WO2012053484A1 - Process for production of uni-lamellar liposome by two-stage emulsification technique which involves adding water-soluble lipid to inner aqueous phase, and uni-lamellar liposome produced by the process - Google Patents

Process for production of uni-lamellar liposome by two-stage emulsification technique which involves adding water-soluble lipid to inner aqueous phase, and uni-lamellar liposome produced by the process Download PDF

Info

Publication number
WO2012053484A1
WO2012053484A1 PCT/JP2011/073847 JP2011073847W WO2012053484A1 WO 2012053484 A1 WO2012053484 A1 WO 2012053484A1 JP 2011073847 W JP2011073847 W JP 2011073847W WO 2012053484 A1 WO2012053484 A1 WO 2012053484A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
liposome
dissolved
water
liposomes
Prior art date
Application number
PCT/JP2011/073847
Other languages
French (fr)
Japanese (ja)
Inventor
武寿 磯田
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012539722A priority Critical patent/JP5838970B2/en
Publication of WO2012053484A1 publication Critical patent/WO2012053484A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • A23P10/35Encapsulation of particles, e.g. foodstuff additives with oils, lipids, monoglycerides or diglycerides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/066Multiple emulsions, e.g. water-in-oil-in-water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/14Liposomes; Vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/55Phosphorus compounds
    • A61K8/553Phospholipids, e.g. lecithin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention relates to a production method using a two-stage emulsification method of single cell liposomes that can be used as a drug carrier for pharmaceuticals, foods, and cosmetics, and a single cell liposome obtained by the production method.
  • Liposomes are closed vesicles consisting of a lipid bilayer composed mainly of phospholipids. Since it has a structure and function similar to a cell membrane, it is difficult to stimulate the immune system and is highly safe as a material.
  • the water-soluble drug can be retained in the internal aqueous phase surrounded by the lipid bilayer membrane, and the fat-soluble drug can be retained in the bilayer membrane. Can be included.
  • liposomes that can be used in fields such as pharmaceuticals and cosmetics and methods for producing the same, in particular, regarding means for improving the encapsulation rate of water-soluble substances (drugs) to be encapsulated in liposomes, for example, the following documents are available: It has been published.
  • Non-Patent Document 1 when preparing a W / O / W emulsion by a microchannel emulsification method using a W / O emulsion as a dispersed phase and a Tris-HCl buffer as an outer aqueous phase, sodium caseinate is used as an emulsifier in the outer aqueous phase.
  • the inclusion rate of calcein in the liposome (lipid capsule) could be increased to about 80%.
  • no attention is paid to the additive to the inner aqueous phase.
  • calcein is only exemplified as the inclusion substance, the versatility of the drug is not shown, and practical verification considering the production scale has not been made.
  • Patent Document 1 discloses that “it is composed of an inner membrane composed of a lipid containing one or two or more functional lipids and a lipid containing or not containing one or two or more functional lipids.
  • a lipid bilayer comprising an outer membrane, and at least for any one type of functional lipid contained in the inner membrane, the amount in the inner membrane exceeds the amount in the outer membrane Is disclosed, characterized by satisfying the following conditions.
  • water-soluble lipid such as “a compound in which a polyoxyalkylene group (— (CH 2 CH 2 O) n H) is introduced into cholesterol” is mentioned.
  • the “water-soluble lipid” in the invention according to the above-mentioned Patent Document 1 includes a part that enters the inner membrane and constitutes it, such as cholesterol into which a polyoxyalkylene group is introduced. Is a compound.
  • liposomes having different constituent components (amount of functional lipid) in the inner and outer membranes such as containing more functional lipids that chemically interact with compounds such as drugs in the inner membrane than in the outer membrane. Is superior to liposomes containing the same amount of such functional lipids in the inner and outer membranes, and is superior in drug encapsulation, dispersion stability, and controlled release.
  • the charged lipid contributing to the retention of the drug is contained only in the inner membrane, while the water-soluble lipid involved in the stability of the liposome and the body movement is contained only in the outer membrane” And the amount of the charged lipid exceeds the amount of the water-soluble lipid ”. That is, the production method in which a water-soluble lipid that does not necessarily form a part of the inner membrane is added to the inner aqueous phase and the liposomes obtained thereby are not specifically disclosed by the above-mentioned Patent Document 1.
  • Non-Patent Document 2 A technique for introducing a polyethylene glycol (PEG) chain is also known (for example, Non-Patent Document 2).
  • PEG polyethylene glycol
  • Non-Patent Document 2 a technique for introducing a polyethylene glycol (PEG) chain is also known (for example, Non-Patent Document 2).
  • a compound such as PEGylated cholesterol is used as a constituent lipid component of the outer membrane of the liposome. The addition of such compounds is not described or suggested by such techniques.
  • the present invention is capable of realizing a high encapsulation rate of a water-soluble drug in a liposome, improving the temporal stability of a W / O / W emulsion, and maintaining the encapsulation rate in the process. It is an object of the present invention to provide a method for producing a single liposome having a high encapsulation rate of a water-soluble drug obtained by such a production method.
  • the present inventors have found that the above problem can be solved by adding “water-soluble lipid” to the inner aqueous phase when producing liposomes by a two-stage emulsification method, and have completed the present invention. .
  • the present invention provides a single cell liposome characterized in that an aqueous solvent (W1) in which a water-soluble lipid component (Fw) comprising a lipid having a ClogP value of less than 11 is dissolved is used as an inner aqueous phase.
  • W1 aqueous solvent
  • Fw water-soluble lipid component
  • the water-soluble lipid component (Fw) preferably contains at least one selected from the group consisting of lysolipids, short-chain phospholipids, PEG lipids, and chemically synthesized lipids having a hydrophilic group.
  • a water-soluble drug is further dissolved in the aqueous solvent (W1).
  • the present invention also provides a dry powder of the above-mentioned single cell liposome, an aqueous suspension containing the above single cell liposome, or obtained by adding the above dry powder to an aqueous solvent.
  • the present invention provides a method for producing single-cell liposomes, which comprises the following steps (1) to (3): (1) The water-soluble lipid component (Fw) is dissolved in the aqueous solvent (W1), the mixed lipid component (F1) other than the water-soluble lipid (Fw) is dissolved in the organic solvent (O), and these are mixed and emulsified.
  • the water-soluble lipid component (Fw) preferably contains at least one selected from the group consisting of lysolipids, short-chain phospholipids, PEG lipids, and chemically synthesized lipids having a hydrophilic group.
  • the primary emulsification step (1) is preferably performed by further adding a water-soluble drug.
  • the solvent removal step (3) is preferably performed while stirring the W1 / O / W2 emulsion.
  • the present invention also provides single cell liposomes produced by any of the above production methods, aqueous suspensions thereof, or dry powders thereof.
  • “monocystic liposome” (ULV, synonymous with mononuclear liposome) refers to a liposome structure having a single inner aqueous phase, and usually has a volume average particle size in the range of about 20 to 500 nm.
  • multivesicular liposome refers to a liposome structure comprising a lipid membrane surrounding a plurality of non-concentric inner aqueous phases, and also referred to as “multilamellar liposome” (MLV ) refers to a liposome structure having a plurality of concentric membranes, such as “onion skin”, with a shell-like concentric aqueous compartment in between.
  • MUV multilamellar liposome
  • the characteristics of multivesicular liposomes and multilamellar liposomes are that the volume average particle diameter is in the micrometer range, usually 0.5 to 25 ⁇ m.
  • the stability of the inner membrane side of the liposome is improved by adding a predetermined water-soluble lipid to the inner aqueous phase, and the step includes removing the O phase (oil phase) by stirring or leaving the W / O / W emulsion. Even when liposomes are produced by such a method, it is possible to suppress a decrease in the encapsulation rate of the water-soluble drug.
  • the water-soluble lipid accumulates in the vicinity of the inner wall of the liposome membrane, or the membrane is strengthened, or depending on the type of drug. Is partly mixed in the liposome membrane and disturbs the membrane, which may reduce the strength of the membrane. It is considered that such contamination can be prevented. It is also possible that the water-soluble lipid has a function like an emulsifier and improves the emulsification behavior, or the water-soluble lipid forms reverse micelles and acts on the drug to control its solubility. .
  • the “water-soluble lipid component” refers to a component composed of a lipid having a ClogP value of less than 11.
  • ClogP is a coefficient indicating the affinity of an organic compound for water and 1-octanol, and can be calculated by molecular structure analysis and physical property calculation tool ChemBioDraw Ultra of CambridgeSoft. This is a value obtained by calculating the “partition coefficient” expressed by the ratio of water and 1-octanol dissolved in an experiment. When ClogP is large, it is relatively easy to dissolve in 1-octanol, and when ClogP is small, it is relatively easy to dissolve in water.
  • the water-soluble lipid that can be used in the present invention is not particularly limited as long as this “ClogP” shows a value smaller than 11, among which lysolipid, short-chain phospholipid, PEG lipid and chemical synthesis having a hydrophilic group. Lipids are preferred. Any one of these water-soluble lipids may be used alone, or two or more thereof may be used in combination.
  • the amount of the water-soluble lipid component (Fw) added to the aqueous solvent (W1) can be adjusted within an appropriate range in consideration of the effects of the invention and the amount of the water-soluble lipid component (Fw) dissolved in water. it can.
  • a lysolipid is a kind of glycerophospholipid and is a monoacylglycerophospholipid from which either one of the fatty acids bonded to the 1-position or 2-position of glycerol has been removed.
  • a phosphatidylglycerol is mentioned.
  • the short-chain phospholipid is a glycerophospholipid or sphingophospholipid having a small number of bound fatty acids (for example, 2 to 10), such as didecanoylphosphatidylcholine.
  • the PEG lipid is a derivative in which a PEG (polyethylene glycol) chain is introduced into the lipid
  • the chemically synthesized lipid having a hydrophilic group is a derivative in which a hydrophilic group other than the PEG chain is introduced into the lipid.
  • the lipid include phospholipid and cholesterol.
  • hydrophilic groups other than PEG chains include sugar chains, alcohol groups, amino groups, thiol groups and carboxylic acid groups, and amino acid chains combining these.
  • details of chemically synthesized lipids (synthetic sterols) having a sugar chain as a hydrophilic group are disclosed in, for example, International Publication WO2008 / 081686.
  • the mixed lipid component (F1) dissolved in the organic solvent (O) in the primary emulsification step mainly constitutes the inner membrane of the lipid bilayer of the liposome, and possibly contributes to the outer membrane.
  • the mixed lipid component (F2) added in the secondary emulsification step as necessary mainly constitutes the outer membrane of the liposome.
  • the mixed lipid components (F1) and (F2) may have the same composition or different compositions.
  • the blending composition of these mixed lipid components is not particularly limited, and can be in accordance with the blending composition of known liposomes.
  • phospholipids lecithins derived from animals and plants; phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid or their fatty acid esters, glycerophospholipids; sphingophospholipids; derivatives thereof, etc.), Consists mainly of sterols that contribute to stabilization (cholesterol, phytosterol, ergosterol, derivatives thereof, etc.), and also glycolipids, glycols, aliphatic amines, long chain fatty acids (oleic acid, stearic acid, palmitic acid, etc.) ) And other compounds that impart various functions may be blended.
  • F2 can be blended with lipids for modifying the liposome surface and imparting various functions such as PEGylated phospholipid.
  • the compounding ratio of these compounds in the mixed lipid component may be appropriately adjusted according to the use while taking into consideration properties such as the stability of the lipid membrane and the behavior of the liposome in vivo.
  • Aqueous solvent (W1) / (W2), organic solvent (O) As the aqueous solvents (W1) and (W2) and the organic solvent (O), general solvents such as those used in known liposome production methods can be used.
  • the aqueous solvent (W1) and the organic solvent (O) used in the primary emulsification step form an aqueous phase and an oil phase of the W1 / O emulsion, respectively.
  • the aqueous solvent (W2) used in the secondary emulsification step is W1 / O. / The outer water phase of the W2 emulsion is formed.
  • aqueous solvent examples include pure water containing other solvents mixed with water as necessary, salts / sugars for adjusting osmotic pressure, buffers for adjusting pH, and the like.
  • organic solvents include hexane (n-hexane), chloroform, cyclohexane, 1,2-dichloroethene, dichloromethane, 1,2-dimethoxyethane, 1,1,2-trichloroethene, t-butylmethyl ether, ethyl acetate.
  • Water-insoluble organic solvents such as diethyl ether, ethyl formate, isopropyl acetate, methyl acetate, methyl ethyl ketone, and pentane.
  • water-soluble organic solvents such as acetonitrile, methanol, acetone, ethanol, 2-propanol, and ethers, hydrocarbons, halogenated hydrocarbons, halogenated ethers, and esters other than those described above can be used.
  • the organic solvent is preferably a volatile compound, and a compound having a boiling point lower than that of water is preferable. These compounds may be used alone or in combination of two or more.
  • an organic solvent containing hexane as a main component preferably an organic solvent containing 60% by volume or more of hexane. It is also preferable that the solvent is an organic solvent (O).
  • water-soluble drugs water-soluble substances encapsulated in liposomes
  • the water-soluble substance (referred to as “water-soluble drug”) encapsulated in the liposome is not particularly limited, and is known in the fields of pharmaceuticals, cosmetics, foods and the like depending on the use of the liposome. Various substances can be used. However, such water-soluble drugs do not include the water-soluble lipid component described above.
  • those used for medical liposomes include, for example, contrast agents (nonionic iodo compounds for X-ray contrast, complexes composed of gadolinium and chelating agents for MRI contrast, etc.), Anticancer drugs (adriamycin, viralrubicin, vincristine, taxol, cisplatin, mitomycin, 5-fluorouracil, irinotecan, estrasite, epirubicin, carboplatin, intron, gemzar, methotrexate, cytarabine isoborine, tegafur, cisplatin, etoposide tine , Cyclophosphamide, melphalan, ifosfamide, tespamine, nimustine, ranimustine, dacarbatin, enocitabine, fludarabine, pentostatin, cladrivi , Daunomycin, aclarubicin, ibirubicin, amrubicin
  • contrast agents noni
  • the purpose of encapsulating the water-soluble drug is achieved by dissolving the water-soluble drug in the inner aqueous phase (W1). Accordingly, if the drug having high water solubility is dissolved in the inner aqueous phase (W1) at a high concentration, the absolute amount contained can be increased. On the other hand, the amount of the inner aqueous phase (W1) can be changed as appropriate, and the amount (number) of lipids required for it can be calculated if particles (W1 / O) having a predetermined particle size are to be prepared.
  • cytarabine is dissolved in an amount of 0.1 to 1.0 ⁇ g as described in the pharmacy method, so the drug weight ratio is 0.1 ⁇ g / 0.193 to 1.0 ⁇ g / 0.193.
  • iohexol dissolves 1.0 g or more, so the drug weight ratio is 1.0 g / 0.193 g or more.
  • the amount of lipid can be reduced and the drug can be efficiently encapsulated, and the amount of lipid can be reduced.
  • this method can achieve a drug weight ratio of 0.5 to 5.
  • the viscosity generally increases as it approaches saturation.
  • the internal water phase can be included up to 10 mPa ⁇ s.
  • the required amount of lipid is smaller, which means that it is more efficient.
  • the liposomes of the present invention typically the liposomes obtained by the production method of the present invention as described below, contain an aqueous solvent (W1) in which a water-soluble lipid component (Fw) is dissolved.
  • W1 aqueous solvent
  • Fw water-soluble lipid component
  • the liposome of the present invention is typically obtained in a state suspended in an aqueous solvent (W2: outer aqueous phase) by the production method of the present invention as described below.
  • W2 outer aqueous phase
  • Such aqueous suspensions of liposomes are used for various applications. Until they are used, they can be stored as powdered liposomes, for example, by freeze-drying. In use, the powdered liposomes may be added to an aqueous solvent and suspended again.
  • the size of the liposome of the present invention is not particularly limited, but can be adjusted, for example, so that the volume average particle diameter is 50 to 1,000 nm.
  • liposomes with a volume average particle size of 50 to 200 nm have almost no risk of occluding capillaries and can pass through gaps formed in blood vessels in the vicinity of cancer tissues. This is convenient.
  • the volume average particle diameter of the liposome and the emulsion is measured by a dynamic light scattering method.
  • a dynamic light scattering nanotrack particle size analyzer UPA-EX150, Nikkiso Co., Ltd.
  • an aqueous suspension of liposomes can be diluted 10 times with, for example, an isotonic PBS solution, and the particle size distribution and volume average particle size can be calculated using a dynamic light scattering nanotrack particle size analyzer.
  • the emulsion for example, W1 / O emulsion
  • the emulsion is diluted 10 times with, for example, a chloroform / hexane mixed solvent, and the particle size distribution and volume average particle size are measured using a dynamic light scattering nanotrack particle size analyzer. The diameter can be calculated.
  • the liposome production method of the present invention includes at least the following steps (1) to (3), and may further include other steps as necessary.
  • (1) Primary emulsification step In the primary emulsification step, the water-soluble lipid component (Fw) is dissolved in the aqueous solvent (W1), and the mixed lipid component (F1) other than the water-soluble lipid (Fw) is dissolved in the organic solvent (O). It is a step of preparing a W1 / O emulsion by dissolving and mixing and emulsifying these.
  • the method for preparing the W1 / O emulsion is not particularly limited, and a method that is also used in the conventional method for producing liposomes can be employed.
  • a method that is also used in the conventional method for producing liposomes can be employed.
  • an emulsification method using an apparatus such as an ultrasonic emulsifier, a stirring emulsifier, a membrane emulsifier, or a high-pressure homogenizer can be mentioned.
  • the average particle diameter can be controlled in a wide range, and the obtained W1 / O emulsion is monodispersed. Such a method is preferable.
  • the pH of the aqueous solvent (W1) is usually adjusted in the range of 3 to 10, and for example, when oleic acid is used for the mixed lipid component, the pH is preferably 6 to 8.5. In order to adjust the pH, an appropriate buffer may be used.
  • the diameter and the like can be appropriately adjusted according to a known liposome production method (primary emulsification step), taking into consideration the conditions of the subsequent secondary emulsification step, the form of the liposome to be finally prepared, and the like.
  • the amount of the mixed lipid component (F1) is 1 to 50% by mass with respect to the organic solvent (O)
  • the volume ratio of the organic solvent (O) to the aqueous solvent (W1) is 100: 1 to 1: 2.
  • the volume average particle size of the W1 / O emulsion is preferably 50 to 1,000 nm, more preferably 50 to 200 nm.
  • the water-soluble drug in order to encapsulate the water-soluble drug in the liposome, (i) the water-soluble drug is added during the primary emulsification step, the water-soluble drug is dissolved in the aqueous solvent (W1), and the end of the secondary emulsification step And (ii) after obtaining a (empty) liposome that does not contain a water-soluble drug, an aqueous solvent in which the liposome is dispersed or a lyophilized product of the liposome. Any method of adding a water-soluble drug to the re-dispersed aqueous solvent and stirring it to incorporate it into the liposome can be used. In the production method of the present invention, even when the method (i) is used, the encapsulation rate is relatively high, and the water-soluble drug can be efficiently encapsulated in the liposome.
  • a fat-soluble substance can be encapsulated in the lipid membrane of the liposome of the present invention.
  • the fat-soluble drug is added during the primary emulsification step as in (i) above and dissolved in the organic solvent (O), or empty liposomes are obtained as in (ii) above. It may be added later.
  • the secondary emulsification step is a step of preparing a W1 / O / W2 emulsion by mixing and emulsifying the W1 / O emulsion obtained in the above step (1) and the aqueous solvent (W2). It is.
  • the method for preparing the W1 / O / W2 emulsion is not particularly limited, and a method that is also used in the conventional method for producing a W1 / O / W2 emulsion can be employed.
  • microchannel emulsification method that does not require a large mechanical shearing force for the emulsification treatment in order to suppress the collapse of the droplets during the emulsification operation and the leakage of the inclusion substance from the droplets.
  • a microchannel emulsification device module composed of a silicon microchannel substrate and a glass plate covering the upper portion of the substrate is used.
  • the outlet side of the groove-type microchannel formed by the substrate and the glass plate, or the outlet side of the through-type microchannel processed on the substrate is filled with an aqueous solvent (W2) that forms an outer aqueous phase,
  • W2 aqueous solvent
  • a W1 / O / W2 emulsion can be formed by press-fitting a W1 / O emulsion from the inlet side of the microchannel.
  • substrate various types of substrates such as a dead end type, a cross flow type and a through hole type can be used.
  • a membrane emulsification method can be used in which a W1 / O / W2 emulsion is prepared by passing a W1 / O emulsion through an emulsion membrane and dispersing it as droplets in an aqueous solvent (W2).
  • W2 aqueous solvent
  • a membrane emulsification method using an emulsified membrane formed of SPG (Shirasu Porous Glass) having fine pores with a diameter of about 0.1 to 5.0 ⁇ m is suitable, and the cost is low. Therefore, it can be an industrially advantageous method.
  • the membrane treatment with the W1 / O / W2 emulsion may be performed on the same membrane as the membrane used in the membrane emulsification or a different membrane.
  • membrane treatment is performed using a membrane having a pore size smaller than the membrane used for membrane emulsification, when preparing a W1 / O / W2 emulsion by one membrane emulsification without membrane treatment.
  • the load on each membrane (pressure required to pass the emulsion through the membrane) can be reduced, thereby increasing the membrane life and processing time required for the secondary emulsification process. This is advantageous for improving the productivity of the liposome and reducing the cost.
  • a W1 / O / W2 emulsion can also be obtained by stirring emulsification that may cause mechanical shearing force.
  • the various methods and apparatuses used in order to mix two or more fluids in the well-known stirring emulsification method can be used.
  • stirrers there are various types of stirrers, and many of them simply rotate a bar, plate, or propeller-shaped stirrer in a tank at a constant speed in one direction. There is also a case to let you.
  • various devices such as arranging a plurality of stirrers in reverse and alternately rotating or attaching a protrusion or plate combined with a stirrer on the tank side to increase the shear stress generated by the stirrer are made. .
  • the mixed lipid component (F2) and the mixed lipid component (F2) are mixed in the aqueous solvent (W2) and the W1 / O emulsion as necessary.
  • (F1) may be added, or a water-soluble emulsifier that does not destroy the liposome lipid membrane may be added.
  • Many emulsifiers are known in the field of surface chemistry. Typically, proteins, polysaccharides, ionic surfactants and nonionic surfactants are used as water-soluble emulsifiers in emulsification and dispersion processes. ing.
  • the protein examples include gelatin (a soluble protein obtained by denaturing collagen by heating), albumin and trypsin.
  • Gelatin usually has a molecular weight distribution of several thousand to several million, but preferably has a weight average molecular weight of 1,000 to 100,000, for example.
  • Gelatin commercially available for medical use or food use can be used.
  • Albumin includes egg albumin (molecular weight about 45,000), serum albumin (molecular weight about 66,000 ... bovine serum albumin), milk albumin (molecular weight about 14,000 ... ⁇ -lactalbumin), etc. A dry desugared egg white is preferred.
  • polysaccharide examples include dextran, starch, glycogen, agarose, pectin, chitosan, sodium carboxymethylcellulose, xanthan gum, locust bean gum, guar gum, maltotriose, amylose, pullulan, heparin, dextrin, and the like. Is preferably from 1,000 to 100,000.
  • Examples of the ionic surfactant include sodium cholate and sodium deoxycholate.
  • nonionic surfactant examples include alkylglycosides such as octyl glucoside, polyalkylene oxide compounds such as “Tween 80” (Tokyo Chemical Industry Co., Ltd., polyoxyethylene sorbitan monooleate, molecular weight 1309.68) and “Pluronic F- 68 ”(BASF, polyoxyethylene (160) polyoxypropylene (30) glycol, number average molecular weight 9600), polyethylene glycol having a weight average molecular weight of 1000 to 100,000, and the like.
  • alkylglycosides such as octyl glucoside
  • polyalkylene oxide compounds such as “Tween 80” (Tokyo Chemical Industry Co., Ltd., polyoxyethylene sorbitan monooleate, molecular weight 1309.68) and “Pluronic F- 68 ”(BASF, polyoxyethylene (160) polyoxypropylene (30) glycol, number average molecular weight 9600), polyethylene glycol having
  • Polyethylene glycol (PEG) products are “Unilube” (NOF Corporation), GL4-400NP, GL4-800NP (NOF Corporation), PEG200,000 (Wako Pure Chemical Industries), Macrogol (Sanyo Chemical Industries, Ltd.) ) And the like.
  • the weight average molecular weight of the water-soluble emulsifier is preferably in the range of 1,000 to 100,000. Moreover, when the weight average molecular weight is in this range, the drug encapsulation rate of the liposome is good.
  • F2 is mainly composed of a fat-soluble lipid
  • such F2 is added to the oil phase of the W1 / O emulsion in advance, and if necessary, a water-soluble emulsifier is added.
  • the emulsification treatment can be performed by adding to the added W2.
  • the solvent removal step is a step of forming liposomes by removing the organic solvent phase (O) contained in the W1 / O / W2 emulsion obtained by the secondary emulsification step. That is, the organic solvent (O) contained in the W1 / O / W2 emulsion can be removed by evaporation by collecting the W1 / O / W2 emulsion, transferring it into an open container, and allowing it to stand or stir. Thereby, the lipid membrane which consists of a mixed lipid membrane component (F1) (and (F2) added as needed) is formed around an inner water phase, and a liposome can be obtained.
  • F1 mixed lipid membrane component
  • the removal of the solvent from the W1 / O / W2 emulsion by the method as described above may be performed using heating, decompression, and stirring as necessary according to a conventional method.
  • a condition range in which the organic solvent does not bump suddenly is set.
  • the temperature condition is preferably in the range of 0 to 60 ° C, more preferably 0 to 25 ° C.
  • the decompression condition is preferably set within the range of the saturated vapor pressure of the solvent to atmospheric pressure, and more preferably within the range of + 1% to 10% of the saturated vapor pressure of the solvent. When different solvents are used in combination, conditions that match the solvent species having a higher saturated vapor pressure are preferred.
  • the liposome obtained by the production method as described above may contain a certain percentage of W / O / W emulsion-derived multivesicular liposomes in the production process, but in order to reduce this, stirring, It is effective to perform decompression or a combination thereof. For example, by reducing the pressure and stirring for longer than the time required for most of the solvent to escape, the hydration of the lipids that make up the liposome proceeds, and the multivesicular liposomes can be dissolved into a single-cell liposome state without causing inclusion leakage. It is possible to release.
  • the multivesicular liposome by-produced or remains as a by-product in this method has a structure containing many water droplets of about 50 to 200 nm derived from W / O, the pore diameter is slightly larger than the particle diameter of W / O. It is also possible to convert to single-cell liposomes of about 50 to 200 nm by passing through this filter. If there are multivesicular liposomes remaining after such operation, they can be removed by a filter.
  • W1 aqueous dispersion phase
  • the microchannel substrate of the module was made of silicon, and the terrace length, channel depth, and channel width of the microchannel substrate were about 60 ⁇ m, about 11 ⁇ m, and about 16 ⁇ m, respectively.
  • a glass plate is pressure-bonded to the microchannel substrate to form a channel, and a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2), on the outlet side of the channel
  • W2 a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2)
  • W2 aqueous phase solution
  • Solvent removal step (Preparation of aqueous suspension of liposome)
  • the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The encapsulation rate of calcein was 71%.
  • Example 2 In the solvent removal step, the same procedure as in Example 1 was conducted except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid. An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 68%.
  • Example 3 In the solvent removal step, the same procedure as in Example 1 was conducted except that the W1 / O / W2 emulsion was placed in a sealed sample bottle, shaken at 20 ° C. for 360 minutes, and then transferred to an open glass container without a lid. An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 61%.
  • the microchannel substrate of the module was made of silicon, and the terrace length, channel depth, and channel width of the microchannel substrate were about 60 ⁇ m, about 11 ⁇ m, and about 16 ⁇ m, respectively.
  • a glass plate is pressure-bonded to the microchannel substrate to form a channel, and a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2), on the outlet side of the channel
  • W2 a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2)
  • W2 aqueous phase solution
  • Solvent removal step (Preparation of aqueous suspension of liposome)
  • the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The encapsulation rate of calcein was 65%.
  • Comparative Example 2 In the solvent removal step, the same procedure as in Comparative Example 1 was conducted except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid. An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 48%.
  • Comparative Example 3 In the solvent removal step, the same procedure as in Comparative Example 1 was conducted except that the W1 / O / W2 emulsion was placed in a sealed sample bottle, shaken at 20 ° C. for 360 minutes, and then transferred to an open glass container without a lid. An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 31%.
  • Example 5 An aqueous liposome suspension was prepared in the same manner as in Example 2 except that S-LysoPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the encapsulation rate of calcein was 70%.
  • Example 6 An aqueous liposome suspension was prepared in the same manner as in Example 3 except that S-LysoPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the encapsulation rate of calcein was 65%.
  • Example 8 An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the encapsulation rate of calcein was 77%.
  • Example 9 An aqueous suspension of liposomes was prepared in the same manner as in Example 3 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the encapsulation rate of calcein was 71%.
  • Example 11 An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that in the primary emulsification step, short-chain phospholipid DDPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. The encapsulation rate of calcein was 70%.
  • Example 12 An aqueous suspension of liposomes was prepared in the same manner as in Example 3, except that in the primary emulsification step, short-chain phospholipid DDPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. The encapsulation rate of calcein was 66%.
  • Example 14 An aqueous suspension of liposomes was prepared in the same manner as in Example 2, except that in the primary emulsification step, PEG phospholipid “PM020CN” was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. The encapsulation rate of calcein was 75%.
  • Example 15 An aqueous suspension of liposomes was prepared in the same manner as in Example 3, except that in the primary emulsification step, PEG phospholipid “PM020CN” was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. The encapsulation rate of calcein was 77%.
  • Example 17 An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that man-3-chol was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the encapsulation rate of calcein was 70%.
  • Example 18 An aqueous suspension of liposomes was prepared in the same manner as in Example 3 except that man-3-chol was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the encapsulation rate of calcein was 70%.
  • Example 11 An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DEPE was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the encapsulation rate of calcein was 51%.
  • Example 26 An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the encapsulation rate of calcein was 60%.
  • the microchannel substrate of the module was made of silicon, and the terrace length, channel depth, and channel width of the microchannel substrate were about 60 ⁇ m, about 11 ⁇ m, and about 16 ⁇ m, respectively.
  • a glass plate is pressure-bonded to the microchannel substrate to form a channel, and a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2), on the outlet side of the channel
  • W2 a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2)
  • W2 aqueous phase solution
  • Solvent removal step (Preparation of aqueous suspension of liposome)
  • the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The inclusion rate of cytarabine was 47%.
  • Example 20 In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid, as in Example 19, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 43%.
  • Example 21 In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle, shaken at 20 ° C. for 360 minutes, and then transferred to an open glass container without a lid, as in Example 19, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 40%.
  • W1 aqueous dispersion phase
  • a tris-hydrochloric acid buffer solution (pH 7.4, 50 mM) containing a certain 3% alkali-treated gelatin (isoelectric point about 5) is filled, and the W1 / O emulsion is supplied from the inlet side of the apparatus.
  • W1 / O / W2 emulsion was prepared so that the ratio was 1:40.
  • Solvent removal step (Preparation of aqueous suspension of liposome)
  • the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The inclusion rate of cytarabine was 50%.
  • Example 23 In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid, as in Example 22, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 46%.
  • Example 24 In the solvent removal step, except that the W1 / O / W2 emulsion was put in a sealed sample bottle and shaken at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid, as in Example 22, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 40%.
  • W1 aqueous dispersion phase
  • the W1 / O emulsion was supplied to a place where W2 was vigorously stirred with a stirrer, and a W1 / O / W2 emulsion was produced so that W1: W2 was 1:40.
  • Solvent removal step (Preparation of aqueous suspension of liposome)
  • the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The inclusion rate of cytarabine was 50%.
  • Example 26 In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid, as in Example 25. An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 43%.
  • Example 27 In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle, shaken at 20 ° C. for 360 minutes, and then transferred to an open glass container without a lid, as in Example 25, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 39%.
  • Example 28 An aqueous suspension of liposomes was prepared in the same manner as in Example 22 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 49%.
  • Example 29 An aqueous suspension of liposomes was prepared in the same manner as in Example 23 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the inclusion rate of cytarabine was 48%.
  • Example 30 An aqueous suspension of liposomes was prepared in the same manner as in Example 24 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 45%.
  • Example 31 An aqueous suspension of liposomes was prepared in the same manner as in Example 25 except that PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 53%.
  • Example 32 An aqueous suspension of liposomes was prepared in the same manner as in Example 26 except that PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 51%.
  • Example 33 An aqueous suspension of liposomes was prepared in the same manner as in Example 27 except that PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 53%.
  • Example 34 PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step.
  • Tris-HCl buffer containing Pluronic F-68 polyoxyethylene (160) polyoxypropylene (30) glycol, number average molecular weight 9600, registered trademark, nonionic surfactant Pronon (# 188P, NOF Corporation)
  • An aqueous liposome suspension was prepared in the same manner as in Example 19 except that the liquid (pH 8, 50 mmol / L) was used. The inclusion rate of cytarabine was 60%.
  • Example 35 PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step.
  • An aqueous liposome suspension was prepared in the same manner as in Example 20 except that Tris-HCl buffer (pH 8, 50 mmol / L) containing Pluronic F-68 was used. The inclusion rate of cytarabine was 60%.
  • Example 36 PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step.
  • An aqueous liposome suspension was prepared in the same manner as in Example 21, except that Tris-HCl buffer (pH 8, 50 mmol / L) containing Pluronic F-68 was used. The inclusion rate of cytarabine was 52%.
  • aqueous liposome suspension was prepared in the same manner as in Example 19 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step.
  • the inclusion rate of cytarabine was 40%.
  • Example 32 An aqueous liposome suspension was prepared in the same manner as in Example 20, except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 32%.
  • aqueous liposome suspension was prepared in the same manner as in Example 21, except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step.
  • the inclusion rate of cytarabine was 12%.
  • aqueous liposome suspension was prepared in the same manner as in Example 22 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step.
  • the inclusion rate of cytarabine was 43%.
  • Example 35 An aqueous liposome suspension was prepared in the same manner as in Example 23 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 30%.
  • Example 36 An aqueous liposome suspension was prepared in the same manner as in Example 24 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 20%.
  • Example 37 An aqueous liposome suspension was prepared in the same manner as in Example 25 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 43%.
  • aqueous liposome suspension was prepared in the same manner as in Example 26 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step.
  • the inclusion rate of cytarabine was 34%.
  • Example 39 An aqueous liposome suspension was prepared in the same manner as in Example 27, except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 23%.
  • aqueous suspension of liposomes was prepared in the same manner as in Example 25 except that DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the inclusion rate of cytarabine was 51%.
  • aqueous suspension of liposomes was prepared in the same manner as in Example 26 except that DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step.
  • the inclusion rate of cytarabine was 40%.
  • Example 45 An aqueous suspension of liposomes was prepared in the same manner as in Example 27 except that DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 32%.
  • DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step.
  • An aqueous liposome suspension was prepared in the same manner as in Example 19, except that Tris-HCl buffer (pH 8, 50 mmol / L) containing Pluronic F-68 was used. The inclusion rate of cytarabine was 58%.
  • DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step.
  • An aqueous liposome suspension was prepared in the same manner as in Example 20 except that Tris-HCl buffer (pH 8, 50 mmol / L) containing Pluronic F-68 was used. The inclusion rate of cytarabine was 44%.
  • Solvent removal step (Preparation of aqueous suspension of liposome)
  • the obtained W1 / O / W2 emulsion was transferred to a closed container and stirred for about 8 hours under a reduced pressure condition of 20 ° C./500 mbar, and then stirred for about 8 hours under a reduced pressure condition of 20 ° C./180 mbar.
  • the solvent was volatilized.
  • the obtained liposome suspension was translucent yellow, and it was confirmed that the contrast agent iohexol was contained in the particles.
  • the iohexol encapsulation rate of the liposome was 48%.
  • aqueous liposome suspension was prepared in the same manner as in Example 37 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step.
  • the encapsulation rate of iohexol was 39%.
  • aqueous liposome suspension was prepared in the same manner as in Example 38, except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step.
  • the encapsulation rate of siRNA was 48%.
  • the primary emulsification process was performed under a pressure condition of 100 MPa using a high-pressure homogenizer (Nanomizer, manufactured by Yoshida Kikai Kogyo Co., Ltd.).
  • the average particle size of the obtained W1 / O emulsion at room temperature was 137 nm.
  • a cylindrical SPG membrane having a diameter of 10 mm, a length of 125 mm, and a pore diameter of 1.0 ⁇ m was used for an SPG membrane emulsifier (trade name “High Speed Mini Kit KH-125” manufactured by SPG Techno Co.), and an external aqueous phase solution ( Filled with Tris-hydrochloric acid buffer solution (pH 7.4, 50 mmol / L) containing 3% alkali-treated gelatin (isoelectric point about 5), which is W2), and the above W1 / O emulsion was supplied from the apparatus inlet side. Thus, a W1 / O / W2 emulsion was produced.
  • the pressure required for membrane emulsification was about 10 kPa.
  • the W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to a closed container and stirred for about 4 hours under a reduced pressure room temperature condition of 500 mbar, and then stirred for about 18 hours under a reduced pressure room temperature condition of 180 mbar.
  • the W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to a closed container and stirred for about 4 hours under a reduced pressure room temperature condition of 500 mbar, and then stirred for about 18 hours under a reduced pressure room temperature condition of 180 mbar.
  • a suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles.
  • the resulting liposome had a cytarabine encapsulation rate of 47%.
  • Example 40 Scale up by 20 times by stirring secondary emulsification
  • a Tris-HCl buffer solution pH 7.4, 50 mmol
  • 3% alkali-treated gelatin isoelectric point about 5
  • W2 / L an outer aqueous phase solution
  • the W1 / O emulsion was supplied to a place where W2 was vigorously stirred with a stirrer, and a W1 / O / W2 emulsion was produced so that W1: W2 was 1:40.
  • the resulting liposome had a cytarabine encapsulation rate of 47%.
  • the fluorescence intensity (Ftotal) of the entire liposome aqueous solution (3 mL) was measured with a spectrophotometer (U-3310, JASCO Corporation). Next, the fluorescence intensity (Fin) in the vesicle was measured by adding 30 ⁇ L of 0.01 M CoCl 2 Tris-HCl buffer and quenching the fluorescence of calcein leaked into the outer aqueous phase with Co 2+ . Furthermore, vesicles were prepared under the same conditions as the sample without adding calcein, and the fluorescence (Fl) emitted by the lipids themselves was measured.
  • Inclusion rate E (%) (Fin ⁇ Fl) / (Ftotal ⁇ Fl) ⁇ 100 (Measuring method of particle size distribution)
  • the volume average particle diameters and CV values of the W1 / O emulsions obtained in the primary emulsification step of Examples and Comparative Examples were measured according to the following methods.
  • the W1 / O emulsion is diluted 10 times with a hexane / dichloromethane mixed solvent (volume ratio: 1/1), and the particle size distribution is measured using a dynamic light scattering nanotrack particle size analyzer (UPA-EX150, Nikkiso Co., Ltd.).
  • the volume average particle diameter of the liposome was measured as it was for the prepared liposome suspension using the same apparatus.
  • the amount of cytarabine encapsulated in the liposome ie, the amount of cytarabine encapsulated in the liposome, and the amount of cytarabine not encapsulated in the liposome, The value obtained by dividing the amount of cytarabine is multiplied by 100 to calculate the inclusion rate (%) of cytarabine.
  • the absorbance at a wavelength of about 245 nm is measured, and based on a calibration curve of the absorbance of the encapsulated contrast agent compound and the concentration of the contrast agent compound, the mass of the contrast agent compound encapsulated in the liposomes and the total contrast agent compound in the system The mass was calculated, and the encapsulation rate of the contrast agent compound was determined by the following formula.
  • the mass of the contrast agent compound encapsulated in the liposome is the mass of the contrast agent compound measured from the residue
  • the total mass of the contrast agent compound is the sum of the contrast agent compound mass measured from the supernatant and the residue.
  • the partition coefficient can be obtained by calculation using a quantitative structure-activity relationship algorithm without actually measuring.
  • the distribution coefficient of a molecule is calculated by the sum of the distribution coefficients for each partial structure of the molecule.
  • the ClogP value of the fragment was calculated with a calculation program installed in the software ChemDraw, and the value was calculated by adding the value according to the fragment-based ClogP value calculation developed by BioByte.
  • the structural formula of M-LysoPC can be divided into two fragments, and the ClogP of each is calculated to be 5.18 and 1.42. Therefore, the ClogP value of M-LysoPC was set to 6.7 by adding them.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Dispersion Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

