WO2012049752A1 - Loop-shaped heat pipe and electronic device - Google Patents

Loop-shaped heat pipe and electronic device Download PDF

Info

Publication number
WO2012049752A1
WO2012049752A1 PCT/JP2010/068041 JP2010068041W WO2012049752A1 WO 2012049752 A1 WO2012049752 A1 WO 2012049752A1 JP 2010068041 W JP2010068041 W JP 2010068041W WO 2012049752 A1 WO2012049752 A1 WO 2012049752A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
evaporator
heat pipe
liquid
resin
Prior art date
Application number
PCT/JP2010/068041
Other languages
French (fr)
Japanese (ja)
Inventor
内田 浩基
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2012538506A priority Critical patent/JP5637216B2/en
Priority to PCT/JP2010/068041 priority patent/WO2012049752A1/en
Priority to CN201080068988.5A priority patent/CN103080689B/en
Publication of WO2012049752A1 publication Critical patent/WO2012049752A1/en
Priority to US13/772,879 priority patent/US20130160974A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Definitions

  • the present invention relates to a loop heat pipe and an electronic device.
  • a loop heat pipe is known as a device for cooling various heating elements.
  • the loop heat pipe includes an evaporator that vaporizes the working fluid (liquid-phase working fluid) with heat from the heating element, and a condenser that condenses the vaporized working fluid (gas-phase working fluid) by heat dissipation, It has a configuration in which a steam pipe and a liquid pipe are connected in a loop.
  • the evaporator removes heat from the heating element as the heat of vaporization of the working fluid, and also serves as a pump that drives the circulation of the working fluid.
  • FIGS. 1A-1C The structure of a typical evaporator 1 is shown in FIGS. 1A-1C.
  • FIG. 1A schematically shows a cross-sectional view of the evaporator 1 when viewed along the flow of the working fluid from the liquid pipe to the vapor pipe.
  • 1B and 1C schematically show the AA ′ cross section of FIG. 1A for two typical evaporator structures that can be classified as cylindrical and flat, respectively.
  • the evaporator 10 has a metal case 20 connected to the liquid pipe 50 and the vapor pipe 55 and a porous body 30 called a wick disposed in the metal case 20.
  • the hydraulic fluid 60a from the liquid pipe 50 flows into the liquid supply passage 31 located substantially at the center of the wick 30, and is guided to the inner wall of the metal case 20 by the capillary force of the pores in the wick 30 that is the driving force of the working fluid. It is burned.
  • the hydraulic fluid 60a is further vaporized by the heat transmitted from the heating element to the metal case 20 to become the vapor 60b, and the vapor discharge groove (groove) 32 formed in the outer peripheral portion of the wick 30 or the inner wall of the metal case 20 is formed. It passes through and is discharged to the steam pipe 55.
  • the evaporator case with a metal, particularly, a high heat conductive metal such as copper. This is because heat is easily transferred from the heating element to the entire outer periphery of the wick, and vaporization of the working fluid is promoted.
  • the metal case is also preferable from the viewpoint of airtight performance reliability that prevents leakage of the working fluid enclosed in the case.
  • the miniaturization of the evaporator can cause problems as shown in FIG.
  • the working fluid 60a is heated before flowing into the liquid pipe 50 and reaching the wick 30, and boils in the portion.
  • the bubble 60c can be generated.
  • the bubble 60 c that has entered the liquid supply passage 31 in the wick 30 generates a gas phase on both sides of the wick 30, thereby causing the normal direction toward the outer peripheral side of the wick 30.
  • a surface tension 36 that cancels the surface tension 35 is generated. The cancellation of the surface tension means that the capillary force of the wick 30 does not work.
  • the generation of the bubble 60c can increase the pressure in the liquid supply passage 31 and inhibit the inflow of the working fluid 60a from the liquid pipe 50. Therefore, the circulation of the working fluid is attenuated or stopped, and as a result, the cooling performance of the loop heat pipe is deteriorated and / or unstable operation is caused.
  • This problem may be easily caused by the use of a flat plate evaporator that can use a part of the case itself as a heat receiving surface and / or the use of a metal case having a high thermal conductivity in addition to the miniaturization of the evaporator.
  • the end face part through which the liquid pipe passes in the case of the cylindrical evaporator is changed to metal or resin having a relatively low thermal conductivity, and the heat of the case is not directly transmitted to the liquid pipe.
  • Techniques for doing so have been proposed.
  • the material of the evaporator case is resin
  • pressure resistance and long-term hermetic reliability are problems.
  • even such a metal has a thermal conductivity several tens to several hundred times that of a resin, so sufficient heat insulation cannot be obtained, and cooling performance is sufficiently lowered. Can not be suppressed.
  • an evaporator of a loop heat pipe includes a case having a liquid inlet and a vapor outlet, and at least one porous member disposed in the case and guiding a liquid-phase working fluid to an inner surface of the case. Including body.
  • the evaporator further includes a liquid supply pipe disposed in the case and guiding the working liquid from the liquid inlet into the at least one porous body.
  • the liquid supply pipe has a material having a lower thermal conductivity than the material of the case.
  • an electronic device including such a loop heat pipe and an electronic component thermally coupled to the evaporator is provided.
  • the heat transfer from the evaporator case to the working fluid flowing into the evaporator is suppressed, and the working fluid is prevented from being vaporized before reaching the wick. Therefore, the capillary force of the wick is maintained, and the stable circulation of the working fluid, and thus the efficient cooling of the electronic components in the electronic device is realized.
  • FIG. 6B is a cross-sectional view taken along the line CC ′ of FIG. 6A.
  • FIG. 6B is a cross-sectional view showing a cross section along DD ′ of FIG. 6A. It is typical sectional drawing which shows the structure of some Examples. It is a graph which shows the evaluation result of the structure shown in FIG.
  • FIGS. 3A to 3D show the main components of the evaporator 110 in an exploded view, and FIG. 3B shows the manifold 140 shown in FIG. 3A from another direction.
  • 3C is a cross-sectional view of the evaporator 110 obtained from the components shown in FIG. 3A when viewed along the flow of the working fluid, and FIG. 3D shows a BB ′ cross section of FIG. 3C. ing. It should be noted that FIG. 3C is not a cross-sectional view when the evaporator 110 is cut along one plane.
  • the evaporator 110 is a flat plate evaporator.
  • the evaporator 110 includes a first case part 121 that communicates with the steam pipe 155 at the steam outlet 126, a second case part 122 that communicates with the liquid pipe 150 at the liquid inlet 125, and two porous bodies (wicks). ) 130 and a branch pipe (manifold) 140.
  • the first and second case parts 121 and 122 are connected to each other to form one evaporator case 120 that houses the wick 130 and the manifold 140.
  • the planar dimension (dimension of the heat receiving surface) of the evaporator case 120 is determined based on the size of the heating element to be cooled.
  • the thickness of the evaporator case 120 may be limited according to the mounting density in the electronic device. For example, when it is applied to an electronic device mounted with high density such as a server or a personal computer (PC), a thickness of about 10 mm or less may be required.
  • a thickness of about 10 mm or less may be required.
  • the first case part 121 has two hole parts 123 for accommodating the two wicks 130 when viewed from the second case part 122 side.
  • the shape of the hole 123 is determined according to the outer shape of the wick 130 to be inserted, and is typically circular or elliptical.
  • a separation wall 124 that connects the bottom surface and the top surface of the first case portion 121 exists between the two hole portions 123.
  • the second case portion 122 can accommodate the manifold 140.
  • how the evaporator case 120 is divided into two parts is not particularly limited as long as it can be connected after the wick 130 and the manifold 140 are accommodated.
  • one case portion may accommodate both the wick 130 and the manifold 140, and the other case portion may have a plate shape corresponding to one end face of the evaporator case 120. Further, the first and second case portions can be divided in the thickness direction of the flat plate evaporator 120.
  • Each wick 130 is generally cup-shaped, and has a cavity serving as a liquid supply passage 131 for supplying a working fluid to the wick on the inner periphery.
  • Each wick 130 also has a plurality of steam discharge grooves (grooves) 132 on the outer periphery.
  • the groove 132 may be formed over the entire length of the wick along the flow direction of the working fluid, in which case the end of the groove 132 on the liquid tube 150 side may be terminated by a manifold 140, as shown in FIG. 3C.
  • FIG. 3C In FIG.
  • the wick 130 and the case 120 are not in contact with each other because the cross section where the groove 132 exists is shown, but the wick 130 and the case 120 are in contact with each other in the cross section where the groove 132 does not exist.
  • the wick 130 is preferably a resin wick, as will be described later, and is molded to have a size larger than the inner dimension of the hole 123 so as to be compressed when inserted into the hole 123 of the first case portion. . Thereby, the adhesion between the outer surface of the resin wick 130 and the inner wall of the evaporator case 120 can be enhanced, and the evaporation of the hydraulic fluid at the contact portion between the wick 130 and the case 120 can be promoted.
  • the average pore diameter of the wick 130 is preferably 15 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the porosity is preferably increased so that the hydraulic fluid does not run short at the contact portion between the wick 130 and the case 120, and is, for example, in the range of 30% or more and less than 90%.
  • the manifold 140 insulates the hydraulic fluid 160a flowing from the liquid pipe 150 from the case 120 and acts as a liquid supply pipe that supplies the hydraulic fluid 160a to each wick 130.
  • the manifold 140 has an inlet 143 provided corresponding to the liquid inlet 125 of the case 120 and two outlets 144 (FIG. 3B) for supplying hydraulic fluid to the two wicks 130. 145 inside (FIG. 3D).
  • the manifold 140 is preferably molded so as to come into contact with the wick 130 when accommodated in the case 120 so that the hydraulic fluid 160a from the liquid pipe 150 does not touch the case 120 before reaching the wick 130. However, if most of the space between the liquid inlet 125 of the case and the wick accommodating portion is covered with the manifold 140, boiling of the working fluid 160a before reaching the wick can be prevented. Thus, it may be allowed that a gap exists between the manifold 140 and the wick 130.
  • the manifold 140 has a tubular portion (inner pipe) 142 extending into the liquid pipe 150 in addition to the main body 141 arranged in the case 120 as shown in the drawing as needed.
  • the inner pipe 142 is formed in close contact with the inner wall of the liquid pipe 150 so that the hydraulic fluid 160a does not enter between the inner pipe 142 and the inner wall of the liquid pipe 150.
  • the inner pipe 142 is preferably formed integrally with the main body 141.
  • the evaporator case 120 including the first and second case parts 121 and 122 preferably includes a metal or an alloy in order to ensure strength and airtight reliability.
  • the first and second case parts 121 and 122 are joined to each other using any of various methods capable of ensuring airtight reliability, such as welding, brazing, or resin bonding. Sealed.
  • the evaporator case 120 also preferably includes a highly thermally conductive metal or alloy, such as oxygen-free copper, copper alloy, aluminum, or aluminum alloy, for transferring heat from the heating element to be cooled to the entire case.
  • a highly thermally conductive metal or alloy such as oxygen-free copper, copper alloy, aluminum, or aluminum alloy
  • the evaporator case 120 is a metal or alloy having a relatively low thermal conductivity, such as an iron-based alloy such as stainless steel or a titanium alloy, depending on its size and / or required cooling capacity. Is also possible.
  • the material of the manifold 140 is selected from materials having a lower thermal conductivity than the evaporator case 120 so as to obtain a heat insulating effect.
  • the thermal conductivity of 1 W / mK or less is, for example, about 380 W / mK in the case of copper and about 16 W / mK in the case of stainless steel. A significant temperature difference can be created between the outer and inner walls. Therefore, the hydraulic fluid 160 a that has flowed into the case 120 is effectively insulated from the case 120, and is prevented from being vaporized before reaching the wick 130.
  • the manifold 140 may have a resin such as a fluororesin, a nylon resin, a PEEK (polyether ether ketone) resin, a polypropylene resin, or a polyacetal resin.
  • a resin such as a fluororesin, a nylon resin, a PEEK (polyether ether ketone) resin, a polypropylene resin, or a polyacetal resin.
  • the thermal conductivity of MC nylon is about 0.2 W / mK, about 1/1900 of copper, and about 1/80 of stainless steel, so that a heat insulation effect can be obtained even with a thickness of 1 mm to several mm, for example.
  • the manifold 140 may have a porous body of resin as described above.
  • the wick 130 may be selected from various porous materials such as a metal wick, a carbon wick, or a resin wick, but may preferably be a resin wick.
  • Resin wicks have the advantage of low thermal conductivity compared to other wicks, in addition to being easy to ensure adhesion to case 120. If a wick with high thermal conductivity is used, heat is transferred to the inner periphery of the wick, and bubbles are generated there, which may have the same effect as the generation of bubbles before reaching the wick. Generation of bubbles on the inner peripheral side can be prevented.
  • Suitable materials for the resin wick include, for example, fluororesin, PEEK (polyether ether ketone) resin, polypropylene resin, polyacetal resin, and the like.
  • the wick 130 and at least a part of the manifold 140 may be formed of the same porous resin.
  • the wick 130 and the at least part of the manifold 140 can be integrally molded, and the remaining part of the manifold 140 can be made into a simple structure that can be easily processed.
  • the evaporator 110 shown in FIGS. 3A-3D includes two wicks 130, but the number of wicks can be three or more. Depending on the number of wicks, the number of outlets 144 of the manifold 140 and the internal branch structure are changed.
  • an evaporator including a single wick can be provided with a liquid supply pipe having a low thermal conductivity material corresponding to the manifold.
  • FIG. 4 shows a loop heat pipe evaporator 210 according to another embodiment including such a single wick.
  • FIGS. 3A to 3D details common to the evaporator 110 shown in FIGS. 3A to 3D will not be described in detail.
  • the evaporator 210 includes a first case part 221 that communicates with the steam pipe 255, a second case part 222 that communicates with the liquid pipe 250, a single wick 230, and a liquid supply pipe 240.
  • the first and second case portions 221 and 222 are connected to each other to form one evaporator case that houses the wick 230 and the liquid supply pipe 240.
  • the first case part 221 has a hole part 223 for accommodating the wick 230.
  • the second case portion 222 can accommodate the manifold 240.
  • how the evaporator case is divided into two parts is not particularly limited as long as it can be connected after the wick 230 and the liquid supply pipe 240 are accommodated.
