WO2012026583A1 - All-solid-state secondary battery - Google Patents

All-solid-state secondary battery Download PDF

Info

Publication number
WO2012026583A1
WO2012026583A1 PCT/JP2011/069295 JP2011069295W WO2012026583A1 WO 2012026583 A1 WO2012026583 A1 WO 2012026583A1 JP 2011069295 W JP2011069295 W JP 2011069295W WO 2012026583 A1 WO2012026583 A1 WO 2012026583A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
solid electrolyte
polymer
material layer
Prior art date
Application number
PCT/JP2011/069295
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 直樹
耕一郎 前田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2012530738A priority Critical patent/JP5768815B2/en
Publication of WO2012026583A1 publication Critical patent/WO2012026583A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid state secondary battery.
  • secondary batteries such as lithium batteries have been used in various applications such as portable power terminals such as personal digital assistants and portable electronic devices, as well as small household power storage devices, motorcycles, electric vehicles, and hybrid electric vehicles. Has increased.
  • Patent Document 1 describes a solid electrolyte layer containing LiCl—Li 2 O—P 2 O 5 as an inorganic solid electrolyte and modified acrylonitrile rubber as a binder.
  • the modified acrylonitrile rubber specifically used in Patent Document 1 is not essentially a binder for a solid electrolyte layer in which a solid electrolyte is essential, but a solid electrolyte is not necessarily required.
  • a solid electrolyte is not necessarily required.
  • it has been studied as a binder for an electrode layer, and has been developed on the premise that a slurry of a specific solvent is used.
  • the solvent that can be used in the slurry for forming the solid electrolyte layer is limited depending on the type of the solid electrolyte.
  • NMP which is a polar solvent
  • a sulfide glass made of Li 2 S and P 2 S 5 which is expected to have excellent performance as a solid electrolyte. Since NMP and the sulfide glass react with each other, lithium ion conductivity is lowered, and battery characteristics such as output characteristics and high-temperature cycle characteristics are deteriorated. That is, in the system using a polar solvent, the current situation is that the use of sulfide glass, which is an excellent solid electrolyte, is limited.
  • the present invention has been made in view of the above-described problems. Regardless of the type used as the solid electrolyte, the solid electrolyte is excellent in dispersibility and the deterioration of the solid electrolyte is suppressed, and the battery An object is to provide an all-solid-state secondary battery having good output characteristics and high-temperature cycle characteristics.
  • the all-solid-state secondary battery whose iodine value of the said polymer is 0 mg / 100 mg or more and 30 mg / 100 mg or less.
  • an all solid state secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer.
  • a solid electrolyte and a polymer including a polymer unit having a nitrile group are included.
  • the specific polymer used in the present invention has good solubility in a solvent (particularly a nonpolar solvent), the dispersibility of the solid electrolyte, particularly sulfide glass, during the production of the slurry composition is good. .
  • the all-solid-state secondary battery of the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer. At least one of the material layer, the negative electrode active material layer, or the solid electrolyte layer includes a solid electrolyte and a polymer including a polymer unit having a nitrile group.
  • Solid electrolyte used in the present invention is a lithium ion conductive inorganic solid electrolyte, and is not particularly limited as long as it has lithium ion conductivity. It preferably contains a crystalline inorganic lithium ion conductor.
  • Crystalline inorganic lithium ion conductors include Li 3 N, LIICON (Li 14 Zn (GeO 4 ) 4 , perovskite-type Li 0.5 La 0.5 TiO 3 , LIPON (Li 3 + y PO 4 ⁇ x N x ), Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ) and the like, and amorphous inorganic lithium ion conductors include glass Li—Si—S—O, Li—PS, etc.
  • an amorphous inorganic lithium ion conductor is preferable, and a sulfide containing Li, P and S is more preferable, and a sulfide containing Li, P and S is a lithium ion. Since the conductivity is high, the internal resistance of the battery can be lowered and the output characteristics can be improved by using a sulfide containing Li, P and S as the solid electrolyte. be able to.
  • the sulfide containing Li, P and S is more preferably a sulfide glass composed of Li 2 S and P 2 S 5 from the viewpoint of lowering the internal resistance of the battery and improving the output characteristics, and Li 2 S :
  • a sulfide glass produced from a mixed raw material of Li 2 S and P 2 S 5 having a molar ratio of: P 2 S 5 of 65:35 to 85:15 is particularly preferable.
  • a sulfide containing Li, P and S is synthesized by a mechanochemical method using a mixed material of Li 2 S and P 2 S 5 having a molar ratio of Li 2 S: P 2 S 5 of 65:35 to 85:15. It is preferable that it is the sulfide glass ceramic obtained by doing this.