The present invention provides: a uni-lamellar liposome having an improved water-soluble medicinal agent encapsulation rate; and a process for producing the uni-lamellar liposome. This uni-lamellar liposome is characterized in that an inner aqueous phase is composed of an aqueous solvent (W1) having, dissolved therein, a water-soluble lipid component (Fw) composed of a lipid having a ClogP value smaller than 11. This process for producing the uni-lamellar liposome is characterized by comprising: (1) a primary emulsification step of dissolving a water-soluble lipid component (Fw) in an aqueous solvent (W1), dissolving a mixed lipid component (F1) that does not contain the water-soluble lipid (Fw) in an organic solvent (O), and mixing/emulsifying these solutions with each other, thereby preparing W1/O emulsion; (2) a secondary emulsification step of mixing/emulsifying the W1/O emulsion produced in step (1) with an aqueous solvent (W2), thereby preparing a W1/O/W2 emulsion; and (3) a solvent removal step of removing the organic solvent from the W1/O/W2 emulsion produced in step (2), thereby preparing an aqueous liposome suspension.

Description

水溶性脂質を内水相に添加する二段階乳化法による単胞リポソームの製造方法およびその製造方法により得られる単胞リポソームMethod for producing single-cell liposome by two-stage emulsification method in which water-soluble lipid is added to the inner aqueous phase, and single-cell liposome obtained by the production method
 本発明は、医薬、食品、化粧品のドラッグキャリアとして利用可能な単胞リポソームの二段階乳化法を用いた製造方法、およびその製造方法により得られる単胞リポソームに関する。 The present invention relates to a production method using a two-stage emulsification method of single cell liposomes that can be used as a drug carrier for pharmaceuticals, foods, and cosmetics, and a single cell liposome obtained by the production method.
 リポソームは、リン脂質を主成分とする脂質二重膜からなる閉鎖小胞体である。細胞膜と類似の構造および機能を有するため免疫系を刺激しにくく、素材としての安全性が高い。また、水溶性の薬剤を脂質二重膜で囲まれる内部の水相に、脂溶性の薬剤を二重膜の中に保持することができ、本来不安定で失活しやすい薬効成分を安定的に内包させることが可能である。 Liposomes are closed vesicles consisting of a lipid bilayer composed mainly of phospholipids. Since it has a structure and function similar to a cell membrane, it is difficult to stimulate the immune system and is highly safe as a material. In addition, the water-soluble drug can be retained in the internal aqueous phase surrounded by the lipid bilayer membrane, and the fat-soluble drug can be retained in the bilayer membrane. Can be included.
 このような、医薬品や化粧品などの分野に利用可能なリポソームおよびその製造方法について、特にリポソームに内包させる水溶性の物質(薬剤)の内包率を向上させる手段に関して、たとえば、次のような文献が公開されている。 Regarding such liposomes that can be used in fields such as pharmaceuticals and cosmetics and methods for producing the same, in particular, regarding means for improving the encapsulation rate of water-soluble substances (drugs) to be encapsulated in liposomes, for example, the following documents are available: It has been published.
 非特許文献1には、W/Oエマルションを分散相、トリス塩酸緩衝液を外水相としてマイクロチャネル乳化法によりW/O/Wエマルションを作製する際に、その外水相にカゼインナトリウムを乳化剤として配合すること、これによりリポソーム(脂質カプセル)へのカルセインの内包率を80%程度に高めることができたことが記載されている。しかしながら、この非特許文献1では、内水相への添加剤については何ら注目されていない。また、内包物質としてはカルセインが例示されているのみで、薬剤についての汎用性は示されておらず、製造スケールを考慮した実用的な検証がなされていない。 In Non-Patent Document 1, when preparing a W / O / W emulsion by a microchannel emulsification method using a W / O emulsion as a dispersed phase and a Tris-HCl buffer as an outer aqueous phase, sodium caseinate is used as an emulsifier in the outer aqueous phase. As a result, it was described that the inclusion rate of calcein in the liposome (lipid capsule) could be increased to about 80%. However, in this non-patent document 1, no attention is paid to the additive to the inner aqueous phase. In addition, calcein is only exemplified as the inclusion substance, the versatility of the drug is not shown, and practical verification considering the production scale has not been made.
 また、特許文献1には、「1種または2種以上の機能性脂質を含む脂質で構成されている内膜と、1種または2種以上の機能性脂質を含むまたは含まない脂質で構成されている外膜とからなる脂質二重膜層を有し、少なくとも、当該内膜に含まれるいずれか1つの種類の機能性脂質については、その内膜における量が、その外膜における量を上回るとの条件を満たすことを特徴とする、リポソーム」が開示されている。また、上記機能性脂質の一つとして、「たとえば、コレステロールにポリオキシアルキレン基(-(CH2CH2O)nH)を導入した化合物」のような「水溶性脂質」が挙げられており、「膜構成脂質にポリオキシアルキレン基を導入することにより、リポソームの表面が親水性になり、リポソームの安定性が向上(崩壊性・凝集性などが改善)し、また、体内で異物として認識されなくなる」といった効果が得られると記載されている。さらに、当該発明のリポソームの製造方法としては、マイクロカプセル化法、膜乳化法、超臨界二酸化炭素法などが適用できることが記載されている。 Patent Document 1 discloses that “it is composed of an inner membrane composed of a lipid containing one or two or more functional lipids and a lipid containing or not containing one or two or more functional lipids. A lipid bilayer comprising an outer membrane, and at least for any one type of functional lipid contained in the inner membrane, the amount in the inner membrane exceeds the amount in the outer membrane Is disclosed, characterized by satisfying the following conditions. Further, as one of the above functional lipids, “water-soluble lipid” such as “a compound in which a polyoxyalkylene group (— (CH 2 CH 2 O) n H) is introduced into cholesterol” is mentioned. "By introducing a polyoxyalkylene group into the membrane lipid, the surface of the liposome becomes hydrophilic, improving the stability of the liposome (improving its disintegration and aggregation properties) and recognizing it as a foreign substance in the body. It is described that an effect such as “cannot be done” is obtained. Furthermore, it is described that a microencapsulation method, a membrane emulsification method, a supercritical carbon dioxide method and the like can be applied as a method for producing the liposome of the present invention.
 しかしながら、上記特許文献1に係る発明における「水溶性脂質」として具体的に挙げられているものは、ポリオキシアルキレン基を導入したコレステロールのような、内膜に入り込んでそれを構成する一部となる化合物である。また、当該発明については、「薬剤などの化合物と化学的に相互作用する機能性脂質を外膜よりも内膜に多く含むなど、内外膜の構成成分(機能性脂質の量)が相違するリポソームは、そのような機能性脂質を内外膜に同量含むリポソームよりも、薬剤の内包率や分散安定性、コントロールリリースに優れる」という作用効果に基づくものであることが説明されているが、そのような発明のより具体的な態様としては、「薬剤の保持に寄与する荷電脂質を内膜だけに含有させ、一方でリポソームの安定性や体内動向に関与する水溶性脂質を外膜だけに含有させ、当該荷電脂質の量が当該水溶性脂質の量を上回るもの」が挙げられているのみである。つまり、必ずしも内膜に一部をなさない水溶性脂質を内水相に添加する製造方法や、それにより得られるリポソームは、上記特許文献1によっては何ら具体的に開示されていない。 However, what is specifically mentioned as the “water-soluble lipid” in the invention according to the above-mentioned Patent Document 1 includes a part that enters the inner membrane and constitutes it, such as cholesterol into which a polyoxyalkylene group is introduced. Is a compound. In addition, regarding the present invention, “liposomes having different constituent components (amount of functional lipid) in the inner and outer membranes, such as containing more functional lipids that chemically interact with compounds such as drugs in the inner membrane than in the outer membrane. Is superior to liposomes containing the same amount of such functional lipids in the inner and outer membranes, and is superior in drug encapsulation, dispersion stability, and controlled release. As a more specific embodiment of such an invention, “the charged lipid contributing to the retention of the drug is contained only in the inner membrane, while the water-soluble lipid involved in the stability of the liposome and the body movement is contained only in the outer membrane” And the amount of the charged lipid exceeds the amount of the water-soluble lipid ”. That is, the production method in which a water-soluble lipid that does not necessarily form a part of the inner membrane is added to the inner aqueous phase and the liposomes obtained thereby are not specifically disclosed by the above-mentioned Patent Document 1.
 なお、体内に投与されたリポソームを免疫系に認識されにくくし(ステルス化)特定の臓器に集めやすくしたり、親水性を高め血中安定性を向上させたりする目的で、リポソームの外表面にポリエチレングリコール(PEG)鎖を導入する手法も知られている(たとえば非特許文献2)。しかしならが、そのような手法のためには、たとえばPEG化したコレステロールのような化合物がリポソームの外膜の構成脂質成分として用いられるが、リポソームの内水相ないし内膜の構成脂質成分にそのような化合物を添加することは、そのような手法によって記載ないし示唆されるものではない。 In order to make liposomes administered into the body difficult to be recognized by the immune system (stealth), to make it easier to collect in specific organs, to increase hydrophilicity and to improve blood stability, it is applied to the outer surface of the liposome. A technique for introducing a polyethylene glycol (PEG) chain is also known (for example, Non-Patent Document 2). However, for such a technique, for example, a compound such as PEGylated cholesterol is used as a constituent lipid component of the outer membrane of the liposome. The addition of such compounds is not described or suggested by such techniques.
国際公開第2008/140081号パンフレットInternational Publication No. 2008/140081 Pamphlet
 本発明は、水溶性薬剤のリポソームへの高内包率を実現させることができるとともに、W/O/Wエマルションの経時安定性を向上させ、そのプロセスにおいて内包率を維持させることができる単胞リポソームの製造方法、ならびにそのような製造方法により得られる、水溶性薬剤の高内包率の実現した単胞リポソームを提供することを目的とする。 The present invention is capable of realizing a high encapsulation rate of a water-soluble drug in a liposome, improving the temporal stability of a W / O / W emulsion, and maintaining the encapsulation rate in the process. It is an object of the present invention to provide a method for producing a single liposome having a high encapsulation rate of a water-soluble drug obtained by such a production method.
 本発明者らは、二段階乳化法によりリポソームを製造する際に内水相に「水溶性脂質」を添加することにより、上記課題が解決されることを見出し、本発明を完成させるに至った。 The present inventors have found that the above problem can be solved by adding “water-soluble lipid” to the inner aqueous phase when producing liposomes by a two-stage emulsification method, and have completed the present invention. .
 すなわち、本発明は、ClogPの値が11より小さい脂質からなる水溶性脂質成分(Fw)が溶解した水性溶媒(W1)を内水相とすることを特徴とする単胞リポソームを提供する。 That is, the present invention provides a single cell liposome characterized in that an aqueous solvent (W1) in which a water-soluble lipid component (Fw) comprising a lipid having a ClogP value of less than 11 is dissolved is used as an inner aqueous phase.
 前記水溶性脂質成分(Fw)は、リゾ脂質、短鎖リン脂質、PEG脂質および親水性基を有する化学合成脂質からなる群より選ばれる少なくとも1種を含有するものであることが好ましい。 The water-soluble lipid component (Fw) preferably contains at least one selected from the group consisting of lysolipids, short-chain phospholipids, PEG lipids, and chemically synthesized lipids having a hydrophilic group.
 前記水性溶媒(W1)にはさらに水溶性薬剤が溶解していることが好ましい。 It is preferable that a water-soluble drug is further dissolved in the aqueous solvent (W1).
 また、本発明は、上記の単胞リポソームの乾燥粉末や、上記の単胞リポソームを含有する、または上記の乾燥粉末を水性溶媒に添加して得られる、水性懸濁液を提供する。 The present invention also provides a dry powder of the above-mentioned single cell liposome, an aqueous suspension containing the above single cell liposome, or obtained by adding the above dry powder to an aqueous solvent.
 あわせて、本発明は、下記工程(1)~(3)を含むことを特徴とする、単胞リポソームの製造方法を提供する:
 (1)水性溶媒(W1)に水溶性脂質成分(Fw)を溶解し、有機溶媒(O)に当該水溶性脂質(Fw)以外の混合脂質成分(F1)を溶解し、これらを混合乳化することによりW1/Oエマルションを調製する一次乳化工程;
 (2)上記工程(1)を経て得られたW1/Oエマルションと水性溶媒(W2)とを混合乳化することによりW1/O/W2エマルションを調製する二次乳化工程;
 (3)上記工程(2)を経て得られたW1/O/W2エマルションに含まれる有機溶媒を除去することによりリポソームの水性懸濁液を調製する溶媒除去工程。
In addition, the present invention provides a method for producing single-cell liposomes, which comprises the following steps (1) to (3):
(1) The water-soluble lipid component (Fw) is dissolved in the aqueous solvent (W1), the mixed lipid component (F1) other than the water-soluble lipid (Fw) is dissolved in the organic solvent (O), and these are mixed and emulsified. A primary emulsification step to prepare a W1 / O emulsion by
(2) A secondary emulsification step of preparing a W1 / O / W2 emulsion by mixing and emulsifying the W1 / O emulsion obtained through the step (1) and the aqueous solvent (W2);
(3) A solvent removal step of preparing an aqueous suspension of liposomes by removing the organic solvent contained in the W1 / O / W2 emulsion obtained through the step (2).
 前記水溶性脂質成分(Fw)は、リゾ脂質、短鎖リン脂質、PEG脂質および親水性基を有する化学合成脂質からなる群より選ばれる少なくとも1種を含有するものであることが好ましい。 The water-soluble lipid component (Fw) preferably contains at least one selected from the group consisting of lysolipids, short-chain phospholipids, PEG lipids, and chemically synthesized lipids having a hydrophilic group.
 前記一次乳化工程(1)は、さらに水溶性薬剤を添加して行われることが好ましい。 The primary emulsification step (1) is preferably performed by further adding a water-soluble drug.
 前記溶媒除去工程(3)は、W1/O/W2エマルションの撹拌下に行われることが好ましい。 The solvent removal step (3) is preferably performed while stirring the W1 / O / W2 emulsion.
 本発明は、上記いずれかの製造方法により製造された単胞リポソームあるいはその水性懸濁液またはその乾燥粉末も提供する。 The present invention also provides single cell liposomes produced by any of the above production methods, aqueous suspensions thereof, or dry powders thereof.
 なお、本発明において、「単胞リポソーム」(ULV、単核リポソームと同義である)は、単一の内水相を有するリポソーム構造物を指し、通常は体積平均粒径の範囲が約20~500nmである。これに対して、「多胞リポソーム」(MVL: multivesicular liposomes)は、複数の非同心円状の内水相を包囲する脂質膜を含んでなるリポソーム構造物を指し、また「多重膜リポソーム」(MLV)は、複数の「タマネギの皮」のような同心円状の膜を有し、その間に殻様の同心円状の水系コンパートメントがあるリポソーム構造物を指す。多胞リポソームおよび多重膜リポソームの特徴は、体積平均粒径がマイクロメーターの範囲であり、通常は0.5~25μmである。 In the present invention, “monocystic liposome” (ULV, synonymous with mononuclear liposome) refers to a liposome structure having a single inner aqueous phase, and usually has a volume average particle size in the range of about 20 to 500 nm. On the other hand, “multivesicular liposome” (MVL: リ ポ ソ ー ム multivesicular liposomes) refers to a liposome structure comprising a lipid membrane surrounding a plurality of non-concentric inner aqueous phases, and also referred to as “multilamellar liposome” (MLV ) Refers to a liposome structure having a plurality of concentric membranes, such as “onion skin”, with a shell-like concentric aqueous compartment in between. The characteristics of multivesicular liposomes and multilamellar liposomes are that the volume average particle diameter is in the micrometer range, usually 0.5 to 25 μm.
 所定の水溶性脂質を内水相に添加することによりリポソームの内膜側の安定性が改善され、W/O/Wエマルションを撹拌または放置してO相(油相)を除去する工程を含むような方法でリポソームを製造する場合であっても、水溶性の薬剤の内包率の低下を抑制することができる。従来、このようなリポソームの製造方法においてW/O/Wエマルションの作製が容易に進行するのは、O相がオリーブ油やデカン、ヘキサデカンといった沸点の高い油の場合であることが知られており、一方で、水より沸点の低い有機溶媒をO相に用いる場合はW/O/Wエマルションの作製は容易ではなく、これは有機溶媒の表面張力が低いために粒子の球形を維持する力が足りないため、と解釈されていた。本発明により、水より沸点の低い有機溶媒をO相に用いる場合もW/O/Wエマルションの作製が容易になり、水溶性薬剤の内包率が比較的高いリポソームが得られやすくなる。 The stability of the inner membrane side of the liposome is improved by adding a predetermined water-soluble lipid to the inner aqueous phase, and the step includes removing the O phase (oil phase) by stirring or leaving the W / O / W emulsion. Even when liposomes are produced by such a method, it is possible to suppress a decrease in the encapsulation rate of the water-soluble drug. Conventionally, it is known that the preparation of a W / O / W emulsion easily proceeds in such a liposome production method when the O phase is an oil having a high boiling point such as olive oil, decane, or hexadecane, On the other hand, when an organic solvent having a boiling point lower than that of water is used for the O phase, it is not easy to prepare a W / O / W emulsion. This is because the surface tension of the organic solvent is low, so that the ability to maintain the spherical shape of the particles is sufficient. It was interpreted as not. According to the present invention, even when an organic solvent having a boiling point lower than that of water is used for the O phase, preparation of a W / O / W emulsion is facilitated, and liposomes having a relatively high water-soluble drug encapsulation rate are easily obtained.
 なお、上記の効果が生み出される原理は必ずしも明確にはなっていないが、たとえば、水溶性脂質がリポソーム膜の内壁近傍に集積することにより当該膜が強化されていること、あるいは、薬剤の種類によっては一部がリポソーム膜中に混入して膜を乱し、それにより膜の強度が低下する場合があったところ、そのような混入を防止できていることなどが考えられる。また、水溶性脂質が乳化剤のような機能を有し、乳化挙動をよくしているあるいは水溶性脂質が逆ミセルを形成して薬剤に作用し、その溶解度をコントロールしているということも考えられる。 Although the principle that the above effect is produced is not necessarily clarified, for example, the water-soluble lipid accumulates in the vicinity of the inner wall of the liposome membrane, or the membrane is strengthened, or depending on the type of drug. Is partly mixed in the liposome membrane and disturbs the membrane, which may reduce the strength of the membrane. It is considered that such contamination can be prevented. It is also possible that the water-soluble lipid has a function like an emulsifier and improves the emulsification behavior, or the water-soluble lipid forms reverse micelles and acts on the drug to control its solubility. .
 - 製造原料 -
 ・水溶性脂質成分(Fw)
 本発明において、「水溶性脂質成分」とは、ClogPの値が11より小さい脂質からなる成分をさす。「ClogP」は、有機化合物の水と1-オクタノールに対する親和性を示す係数であり、CambridgeSoft社の分子構造解析、物性計算ツールであるChemBioDraw Ultra等により計算することができる。これは、実験によって水と1-オクタノールに対する溶解量を測定し、その比で表わされる「分配係数」を計算によって算出した値である。ClogPが大きければ相対的に1-オクタノールに溶けやすいことを表し、ClogPが小さければ相対的に水に溶けやすいことを表している。
-Production raw materials-
・ Water-soluble lipid component (Fw)
In the present invention, the “water-soluble lipid component” refers to a component composed of a lipid having a ClogP value of less than 11. “ClogP” is a coefficient indicating the affinity of an organic compound for water and 1-octanol, and can be calculated by molecular structure analysis and physical property calculation tool ChemBioDraw Ultra of CambridgeSoft. This is a value obtained by calculating the “partition coefficient” expressed by the ratio of water and 1-octanol dissolved in an experiment. When ClogP is large, it is relatively easy to dissolve in 1-octanol, and when ClogP is small, it is relatively easy to dissolve in water.
 本発明に用いることのできる水溶性脂質としては、この「ClogP」が11より小さい値を示すものであればよく、その中でもリゾ脂質、短鎖リン脂質、PEG脂質および親水性基を有する化学合成脂質が好ましい。これらの水溶性脂質は、いずれか1種を単独で用いても、2種以上を組み合わせて用いてもよい。水溶性脂質成分(Fw)の水性溶媒(W1)への添加量は、発明の作用効果および用いる水溶性脂質成分(Fw)の水への溶解量を考慮しながら適切な範囲で調整することができる。 The water-soluble lipid that can be used in the present invention is not particularly limited as long as this “ClogP” shows a value smaller than 11, among which lysolipid, short-chain phospholipid, PEG lipid and chemical synthesis having a hydrophilic group. Lipids are preferred. Any one of these water-soluble lipids may be used alone, or two or more thereof may be used in combination. The amount of the water-soluble lipid component (Fw) added to the aqueous solvent (W1) can be adjusted within an appropriate range in consideration of the effects of the invention and the amount of the water-soluble lipid component (Fw) dissolved in water. it can.
 リゾ脂質は、グリセロリン脂質の一種で、グリセロールの1位または2位に結合した脂肪酸のいずれか一方が除かれたモノアシルグリセロリン脂質であり、たとえば、リゾレシチン(リゾホスファチジルコリン)、リゾホスファチジルエタノールアミン、リゾホスファチジルグリセロールが挙げられる。 A lysolipid is a kind of glycerophospholipid and is a monoacylglycerophospholipid from which either one of the fatty acids bonded to the 1-position or 2-position of glycerol has been removed. A phosphatidylglycerol is mentioned.
 短鎖リン脂質は、グリセロリン脂質またはスフィンゴリン脂質のうち、結合した脂肪酸の炭素数が少ない(たとえば2~10の)ものであり、たとえば、ジデカノイルホスファチジルコリンが挙げられる。 The short-chain phospholipid is a glycerophospholipid or sphingophospholipid having a small number of bound fatty acids (for example, 2 to 10), such as didecanoylphosphatidylcholine.
 PEG脂質は、脂質にPEG(ポリエチレングリコール)鎖を導入した誘導体であり、一方、親水性基を有する化学合成脂質は、脂質にPEG鎖以外の親水性基を導入した誘導体である。上記脂質としてはリン脂質やコレステロールなどが挙げられる。また、PEG鎖以外の親水性基としては、糖鎖、アルコール基、アミノ基、チオール基およびカルボン酸基、ならびにこれらを組み合わせたアミノ酸の鎖が挙げられる。特に親水性基として糖鎖を有する化学合成脂質(合成ステロール)の詳細は、たとえば国際公開WO2008/081686に開示されている。 The PEG lipid is a derivative in which a PEG (polyethylene glycol) chain is introduced into the lipid, while the chemically synthesized lipid having a hydrophilic group is a derivative in which a hydrophilic group other than the PEG chain is introduced into the lipid. Examples of the lipid include phospholipid and cholesterol. Examples of hydrophilic groups other than PEG chains include sugar chains, alcohol groups, amino groups, thiol groups and carboxylic acid groups, and amino acid chains combining these. In particular, details of chemically synthesized lipids (synthetic sterols) having a sugar chain as a hydrophilic group are disclosed in, for example, International Publication WO2008 / 081686.
 ・混合脂質成分(F1)・(F2)
 一次乳化工程で有機溶媒(O)に溶解する混合脂質成分(F1)は主としてリポソームの脂質二重膜の内膜を構成し、場合によっては外膜の構成にも寄与する。一方、必要に応じて二次乳化工程で添加する混合脂質成分(F2)は主としてリポソームの外膜を構成する。混合脂質成分(F1)および(F2)は、同一の組成であっても、異なる組成であってもよい。
・ Mixed lipid component (F1) ・ (F2)
The mixed lipid component (F1) dissolved in the organic solvent (O) in the primary emulsification step mainly constitutes the inner membrane of the lipid bilayer of the liposome, and possibly contributes to the outer membrane. On the other hand, the mixed lipid component (F2) added in the secondary emulsification step as necessary mainly constitutes the outer membrane of the liposome. The mixed lipid components (F1) and (F2) may have the same composition or different compositions.
 これらの混合脂質成分の配合組成は特に限定されるものではなく、公知のリポソームの配合組成に準じたものとすることができる。一般的には、リン脂質(動植物由来のレシチン;ホスファチジルコリン、ホスファチジルセリン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジン酸またはそれらの脂肪酸エステルであるグリセロリン脂質;スフィンゴリン脂質;これらの誘導体等)と、脂質膜の安定化に寄与するステロール類(コレステロール、フィトステロール、エルゴステロール、これらの誘導体等)とを中心に構成され、さらに糖脂質、グリコール、脂肪族アミン、長鎖脂肪酸(オレイン酸、ステアリン酸、パルミチン酸等)、その他各種の機能性を賦与する化合物が配合されていてもよい。また、F2には、たとえばPEG化リン脂質のような、リポソーム表面を修飾して各種の機能性を賦与するための脂質を配合することも可能である。これらの化合物の混合脂質成分中の配合比も、脂質膜の安定性やリポソームの生体内での挙動などの性状を考慮しながら、用途に応じて適切に調整すればよい。 The blending composition of these mixed lipid components is not particularly limited, and can be in accordance with the blending composition of known liposomes. In general, phospholipids (lecithins derived from animals and plants; phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid or their fatty acid esters, glycerophospholipids; sphingophospholipids; derivatives thereof, etc.), Consists mainly of sterols that contribute to stabilization (cholesterol, phytosterol, ergosterol, derivatives thereof, etc.), and also glycolipids, glycols, aliphatic amines, long chain fatty acids (oleic acid, stearic acid, palmitic acid, etc.) ) And other compounds that impart various functions may be blended. Further, F2 can be blended with lipids for modifying the liposome surface and imparting various functions such as PEGylated phospholipid. The compounding ratio of these compounds in the mixed lipid component may be appropriately adjusted according to the use while taking into consideration properties such as the stability of the lipid membrane and the behavior of the liposome in vivo.
 ・水性溶媒(W1)・(W2)、有機溶媒(O)
 水性溶媒(W1)および(W2)ならびに有機溶媒(O)は、公知のリポソームの製造方法でも用いられているような、一般的なものを用いることができる。一次乳化工程で用いられる水性溶媒(W1)および有機溶媒(O)は、それぞれW1/Oエマルションの水相および油相をなし、二次乳化工程で用いられる水性溶媒(W2)は、W1/O/W2エマルションの外水相をなす。水性溶媒としては、たとえば純水に必要に応じて水と混合する他の溶媒、浸透圧調整のための塩類・糖類、pH調整のための緩衝液などを配合したものが挙げられる。有機溶媒としては、たとえばヘキサン(n-ヘキサン)やクロロホルム、シクロヘキサン、1,2‐ジクロロエテン、ジクロロメタン、1,2‐ジメトキシエタン、1,1,2‐トリクロロエテン、t‐ブチルメチルエーテル、酢酸エチル、ジエチルエーテル、ギ酸エチル、酢酸イソプロピル、酢酸メチル、メチルエチルケトン、ペンタンなどの非水溶性有機溶媒が挙げられる。また、アセトニトリル、メタノール、アセトン、エタノール、2‐プロパノールなどの水溶性有機溶媒や、上記以外のエーテル、炭化水素、ハロゲン化炭化水素、ハロゲン化エーテル、エステル類が挙げられる。なかでもクロロホルム、シクロヘキサン、ジクロロメタン、ヘキサン、t‐ブチルメチルエーテル、酢酸エチル、ジエチルエーテル、ギ酸エチル、酢酸イソプロピル、酢酸メチル、メチルエチルケトン、ペンタン、アセトニトリル、メタノール、アセトン、エタノール、2‐プロパノールなどが好ましい。溶媒除去工程を考慮すると有機溶媒は揮発性の化合物が好ましく、水よりも沸点の低い化合物が好ましい。これらの化合物は、いずれか1種単独で用いても、2種以上を組み合わせて用いてもよい。たとえば、得られるナノサイズのW1/Oエマルションの単分散性が良好なものとなることから、ヘキサンを主成分(50体積%以上)とする有機溶媒、好ましくはヘキサンが60体積%以上である有機溶媒を有機溶媒(O)とすることも好ましい。
Aqueous solvent (W1) / (W2), organic solvent (O)
