルの参照信号の送信電力をコンポーネントキャリア個別な最大送信電力以下に設定し、前記プライマリセルの参照信号の送信電力を保持し、セカンダリセルの参照信号の送信電力を低減する請求項1に記載の無線通信端末装置。
  3.  前記電力スケーリング制御手段は、前記プライマリセルの参照信号の送信電力を保持し、セカンダリセルの参照信号の送信を停止又は送信電力を0に設定する請求項1に記載の無線通信端末装置。
  4.  前記電力スケーリング制御手段は、セカンダリセルの参照信号が複数ある場合、送信電力が小さいセカンダリセルの参照信号から順に送信電力を低減又は送信を停止又は送信電力を0に設定する請求項1に記載の無線通信端末装置。
  5.  前記電力スケーリング制御手段は、セカンダリセルの参照信号が複数ある場合、複数のセカンダリセルの参照信号の送信電力を一様に低減する請求項1に記載の無線通信端末装置。
  6.  前記電力スケーリング制御手段は、セカンダリセルの参照信号が複数ある場合、セカンダリセルの参照信号の全てを送信停止又は全ての送信電力を0に設定する請求項1に記載の無線通信端末装置。
  7.  前記電力スケーリング制御手段は、セカンダリセルの参照信号の送信電力が所定の閾値以下である場合、セカンダリセルの参照信号の送信電力を低減又は送信を停止又は送信電力を0に設定する請求項1に記載の無線通信端末装置。
  8.  前記電力スケーリング制御手段は、複数の参照信号の中で最大送信電力から所定値以上離れた送信電力を有するセカンダリセルの参照信号の送信電力を低減又は送信を停止又は送信電力を0に設定する請求項1に記載の無線通信端末装置。
  9.  前記電力スケーリング制御手段は、ピリオディック参照信号の送信周期の長さに応じて、コンポーネントキャリアの参照信号を選択し、選択した参照信号の電力割当優先度を低減するか、送信電力を低減するか、送信を停止するか、あるいは送信電力を0に設定する請求項1に記載の無線通信端末装置。
  10.  前記電力スケーリング制御手段は、送信周期の長い参照信号を選択する請求項9に記載の無線通信端末装置。
  11.  前記電力スケーリング制御手段は、送信周期の短い参照信号を選択する請求項9に記載の無線通信端末装置。
  12.  前記電力スケーリング制御手段は、高い電力スペクトル密度を有する参照信号より、低い電力スペクトル密度を有する参照信号の電力割当優先度を低減するか、送信電力を低減するか、送信を停止するか、あるいは送信電力を0に設定する請求項1に記載の無線通信端末装置。
  13.  前記電力スケーリング制御手段は、参照信号の帯域幅に応じて、コンポーネントキャリアの参照信号を選択し、選択した参照信号の電力割当優先度を低減するか、送信電力を低減するか、送信を停止するか、あるいは送信電力を0に設定する請求項1に記載の無線通信端末装置。
  14.  前記電力スケーリング制御手段は、狭い帯域幅を有する参照信号より、広い帯域幅を有する参照信号を選択する請求項13に記載の無線通信端末装置。
  15.  前記電力スケーリング制御手段は、広い帯域幅を有する参照信号より、狭い帯域幅を有する参照信号を選択する請求項13に記載の無線通信端末装置。
  16.  前記電力スケーリング制御手段は、複数のセカンダリセルの参照信号の中で、上り制御情報がトリガーされるコンポーネントキャリアの参照信号の電力割当優先度を高くし、前記上り制御信号がトリガーされないコンポーネントキャリアの参照信号の電力割当優先度を低くする請求項1に記載の無線通信端末装置。
  17.  キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算工程と、
     計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出工程と、
     電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御工程と、
     を具備する電力割当方法。
PCT/JP2011/005906 2010-11-05 2011-10-21 無線通信端末装置及び電力割当方法 WO2012060067A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012541727A JP5898087B2 (ja) 2010-11-05 2011-10-21 無線通信端末装置及び電力割当方法
US13/883,100 US9661588B2 (en) 2010-11-05 2011-10-21 Wireless communication terminal device and power allocation method
US15/492,827 US9894622B2 (en) 2010-11-05 2017-04-20 Wireless communication terminal device and power allocation method
US15/860,381 US10051583B2 (en) 2010-11-05 2018-01-02 Wireless communication terminal device and power allocation method
US16/019,336 US10313988B2 (en) 2010-11-05 2018-06-26 Wireless communication terminal device and power allocation method
US16/384,505 US10560906B2 (en) 2010-11-05 2019-04-15 Integrated circuit for communication terminal and power allocation process
US16/723,123 US11356960B2 (en) 2010-11-05 2019-12-20 Mobile station and power allocation method
US17/737,803 US11683765B2 (en) 2010-11-05 2022-05-05 Mobile station and power allocation method
US18/313,986 US12035254B2 (en) 2010-11-05 2023-05-08 Base station and power allocation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-249005 2010-11-05
JP2010249005 2010-11-05
JP2010-258360 2010-11-18
JP2010258360 2010-11-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/883,100 A-371-Of-International US9661588B2 (en) 2010-11-05 2011-10-21 Wireless communication terminal device and power allocation method
US15/492,827 Continuation US9894622B2 (en) 2010-11-05 2017-04-20 Wireless communication terminal device and power allocation method

