WO2012032129A1 - Verfahren zur herstellung von silicium hoher reinheit - Google Patents
Verfahren zur herstellung von silicium hoher reinheit Download PDFInfo
- Publication number
- WO2012032129A1 WO2012032129A1 PCT/EP2011/065577 EP2011065577W WO2012032129A1 WO 2012032129 A1 WO2012032129 A1 WO 2012032129A1 EP 2011065577 W EP2011065577 W EP 2011065577W WO 2012032129 A1 WO2012032129 A1 WO 2012032129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chlorinated
- s1ci
- monosilanes
- hcl
- hydrogen
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/027—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
- C01B33/03—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
- C01B33/1071—Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
- C01B33/10742—Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
- C01B33/10747—Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of tetrachloride
Definitions
- the present invention relates to a process for producing high purity silicon.
- a second process for the production of silicon is based on a reaction of trichlorosilane and releases S1CI 4 .
- monosilane S1H 4 is first generated from HS1CI3 by dismutation in order to decompose it into elemental silicon in a second step:
- DE 2,209,267 AI discloses the reaction of H2 / SiCl 4 mixtures at 600 - 1200 ° C with subsequent quenching of
- Plasma conditions as described, for example, in US Pat. No. 4,542,004 A or EP 0 100 266 A1, achieve conversion rates of up to 64.5% to HS1Cl 3 . Partially will be described below
- Arc is obtained, for example, in DE 1 129 145th B described. Up to about 90% of the SiCl 4 used is converted into hydrogenated monosilanes H n SiCl 4 - n (n 1 - 3).
- DE 40 41 644 AI, DE 30 24 319 C2 or EP 0 100 266 AI describe a two-stage process
- both reaction steps are carried out in a single reactor, as claimed, for example, in DE 10 2008 041 974 A1, JP 62-256713 A or JP 57-156319 A.
- S1CI 4 can be obtained by a carbochlorination reaction at 1200-1400 ° C. using HCl from SiO 2 -containing material :
- the conventional methods for producing HS1CI 3 and / or S1CI 4 from silicon and HCl mentioned above have the advantage that the natural raw material S1O 2 does not first have to be converted into elemental silicon in an energy-consuming manner before the end product can be produced.
- the only silicon-containing product of the reaction is S1CI 4 .
- HS1CI 3 can not directly due to the high reaction temperatures
- Hydrogen can be used to deposit the elemental halides.
- the object of the invention is to provide a method for producing high-purity silicon, which is characterized by a particularly high efficiency, in particular without the introduction of further raw materials and / or the discharge of additional waste
- the Carbochlor michingsreson at temperatures of 700 ° C to 1500 ° C, preferably temperatures of 800 ° C to 1300 ° C, more preferably temperatures of 900 ° C to 1100 ° C are performed.
- by-products arising in the process are returned to the process and used again in the process. This is preferably done with all by-products obtained in the process.
- the silicon produced in the process is higher
- Purity is suitable for semiconductor applications and has less than 10 ppm, preferably less than 1 ppm and more preferably less than 1 ppb of impurities that adversely affect the elec ⁇ African properties of silicon for semiconductor applications.
- impurities are elements of the 3rd and 5th main group of the periodic table, in particular B, Al, P, As, as well as metals such as Ca and Sn and transition ⁇ metals such as Fe.
- Such impurities can be detected by electrical measurements concerning the conductivity of the
- Silicon and carrier lifetime in silicon or mass spectrometric analyzes in particular via IC-PMS (mass spectrometry with inductively coupled plasma) can be determined.
- the invention proposes four main variants for carrying out the process according to the invention, wherein in each case the resulting SiCl 4 is converted in further process steps to silicon of high purity.
- Chlorinated polysilanes according to the invention are those compounds or mixtures of such compounds, each containing at least one direct bond Si-Si, whose substituents consist of chlorine or chlorine and hydrogen and in whose composition the atomic ratio substituent: silicon is at least 1: 1.
- Carbochlorination with HCl produces a gas mixture from which the desired product S 1 Cl 4 is separated, for example by condensation.