  • the wick 230 has a cavity serving as a liquid supply passage 231 for supplying hydraulic fluid to the wick, and has a plurality of steam discharge grooves (grooves) 232 on the outer peripheral portion.
  • the groove 232 may be formed over the entire length of the wick 230 along the flow direction of the working fluid.
  • the liquid supply pipe 240 insulates the hydraulic fluid before reaching the wick from the cases (221, 222) and supplies the hydraulic fluid flowing in from the liquid pipe 250 to the wick 230.
  • the liquid supply pipe 240 may have an inner pipe 242 extending into the liquid pipe 250 in addition to the main body 241 disposed in the case as shown in the drawing, as needed.
  • the main body 241 of the liquid supply pipe may have an outer wall disposed along the inner wall of the case and a cavity surrounded by the outer wall.
  • the liquid supply tube 240 may include one or more piping structures for distributing hydraulic fluid throughout the single wick 230.
  • the materials of the first case portion 221, the second case portion 222, the wick 230, and the liquid supply pipe 240 may be the same as the materials of the corresponding elements (121, 122, 130, and 140, respectively) described with respect to the evaporator 110.
  • the first and second case portions 221 and 222 include a metal or an alloy
  • the wick 230 includes a porous resin
  • the liquid supply pipe 240 includes a resin.
  • the generation of bubbles due to vaporization of the hydraulic fluid before reaching the wick can be suppressed or prevented, and the operation of the loop heat pipe can be stabilized.
  • the evaporator 210 includes the single wick 230, it is possible to reduce the manufacturing cost by reducing the number of parts and facilitating the processing and / or assembly of the parts.
  • evaporator 110 is configured to include a plurality of wicks 130 and a case hole 123 for housing the wick 130, whereby the contact area between wick 130 and case 120 can be increased.
  • the separation wall 124 between the plurality of holes 123 acts as a heat conduction path, the heat received from the heating element is more uniformly transmitted to the entire case. Therefore, the evaporator 110 can be more advantageous than the evaporator 210 from the viewpoint of the cooling performance of the evaporator and therefore the loop heat pipe.
  • FIG. 5 shows the evaporator 310 in a cross-sectional view similar to FIG. 3C.
  • FIGS. 3A-3D details common to the evaporator 110 shown in FIGS. 3A-3D will not be described in detail.
  • the evaporator 310 includes a first case part 321 communicating with the vapor pipe 355, a second case part 322 communicating with the liquid pipe 350, one or more wicks 330, and a liquid supply pipe 340.
  • the first and second case portions 321 and 322 are connected to each other to form one evaporator case 320 that houses the wick 330 and the liquid supply pipe 340.
  • the wick 330 has a cavity serving as a liquid supply passage 331 for supplying the working fluid 360a to the wick, and has a plurality of vapor discharge grooves (grooves) 332 on the outer periphery.
  • the liquid supply pipe 340 insulates the hydraulic fluid 360 a flowing from the liquid pipe 350 from the case 320 and supplies the hydraulic fluid 360 a to the wick 330.
  • the liquid supply pipe 340 has a manifold shape.
  • the liquid supply pipe 340 may have an inner pipe (not shown) extending into the liquid pipe 350 as necessary.
  • the first and second case portions 321 and 322 may be formed using different materials.
  • the first case portion 321 that accommodates the wick 330 preferably transmits heat from the heating element to be cooled to the entire case portion, and therefore has a high thermal conductivity such as oxygen-free copper, copper alloy, aluminum, or aluminum alloy. Has metal or alloy.
  • the second case portion 322 that accommodates the liquid supply pipe 340 includes a material having a lower thermal conductivity than the material of the first case portion 321.
  • the material of the second case portion 322 is preferably a metal or an alloy from the viewpoint of airtight reliability of the evaporator case 320.
  • the second case portion 322 can include a metal or alloy having a relatively low thermal conductivity, such as an iron-based alloy such as stainless steel, or a titanium alloy.
  • the portion that divides the evaporator case 320 into the first case portion 321 and the second case portion 322 is preferably substantially coincident with the boundary between the liquid supply pipe 340 and the wick 330. This is to obtain heat conduction to the entire contact portion between the wick 330 and the case 320 and a heat insulating action to the hydraulic fluid 360a before reaching the wick.
  • the first and second case portions 321 and 322 are joined to each other using any one of various methods capable of ensuring airtight reliability, such as welding, brazing, or resin bonding.
  • the materials of the wick 330 and the liquid supply pipe 340 may be the same as the materials of the corresponding elements described with respect to the evaporator 110 (130 and 140, respectively).
  • the wick 330 has a porous resin
  • the liquid supply pipe 340 has a resin.
  • the evaporator 310 As described with respect to the evaporator 110, it is possible to suppress or prevent the generation of bubbles due to vaporization of the hydraulic fluid before reaching the wick, and to stabilize the operation of the loop heat pipe.
  • a material having lower thermal conductivity than the first case portion 321 for the second case portion 322 the effect of suppressing the vaporization of the hydraulic fluid before reaching the wick is enhanced, and the operation of the loop heat pipe is further stabilized. Can do.
  • a highly heat-conductive material can be used for the 1st case part 321, the cooling performance of a loop type heat pipe is not reduced.
  • FIGS. 6A-6C show an example of attachment of the evaporator to the heating element of the electronic device, respectively, in the CC ′ section and the DD ′ section in FIG. 6A.
  • the cross section DD ′ shown in FIG. 6C passes through substantially the center of one wick and is selected as a cross section that does not include the liquid pipe and the steam pipe.
  • the electronic apparatus 400 includes an electronic component 470 serving as a heating element and a loop heat pipe 405 that cools the electronic component 470.
  • the loop heat pipe 405 includes, for example, an evaporator 410 that can be any one of the above-described evaporators 110, 210, and 310, and a gas-phase working fluid generated by the evaporator 410, and a liquid-phase working fluid ( A condenser 461 for condensing into a working fluid.
  • the condenser 461 is cooled by, for example, sending the air 462 from the blower to the heat dissipating fins or immersing it in a liquid cooled to room temperature or lower.
  • the vapor-phase working fluid is supplied from the evaporator 410 to the condenser 461 through the vapor pipe 455.
  • the working fluid from the condenser 461 is supplied to the evaporator 410 through the liquid pipe 450.
  • the loop heat pipe 405 typically has a reservoir tank 463 in front of the evaporator 410 in the liquid tube 450 for storing a working fluid necessary for activation.
  • the working fluid can be, for example, water, ethanol, R141B, n-pentane, acetone, butane or ammonia.
  • the heat generating component 470 of the electronic device is a semiconductor device such as a CPU, for example, and is mounted on a wiring substrate 475 such as a mother board of the electronic device.
  • the attachment of the evaporator 410 onto the heat generating component 470 can be performed, for example, by screwing a pressing fitting (not shown) to the wiring board 475 or the like.
  • a good heat conductive material 480 such as thermal grease may be disposed.
  • a plurality of heat generating components may be cooled with a single evaporator 410.
  • the heat generating component 470 may be disposed offset to the vapor pipe side (right side in the drawing) with respect to the evaporator 410.
  • the evaporator 410 may be mounted on the heat generating component 470 so that the center of the heat generating component 470 is positioned on the steam pipe side from the center of the evaporator case 420.
  • the distance between the heat generating component 470 and the hydraulic fluid before reaching the wick can be increased, and vaporization of the hydraulic fluid 460a before reaching the wick can be suppressed.
  • the evaporator 410 is arranged so that the manifold 440 and the heat generating component 470 do not overlap when there is a dimensional allowance.
  • the evaporator case was divided into two parts, a first part on the vapor side and a second part on the liquid side.
  • the first part was made of oxygen-free copper and the second part was made of oxygen-free copper or stainless steel SUS304.
  • the planar size is about 40 mm ⁇ 40 mm and the thickness is about 8 mm.
  • Two oval holes were provided in parallel inside the first part. The width (major axis) of each hole was about 18 mm, and the height (minor axis) was about 6 mm. A porous resin (resin wick) was inserted into each of the two holes.
  • the wick was a porous body made of PTFE (polytetrafluoroethylene) having a length of about 30 mm.
  • This resin wick has an average porous diameter of about 2 ⁇ m and a porosity of about 40%. Both the thickness and width of the wick were made to be about 100-200 ⁇ m larger than the size of the hole in the first portion of the case. Since the porous body made of PTFE has elasticity, the outer wall of the first part of the case and the outer periphery of the wick are brought into close contact with each other by slightly increasing the outer dimension of the wick than the wick insertion hole. Can do.
  • An oval-shaped hole having a height of about 2 mm and a width of about 14 mm was provided in the inner peripheral portion of the resin wick so as to serve as a liquid supply passage for receiving the hydraulic fluid supplied from the liquid pipe through the manifold.
  • a plurality of grooves (grooves) having a depth of 1 mm and a width of 1 mm were formed on the outer periphery of the wick. The working fluid vapor is generated from the surface of the groove, and the generated vapor passes through the groove and is discharged to the vapor pipe.
  • a resin manifold made of MC nylon was placed so that no gap was formed between the resin manifold and the resin manifold.
  • This manifold can distribute the hydraulic fluid flowing from the liquid pipe to the two resin wicks without leaking out from the manifold. That is, the hydraulic fluid that has flowed into the evaporator is introduced into the resin wick through the resin manifold without touching the metal evaporator case. Therefore, heat transfer from the metal case to the working fluid is suppressed, and generation of bubbles can be prevented.
  • the thickness of the wall surface of the resin manifold was about 1 mm.
  • MC nylon has a thermal conductivity of 0.2 W / mK, which is tens to thousands of that of copper (380 W / mK) and SUS304 (16 W / mK). The effect is obtained.
  • the heat insulating resin of the manifold was extended to the liquid pipe side and inserted as an inner pipe inside the liquid pipe.
  • the assembly of the evaporator is completed by inserting a resin wick and a resin manifold into the first part and the second part of the case and sealing the first part and the second part. This sealing was performed here by laser welding.
  • the evaporator, the steam pipe, the condensing part provided with the heat dissipating fins, and the liquid pipe were connected in an annular shape by welding, and the working fluid was sealed inside.
  • a copper pipe having an outer diameter of about 4 mm and an inner diameter of about 3 mm can be used for the steam pipe and the liquid pipe.
  • the total length of the copper pipe can be, for example, about 900 mm.
  • n-pentane was used as the working fluid.
  • the condenser was cooled by sending air from the blower to the heat dissipating fins of the condenser.
  • the evaporator was thermally coupled to the CPU via thermal grease (for example, W4500 manufactured by Cosmo Oil Co., Ltd.).
  • thermal grease for example, W4500 manufactured by Cosmo Oil Co., Ltd.
  • the evaporator was fixed on the CPU by screwing the pressing metal.
  • the center of the CPU was offset to the steam pipe side with respect to the center of the evaporator case.
  • FIG. 7 shows configurations (a) to (c) whose operation has been verified.
  • the evaporator 510 of the configuration (a) is obtained by installing a PTFE wick 530 and an MC nylon manifold 540 inside a metal case 520 in which both the first portion 521 and the second portion 522 are made of oxygen-free copper. is there.
  • the evaporator 510 ′ of the configuration (b) is configured such that the MC nylon manifold 540 of the configuration (a) is additionally a manifold 540 ′ in which an MC nylon inner pipe 542 is integrally formed.
  • a 20 mm long MC nylon pipe 542 (outer diameter ⁇ 4 mm, inner diameter ⁇ 3 mm) was inserted into the tip of the liquid tube (outer diameter ⁇ 5 mm, inner diameter ⁇ 4 mm).
  • the evaporator 510 "of the configuration (c) is obtained by changing the case 520 of the configuration (a) to a case 520" that is manufactured by using SUS304 instead of oxygen-free copper in the second part 522 ".
  • the second portion 522 ′′ made of SUS304 of the case 520 ′′ was a portion of about 8 mm out of the total length of 40 mm.
  • the offset amount between the CPU 570 and the evaporators 510, 510 ′, and 510 ′′ is about 4 mm for all of the configurations (a) to (c).
  • the operation of the loop heat pipe and the measurement of the heat transport resistance were measured under the same conditions for these configurations (a) to (e), using the heat generation amount of the CPU as a parameter (FIG. 8).
  • the heat transport resistance was calculated by dividing a temperature difference obtained by subtracting the average temperature of the condenser (average value of the inlet temperature and the outlet temperature) from the temperature of the heat receiving surface of the evaporator by the CPU heating value.
  • FIG. 8 shows the evaluation results of the heat transport resistance of each of the configurations (a) to (c). From the results shown in FIG. 8 and the comparison configurations (d) and (e) failing to operate normally, it is understood that the low thermal conductivity manifold greatly contributes to stabilization of the operation of the loop heat pipe. . Further, the combination of the manifold and the inner pipe (configuration (b)) and the combination of the manifold and the second case portion having a relatively low thermal conductivity (configuration (c)) further improve the cooling performance of the loop heat pipe. It is understood that These results mean that the loop heat pipe evaporator can be further reduced in size and thickness, and in the cooling design of high heat generation electronic components mounted on electronic devices such as high-density mounting computers, Design freedom can be increased.
  • the configurations having a metal case as the evaporator case are excellent in pressure resistance and can prevent long-term leakage of the working fluid.
  • a highly reliable cooling system can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

An evaporator (110) of a loop-shaped heat pipe comprises: a case (121, 122) which is provided with a fluid inlet and a steam outlet; and at least one porous body (130) which is arranged in the case and through which a liquid-phase working fluid is introduced onto the inner surface of the case. The evaporator (110) additionally comprises a liquid supply tube (140) which is arranged in the case (121, 122) and through which the working fluid is introduced from the fluid inlet to the at least one porous body (130). The liquid supply tube (140) comprises a material having a lower heat conductivity than that of a material that constitutes the case (121, 122). The vaporization of the working fluid that flows into the evaporator (110) can be prevented before the working fluid reaches the porous body (130), and therefore the steady circulation of the working fluid can be achieved.