  • the lithium ion conductivity is preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more.
  • the solid electrolyte used in the present invention is not limited to sulfide glass consisting only of Li, P and S, and sulfide glass ceramic consisting only of Li, P and S, but other than Li, P and S as will be described later. May be included.
  • the average particle size of the solid electrolyte is preferably in the range of 0.1 to 50 ⁇ m.
  • the average particle size of the solid electrolyte is more preferably in the range of 0.1 to 20 ⁇ m.
  • the average particle size can be determined by measuring the particle size distribution by laser diffraction.
  • the solid electrolyte used in the present invention is selected from the group consisting of Al 2 S 3 , B 2 S 3 and SiS 2 as a starting material in addition to the P 2 S 5 and Li 2 S as long as the ion conductivity is not lowered. It is preferable to include at least one kind of sulfide. When such a sulfide is added, the glass component in the solid electrolyte can be stabilized. Similarly, at least one orthooxo acid selected from the group consisting of Li 3 PO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 3 BO 3 and Li 3 AlO 3 in addition to Li 2 S and P 2 S 5. It is preferable to include lithium. When such a lithium orthooxo acid is included, the glass component in the solid electrolyte can be stabilized.
  • the polymer used in the present invention comprises a polymer unit having a nitrile group.
  • the lithium ion conductivity is improved, so that the internal resistance in the battery can be reduced and the output characteristics of the battery can be improved.
  • Examples of the polymer unit having a nitrile group include ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group.
  • acrylonitrile For example, acrylonitrile; ⁇ -halogenoacrylonitrile such as ⁇ -chloroacrylonitrile and ⁇ -bromoacrylonitrile; ⁇ -alkylacrylonitrile such as methacrylonitrile; Among these, acrylonitrile and methacrylonitrile are preferable. These can be used individually by 1 type or in combination of multiple types.
  • the content of the polymer unit having a nitrile group in the polymer used in the present invention is 2 to 30% by mass, preferably 10 to 28% by mass, more preferably 15 to 26% by mass, and particularly preferably 20 to 24% by mass. %.
  • the content ratio of the polymer unit having a nitrile group is less than 2% by mass, the dispersibility of the solid electrolyte during production of the slurry composition is deteriorated, and the internal resistance of the battery may be increased.
  • it exceeds 30 mass% the solubility to a solvent, especially a nonpolar solvent will deteriorate, and manufacture of a slurry composition will become difficult.
  • the polymer When the content ratio of the polymer unit having a nitrile group is within the above range, the polymer has good solubility in a solvent, and a slurry composition with good dispersibility can be produced. Therefore, the slurry composition is uniformly applied. And the output characteristics of the battery can be improved.
  • the polymer used in the present invention preferably further has a conjugated diene monomer unit.
  • the conjugated diene monomer unit By including the conjugated diene monomer unit, the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer containing the polymer can be made flexible.
  • the conjugated diene monomer forming the conjugated diene monomer unit is preferably a conjugated diene having 4 or more carbon atoms, such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1 , 3-pentadiene. Of these, 1,3-butadiene is preferred. These can be used individually by 1 type or in combination of multiple types.
  • the content ratio of the conjugated diene monomer unit in the polymer used in the present invention is preferably 10 to 79.5% by mass, more preferably 34.3 to 74.3% by mass with respect to the total monomer units. %, More preferably 39 to 65% by mass.
  • the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer can be made flexible, and the solid electrolyte during the production of the slurry composition can be provided.
  • the battery has excellent output characteristics and high temperature cycle characteristics.
  • the polymer used in the present invention is a copolymer with monomers that form these monomer units. It may contain other monomer units that can be polymerized. The content ratio of such other monomer units is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less in the total monomer units.
  • Examples of such other copolymerizable monomers include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, pentafluoro Fluorine-containing vinyl compounds such as vinyl benzoate, difluoroethylene, and tetrafluoroethylene; non-conjugated diene compounds such as 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene, and dicyclopentadiene; ethylene, propylene, 1-butene, ⁇ -olefin compounds such as 4-methyl-1-pentene, 1-hexene, 1-octene; acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, fumaric anhydride, etc.
  • ⁇ , ⁇ -Ethile Unsaturated carboxylic acids and their anhydrides ⁇ , ⁇ -ethylenically unsaturated mono (methyl) (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc.