- a by-product remains a mixture of gases, which in addition to H 2 and CO may also contain residues of S 1 CI 4 and HCl. If this is necessary for further processing steps, S 1 Cl 4 and HCl can be separated by a simple gas scrubbing, for example with water or aqueous solutions.
- the H 2 and CO containing gas mixture can be further processed in two ways.
- hydrogen can be separated off by suitable separation processes, for example pressure swing adsorption or membrane separation processes.
- the gas mixture can be subjected to carbon monoxide conversion with steam in which
- CO + H 2 0 - C0 2 + H 2 further hydrogen is generated.
- the carbon monoxide conversion can be done at lower temperatures than the
- the carbon monoxide conversion may, for example, at 200 ° C to 500 ° C, preferably 300 ° C to 450 ° C below
- catalysts such as C0 3 O4, Fe / Cr or Cr / Mo catalysts or Cu / Zn catalysts are performed.
- the separation of hydrogen can then take place in a second step.
- the hydrogen-depleted gas mixture resulting in the first case may also undergo carbon monoxide conversion and a second hydrogen separation.
- the hydrogen obtained in this way can be used in the first process variant for further processing of the
- Carbochlorination step generated S1CI 4 can be used.
- S1CI 4 which can be a by-product of the reaction of chlorinated monosilanes with silicon, can also be recycled to the production process by reacting it again with H 2 to give chlorinated monosilanes.
- Dismutation be carried out at temperatures of 0 ° C to 400 ° C, preferably 0 ° C to 150 ° C, wherein catalysts may be present, for example, in DE Patent Application DE 2162537 mentioned secondary and tertiary amines or quaternary ammonium salts.
- catalysts may be present, for example, in DE Patent Application DE 2162537 mentioned secondary and tertiary amines or quaternary ammonium salts.
- chlorinated polysilane can also hydrogen-containing chlorinated polysilanes arise. These also released HCl and / or H 2 during pyrolysis in addition to S1CI 4 . Thus resulting HCl can be used again for the production of S1CI 4 by carbochlorination of S1O 2 . Hydrogen produced in this way can be recycled to the plasma-chemical process step or, for the fourth embodiment, also in the production of
- chlorinated monosilanes are used.
- Embodiments may also result in mixtures of compounds having different degrees of hydrogenation. These can on the one hand in a suitable manner, for example by
- Process step can be combined by using mixtures of S1CI 4 and chlorinated monosilanes for the production of the chlorinated polysilane, and
- Tetrachloride is sought or that during the pyrolysis of chlorinated polysilane mixtures of S1CI 4 and
- chlorinated monosilanes are formed. It can as well
- a combination of both methods can also take place in that initially the plasma-chemical production of chlorinated polysilane from chlorinated monosilanes takes place, while the resulting in the pyrolysis S1CI 4 is subjected to a separate reaction with hydrogen for plasmachemischen production of chlorinated polysilane.
- FIGS. 1 to 6 Removal of additional waste materials exists.
- FIGS. 1 to 6 It is inventively no elementary
- the S1CI 4 obtained by the chlorochlorination of S1O 2 with HCl may contain impurities that renders the material unusable for use in producing high purity silicon.
- contaminated S1CI 4 can be sufficiently purified by prior art techniques, and subsequently to high purity silicon
- S1CI 4 can be hydrogenated with inadequate purity first to chlorinated monosilanes in order then to purify the chlorinated monosilanes or mixtures thereof with S1CI 4 by suitable methods.
- Recovery step losses can occur, which can be compensated at least partially by the originating from the carbon monoxide conversion hydrogen.
- Figure 1 shows a simplified schematic representation of the first imple mentation of the method according to the invention in general form.
- Figure 2 shows a simplified schematic representation of the first imple mentation of the method according to the invention on the example of HSiCl3 as an intermediate.
- Figure 3 shows a simplified schematic representation of the second imple mentation form of the method according to the invention in general form.
- FIG. 4 shows a simplified schematic representation of the second embodiment of the process according to the invention using the example of HSiCl 3 as an intermediate.
- FIG. 5 shows a simplified schematic illustration of the third embodiment of the method according to the invention.
- FIG. 6 shows a simplified schematic representation of the fourth embodiment of the process according to the invention using the example of HSiCl 3 as an intermediate.