Description

ループ型ヒートパイプ及び電子機器Loop heat pipe and electronic equipment
 本発明は、ループ型ヒートパイプ及び電子機器に関する。 The present invention relates to a loop heat pipe and an electronic device.
 各種発熱体を冷却するためのデバイスとして、ループ型ヒートパイプが知られている。ループ型ヒートパイプは、作動液(液相の作動流体)を発熱体からの熱で気化させる蒸発器と、気化された作動液(気相の作動流体)を放熱により凝縮させる凝縮器とを、蒸気管及び液管によりループ状に接続した構成を有する。蒸発器は、作動液の気化熱として発熱体から熱を奪うとともに、作動流体の循環を駆動するポンプの役割を果たす。 A loop heat pipe is known as a device for cooling various heating elements. The loop heat pipe includes an evaporator that vaporizes the working fluid (liquid-phase working fluid) with heat from the heating element, and a condenser that condenses the vaporized working fluid (gas-phase working fluid) by heat dissipation, It has a configuration in which a steam pipe and a liquid pipe are connected in a loop. The evaporator removes heat from the heating element as the heat of vaporization of the working fluid, and also serves as a pump that drives the circulation of the working fluid.
 典型的な蒸発器1の構造を図1A-1Cに示す。図1Aは、液管から蒸気管へと向かう作動流体の流れに沿って見たときの蒸発器1の断面図を概略的に示している。図1B及び1Cは、それぞれ、円筒型及び平板型と分類し得る2つの典型的な蒸発器構造について、図1AのA-A'断面を概略的に示している。 The structure of a typical evaporator 1 is shown in FIGS. 1A-1C. FIG. 1A schematically shows a cross-sectional view of the evaporator 1 when viewed along the flow of the working fluid from the liquid pipe to the vapor pipe. 1B and 1C schematically show the AA ′ cross section of FIG. 1A for two typical evaporator structures that can be classified as cylindrical and flat, respectively.
 蒸発器10は、液管50及び蒸気管55に連結された金属ケース20と、金属ケース20内に配置された、ウィックと称される多孔質体30とを有している。液管50からの作動液60aは、ウィック30のほぼ中央に位置する液供給通路31に流入し、作動流体の駆動力となるウィック30内の気孔の毛細管力によって、金属ケース20の内壁に導かれる。作動液60aは更に、発熱体から金属ケース20に伝達された熱によって気化されて蒸気60bとなり、ウィック30の外周部、又は金属ケース20の内壁、に形成された蒸気排出溝(グルーブ)32を通って蒸気管55へと排出される。 The evaporator 10 has a metal case 20 connected to the liquid pipe 50 and the vapor pipe 55 and a porous body 30 called a wick disposed in the metal case 20. The hydraulic fluid 60a from the liquid pipe 50 flows into the liquid supply passage 31 located substantially at the center of the wick 30, and is guided to the inner wall of the metal case 20 by the capillary force of the pores in the wick 30 that is the driving force of the working fluid. It is burned. The hydraulic fluid 60a is further vaporized by the heat transmitted from the heating element to the metal case 20 to become the vapor 60b, and the vapor discharge groove (groove) 32 formed in the outer peripheral portion of the wick 30 or the inner wall of the metal case 20 is formed. It passes through and is discharged to the steam pipe 55.
 近年、例えばコンピュータの中央演算処理装置(CPU)などの電子部品の冷却にループ型ヒートパイプを適用することが検討されている。電子部品はLSIパッケージに代表されるように多くが平面状の放熱面を有している。この放熱面と蒸発器ケース20との密着性を高めるため、円筒型蒸発器10'の場合、図1Bに示すように、受熱面となる平板部28がケース20に付加される。一方、平板型蒸発器10"の場合、図1Cに示すように、概して直方体のケース20の1つの面29を受熱面として使用することができる。 In recent years, it has been studied to apply a loop heat pipe to cool electronic components such as a central processing unit (CPU) of a computer. Many electronic components have a flat heat radiation surface, as represented by an LSI package. In order to improve the adhesion between the heat radiating surface and the evaporator case 20, in the case of the cylindrical evaporator 10 ′, a flat plate portion 28 serving as a heat receiving surface is added to the case 20 as shown in FIG. 1B. On the other hand, in the case of the flat evaporator 10 ″, as shown in FIG. 1C, one surface 29 of the generally rectangular parallelepiped case 20 can be used as a heat receiving surface.
 ループ型ヒートパイプの冷却性能に向上するためには、蒸発器の内部容積を大きくすることが有効である。一方で、電子機器の小型・軽量化のためには、蒸発器を出来るだけコンパクトにする必要がある。小型、特に薄型で内部容積を増大させるには、図1Cに示すような平板型蒸発器が好ましいと考えられる。冷却性能の向上には、蒸発器ケースを金属、特に例えば銅などの高熱伝導金属で製造することも有効である。発熱体からウィックの外周部全体に熱が伝わりやすくなり、作動液の気化が促進されるからである。金属ケースは、ケース内部に封入した作動液の漏れ出しを防止するという気密性能の信頼性の観点からも好ましい。 In order to improve the cooling performance of the loop heat pipe, it is effective to increase the internal volume of the evaporator. On the other hand, in order to reduce the size and weight of electronic equipment, it is necessary to make the evaporator as compact as possible. In order to increase the internal volume with a small size, particularly a thin shape, a flat plate evaporator as shown in FIG. 1C is considered preferable. In order to improve the cooling performance, it is also effective to manufacture the evaporator case with a metal, particularly, a high heat conductive metal such as copper. This is because heat is easily transferred from the heating element to the entire outer periphery of the wick, and vaporization of the working fluid is promoted. The metal case is also preferable from the viewpoint of airtight performance reliability that prevents leakage of the working fluid enclosed in the case.
 しかしながら、蒸発器の小型化は、図2に示すような問題を生じさせ得る。発熱体70から蒸発器ケース20の液管50に近接する部分に熱が伝わることにより、作動液60aは、液管50から流入してウィック30に到達する前にも加熱され、該部分で沸騰して気泡60cを生じさせ得る。図2中の拡大模式図に示すように、ウィック30内の液供給通路31に侵入した気泡60cは、ウィック30の両側に気相を生じさせることにより、ウィック30の外周側へと向かう通常の表面張力35を打ち消す表面張力36を発生する。表面張力が打ち消されることは、ウィック30の毛細管力が働かなくなることを意味する。また、気泡60cの発生は、液供給通路31内の圧力を高め、液管50からの作動液60aの流入を阻害し得る。故に、作動流体の循環が減弱あるいは停止され、ひいては、ループ型ヒートパイプの冷却性能の低下及び/又は不安定な動作がもたらされる。この問題は、蒸発器の小型化に加え、ケース自体の一部を受熱面とし得る平板型蒸発器の使用、及び/又は高熱伝導金属ケースの使用によっても生じやすくなり得る。 However, the miniaturization of the evaporator can cause problems as shown in FIG. When heat is transferred from the heating element 70 to a portion of the evaporator case 20 adjacent to the liquid pipe 50, the working fluid 60a is heated before flowing into the liquid pipe 50 and reaching the wick 30, and boils in the portion. Thus, the bubble 60c can be generated. As shown in the enlarged schematic diagram in FIG. 2, the bubble 60 c that has entered the liquid supply passage 31 in the wick 30 generates a gas phase on both sides of the wick 30, thereby causing the normal direction toward the outer peripheral side of the wick 30. A surface tension 36 that cancels the surface tension 35 is generated. The cancellation of the surface tension means that the capillary force of the wick 30 does not work. In addition, the generation of the bubble 60c can increase the pressure in the liquid supply passage 31 and inhibit the inflow of the working fluid 60a from the liquid pipe 50. Therefore, the circulation of the working fluid is attenuated or stopped, and as a result, the cooling performance of the loop heat pipe is deteriorated and / or unstable operation is caused. This problem may be easily caused by the use of a flat plate evaporator that can use a part of the case itself as a heat receiving surface and / or the use of a metal case having a high thermal conductivity in addition to the miniaturization of the evaporator.
 このような問題に関連し、円筒型蒸発器のケースのうち液管を通す端面部分を、比較的低い熱伝導率を有する金属又は樹脂などに変更し、液管にケースの熱が直接伝わらないようにする技術が提案されている。しかしながら、蒸発器ケースの材質を樹脂とすることは、耐圧性、長期的な気密信頼性が問題となる。また、低熱伝導性の金属を使用する場合、そのような金属でも樹脂の数十倍から数百倍の熱伝導率を有することから十分な断熱性が得られず、冷却性能の低下などを十分に抑制することができない。 In relation to such problems, the end face part through which the liquid pipe passes in the case of the cylindrical evaporator is changed to metal or resin having a relatively low thermal conductivity, and the heat of the case is not directly transmitted to the liquid pipe. Techniques for doing so have been proposed. However, when the material of the evaporator case is resin, pressure resistance and long-term hermetic reliability are problems. In addition, when using a metal with low thermal conductivity, even such a metal has a thermal conductivity several tens to several hundred times that of a resin, so sufficient heat insulation cannot be obtained, and cooling performance is sufficiently lowered. Can not be suppressed.
特開2004-218887号公報JP 2004-218887 A 特開2009-115396号公報JP 2009-115396 A 特許第3591339号公報Japanese Patent No. 3591339
 故に、作動液がウィックに到達する前に気化することを防止し、ループ型ヒートパイプの冷却性能の低下及び/又は不安定動作を阻止し得る技術が依然として望まれる。 Therefore, there is still a demand for a technique that can prevent the hydraulic fluid from vaporizing before reaching the wick and prevent the cooling performance of the loop heat pipe from decreasing and / or unstable operation.
 一観点によれば、ループ型ヒートパイプの蒸発器は、液流入口及び蒸気流出口を有するケースと、該ケース内に配置されて該ケースの内面に液相の作動流体を導く少なくとも1つの多孔質体とを含む。蒸発器は更に、上記ケース内に配置され、液流入口から上記少なくとも1つの多孔質体内に作動液を導く液供給管を含む。この液供給管は、上記ケースの材料より低い熱伝導率の材料を有する。 According to one aspect, an evaporator of a loop heat pipe includes a case having a liquid inlet and a vapor outlet, and at least one porous member disposed in the case and guiding a liquid-phase working fluid to an inner surface of the case. Including body. The evaporator further includes a liquid supply pipe disposed in the case and guiding the working liquid from the liquid inlet into the at least one porous body. The liquid supply pipe has a material having a lower thermal conductivity than the material of the case.
 他の一観点によれば、このようなループ型ヒートパイプと、その蒸発器に熱的に結合された電子部品とを含む電子機器が提供される。 According to another aspect, an electronic device including such a loop heat pipe and an electronic component thermally coupled to the evaporator is provided.
 蒸発器に流入した作動液への蒸発器ケースからの熱伝達が抑制され、作動液がウィックに到達する前に気化することが防止される。従って、ウィックの毛細管力が維持され、作動流体の安定した循環、ひいては、電子機器における電子部品の効率的な冷却が実現される。 The heat transfer from the evaporator case to the working fluid flowing into the evaporator is suppressed, and the working fluid is prevented from being vaporized before reaching the wick. Therefore, the capillary force of the wick is maintained, and the stable circulation of the working fluid, and thus the efficient cooling of the electronic components in the electronic device is realized.
従来技術に係る蒸発器を概略的に示す断面図である。It is sectional drawing which shows schematically the evaporator which concerns on a prior art. 従来技術に係る円筒型蒸発器を概略的に示す断面図である。It is sectional drawing which shows schematically the cylindrical evaporator which concerns on a prior art. 従来技術に係る平板型蒸発器を概略的に示す断面図である。It is sectional drawing which shows schematically the flat type evaporator which concerns on a prior art. 従来技術に係る蒸発器が有する1つの問題を模式的に示す断面図である。It is sectional drawing which shows typically one problem which the evaporator which concerns on a prior art has. 一実施形態に係るループ型ヒートパイプが有する蒸発器の構成要素を示す斜視図である。It is a perspective view which shows the component of the evaporator which the loop type heat pipe which concerns on one Embodiment has. 図3Aのマニフォールドを別方向から見た斜視図である。It is the perspective view which looked at the manifold of Drawing 3A from another direction. 図3Aに示した構成要素から得られる蒸発器を作動流体の流れに沿って見た断面図である。It is sectional drawing which looked at the evaporator obtained from the component shown to FIG. 3A along the flow of the working fluid. 図3Cの蒸発器のB-B'断面を示す図である。It is a figure which shows the BB 'cross section of the evaporator of FIG. 3C. 他の一実施形態に係るループ型ヒートパイプが有する蒸発器の構成要素を示す斜視図である。It is a perspective view which shows the component of the evaporator which the loop type heat pipe which concerns on other one Embodiment has. 他の一実施形態に係るループ型ヒートパイプが有する蒸発器を示す断面図である。It is sectional drawing which shows the evaporator which the loop type heat pipe which concerns on other one Embodiment has. 一実施形態に係る電子機器を例示する斜視図である。It is a perspective view which illustrates the electronic device which concerns on one Embodiment. 図6AのC-C'断面を示す断面図である。FIG. 6B is a cross-sectional view taken along the line CC ′ of FIG. 6A. 図6AのD-D'断面を示す断面図である。FIG. 6B is a cross-sectional view showing a cross section along DD ′ of FIG. 6A. 幾つかの実施例の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of some Examples. 図7に示した構成の評価結果を示すグラフである。It is a graph which shows the evaluation result of the structure shown in FIG.
 110、210、310、410 蒸発器
 120、320、420、520 蒸発器ケース
 121、221、321、521 ケースの第1部分
 122、222、322、522 ケースの第2部分
 130、230、330、530 多孔質体(ウィック)
 140、240、340、440、540 液供給管
 (140 マニフォールド)
 142、242、542 インナーパイプ
 150、250、350、450 液管
 155、255、355、455 蒸気管
 160a、360a、460a 作動液
 400 電子機器
 405 ループ型ヒートパイプ
 461 凝縮器
 463 リザーバタンク
 470、570 電子部品
 475 配線基板
110, 210, 310, 410 Evaporator 120, 320, 420, 520 Evaporator case 121, 221, 321, 521 First part of case 122, 222, 322, 522 Second part of case 130, 230, 330, 530 Porous body (wick)
140, 240, 340, 440, 540 Liquid supply pipe (140 Manifold)
142, 242, 542 Inner pipe 150, 250, 350, 450 Liquid pipe 155, 255, 355, 455 Steam pipe 160a, 360a, 460a Hydraulic fluid 400 Electronic equipment 405 Loop heat pipe 461 Condenser 463 Reservoir tank 470, 570 Electron Components 475 Wiring board
 以下、添付図面を参照しながら実施形態について詳細に説明する。なお、図面において、種々の構成要素は必ずしも同一の尺度で描かれていない。また、複数の図を通して、同一あるいは対応する構成要素には同一又は類似の参照符号を付する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. In the drawings, various components are not necessarily drawn to the same scale. Further, the same or corresponding components are denoted by the same or similar reference numerals throughout the drawings.