As the aqueous solvents (W1) and (W2) and the organic solvent (O), general solvents such as those used in known liposome production methods can be used. The aqueous solvent (W1) and the organic solvent (O) used in the primary emulsification step form an aqueous phase and an oil phase of the W1 / O emulsion, respectively. The aqueous solvent (W2) used in the secondary emulsification step is W1 / O. / The outer water phase of the W2 emulsion is formed. Examples of the aqueous solvent include pure water containing other solvents mixed with water as necessary, salts / sugars for adjusting osmotic pressure, buffers for adjusting pH, and the like. Examples of organic solvents include hexane (n-hexane), chloroform, cyclohexane, 1,2-dichloroethene, dichloromethane, 1,2-dimethoxyethane, 1,1,2-trichloroethene, t-butylmethyl ether, ethyl acetate. Water-insoluble organic solvents such as diethyl ether, ethyl formate, isopropyl acetate, methyl acetate, methyl ethyl ketone, and pentane. In addition, water-soluble organic solvents such as acetonitrile, methanol, acetone, ethanol, 2-propanol, and ethers, hydrocarbons, halogenated hydrocarbons, halogenated ethers, and esters other than those described above can be used. Of these, chloroform, cyclohexane, dichloromethane, hexane, t-butyl methyl ether, ethyl acetate, diethyl ether, ethyl formate, isopropyl acetate, methyl acetate, methyl ethyl ketone, pentane, acetonitrile, methanol, acetone, ethanol, 2-propanol and the like are preferable. Considering the solvent removal step, the organic solvent is preferably a volatile compound, and a compound having a boiling point lower than that of water is preferable. These compounds may be used alone or in combination of two or more. For example, since the resulting nano-sized W1 / O emulsion has good monodispersity, an organic solvent containing hexane as a main component (50% by volume or more), preferably an organic solvent containing 60% by volume or more of hexane. It is also preferable that the solvent is an organic solvent (O).
 ・水溶性薬剤(リポソームに内包させる水溶性物質)
 本発明における、リポソームに内包させる水溶性の物質(「水溶性薬剤」と称する。)は特に限定されるものではなく、リポソームの用途に応じて医薬品、化粧品、食品などの分野で知られている各種の物質を用いることができる。ただし、そのような水溶性薬剤には、前述した水溶性脂質成分は包含されない。
・ Water-soluble drugs (water-soluble substances encapsulated in liposomes)
In the present invention, the water-soluble substance (referred to as “water-soluble drug”) encapsulated in the liposome is not particularly limited, and is known in the fields of pharmaceuticals, cosmetics, foods and the like depending on the use of the liposome. Various substances can be used. However, such water-soluble drugs do not include the water-soluble lipid component described above.
 水溶性薬剤のうち、医療用のリポソームなどに用いられるものとしては、たとえば、造影剤(X線造影用の非イオン性ヨード化合物、MRI造影用のガドリニウムとキレート化剤とからなる錯体等)、抗がん剤(アドリアマイシン、ビラルビシン、ビンクリスチン、タキソール、シスプラチン、マイトマイシン、5-フルオロウラシル、イリノテカン、エストラサイト、エピルビシン、カルボプラチン、イントロン、ジェムザール、メソトレキセート、シタラビンアイソボリン、テガフール、シスプラチン、エトポシド、トポテシン、ビラルビシン、ネダプラチン、シクロホスファミド、メルファラン、イホスファミド、テスパミン、ニムスチン、ラニムスチン、ダカルバチン、エノシタビン、フルダラビン、ペントスタチン、クラドリビン、ダウノマイシン、アクラルビシン、イビルビシン、アムルビシン、アクチノマイシン、タキソテール、トラスツブマブ、リツキシマブ、ゲムツズマブ、レンチナン、シゾフィラン、インターフェロン、インターロイキン、アスパラギナーゼ、ホスフェストロール、ブスルファン、ボルテゾミブ、アリムタ、ベバシズマブ、ネララビン、セツキシマブ等)、抗菌剤(マクロライド系抗生物質、ケトライド系抗生物質、セファロスポリン系抗生物質、オキサセフェム系抗生物質、ペニシリン系抗生物質、ベータラクタマーゼ配合剤、アミノグリコシド系抗生物質、テトラサイクリン系抗生物質、ホスホマイシン系抗生物質、カルバペネム系抗生物質、ペネム系抗生物質)、MRSA・VRE・PRSP感染症治療剤、ポリエン系抗真菌剤、ピリミジン系抗真菌剤、アゾール系抗真菌剤、キャンディン系抗真菌剤、ニューキノロン系合成抗菌剤、抗酸化性剤、抗炎症剤、血行促進剤、美白剤、肌荒れ防止剤、老化防止剤、発毛促進性剤、保湿剤、ホルモン剤、ビタミン類、核酸(DNAもしくはRNAのセンス鎖もしくはアンチセンス鎖、プラスミド、ベクター、mRNA、siRNA等)、タンパク質(酵素、抗体、ペプチド等)、ワクチン製剤(破傷風などのトキソイドを抗原とするもの;ジフテリア、日本脳炎、ポリオ、風疹、おたふくかぜ、肝炎などのウイルスを抗原とするもの;DNAまたはRNAワクチン等)などの薬理的作用を有する物質や、色素・蛍光色素、キレート化剤、安定化剤、保存剤などの製薬助剤が挙げられる。 Among water-soluble drugs, those used for medical liposomes include, for example, contrast agents (nonionic iodo compounds for X-ray contrast, complexes composed of gadolinium and chelating agents for MRI contrast, etc.), Anticancer drugs (adriamycin, viralrubicin, vincristine, taxol, cisplatin, mitomycin, 5-fluorouracil, irinotecan, estrasite, epirubicin, carboplatin, intron, gemzar, methotrexate, cytarabine isoborine, tegafur, cisplatin, etoposide tine , Cyclophosphamide, melphalan, ifosfamide, tespamine, nimustine, ranimustine, dacarbatin, enocitabine, fludarabine, pentostatin, cladrivi , Daunomycin, aclarubicin, ibirubicin, amrubicin, actinomycin, taxotere, trastuzumab, rituximab, gemtuzumab, lentinan, schizophyllan, interferon, interleukin, asparaginase, phosfestol, busulfan, bortezomib, alimta, bevacizumab, Agents (macrolide antibiotics, ketolide antibiotics, cephalosporin antibiotics, oxacephem antibiotics, penicillin antibiotics, beta-lactamases, aminoglycoside antibiotics, tetracycline antibiotics, fosfomycin antibiotics , Carbapenem antibiotics, penem antibiotics), MRSA / VRE / PRSP infection treatment, polyene antifungal, pyrimidine antifungal Agent, azole antifungal agent, candin antifungal agent, new quinolone synthetic antibacterial agent, antioxidant agent, anti-inflammatory agent, blood circulation promoter, whitening agent, skin roughening agent, anti-aging agent, hair growth promoting agent , Moisturizers, hormonal agents, vitamins, nucleic acids (sense or antisense strands of DNA or RNA, plasmids, vectors, mRNA, siRNA, etc.), proteins (enzymes, antibodies, peptides, etc.), vaccine preparations (toxoids such as tetanus) Antigens such as diphtheria, Japanese encephalitis, polio, rubella, mumps, hepatitis, etc. Antigens such as DNA or RNA vaccines, dyes / fluorescent dyes, chelation And pharmaceutical auxiliaries such as agents, stabilizers and preservatives.
 水溶性薬剤を内包させる目的は、水溶性薬剤を内水相(W1)に溶解することによって達成される。したがって水溶性の高い薬剤は、内水相(W1)に高濃度で溶解すれば、内包される絶対量は増やすことができる。一方、内水相(W1)の量は適宜変えることができ、所定の粒径の粒子(W1/O)を作成しようとすれば、それに必要な脂質の量(個数)は計算できる。たとえば、100 nm のW1/Oエマルション(粒子体積0.0005 μm3)を形成する場合、W1相(内水相) 1.0 mLで製造すれば2.0 x1015個のW1/O粒子が生成する計算である。一方、100 nm のW1/Oナノエマルション(粒子表面積2500 nm2)はリン脂質分子(レシチン表面積0.7 nm2) 0.4 x105個で構成されている、と計算される。したがって、薬液 1.0 mL の1次乳化に必要な脂質量は、2.0 x1015個x0.4 x105個=0.8 x1020個、すなわち0.132 mmolである。レシチン以外の脂質分子も、その表面積はおおよそ0.7 nm2として差し支えないため、脂質の総量として0.132 mmolが100 nm のW1/Oナノエマルションを作成するのに必要最少量と考えられる。リポソームを作成するには、その倍の0.264 mmolが必要であり、代表的なリン脂質のDPPCで分子量換算すると193 mgが必要である。 The purpose of encapsulating the water-soluble drug is achieved by dissolving the water-soluble drug in the inner aqueous phase (W1). Accordingly, if the drug having high water solubility is dissolved in the inner aqueous phase (W1) at a high concentration, the absolute amount contained can be increased. On the other hand, the amount of the inner aqueous phase (W1) can be changed as appropriate, and the amount (number) of lipids required for it can be calculated if particles (W1 / O) having a predetermined particle size are to be prepared. For example, when a 100 nm W1 / O emulsion (particle volume: 0.0005 μm 3 ) is formed, it is calculated that 2.0 × 10 15 W1 / O particles are produced if 1.0 mL of W1 phase (inner water phase) is produced. On the other hand, a 100 nm W1 / O nanoemulsion (particle surface area 2500 nm 2 ) is calculated to be composed of 0.4 × 10 5 phospholipid molecules (lecithin surface area 0.7 nm 2 ). Therefore, the amount of lipid necessary for the primary emulsification of 1.0 mL of the drug solution is 2.0 × 10 15 particles × 0.4 × 10 5 particles = 0.8 × 10 20 cells, that is, 0.132 mmol. Since lipid molecules other than lecithin can be approximately 0.7 nm 2 in surface area, the total amount of lipid is considered to be the minimum amount necessary to produce a W1 / O nanoemulsion with 0.132 mmol as 100 nm. To make liposomes, 0.264 mmol of that is required, and 193 mg is required in terms of molecular weight in DPPC of a typical phospholipid.
 そこで、薬剤を1.0 mLに溶解し、100 nmのリポソームを作成する場合を考えると、薬局法記載の通りシタラビンは0.1~1.0 g溶解するので、薬剤重量比0.1 g/0.193 g~1.0 g/0.193 g、イオヘキソール(造影剤)は1.0 g以上溶解するので、薬剤重量比1.0 g/0.193 g以上である。これは、脂質量を低減して効率的に薬剤を内包できることを意味し、脂質の投与量を減らすことができる点、臨床上有意義であり、本手法により薬剤重量比0.5~5が達成できる。さらに、より多くの薬剤を溶解すると、一般的に飽和状態に近づき粘度が上昇する。本手法により、内水相の粘度として10mPa・sまで内包可能である。 Therefore, considering the case where a drug is dissolved in 1.0 μmL and a 100 nm nm liposome is prepared, cytarabine is dissolved in an amount of 0.1 to 1.0 μg as described in the pharmacy method, so the drug weight ratio is 0.1 μg / 0.193 to 1.0 μg / 0.193. g, iohexol (contrast agent) dissolves 1.0 g or more, so the drug weight ratio is 1.0 g / 0.193 g or more. This means that the amount of lipid can be reduced and the drug can be efficiently encapsulated, and the amount of lipid can be reduced. This is clinically significant, and this method can achieve a drug weight ratio of 0.5 to 5. Furthermore, when more drug is dissolved, the viscosity generally increases as it approaches saturation. By this method, the internal water phase can be included up to 10 mPa · s.
 また、100 nmより大きい粒子を製造する場合には、脂質の必要量はそれより少なくて済むので、より効率的ということになる。 Also, when producing particles larger than 100 nm, the required amount of lipid is smaller, which means that it is more efficient.
 ・リポソームおよびその水性懸濁液
 本発明のリポソーム、典型的には以下に説明するような本発明の製造方法により得られるリポソームは、水溶性脂質成分(Fw)が溶解した水性溶媒(W1)を内水相とするものであり、水溶性脂質成分が溶解していない水性溶媒を内水相とするものに比べて高い薬剤の内包率を達成することができる。
-Liposomes and aqueous suspensions thereof The liposomes of the present invention, typically the liposomes obtained by the production method of the present invention as described below, contain an aqueous solvent (W1) in which a water-soluble lipid component (Fw) is dissolved. A higher drug encapsulation rate can be achieved as compared with the case where an aqueous solvent in which the water-soluble lipid component is not dissolved is used as the inner aqueous phase.
 本発明のリポソームは、典型的には以下に説明するような本発明の製造方法により、水性溶媒(W2:外水相)に懸濁した状態で得られる。このようなリポソームの水性懸濁液が各種の用途に供されるが、使用されるまでの間、たとえば凍結乾燥法などにより粉末状態のリポソームとして保存することもできる。使用の際には、粉末状態のリポソームを水性溶媒に添加し、再度懸濁させればよい。 The liposome of the present invention is typically obtained in a state suspended in an aqueous solvent (W2: outer aqueous phase) by the production method of the present invention as described below. Such aqueous suspensions of liposomes are used for various applications. Until they are used, they can be stored as powdered liposomes, for example, by freeze-drying. In use, the powdered liposomes may be added to an aqueous solvent and suspended again.
 本発明のリポソームのサイズは特に限定されるものではないが、たとえば、体積平均粒子径が50~1,000nmとなるよう調整することができる。特に体積平均粒子径が50~200nmのリポソームは、毛細血管を閉塞するおそれがほとんどなく、またがん組織近辺の血管にできる間隙を通過することもできるため、医薬品等として人体に投与して使用する上で好都合である。 The size of the liposome of the present invention is not particularly limited, but can be adjusted, for example, so that the volume average particle diameter is 50 to 1,000 nm. In particular, liposomes with a volume average particle size of 50 to 200 nm have almost no risk of occluding capillaries and can pass through gaps formed in blood vessels in the vicinity of cancer tissues. This is convenient.
 なお、本発明における、リポソームおよびエマルションの体積平均粒子径は、動的光散乱法により測定されるものであり、たとえば、動的光散乱式ナノトラック粒度分析計(UPA-EX150、日機装株式会社)を用いて算出することができる。リポソームの場合には、リポソームの水性懸濁液をたとえば等張PBS溶液で10倍に希釈し、動的光散乱式ナノトラック粒度分析計を用いて粒度分布や体積平均粒子径を算出することができ、エマルションの場合には、エマルション(たとえば、W1/Oエマルション)をたとえばクロロホルム/ヘキサン混合溶媒で10倍に希釈し、動的光散乱式ナノトラック粒度分析計を用いて粒度分布や体積平均粒子径を算出することができる。 In the present invention, the volume average particle diameter of the liposome and the emulsion is measured by a dynamic light scattering method. For example, a dynamic light scattering nanotrack particle size analyzer (UPA-EX150, Nikkiso Co., Ltd.) Can be used to calculate. In the case of liposomes, an aqueous suspension of liposomes can be diluted 10 times with, for example, an isotonic PBS solution, and the particle size distribution and volume average particle size can be calculated using a dynamic light scattering nanotrack particle size analyzer. In the case of an emulsion, the emulsion (for example, W1 / O emulsion) is diluted 10 times with, for example, a chloroform / hexane mixed solvent, and the particle size distribution and volume average particle size are measured using a dynamic light scattering nanotrack particle size analyzer. The diameter can be calculated.
 - リポソームの製造方法 -
 本発明のリポソームの製造方法は、少なくとも下記工程(1)~(3)を含み、必要に応じてその他の工程をさらに含むことができるものである。
-Manufacturing method of liposome-
The liposome production method of the present invention includes at least the following steps (1) to (3), and may further include other steps as necessary.
 (1)一次乳化工程
 一次乳化工程は、水性溶媒(W1)に水溶性脂質成分(Fw)を溶解し、有機溶媒(O)に当該水溶性脂質(Fw)以外の混合脂質成分(F1)を溶解し、これらを混合乳化することにより、W1/Oエマルションを調製する工程である。
(1) Primary emulsification step In the primary emulsification step, the water-soluble lipid component (Fw) is dissolved in the aqueous solvent (W1), and the mixed lipid component (F1) other than the water-soluble lipid (Fw) is dissolved in the organic solvent (O). It is a step of preparing a W1 / O emulsion by dissolving and mixing and emulsifying these.
 W1/Oエマルションを調製するための方法は特に限定されるものではなく、従来のリポソームの製造方法でも用いられているような方法を採用することができる。たとえば、超音波乳化機、撹拌乳化機、膜乳化機、高圧ホモジナイザーなどの装置を用いた乳化方法が挙げられるが、平均粒径を広い範囲で制御でき、かつ得られるW1/Oエマルションが単分散性となるような方法が好ましい。 The method for preparing the W1 / O emulsion is not particularly limited, and a method that is also used in the conventional method for producing liposomes can be employed. For example, an emulsification method using an apparatus such as an ultrasonic emulsifier, a stirring emulsifier, a membrane emulsifier, or a high-pressure homogenizer can be mentioned. The average particle diameter can be controlled in a wide range, and the obtained W1 / O emulsion is monodispersed. Such a method is preferable.
 水性溶媒(W1)のpHは、通常3~10の範囲で調節され、たとえば、混合脂質成分にオレイン酸を用いる場合、pHは6~8.5とすることが好ましい。pHを調整するためには適切な緩衝液を用いればよい。 The pH of the aqueous solvent (W1) is usually adjusted in the range of 3 to 10, and for example, when oleic acid is used for the mixed lipid component, the pH is preferably 6 to 8.5. In order to adjust the pH, an appropriate buffer may be used.
 一次乳化工程におけるその他の条件、たとえば、混合脂質成分(F1)の量(有機溶媒(O)に対する割合)、有機溶媒(O)と水性溶媒(W1)の体積比、W1/Oエマルションの平均粒径などは、公知のリポソームの製造方法(一次乳化工程)に準じて、続く二次乳化工程の条件や最終的に調製するリポソームの態様などを考慮しながら、適宜調節することができる。通常、混合脂質成分(F1)の量は有機溶媒(O)に対して1~50質量%の割合であり、有機溶媒(O)と水性溶媒(W1)の体積比は100:1~1:2である。W1/Oエマルションの体積平均粒径は、好ましくは50~1,000nmであり、より好ましくは50~200nmである。 Other conditions in the primary emulsification step, such as the amount of the mixed lipid component (F1) (ratio to the organic solvent (O)), the volume ratio of the organic solvent (O) and the aqueous solvent (W1), and the average particle size of the W1 / O emulsion The diameter and the like can be appropriately adjusted according to a known liposome production method (primary emulsification step), taking into consideration the conditions of the subsequent secondary emulsification step, the form of the liposome to be finally prepared, and the like. Usually, the amount of the mixed lipid component (F1) is 1 to 50% by mass with respect to the organic solvent (O), and the volume ratio of the organic solvent (O) to the aqueous solvent (W1) is 100: 1 to 1: 2. The volume average particle size of the W1 / O emulsion is preferably 50 to 1,000 nm, more preferably 50 to 200 nm.
 本発明では、リポソームに水溶性薬剤を内包させるために、(i)一次乳化工程の際に水溶性薬剤を添加し、水性溶媒(W1)に水溶性薬剤を溶解させ、二次乳化工程終了時点でそれを内包するリポソームが得られるようにする方法、(ii)水溶性薬剤を内包しない(空の)リポソームを得た後に、そのリポソームが分散している水性溶媒またはそのリポソームの凍結乾燥物を再分散させた水性溶媒に水溶性薬剤を添加し、撹拌するなどして、リポソームにそれを取り込ませる方法、いずれを用いることもできる。本発明の製造方法では、上記(i)の方法を用いた場合であっても内包率が比較的高く、効率的にリポソームに水溶性薬剤を内包させることができる。 In the present invention, in order to encapsulate the water-soluble drug in the liposome, (i) the water-soluble drug is added during the primary emulsification step, the water-soluble drug is dissolved in the aqueous solvent (W1), and the end of the secondary emulsification step And (ii) after obtaining a (empty) liposome that does not contain a water-soluble drug, an aqueous solvent in which the liposome is dispersed or a lyophilized product of the liposome. Any method of adding a water-soluble drug to the re-dispersed aqueous solvent and stirring it to incorporate it into the liposome can be used. In the production method of the present invention, even when the method (i) is used, the encapsulation rate is relatively high, and the water-soluble drug can be efficiently encapsulated in the liposome.
 なお、必要であれば、脂溶性の物質(脂溶性薬剤)を、本発明のリポソームの脂質膜内に内包させることも可能である。その場合は、脂溶性薬剤を、上記(i)のように一次乳化工程の際に添加して有機溶媒(O)に溶解させておくか、上記(ii)のように空のリポソームを得た後に添加するようにすればよい。 If necessary, a fat-soluble substance (fat-soluble drug) can be encapsulated in the lipid membrane of the liposome of the present invention. In that case, the fat-soluble drug is added during the primary emulsification step as in (i) above and dissolved in the organic solvent (O), or empty liposomes are obtained as in (ii) above. It may be added later.
 (2)二次次乳化工程
 二次乳化工程は、上記工程(1)により得られたW1/Oエマルションと水性溶媒(W2)とを混合乳化することによりW1/O/W2エマルションを調製する工程である。
(2) Secondary emulsification step The secondary emulsification step is a step of preparing a W1 / O / W2 emulsion by mixing and emulsifying the W1 / O emulsion obtained in the above step (1) and the aqueous solvent (W2). It is.
 W1/O/W2エマルションを調製するための方法は特に限定されるものではなく、従来のW1/O/W2エマルションの製造方法でも用いられているような方法を採用することができる。 The method for preparing the W1 / O / W2 emulsion is not particularly limited, and a method that is also used in the conventional method for producing a W1 / O / W2 emulsion can be employed.
 たとえば、乳化操作時の液滴の崩壊および液滴からの内包物質の漏出を抑えるため、乳化処理に大きな機械的剪断力を必要としないマイクロチャネル乳化法を用いることが好適である。マイクロチャネル乳化法では、たとえば、シリコン製マイクロチャンネル基板およびこの基板上部を覆うガラス板から構成される、マイクロチャネル乳化装置モジュールを使用する。上記基板およびガラス板により形成される溝型マイクロチャネルの出口側、あるいは上記基板上に加工された貫通型マイクロチャネルの出口側には、外水相をなす水性溶媒(W2)を満たしておき、マイクロチャネルの入口側からW1/Oエマルションを圧入することで、W1/O/W2エマルションを形成できる。上記基板としては、デッドエンド型、クロスフロー型、貫通孔型など、種々の形態のものを用いることができる。 For example, it is preferable to use a microchannel emulsification method that does not require a large mechanical shearing force for the emulsification treatment in order to suppress the collapse of the droplets during the emulsification operation and the leakage of the inclusion substance from the droplets. In the microchannel emulsification method, for example, a microchannel emulsification device module composed of a silicon microchannel substrate and a glass plate covering the upper portion of the substrate is used. The outlet side of the groove-type microchannel formed by the substrate and the glass plate, or the outlet side of the through-type microchannel processed on the substrate is filled with an aqueous solvent (W2) that forms an outer aqueous phase, A W1 / O / W2 emulsion can be formed by press-fitting a W1 / O emulsion from the inlet side of the microchannel. As the substrate, various types of substrates such as a dead end type, a cross flow type and a through hole type can be used.
 また、W1/Oエマルションを乳化膜を通過させて水性溶媒(W2)中に液滴として分散させることによりW1/O/W2エマルションを調製する、膜乳化法を用いることもできる。特に、直径0.1~5.0μm程度の微細な細孔を有するSPG(Shirasu Porous Glass:シラス多孔質ガラス)で形成された乳化膜を用いる膜乳化法が好適であり、コストが安く処理量が多い、工業的に有利な方法とすることができる。 Alternatively, a membrane emulsification method can be used in which a W1 / O / W2 emulsion is prepared by passing a W1 / O emulsion through an emulsion membrane and dispersing it as droplets in an aqueous solvent (W2). In particular, a membrane emulsification method using an emulsified membrane formed of SPG (Shirasu Porous Glass) having fine pores with a diameter of about 0.1 to 5.0 μm is suitable, and the cost is low. Therefore, it can be an industrially advantageous method.
 なお、W1/O/W2エマルションの平均粒径の単分散性を向上させるために、上記のような方法または他の方法による膜乳化でW1/O/W2エマルションを得た後、さらに1回ないし複数回、当該膜乳化で用いた膜と同じ膜またはそれとは異なる膜にW1/O/W2エマルションによる膜処理を行ってもよい。特に、膜乳化に用いる膜よりも小さな細孔径を有する膜を用いて膜処理を行うようにした場合、膜処理を行うことなく1回の膜乳化でW1/O/W2エマルションを調製する場合に較べて、膜乳化および膜処理それぞれの膜への負荷(エマルションを膜に通過させるために必要な圧力)を小さくすることができ、それにより膜の長寿命化や二次乳化工程に要する処理時間の短縮を図ることができ、リポソームの生産性の向上および低コスト化にも有利である。 In addition, in order to improve the monodispersity of the average particle diameter of the W1 / O / W2 emulsion, after obtaining the W1 / O / W2 emulsion by membrane emulsification by the above-described method or other methods, once more or once Multiple times, the membrane treatment with the W1 / O / W2 emulsion may be performed on the same membrane as the membrane used in the membrane emulsification or a different membrane. In particular, when membrane treatment is performed using a membrane having a pore size smaller than the membrane used for membrane emulsification, when preparing a W1 / O / W2 emulsion by one membrane emulsification without membrane treatment. Compared to membrane emulsification and membrane treatment, the load on each membrane (pressure required to pass the emulsion through the membrane) can be reduced, thereby increasing the membrane life and processing time required for the secondary emulsification process. This is advantageous for improving the productivity of the liposome and reducing the cost.
 さらに、機械的剪断力の生じる可能性のある撹拌乳化においても、W1/O/W2エマルションを得ることができる。本発明においても、公知の撹拌乳化法において二液以上の流体を混合するために用いられる各種の方法・装置を用いることができる。たとえば撹拌装置にはいろいろな形状の物が存在し、単に棒・板・プロペラ状の撹拌子を槽内で一定速度・一方向に回転させるものが多いが、撹拌子を間欠回転させたり逆回転させる場合もある。特殊な状況では複数の撹拌子を並べ交互に逆回転させたり、槽側に撹拌子と組合された突起あるいは板を取り付けて撹拌子が発生するせん断応力を増強させるなどの様々な工夫がなされる。撹拌子への動力伝達方法も様々であり、回転軸を介して撹拌子を回転させるものが殆どであるが、磁石を封入しテフロン(登録商標)等でコーティングした撹拌子を容器の外部から回転する磁界で動力を伝達するマグネチックスターラーも存在する。撹拌子のサイズ(半径)や毎分回転数などの条件は、本発明の作用効果や公知の撹拌乳化法における条件を考慮しながら、適切な範囲で調整すればよい。 Furthermore, a W1 / O / W2 emulsion can also be obtained by stirring emulsification that may cause mechanical shearing force. Also in this invention, the various methods and apparatuses used in order to mix two or more fluids in the well-known stirring emulsification method can be used. For example, there are various types of stirrers, and many of them simply rotate a bar, plate, or propeller-shaped stirrer in a tank at a constant speed in one direction. There is also a case to let you. In special circumstances, various devices such as arranging a plurality of stirrers in reverse and alternately rotating or attaching a protrusion or plate combined with a stirrer on the tank side to increase the shear stress generated by the stirrer are made. . There are various ways to transmit power to the stirrer, and most of them rotate the stirrer via a rotating shaft. However, a stirrer coated with magnet and coated with Teflon (registered trademark) is rotated from the outside of the container. There is also a magnetic stirrer that transmits power with a magnetic field. Conditions such as the size (radius) of the stirrer and the number of revolutions per minute may be adjusted within an appropriate range in consideration of the effects of the present invention and the conditions in the known stirring emulsification method.
 二次乳化工程におけるその他の条件、たとえば、W1/Oエマルションと水性溶媒(W2)の体積比、W1/O/W2エマルションの平均粒径などは、公知のリポソームの製造方法(二次乳化工程)に準じて、最終的に調製するリポソームの用途などを考慮しながら適宜調節することができる。 Other conditions in the secondary emulsification step, such as the volume ratio of the W1 / O emulsion to the aqueous solvent (W2), the average particle size of the W1 / O / W2 emulsion, etc., are known liposome production methods (secondary emulsification step). According to the above, it can be adjusted as appropriate in consideration of the use of the liposome to be finally prepared.
 さらに、二次乳化工程では、水性溶媒(W2)およびW1/Oエマルションに、必要応じて混合脂質成分(F2)や、混合脂質成分(F2)の一部として或いはこれに代えて、混合脂質成分(F1)を添加してもよく、またそれらリポソーム脂質膜を破壊しない水溶性乳化剤を添加してもよい。界面化学の分野では多くの乳化剤が知られており、代表的には、タンパク質、多糖類、イオン性界面活性剤および非イオン性界面活性剤などが、水溶性乳化剤として乳化・分散プロセスに用いられている。 Further, in the secondary emulsification step, the mixed lipid component (F2) and the mixed lipid component (F2) are mixed in the aqueous solvent (W2) and the W1 / O emulsion as necessary. (F1) may be added, or a water-soluble emulsifier that does not destroy the liposome lipid membrane may be added. Many emulsifiers are known in the field of surface chemistry. Typically, proteins, polysaccharides, ionic surfactants and nonionic surfactants are used as water-soluble emulsifiers in emulsification and dispersion processes. ing.
 上記タンパク質としては、ゼラチン(コラーゲンを加熱により変性させた可溶性のタンパク質)、アルブミンやトリプシンなどが挙げられる。ゼラチンは通常、数千~数百万の分子量分布を有するが、たとえば重量平均分子量が1,000~100,000であるものが好ましい。医療用ないし食品用として市販されているゼラチンを用いることができる。アルブミンには、卵アルブミン(分子量約45,000)、血清アルブミン(分子量約66,000…ウシ血清アルブミン)、乳アルブミン(分子量約14,000…α-ラクトアルブミン)などが含まれ、たとえば卵アルブミンである乾燥脱糖卵白が好ましい。 Examples of the protein include gelatin (a soluble protein obtained by denaturing collagen by heating), albumin and trypsin. Gelatin usually has a molecular weight distribution of several thousand to several million, but preferably has a weight average molecular weight of 1,000 to 100,000, for example. Gelatin commercially available for medical use or food use can be used. Albumin includes egg albumin (molecular weight about 45,000), serum albumin (molecular weight about 66,000 ... bovine serum albumin), milk albumin (molecular weight about 14,000 ... α-lactalbumin), etc. A dry desugared egg white is preferred.