Publications (1)

Publication Number Publication Date
WO2012060067A1 true WO2012060067A1 (ja) 2012-05-10

Family

ID=46024195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005906 WO2012060067A1 (ja) 2010-11-05 2011-10-21 無線通信端末装置及び電力割当方法

Country Status (3)

Country Link
US (8) US9661588B2 (ja)
JP (3) JP5898087B2 (ja)
WO (1) WO2012060067A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102398A (ja) * 2011-11-09 2013-05-23 Ntt Docomo Inc 無線通信システム、ユーザ端末及び無線通信方法
CN103945553A (zh) * 2013-01-18 2014-07-23 上海贝尔股份有限公司 基于载波聚合实现控制平面和用户平面分离的方法
JP2014192860A (ja) * 2013-03-28 2014-10-06 Panasonic Intellectual Property Corp Of America 送信装置及び送信方法
WO2015029980A1 (ja) * 2013-08-30 2015-03-05 京セラ株式会社 ユーザ端末、通信制御装置、及びプロセッサ
WO2015045960A1 (ja) * 2013-09-26 2015-04-02 株式会社Nttドコモ ユーザ端末および無線通信方法
CN104685949A (zh) * 2012-09-28 2015-06-03 株式会社Ntt都科摩 无线通信系统、基站装置、用户终端以及无线通信方法
US20150312922A1 (en) * 2012-12-11 2015-10-29 Ntt Docomo, Inc. User equipment and transmission control method
JP2016029843A (ja) * 2015-10-28 2016-03-03 株式会社Nttドコモ 無線通信システム、ユーザ端末及び無線通信方法
JP2016189619A (ja) * 2016-06-30 2016-11-04 京セラ株式会社 ユーザ端末、通信制御装置、及びプロセッサ
JP2017069962A (ja) * 2016-10-18 2017-04-06 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2017163389A (ja) * 2016-03-10 2017-09-14 Necプラットフォームズ株式会社 ポイントツーポイント無線装置および通信制御方法
JP2018505600A (ja) * 2015-01-12 2018-02-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Lteデバイスにおける超低レイテンシのためのアップリンク電力制御技法
JP2019083539A (ja) * 2013-01-10 2019-05-30 サムスン エレクトロニクス カンパニー リミテッド 無線ネットワークにおけるアップリンク制御情報送/受信
EP2848052B1 (en) * 2012-05-11 2020-02-26 Nokia Technologies Oy Method for indication of reference symbol transmission power change in cellular network
JP2020529775A (ja) * 2017-08-09 2020-10-08 ソニー株式会社 無線通信システムにおける装置と方法
US20210168745A1 (en) * 2018-04-18 2021-06-03 Ntt Docomo, Inc. Terminal, radio communication method, and base station