 先ず、図3A-3Dを参照して、一実施形態に係るループ型ヒートパイプが有する蒸発器110を説明する。図3Aは、蒸発器110が有する主な構成要素を分解図にて示し、図3Bは、図3Aに示したマニフォールド140を別方向から示している。また、図3Cは、図3Aに示した構成要素から得られる蒸発器110を作動流体の流れに沿って見たときの断面図であり、図3Dは、図3CのB-B'断面を示している。なお、図3Cは、蒸発器110を1つの平面で切断したときの断面図ではないことに注意されたい。 First, an evaporator 110 included in a loop heat pipe according to an embodiment will be described with reference to FIGS. 3A to 3D. 3A shows the main components of the evaporator 110 in an exploded view, and FIG. 3B shows the manifold 140 shown in FIG. 3A from another direction. 3C is a cross-sectional view of the evaporator 110 obtained from the components shown in FIG. 3A when viewed along the flow of the working fluid, and FIG. 3D shows a BB ′ cross section of FIG. 3C. ing. It should be noted that FIG. 3C is not a cross-sectional view when the evaporator 110 is cut along one plane.
 図示した例において、蒸発器110は平板型蒸発器である。蒸発器110は、蒸気排出口126にて蒸気管155に連通する第1ケース部121と、液流入口125にて液管150に連通する第2ケース部122と、2つの多孔質体(ウィック)130と、分岐管(マニフォールド)140とを含んでいる。第1及び第2のケース部121及び122は、互いに連結されて、ウィック130及びマニフォールド140を収容する1つの蒸発器ケース120を形成する。蒸発器ケース120の平面寸法(受熱面の寸法)は、冷却対象の発熱体の大きさに基づいて決定される。蒸発器ケース120の厚さは、電子機器内の実装密度に応じて制限され得る。例えば、サーバーやパーソナルコンピュータ(PC)などの高密度実装される電子機器内に適用される場合、10mm程度以下の厚さにすることが要求されることもある。 In the illustrated example, the evaporator 110 is a flat plate evaporator. The evaporator 110 includes a first case part 121 that communicates with the steam pipe 155 at the steam outlet 126, a second case part 122 that communicates with the liquid pipe 150 at the liquid inlet 125, and two porous bodies (wicks). ) 130 and a branch pipe (manifold) 140. The first and second case parts 121 and 122 are connected to each other to form one evaporator case 120 that houses the wick 130 and the manifold 140. The planar dimension (dimension of the heat receiving surface) of the evaporator case 120 is determined based on the size of the heating element to be cooled. The thickness of the evaporator case 120 may be limited according to the mounting density in the electronic device. For example, when it is applied to an electronic device mounted with high density such as a server or a personal computer (PC), a thickness of about 10 mm or less may be required.
 第1ケース部121は、第2ケース部122側から見て、2つのウィック130を収容するための2つの孔部123を有する。孔部123の形状は、挿入されるウィック130の外形に応じて決定され、典型的に円形又は楕円形にされる。2つの孔部123の間には、第1ケース部121の底面と頂面とをつなぐ分離壁124が存在する。第2ケース部122はマニフォールド140を収容し得る。しかしながら、本実施形態において、蒸発器ケース120をどのように2つの部分に分割するかは、ウィック130及びマニフォールド140の収容後に連結されることが可能であれば特に限定されない。例えば、一方のケース部がウィック130及びマニフォールド140の双方を収容し、他方のケース部は蒸発器ケース120の1つの端面に相当する板状の形状を有していてもよい。また、第1及び第2のケース部は、平板型蒸発器120の厚さ方向に分割されることも可能である。 The first case part 121 has two hole parts 123 for accommodating the two wicks 130 when viewed from the second case part 122 side. The shape of the hole 123 is determined according to the outer shape of the wick 130 to be inserted, and is typically circular or elliptical. A separation wall 124 that connects the bottom surface and the top surface of the first case portion 121 exists between the two hole portions 123. The second case portion 122 can accommodate the manifold 140. However, in the present embodiment, how the evaporator case 120 is divided into two parts is not particularly limited as long as it can be connected after the wick 130 and the manifold 140 are accommodated. For example, one case portion may accommodate both the wick 130 and the manifold 140, and the other case portion may have a plate shape corresponding to one end face of the evaporator case 120. Further, the first and second case portions can be divided in the thickness direction of the flat plate evaporator 120.
 各ウィック130は、概してコップ状の形状であり、内周部に当該ウィックに作動液を供給する液供給通路131となる空洞を有する。各ウィック130はまた、外周部に複数の蒸気排出溝(グルーブ)132を有する。グルーブ132は、作動流体の流れ方向に沿ってウィックの全長にわたって形成されてもよく、その場合、図3Cに示すように、グルーブ132の液管150側の端部はマニフォールド140によって終端され得る。なお、図3Cにおいては、グルーブ132が存在する断面を示しているためウィック130とケース120とが接触していないが、グルーブ132が存在しない断面においてはウィック130とケース120とが接触している。ウィック130は好ましくは、後述するように樹脂ウィックであり、第1ケース部の孔部123に挿入されたときに圧縮されるよう、孔部123の内寸より大きい寸法を有するように成型される。それにより、樹脂ウィック130の外表面と蒸発器ケース120の内壁との密着性を高めることができ、ウィック130とケース120との接触部での作動液の蒸発を促進させ得る。 Each wick 130 is generally cup-shaped, and has a cavity serving as a liquid supply passage 131 for supplying a working fluid to the wick on the inner periphery. Each wick 130 also has a plurality of steam discharge grooves (grooves) 132 on the outer periphery. The groove 132 may be formed over the entire length of the wick along the flow direction of the working fluid, in which case the end of the groove 132 on the liquid tube 150 side may be terminated by a manifold 140, as shown in FIG. 3C. In FIG. 3C, the wick 130 and the case 120 are not in contact with each other because the cross section where the groove 132 exists is shown, but the wick 130 and the case 120 are in contact with each other in the cross section where the groove 132 does not exist. . The wick 130 is preferably a resin wick, as will be described later, and is molded to have a size larger than the inner dimension of the hole 123 so as to be compressed when inserted into the hole 123 of the first case portion. . Thereby, the adhesion between the outer surface of the resin wick 130 and the inner wall of the evaporator case 120 can be enhanced, and the evaporation of the hydraulic fluid at the contact portion between the wick 130 and the case 120 can be promoted.
 ウィック130の平均孔径は、十分に大きい毛細管力を得るために、好ましく15μm以下、より好ましくは5μm以下にされる。空孔率は、ウィック130とケース120との接触部で作動液が不足することがないよう大きくされることが好ましく、例えば、30%以上90%未満の範囲内にされる。 In order to obtain a sufficiently large capillary force, the average pore diameter of the wick 130 is preferably 15 μm or less, more preferably 5 μm or less. The porosity is preferably increased so that the hydraulic fluid does not run short at the contact portion between the wick 130 and the case 120, and is, for example, in the range of 30% or more and less than 90%.
 マニフォールド140は、詳細に後述するように、液管150から流入した作動液160aをケース120から断熱するとともに、作動液160aを各ウィック130に供給する液供給管として作用する。マニフォールド140は、ケース120の液流入口125に対応して設けられた注入口143と、2つのウィック130に作動液を供給する2つの吐出口144(図3B)を有し、分岐した流路145を内部に有する(図3D)。 As will be described in detail later, the manifold 140 insulates the hydraulic fluid 160a flowing from the liquid pipe 150 from the case 120 and acts as a liquid supply pipe that supplies the hydraulic fluid 160a to each wick 130. The manifold 140 has an inlet 143 provided corresponding to the liquid inlet 125 of the case 120 and two outlets 144 (FIG. 3B) for supplying hydraulic fluid to the two wicks 130. 145 inside (FIG. 3D).
 マニフォールド140は好ましくは、液管150からの作動液160aがウィック130に到達するまでの間にケース120に触れないよう、ケース120に収容されたときにウィック130と接触するように成型される。しかしながら、ケースの液流入口125からウィック収容部までの間の大部分がマニフォールド140で覆われていればウィック到達前の作動液160aの沸騰を防止し得る。故に、マニフォールド140とウィック130との間に隙間が存在することも許容され得る。 The manifold 140 is preferably molded so as to come into contact with the wick 130 when accommodated in the case 120 so that the hydraulic fluid 160a from the liquid pipe 150 does not touch the case 120 before reaching the wick 130. However, if most of the space between the liquid inlet 125 of the case and the wick accommodating portion is covered with the manifold 140, boiling of the working fluid 160a before reaching the wick can be prevented. Thus, it may be allowed that a gap exists between the manifold 140 and the wick 130.
 マニフォールド140は必要に応じて、図示のように、ケース120内に配置される本体141に加えて、液管150内に延在する管状部(インナーパイプ)142を有する。好ましくは、インナーパイプ142と液管150の内壁との間に作動液160aが侵入しないよう、インナーパイプ142は液管150の内壁に密着するように形成される。インナーパイプ142は好ましくは本体141と一体形成される。 The manifold 140 has a tubular portion (inner pipe) 142 extending into the liquid pipe 150 in addition to the main body 141 arranged in the case 120 as shown in the drawing as needed. Preferably, the inner pipe 142 is formed in close contact with the inner wall of the liquid pipe 150 so that the hydraulic fluid 160a does not enter between the inner pipe 142 and the inner wall of the liquid pipe 150. The inner pipe 142 is preferably formed integrally with the main body 141.
 第1及び第2のケース部121及び122を含む蒸発器ケース120は、好ましくは、強度及び気密信頼性を確保するため、金属又は合金を有する。そして、第1及び第2のケース部121及び122は、例えば、溶接、ロウ付け又は樹脂接着など、気密信頼性を確保することが可能な様々な手法のうちの何れかを用いて互いに接合・封止される。 The evaporator case 120 including the first and second case parts 121 and 122 preferably includes a metal or an alloy in order to ensure strength and airtight reliability. The first and second case parts 121 and 122 are joined to each other using any of various methods capable of ensuring airtight reliability, such as welding, brazing, or resin bonding. Sealed.
 蒸発器ケース120はまた、冷却対象の発熱体からの熱をケース全体に伝えるため、好ましくは、例えば無酸素銅、銅合金、アルミ又はアルミ合金などの高熱伝導性の金属又は合金を有する。しかしながら、蒸発器ケース120は、そのサイズ及び/又は要求される冷却能力などに応じて、ステンレス鋼などの鉄系合金、又はチタン合金など、比較的低い熱伝導率を有する金属又は合金とすることも可能である。 The evaporator case 120 also preferably includes a highly thermally conductive metal or alloy, such as oxygen-free copper, copper alloy, aluminum, or aluminum alloy, for transferring heat from the heating element to be cooled to the entire case. However, the evaporator case 120 is a metal or alloy having a relatively low thermal conductivity, such as an iron-based alloy such as stainless steel or a titanium alloy, depending on its size and / or required cooling capacity. Is also possible.
 マニフォールド140の材料は、断熱作用が得られるよう、蒸発器ケース120より低い熱伝導率を有する材料から選択される。マニフォールド140の熱伝導率は低いほど好ましいが、1W/mK以下であれば有意な断熱作用を得ることができる。1W/mK以下の熱伝導率は、例えば銅の場合に380W/mK程度、ステンレス鋼の場合に16W/mK程度であるケース120の熱伝導率に対して1桁から数桁低く、マニフォールド140の外壁と内壁との間に有意な温度差を生じさせ得る。故に、ケース120内に流入した作動液160aは、ケース120から効果的に断熱され、ウィック130に到達する前に気化することが抑制される。 The material of the manifold 140 is selected from materials having a lower thermal conductivity than the evaporator case 120 so as to obtain a heat insulating effect. The lower the thermal conductivity of the manifold 140, the better. However, if it is 1 W / mK or less, a significant heat insulating effect can be obtained. The thermal conductivity of 1 W / mK or less is, for example, about 380 W / mK in the case of copper and about 16 W / mK in the case of stainless steel. A significant temperature difference can be created between the outer and inner walls. Therefore, the hydraulic fluid 160 a that has flowed into the case 120 is effectively insulated from the case 120, and is prevented from being vaporized before reaching the wick 130.
 例えば、マニフォールド140は、フッ素樹脂、ナイロン樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、ポリプロピレン樹脂、又はポリアセタール樹脂などの樹脂を有し得る。一例として、MCナイロンの熱伝導率は0.2W/mK程度と、銅の約1/1900、ステンレス鋼の約1/80であるため、例えば1mmから数mmといった厚さでも断熱作用が得られる。マニフォールド140は、上述のような樹脂の多孔質体を有していてもよい。 For example, the manifold 140 may have a resin such as a fluororesin, a nylon resin, a PEEK (polyether ether ketone) resin, a polypropylene resin, or a polyacetal resin. As an example, the thermal conductivity of MC nylon is about 0.2 W / mK, about 1/1900 of copper, and about 1/80 of stainless steel, so that a heat insulation effect can be obtained even with a thickness of 1 mm to several mm, for example. . The manifold 140 may have a porous body of resin as described above.
 ウィック130は、例えば金属ウィック、炭素ウィック又は樹脂ウィックなど、様々な多孔質体から選択され得るが、好ましくは樹脂ウィックとし得る。樹脂ウィックは、ケース120との密着性を確保しやすいことに加えて、その他のウィックと比較して熱伝導率が低いという特長がある。仮に高熱伝導率のウィックを用いると、ウィックの内周側に熱が伝わってそこで気泡が発生し、ウィック到達前の気泡の発生と同様の影響を及ぼし得るが、樹脂ウィックを用いることでウィックの内周側での気泡の発生を防止し得る。樹脂ウィックの好適材料には、例えば、フッ素樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、ポリプロピレン樹脂、ポリアセタール樹脂などが含まれる。 The wick 130 may be selected from various porous materials such as a metal wick, a carbon wick, or a resin wick, but may preferably be a resin wick. Resin wicks have the advantage of low thermal conductivity compared to other wicks, in addition to being easy to ensure adhesion to case 120. If a wick with high thermal conductivity is used, heat is transferred to the inner periphery of the wick, and bubbles are generated there, which may have the same effect as the generation of bubbles before reaching the wick. Generation of bubbles on the inner peripheral side can be prevented. Suitable materials for the resin wick include, for example, fluororesin, PEEK (polyether ether ketone) resin, polypropylene resin, polyacetal resin, and the like.
 ウィック130とマニフォールド140の少なくとも一部とを同一の多孔質樹脂で形成してもよい。その場合、例えば、ウィック130とマニフォールド140の該少なくとも一部を一体成型するとともに、マニフォールド140の残りの部分を加工しやすい単純な構造とすることができる。 The wick 130 and at least a part of the manifold 140 may be formed of the same porous resin. In this case, for example, the wick 130 and the at least part of the manifold 140 can be integrally molded, and the remaining part of the manifold 140 can be made into a simple structure that can be easily processed.
 以上の構成によれば、例えば小型の平板型蒸発器とした場合にも、ウィック到達前の作動液の気化による気泡の発生が抑制あるいは防止され、ループ型ヒートパイプの動作を安定化させ、その冷却性能を維持することができる。 According to the above configuration, for example, even in the case of a small flat plate evaporator, generation of bubbles due to vaporization of the hydraulic fluid before reaching the wick is suppressed or prevented, and the operation of the loop heat pipe is stabilized. Cooling performance can be maintained.
 図3A-3Dに示した蒸発器110は2つのウィック130を含んでいるが、ウィックの数は3つ以上にすることも可能である。ウィック数に応じて、マニフォールド140の吐出口144の数及び内部の分岐構造が変更される。 The evaporator 110 shown in FIGS. 3A-3D includes two wicks 130, but the number of wicks can be three or more. Depending on the number of wicks, the number of outlets 144 of the manifold 140 and the internal branch structure are changed.