- Figure 7 shows a H-NMR spectrum of a halogenated
- Polysilanes which was generated by means of a plasma-chemical reaction of S1CI 4 and H 2 .
- Figure 8 shows a 29 Si NMR spectrum of the halogenated
- Figure 9 shows a 29 Si NMR spectrum of the reaction product s of the reaction of SiC14 with H2.
- 4g quartz flour are mixed with 4g activated charcoal powder, 2g wheat flour and a little water, pasted and grained (about 1 - 3mm grain diameter). The mass is thoroughly dried (80 ° C), placed in a quartz glass tube with 2.5cm diameter between
- a mixture of 300 sccm H 2 and 600 sccm S1CI 4 (1: 2) is introduced into a reactor made of quartz glass, wherein the
- Process pressure in the range of 1.5-1.6 hPa is kept constant.
- the gas mixture is then passed through a
- the radiated power is 400W.
- the orange-yellow product is removed from the reactor by dissolving in a little S1CI 4 .
- S1Cl 4 After removal of the S1Cl 4 under vacuum, 187.7 g of chlorinated polysilane remain in the form of an orange-yellow viscous mass.
- the average molecular weight is determined by cryoscopy and is about 1400 g / mol, which corresponds to the chlorinated polysilane (SiCl 2) n or Si n Cl 2n + 2 with an average chain length of approx.
- the ratio of Si to Cl in the product mixture is after
- the hydrogen content is well below 1% by mass
- the content of the solvent C6Ü6 is about 27% by mass and its degree of deuteration is 99%.
- Typical Si NMR shifts at about 10.9 ppm, 3.3 ppm, -1.3 ppm and -4.8 ppm are apparent from the spectrum shown in FIG. These signals come in ⁇ shift range in (1) and (2), which is typical for signals of SiCl 3 end groups (primary Si atoms), and (2), which is typical for signals from SiCl 2 groups (secondary Si atoms), as they are, for example, as intermediates in the area of linear chains
- shift range (3) which is typical for Si-Cl signals Groups (tertiary Si atoms)
- (4) which is typical of signals of Si groups having only Si substituents (quaternary Si atoms)
- the peak at about -20 ppm comes from the solvent S1CI 4 .
- the oily-viscous product is immersed in a tube furnace
- Quartz boat layered (about 4 cm long bed) and dried in a quartz tube with 2.5 cm diameter under argon. Hydrogen is passed through this bed for 16 min 20 L / h, which is saturated at 0 ° C with SiCl 4 vapor, while the bed by irradiation of
- Microwave power 300W, 2.54GHz is heated to bright yellow heat. After completion of the experiment, the
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013527610A JP2013537161A (ja) | 2010-09-08 | 2011-09-08 | 高純度ケイ素の生成のための方法 |
US13/821,531 US20130243683A1 (en) | 2010-09-08 | 2011-09-08 | Method for the production of high-purity silicon |
EP11757827.8A EP2614034A1 (de) | 2010-09-08 | 2011-09-08 | Verfahren zur herstellung von silicium hoher reinheit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010044755.2 | 2010-09-08 | ||
DE102010044755A DE102010044755A1 (de) | 2010-09-08 | 2010-09-08 | Verfahren zur Herstellung von Silicium hoher Reinheit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012032129A1 true WO2012032129A1 (de) | 2012-03-15 |
Family
ID=44653301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/065577 WO2012032129A1 (de) | 2010-09-08 | 2011-09-08 | Verfahren zur herstellung von silicium hoher reinheit |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130243683A1 (de) |