 上記多糖類としては、デキストラン、デンプン、グリコーゲン、アガロース、ペクチン、キトサン、カルボキシメチルセルロースナトリウム、キサンタンガム、ローカストビーンガム、グァーガム、マルトトリオース、アミロース、プルラン、ヘパリン、デキストリンなどが挙げられ、たとえば重量平均分子量が1,000~100,000のデキストランが好ましい。 Examples of the polysaccharide include dextran, starch, glycogen, agarose, pectin, chitosan, sodium carboxymethylcellulose, xanthan gum, locust bean gum, guar gum, maltotriose, amylose, pullulan, heparin, dextrin, and the like. Is preferably from 1,000 to 100,000.
 上記イオン性界面活性剤としては、コール酸ナトリウム、デオキシコール酸ナトリウムなどが挙げられる。 Examples of the ionic surfactant include sodium cholate and sodium deoxycholate.
 上記非イオン性界面活性剤としては、オクチルグルコシド等のアルキルグリコシド、ポリアルキレンオキサイド化合物、たとえば「Tween 80」(東京化成工業株式会社,ポリオキシエチレンソルビタンモノオレアート,分子量1309.68)や「プルロニック F-68」(BASF、ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール、数平均分子量9600)の製品や、重量平均分子量が1000~100000のポリエチレングリコールなどが挙げられる。ポリエチレングリコール(PEG)は、製品として「ユニルーブ」(日油株式会社)、GL4-400NP、GL4-800NP(日油株式会社)、PEG200,000(和光純薬)、マクロゴール(三洋化成工業株式会社)などが挙げられる。 Examples of the nonionic surfactant include alkylglycosides such as octyl glucoside, polyalkylene oxide compounds such as “Tween 80” (Tokyo Chemical Industry Co., Ltd., polyoxyethylene sorbitan monooleate, molecular weight 1309.68) and “Pluronic F- 68 ”(BASF, polyoxyethylene (160) polyoxypropylene (30) glycol, number average molecular weight 9600), polyethylene glycol having a weight average molecular weight of 1000 to 100,000, and the like. Polyethylene glycol (PEG) products are “Unilube” (NOF Corporation), GL4-400NP, GL4-800NP (NOF Corporation), PEG200,000 (Wako Pure Chemical Industries), Macrogol (Sanyo Chemical Industries, Ltd.) ) And the like.
 分子量は、小さすぎると脂質膜中に混入しやすくなってリポソームの形成を阻害するおそれがあり、逆に大きすぎるとW1/O/W2エマルションの外水相中への分散や界面への配向の速度が遅れてリポソームの合一や多胞リポソームの形成につながるおそれがある。そのため、水溶性乳化剤の重量平均分子量は1,000~100,000の範囲内にあることが好ましい。また、この範囲の重量平均分子量であると、リポソームの薬剤の内包率が良い。 If the molecular weight is too small, it is likely to be mixed into the lipid membrane and inhibit the formation of liposomes. Conversely, if the molecular weight is too large, the dispersion of the W1 / O / W2 emulsion in the outer aqueous phase or the orientation to the interface may occur. The speed may be delayed, leading to liposome coalescence and multivesicular liposome formation. Therefore, the weight average molecular weight of the water-soluble emulsifier is preferably in the range of 1,000 to 100,000. Moreover, when the weight average molecular weight is in this range, the drug encapsulation rate of the liposome is good.
 上記のようにして混合脂質成分(F2)および/または水溶性乳化剤を用いる場合の各種の条件、たとえば、それらの量や、水性溶媒(W2)およびW1/Oエマルションとの混合態様(添加順序等)は特に限定されるものではなく、公知のリポソームの製造方法に準じて、適切なものとすればよい。たとえばF2が主として水溶性脂質からなる場合、あらかじめそのようなF2および/または水溶性乳化剤をW2に添加しておき、それにW1/Oエマルションを添加して乳化処理を行うことができる。一方、F2が主として脂溶性脂質からなる場合、あらかじめ(W1/Oエマルション調製後)そのようなF2をW1/Oエマルションの油相に添加しておき、それを、必要に応じて水溶性乳化剤が添加されているW2に添加して乳化処理を行うことができる。 Various conditions when using the mixed lipid component (F2) and / or the water-soluble emulsifier as described above, for example, the amount thereof, and the mixing mode with the aqueous solvent (W2) and the W1 / O emulsion (addition order, etc.) ) Is not particularly limited, and may be appropriate according to known liposome production methods. For example, when F2 is mainly composed of a water-soluble lipid, such F2 and / or a water-soluble emulsifier can be added to W2 in advance, and a W1 / O emulsion can be added thereto for emulsification. On the other hand, when F2 is mainly composed of a fat-soluble lipid, (after preparation of the W1 / O emulsion) such F2 is added to the oil phase of the W1 / O emulsion in advance, and if necessary, a water-soluble emulsifier is added. The emulsification treatment can be performed by adding to the added W2.
 (3)溶媒除去工程
 溶媒除去工程は、前記二次乳化工程により得られたW1/O/W2エマルションに含まれる有機溶媒相(O)を除去し、リポソームを形成させる工程である。すなわち、W1/O/W2エマルションを回収し、開放容器内に移し静置あるいは撹拌することで、W1/O/W2エマルションに含まれる有機溶媒(O)を蒸発除去することができる。これにより、混合脂質膜成分(F1)(および必要に応じて添加される(F2))からなる脂質膜を内水相の周囲に形成し、リポソームを得ることができる。
(3) Solvent removal step The solvent removal step is a step of forming liposomes by removing the organic solvent phase (O) contained in the W1 / O / W2 emulsion obtained by the secondary emulsification step. That is, the organic solvent (O) contained in the W1 / O / W2 emulsion can be removed by evaporation by collecting the W1 / O / W2 emulsion, transferring it into an open container, and allowing it to stand or stir. Thereby, the lipid membrane which consists of a mixed lipid membrane component (F1) (and (F2) added as needed) is formed around an inner water phase, and a liposome can be obtained.
 上記のような方法によるW1/O/W2エマルションから溶媒を除去は、定法に従い、必要に応じて加温、減圧、撹拌を用いながら行えばよい。有機溶媒(O)に含まれる化合物の種類に応じて、それらの有機溶媒が突沸することのない条件範囲が設定される。温度条件は0~60℃の範囲が好ましく、0~25℃がより好ましい。また、減圧条件は溶媒の飽和蒸気圧~大気圧の範囲内に設定されることが好ましく、溶媒の飽和蒸気圧の+1%~10%の範囲内に設定されることがより好ましい。異なる溶媒を混合して用いる場合、より飽和蒸気圧の高い溶媒種に合わせた条件が好ましい。これらの除去条件は、溶媒が突沸しない範囲で組み合わせてもよく、例えば、熱に弱い薬剤を使用する際は、より低温側でかつ減圧条件で溶媒を溜去することが好ましい。溶媒除去にはW1/O/W2エマルションの撹拌が無くともよいが、撹拌をしたほうがより均一に溶媒除去が進む。 The removal of the solvent from the W1 / O / W2 emulsion by the method as described above may be performed using heating, decompression, and stirring as necessary according to a conventional method. Depending on the type of the compound contained in the organic solvent (O), a condition range in which the organic solvent does not bump suddenly is set. The temperature condition is preferably in the range of 0 to 60 ° C, more preferably 0 to 25 ° C. The decompression condition is preferably set within the range of the saturated vapor pressure of the solvent to atmospheric pressure, and more preferably within the range of + 1% to 10% of the saturated vapor pressure of the solvent. When different solvents are used in combination, conditions that match the solvent species having a higher saturated vapor pressure are preferred. These removal conditions may be combined within a range in which the solvent does not suddenly boil. For example, when a chemical that is weak against heat is used, it is preferable that the solvent is distilled off at a lower temperature and under reduced pressure. The solvent removal may not require stirring of the W1 / O / W2 emulsion, but the solvent removal proceeds more uniformly with stirring.
 なお、上記のような製造方法により得られるリポソームには、製法の工程上、W/O/Wエマルション由来の多胞リポソームがある程度の割合含まれることがあるが、これを減じるために、撹拌、減圧、またはそれらの組み合わせを行うことが効果的である。たとえば、溶媒の大半が抜ける時間より長く減圧および撹拌を行なうことにより、リポソームを構成する脂質の水和が進み、内包物の漏出を起こさないまま、多胞リポソームが解けて単胞のリポソーム状態にばらけることが可能である。また、本法で副生する、あるいは残存する多胞リポソームはその内部がW/O由来の50~200nm程度の水滴を多く含む構造であるので、W/Oの粒子径よりもわずかに大きな孔径のフィルターを通過させることで、50~200nm程度の単胞リポソームへ変換することも可能である。このような操作をしても残った多胞リポソームがある場合には、フィルターにより除去することもできる。 In addition, the liposome obtained by the production method as described above may contain a certain percentage of W / O / W emulsion-derived multivesicular liposomes in the production process, but in order to reduce this, stirring, It is effective to perform decompression or a combination thereof. For example, by reducing the pressure and stirring for longer than the time required for most of the solvent to escape, the hydration of the lipids that make up the liposome proceeds, and the multivesicular liposomes can be dissolved into a single-cell liposome state without causing inclusion leakage. It is possible to release. In addition, since the multivesicular liposome by-produced or remains as a by-product in this method has a structure containing many water droplets of about 50 to 200 nm derived from W / O, the pore diameter is slightly larger than the particle diameter of W / O. It is also possible to convert to single-cell liposomes of about 50 to 200 nm by passing through this filter. If there are multivesicular liposomes remaining after such operation, they can be removed by a filter.
 <カルセイン内包リポソーム>
 [実施例1]
 1.一次乳化工程(W1/Oエマルションの調製)
 ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社)0.3g、コレステロール(Chol)0.152gおよびオレイン酸(OA)0.108gを含むヘキサン15mLを有機溶媒相(O)とし、カルセイン(0.4mM)およびM-LysoPC(ミリストイル基を有するリゾホスファチジルコリン(リゾレシチン)、日油株式会社、ClogP=6.7)0.010gを含むトリス-塩酸緩衝液(pH8、50mmol/L)5mLを内水相用の水分散相(W1)とした。50mLのビーカーにこれらの混合液を入れ、直径20mmのプローブをセットした超音波分散装置(UH-600S、株式会社エスエムテー)により、25℃にて15分間超音波を照射し(出力5.5)、乳化処理を行った。上記方法に従って測定したところ、この一次乳化工程で得られたW1/Oエマルションは体積平均粒径約200nmの単分散W/Oエマルションであることが確認され、CV値は29%であった。
<Calcein-encapsulating liposome>
[Example 1]
1. Primary emulsification process (preparation of W1 / O emulsion)
15 ml of hexane containing 0.3 g of egg yolk lecithin “COATSOME NC-50” (NOF Corporation) having a phosphatidylcholine content of 95%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) ( O) and tris-hydrochloric acid buffer (pH 8, 50 mmol / L) containing calcein (0.4 mM) and M-LysoPC (lysophosphatidylcholine having a myristoyl group (lysolecithin), NOF Corporation, ClogP = 6.7) ) 5 mL was used as an aqueous dispersion phase (W1) for the inner aqueous phase. These mixed liquids were put into a 50 mL beaker, and ultrasonic waves were radiated at 25 ° C. for 15 minutes by an ultrasonic dispersion apparatus (UH-600S, SMT Co., Ltd.) with a 20 mm diameter probe set (output 5.5). The emulsification treatment was performed. When measured according to the above method, it was confirmed that the W1 / O emulsion obtained in this primary emulsification step was a monodispersed W / O emulsion having a volume average particle size of about 200 nm, and the CV value was 29%.
 2.二次乳化工程(W1/O/W2エマルションの調製)
 続いて、上記一次乳化工程により得られたW1/Oエマルションを分散相とし、実験用デッドエンド型マイクロチャネル乳化装置モジュールを使用して、マイクロチャネル乳化法によるW1/O/W2エマルションの製造を行った。
2. Secondary emulsification process (Preparation of W1 / O / W2 emulsion)
Subsequently, the W1 / O emulsion obtained by the primary emulsification step was used as a dispersed phase, and a W1 / O / W2 emulsion was produced by a microchannel emulsification method using an experimental dead-end type microchannel emulsifier module. It was.
 上記モジュールのマイクロチャネル基板はシリコン製であり、マイクロチャネル基板のテラス長、チャネル深さおよびチャネル幅はそれぞれ約60μm、約11μmおよび約16μmであった。上記マイクロチャネル基板にガラス板を圧着させてチャネルを形成し、このチャネルの出口側に外水相溶液(W2)である3%のアルカリ処理ゼラチン(等電点約5)を含むトリス-塩酸緩衝液(pH8、50mmol/L)を満たしておき、チャネルの入口側から前記W1/Oエマルションを供給して、W1/O/W2エマルションを製造した。 The microchannel substrate of the module was made of silicon, and the terrace length, channel depth, and channel width of the microchannel substrate were about 60 μm, about 11 μm, and about 16 μm, respectively. A glass plate is pressure-bonded to the microchannel substrate to form a channel, and a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2), on the outlet side of the channel The liquid (pH 8, 50 mmol / L) was filled, and the W1 / O emulsion was supplied from the inlet side of the channel to produce a W1 / O / W2 emulsion.
 3.溶媒除去工程(リポソームの水性懸濁液の調製)
 次に、上記W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で15分静置したのち蓋のない開放ガラス製容器に移し替え、室温下で約20時間、撹拌子により撹拌し、ヘキサンを揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。カルセインの内包率は71%であった。
3. Solvent removal step (Preparation of aqueous suspension of liposome)
Next, the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The encapsulation rate of calcein was 71%.
 [実施例2]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分静置したのち蓋のない開放ガラス製容器に移し替えたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は68%であった。
[Example 2]
In the solvent removal step, the same procedure as in Example 1 was conducted except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid. An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 68%.
 [実施例3]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分振とうしたのち蓋のない開放ガラス製容器に移し替えたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は61%であった。
[Example 3]
In the solvent removal step, the same procedure as in Example 1 was conducted except that the W1 / O / W2 emulsion was placed in a sealed sample bottle, shaken at 20 ° C. for 360 minutes, and then transferred to an open glass container without a lid. An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 61%.
 [比較例1]
 1.一次乳化工程(W1/Oエマルションの調製)
 ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社)0.3g、コレステロール(Chol)0.152gおよびオレイン酸(OA)0.108gを含むヘキサン15mLを有機溶媒相(O)とし、カルセイン(0.4mM)を含むトリス-塩酸緩衝液(pH8、50mmol/L)5mLを内水相用の水分散相(W1)とした。50mLのビーカーにこれらの混合液を入れ、直径20mmのプローブをセットした超音波分散装置(UH-600S、株式会社エスエムテー)により、25℃にて15分間超音波を照射し(出力5.5)、乳化処理を行った。上記方法に従って測定したところ、この一次乳化工程で得られたW1/Oエマルションは体積平均粒径約200nmの単分散W/Oエマルションであることが確認され、CV値は29%であった。
[Comparative Example 1]
1. Primary emulsification process (preparation of W1 / O emulsion)
15 ml of hexane containing 0.3 g of egg yolk lecithin “COATSOME NC-50” (NOF Corporation) having a phosphatidylcholine content of 95%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) ( O) and 5 mL of Tris-HCl buffer solution (pH 8, 50 mmol / L) containing calcein (0.4 mM) was used as the aqueous dispersion phase (W1) for the inner aqueous phase. These mixed liquids were put into a 50 mL beaker, and ultrasonic waves were radiated at 25 ° C. for 15 minutes by an ultrasonic dispersion apparatus (UH-600S, SMT Co., Ltd.) with a 20 mm diameter probe set (output 5.5). The emulsification treatment was performed. When measured according to the above method, it was confirmed that the W1 / O emulsion obtained in this primary emulsification step was a monodispersed W / O emulsion having a volume average particle size of about 200 nm, and the CV value was 29%.
 2.二次乳化工程(W1/O/W2エマルションの調製)
 続いて、上記一次乳化工程により得られたW1/Oエマルションを分散相とし、実験用デッドエンド型マイクロチャネル乳化装置モジュールを使用して、マイクロチャネル乳化法によるW1/O/W2エマルションの製造を行った。
2. Secondary emulsification process (Preparation of W1 / O / W2 emulsion)
Subsequently, the W1 / O emulsion obtained by the primary emulsification step was used as a dispersed phase, and a W1 / O / W2 emulsion was produced by a microchannel emulsification method using an experimental dead-end type microchannel emulsifier module. It was.
 上記モジュールのマイクロチャネル基板はシリコン製であり、マイクロチャネル基板のテラス長、チャネル深さおよびチャネル幅はそれぞれ約60μm、約11μmおよび約16μmであった。上記マイクロチャネル基板にガラス板を圧着させてチャネルを形成し、このチャネルの出口側に外水相溶液(W2)である3%のアルカリ処理ゼラチン(等電点約5)を含むトリス-塩酸緩衝液(pH8、50mmol/L)を満たしておき、チャネルの入口側から前記W1/Oエマルションを供給して、W1/O/W2エマルションを製造した。 The microchannel substrate of the module was made of silicon, and the terrace length, channel depth, and channel width of the microchannel substrate were about 60 μm, about 11 μm, and about 16 μm, respectively. A glass plate is pressure-bonded to the microchannel substrate to form a channel, and a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2), on the outlet side of the channel The liquid (pH 8, 50 mmol / L) was filled, and the W1 / O emulsion was supplied from the inlet side of the channel to produce a W1 / O / W2 emulsion.
 3.溶媒除去工程(リポソームの水性懸濁液の調製)
 次に、上記W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で15分静置したのち蓋のない開放ガラス製容器に移し替え、室温下で約20時間、撹拌子により撹拌し、ヘキサンを揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。カルセインの内包率は65%であった。
3. Solvent removal step (Preparation of aqueous suspension of liposome)
Next, the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The encapsulation rate of calcein was 65%.
 [比較例2]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分静置したのち蓋のない開放ガラス製容器に移し替えたこと以外は比較例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は48%であった。
[Comparative Example 2]
In the solvent removal step, the same procedure as in Comparative Example 1 was conducted except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid. An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 48%.
 [比較例3]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分振とうしたのち蓋のない開放ガラス製容器に移し替えたこと以外は比較例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は31%であった。
[Comparative Example 3]
In the solvent removal step, the same procedure as in Comparative Example 1 was conducted except that the W1 / O / W2 emulsion was placed in a sealed sample bottle, shaken at 20 ° C. for 360 minutes, and then transferred to an open glass container without a lid. An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 31%.
 [実施例4]
 一次乳化工程において、M-LysoPCの代わりにS-LysoPC(ステアロイル基を有するリゾホスファチジルコリン、日油株式会社、ClogP=8.7)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は73%であった。
[Example 4]
Example 1 except that S-LysoPC (lysophosphatidylcholine having a stearoyl group, NOF Corporation, ClogP = 8.7) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. Thus, an aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 73%.
 [実施例5]
 一次乳化工程において、M-LysoPCの代わりにS-LysoPCを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は70%であった。
[Example 5]
An aqueous liposome suspension was prepared in the same manner as in Example 2 except that S-LysoPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 70%.
 [実施例6]
 一次乳化工程において、M-LysoPCの代わりにS-LysoPCを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は65%であった。
[Example 6]
An aqueous liposome suspension was prepared in the same manner as in Example 3 except that S-LysoPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 65%.
 [実施例7]
 一次乳化工程において、M-LysoPCの代わりにDLPG-Na(ジラウロイルホスファチジルグリセロールナトリウム塩、日油株式会社、ClogP=9.02)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は82%であった。
[Example 7]
Example 1 except that DLPG-Na (dilauroylphosphatidylglycerol sodium salt, NOF Corporation, ClogP = 9.02) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. Thus, an aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 82%.
 [実施例8]
 一次乳化工程において、M-LysoPCの代わりにDLPG-Naを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は77%であった。
[Example 8]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 77%.
 [実施例9]
 一次乳化工程において、M-LysoPCの代わりにDLPG-Naを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は71%であった。
[Example 9]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 71%.
 [実施例10]
 一次乳化工程において、M-LysoPCの代わりに短鎖リン脂質DDPC(ジデカノイルホスファチジルコリン、日油株式会社、ClogP=10)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は70%であった。
[Example 10]
Example 1 except that in the primary emulsification step, short-chain phospholipid DDPC (didecanoylphosphatidylcholine, NOF Corporation, ClogP = 10) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. Thus, an aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 70%.
 [実施例11]
 一次乳化工程において、M-LysoPCの代わりに短鎖リン脂質DDPCを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は70%であった。
[Example 11]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that in the primary emulsification step, short-chain phospholipid DDPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. The encapsulation rate of calcein was 70%.
 [実施例12]
 一次乳化工程において、M-LysoPCの代わりに短鎖リン脂質DDPCを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は66%であった。
[Example 12]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3, except that in the primary emulsification step, short-chain phospholipid DDPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. The encapsulation rate of calcein was 66%.
 [実施例13]
 一次乳化工程において、M-LysoPCの代わりにPEGリン脂質「PM020CN」(ジミリストイルホスファチジルエタノールアミンにPEG鎖(数平均分子量約2000)を導入したPEGリン脂質、日油株式会社、ClogP=8)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は81%であった。
[Example 13]
In the primary emulsification step, instead of M-LysoPC, PEG phospholipid “PM020CN” (PEG phospholipid with a PEG chain (number average molecular weight of about 2000) in dimyristoylphosphatidylethanolamine, NOF Corporation, ClogP = 8) An aqueous liposome suspension was prepared in the same manner as in Example 1 except that it was dissolved in the inner aqueous phase (W1). The encapsulation rate of calcein was 81%.
 [実施例14]
 一次乳化工程において、M-LysoPCの代わりにPEGリン脂質「PM020CN」を内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は75%であった。
[Example 14]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2, except that in the primary emulsification step, PEG phospholipid “PM020CN” was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. The encapsulation rate of calcein was 75%.
 [実施例15]
 一次乳化工程において、M-LysoPCの代わりにPEGリン脂質「PM020CN」を内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は77%であった。
[Example 15]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3, except that in the primary emulsification step, PEG phospholipid “PM020CN” was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. The encapsulation rate of calcein was 77%.
 [実施例16]
 一次乳化工程において、M-LysoPCの代わりに、国際公開WO2008/081686に記載の方法(合成例1参照)に従って調製した合成ステロールman-3-chol(コレステロールの3位にマンノースを導入した化合物、ClogP=9.5)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は74%であった。
[Example 16]
In the primary emulsification step, instead of M-LysoPC, a synthetic sterol man-3-chol prepared according to the method described in International Publication WO2008 / 081686 (see Synthesis Example 1) (a compound in which mannose is introduced at the 3-position of cholesterol, ClogP = 9.5) was dissolved in the inner aqueous phase (W1) in the same manner as in Example 1 to prepare an aqueous suspension of liposomes. The encapsulation rate of calcein was 74%.
 [実施例17]
 一次乳化工程において、M-LysoPCの代わりにman-3-cholを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は70%であった。
[Example 17]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that man-3-chol was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 70%.
 [実施例18]
 一次乳化工程において、M-LysoPCの代わりにman-3-cholを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は70%であった。
[Example 18]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3 except that man-3-chol was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 70%.
 [比較例4]
 一次乳化工程において、M-LysoPCの代わりにDLPE(ジラウロイルホスファチジルエタノールアミン、日油株式会社、ClogP=11.2)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は70%であった。
[Comparative Example 4]
In the primary emulsification step, in the same manner as in Example 1 except that DLPE (dilauroylphosphatidylethanolamine, NOF Corporation, ClogP = 11.2) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC, An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 70%.
 [比較例5]
 一次乳化工程において、M-LysoPCの代わりにDLPEを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は60%であった。
[Comparative Example 5]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DLPE was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 60%.
 [比較例6]
 一次乳化工程において、M-LysoPCの代わりにDLPEを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は33%であった。
[Comparative Example 6]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3, except that DLPE was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 33%.
 [比較例7]
 一次乳化工程において、M-LysoPCの代わりにDSPE(ジステアロイルホスファチジルエタノールアミン、日油株式会社、ClogP=18.9)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は70%であった。
[Comparative Example 7]
In the primary emulsification step, the same procedure as in Example 1 was conducted except that DSPE (distearoylphosphatidylethanolamine, NOF Corporation, ClogP = 18.9) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC. An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 70%.
 [比較例8]
 一次乳化工程において、M-LysoPCの代わりにDSPEを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は52%であった。
[Comparative Example 8]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DSPE was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 52%.
 [比較例9]
 一次乳化工程において、M-LysoPCの代わりにDSPEを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は40%であった。
[Comparative Example 9]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3 except that DSPE was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 40%.
 [比較例10]
 一次乳化工程において、M-LysoPCの代わりにDEPE(ジエルコイルホスファチジルエタノールアミン、日油株式会社、ClogP=24.5)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は71%であった。
[Comparative Example 10]
In the primary emulsification step, in the same manner as in Example 1 except that DEPE (Diel Coil Phosphatidylethanolamine, NOF Corporation, ClogP = 24.5) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC, An aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 71%.
 [比較例11]
 一次乳化工程において、M-LysoPCの代わりにDEPEを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は51%であった。
[Comparative Example 11]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DEPE was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 51%.
 [比較例12]
 一次乳化工程において、M-LysoPCの代わりにDEPEを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は39%であった。