  • Carboxylic acid alkyl ester monoethyl maleate, diethyl maleate, monobutyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, monobutyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, Monoesters and diesters of ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acids such as diethyl itaconate, monobutyl itaconate, dibutyl itaconate; methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, (meth) Acry Alkoxyalkyl esters of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids such as butoxyethyl acid; ⁇ , ⁇ -ethylenically unsaturated carboxylic acids
  • the iodine value of the polymer used in the present invention is 30 mg / 100 mg or less, preferably 20 mg / 100 mg or less, more preferably 10 mg / 100 mg or less.
  • the stability at the oxidation potential is low due to the unsaturated bond contained in the polymer, and the high-temperature cycle characteristics of the battery are inferior.
  • the minimum of an iodine value is 0 mg / 100 mg or more, Preferably it exceeds 0 mg / 100 mg, More preferably, it is 3 mg / 100 mg or more, More preferably, it is 5 mg / 100 mg or more.
  • the iodine value of the polymer is included in the above range, high film strength of the electrode active material layer and the solid electrolyte layer and excellent high-temperature cycle characteristics of the battery can be exhibited.
  • the iodine value is determined according to JIS K 0070 (1992).
  • the weight average molecular weight in terms of polystyrene by gel permeation chromatography (eluent: tetrahydrofuran) of the polymer used in the present invention is preferably 10,000 to 700,000, more preferably 50,000 to 500,000, Particularly preferred is 100,000 to 300,000.
  • the weight average molecular weight of the polymer in the above range the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer can be made flexible, and the viscosity can be easily applied during the production of the slurry composition. Can be adjusted.
  • the polymer used in the present invention is an unsaturated polymer comprising a polymer unit having a nitrile group by polymerizing the monomer by a polymerization method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, or an emulsion polymerization method.
  • a polymer (hereinafter sometimes referred to as “unsaturated polymer”) is obtained, and hydrogenated to the unsaturated polymer in the presence of a hydrogenation catalyst, whereby the carbon-carbon dimer in the unsaturated polymer is obtained.
  • a hydrogenation catalyst whereby the carbon-carbon dimer in the unsaturated polymer is obtained.
  • any reaction such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • polymerization initiator used for the polymerization examples include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • the method for adding hydrogen is not particularly limited, and a normal method can be used.
  • an organic solvent solution of an unsaturated polymer may be reacted with hydrogen gas in the presence of a hydrogenation catalyst such as Raney nickel, a titanocene compound, or an aluminum-supported nickel catalyst.
  • a hydrogenation catalyst such as Raney nickel, a titanocene compound, or an aluminum-supported nickel catalyst.
  • a hydrogenation catalyst such as palladium acetate can be added to the polymerization reaction solution, and the mixture can be reacted with hydrogen gas in an aqueous emulsion state.
  • the iodine value of the polymer comprising the polymer unit having a nitrile group used in the present invention can be set within the above-described range.
  • the polymer comprising a polymer unit having a nitrile group used in the present invention is preferably a hydrogenated acrylonitrile-butadiene copolymer (hereinafter sometimes referred to as “hydrogenated N
  • the solid electrolyte layer in this invention contains the polymer used as said solid electrolyte and a binder.
  • the solid electrolyte layer is formed by applying a solid electrolyte layer slurry composition containing the solid electrolyte and a polymer serving as a binder onto a positive electrode active material layer or a negative electrode active material layer, which will be described later, and drying. .
  • the slurry composition for a solid electrolyte layer is produced by mixing a solid electrolyte, a polymer serving as a binder, an organic solvent, and other components added as necessary.
  • the solid electrolyte layer necessarily includes the solid electrolyte. That is, in that case, the solid electrolyte layer is formed using, for example, the solid electrolyte and another polymer that may be used for the solid electrolyte layer as described later.
  • polymer used as binder As the polymer to be a binder, a polymer containing a specific amount of the above-described polymer unit having a nitrile group may be used, or other polymer may be used, but the all solid secondary battery of the present invention. In at least one of the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer, and preferably in all layers, a polymer containing a specific amount of a polymer unit having a nitrile group is used as a binder polymer. It is done.
  • Examples of other polymers that may be used for the solid electrolyte layer include polymer compounds such as fluorine polymers, diene polymers, acrylic polymers, silicone polymers, and the like.
  • a diene polymer or an acrylic polymer is preferable, and an acrylic polymer is more preferable in that the withstand voltage can be increased and the energy density of the all-solid secondary battery can be increased.
  • fluoropolymer examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the diene polymer is a polymer including a monomer unit derived from a conjugated diene and a monomer unit derived from an aromatic vinyl.