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294815B1 (ko) * 2009-05-15 2013-08-08 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
US10135595B2 (en) * 2010-06-21 2018-11-20 Telefonaktiebolaget L M Ericsson (Publ) Uplink control information (UCI) mapping indicator for long term evolution (LTE) carrier aggregation
WO2012060067A1 (ja) 2010-11-05 2012-05-10 パナソニック株式会社 無線通信端末装置及び電力割当方法
US9930677B2 (en) * 2010-12-07 2018-03-27 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
US8681627B2 (en) 2010-12-07 2014-03-25 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
KR101758592B1 (ko) * 2011-07-29 2017-07-14 후지쯔 가부시끼가이샤 파워 제어 방법 및 단말 장치
US9386535B2 (en) * 2011-10-26 2016-07-05 Lg Electronics Inc. Method for determining transmission power information of downlink subframe and apparatus therefor
WO2014048498A1 (en) * 2012-09-28 2014-04-03 Nokia Siemens Networks Oy Method, apparatuses and computer program for reporting in- device coexistence information
WO2014175800A1 (en) * 2013-04-26 2014-10-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and network efficiency node for increased data throughput in wireless networks
CN104519561B (zh) * 2013-09-26 2019-02-12 中兴通讯股份有限公司 上行功率削减处理方法、装置、终端及基站
KR101611825B1 (ko) 2013-11-08 2016-04-14 주식회사 케이티 상향링크 전송 전력을 제어하는 방법과 그 장치
JP2015142349A (ja) * 2014-01-30 2015-08-03 株式会社Nttドコモ ユーザ装置及び送信制御方法
JP6497726B2 (ja) * 2014-03-14 2019-04-10 シャープ株式会社 端末、基地局、通信システム、通信方法、およびプログラム
US10959193B2 (en) * 2014-08-04 2021-03-23 Sharp Kabushiki Kaisha Terminal device, base station device, and method
WO2016021992A1 (ko) * 2014-08-08 2016-02-11 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016029381A1 (zh) * 2014-08-27 2016-03-03 华为技术有限公司 一种协调分配功率的方法及装置
US10980045B2 (en) * 2014-10-02 2021-04-13 Qualcomm Incorporated Techniques for managing power on an uplink component carrier transmitted over a shared radio frequency spectrum band
US10455587B2 (en) * 2014-12-05 2019-10-22 Lg Electronics Inc. Method and apparatus for terminal to transmit and receive signal using sidelinks between devices
US10355843B2 (en) 2015-01-22 2019-07-16 Lg Electronics Inc. Carrier aggregation method performed by terminal in wireless communication system and terminal using same method
US10355838B2 (en) * 2015-03-31 2019-07-16 Lg Electronics Inc. Method for transmitting aperiodic reference signal for channel status information feedback in wireless communication system and device therefor
CN114095996A (zh) * 2015-05-15 2022-02-25 北京三星通信技术研究有限公司 一种上行功率的分配方法和用户设备
US10348543B2 (en) * 2016-01-29 2019-07-09 Ofinno, Llc Uplink transmission in a wireless device and wireless network
GB2547269A (en) * 2016-02-12 2017-08-16 Vodafone Ip Licensing Ltd Cellular device cell selection
US10397904B2 (en) 2016-02-20 2019-08-27 Qualcomm Incorporated Communication of uplink control information
US10425922B2 (en) * 2016-02-20 2019-09-24 Qualcomm Incorporated Communication of uplink control information
US10716125B2 (en) 2016-04-01 2020-07-14 Qualcomm Incorporated Sounding reference signal triggering for enhanced carrier aggregation
CN109075938B (zh) * 2016-05-13 2021-11-26 英特尔公司 在无线通信中实现基于SRS CC的切换的UE及eNB
US20180054806A1 (en) * 2016-08-22 2018-02-22 Alcatel-Lucent Usa, Inc. Systems and methods for decoupling control and data channels in wireless networks
AU2016424804B2 (en) * 2016-09-30 2020-11-05 Huawei Technologies Co., Ltd. Data processing method, terminal and base station
EP3485597B1 (en) * 2017-01-09 2020-03-04 Telefonaktiebolaget LM Ericsson (publ) Systems and methods for reliable dynamic indication for semi-persistent csi-rs
US20180227772A1 (en) * 2017-02-06 2018-08-09 Mediatek Inc. Mechanism for Beam Reciprocity Determination and Uplink Beam Management