[Comparative Example 12]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3 except that DEPE was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 39%.
 [比較例13]
 一次乳化工程において、M-LysoPCの代わりにDSPG-Na(ジステアロイルホスファチジルグリセロールナトリウム塩、日油株式会社、ClogP=16.7)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は69%であった。
[Comparative Example 13]
Example 1 except that DSPG-Na (distearoylphosphatidylglycerol sodium salt, NOF Corporation, ClogP = 16.7) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. Thus, an aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 69%.
 [比較例14]
 一次乳化工程において、M-LysoPCの代わりにDSPG-Naを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は56%であった。
[Comparative Example 14]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DSPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 56%.
 [比較例15]
 一次乳化工程において、M-LysoPCの代わりにDSPG-Naを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は38%であった。
[Comparative Example 15]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3, except that DSPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 38%.
 [比較例16]
 一次乳化工程において、M-LysoPCの代わりにDEPG-Na(ジエルコイルホスファチジルエタノールアミンナトリウム塩、日油株式会社、ClogP=22.5)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は70%であった。
[Comparative Example 16]
Example 1 and Example 1 except that DEPG-Na (Dielcoyl phosphatidylethanolamine sodium salt, NOF Corporation, ClogP = 22.5) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. Similarly, an aqueous suspension of liposomes was prepared. The encapsulation rate of calcein was 70%.
 [比較例17]
 一次乳化工程において、M-LysoPCの代わりにDEPE-Naを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は55%であった。
[Comparative Example 17]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DEPE-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 55%.
 [比較例18]
 一次乳化工程において、M-LysoPCの代わりにDEPE-Naを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は40%であった。
[Comparative Example 18]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3, except that DEPE-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 40%.
 [比較例19]
 一次乳化工程において、M-LysoPCの代わりにDLPC(ジラウロイルホスファチジルコリン、日油株式会社、ClogP=12.2)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は72%であった。
[Comparative Example 19]
In the primary emulsification step, in the same manner as in Example 1, except that DLPC (dilauroylphosphatidylcholine, NOF Corporation, ClogP = 12.2) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC, An aqueous suspension was prepared. The encapsulation rate of calcein was 72%.
 [比較例20]
 一次乳化工程において、M-LysoPCの代わりにDLPCを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は52%であった。
[Comparative Example 20]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DLPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 52%.
 [比較例21]
 一次乳化工程において、M-LysoPCの代わりにDLPCを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は44%であった。
[Comparative Example 21]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3 except that DLPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 44%.
 [比較例22]
 一次乳化工程において、M-LysoPCの代わりにDPPC(ジパルミトイルホスファチジルコリン、日油株式会社、ClogP=17.8)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は75%であった。
[Comparative Example 22]
In the primary emulsification step, in the same manner as in Example 1 except that DPPC (dipalmitoylphosphatidylcholine, NOF Corporation, ClogP = 17.8) was dissolved in the inner aqueous phase (W1) instead of M-LysoPC, An aqueous suspension was prepared. The encapsulation rate of calcein was 75%.
 [比較例23]
 一次乳化工程において、M-LysoPCの代わりにDPPCを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は55%であった。
[Comparative Example 23]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DPPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 55%.
 [比較例24]
 一次乳化工程において、M-LysoPCの代わりにDPPCを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は40%であった。
[Comparative Example 24]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3, except that DPPC was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 40%.
 [比較例25]
 一次乳化工程において、M-LysoPCの代わりにDSPE020(ジステアロイルホスファチジルエタノールアミンにPEG鎖(数平均分子量約2000)を導入したPEGリン脂質、日油株式会社、ClogP=13.6)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は80%であった。
[Comparative Example 25]
In the primary emulsification step, instead of M-LysoPC, DSPE020 (PEG phospholipid in which a PEG chain (number average molecular weight of about 2000) was introduced into distearoylphosphatidylethanolamine, NOF Corporation, ClogP = 13.6) was used as the inner aqueous phase (W1 An aqueous suspension of liposomes was prepared in the same manner as in Example 1 except that it was dissolved in (1). The encapsulation rate of calcein was 80%.
 [比較例26]
 一次乳化工程において、M-LysoPCの代わりにDSPE020を内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は60%であった。
[Comparative Example 26]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 60%.
 [比較例27]
 一次乳化工程において、M-LysoPCの代わりにDSPE020を内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は38%であった。
[Comparative Example 27]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3, except that DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 38%.
 [比較例28]
 一次乳化工程において、M-LysoPCの代わりに、国際公開WO2008/081686に記載の方法(合成例13参照)従って調製した合成ステロールman-6-chol(コレステロールの6位にマンノースを導入した化合物、ClogP=11.1)を内水相(W1)に溶解させたこと以外は実施例1と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は74%であった。
[Comparative Example 28]
In the primary emulsification step, instead of M-LysoPC, a synthetic sterol man-6-chol prepared by the method described in International Publication WO2008 / 081686 (see Synthesis Example 13) (a compound in which mannose is introduced at the 6-position of cholesterol, ClogP = 11.1) was dissolved in the inner aqueous phase (W1) in the same manner as in Example 1 to prepare an aqueous suspension of liposomes. The encapsulation rate of calcein was 74%.
 [比較例29]
 一次乳化工程において、M-LysoPCの代わりにman-6-cholを内水相(W1)に溶解させたこと以外は実施例2と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は58%であった。
[Comparative Example 29]
An aqueous suspension of liposomes was prepared in the same manner as in Example 2 except that man-6-chol was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 58%.
 [比較例30]
 一次乳化工程において、M-LysoPCの代わりにman-6-cholを内水相(W1)に溶解させたこと以外は実施例3と同様にして、リポソームの水性懸濁液を調製した。カルセインの内包率は45%であった。
[Comparative Example 30]
An aqueous suspension of liposomes was prepared in the same manner as in Example 3 except that man-6-chol was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The encapsulation rate of calcein was 45%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <シタラビン内包リポソーム>
 [実施例19]
 1.一次乳化工程(W1/Oエマルションの調製)
 ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社)0.3g、コレステロール(Chol)0.152gおよびオレイン酸(OA)0.108gを含むヘキサン15mLを有機溶媒相(O)とし、シタラビン(80mM)およびM-LysoPC(ミリストイル基を有するリゾホスファチジルコリン(リゾレシチン)、日油株式会社、ClogP=6.7)0.010gを含むトリス-塩酸緩衝液(pH8、50mmol/L)5mLを内水相用の水分散相(W1)とした。50mLのビーカーにこれらの混合液を入れ、直径20mmのプローブをセットした超音波分散装置(UH-600S、株式会社エスエムテー)により、25℃にて15分間超音波を照射し(出力5.5)、乳化処理を行った。上記方法に従って測定したところ、この一次乳化工程で得られたW1/Oエマルションは体積平均粒径約200nmの単分散W/Oエマルションであることが確認され、CV値は29%であった。
<Cytarabine-encapsulated liposome>
[Example 19]
1. Primary emulsification process (preparation of W1 / O emulsion)
15 ml of hexane containing 0.3 g of egg yolk lecithin “COATSOME NC-50” (NOF Corporation) having a phosphatidylcholine content of 95%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) ( 5) Tris-hydrochloric acid buffer (pH 8, 50 mmol / L) containing 0.010 g of cytarabine (80 mM) and M-LysoPC (lysophosphatidylcholine (lysolecithin) having a myristoyl group, NOF Corporation, ClogP = 6.7) Was an aqueous dispersion phase (W1) for the inner aqueous phase. These mixed liquids were put into a 50 mL beaker, and ultrasonic waves were radiated at 25 ° C. for 15 minutes by an ultrasonic dispersion apparatus (UH-600S, SMT Co., Ltd.) with a 20 mm diameter probe set (output 5.5). The emulsification treatment was performed. When measured according to the above method, it was confirmed that the W1 / O emulsion obtained in this primary emulsification step was a monodispersed W / O emulsion having a volume average particle size of about 200 nm, and the CV value was 29%.
 2.二次乳化工程(W1/O/W2エマルションの調製)
 続いて、上記一次乳化工程により得られたW1/Oエマルションを分散相とし、実験用デッドエンド型マイクロチャネル乳化装置モジュールを使用して、マイクロチャネル乳化法によるW1/O/W2エマルションの製造を行った。
2. Secondary emulsification process (Preparation of W1 / O / W2 emulsion)
Subsequently, the W1 / O emulsion obtained by the primary emulsification step was used as a dispersed phase, and a W1 / O / W2 emulsion was produced by a microchannel emulsification method using an experimental dead-end type microchannel emulsifier module. It was.
 上記モジュールのマイクロチャネル基板はシリコン製であり、マイクロチャネル基板のテラス長、チャネル深さおよびチャネル幅はそれぞれ約60μm、約11μmおよび約16μmであった。上記マイクロチャネル基板にガラス板を圧着させてチャネルを形成し、このチャネルの出口側に外水相溶液(W2)である3%のアルカリ処理ゼラチン(等電点約5)を含むトリス-塩酸緩衝液(pH8、50mmol/L)を満たしておき、チャネルの入口側から前記W1/Oエマルションを供給して、W1/O/W2エマルションを製造した。 The microchannel substrate of the module was made of silicon, and the terrace length, channel depth, and channel width of the microchannel substrate were about 60 μm, about 11 μm, and about 16 μm, respectively. A glass plate is pressure-bonded to the microchannel substrate to form a channel, and a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2), on the outlet side of the channel The liquid (pH 8, 50 mmol / L) was filled, and the W1 / O emulsion was supplied from the inlet side of the channel to produce a W1 / O / W2 emulsion.
 3.溶媒除去工程(リポソームの水性懸濁液の調製)
 次に、上記W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で15分静置したのち蓋のない開放ガラス製容器に移し替え、室温下で約20時間、撹拌子により撹拌し、ヘキサンを揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。シタラビンの内包率は47%であった。
3. Solvent removal step (Preparation of aqueous suspension of liposome)
Next, the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The inclusion rate of cytarabine was 47%.
 [実施例20]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分静置したのち蓋のない開放ガラス製容器に移し替えたこと以外は実施例19と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は43%であった。
[Example 20]
In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid, as in Example 19, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 43%.
 [実施例21]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分振とうしたのち蓋のない開放ガラス製容器に移し替えたこと以外は実施例19と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は40%であった。
[Example 21]
In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle, shaken at 20 ° C. for 360 minutes, and then transferred to an open glass container without a lid, as in Example 19, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 40%.
 [実施例22]
 1.一次乳化工程(W1/Oエマルションの調製)
 ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社)0.3g、コレステロール(Chol)0.152gおよびオレイン酸(OA)0.108gを含むヘキサン15mLを有機溶媒相(O)とし、シタラビン(80mM)およびM-LysoPC(ミリストイル基を有するリゾホスファチジルコリン(リゾレシチン)、日油株式会社、ClogP=6.7)0.010gを含むトリス-塩酸緩衝液(pH8、50mmol/L)5mLを内水相用の水分散相(W1)とした。50mLのビーカーにこれらの混合液を入れ、直径20mmのプローブをセットした超音波分散装置(UH-600S、株式会社エスエムテー)により、25℃にて15分間超音波を照射し(出力5.5)、乳化処理を行った。上記方法に従って測定したところ、この一次乳化工程で得られたW1/Oエマルションは体積平均粒径約200nmの単分散W/Oエマルションであることが確認され、CV値は29%であった。
[Example 22]
1. Primary emulsification process (preparation of W1 / O emulsion)
15 ml of hexane containing 0.3 g of egg yolk lecithin “COATSOME NC-50” (NOF Corporation) having a phosphatidylcholine content of 95%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) ( 5) Tris-hydrochloric acid buffer (pH 8, 50 mmol / L) containing 0.010 g of cytarabine (80 mM) and M-LysoPC (lysophosphatidylcholine (lysolecithin) having a myristoyl group, NOF Corporation, ClogP = 6.7) Was an aqueous dispersion phase (W1) for the inner aqueous phase. These mixed liquids were put into a 50 mL beaker, and ultrasonic waves were radiated at 25 ° C. for 15 minutes by an ultrasonic dispersion apparatus (UH-600S, SMT Co., Ltd.) with a 20 mm diameter probe set (output 5.5). The emulsification treatment was performed. When measured according to the above method, it was confirmed that the W1 / O emulsion obtained in this primary emulsification step was a monodispersed W / O emulsion having a volume average particle size of about 200 nm, and the CV value was 29%.
 2.二次乳化工程(W1/O/W2エマルションの調製)
 得られたW1/Oエマルションを分散相として、SPG膜乳化法によるW1/O/W2エマルションの製造を行った。SPG膜乳化装置(SPGテクノ社製、商品名「外圧式マイクロキット」)に直径10mm、長さ20mm、細孔径10μmの円筒形SPG膜を用い、装置出口側に外水相溶液(W2)である3%のアルカリ処理ゼラチン(等電点約5)を含むトリス-塩酸緩衝液(pH7.4、50mM)を満たしておき、装置入口側から上記W1/Oエマルションを供給して、W1:W2が1:40となるようにW1/O/W2エマルションを製造した。
2. Secondary emulsification process (Preparation of W1 / O / W2 emulsion)
Using the obtained W1 / O emulsion as a dispersed phase, a W1 / O / W2 emulsion was produced by an SPG membrane emulsification method. A cylindrical SPG membrane having a diameter of 10 mm, a length of 20 mm, and a pore diameter of 10 μm was used for an SPG membrane emulsifying device (trade name “external pressure micro kit” manufactured by SPG Techno Co., Ltd.). A tris-hydrochloric acid buffer solution (pH 7.4, 50 mM) containing a certain 3% alkali-treated gelatin (isoelectric point about 5) is filled, and the W1 / O emulsion is supplied from the inlet side of the apparatus. W1 / O / W2 emulsion was prepared so that the ratio was 1:40.
 3.溶媒除去工程(リポソームの水性懸濁液の調製)
 次に、上記W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で15分静置したのち蓋のない開放ガラス製容器に移し替え、室温下で約20時間、撹拌子により撹拌し、ヘキサンを揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。シタラビンの内包率は50%であった。
3. Solvent removal step (Preparation of aqueous suspension of liposome)
Next, the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The inclusion rate of cytarabine was 50%.
 [実施例23]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分静置したのち蓋のない開放ガラス製容器に移し替えたこと以外は実施例22と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は46%であった。
[Example 23]
In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid, as in Example 22, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 46%.
 [実施例24]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分振とうしたのち蓋のない開放ガラス製容器に移し替えたこと以外は実施例22と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は40%であった。
[Example 24]
In the solvent removal step, except that the W1 / O / W2 emulsion was put in a sealed sample bottle and shaken at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid, as in Example 22, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 40%.
 [実施例25]
 1.一次乳化工程(W1/Oエマルションの調製)
 ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社)0.3g、コレステロール(Chol)0.152gおよびオレイン酸(OA)0.108gを含むヘキサン15mLを有機溶媒相(O)とし、シタラビン(80mM)およびM-LysoPC(ミリストイル基を有するリゾホスファチジルコリン(リゾレシチン)、日油株式会社、ClogP=6.7)0.010gを含むトリス-塩酸緩衝液(pH8、50mmol/L)5mLを内水相用の水分散相(W1)とした。50mLのビーカーにこれらの混合液を入れ、直径20mmのプローブをセットした超音波分散装置(UH-600S、株式会社エスエムテー)により、25℃にて15分間超音波を照射し(出力5.5)、乳化処理を行った。上記方法に従って測定したところ、この一次乳化工程で得られたW1/Oエマルションは体積平均粒径約200nmの単分散W/Oエマルションであることが確認され、CV値は29%であった。
[Example 25]
1. Primary emulsification process (preparation of W1 / O emulsion)
15 ml of hexane containing 0.3 g of egg yolk lecithin “COATSOME NC-50” (NOF Corporation) having a phosphatidylcholine content of 95%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) ( 5) Tris-hydrochloric acid buffer (pH 8, 50 mmol / L) containing 0.010 g of cytarabine (80 mM) and M-LysoPC (lysophosphatidylcholine (lysolecithin) having a myristoyl group, NOF Corporation, ClogP = 6.7) Was an aqueous dispersion phase (W1) for the inner aqueous phase. These mixed liquids were put into a 50 mL beaker, and ultrasonic waves were radiated at 25 ° C. for 15 minutes by an ultrasonic dispersion apparatus (UH-600S, SMT Co., Ltd.) with a 20 mm diameter probe set (output 5.5). The emulsification treatment was performed. When measured according to the above method, it was confirmed that the W1 / O emulsion obtained in this primary emulsification step was a monodispersed W / O emulsion having a volume average particle size of about 200 nm, and the CV value was 29%.
 2.二次乳化工程(W1/O/W2エマルションの調製)
 得られたW1/Oエマルションを分散相とし、3%のアルカリ処理ゼラチン(等電点約5)を含むトリス-塩酸緩衝液(pH7.4、50mM)の水分散相(W2)を外水相として、撹拌乳化法によるW1/O/W2エマルションの製造を行った。撹拌乳化は、スターラーによりW2を強く撹拌しているところに、上記W1/Oエマルションを供給し、W1:W2が1:40となるようにW1/O/W2エマルションを製造した。
2. Secondary emulsification process (Preparation of W1 / O / W2 emulsion)
The obtained W1 / O emulsion was used as a dispersed phase, and an aqueous dispersed phase (W2) of Tris-HCl buffer (pH 7.4, 50 mM) containing 3% alkali-treated gelatin (isoelectric point about 5) was used as an outer aqueous phase. As described above, a W1 / O / W2 emulsion was produced by a stirring emulsification method. In the stirring emulsification, the W1 / O emulsion was supplied to a place where W2 was vigorously stirred with a stirrer, and a W1 / O / W2 emulsion was produced so that W1: W2 was 1:40.
 3.溶媒除去工程(リポソームの水性懸濁液の調製)
 次に、上記W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で15分静置したのち蓋のない開放ガラス製容器に移し替え、室温下で約20時間、撹拌子により撹拌し、ヘキサンを揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。シタラビンの内包率は50%であった。
3. Solvent removal step (Preparation of aqueous suspension of liposome)
Next, the W1 / O / W2 emulsion was placed in a sealed sample bottle, allowed to stand at 20 ° C. for 15 minutes, then transferred to an open glass container without a lid, and stirred with a stir bar at room temperature for about 20 hours. Hexane was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The inclusion rate of cytarabine was 50%.
 [実施例26]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分静置したのち蓋のない開放ガラス製容器に移し替えたこと以外は実施例25と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は43%であった。
[Example 26]
In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle and allowed to stand at 20 ° C. for 360 minutes and then transferred to an open glass container without a lid, as in Example 25. An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 43%.
 [実施例27]
 溶媒除去工程において、W1/O/W2エマルションを密閉したサンプル瓶にいれて20℃で360分振とうしたのち蓋のない開放ガラス製容器に移し替えたこと以外は実施例25と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は39%であった。
[Example 27]
In the solvent removal step, except that the W1 / O / W2 emulsion was placed in a sealed sample bottle, shaken at 20 ° C. for 360 minutes, and then transferred to an open glass container without a lid, as in Example 25, An aqueous suspension of liposomes was prepared. The inclusion rate of cytarabine was 39%.
 [実施例28]
 一次乳化工程において、M-LysoPCの代わりにDLPG-Naを内水相(W1)に溶解させたこと以外は実施例22と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は49%であった。
[Example 28]
An aqueous suspension of liposomes was prepared in the same manner as in Example 22 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 49%.
 [実施例29]
 一次乳化工程において、M-LysoPCの代わりにDLPG-Naを内水相(W1)に溶解させたこと以外は実施例23と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は48%であった。
[Example 29]
An aqueous suspension of liposomes was prepared in the same manner as in Example 23 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 48%.
 [実施例30]
 一次乳化工程において、M-LysoPCの代わりにDLPG-Naを内水相(W1)に溶解させたこと以外は実施例24と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は45%であった。
[Example 30]
An aqueous suspension of liposomes was prepared in the same manner as in Example 24 except that DLPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 45%.
 [実施例31]
 一次乳化工程において、M-LysoPCの代わりにPM020CNを内水相(W1)に溶解させたこと以外は実施例25と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は53%であった。
[Example 31]
An aqueous suspension of liposomes was prepared in the same manner as in Example 25 except that PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 53%.
 [実施例32]
 一次乳化工程において、M-LysoPCの代わりにPM020CNを内水相(W1)に溶解させたこと以外は実施例26と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は51%であった。
[Example 32]
An aqueous suspension of liposomes was prepared in the same manner as in Example 26 except that PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 51%.
 [実施例33]
 一次乳化工程において、M-LysoPCの代わりにPM020CNを内水相(W1)に溶解させたこと以外は実施例27と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は53%であった。
[Example 33]
An aqueous suspension of liposomes was prepared in the same manner as in Example 27 except that PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 53%.
 [実施例34]
 一次乳化工程においてM-LysoPCの代わりにPM020CNを内水相(W1)に溶解させたこと、また二次乳化工程において3%のアルカリ処理ゼラチン(等電点約5)の代わりに0.1%のプルロニックF-68(ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール、数平均分子量9600、登録商標、非イオン界面活性剤プロノン(#188P, 日油株式会社))を含むトリス-塩酸緩衝液(pH8、50mmol/L)を用いたこと以外は、実施例19と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は60%であった。
[Example 34]
PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step. Tris-HCl buffer containing Pluronic F-68 (polyoxyethylene (160) polyoxypropylene (30) glycol, number average molecular weight 9600, registered trademark, nonionic surfactant Pronon (# 188P, NOF Corporation)) An aqueous liposome suspension was prepared in the same manner as in Example 19 except that the liquid (pH 8, 50 mmol / L) was used. The inclusion rate of cytarabine was 60%.
 [実施例35]
 一次乳化工程においてM-LysoPCの代わりにPM020CNを内水相(W1)に溶解させたこと、また二次乳化工程において3%のアルカリ処理ゼラチン(等電点約5)の代わりに0.1%のプルロニックF-68を含むトリス-塩酸緩衝液(pH8、50mmol/L)を用いたこと以外は、実施例20と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は60%であった。
[Example 35]
PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step. An aqueous liposome suspension was prepared in the same manner as in Example 20 except that Tris-HCl buffer (pH 8, 50 mmol / L) containing Pluronic F-68 was used. The inclusion rate of cytarabine was 60%.
 [実施例36]
 一次乳化工程においてM-LysoPCの代わりにPM020CNを内水相(W1)に溶解させたこと、また二次乳化工程において3%のアルカリ処理ゼラチン(等電点約5)の代わりに0.1%のプルロニックF-68を含むトリス-塩酸緩衝液(pH8、50mmol/L)を用いたこと以外は、実施例21と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は52%であった。
[Example 36]
PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step. An aqueous liposome suspension was prepared in the same manner as in Example 21, except that Tris-HCl buffer (pH 8, 50 mmol / L) containing Pluronic F-68 was used. The inclusion rate of cytarabine was 52%.
 [比較例31]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例19と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は40%であった。
[Comparative Example 31]
An aqueous liposome suspension was prepared in the same manner as in Example 19 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 40%.
 [比較例32]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例20と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は32%であった。
[Comparative Example 32]
An aqueous liposome suspension was prepared in the same manner as in Example 20, except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 32%.
 [比較例33]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例21と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は12%であった。
[Comparative Example 33]
An aqueous liposome suspension was prepared in the same manner as in Example 21, except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 12%.
 [比較例34]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例22と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は43%であった。
[Comparative Example 34]
An aqueous liposome suspension was prepared in the same manner as in Example 22 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 43%.
 [比較例35]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例23と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は30%であった。
[Comparative Example 35]
An aqueous liposome suspension was prepared in the same manner as in Example 23 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 30%.
 [比較例36]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例24と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は20%であった。
[Comparative Example 36]
An aqueous liposome suspension was prepared in the same manner as in Example 24 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 20%.
 [比較例37]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例25と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は43%であった。
[Comparative Example 37]
An aqueous liposome suspension was prepared in the same manner as in Example 25 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 43%.
 [比較例38]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例26と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は34%であった。