  • conjugated diene and the aromatic vinyl other polymers in the negative electrode active material layer described later are used. The thing similar to what was illustrated in (1) is mentioned.
  • the acrylic polymer is a polymer containing a monomer unit derived from an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester. Specifically, the acrylic polymer is an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester.
  • Examples of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, and t-butyl acrylate, acrylic acid- Acrylic acid alkyl esters such as 2-ethylhexyl, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, and benzyl acrylate; 2- (perfluorobutyl) ethyl acrylate, 2- (perfluoropentyl) ethyl acrylate 2- (perfluoroalkyl) ethyl acrylate such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and t-butyl meth
  • the content ratio of the monomer unit derived from the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester in the acrylic polymer is usually 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more. .
  • the upper limit of the content ratio of the monomer unit derived from the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester in the acrylic polymer is usually 100% by mass or less, preferably 95% by mass or less.
  • the acrylic polymer includes a copolymer of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester and another monomer copolymerizable with the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester.
  • Polymers are preferred.
  • the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • Carboxylates having carbon double bonds styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, Styrene monomers such as divinylbenzene; Amide monomers such as acrylamide, methacrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid; Olefins such as ethylene and propylene Diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; methyl vinyl ether, ethyl Vinyl ethers such as vinyl ether and butyl vinyl ether;
  • the content of the copolymerizable monomer unit in the acrylic polymer is usually 60% by mass or less, preferably 55% by mass or less, more preferably 25% by mass or more and 45% by mass or less.
  • silicone polymers examples include silicone rubber, fluorosilicone rubber, and polyimide silicone.
  • the binder of the solid electrolyte layer may be a mixture of a polymer containing a specific amount of the above-mentioned polymer unit having a nitrile group and another polymer.
  • the content of the other polymer in the binder is usually 95% by mass or less, preferably 90% by mass or less.
  • the content of the polymer serving as the binder in the slurry composition for the solid electrolyte layer is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass with respect to 100 parts by mass of the solid electrolyte. Particularly preferred is 0.5 to 5 parts by mass.
  • the solid electrolyte layer may include a lithium salt.
  • Lithium salts are composed of Li + cations and anions such as Cl ⁇ , Br ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , ClO 4 ⁇ , CF 3 SO 3 ⁇ , SCN ⁇ and the like, for example, lithium perchlorate Examples include lithium tetrafluoroborate, lithium hexafluorophosphate, lithium trifluoroacetate, lithium trifluoromethanesulfonate, and the like.
  • the weight ratio of the binder polymer to the lithium salt is preferably 0.5 to 30 parts by mass, more preferably 3 to 25 parts by mass with respect to 100 parts by mass of the polymer.
  • the weight ratio of the polymer serving as the binder and the lithium salt can be improved.
  • the method for containing the lithium salt in the solid electrolyte layer is not particularly limited, and examples thereof include a method in which the polymer and the lithium salt are dissolved or dispersed in a solvent such as xylene to obtain a uniform solution.
  • organic solvent examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene. These solvents can be used singly or in combination of two or more, and can be appropriately selected from the viewpoint of drying speed and environment. In particular, in the present invention, aromatic carbonization is performed from the viewpoint of reactivity with the solid electrolyte. It is preferable to use a nonpolar solvent selected from hydrogens.
  • the content of the organic solvent in the solid electrolyte layer slurry composition is preferably 10 to 700 parts by mass, more preferably 30 to 500 parts by mass with respect to 100 parts by mass of the solid electrolyte.
  • the slurry composition for a solid electrolyte layer may contain, in addition to the above components, components having functions of a dispersant, a leveling agent, and an antifoaming agent as other components added as necessary. These components are not particularly limited as long as they do not affect the battery reaction.
  • Dispersant examples include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound.
  • a dispersing agent is selected according to the solid electrolyte to be used.
  • the content of the dispersant in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics. Specifically, the content is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte.
  • Leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs when the slurry composition for the solid electrolyte layer is applied to the surface of the positive electrode active material layer or the negative electrode active material layer, which will be described later. Can be improved.
  • the content of the leveling agent in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics, and specifically 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte.
  • Examples of the antifoaming agent include mineral oil antifoaming agents, silicone antifoaming agents, and polymer antifoaming agents.
  • the antifoaming agent is selected according to the solid electrolyte used.
  • the content of the antifoaming agent in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics, and specifically 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte.
  • the positive electrode active material layer is preferably formed using the above-described solid electrolyte and the polymer that serves as the binder.