US10965422B2 (en) 2017-03-22 2021-03-30 Panasonic Intellectual Property Corporation Of America Terminal and communication method
CN108632966B (zh) 2017-03-23 2022-05-06 华为技术有限公司 发射功率控制方法、装置、设备和存储介质
JP7242161B2 (ja) * 2017-06-14 2023-03-20 ソニーグループ株式会社 通信装置、通信制御方法及びコンピュータプログラム
WO2019006031A1 (en) * 2017-06-27 2019-01-03 Intel IP Corporation TRANSMISSION OF REFERENCE SIGNALS FOR THE ACQUISITION OF CHANNEL STATE INFORMATION
EP3668239B1 (en) * 2017-08-11 2023-05-17 LG Electronics Inc. Method and user equipment for transmitting a signal in a wireless communication system
CN113613335B (zh) * 2017-09-07 2024-04-26 北京小米移动软件有限公司 上行链路波束管理
KR102019477B1 (ko) * 2017-10-30 2019-09-06 에스케이텔레콤 주식회사 캐리어 어그리게이션 동작 시의 단말 출력 제어 방법 및 이를 위한 장치
US10757601B2 (en) 2017-12-13 2020-08-25 At&T Intellectual Property I, L.P. Physical layer procedures for user equipment in power saving mode
KR102298009B1 (ko) * 2018-03-30 2021-09-06 주식회사 케이티 상향링크 데이터 채널을 전송하는 방법 및 장치
CN110351040B (zh) * 2018-04-03 2020-08-14 维沃移动通信有限公司 探测参考信号传输、配置方法、用户设备及网络侧设备
CN110933763B (zh) * 2018-09-19 2022-02-08 维沃移动通信有限公司 一种传输方法及相关设备
US11381365B2 (en) * 2019-01-09 2022-07-05 Qualcomm Incorporated Collision of sounding reference signal (SRS) and physical uplink shared channel (PUSCH) in case of carrier aggregation
US11778569B2 (en) * 2019-01-21 2023-10-03 Qualcomm Incorporated Physical uplink shared channel (PUSCH) power scaling factor reporting
TW202040276A (zh) 2019-02-07 2020-11-01 日商三井化學股份有限公司 底層膜形成用材料、抗蝕劑底層膜及積層體
WO2020164106A1 (en) * 2019-02-15 2020-08-20 Zte Corporation System and method for determining uplink transmission priority
CN114026928B (zh) * 2019-04-18 2023-11-21 株式会社Ntt都科摩 用户终端以及无线通信方法
US11924819B2 (en) * 2019-05-24 2024-03-05 Qualcomm Incorporated Power limits based on signal type for managing maximum permissible exposure
US20200412505A1 (en) * 2019-09-13 2020-12-31 Intel Corporation Methods of ue power saving for uplink transmission
US11026131B1 (en) * 2019-12-03 2021-06-01 Sprint Spectrum L.P. Dynamic carrier reconfiguration to facilitate voice-over-packet communication in response to predicted uplink intermodulation distortion
KR102722627B1 (ko) * 2020-01-10 2024-10-29 삼성전자 주식회사 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치
US20210282150A1 (en) * 2020-03-06 2021-09-09 Qualcomm Incorporated Building transport blocks in wireless networks
KR20220073425A (ko) * 2020-11-26 2022-06-03 삼성전자주식회사 전자 장치 및 복수의 안테나들을 통해 신호를 전송하는 전자 장치에서 기준 신호를 전송하는 방법
CN115278865A (zh) * 2021-04-30 2022-11-01 北京三星通信技术研究有限公司 定位配置方法和电子设备
US11889427B2 (en) * 2021-07-27 2024-01-30 Qualcomm Incorporated Relative power setting between different cells in dual connectivity or carrier aggregation
US11877307B2 (en) * 2021-10-07 2024-01-16 Qualcomm Incorporated Signaling of non-linearities for inter-UE interference cancellation
WO2023136601A1 (ko) * 2022-01-11 2023-07-20 엘지전자 주식회사 무선 통신 시스템에서 조정된 전력 할당 기반 상향링크 송신 또는 수신 방법 및 장치
CN117279081A (zh) * 2022-06-14 2023-12-22 北京三星通信技术研究有限公司 通信方法、基站、用户设备及存储介质
WO2024170161A1 (en) * 2023-02-17 2024-08-22 Nokia Technologies Oy Uplink and carrier aggregation based positioning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041587A (ja) * 2008-08-07 2010-02-18 Sharp Corp マルチキャリア送信装置、受信装置、通信システム、送信方法、受信方法及びプログラム
JP2010171563A (ja) * 2009-01-21 2010-08-05 Kyocera Corp 無線通信システム、無線端末、および無線端末の制御方法
WO2010103862A1 (ja) * 2009-03-10 2010-09-16 シャープ株式会社 無線通信システム、無線送信装置および無線送信方法
WO2010125969A1 (ja) * 2009-04-27 2010-11-04 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、基地局装置及び通信制御方法
JP2011166571A (ja) * 2010-02-12 2011-08-25 Sharp Corp 無線通信システム、移動局装置、無線通信方法および集積回路