EP (1) | EP2614034A1 (de) |
JP (1) | JP2013537161A (de) |
DE (1) | DE102010044755A1 (de) |
WO (1) | WO2012032129A1 (de) |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1102117B (de) | 1954-05-18 | 1961-03-16 | Siemens Ag | Verfahren zum Herstellen von reinstem Silicium |
DE1105398B (de) | 1960-03-10 | 1961-04-27 | Wacker Chemie Gmbh | Verfahren zur kontinuierlichen Herstellung von Siliciumchloroform und/oder Siliciumtetrachlorid |
DE1129145B (de) | 1960-07-07 | 1962-05-10 | Knapsack Ag | Verfahren zur Herstellung von hochreinem Silicium |
US3042494A (en) | 1955-11-02 | 1962-07-03 | Siemens Ag | Method for producing highest-purity silicon for electric semiconductor devices |
DE2162537A1 (de) | 1970-12-17 | 1972-07-13 | Union Carbide Corp | Verfahren zur Herstellung von Disproportionierungsprodukten von Chlorsilanverbindungen |
DE2209267A1 (de) | 1972-02-26 | 1973-08-30 | Degussa | Verfahren zur herstellung von chlorsilanen |
JPS57156319A (en) | 1981-03-19 | 1982-09-27 | Osaka Titanium Seizo Kk | Production of trichlorosilane |
DE3024319C2 (de) | 1980-06-27 | 1983-07-21 | Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen | Kontinuierliches Verfahren zur Herstellung von Trichlorsilan |
EP0100266A1 (de) | 1982-07-26 | 1984-02-08 | Rhone-Poulenc Chimie | Verfahren zur Herstellung einer für die Herstellung von Silicium hoher Reinheit verwendbaren Mischung auf Basis von Trichlorosilan |
EP0123100A1 (de) * | 1983-03-24 | 1984-10-31 | Bayer Ag | Verfahren zur Herstellung von Silicium |
US4542004A (en) | 1984-03-28 | 1985-09-17 | Solavolt International | Process for the hydrogenation of silicon tetrachloride |
JPS62256713A (ja) | 1986-04-30 | 1987-11-09 | Mitsubishi Metal Corp | トリクロルシランの製造方法 |
JPH02172811A (ja) | 1988-12-26 | 1990-07-04 | Mitsubishi Kakoki Kaisha Ltd | トリクロロシランの製造方法 |
DE4041644A1 (de) | 1990-12-22 | 1992-06-25 | Nuenchritz Chemie Gmbh | Verfahren zur reduktiven umwandlung von siliciumtetrachlorid in trichlorsilan |
DE10057522A1 (de) * | 2000-11-21 | 2002-05-23 | Solarworld Ag | Verfahren zur Herstellung von Silanen |
DE102005024104A1 (de) | 2005-05-25 | 2006-11-30 | Wacker Chemie Ag | Verfahren zur Herstellung von Elementhalogeniden |
DE102005024107A1 (de) | 2005-05-25 | 2006-11-30 | Wacker Chemie Ag | Verfahren zur Herstellung von Elementhalogeniden |
DE102005024041A1 (de) | 2005-05-25 | 2006-11-30 | City Solar Ag | Verfahren zur Herstellung von Silicium aus Halogensilanen |
DE102007009709A1 (de) | 2007-02-28 | 2008-09-04 | Rev Renewable Energy Ventures Ag | Solarthermische Prozesschemie insbesondere zur Herstellung von SiCI4 |
DE102008017304A1 (de) * | 2008-03-31 | 2009-10-01 | Schmid Silicon Technology Gmbh | Verfahren und Anlage zur Herstellung von Reinstsilizium |
DE102008041974A1 (de) | 2008-09-10 | 2010-03-11 | Evonik Degussa Gmbh | Vorrichtung, deren Verwendung und ein Verfahren zur energieautarken Hydrierung von Chlorsilanen |
-
2010
- 2010-09-08 DE DE102010044755A patent/DE102010044755A1/de not_active Withdrawn
-
2011
- 2011-09-08 JP JP2013527610A patent/JP2013537161A/ja not_active Withdrawn
- 2011-09-08 US US13/821,531 patent/US20130243683A1/en not_active Abandoned
- 2011-09-08 EP EP11757827.8A patent/EP2614034A1/de not_active Withdrawn
- 2011-09-08 WO PCT/EP2011/065577 patent/WO2012032129A1/de active Application Filing