  • Such a positive electrode active material layer is formed by applying a slurry composition for a positive electrode active material layer containing the solid electrolyte and the polymer that serves as the binder to the surface of the current collector, which will be described later, and drying.
  • the slurry composition for a positive electrode active material layer is produced by mixing a solid electrolyte, a polymer serving as a binder, a positive electrode active material, an organic solvent, and other components added as necessary.
  • the positive electrode active material layer is not necessarily required to contain a solid electrolyte. In that case, a positive electrode active material is prepared by mixing a polymer serving as a binder, a positive electrode active material, an organic solvent, and other components added as necessary.
  • a slurry composition for the layer may be prepared and formed using the composition.
  • Examples of the polymer (other polymer) other than the polymer containing a specific amount of a polymer unit having a nitrile group that may be used in the positive electrode active material layer include a fluorine polymer, a diene polymer, and an acrylic polymer.
  • Polymers, high molecular compounds such as silicone polymers, and the like, fluorine polymers, diene polymers, and acrylic polymers are preferable.
  • Acrylic polymers can increase withstand voltage and are all solid secondary It is more preferable in that the energy density of the battery can be increased.
  • the acrylic polymer is a polymer containing monomer units derived from an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester include those exemplified for the other polymers in the above-mentioned solid electrolyte layer.
  • an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester in an acrylic polymer suitable as a polymer other than a polymer containing a specific amount of a polymer unit having a nitrile group that may be used in the positive electrode active material layer The content ratio of the monomer unit derived from is preferably 60 to 100% by mass, more preferably 65 to 90% by mass.
  • the acrylic polymer includes a copolymer of an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester and a monomer copolymerizable with the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester. Coalescence is preferred.
  • the copolymerizable monomer is the same as that exemplified in the other polymer in the solid electrolyte layer.
  • the binder of the positive electrode active material layer may be a mixture of a polymer containing a specific amount of the nitrile group-containing polymer unit and another polymer. In that case, the content of the other polymer in the binder is the same as in the case of the solid electrolyte layer.
  • the positive electrode active material is a compound that can occlude and release lithium ions.
  • the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
  • the positive electrode active material made of an inorganic compound examples include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • transition metal Fe, Co, Ni, Mn and the like are used.
  • Specific examples of the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
  • Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, and N-fluoropyridinium salts.
  • the positive electrode active material may be a mixture of the above inorganic compound and organic compound.
  • the average particle diameter of the positive electrode active material used in the present invention is usually 0.1 to 50 ⁇ m, preferably 1 to 20 ⁇ m, from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics.
  • the average particle size can be determined by measuring the particle size distribution by laser diffraction.
  • the weight ratio of the positive electrode active material is less than the above range, the amount of the positive electrode active material in the battery is reduced, leading to a decrease in capacity as a battery.
  • the weight ratio of the solid electrolyte is less than the above range, sufficient conductivity cannot be obtained, and the positive electrode active material cannot be used effectively, leading to a decrease in capacity as a battery.
  • the content of the polymer serving as the binder in the slurry composition for the positive electrode active material layer is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 7 parts by mass with respect to 100 parts by mass of the positive electrode active material. It is. When the content of the polymer is in the above range, it is possible to prevent the positive electrode active material from dropping from the electrode without inhibiting the battery reaction.
  • the organic solvent in the positive electrode active material layer slurry composition and other components added as necessary may be the same as those exemplified for the solid electrolyte layer.
  • the content of the organic solvent in the positive electrode active material layer slurry composition is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the content of the organic solvent in the positive electrode active material layer slurry composition is in the above range, good coating properties can be obtained while maintaining the dispersibility of the solid electrolyte.
  • the positive electrode active material layer slurry composition includes the above-described lithium salt, dispersant, leveling agent, antifoaming agent, conductive agent, reinforcing material as other components added as necessary.
  • An additive that exhibits various functions such as these may be included. These are not particularly limited as long as they do not affect the battery reaction.
  • the conductive agent is not particularly limited as long as it can impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals.
  • the amount of the conductive agent added is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 3 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • the amount of the reinforcing material added is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 3 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • Negative electrode active material layer The negative electrode active material layer is preferably formed using the above-mentioned solid electrolyte and the above polymer serving as the binder. Such a negative electrode active material layer is formed by applying a slurry composition for a negative electrode active material layer containing the solid electrolyte and the polymer serving as the binder to the surface of a current collector, which will be described later, and drying.
  • the slurry composition for a negative electrode active material layer is produced by mixing a solid electrolyte, a polymer serving as a binder, a negative electrode active material, an organic solvent, and other components added as necessary.