[Comparative Example 38]
An aqueous liposome suspension was prepared in the same manner as in Example 26 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 34%.
 [比較例39]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例27と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は23%であった。
[Comparative Example 39]
An aqueous liposome suspension was prepared in the same manner as in Example 27, except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The inclusion rate of cytarabine was 23%.
 [比較例40]
 一次乳化工程において、M-LysoPCの代わりにDSPG-Naを内水相(W1)に溶解させたこと以外は実施例22と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は49%であった。
[Comparative Example 40]
An aqueous suspension of liposomes was prepared in the same manner as in Example 22 except that DSPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 49%.
 [比較例41]
 一次乳化工程において、M-LysoPCの代わりにDSPG-Naを内水相(W1)に溶解させたこと以外は実施例23と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は39%であった。
[Comparative Example 41]
An aqueous suspension of liposomes was prepared in the same manner as in Example 23 except that DSPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 39%.
 [比較例42]
 一次乳化工程において、M-LysoPCの代わりにDSPG-Naを内水相(W1)に溶解させたこと以外は実施例24と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は26%であった。
[Comparative Example 42]
An aqueous suspension of liposomes was prepared in the same manner as in Example 24 except that DSPG-Na was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 26%.
 [比較例43]
 一次乳化工程において、M-LysoPCの代わりにDSPE020を内水相(W1)に溶解させたこと以外は実施例25と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は51%であった。
[Comparative Example 43]
An aqueous suspension of liposomes was prepared in the same manner as in Example 25 except that DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 51%.
 [比較例44]
 一次乳化工程において、M-LysoPCの代わりにDSPE020を内水相(W1)に溶解させたこと以外は実施例26と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は40%であった。
[Comparative Example 44]
An aqueous suspension of liposomes was prepared in the same manner as in Example 26 except that DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 40%.
 [比較例45]
 一次乳化工程において、M-LysoPCの代わりにDSPE020を内水相(W1)に溶解させたこと以外は実施例27と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は32%であった。
[Comparative Example 45]
An aqueous suspension of liposomes was prepared in the same manner as in Example 27 except that DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step. The inclusion rate of cytarabine was 32%.
 [比較例46]
 一次乳化工程においてM-LysoPCを内水相(W1)に溶解させなかったこと、また二次乳化工程において3%のアルカリ処理ゼラチン(等電点約5)の代わりに0.1%のプルロニックF-68を含むトリス-塩酸緩衝液(pH8、50mmol/L)を用いたこと以外は、実施例19と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は44%であった。
[Comparative Example 46]
M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step, and 0.1% Pluronic F was used in the secondary emulsification step instead of 3% alkali-treated gelatin (isoelectric point about 5). An aqueous liposome suspension was prepared in the same manner as in Example 19 except that Tris-HCl buffer solution (pH 8, 50 mmol / L) containing -68 was used. The inclusion rate of cytarabine was 44%.
 [比較例47]
 一次乳化工程においてM-LysoPCを内水相(W1)に溶解させなかったこと、また二次乳化工程において3%のアルカリ処理ゼラチン(等電点約5)の代わりに0.1%のプルロニックF-68を含むトリス-塩酸緩衝液(pH8、50mmol/L)を用いたこと以外は、実施例20と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は30%であった。
[Comparative Example 47]
M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step, and 0.1% Pluronic F was used in the secondary emulsification step instead of 3% alkali-treated gelatin (isoelectric point about 5). An aqueous liposome suspension was prepared in the same manner as in Example 20, except that Tris-HCl buffer (pH 8, 50 mmol / L) containing -68 was used. The inclusion rate of cytarabine was 30%.
 [比較例48]
 一次乳化工程においてM-LysoPCを内水相(W1)に溶解させなかったこと、また二次乳化工程において3%のアルカリ処理ゼラチン(等電点約5)の代わりに0.1%のプルロニックF-68を含むトリス-塩酸緩衝液(pH8、50mmol/L)を用いたこと以外は、実施例21と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は22%であった。
[Comparative Example 48]
M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step, and 0.1% Pluronic F was used in the secondary emulsification step instead of 3% alkali-treated gelatin (isoelectric point about 5). An aqueous liposome suspension was prepared in the same manner as in Example 21, except that Tris-HCl buffer (pH 8, 50 mmol / L) containing -68 was used. The inclusion rate of cytarabine was 22%.
 [比較例49]
 一次乳化工程においてM-LysoPCの代わりにDSPE020を内水相(W1)に溶解させたこと、また二次乳化工程において3%のアルカリ処理ゼラチン(等電点約5)の代わりに0.1%のプルロニックF-68を含むトリス-塩酸緩衝液(pH8、50mmol/L)を用いたこと以外は、実施例19と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は58%であった。
[Comparative Example 49]
DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step. An aqueous liposome suspension was prepared in the same manner as in Example 19, except that Tris-HCl buffer (pH 8, 50 mmol / L) containing Pluronic F-68 was used. The inclusion rate of cytarabine was 58%.
 [比較例50]
 一次乳化工程においてM-LysoPCの代わりにDSPE020を内水相(W1)に溶解させたこと、また二次乳化工程において3%のアルカリ処理ゼラチン(等電点約5)の代わりに0.1%のプルロニックF-68を含むトリス-塩酸緩衝液(pH8、50mmol/L)を用いたこと以外は、実施例20と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は44%であった。
[Comparative Example 50]
DSPE020 was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step. An aqueous liposome suspension was prepared in the same manner as in Example 20 except that Tris-HCl buffer (pH 8, 50 mmol / L) containing Pluronic F-68 was used. The inclusion rate of cytarabine was 44%.
 [比較例51]
 一次乳化工程においてM-LysoPCの代わりにPM020CNを内水相(W1)に溶解させたこと、また二次乳化工程において3%のアルカリ処理ゼラチン(等電点約5)の代わりに0.1%のプルロニックF-68を含むトリス-塩酸緩衝液(pH8、50mmol/L)を用いたこと以外は、実施例21と同様にして、リポソームの水性懸濁液を調製した。シタラビンの内包率は32%であった。
[Comparative Example 51]
PM020CN was dissolved in the inner aqueous phase (W1) instead of M-LysoPC in the primary emulsification step, and 0.1% instead of 3% alkali-treated gelatin (isoelectric point about 5) in the secondary emulsification step. An aqueous liposome suspension was prepared in the same manner as in Example 21, except that Tris-HCl buffer (pH 8, 50 mmol / L) containing Pluronic F-68 was used. The inclusion rate of cytarabine was 32%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <造影剤内包リポソーム>
 [実施例37]
 1.一次乳化工程(W1/Oエマルションの調製)
 オムニパーク350(イオヘキソール含有量750mg/mL,10mPa・s)0.25mLにM-LysoPC(ミリストイル基を有するリゾホスファチジルコリン(リゾレシチン)、日油株式会社、ClogP=6.7)0.010gを溶解させて内水相(W1)とし、DPPC(ジパルミトイルホスファチジルコリン、「MC-6060」、日油株式会社)50mg、およびDPPG(ジパルミトイルホスファチジルグリセロール、「COATSOME MG-6060LA」、日油株式会社)10mgを含む混合溶媒(ヘキサン/ジクロロメタン=3/1)1.25mLを有機溶媒相(O)とした。3.5mLのサンプル瓶にこれらの混合液を入れ、φ7mmのプローブをセットした超音波分散装置(UH-600S、株式会社エスエムテー)により、20℃にて15分間超音波を照射し乳化処理を行った。
<Contrast-encapsulated liposome>
[Example 37]
1. Primary emulsification process (preparation of W1 / O emulsion)
Omnipark 350 (iohexol content: 750 mg / mL, 10 mPa · s) dissolved in 0.25 mL of M-LysoPC (lysophosphatidylcholine (lysolecithin) having a myristoyl group, NOF Corporation, ClogP = 6.7) 0.010 g Mixed solvent containing 50 mg of DPPC (dipalmitoylphosphatidylcholine, “MC-6060”, NOF Corporation) and 10 mg of DPPG (dipalmitoylphosphatidylglycerol, “COATSOME MG-6060LA”, NOF Corporation) as phase (W1) 1.25 mL of (hexane / dichloromethane = 3/1) was used as the organic solvent phase (O). These mixed liquids are put into a 3.5 mL sample bottle and subjected to an emulsification treatment by irradiating ultrasonic waves at 20 ° C. for 15 minutes by an ultrasonic dispersion apparatus (UH-600S, SMT Co., Ltd.) equipped with a φ7 mm probe. It was.
 2.二次乳化工程(W1/O/W2エマルションの調製)
 得られたW1/Oエマルションを、0.1%のプルロニックF68を含むトリス-塩酸緩衝液(W2、pH7.4、50mM)15mL中にスターラー撹拌下で添加し、15分間撹拌して、W1/O/W2エマルションを製造した。
2. Secondary emulsification process (Preparation of W1 / O / W2 emulsion)
The resulting W1 / O emulsion was added to 15 mL of Tris-HCl buffer (W2, pH 7.4, 50 mM) containing 0.1% Pluronic F68 under stirring with a stirrer, and stirred for 15 minutes. An O / W2 emulsion was prepared.
 3.溶媒除去工程(リポソームの水性懸濁液の調製)
 得られたW1/O/W2エマルションを密閉容器に移し替え、20℃・500mbarの減圧条件下で約8時間撹拌し、次いで20℃・180mbarの減圧条件下で約8時間撹拌し、段階的に溶媒を揮発させた。得られたリポソーム懸濁液は半透明の黄色であり、この粒子内には造影剤イオヘキソールが含まれていることが確認された。リポソームのイオヘキソール内包率は48%であった。
3. Solvent removal step (Preparation of aqueous suspension of liposome)
The obtained W1 / O / W2 emulsion was transferred to a closed container and stirred for about 8 hours under a reduced pressure condition of 20 ° C./500 mbar, and then stirred for about 8 hours under a reduced pressure condition of 20 ° C./180 mbar. The solvent was volatilized. The obtained liposome suspension was translucent yellow, and it was confirmed that the contrast agent iohexol was contained in the particles. The iohexol encapsulation rate of the liposome was 48%.
 [比較例52]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例37と同様にしてリポソームの水性懸濁液を調製した。イオヘキソールの内包率は39%であった。
[Comparative Example 52]
An aqueous liposome suspension was prepared in the same manner as in Example 37 except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The encapsulation rate of iohexol was 39%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <siRNA内包リポソーム>
 [実施例38]
 内水相(W1)として、等張PBS溶液0.25mLにsiRNA(ランダム配列)10mgおよびM-LysoPC(ミリストイル基を有するリゾホスファチジルコリン(リゾレシチン)、日油株式会社、ClogP=6.7)0.010gを溶解させた溶液を用いたこと、および外水相(W2)として0.1%のプルロニックF68を含む等張PBS溶液を用いたこと以外は実施例37と同様にしてリポソームの水性懸濁液を調製した。siRNAの内包率は57%であった。
<SiRNA-encapsulated liposome>
[Example 38]
As an inner aqueous phase (W1), 10 mg of siRNA (random sequence) and M-LysoPC (lysophosphatidylcholine having a myristoyl group (lysolecithin), 0.010 g of NOF Corporation, ClogP = 6.7) are added to 0.25 mL of isotonic PBS solution. An aqueous liposome suspension was prepared in the same manner as in Example 37, except that the dissolved solution was used and an isotonic PBS solution containing 0.1% Pluronic F68 was used as the outer aqueous phase (W2). Prepared. The inclusion rate of siRNA was 57%.
 [比較例53]
 一次乳化工程において、M-LysoPCを内水相(W1)に溶解させなかったこと以外は実施例38と同様にしてリポソームの水性懸濁液を調製した。siRNAの内包率は48%であった。
[Comparative Example 53]
An aqueous liposome suspension was prepared in the same manner as in Example 38, except that M-LysoPC was not dissolved in the inner aqueous phase (W1) in the primary emulsification step. The encapsulation rate of siRNA was 48%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [実施例39](SPG2次乳化で20倍スケールアップ)
 (一次乳化工程によるW1/Oエマルションの製造)
 ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社製)6.0g、コレステロール(Chol)3.04gおよびオレイン酸(OA)2.16gを含む混合溶媒(ヘキサン:ジクロロメタン=8:2)300mLを有機溶媒相(O)とし、シタラビン(MW243.22,20mg/mL,80mM)およびM-LysoPC(ミリストイル基を有するリゾホスファチジルコリン(リゾレシチン)、日油株式会社、ClogP=6.7)0.20gを含むトリス-塩酸緩衝液(pH7.4、50mmol/L)100mLを内水相用の水分散相(W1)とした。高圧ホモジナイザー(ナノマイザー、吉田機械興業社製)を用いて100MPaの圧力条件で一次乳化工程の処理を行った。得られたW1/Oエマルションの室温下での平均粒径は137nmであった。
[Example 39] (Scale up 20 times with SPG secondary emulsification)
(Production of W1 / O emulsion by primary emulsification process)
A mixed solvent (hexane: dichloromethane) containing 6.0 g of egg yolk lecithin “COATSOME NC-50” (manufactured by NOF Corporation) having a phosphatidylcholine content of 95%, 3.04 g of cholesterol (Chol) and 2.16 g of oleic acid (OA) = 8: 2) 300 mL as an organic solvent phase (O), cytarabine (MW 243.22, 20 mg / mL, 80 mM) and M-LysoPC (lysophosphatidylcholine having a myristoyl group (lysolecithin), NOF Corporation, ClogP = 6.7 ) 100 mL of Tris-HCl buffer solution (pH 7.4, 50 mmol / L) containing 0.20 g was used as an aqueous dispersion phase (W1) for the inner aqueous phase. The primary emulsification process was performed under a pressure condition of 100 MPa using a high-pressure homogenizer (Nanomizer, manufactured by Yoshida Kikai Kogyo Co., Ltd.). The average particle size of the obtained W1 / O emulsion at room temperature was 137 nm.
 (二次乳化工程によるW1/O/W2エマルションの製造)
 上記一次乳化工程により得られたW1/Oエマルションを分散相として、SPG乳化法によるW1/O/W2エマルションの製造を行った。SPG膜乳化装置(SPGテクノ社製、商品名「高速ミニキットKH-125」)に直径10mm、長さ125mm、細孔径1.0μmの円筒形SPG膜用い、装置出口側に外水相溶液(W2)である3%のアルカリ処理ゼラチン(等電点約5)を含むトリス-塩酸緩衝液(pH7.4、50mmol/L)を満たしておき、装置入口側から上記W1/Oエマルションを供給して、W1/O/W2エマルションを製造した。膜乳化に必要とした圧力は約10kPaであった。
(Production of W1 / O / W2 emulsion by secondary emulsification process)
Using the W1 / O emulsion obtained by the primary emulsification step as a dispersed phase, a W1 / O / W2 emulsion was produced by the SPG emulsification method. A cylindrical SPG membrane having a diameter of 10 mm, a length of 125 mm, and a pore diameter of 1.0 μm was used for an SPG membrane emulsifier (trade name “High Speed Mini Kit KH-125” manufactured by SPG Techno Co.), and an external aqueous phase solution ( Filled with Tris-hydrochloric acid buffer solution (pH 7.4, 50 mmol / L) containing 3% alkali-treated gelatin (isoelectric point about 5), which is W2), and the above W1 / O emulsion was supplied from the apparatus inlet side. Thus, a W1 / O / W2 emulsion was produced. The pressure required for membrane emulsification was about 10 kPa.
 (有機溶媒相の除去によるリポソームの製造)
 上記二次乳化工程により得られたW1/O/W2エマルションを密閉容器に移し替え、500mbarの減圧室温条件下で約4時間撹拌し、次いで180mbarの減圧室温条件下で約18時間撹拌し、溶媒を揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはシタラビンが含まれていることが確認された。得られたリポソームのシタラビン内包率は47%であった。
(Production of liposomes by removal of organic solvent phase)
The W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to a closed container and stirred for about 4 hours under a reduced pressure room temperature condition of 500 mbar, and then stirred for about 18 hours under a reduced pressure room temperature condition of 180 mbar. Was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles. The resulting liposome had a cytarabine encapsulation rate of 47%.
 (考察)処理量の増加に伴い、SPG膜乳化に90分かかった。その後20℃で270分静置してから有機溶媒の除去を実施したので、おおよそ実施例23と同様の静置を実施したことになる。スケールアップ実験においても実施例23と同様のシタラビン内包率を得ることができた。 (Discussion) SPG membrane emulsification took 90 minutes with increasing processing amount. Thereafter, the organic solvent was removed after standing at 20 ° C. for 270 minutes, so that the same standing as in Example 23 was carried out. In the scale-up experiment, the same cytarabine encapsulation rate as in Example 23 could be obtained.
 [実施例40](撹拌2次乳化で20倍スケールアップ)
 二次乳化工程によるW1/O/W2エマルションの製造において、外水相溶液(W2)である3%のアルカリ処理ゼラチン(等電点約5)を含むトリス-塩酸緩衝液(pH7.4、50mmol/L)を用いて撹拌乳化法によるW1/O/W2エマルションの製造を行ったこと以外は実施例39と同様に実験した。撹拌乳化は、スターラーによりW2を強く撹拌しているところに、上記W1/Oエマルションを供給し、W1:W2が1:40となるようにW1/O/W2エマルションを製造した。得られたリポソームのシタラビン内包率は47%であった。
[Example 40] (Scale up by 20 times by stirring secondary emulsification)
In the production of a W1 / O / W2 emulsion by the secondary emulsification step, a Tris-HCl buffer solution (pH 7.4, 50 mmol) containing 3% alkali-treated gelatin (isoelectric point about 5) as an outer aqueous phase solution (W2). / L) was used in the same manner as in Example 39, except that a W1 / O / W2 emulsion was produced by a stirring emulsification method. In the stirring emulsification, the W1 / O emulsion was supplied to a place where W2 was vigorously stirred with a stirrer, and a W1 / O / W2 emulsion was produced so that W1: W2 was 1:40. The resulting liposome had a cytarabine encapsulation rate of 47%.
 (考察)処理量の増加に伴い、撹拌時間を30分とした。その後20℃で330分静置してから有機溶媒の除去を実施したので、おおよそ実施例26と同様の静置を実施したことになる。スケールアップ実験においても実施例26と同様のシタラビン内包率を得ることができた。 (Discussion) The stirring time was set to 30 minutes with the increase of the processing amount. Thereafter, the organic solvent was removed after standing at 20 ° C. for 330 minutes, so that the same standing as in Example 26 was carried out. In the scale-up experiment, the same cytarabine encapsulation rate as in Example 26 could be obtained.
 (考察2)撹拌2次乳化によるリポソーム製造法は、マイクロカプセル化法(たとえばIshii et al., J. Dispers. Sci. Technol.. vol.9, No.1, pp.1-15, 1988.参照)として知られているが、内包する薬剤によっては高い内包率を実現できない。せん断力によってやわらかいW/O/W粒子が壊れて内包された薬剤が外に出てしまうのが原因と考えられ、内包率数%という結果に終わることもある。大きなスケールで撹拌効率を維持するためには大きなトルクで撹拌する必要があり、撹拌羽の近くの局所的にはせん断力が大きくなってしまうので、この傾向は顕著になる。しかしながら、水溶性脂質添加による膜を強化する効果が表れて大きなスケールでも再現性が得られたものと考えられる。 (Discussion 2) A liposome production method by stirring secondary emulsification is a microencapsulation method (for example, Ishii et al., J. Dispers. Sci. Technol .. vol.9, No.1, pp.1-15, 1988. However, depending on the drug to be included, a high encapsulation rate cannot be realized. It is considered that the soft W / O / W particles are broken by the shearing force and the encapsulated drug comes out, which may result in an encapsulation rate of several percent. In order to maintain the stirring efficiency on a large scale, it is necessary to stir with a large torque, and this tendency becomes remarkable because the shearing force locally increases near the stirring blade. However, the effect of strengthening the membrane by the addition of water-soluble lipids appears, and it is considered that reproducibility was obtained even on a large scale.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (フィルターろ過)
 実施例31,32,33および比較例43,44,45で得られたリポソーム懸濁液を顕微鏡で観察したところ多胞リポソームの存在が確認され、粒度分布測定結果もマイクロ粒子が確認できた。得られたリポソーム懸濁液をメンブランフィルタDISMIC(0.2 μm のセルロースアセテート製、アドバンテック東洋製)を20℃で通過させることで、顕微鏡観察および粒度分布測定から多胞リポソームがなくなったことが確認でき、なおかつメンブランフィルタろ過の前後で内包率に変化がないことを確認できた。なお、他の実施例および比較例においては、多胞リポソームは観察されなかった。
(Filter filtration)
When the liposome suspensions obtained in Examples 31, 32 and 33 and Comparative Examples 43, 44 and 45 were observed with a microscope, the presence of multivesicular liposomes was confirmed, and microparticles were also confirmed in the particle size distribution measurement results. By passing the obtained liposome suspension through a membrane filter DISMIC (0.2 μm cellulose acetate, Advantech Toyo) at 20 ° C., it can be confirmed from microscopic observation and particle size distribution measurement that multivesicular liposomes have disappeared, Moreover, it was confirmed that there was no change in the encapsulation rate before and after membrane filter filtration. In other examples and comparative examples, multivesicular liposomes were not observed.
 (カルセインの内包率測定方法)
 リポソーム水溶液(3mL)全体の蛍光強度(Ftotal)を分光光度計(U-3310、日本分光株式会社)により測定した。次に0.01M,CoCl2トリス塩酸緩衝液30μLを加えて外水相に漏出したカルセインの蛍光をCo2+により消光することで、ベシクル内の蛍光強度(Fin)を測定した。さらに、カルセインを加えないでサンプルと同じ条件でベシクルを作製し、脂質自身が発する蛍光(Fl)を測定した。内包率は下記式より算出した;
 内包率E(%) = (Fin-Fl)/(Ftotal-Fl)×100
 (粒度分布の測定方法)
 実施例および比較例の一次乳化工程で得られたW1/Oエマルションの体積平均粒径およびCV値は、下記の方法に従って測定した。
(Measurement method of calcein inclusion rate)
The fluorescence intensity (Ftotal) of the entire liposome aqueous solution (3 mL) was measured with a spectrophotometer (U-3310, JASCO Corporation). Next, the fluorescence intensity (Fin) in the vesicle was measured by adding 30 μL of 0.01 M CoCl 2 Tris-HCl buffer and quenching the fluorescence of calcein leaked into the outer aqueous phase with Co 2+ . Furthermore, vesicles were prepared under the same conditions as the sample without adding calcein, and the fluorescence (Fl) emitted by the lipids themselves was measured. The inclusion rate was calculated from the following formula;
Inclusion rate E (%) = (Fin−Fl) / (Ftotal−Fl) × 100
(Measuring method of particle size distribution)
The volume average particle diameters and CV values of the W1 / O emulsions obtained in the primary emulsification step of Examples and Comparative Examples were measured according to the following methods.
 W1/Oエマルションをヘキサン/ジクロロメタン混合溶媒(体積比:1/1)で10倍に希釈し、動的光散乱式ナノトラック粒度分析計(UPA-EX150、日機装株式会社)を用いて粒度分布を測定し、これに基づき体積平均粒径およびCV値(=(標準偏差/体積平均粒径)×100[%])を算出した。また、リポソームの体積平均粒径は、同装置を用いて、作製したリポソーム懸濁液をそのまま測定した。 The W1 / O emulsion is diluted 10 times with a hexane / dichloromethane mixed solvent (volume ratio: 1/1), and the particle size distribution is measured using a dynamic light scattering nanotrack particle size analyzer (UPA-EX150, Nikkiso Co., Ltd.). The volume average particle diameter and the CV value (= (standard deviation / volume average particle diameter) × 100 [%]) were calculated based on the measurement. Moreover, the volume average particle diameter of the liposome was measured as it was for the prepared liposome suspension using the same apparatus.
 (シタラビンの内包率測定方法)
 リポソーム粒子の懸濁液を超遠心条件のもと超遠心装置を用い成分分離し、固形分(リポソーム)と上澄溶液とに含まれるシタラビンの量をそれぞれHPLC(カラム:VarianPolaris C18-A(3μm, 2x40mm))で定量した。固形分(リポソーム)の定量値、すなわちリポソームに内包されているシタラビンの量と、上澄溶液の定量値、すなわちリポソームに内包されていないシタラビンの量との合計値で、前者のリポソームに内包されているシタラビンの量を除した値に100を乗じて、シタラビンの内包率(%)を算出した。
(Method for measuring the inclusion rate of cytarabine)
Components of the suspension of liposome particles were separated using an ultracentrifuge under ultracentrifugation conditions. The amount of cytarabine contained in the solid content (liposome) and the supernatant solution was determined by HPLC (column: VarianPolaris C18-A (3 μm , 2 × 40 mm)). The amount of cytarabine encapsulated in the liposome, ie, the amount of cytarabine encapsulated in the liposome, and the amount of cytarabine not encapsulated in the liposome, The value obtained by dividing the amount of cytarabine is multiplied by 100 to calculate the inclusion rate (%) of cytarabine.
 (イオヘキソールの内包率測定方法)
 造影剤用化合物(イオヘキソール)内包リポソームの分散液50μLを採取し1.8%生理食塩水950μLを加えて遠心分離(6,000rpm、20分)を行った。得られた上清および残渣(リポソーム)を完全に分離した後、各々アルコールを加えて溶解し20mLに仕上げた。波長約245nmにおける吸光度を測定し、内包造影剤用化合物の吸光度と造影剤用化合物の濃度の検量線に基づき、リポソームに内包される造影剤用化合物の質量および系内の全造影剤用化合物の質量を計算して、以下の式で造影剤用化合物の内包率を求めた。ここで、リポソーム内包造影剤用化合物質量は残渣から測定された造影剤用化合物質量、全造影剤用化合物質量は上清と残渣から測定された造影剤用化合物質量の和とする。
(Method of measuring the encapsulation rate of iohexol)
50 μL of a contrast agent compound (iohexol) -encapsulating liposome dispersion was collected, 950 μL of 1.8% physiological saline was added, and centrifugation (6,000 rpm, 20 minutes) was performed. The obtained supernatant and residue (liposomes) were completely separated, and then each was dissolved by adding alcohol to make 20 mL. The absorbance at a wavelength of about 245 nm is measured, and based on a calibration curve of the absorbance of the encapsulated contrast agent compound and the concentration of the contrast agent compound, the mass of the contrast agent compound encapsulated in the liposomes and the total contrast agent compound in the system The mass was calculated, and the encapsulation rate of the contrast agent compound was determined by the following formula. Here, the mass of the contrast agent compound encapsulated in the liposome is the mass of the contrast agent compound measured from the residue, and the total mass of the contrast agent compound is the sum of the contrast agent compound mass measured from the supernatant and the residue.
  造影剤用化合物内包率(%)
  =リポソーム内包造影剤用化合物質量/全造影剤用化合物質量×100
 (siRNAの内包率測定方法)
 siRNAの内包率は、リポソーム液を超遠心分離して外液とリポソームを分離し、各siRNA量をHPLCで測定することで求めた。
Inclusion rate of contrast agent compound (%)
= Compound mass for liposome-encapsulated contrast agent / Total mass of compound for contrast agent × 100
(Method for measuring the inclusion rate of siRNA)
The encapsulation rate of siRNA was determined by ultracentrifuging the liposome solution to separate the external solution and the liposome, and measuring the amount of each siRNA by HPLC.
 (ClogPの算出方法)
 分配係数は、実際に測定しなくても定量的構造活性相関アルゴリズムを用いた計算によって求めることができる。フラグメント法では、ある分子の分配係数を、その分子の部分構造ごとの分配係数の総和によって計算する。ソフトウェアChemDrawに搭載された計算プログラムで、フラグメントのClogP値を算出し、BioByte社が開発したフラグメントベースでのClogP値計算に準じ、その値を加算して算出した。たとえばM-LysoPCはその構造式を二つのフラグメントに分けることができ、それぞれのClogPを計算すると5.18、1.42であるので、M-LysoPCのClogP値はそれらを加算して6.7とした。
(ClogP calculation method)
The partition coefficient can be obtained by calculation using a quantitative structure-activity relationship algorithm without actually measuring. In the fragment method, the distribution coefficient of a molecule is calculated by the sum of the distribution coefficients for each partial structure of the molecule. The ClogP value of the fragment was calculated with a calculation program installed in the software ChemDraw, and the value was calculated by adding the value according to the fragment-based ClogP value calculation developed by BioByte. For example, the structural formula of M-LysoPC can be divided into two fragments, and the ClogP of each is calculated to be 5.18 and 1.42. Therefore, the ClogP value of M-LysoPC was set to 6.7 by adding them.