 また、単一のウィックを含む蒸発器にも、マニフォールドに対応するような低熱伝導材料を有する液供給管を設けることができる。図4は、そのような単一のウィックを含む、他の一実施形態に係るループ型ヒートパイプの蒸発器210を示している。以下の蒸発器210の説明において、図3A-3Dに示した蒸発器110と共通する事項については詳細に説明しない。 Also, an evaporator including a single wick can be provided with a liquid supply pipe having a low thermal conductivity material corresponding to the manifold. FIG. 4 shows a loop heat pipe evaporator 210 according to another embodiment including such a single wick. In the following description of the evaporator 210, details common to the evaporator 110 shown in FIGS. 3A to 3D will not be described in detail.
 蒸発器210は、蒸気管255に連通する第1ケース部221と、液管250に連通する第2ケース部222と、単一のウィック230と、液供給管240とを含んでいる。第1及び第2のケース部221及び222は、互いに連結されて、ウィック230及び液供給管240を収容する1つの蒸発器ケースを形成する。 The evaporator 210 includes a first case part 221 that communicates with the steam pipe 255, a second case part 222 that communicates with the liquid pipe 250, a single wick 230, and a liquid supply pipe 240. The first and second case portions 221 and 222 are connected to each other to form one evaporator case that houses the wick 230 and the liquid supply pipe 240.
 第1ケース部221は、ウィック230を収容するための孔部223を有する。第2ケース部222はマニフォールド240を収容し得る。しかしながら、本実施形態において、蒸発器ケースをどのように2つの部分に分割するかは、ウィック230及び液供給管240の収容後に連結されることが可能であれば特に限定されない。 The first case part 221 has a hole part 223 for accommodating the wick 230. The second case portion 222 can accommodate the manifold 240. However, in the present embodiment, how the evaporator case is divided into two parts is not particularly limited as long as it can be connected after the wick 230 and the liquid supply pipe 240 are accommodated.
 ウィック230は、内部に当該ウィックに作動液を供給する液供給通路231となる空洞を有し、外周部に複数の蒸気排出溝(グルーブ)232を有する。グルーブ232は、作動流体の流れ方向に沿ってウィック230の全長にわたって形成されてもよい。 The wick 230 has a cavity serving as a liquid supply passage 231 for supplying hydraulic fluid to the wick, and has a plurality of steam discharge grooves (grooves) 232 on the outer peripheral portion. The groove 232 may be formed over the entire length of the wick 230 along the flow direction of the working fluid.
 液供給管240は、ウィック到達前の作動液をケース(221、222)から断熱するとともに、液管250から流入した作動液をウィック230に供給する。液供給管240は必要に応じて、図示のように、ケース内に配置される本体241に加えて、液管250内に延在するインナーパイプ242を有し得る。液供給管の本体241は、ケースの内壁に沿って配置される外壁とそれに囲まれる空洞とを有するものとし得る。代替的に、液供給管240は、単一のウィック230の全体に作動液を分配するための1つ以上の配管構造を含んでいてもよい。 The liquid supply pipe 240 insulates the hydraulic fluid before reaching the wick from the cases (221, 222) and supplies the hydraulic fluid flowing in from the liquid pipe 250 to the wick 230. The liquid supply pipe 240 may have an inner pipe 242 extending into the liquid pipe 250 in addition to the main body 241 disposed in the case as shown in the drawing, as needed. The main body 241 of the liquid supply pipe may have an outer wall disposed along the inner wall of the case and a cavity surrounded by the outer wall. Alternatively, the liquid supply tube 240 may include one or more piping structures for distributing hydraulic fluid throughout the single wick 230.
 第1ケース部221、第2ケース部222、ウィック230、液供給管240の材料は、蒸発器110に関して説明した対応する要素(それぞれ、121、122、130、140)の材料と同様とし得る。例えば、第1及び第2のケース部221及び222は金属又は合金を有し、ウィック230は多孔質樹脂を有し、液供給管240は樹脂を有する。 The materials of the first case portion 221, the second case portion 222, the wick 230, and the liquid supply pipe 240 may be the same as the materials of the corresponding elements (121, 122, 130, and 140, respectively) described with respect to the evaporator 110. For example, the first and second case portions 221 and 222 include a metal or an alloy, the wick 230 includes a porous resin, and the liquid supply pipe 240 includes a resin.
 蒸発器210においても、上述の蒸発器110においてと同様に、ウィック到達前の作動液の気化による気泡の発生が抑制あるいは防止し、ループ型ヒートパイプの動作を安定化させることができる。 Also in the evaporator 210, as in the above-described evaporator 110, the generation of bubbles due to vaporization of the hydraulic fluid before reaching the wick can be suppressed or prevented, and the operation of the loop heat pipe can be stabilized.
 ただし、蒸発器210は、単一のウィック230を含む構成としたことにより、部品点数の削減と、部品の加工及び/又は組立の容易化とにより、製造コストを低減することが可能である。一方、蒸発器110は、ウィック130とそれを収容するケースの孔部123とを複数含む構成としたことにより、ウィック130とケース120との接触面積を増大させることができる。また、複数の孔部123間の分離壁124が熱伝導路として作用するため、発熱体から受けた熱がケース全体に一層均一に伝えられる。故に、蒸発器ひいてはループ型ヒートパイプの冷却性能の観点からは、蒸発器110の方が蒸発器210より有利となり得る。 However, since the evaporator 210 includes the single wick 230, it is possible to reduce the manufacturing cost by reducing the number of parts and facilitating the processing and / or assembly of the parts. On the other hand, evaporator 110 is configured to include a plurality of wicks 130 and a case hole 123 for housing the wick 130, whereby the contact area between wick 130 and case 120 can be increased. In addition, since the separation wall 124 between the plurality of holes 123 acts as a heat conduction path, the heat received from the heating element is more uniformly transmitted to the entire case. Therefore, the evaporator 110 can be more advantageous than the evaporator 210 from the viewpoint of the cooling performance of the evaporator and therefore the loop heat pipe.
 続いて、図5を参照して、他の一実施形態に係るループ型ヒートパイプが有する蒸発器310を説明する。図5は、蒸発器310を、図3Cと同様の断面図で示している。以下の蒸発器310の説明において、図3A-3Dに示した蒸発器110と共通する事項については詳細に説明しない。 Subsequently, an evaporator 310 included in a loop heat pipe according to another embodiment will be described with reference to FIG. FIG. 5 shows the evaporator 310 in a cross-sectional view similar to FIG. 3C. In the following description of the evaporator 310, details common to the evaporator 110 shown in FIGS. 3A-3D will not be described in detail.
 蒸発器310は、蒸気管355に連通する第1ケース部321と、液管350に連通する第2ケース部322と、1つ以上のウィック330と、液供給管340とを含んでいる。第1及び第2のケース部321及び322は、互いに連結されて、ウィック330及び液供給管340を収容する1つの蒸発器ケース320を形成する。 The evaporator 310 includes a first case part 321 communicating with the vapor pipe 355, a second case part 322 communicating with the liquid pipe 350, one or more wicks 330, and a liquid supply pipe 340. The first and second case portions 321 and 322 are connected to each other to form one evaporator case 320 that houses the wick 330 and the liquid supply pipe 340.
 ウィック330は、内部に当該ウィックに作動液360aを供給する液供給通路331となる空洞を有し、外周部に複数の蒸気排出溝(グルーブ)332を有する。 The wick 330 has a cavity serving as a liquid supply passage 331 for supplying the working fluid 360a to the wick, and has a plurality of vapor discharge grooves (grooves) 332 on the outer periphery.
 液供給管340は、液管350から流入した作動液360aをケース320から断熱するとともに、作動液360aをウィック330に供給する。蒸発器310が複数のウィック330を有する場合、液供給管340はマニフォールドの形態を有する。液供給管340は、必要に応じて、液管350内に延在するインナーパイプ(図示せず)を有していてもよい。 The liquid supply pipe 340 insulates the hydraulic fluid 360 a flowing from the liquid pipe 350 from the case 320 and supplies the hydraulic fluid 360 a to the wick 330. When the evaporator 310 includes a plurality of wicks 330, the liquid supply pipe 340 has a manifold shape. The liquid supply pipe 340 may have an inner pipe (not shown) extending into the liquid pipe 350 as necessary.
 第1及び第2のケース部321及び322は互いに異なる材料を用いて形成され得る。ウィック330を収容する第1ケース部321は、好ましくは、冷却対象の発熱体からの熱を当該ケース部全体に伝えるため、例えば無酸素銅、銅合金、アルミ又はアルミ合金などの高熱伝導性の金属又は合金を有する。液供給管340を収容する第2ケース部322は、第1ケース部321の材料より低い熱伝導率を有する材料を有する。また、第2ケース部322の材料は、蒸発器ケース320の気密信頼性の観点から、金属又は合金であることが好ましい。例えば、第2ケース部322は、ステンレス鋼などの鉄系合金、又はチタン合金など、比較的低い熱伝導率を有する金属又は合金を有することができる。 The first and second case portions 321 and 322 may be formed using different materials. The first case portion 321 that accommodates the wick 330 preferably transmits heat from the heating element to be cooled to the entire case portion, and therefore has a high thermal conductivity such as oxygen-free copper, copper alloy, aluminum, or aluminum alloy. Has metal or alloy. The second case portion 322 that accommodates the liquid supply pipe 340 includes a material having a lower thermal conductivity than the material of the first case portion 321. The material of the second case portion 322 is preferably a metal or an alloy from the viewpoint of airtight reliability of the evaporator case 320. For example, the second case portion 322 can include a metal or alloy having a relatively low thermal conductivity, such as an iron-based alloy such as stainless steel, or a titanium alloy.
 蒸発器ケース320を第1ケース部321と第2ケース部322とに分割する部分は、好ましくは、液供給管340とウィック330との境界にほぼ一致される。ウィック330とケース320との接触部全体への熱伝導と、ウィック到達前の作動液360aへの断熱作用とを得るためである。 The portion that divides the evaporator case 320 into the first case portion 321 and the second case portion 322 is preferably substantially coincident with the boundary between the liquid supply pipe 340 and the wick 330. This is to obtain heat conduction to the entire contact portion between the wick 330 and the case 320 and a heat insulating action to the hydraulic fluid 360a before reaching the wick.
 第1及び第2のケース部321及び322は、例えば溶接、ロウ付け又は樹脂接着など、気密信頼性を確保することが可能な様々な手法のうちの何れかを用いて互いに接合される。 The first and second case portions 321 and 322 are joined to each other using any one of various methods capable of ensuring airtight reliability, such as welding, brazing, or resin bonding.
 ウィック330及び液供給管340の材料は、蒸発器110に関して説明した対応する要素(それぞれ、130、140)の材料と同様とし得る。例えば、ウィック330は多孔質樹脂を有し、液供給管340は樹脂を有する。 The materials of the wick 330 and the liquid supply pipe 340 may be the same as the materials of the corresponding elements described with respect to the evaporator 110 (130 and 140, respectively). For example, the wick 330 has a porous resin, and the liquid supply pipe 340 has a resin.
 蒸発器310においても、蒸発器110に関して説明したように、ウィック到達前の作動液の気化による気泡の発生を抑制あるいは防止し、ループ型ヒートパイプの動作を安定化させることができる。ただし、第2ケース部322に第1ケース部321より低熱伝導性の材料を用いることにより、ウィック到達前の作動液の気化の抑制効果を高め、ループ型ヒートパイプの動作を更に安定化させることができる。なお、第1ケース部321には高熱伝導性の材料を用いることができるため、ループ型ヒートパイプの冷却性能を低下させることもない。 Also in the evaporator 310, as described with respect to the evaporator 110, it is possible to suppress or prevent the generation of bubbles due to vaporization of the hydraulic fluid before reaching the wick, and to stabilize the operation of the loop heat pipe. However, by using a material having lower thermal conductivity than the first case portion 321 for the second case portion 322, the effect of suppressing the vaporization of the hydraulic fluid before reaching the wick is enhanced, and the operation of the loop heat pipe is further stabilized. Can do. In addition, since a highly heat-conductive material can be used for the 1st case part 321, the cooling performance of a loop type heat pipe is not reduced.
 次に、図6A-6Cを参照して、一実施形態に係る電子機器400を説明する。図6B及び6Cは、電子機器の発熱体への蒸発器の取り付け例を、それぞれ、図6AのC-C'断面及びD-D'断面にて示している。なお、図6Cに示すD-D'断面は、一方のウィックのほぼ中心を通り、液管及び蒸気管を含まない断面として選択されている。 Next, an electronic apparatus 400 according to an embodiment will be described with reference to FIGS. 6A-6C. 6B and 6C show an example of attachment of the evaporator to the heating element of the electronic device, respectively, in the CC ′ section and the DD ′ section in FIG. 6A. The cross section DD ′ shown in FIG. 6C passes through substantially the center of one wick and is selected as a cross section that does not include the liquid pipe and the steam pipe.
 電子機器400は、発熱体となる電子部品470と、電子部品470を冷却するループ型ヒートパイプ405とを含んでいる。 The electronic apparatus 400 includes an electronic component 470 serving as a heating element and a loop heat pipe 405 that cools the electronic component 470.
 ループ型ヒートパイプ405は、例えば上述した蒸発器110、210及び310の何れかとし得る蒸発器410と、蒸発器410にて生成された気相の作動流体を、放熱により液相の作動流体(作動液)へと凝縮させる凝縮器461とを含む。凝縮器461は、例えば、その放熱フィンに送風機からの空気462を送ること、又は室温以下に冷却した液中に浸すことなどによって冷却される。気相の作動流体は、蒸発器410から凝縮器461に蒸気管455を通って供給される。凝縮器461からの作動液は、液管450を通って蒸発器410に供給される。ループ型ヒートパイプ405は典型的に、液管450中において、起動時に必要な作動液を貯蔵するリザーバタンク463を蒸発器410の手前に有する。作動流体は、例えば、水、エタノール、R141B、n-ペンタン、アセトン、ブタン又はアンモニアなどとし得る。 The loop heat pipe 405 includes, for example, an evaporator 410 that can be any one of the above-described evaporators 110, 210, and 310, and a gas-phase working fluid generated by the evaporator 410, and a liquid-phase working fluid ( A condenser 461 for condensing into a working fluid. The condenser 461 is cooled by, for example, sending the air 462 from the blower to the heat dissipating fins or immersing it in a liquid cooled to room temperature or lower. The vapor-phase working fluid is supplied from the evaporator 410 to the condenser 461 through the vapor pipe 455. The working fluid from the condenser 461 is supplied to the evaporator 410 through the liquid pipe 450. The loop heat pipe 405 typically has a reservoir tank 463 in front of the evaporator 410 in the liquid tube 450 for storing a working fluid necessary for activation. The working fluid can be, for example, water, ethanol, R141B, n-pentane, acetone, butane or ammonia.
 電子機器の発熱部品470は、例えば、CPUなどの半導体装置であり、電子機器のマザーボードなどの配線基板475上に実装されている。発熱部品470上への蒸発器410の取り付けは、例えば押さえつけ金具(図示せず)を配線基板475などにネジ止めすること等により行い得る。発熱部品470と蒸発器410との間には、例えばサーマルグリースなどの良熱伝導材480が配置され得る。なお、単一の蒸発器410で複数の発熱部品を冷却してもよい。 The heat generating component 470 of the electronic device is a semiconductor device such as a CPU, for example, and is mounted on a wiring substrate 475 such as a mother board of the electronic device. The attachment of the evaporator 410 onto the heat generating component 470 can be performed, for example, by screwing a pressing fitting (not shown) to the wiring board 475 or the like. Between the heat generating component 470 and the evaporator 410, for example, a good heat conductive material 480 such as thermal grease may be disposed. A plurality of heat generating components may be cooled with a single evaporator 410.