  • the negative electrode active material layer does not necessarily need to contain a solid electrolyte. In that case, a negative electrode active material is prepared by mixing a polymer serving as a binder, a negative electrode active material, an organic solvent, and other components added as necessary.
  • a slurry composition for the layer may be prepared and formed using the composition.
  • Examples of other polymers that may be used in the negative electrode active material layer include polymer compounds such as fluorine-based polymers, diene-based polymers, acrylic polymers, and silicone-based polymers.
  • a diene polymer containing a monomer unit derived from a conjugated diene and a monomer unit derived from an aromatic vinyl can bind negative electrode active materials to each other, and also has a high adhesive force between the active material layer and the current collector.
  • the binder of the negative electrode active material layer may be a mixture of a polymer containing a specific amount of the polymer unit having the nitrile group and another polymer. In that case, the content of the other polymer in the binder is the same as in the case of the solid electrolyte layer.
  • the content ratio of the monomer unit derived from the conjugated diene in the diene polymer is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and the content ratio of the monomer unit derived from the aromatic vinyl is preferably Is 30 to 70% by mass, more preferably 35 to 65% by mass.
  • conjugated diene examples include butadiene, isoprene, 2-chloro-1,3-butadiene, chloroprene and the like. Of these, butadiene is preferred.
  • aromatic vinyl examples include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinyl benzene, and the like. . Of these, styrene, ⁇ -methylstyrene, and divinylbenzene are preferable.
  • the diene polymer may be a copolymer of a conjugated diene, an aromatic vinyl, and a monomer copolymerizable therewith.
  • the copolymerizable monomer include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; ethylene, propylene, and the like Olefins; Halogen-containing monomers such as vinyl chloride and vinylidene chloride; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; Methyl vinyl Examples thereof include vinyl ketones such as ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl
  • the negative electrode active material examples include carbon allotropes such as graphite and coke.
  • the negative electrode active material composed of the allotrope of carbon can also be used in the form of a mixture with a metal, a metal salt, an oxide, or the like or a cover.
  • oxides and sulfates such as silicon, tin, zinc, manganese, iron, and nickel
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, Lithium transition metal nitride, silicone, etc. can be used.
  • the average particle size of the negative electrode active material used in the present invention is usually 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m, from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics.
  • the average particle size can be determined by measuring the particle size distribution by laser diffraction.
  • the weight ratio of the negative electrode active material is less than the above range, the amount of the negative electrode active material in the battery is reduced, leading to a decrease in capacity as a battery.
  • the weight ratio of the solid electrolyte is less than the above range, sufficient conductivity cannot be obtained, and the negative electrode active material cannot be used effectively, leading to a decrease in capacity as a battery.
  • the content of the polymer serving as the binder in the slurry composition for the negative electrode active material layer is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 7 parts by mass with respect to 100 parts by mass of the negative electrode active material. It is. When the content of the polymer is in the above range, it is possible to prevent the negative electrode active material from dropping from the electrode without inhibiting the battery reaction.
  • the organic solvent in the negative electrode active material layer slurry composition and other components added as necessary can be the same as those exemplified for the solid electrolyte layer.
  • the content of the organic solvent in the negative electrode active material layer slurry composition is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the content of the organic solvent in the slurry composition for the negative electrode active material layer is within the above range, good coating properties can be obtained while maintaining the dispersibility of the solid electrolyte.
  • the slurry composition for the negative electrode active material layer includes the above-described lithium salt, dispersant, leveling agent, antifoaming agent, conductive agent, reinforcing material, and the like as other components added as necessary. Additives that exhibit various functions may be included. These are not particularly limited as long as they do not affect the battery reaction.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, etc. Metal materials such as titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode, and copper is particularly preferable for the negative electrode.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength between the current collector and the positive and negative electrode active material layers described above, the current collector is preferably used after being subjected to a roughening treatment.
  • Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity between the current collector and the positive / negative electrode active material layer.
  • Said slurry composition is obtained by mixing each component mentioned above.
  • the mixing method of each component of the slurry composition is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader may be mentioned, and a planetary mixer, A method using a bead mill is preferred.
  • the viscosity of the slurry composition for a solid electrolyte layer produced as described above is preferably 10 to 500 mPa ⁇ s, more preferably 15 to 400 mPa ⁇ s, and particularly preferably 20 to 300 mPa ⁇ s.
  • the viscosity of the slurry composition for the solid electrolyte layer is in the above range, the dispersibility and the coating property of the slurry composition are improved.