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540245A (zh) * 2007-01-31 2018-09-14 夏普株式会社 基站装置以及创建基站装置的干扰信息指标表的方法
WO2010061504A1 (ja) * 2008-11-26 2010-06-03 日本電気株式会社 基地局、基地局の送信電力制御方法、処理装置、プログラムが格納された記憶媒体、及び通信システム
KR101639810B1 (ko) * 2009-01-13 2016-07-25 엘지전자 주식회사 무선통신 시스템에서 사운딩 참조신호의 전송방법
CN104918312B (zh) * 2009-01-29 2019-08-27 Lg电子株式会社 用于控制信号发送功率的方法及其装置
KR101674940B1 (ko) 2009-01-29 2016-11-10 엘지전자 주식회사 전송 전력을 제어하는 방법 및 이를 위한 장치
EP2394472A2 (en) * 2009-02-03 2011-12-14 Nokia Siemens Networks Oy Uplink power control for multiple component carriers
WO2010098593A2 (en) * 2009-02-25 2010-09-02 Lg Electronics Inc. Method and device for controling transmission power in uplink transmission
US8724488B2 (en) * 2009-03-17 2014-05-13 Interdigital Patent Holdings, Inc. Method and apparatus for power control of sounding reference signal (SRS) transmission
WO2010107885A2 (en) * 2009-03-17 2010-09-23 Interdigital Patent Holdings, Inc. Method and apparatus for uplink power control in multiple-input multiple-output
EP2409532B1 (en) * 2009-03-17 2018-10-31 Samsung Electronics Co., Ltd. Uplink transmission power control in multi-carrier communication systems
CN201893939U (zh) * 2009-04-23 2011-07-06 交互数字专利控股公司 无线发射/接收单元
US8768397B2 (en) * 2009-10-02 2014-07-01 Sharp Kabushiki Kaisha Transmission power control on a wireless communication device for a plurality of regulated bands or component carriers
WO2011068367A2 (ko) * 2009-12-03 2011-06-09 엘지전자 주식회사 무선 통신 시스템에서 셀간 간섭 저감 방법 및 장치
US8588205B2 (en) * 2010-02-12 2013-11-19 Mediatek Inc. Uplink power control message indexing in wireless OFDMA systems
EP3439220A1 (en) 2010-04-02 2019-02-06 Interdigital Patent Holdings, Inc. Uplink sounding reference signals configuration and transmission
US9363769B2 (en) 2010-05-05 2016-06-07 Qualcomm Incorporated Methods and systems for SRS power scaling in carrier aggregation
EP2604079A2 (en) * 2010-08-11 2013-06-19 Telefonaktiebolaget LM Ericsson (publ) Methods of providing cell grouping for positioning and related networks and devices
US9131457B2 (en) * 2010-08-12 2015-09-08 Samsung Electronics Co., Ltd. Apparatus and method for transmission of uplink sounding reference signals in a wireless network
WO2012024338A1 (en) * 2010-08-17 2012-02-23 Motorola Mobility, Inc. Method and apparatus for power headroom reporting during multi-carrier operation
US9258092B2 (en) 2010-09-17 2016-02-09 Blackberry Limited Sounding reference signal transmission in carrier aggregation
EP2635076B1 (en) * 2010-10-28 2020-09-09 Wild Guard Ltd. Method and apparatus for adjusting sound reference signal transmission power
WO2012060067A1 (ja) * 2010-11-05 2012-05-10 パナソニック株式会社 無線通信端末装置及び電力割当方法
EP2663136B1 (en) * 2011-01-07 2017-10-18 Panasonic Intellectual Property Corporation of America Wireless communication terminal and power control method
KR101611825B1 (ko) * 2013-11-08 2016-04-14 주식회사 케이티 상향링크 전송 전력을 제어하는 방법과 그 장치
WO2015126289A1 (en) * 2014-02-19 2015-08-27 Telefonaktiebolaget L M Ericsson (Publ) Data transmission over a reduced number of physical antennas
US10091736B2 (en) * 2014-04-18 2018-10-02 Kt Corporation Method of controlling uplink signal transmission power and apparatus thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041587A (ja) * 2008-08-07 2010-02-18 Sharp Corp マルチキャリア送信装置、受信装置、通信システム、送信方法、受信方法及びプログラム
JP2010171563A (ja) * 2009-01-21 2010-08-05 Kyocera Corp 無線通信システム、無線端末、および無線端末の制御方法
WO2010103862A1 (ja) * 2009-03-10 2010-09-16 シャープ株式会社 無線通信システム、無線送信装置および無線送信方法
WO2010125969A1 (ja) * 2009-04-27 2010-11-04 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、基地局装置及び通信制御方法
JP2011166571A (ja) * 2010-02-12 2011-08-25 Sharp Corp 無線通信システム、移動局装置、無線通信方法および集積回路