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1102117B (de) | 1954-05-18 | 1961-03-16 | Siemens Ag | Verfahren zum Herstellen von reinstem Silicium |
US3042494A (en) | 1955-11-02 | 1962-07-03 | Siemens Ag | Method for producing highest-purity silicon for electric semiconductor devices |
DE1105398B (de) | 1960-03-10 | 1961-04-27 | Wacker Chemie Gmbh | Verfahren zur kontinuierlichen Herstellung von Siliciumchloroform und/oder Siliciumtetrachlorid |
DE1129145B (de) | 1960-07-07 | 1962-05-10 | Knapsack Ag | Verfahren zur Herstellung von hochreinem Silicium |
DE2162537A1 (de) | 1970-12-17 | 1972-07-13 | Union Carbide Corp | Verfahren zur Herstellung von Disproportionierungsprodukten von Chlorsilanverbindungen |
DE2209267A1 (de) | 1972-02-26 | 1973-08-30 | Degussa | Verfahren zur herstellung von chlorsilanen |
DE3024319C2 (de) | 1980-06-27 | 1983-07-21 | Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen | Kontinuierliches Verfahren zur Herstellung von Trichlorsilan |
JPS57156319A (en) | 1981-03-19 | 1982-09-27 | Osaka Titanium Seizo Kk | Production of trichlorosilane |
EP0100266A1 (de) | 1982-07-26 | 1984-02-08 | Rhone-Poulenc Chimie | Verfahren zur Herstellung einer für die Herstellung von Silicium hoher Reinheit verwendbaren Mischung auf Basis von Trichlorosilan |
EP0123100A1 (de) * | 1983-03-24 | 1984-10-31 | Bayer Ag | Verfahren zur Herstellung von Silicium |
US4542004A (en) | 1984-03-28 | 1985-09-17 | Solavolt International | Process for the hydrogenation of silicon tetrachloride |
JPS62256713A (ja) | 1986-04-30 | 1987-11-09 | Mitsubishi Metal Corp | トリクロルシランの製造方法 |
JPH02172811A (ja) | 1988-12-26 | 1990-07-04 | Mitsubishi Kakoki Kaisha Ltd | トリクロロシランの製造方法 |
DE4041644A1 (de) | 1990-12-22 | 1992-06-25 | Nuenchritz Chemie Gmbh | Verfahren zur reduktiven umwandlung von siliciumtetrachlorid in trichlorsilan |
DE10057522A1 (de) * | 2000-11-21 | 2002-05-23 | Solarworld Ag | Verfahren zur Herstellung von Silanen |
DE102005024104A1 (de) | 2005-05-25 | 2006-11-30 | Wacker Chemie Ag | Verfahren zur Herstellung von Elementhalogeniden |
DE102005024107A1 (de) | 2005-05-25 | 2006-11-30 | Wacker Chemie Ag | Verfahren zur Herstellung von Elementhalogeniden |
DE102005024041A1 (de) | 2005-05-25 | 2006-11-30 | City Solar Ag | Verfahren zur Herstellung von Silicium aus Halogensilanen |
WO2006125425A1 (de) | 2005-05-25 | 2006-11-30 | Rev Renewable Energy Ventures Ag | Verfahren zur herstellung von silicium aus halogensilanen |
DE102007009709A1 (de) | 2007-02-28 | 2008-09-04 | Rev Renewable Energy Ventures Ag | Solarthermische Prozesschemie insbesondere zur Herstellung von SiCI4 |
DE102008017304A1 (de) * | 2008-03-31 | 2009-10-01 | Schmid Silicon Technology Gmbh | Verfahren und Anlage zur Herstellung von Reinstsilizium |
DE102008041974A1 (de) | 2008-09-10 | 2010-03-11 | Evonik Degussa Gmbh | Vorrichtung, deren Verwendung und ein Verfahren zur energieautarken Hydrierung von Chlorsilanen |
Non-Patent Citations (6)
Title |
---|
A. SCHEI, J.K. TUSET, H. TVEIT: "High Silicon Alloys", TAPIR FORLAG, 1998, pages 13FF,47FF |
E. WOLF, R. TEICHMANN, ZEITSCHRIFT FÜR CHEMIE, vol. 343, no. 2, 1962, pages 800 |
N. AUNER, G. LIPPOLD: "Von Sand und Sonne zu Elektrizität und Wasserstoff", 29 August 2008 (2008-08-29), pages 1 - 10, XP002667130, ISSN: 1864-6972, Retrieved from the Internet <URL:https://www.leibniz-institut.de/archiv/auner_29_08_08.pdf> [retrieved on 20120116] * |