  • the viscosity of the slurry composition is less than 10 mPa ⁇ s, the slurry composition for the solid electrolyte layer tends to sag.
  • the viscosity of the slurry composition exceeds 500 mPa ⁇ s, it is difficult to reduce the thickness of the solid electrolyte layer.
  • the viscosity of the positive electrode active material layer slurry composition and the negative electrode active material layer slurry composition produced as described above is preferably 3000 to 50000 mPa ⁇ s, more preferably 4000 to 30000 mPa ⁇ s, and particularly preferably 5000 to 10,000 mPa ⁇ s.
  • the viscosity of the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer is in the above range, the dispersibility and the coatability of the slurry composition are improved.
  • the viscosity of the slurry composition is less than 3000 mPa ⁇ s, the active material and the solid electrolyte particles B in the slurry composition are likely to settle.
  • the viscosity of the slurry composition exceeds 50000 mPa ⁇ s, the uniformity of the coating film is lost.
  • the all-solid-state secondary battery of the present invention has a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers.
  • the polymer comprising the polymer unit having the solid electrolyte and the nitrile group is contained in at least one layer of the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer, preferably in all layers.
  • the thickness of the solid electrolyte layer in the all solid state secondary battery of the present invention is preferably 1 to 15 ⁇ m, more preferably 2 to 13 ⁇ m, and particularly preferably 3 to 10 ⁇ m.
  • the thickness of the solid electrolyte layer is in the above range, the internal resistance of the all-solid secondary battery can be reduced. If the thickness of the solid electrolyte layer is less than 1 ⁇ m, the all-solid-state secondary battery is short-circuited. On the other hand, when the thickness of the solid electrolyte layer is greater than 15 ⁇ m, the internal resistance of the battery increases.
  • the positive electrode in the all-solid-state secondary battery of the present invention is manufactured by applying the positive electrode active material layer slurry composition onto a current collector and drying to form a positive electrode active material layer.
  • the negative electrode in the all-solid-state secondary battery of the present invention is obtained by applying the above slurry composition for the negative electrode active material layer on a current collector different from the positive electrode current collector and drying the negative electrode active material layer. Formed and manufactured.
  • the solid electrolyte layer slurry composition is applied on the formed positive electrode active material layer or negative electrode active material layer and dried to form a solid electrolyte layer.
  • a solid electrolyte layer can also be formed by apply
  • an all-solid-state secondary battery element is manufactured by bonding together the electrode which did not form a solid electrolyte layer, and the electrode which formed said solid electrolyte layer.
  • the method for applying the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer to the current collector is not particularly limited.
  • the doctor blade method, the dip method, the reverse roll method, the direct roll method, and the gravure method It is applied by the extrusion method, brush coating or the like.
  • the amount to be applied is not particularly limited, but is such an amount that the thickness of the active material layer formed after removing the organic solvent is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m.
  • the drying method is not particularly limited, and examples thereof include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying conditions are usually adjusted so that the organic solvent volatilizes as quickly as possible within a speed range in which stress concentration occurs and the active material layer cracks or the active material layer does not peel from the current collector. Furthermore, you may stabilize an electrode by pressing the electrode after drying. Examples of the pressing method include, but are not limited to, a mold press and a calendar press.
  • Drying is performed at a temperature at which the organic solvent is sufficiently volatilized.
  • the drying temperature is preferably 50 to 250 ° C., more preferably 80 to 200 ° C. By setting it as the said range, it becomes possible to form a favorable active material layer without thermal decomposition of a binder.
  • the drying time is not particularly limited, but is usually in the range of 10 to 60 minutes.
  • a method for applying the slurry composition for the solid electrolyte layer to the positive electrode active material layer, the negative electrode active material layer or the carrier film is not particularly limited, and the above-described slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer are described above.
  • the gravure method is preferred from the viewpoint that a thin solid electrolyte layer can be formed.
  • the amount to be applied is not particularly limited, but is an amount such that the thickness of the solid electrolyte layer formed after removing the organic solvent is preferably 1 to 15 ⁇ m, more preferably 3 to 14 ⁇ m.
  • the drying method, drying conditions, and drying temperature are also the same as those of the above-described slurry composition for positive electrode active material layer and slurry composition for negative electrode active material layer.
  • the pressurizing method is not particularly limited, and examples thereof include a flat plate press, a roll press, and CIP (Cold Isostatic Press).
  • the pressure for pressing is preferably 5 to 700 MPa, more preferably 7 to 500 MPa. This is because by setting the pressure of the pressure press within the above range, the resistance at each interface between the electrode and the solid electrolyte layer, and further, the contact resistance between particles in each layer is lowered, and good battery characteristics are exhibited.