Claims (10)

  1.  ClogPの値が11より小さい脂質からなる水溶性脂質成分(Fw)が溶解した水性溶媒(W1)を内水相とすることを特徴とする単胞リポソーム。 Single cell liposome characterized in that an aqueous solvent (W1) in which a water-soluble lipid component (Fw) comprising a lipid having a ClogP value of less than 11 is dissolved is used as an inner aqueous phase.
  2.  前記水溶性脂質成分(Fw)が、リゾ脂質、短鎖リン脂質、PEG脂質および親水性基を有する化学合成脂質からなる群より選ばれる少なくとも1種を含有するものである、請求項1に記載の単胞リポソーム。 The water-soluble lipid component (Fw) contains at least one selected from the group consisting of lysolipids, short-chain phospholipids, PEG lipids, and chemically synthesized lipids having a hydrophilic group. Single-vesicle liposomes.
  3.  前記水性溶媒(W1)にさらに水溶性薬剤が溶解している、請求項1または2に記載の単胞リポソーム。 The single cell liposome according to claim 1 or 2, wherein a water-soluble drug is further dissolved in the aqueous solvent (W1).
  4.  請求項1~3のいずれかに記載の単胞リポソームの乾燥粉末。 The dry powder of single vesicle liposome according to any one of claims 1 to 3.
  5.  請求項1~3のいずれかに記載の単胞リポソームを含有する、または請求項4に記載の乾燥粉末を水性溶媒に添加して得られる、水性懸濁液。 An aqueous suspension containing the single cell liposome according to any one of claims 1 to 3 or obtained by adding the dry powder according to claim 4 to an aqueous solvent.
  6.  下記工程(1)~(3)を含むことを特徴とする、単胞リポソームの製造方法:
     (1)水性溶媒(W1)に水溶性脂質成分(Fw)を溶解し、有機溶媒(O)に当該水溶性脂質(Fw)以外の混合脂質成分(F1)を溶解し、これらを混合乳化することによりW1/Oエマルションを調製する一次乳化工程;
     (2)上記工程(1)を経て得られたW1/Oエマルションと水性溶媒(W2)とを混合乳化することによりW1/O/W2エマルションを調製する二次乳化工程;
     (3)上記工程(2)を経て得られたW1/O/W2エマルションに含まれる有機溶媒を除去することによりリポソームの水性懸濁液を調製する溶媒除去工程。
    A method for producing a single cell liposome, comprising the following steps (1) to (3):
    (1) The water-soluble lipid component (Fw) is dissolved in the aqueous solvent (W1), the mixed lipid component (F1) other than the water-soluble lipid (Fw) is dissolved in the organic solvent (O), and these are mixed and emulsified. A primary emulsification step to prepare a W1 / O emulsion by
    (2) A secondary emulsification step of preparing a W1 / O / W2 emulsion by mixing and emulsifying the W1 / O emulsion obtained through the step (1) and the aqueous solvent (W2);
    (3) A solvent removal step of preparing an aqueous suspension of liposomes by removing the organic solvent contained in the W1 / O / W2 emulsion obtained through the step (2).
  7.  前記水溶性脂質成分(Fw)が、リゾ脂質、短鎖リン脂質、PEG脂質および親水性基を有する化学合成脂質からなる群より選ばれる少なくとも1種を含有するものである、請求項6に記載の製造方法。 The water-soluble lipid component (Fw) contains at least one selected from the group consisting of a lysolipid, a short-chain phospholipid, a PEG lipid, and a chemically synthesized lipid having a hydrophilic group. Manufacturing method.
  8.  前記一次乳化工程(1)がさらに水溶性薬剤を添加して行われるものである、請求項7に記載の製造方法。 The production method according to claim 7, wherein the primary emulsification step (1) is performed by further adding a water-soluble drug.
  9.  前記溶媒除去工程(3)がW1/O/W2エマルションの撹拌下に行われるものである、請求項7または8に記載の製造方法。 The production method according to claim 7 or 8, wherein the solvent removal step (3) is performed under stirring of a W1 / O / W2 emulsion.
  10.  請求項7~9のいずれかに記載の製造方法により製造された単胞リポソームあるいはその水性懸濁液またはその乾燥粉末。 A single vesicle liposome produced by the production method according to any one of claims 7 to 9, an aqueous suspension thereof, or a dry powder thereof.
PCT/JP2011/073847 2010-10-19 2011-10-17 Process for production of uni-lamellar liposome by two-stage emulsification technique which involves adding water-soluble lipid to inner aqueous phase, and uni-lamellar liposome produced by the process WO2012053484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012539722A JP5838970B2 (en) 2010-10-19 2011-10-17 Method for producing single-cell liposome by two-stage emulsification method in which water-soluble lipid is added to the inner aqueous phase, and single-cell liposome obtained by the production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010234336 2010-10-19
JP2010-234336 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053484A1 true WO2012053484A1 (en) 2012-04-26