 図6Cに示すように、発熱部品470は蒸発器410に対して蒸気管側(図中右側)にオフセットして配置されてもよい。すなわち、発熱部品470の中心が蒸発器ケース420の中心より蒸気管側に位置するように、発熱部品470上に蒸発器410を取り付けてもよい。このようなオフセットにより、発熱部品470とウィック到達前の作動液との距離が増大され、ウィック到達前の作動液460aの気化が抑制され得る。例えば、蒸発器410は、寸法的な余裕がある場合、マニフォールド440と発熱部品470とが重なり合わないように配置される。 As shown in FIG. 6C, the heat generating component 470 may be disposed offset to the vapor pipe side (right side in the drawing) with respect to the evaporator 410. In other words, the evaporator 410 may be mounted on the heat generating component 470 so that the center of the heat generating component 470 is positioned on the steam pipe side from the center of the evaporator case 420. By such an offset, the distance between the heat generating component 470 and the hydraulic fluid before reaching the wick can be increased, and vaporization of the hydraulic fluid 460a before reaching the wick can be suppressed. For example, the evaporator 410 is arranged so that the manifold 440 and the heat generating component 470 do not overlap when there is a dimensional allowance.
 以下、発熱体としてパッケージサイズ約30mm×30mmのCPUを冷却する場合の実施例を説明する。 Hereinafter, an embodiment in the case of cooling a CPU having a package size of about 30 mm × 30 mm as a heating element will be described.
 蒸発器ケースは、蒸気側の第1部分と液側の第2部分との2つに分割する構造とし、第1部分は無酸素銅、第2部分は無酸素銅又はステンレスSUS304で作製した。第1部分と第2部分とを連結した蒸発器ケースの外寸は、平面サイズを40mm×40mm程度、厚さを8mm程度とした。このような小型・薄型サイズは、サーバーやパーソナルコンピュータなど、高密度実装されたコンピュータ内のCPU上への実装を可能とするものである。第1部分の内側に、オーバル形状の孔を並列に2つ設けた。各孔の幅(長径)は18mm程度、高さ(短径)は6mm程度とした。この2つの孔の各々に多孔質樹脂(樹脂ウィック)を挿入した。 The evaporator case was divided into two parts, a first part on the vapor side and a second part on the liquid side. The first part was made of oxygen-free copper and the second part was made of oxygen-free copper or stainless steel SUS304. As for the external dimensions of the evaporator case in which the first part and the second part are connected, the planar size is about 40 mm × 40 mm and the thickness is about 8 mm. Such a small and thin size enables mounting on a CPU in a high-density computer such as a server or a personal computer. Two oval holes were provided in parallel inside the first part. The width (major axis) of each hole was about 18 mm, and the height (minor axis) was about 6 mm. A porous resin (resin wick) was inserted into each of the two holes.
 ウィックは、長さが約30mmのPTFE(ポリテトラフルオロエチレン)製の多孔質体とした。この樹脂ウィックの平均ポーラス径は約2μm、空孔率は約40%である。ウィックの厚さ及び幅の双方を、ケースの第1部分の孔の寸法よりも100-200μm程度大きく作製した。PTFE製の多孔質体は弾力性を有するため、このようにウィック挿入孔よりもウィックの外寸を僅かに大きくすることで、ケースの第1部分の内壁とウィックの外周部とを密着させることができる。樹脂ウィックの内周部には、液管からマニフォールドを介して供給される作動液を受ける液供給通路とするため、高さ2mm程度、幅14mm程度のオーバル形状の孔を設けた。また、ウィックの外周部に、深さ1mm×幅1mmの複数の溝(グルーブ)を形成した。グルーブの表面から作動流体の蒸気が発生し、発生した蒸気はグルーブを通過し、蒸気管に排出される。 The wick was a porous body made of PTFE (polytetrafluoroethylene) having a length of about 30 mm. This resin wick has an average porous diameter of about 2 μm and a porosity of about 40%. Both the thickness and width of the wick were made to be about 100-200 μm larger than the size of the hole in the first portion of the case. Since the porous body made of PTFE has elasticity, the outer wall of the first part of the case and the outer periphery of the wick are brought into close contact with each other by slightly increasing the outer dimension of the wick than the wick insertion hole. Can do. An oval-shaped hole having a height of about 2 mm and a width of about 14 mm was provided in the inner peripheral portion of the resin wick so as to serve as a liquid supply passage for receiving the hydraulic fluid supplied from the liquid pipe through the manifold. A plurality of grooves (grooves) having a depth of 1 mm and a width of 1 mm were formed on the outer periphery of the wick. The working fluid vapor is generated from the surface of the groove, and the generated vapor passes through the groove and is discharged to the vapor pipe.
 ケース内に、MCナイロンを用いて作製した樹脂製マニフォールドを、樹脂ウィックとの間に隙間が形成されないように設置した。このマニフォールドは液管から流れ込んだ作動液を、当該マニフォールドから外に漏らさずに上記2つの樹脂ウィックに振り分けることが可能である。すなわち、蒸発器に流入した作動液は、樹脂製マニフォールドを介して、金属の蒸発器ケースに触れることなく樹脂ウィック内に導かれる。故に、金属ケースから作動液への熱伝達が抑制され、気泡の発生が防止され得る。樹脂製マニフォールドの壁面の厚さは約1mmとした。MCナイロンの熱伝導率は0.2W/mKであり、銅(380W/mK)やSUS304(16W/mK)の数十~数千分の一であるため、このような薄さでも断熱材としての効果が得られる。 In the case, a resin manifold made of MC nylon was placed so that no gap was formed between the resin manifold and the resin manifold. This manifold can distribute the hydraulic fluid flowing from the liquid pipe to the two resin wicks without leaking out from the manifold. That is, the hydraulic fluid that has flowed into the evaporator is introduced into the resin wick through the resin manifold without touching the metal evaporator case. Therefore, heat transfer from the metal case to the working fluid is suppressed, and generation of bubbles can be prevented. The thickness of the wall surface of the resin manifold was about 1 mm. MC nylon has a thermal conductivity of 0.2 W / mK, which is tens to thousands of that of copper (380 W / mK) and SUS304 (16 W / mK). The effect is obtained.
 また、一部の実施例において、マニフォールドの断熱樹脂を液管側まで延在させ、インナーパイプとして液管の内側に挿入した。 Also, in some examples, the heat insulating resin of the manifold was extended to the liquid pipe side and inserted as an inner pipe inside the liquid pipe.
 蒸発器の組立ては、ケースの第1部分及び第2部分に樹脂ウィック及び樹脂製マニフォールドを挿入し、第1部分と第2部分とを封止することで完了する。この封止は、ここではレーザー溶接で行った。 The assembly of the evaporator is completed by inserting a resin wick and a resin manifold into the first part and the second part of the case and sealing the first part and the second part. This sealing was performed here by laser welding.
 このように蒸発器を組立てた後、該蒸発器、蒸気管、放熱フィンを設置した凝縮部、及び液管を環状に溶接にて接続し、内部に作動流体を封入した。一例として、蒸気管及び液管には外径φ4mm程度、内径φ3mm程度の銅パイプを用い得る。銅パイプの全長は例えば900mm程度となり得る。ここでは、作動流体としてn-ペンタンを用いた。また、凝縮器の冷却は、凝縮部の放熱フィンに送風機から空気を送る方式とした。 After assembling the evaporator in this way, the evaporator, the steam pipe, the condensing part provided with the heat dissipating fins, and the liquid pipe were connected in an annular shape by welding, and the working fluid was sealed inside. As an example, a copper pipe having an outer diameter of about 4 mm and an inner diameter of about 3 mm can be used for the steam pipe and the liquid pipe. The total length of the copper pipe can be, for example, about 900 mm. Here, n-pentane was used as the working fluid. The condenser was cooled by sending air from the blower to the heat dissipating fins of the condenser.
 そして、蒸発器をCPU上にサーマルグリース(例えば、コスモ石油社製W4500など)を介して熱的に結合させた。ここでは、押さえつけ金具のネジ止めにより、蒸発器をCPU上に固定した。このとき、蒸発器内に流入した作動液とCPUとの距離を大きくするため、CPUの中心を蒸発器ケースの中心に対して蒸気管側にオフセットした。 Then, the evaporator was thermally coupled to the CPU via thermal grease (for example, W4500 manufactured by Cosmo Oil Co., Ltd.). Here, the evaporator was fixed on the CPU by screwing the pressing metal. At this time, in order to increase the distance between the hydraulic fluid flowing into the evaporator and the CPU, the center of the CPU was offset to the steam pipe side with respect to the center of the evaporator case.
 以上のようにして構成したループ型ヒートパイプの動作を実験により検証した。図7に動作検証した構成(a)-(c)を示す。 The operation of the loop heat pipe configured as described above was verified by experiment. FIG. 7 shows configurations (a) to (c) whose operation has been verified.
 構成(a)の蒸発器510は、第1部分521及び第2部分522の双方を無酸素銅で作製した金属ケース520の内部に、PTFE製ウィック530とMCナイロン製マニフォールド540を設置したものである。構成(b)の蒸発器510'は、構成(a)のMCナイロン製マニフォールド540を、付加的にMCナイロン製インナーパイプ542を一体成型したマニフォールド540'としたものである。液管の先端部分(外径φ5mm、内径φ4mm)内に長さ20mmのMCナイロン製パイプ542(外径φ4mm、内径φ3mm)を挿入した。構成(c)の蒸発器510"は、構成(a)のケース520を、第2部分を無酸素銅に代えてSUS304を用いて製造したもの522"としたケース520"に変更したものである。ケース520"のSUS304製の第2部分522"は、ケース全長40mmのうちの8mm程度の部分とした。 The evaporator 510 of the configuration (a) is obtained by installing a PTFE wick 530 and an MC nylon manifold 540 inside a metal case 520 in which both the first portion 521 and the second portion 522 are made of oxygen-free copper. is there. The evaporator 510 ′ of the configuration (b) is configured such that the MC nylon manifold 540 of the configuration (a) is additionally a manifold 540 ′ in which an MC nylon inner pipe 542 is integrally formed. A 20 mm long MC nylon pipe 542 (outer diameter φ4 mm, inner diameter φ3 mm) was inserted into the tip of the liquid tube (outer diameter φ5 mm, inner diameter φ4 mm). The evaporator 510 "of the configuration (c) is obtained by changing the case 520 of the configuration (a) to a case 520" that is manufactured by using SUS304 instead of oxygen-free copper in the second part 522 ". The second portion 522 ″ made of SUS304 of the case 520 ″ was a portion of about 8 mm out of the total length of 40 mm.
 CPU570と蒸発器510、510'、510"とのオフセット量は、構成(a)-(c)の全てに関して4mm程度とした。このオフセット量は、構成(c)において30mm長のCPU570と8mm長のケース第2部分522"とが重ならないようにするものである。 The offset amount between the CPU 570 and the evaporators 510, 510 ′, and 510 ″ is about 4 mm for all of the configurations (a) to (c). The case second portion 522 "is not overlapped.
 また比較のため、樹脂製マニフォールドを用いない構成(d)及び(e)(ともに図示せず)を用意した。構成(d)及び(e)は、それぞれ、構成(a)及び(c)から単に樹脂製マニフォールド540を取り外した構成である。 For comparison, configurations (d) and (e) (both not shown) that do not use a resin manifold were prepared. In the configurations (d) and (e), the resin manifold 540 is simply removed from the configurations (a) and (c), respectively.
 これらの構成(a)-(e)について同一条件で、CPUの発熱量をパラメータとして、ループ型ヒートパイプの動作確認及び熱輸送抵抗の測定を行った(図8)。熱輸送抵抗は、蒸発器の受熱面の温度から凝縮器の平均温度(入口温度と出口温度との平均値)を減じた温度差をCPU発熱量で除して算出した。 The operation of the loop heat pipe and the measurement of the heat transport resistance were measured under the same conditions for these configurations (a) to (e), using the heat generation amount of the CPU as a parameter (FIG. 8). The heat transport resistance was calculated by dividing a temperature difference obtained by subtracting the average temperature of the condenser (average value of the inlet temperature and the outlet temperature) from the temperature of the heat receiving surface of the evaporator by the CPU heating value.
 樹脂製マニフォールドを有しない比較構成(d)及び(e)においては、液管が接続されて作動液が流れ込む蒸発器部分付近で作動液が沸騰・気化し、作動流体の循環が安定せず、ループ型ヒートパイプは正常動作しなかった。 In the comparative configurations (d) and (e) that do not have a resin manifold, the working fluid is boiled and vaporized in the vicinity of the evaporator portion where the working fluid flows by connecting the liquid pipe, and the circulation of the working fluid is not stable, The loop heat pipe did not operate normally.
 一方、樹脂製マニフォールドを有する構成(a)-(c)においては、安定した作動流体の循環が得られ、ループ型ヒートパイプを正常に作動させることができた。図8は、構成(a)-(c)それぞれの熱輸送抵抗の評価結果を示している。図8に示された結果と比較構成(d)及び(e)が正常動作しなかったこととから、低熱伝導性マニフォールドがループ型ヒートパイプの動作の安定化に大きく寄与することが理解される。また、マニフォールドとインナーパイプとの組み合わせ(構成(b))、及びマニフォールドと比較的低熱伝導性の第2ケース部との組み合わせ(構成(c))が、ループ型ヒートパイプの冷却性能を更に向上させ得ることが理解される。これらの結果は、ループ型ヒートパイプの蒸発器の更なる小型・薄型化が可能であることを意味し、高密度実装コンピュータなどの電子機器に実装される高発熱の電子部品の冷却設計において、設計自由度を高めることができる。 On the other hand, in the configurations (a) to (c) having the resin manifold, stable working fluid circulation was obtained, and the loop heat pipe was able to operate normally. FIG. 8 shows the evaluation results of the heat transport resistance of each of the configurations (a) to (c). From the results shown in FIG. 8 and the comparison configurations (d) and (e) failing to operate normally, it is understood that the low thermal conductivity manifold greatly contributes to stabilization of the operation of the loop heat pipe. . Further, the combination of the manifold and the inner pipe (configuration (b)) and the combination of the manifold and the second case portion having a relatively low thermal conductivity (configuration (c)) further improve the cooling performance of the loop heat pipe. It is understood that These results mean that the loop heat pipe evaporator can be further reduced in size and thickness, and in the cooling design of high heat generation electronic components mounted on electronic devices such as high-density mounting computers, Design freedom can be increased.
 また、例えばここで説明した構成(a)-(c)など、蒸発器ケースとして金属ケースを有する構成は、耐圧性に優れ且つ長期的な作動流体の液漏れなどを防止し得るものであり、信頼性の高い冷却システムを提供することができる。 Further, for example, the configurations having a metal case as the evaporator case, such as the configurations (a) to (c) described here, are excellent in pressure resistance and can prevent long-term leakage of the working fluid. A highly reliable cooling system can be provided.
 以上、実施形態について詳述したが、本発明は特定の実施形態に限定されるものではなく、特許請求の範囲に記載された要旨の範囲内において、種々の変形及び変更が可能である。例えば、ここでは平板型蒸発器についての実施形態を説明したが、円筒型蒸発器などのその他の蒸発器においても、必要に応じて、低熱伝導性の液供給管を介して1つ又は複数のウィックに作動液を供給し得る。 As mentioned above, although embodiment was explained in full detail, this invention is not limited to specific embodiment, A various deformation | transformation and change are possible within the range of the summary described in the claim. For example, the embodiment of the flat plate evaporator has been described here, but in other evaporators such as a cylindrical evaporator, one or a plurality of liquid evaporators may be provided via a low thermal conductivity liquid supply pipe as necessary. A hydraulic fluid may be supplied to the wick.