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102398A (ja) * 2011-11-09 2013-05-23 Ntt Docomo Inc 無線通信システム、ユーザ端末及び無線通信方法
EP2848052B1 (en) * 2012-05-11 2020-02-26 Nokia Technologies Oy Method for indication of reference symbol transmission power change in cellular network
CN104685949A (zh) * 2012-09-28 2015-06-03 株式会社Ntt都科摩 无线通信系统、基站装置、用户终端以及无线通信方法
US10321441B2 (en) 2012-09-28 2019-06-11 Ntt Docomo, Inc. User terminal and radio communication method
EP2903372A4 (en) * 2012-09-28 2016-04-27 Ntt Docomo Inc WIRELESS COMMUNICATION SYSTEM, BASE STATION, USER EQUIPMENT, AND WIRELESS COMMUNICATION METHOD
US9781732B2 (en) * 2012-12-11 2017-10-03 Ntt Docomo, Inc. User equipment and transmission control method
US20150312922A1 (en) * 2012-12-11 2015-10-29 Ntt Docomo, Inc. User equipment and transmission control method
JP2021007270A (ja) * 2013-01-10 2021-01-21 サムスン エレクトロニクス カンパニー リミテッド 無線ネットワークにおけるアップリンク制御情報送/受信
JP2019083539A (ja) * 2013-01-10 2019-05-30 サムスン エレクトロニクス カンパニー リミテッド 無線ネットワークにおけるアップリンク制御情報送/受信
USRE50147E1 (en) 2013-01-10 2024-09-24 Samsung Electronics Co., Ltd. Uplink control information transmissions/receptions in wireless networks
JP2016507985A (ja) * 2013-01-18 2016-03-10 アルカテル−ルーセント ユーザ・プレーンからの制御プレーンのキャリア・アグリゲーション・ベースの分離の方法
CN103945553A (zh) * 2013-01-18 2014-07-23 上海贝尔股份有限公司 基于载波聚合实现控制平面和用户平面分离的方法
CN103945553B (zh) * 2013-01-18 2017-12-12 上海贝尔股份有限公司 基于载波聚合实现控制平面和用户平面分离的方法
JP2014192860A (ja) * 2013-03-28 2014-10-06 Panasonic Intellectual Property Corp Of America 送信装置及び送信方法
US10455500B2 (en) 2013-08-30 2019-10-22 Kyocera Corporation User terminal, communication control apparatus, and processor
US11743818B2 (en) 2013-08-30 2023-08-29 Kyocera Corporation User terminal, communication control apparatus, and processor
JP2015050528A (ja) * 2013-08-30 2015-03-16 京セラ株式会社 ユーザ端末、通信制御装置、及びプロセッサ
WO2015029980A1 (ja) * 2013-08-30 2015-03-05 京セラ株式会社 ユーザ端末、通信制御装置、及びプロセッサ
JP2015070323A (ja) * 2013-09-26 2015-04-13 株式会社Nttドコモ ユーザ端末および無線通信方法
US9936465B2 (en) 2013-09-26 2018-04-03 Ntt Docomo, Inc. User terminal and radio communication method
WO2015045960A1 (ja) * 2013-09-26 2015-04-02 株式会社Nttドコモ ユーザ端末および無線通信方法
JP2018505600A (ja) * 2015-01-12 2018-02-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Lteデバイスにおける超低レイテンシのためのアップリンク電力制御技法
JP2016029843A (ja) * 2015-10-28 2016-03-03 株式会社Nttドコモ 無線通信システム、ユーザ端末及び無線通信方法
JP2017163389A (ja) * 2016-03-10 2017-09-14 Necプラットフォームズ株式会社 ポイントツーポイント無線装置および通信制御方法
JP2016189619A (ja) * 2016-06-30 2016-11-04 京セラ株式会社 ユーザ端末、通信制御装置、及びプロセッサ
JP2017069962A (ja) * 2016-10-18 2017-04-06 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2020529775A (ja) * 2017-08-09 2020-10-08 ソニー株式会社 無線通信システムにおける装置と方法
US11632212B2 (en) 2017-08-09 2023-04-18 Sony Group Corporation Apparatus and method in wireless communication system and computer readable storage medium
US11824806B2 (en) 2017-08-09 2023-11-21 Sony Group Corporation Apparatus and method in wireless communication system and computer readable storage medium
US12113738B2 (en) 2017-08-09 2024-10-08 Sony Group Corporation Apparatus and method in wireless communication system and computer readable storage medium
US20210168745A1 (en) * 2018-04-18 2021-06-03 Ntt Docomo, Inc. Terminal, radio communication method, and base station
US11546871B2 (en) * 2018-04-18 2023-01-03 Ntt Docomo, Inc. Terminal, radio communication method, and base station