Family

ID=45975195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073847 WO2012053484A1 (en) 2010-10-19 2011-10-17 Process for production of uni-lamellar liposome by two-stage emulsification technique which involves adding water-soluble lipid to inner aqueous phase, and uni-lamellar liposome produced by the process

Country Status (2)

Country Link
JP (1) JP5838970B2 (en)
WO (1) WO2012053484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153143A (en) * 2017-03-17 2018-10-04 株式会社明治 Foamable in-water water-in-oil type emulsion, and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102072439B1 (en) * 2018-01-29 2020-02-03 한국과학기술연구원 Method for preparing liposome by environment-friendly solvent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267509A (en) * 1985-05-21 1986-11-27 Junzo Sunamoto Production of liposome having improved holding efficiency of glycoprotein in membrane
JPH07118142A (en) * 1993-10-18 1995-05-09 Kao Corp Taste-related protein extractant
JPH11171772A (en) * 1997-12-11 1999-06-29 Sankyo Co Ltd Liposome preparation of antitumor medicine
JP2006280376A (en) * 1997-04-07 2006-10-19 Dai Ichi Seiyaku Co Ltd Composition for gene introduction into cell
JP2008120721A (en) * 2006-11-10 2008-05-29 Konica Minolta Holdings Inc Method for producing liposome containing pharmaceutical agent having high specific gravity
WO2008081686A1 (en) * 2006-12-28 2008-07-10 Konica Minolta Holdings, Inc. Cholesterol derivative, liposome, method for forming liposome and contrast agent for x-ray
WO2008140081A1 (en) * 2007-05-14 2008-11-20 Konica Minolta Holdings, Inc. Liposome and method for producing liposome

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507708B (en) * 2008-03-28 2011-01-19 中国人民解放军济南军区第四○一医院 Preparation method of liposome
WO2009126805A2 (en) * 2008-04-11 2009-10-15 The Board Of Regents Of The Univeristy Of Texas System Therapeutic tarageting of mmps in neutral liposomes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267509A (en) * 1985-05-21 1986-11-27 Junzo Sunamoto Production of liposome having improved holding efficiency of glycoprotein in membrane
JPH07118142A (en) * 1993-10-18 1995-05-09 Kao Corp Taste-related protein extractant
JP2006280376A (en) * 1997-04-07 2006-10-19 Dai Ichi Seiyaku Co Ltd Composition for gene introduction into cell
JPH11171772A (en) * 1997-12-11 1999-06-29 Sankyo Co Ltd Liposome preparation of antitumor medicine
JP2008120721A (en) * 2006-11-10 2008-05-29 Konica Minolta Holdings Inc Method for producing liposome containing pharmaceutical agent having high specific gravity
WO2008081686A1 (en) * 2006-12-28 2008-07-10 Konica Minolta Holdings, Inc. Cholesterol derivative, liposome, method for forming liposome and contrast agent for x-ray
WO2008140081A1 (en) * 2007-05-14 2008-11-20 Konica Minolta Holdings, Inc. Liposome and method for producing liposome

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153143A (en) * 2017-03-17 2018-10-04 株式会社明治 Foamable in-water water-in-oil type emulsion, and production method thereof
JP7053156B2 (en) 2017-03-17 2022-04-12 株式会社明治 Foamable water-in-oil oil-in-water emulsion and its manufacturing method

Also Published As

Publication number Publication date
JP5838970B2 (en) 2016-01-06
JPWO2012053484A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
JP4900536B2 (en) Method for producing single cell liposomes by a two-stage emulsification method using an external aqueous phase containing a specific dispersant, and a method for producing a single cell liposome dispersion or a dry powder thereof using the method for producing single cell liposomes
JP5983608B2 (en) Liposome-containing preparation using dissolution aid and method for producing the same
Tsai et al. Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes
JP5741442B2 (en) Method for producing liposome
JP5831588B2 (en) Method for producing liposome
JP5494054B2 (en) Method for producing liposomes by two-stage emulsification
JP5853453B2 (en) Method for producing liposomes
JP5487666B2 (en) Liposome production method comprising immobilizing an inner aqueous phase
Eskandari et al. Physical and chemical properties of nano-liposome, application in nano medicine
WO2009142018A1 (en) Method for producing vesicle, vesicle obtained by the production method, and w/o/w emulsion for producing vesicle
JP5838970B2 (en) Method for producing single-cell liposome by two-stage emulsification method in which water-soluble lipid is added to the inner aqueous phase, and single-cell liposome obtained by the production method
JP2011104572A (en) Method for manufacturing liposome and flow manufacturing apparatus
WO2011062255A1 (en) Process for production of liposome through two-stage emulsification using mixed organic solvent as oily phase
JP5649074B2 (en) Method for producing liposome by two-stage emulsification using nano-sized primary emulsion
KR102722951B1 (en) High-efficiency encapsulation of hydrophilic compounds in unilamellar liposomes
JP2012102043A (en) Method for producing univesicular liposome, univesicular liposome dispersion and dry powder thereof, and method for producing the univesicular liposome dispersion and dry powder thereof
Shinkar et al. An Overview on Trends and Developments in Liposome-as Drug Delivery System
JP2005298407A (en) Polycation-modified liposome and method for producing the same
JP5904555B2 (en) Method for producing liposome
Gopi et al. Liposomes for Functional Foods and Nutraceuticals: From Research to Application
Aragão et al. Liposomes: Methods and Protocols
Manna SIGNIFICANCE OF VIROSOMES ON TARGETED DRUG DELIVERY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834323

Country of ref document: EP

Kind code of ref document: A1