Claims (19)

  1.  作動流体を循環させるように接続された液管、蒸発器、蒸気管及び凝縮器を有するループ型ヒートパイプであって、
     前記蒸発器は、
      液流入口及び蒸気流出口を有するケースと、
      前記ケース内に配置され、前記ケースの内面に液相の作動流体を導く少なくとも1つの多孔質体と、
      前記ケース内に配置され、前記液流入口から前記少なくとも1つの多孔質体内に前記液相の作動流体を導く液供給管と
     を有し、
     前記液供給管は、前記ケースの材料より低い熱伝導率の材料を有する、
     ことを特徴とするループ型ヒートパイプ。
    A loop heat pipe having a liquid pipe, an evaporator, a steam pipe and a condenser connected to circulate the working fluid,
    The evaporator is
    A case having a liquid inlet and a vapor outlet;
    At least one porous body disposed in the case and guiding a liquid-phase working fluid to the inner surface of the case;
    A liquid supply pipe disposed in the case for guiding the liquid-phase working fluid from the liquid inlet into the at least one porous body;
    The liquid supply pipe has a material having a lower thermal conductivity than the material of the case;
    A loop-type heat pipe.
  2.  前記ケースは金属又は合金を有し、前記液供給管は1W/mK以下の熱伝導率の材料を有することを特徴とする請求項1に記載のループ型ヒートパイプ。 2. The loop heat pipe according to claim 1, wherein the case includes a metal or an alloy, and the liquid supply pipe includes a material having a thermal conductivity of 1 W / mK or less.
  3.  前記ケースは金属又は合金を有し、前記液供給管は樹脂を有することを特徴とする請求項1又は2に記載のループ型ヒートパイプ。 The loop heat pipe according to claim 1 or 2, wherein the case includes a metal or an alloy, and the liquid supply pipe includes a resin.
  4.  前記液供給管は、フッ素樹脂、ナイロン樹脂、ポリエーテルエーテルケトン樹脂、ポリプロピレン樹脂及びポリアセタール樹脂から成る群から選択された材料を有することを特徴とする請求項3に記載のループ型ヒートパイプ。 The loop heat pipe according to claim 3, wherein the liquid supply pipe has a material selected from the group consisting of a fluororesin, a nylon resin, a polyetheretherketone resin, a polypropylene resin and a polyacetal resin.
  5.  前記多孔質体は多孔質樹脂を有することを特徴とする請求項1乃至4の何れか一項に記載のループ型ヒートパイプ。 The loop heat pipe according to any one of claims 1 to 4, wherein the porous body includes a porous resin.
  6.  前記多孔質樹脂は、フッ素樹脂、ポリエーテルエーテルケトン樹脂、ポリプロピレン樹脂及びポリアセタール樹脂から成る群から選択された材料の多孔質樹脂であることを特徴とする請求項5に記載のループ型ヒートパイプ。 The loop heat pipe according to claim 5, wherein the porous resin is a porous resin made of a material selected from the group consisting of a fluororesin, a polyetheretherketone resin, a polypropylene resin, and a polyacetal resin.
  7.  前記多孔質体及び前記液供給管は、同じ樹脂を含む多孔質樹脂を有することを特徴とする請求項5又は6に記載のループ型ヒートパイプ。 The loop heat pipe according to claim 5 or 6, wherein the porous body and the liquid supply pipe have a porous resin containing the same resin.
  8.  前記液供給管は、前記液流入口から前記少なくとも1つの多孔質体まで途切れることなく延在していることを特徴とする請求項1乃至7の何れか一項に記載のループ型ヒートパイプ。 The loop heat pipe according to any one of claims 1 to 7, wherein the liquid supply pipe extends without interruption from the liquid inlet to the at least one porous body.
  9.  前記液供給管は、前記液管内に延在する管状部を有することを特徴とする請求項1乃至8の何れか一項に記載のループ型ヒートパイプ。 The loop heat pipe according to any one of claims 1 to 8, wherein the liquid supply pipe has a tubular portion extending into the liquid pipe.
  10.  前記管状部は前記液管の内壁に密着されることを特徴とする請求項9に記載のループ型ヒートパイプ。 The loop heat pipe according to claim 9, wherein the tubular portion is in close contact with an inner wall of the liquid tube.
  11.  前記少なくとも1つの多孔質体は複数の多孔質体を有し、
     前記液供給管は、前記液相の作動流体を前記複数の多孔質体に振り分けるマニフォールドである、
     ことを特徴とする請求項1乃至10の何れか一項に記載のループ型ヒートパイプ。
    The at least one porous body has a plurality of porous bodies;
    The liquid supply pipe is a manifold that distributes the liquid-phase working fluid to the plurality of porous bodies.
    The loop heat pipe according to any one of claims 1 to 10, wherein
  12.  前記多孔質体は外周部に、前記液管側から前記蒸気管側への全長にわたる蒸気排出溝を有し、蒸気排出溝の前記液管側の端部は、前記マニフォールドの壁面によって終端されている、ことを特徴とする請求項1乃至11の何れか一項に記載のループ型ヒートパイプ。 The porous body has a steam discharge groove over the entire length from the liquid pipe side to the steam pipe side on the outer periphery, and the end of the steam discharge groove on the liquid pipe side is terminated by a wall surface of the manifold. The loop heat pipe according to any one of claims 1 to 11, wherein
  13.  前記ケースの外形は平板状であることを特徴とする請求項1乃至12の何れか一項に記載のループ型ヒートパイプ。 The loop heat pipe according to any one of claims 1 to 12, wherein the outer shape of the case is a flat plate shape.
  14.  前記ケースは、前記多孔質体に接触する第1部分と、前記液供給口側に位置し前記液供給管の少なくとも一部を収容する第2部分とを有し、
     前記第2部分は、前記第1部分の材料より低い熱伝導率を有する材料を含む、
     ことを特徴とする請求項1乃至13の何れか一項に記載のループ型ヒートパイプ。
    The case includes a first part that contacts the porous body, and a second part that is located on the liquid supply port side and that accommodates at least a part of the liquid supply pipe.
    The second portion includes a material having a lower thermal conductivity than the material of the first portion.
    The loop type heat pipe according to any one of claims 1 to 13, wherein the heat pipe is a loop type heat pipe.
  15.  前記第1部分は、無酸素銅、銅合金、アルミ及びアルミ合金から成る群から選択された材料を有することを特徴とする請求項14に記載のループ型ヒートパイプ。 The loop heat pipe according to claim 14, wherein the first portion includes a material selected from the group consisting of oxygen-free copper, copper alloy, aluminum, and aluminum alloy.
  16.  前記第2部分は、鉄系合金及びチタン合金から成る群から選択された材料を有することを特徴とする請求項14又は15に記載のループ型ヒートパイプ。 The loop heat pipe according to claim 14 or 15, wherein the second portion includes a material selected from the group consisting of an iron-based alloy and a titanium alloy.
  17.  請求項1に記載のループ型ヒートパイプと、
     前記ループ型ヒートパイプの前記蒸発器に熱的に結合された電子部品と
     を有することを特徴とする電子機器。
    A loop heat pipe according to claim 1;
    And an electronic component thermally coupled to the evaporator of the loop heat pipe.
  18.  前記電子部品と前記蒸発器の前記ケースとの接合面において、前記電子部品の中心は、前記ケースの中心に対して、前記液流入口とは反対側にオフセットされていることを特徴とする請求項17に記載の電子機器。 The center of the electronic component is offset to the opposite side of the liquid inlet with respect to the center of the case at a joint surface between the electronic component and the case of the evaporator. Item 18. The electronic device according to Item 17.
  19.  前記蒸発器の前記ケースは、前記多孔質体と接触する第1部分と、前記液供給口側に位置し、前記第1部分の材料より低い熱伝導率を有する材料を含む第2部分とを有し、
     前記電子部品は前記第1部分に接合される、
     ことを特徴とする請求項18に記載の電子機器。
    The case of the evaporator includes a first part that comes into contact with the porous body, and a second part that is located on the liquid supply port side and includes a material having a lower thermal conductivity than the material of the first part. Have
    The electronic component is bonded to the first portion;
    The electronic apparatus according to claim 18, wherein
PCT/JP2010/068041 2010-10-14 2010-10-14 Loop-shaped heat pipe and electronic device WO2012049752A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012538506A JP5637216B2 (en) 2010-10-14 2010-10-14 Loop heat pipe and electronic equipment
PCT/JP2010/068041 WO2012049752A1 (en) 2010-10-14 2010-10-14 Loop-shaped heat pipe and electronic device
CN201080068988.5A CN103080689B (en) 2010-10-14 2010-10-14 Annular heat pipe and electronic equipment
US13/772,879 US20130160974A1 (en) 2010-10-14 2013-02-21 Loop heat pipe and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068041 WO2012049752A1 (en) 2010-10-14 2010-10-14 Loop-shaped heat pipe and electronic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/772,879 Continuation US20130160974A1 (en) 2010-10-14 2013-02-21 Loop heat pipe and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2012049752A1 true WO2012049752A1 (en) 2012-04-19