Also Published As

Publication number Publication date
JP5898087B2 (ja) 2016-04-06
US10313988B2 (en) 2019-06-04
US20190246362A1 (en) 2019-08-08
JP2016129407A (ja) 2016-07-14
US20220264485A1 (en) 2022-08-18
US10051583B2 (en) 2018-08-14
US20230276378A1 (en) 2023-08-31
US20180146441A1 (en) 2018-05-24
US20200128493A1 (en) 2020-04-23
JPWO2012060067A1 (ja) 2014-05-12
JP6868855B2 (ja) 2021-05-12
US11356960B2 (en) 2022-06-07
US9894622B2 (en) 2018-02-13
US20170223644A1 (en) 2017-08-03
JP6537587B2 (ja) 2019-07-03
US20130215811A1 (en) 2013-08-22
US9661588B2 (en) 2017-05-23
JP2018038096A (ja) 2018-03-08
US20180310260A1 (en) 2018-10-25
US10560906B2 (en) 2020-02-11
US11683765B2 (en) 2023-06-20
JP2019165498A (ja) 2019-09-26
US12035254B2 (en) 2024-07-09

Similar Documents

Publication Publication Date Title
JP6868855B2 (ja) 無線通信装置及び無線通信方法
EP2663136B1 (en) Wireless communication terminal and power control method
JP6410111B2 (ja) 通信装置、通信方法及び集積回路
US8958370B2 (en) Method and apparatus for controlling transmission power in wireless communication system
US20140146777A1 (en) Method and apparatus for power control of sounding reference signal (srs) transmission
JP2023058618A (ja) 基地局、受信方法及び集積回路
US20110170502A1 (en) Wireless transmission apparatus and wireless transmission method
JP6268553B2 (ja) 無線通信端末装置及び電力割当方法
KR101481580B1 (ko) Ofdm/sc-fdm을 사용하는 시스템에서 상향링크 전력 제어 방법
WO2019167785A1 (ja) 通信装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13883100

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837721

Country of ref document: EP

Kind code of ref document: A1