N. AUNER, S. NORDSCHILD, CHEMISTRY - A EUROPEAN JOURNAL, 2008, pages 3694 |
SIMON NORDSCHILD ET AL: "Direct Formation of Element Chlorides from the Corresponding Element Oxides through Microwave-Assisted Carbohydrochlorination Reactions", CHEMISTRY - A EUROPEAN JOURNAL, vol. 14, no. 12, 18 April 2008 (2008-04-18), pages 3694 - 3702, XP055015711, ISSN: 0947-6539, DOI: 10.1002/chem.200701670 * |
WINNACKER, KUCHLER: "Chemische Technologie, 4. AufI.,", vol. 3, 1983, CARL HANSER VERLAG, pages: 418 F |
Also Published As
Publication number | Publication date |
---|---|
EP2614034A1 (de) | 2013-07-17 |
US20130243683A1 (en) | 2013-09-19 |
DE102010044755A1 (de) | 2012-03-08 |
JP2013537161A (ja) | 2013-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2294006B1 (de) | Verfahren zur entfernung von bor enthaltenden verunreinigungen aus halogensilanen sowie anlage zur durchführung des verfahrens | |
JP4714196B2 (ja) | トリクロロシランの製造方法および多結晶シリコンの製造方法 | |
EP1341721B1 (de) | Verfahren zur herstellung von silan | |
EP2507174B1 (de) | Verfahren zur herstellung von halogenierten polysilanen | |
EP2655254B1 (de) | Verfahren zur herstellung von hydridosilanen | |
EP2634142B1 (de) | Verfahren zur reinigung von chlorsilanen | |
DE3311650A1 (de) | Verfahren zur herstellung von hoch reinem silan sowie hoch reinem polykristallinem und einkristallinem silicium fuer solarzellen und halbleiter | |
DE102015210762A1 (de) | Verfahren zur Aufarbeitung von mit Kohlenstoffverbindungen verunreinigten Chlorsilanen oder Chlorsilangemischen | |
DE2919086A1 (de) | Verfahren zur herstellung von polykristallinem silizium | |
EP2036857A2 (de) | Verfahren zur Herstellung von Trichlorosilan | |
WO2002022500A1 (de) | Verfahren zur herstellung von trichlorsilan | |
US20170190585A1 (en) | Method for purifying chlorosilane | |
EP2614034A1 (de) | Verfahren zur herstellung von silicium hoher reinheit | |
DE112006001649T5 (de) | Verfahren zur Herstellung von Silicium hoher Reinheit | |
WO2012035080A1 (de) | Verfahren zur herstellung von fluorierten polysilanen | |
CN103466626A (zh) | 一种多晶硅的生产方法 | |
EP2530052A1 (de) | Verfahren zur Herstellung von Siliziumtetrachlorid und Verfahren zur Herstellung von Solarsilizium | |
DE102014007766A1 (de) | Verfahren zur plasmachemischen Herstellung halogenierter Oligosilane aus Tetrachlorsilan | |
DE102012216356A1 (de) | Verfahren zur Herstellung von Chlorsilanen mittels hochsiedender Chlorsilane oder chlorsilanhaltiger Gemische | |
EP3966164B1 (de) | Verfahren zur gewinnung von hexachlordisilan durch umsetzung von mindestens einem teilhydrierten chlordisilan an einem festen, unfunktionalisierten adsorber | |
JP4542209B2 (ja) | 多結晶シリコンの製造方法および高純度シリカの製造方法 | |
JP2021100902A (ja) | 高純度トリクロロシランの精製方法 | |
WO2020114609A1 (de) | Verfahren zur verminderung des gehalts an borverbindungen in halogensilan enthaltenden zusammensetzung | |
Bumba | GU| úložiště | |
DE102014007767A1 (de) | Verfahren und Vorrichtung zur Herstellung halogenierter Oligosilane aus Silicium und Tetrachlorsilan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11757827 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013527610 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011757827 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011757827 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13821531 Country of ref document: US |