Family

ID=45938001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068041 WO2012049752A1 (en) 2010-10-14 2010-10-14 Loop-shaped heat pipe and electronic device

Country Status (4)

Country Link
US (1) US20130160974A1 (en)
JP (1) JP5637216B2 (en)
CN (1) CN103080689B (en)
WO (1) WO2012049752A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242111A (en) * 2012-05-22 2013-12-05 Fujitsu Ltd Loop type heat pipe and electronic apparatus
JP2013257129A (en) * 2012-05-14 2013-12-26 Fujitsu Ltd Cooling device
WO2014013035A1 (en) 2012-07-18 2014-01-23 Astrium Sas Temperature control device
JP2015072081A (en) * 2013-10-02 2015-04-16 日本軽金属株式会社 Loop type heat pipe and manufacturing method of loop type heat pipe
WO2015104842A1 (en) * 2014-01-10 2015-07-16 富士通株式会社 Cooling device
JP2018066510A (en) * 2016-10-19 2018-04-26 国立大学法人名古屋大学 Heat exchanger, vaporization body and apparatus
TWI623720B (en) * 2017-06-23 2018-05-11 雙鴻科技股份有限公司 Loop heat pipe and electronic device having the same
JP2018109497A (en) * 2016-12-28 2018-07-12 株式会社リコー Method of manufacturing wick, loop-type heat pipe, cooling device, electronic device, and porous rubber, and method of manufacturing wick for loop-type heat pipe
JP2019007725A (en) * 2017-06-23 2019-01-17 株式会社リコー Loop type heat pipe, cooling device, and electronic device
US11187468B2 (en) 2016-12-28 2021-11-30 Ricoh Company, Ltd. Loop heat pipe wick, loop heat pipe, cooling device, and electronic device, and method for manufacturing porous rubber and method for manufacturing loop heat pipe wick

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150077937A1 (en) * 2013-09-13 2015-03-19 Alcatel Lucent Apparatus for cooling board mounted optical modules
CN106705720A (en) * 2017-01-19 2017-05-24 中国科学院广州能源研究所 Loop type heat pipe exploitation middle-shallow layer hydrothermal type geothermal system
US20180209745A1 (en) * 2017-01-26 2018-07-26 Asia Vital Components Co., Ltd. Loop heat pipe structure
US20180209746A1 (en) * 2017-01-26 2018-07-26 Asia Vital Components Co., Ltd. Wick structure and loop heat pipe using same
US10842044B2 (en) * 2017-07-10 2020-11-17 Rolls-Royce North American Technologies, Inc. Cooling system in hybrid electric propulsion gas turbine engine
US10934936B2 (en) 2017-07-10 2021-03-02 Rolls-Royce North American Technologies, Inc. Cooling system in a hybrid electric propulsion gas turbine engine for cooling electrical components therein
US20190154352A1 (en) * 2017-11-22 2019-05-23 Asia Vital Components (China) Co., Ltd. Loop heat pipe structure
JP6920231B2 (en) * 2018-02-06 2021-08-18 新光電気工業株式会社 Loop type heat pipe
JP2019160831A (en) * 2018-03-07 2019-09-19 富士通株式会社 Cooling plate and information processing apparatus
US10968830B2 (en) 2018-06-22 2021-04-06 Rolls-Royce North American Technologies, Inc. Systems and methods for cooling electronics and electrical machinery in a hybrid electric aircraft
JP7184594B2 (en) * 2018-10-23 2022-12-06 新光電気工業株式会社 loop heat pipe
CN111426225A (en) * 2020-03-04 2020-07-17 奇鋐科技股份有限公司 Loop heat pipe structure
US20210302105A1 (en) * 2020-03-30 2021-09-30 Asia Vital Components Co., Ltd. Loop heat pipe structure
CN113251839B (en) * 2021-05-20 2022-07-22 北京空间飞行器总体设计部 Evaporator, liquid storage device and loop heat pipe
CN113594101B (en) * 2021-07-19 2023-09-01 合肥圣达电子科技实业有限公司 Metal packaging shell and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096593A (en) * 1996-05-03 1998-04-14 Matra Marconi Space Uk Ltd Capillary tube evaporator
JP2000146471A (en) * 1998-11-16 2000-05-26 Mitsubishi Electric Corp Loop type heat pipe
US20030051857A1 (en) * 2001-09-18 2003-03-20 Alcatel Heat transfer device
JP2003269878A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Loop type heat pipe evaporator
JP2007107784A (en) * 2005-10-12 2007-04-26 Fujikura Ltd Loop type heat pipe
JP2008281229A (en) * 2007-05-08 2008-11-20 Toshiba Corp Evaporator and circulation type cooling device using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765396A (en) * 1986-12-16 1988-08-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Polymeric heat pipe wick
JP2904199B2 (en) * 1997-10-08 1999-06-14 日本電気株式会社 Evaporator for capillary pump loop and heat exchange method thereof
US6827134B1 (en) * 2002-04-30 2004-12-07 Sandia Corporation Parallel-plate heat pipe apparatus having a shaped wick structure
JP2004218887A (en) * 2003-01-10 2004-08-05 Fujikura Ltd Cooling device of electronic element
TW200815724A (en) * 2006-09-18 2008-04-01 Jian-Dih Jeng Flexible heat pipe
JP2009115396A (en) * 2007-11-07 2009-05-28 Fujitsu Ltd Loop-type heat pipe
CN201522221U (en) * 2009-07-21 2010-07-07 史杰 Loop heat pipe heat abstractor of high heat conduction temperature equalization box
US20110030920A1 (en) * 2009-08-04 2011-02-10 Asia Vital Components (Shen Zhen) Co., Ltd. Heat Sink Structure
CN101672592B (en) * 2009-10-16 2011-04-27 中国科学院上海技术物理研究所 Miniaturized loop heat pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096593A (en) * 1996-05-03 1998-04-14 Matra Marconi Space Uk Ltd Capillary tube evaporator
JP2000146471A (en) * 1998-11-16 2000-05-26 Mitsubishi Electric Corp Loop type heat pipe
US20030051857A1 (en) * 2001-09-18 2003-03-20 Alcatel Heat transfer device
JP2003269878A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Loop type heat pipe evaporator
JP2007107784A (en) * 2005-10-12 2007-04-26 Fujikura Ltd Loop type heat pipe
JP2008281229A (en) * 2007-05-08 2008-11-20 Toshiba Corp Evaporator and circulation type cooling device using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257129A (en) * 2012-05-14 2013-12-26 Fujitsu Ltd Cooling device
US9464849B2 (en) 2012-05-14 2016-10-11 Fujitsu Limited Cooling device using loop type heat pipe
JP2013242111A (en) * 2012-05-22 2013-12-05 Fujitsu Ltd Loop type heat pipe and electronic apparatus
WO2014013035A1 (en) 2012-07-18 2014-01-23 Astrium Sas Temperature control device
FR2993649A1 (en) * 2012-07-18 2014-01-24 Astrium Sas THERMAL CONTROL DEVICE
JP2015072081A (en) * 2013-10-02 2015-04-16 日本軽金属株式会社 Loop type heat pipe and manufacturing method of loop type heat pipe
WO2015104842A1 (en) * 2014-01-10 2015-07-16 富士通株式会社 Cooling device
JP2018066510A (en) * 2016-10-19 2018-04-26 国立大学法人名古屋大学 Heat exchanger, vaporization body and apparatus
JP2018109497A (en) * 2016-12-28 2018-07-12 株式会社リコー Method of manufacturing wick, loop-type heat pipe, cooling device, electronic device, and porous rubber, and method of manufacturing wick for loop-type heat pipe
US11187468B2 (en) 2016-12-28 2021-11-30 Ricoh Company, Ltd. Loop heat pipe wick, loop heat pipe, cooling device, and electronic device, and method for manufacturing porous rubber and method for manufacturing loop heat pipe wick
TWI623720B (en) * 2017-06-23 2018-05-11 雙鴻科技股份有限公司 Loop heat pipe and electronic device having the same
JP2019007725A (en) * 2017-06-23 2019-01-17 株式会社リコー Loop type heat pipe, cooling device, and electronic device

Also Published As

Publication number Publication date
JPWO2012049752A1 (en) 2014-02-24
JP5637216B2 (en) 2014-12-10
CN103080689A (en) 2013-05-01
CN103080689B (en) 2016-08-10
US20130160974A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5637216B2 (en) Loop heat pipe and electronic equipment
US9696096B2 (en) Loop heat pipe and electronic equipment using the same
JP6191137B2 (en) Cooling system
JP5741354B2 (en) Loop heat pipe and electronic equipment
US20140318167A1 (en) Evaporator, cooling device, and electronic apparatus
JP2012132661A (en) Cooling device and electronic device
JP2005518518A (en) Capillary evaporator
JP2009115396A (en) Loop-type heat pipe
JP2010107153A (en) Evaporator and circulation type cooling device using the same
JP2013242111A (en) Loop type heat pipe and electronic apparatus
US10240873B2 (en) Joint assembly of vapor chambers
JP4718349B2 (en) Evaporator and loop heat pipe using this evaporator
JP5370074B2 (en) Loop type heat pipe and electronic device equipped with the same
JP5696466B2 (en) Loop heat pipe and information processing apparatus
US10123457B2 (en) Cooling apparatus and electronic device
TWI576556B (en) Evaporator, cooling apparatus and electronic apparatus
JP6024665B2 (en) Flat plate cooling device and method of using the same
JP7558760B2 (en) Cooling device and cooling structure for electronic components
JP2017083130A (en) Evaporator and cooling device
JP4725138B2 (en) Heat transport device and electronic equipment
JP6127983B2 (en) COOLING STRUCTURE AND ELECTRONIC DEVICE USING THE SAME
WO2017199914A1 (en) Cooling device and condenser
JP2020186869A (en) Loop heat pipe
KR20200052722A (en) Heat conduction system for electric and electronic apparatus cooling
JP2017129300A (en) heat pipe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068988.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858403

Country of ref document: EP

Kind code of ref document: A1