  • the positive electrode active material layer or the negative electrode active material layer is coated with the slurry composition for the solid electrolyte layer, but the solid electrolyte layer slurry is applied to the active material layer having the larger particle diameter of the electrode active material to be used. It is preferable to apply the composition.
  • the particle diameter of the electrode active material is large, unevenness is formed on the surface of the active material layer. Therefore, the unevenness on the surface of the active material layer can be reduced by applying the composition. Therefore, when the electrode formed with the solid electrolyte layer and the electrode not formed with the solid electrolyte layer are bonded and laminated, the contact area between the solid electrolyte layer and the electrode is increased, and the interface resistance can be suppressed. .
  • the obtained all-solid-state secondary battery element is put into a battery container as it is or wound or folded according to the shape of the battery, and sealed to obtain an all-solid-state secondary battery.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate or the like can be placed in the battery container to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • iodine value was determined according to JIS K 0070 (1992).
  • the content ratio of the polymer unit having a nitrile group was measured using an FT-NMR apparatus (JNM-EX400WB) manufactured by JEOL Ltd.
  • ⁇ Particle size distribution (average particle size)> The dispersion particle diameter of the solid electrolyte in the slurry composition for the solid electrolyte layer was measured using a laser diffraction particle size distribution measuring device, and the volume average particle diameter D50 was determined. Aggregation is judged according to the following criteria. The closer the volume average particle diameter D50 is to the primary particles, the lower the degree of aggregation and the better the dispersibility. A: Less than 10 ⁇ m B: 10 ⁇ m or more but less than 20 ⁇ m C: 20 ⁇ m or more but less than 30 ⁇ m D: 30 ⁇ m or more but less than 50 ⁇ m E: 50 ⁇ m or more
  • Output characteristics> A 10-cell all-solid-state secondary battery is charged to 4.3 V by a constant current method of 0.1 C, and then discharged to 3.0 V at 0.1 C to obtain a 0.1 C discharge capacity. Thereafter, the battery is charged to 4.3 V at 0.1 C and then discharged to 3.0 V at 10 C, and the 10 C discharge capacity is obtained.
  • the average value of 10 cells is a measured value (0.1C discharge capacity a, 10C discharge capacity b), and is expressed as a ratio of electric capacity between 10C discharge capacity b and 0.1C discharge capacity a (b / a (%)). Capacity retention ratio is obtained, and this is used as an evaluation criterion for output characteristics, and is evaluated according to the following criteria. Higher values indicate better output characteristics, that is, lower internal resistance.
  • D 1% or more and less than 10%
  • E Less than 1%
  • Hydrogenated NBR Hydrogenated NBR (Zetpol (registered trademark) manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising 150 parts of 30 mol%, average particle size: 0.4 ⁇ m), 13 parts of acetylene black as a conductive agent, and a polymer unit having a nitrile group 3300 (nitrile content 23.6%, iodine value 7 mg / 100 mg or less) xylene solution was added to 5 parts of solid content, and the organic solvent was adjusted to a solid content concentration of 58% with xylene. Mix for 60 minutes. Further, the solid content concentration was adjusted to 74% with xylene, and then mixed for 10 minutes to prepare a slurry composition for a positive electrode active material layer. The viscosity of the positive electrode active material layer slurry composition was 7,100 mPa ⁇ s.
  • Zetpol registered trademark
  • the positive electrode active material layer slurry composition was applied to the surface of the current collector (aluminum) and dried (110 ° C., 20 minutes) to form a 50 ⁇ m positive electrode active material layer to produce a positive electrode. Moreover, the said slurry composition for negative electrode active material layers was apply
  • the solid electrolyte layer slurry composition was applied to the surface of the positive electrode active material layer and dried (110 ° C., 10 minutes) to form an 11 ⁇ m solid electrolyte layer.
  • the solid electrolyte layer laminated on the surface of the positive electrode active material layer and the negative electrode active material layer of the negative electrode were bonded together and pressed to obtain an all-solid secondary battery.
  • the thickness of the solid electrolyte layer of the all-solid secondary battery after pressing was 10 ⁇ m.
  • the output characteristics and high temperature cycle characteristics of the obtained all-solid-state secondary battery were evaluated based on the above criteria. The results are shown in Table 1.
  • Example 2 Hydrogenated NBR (Zetpol (manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising polymer units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition.
  • All-solid-state secondary batteries were prepared and evaluated in the same manner as in Example 1 except that (registered trademark) 4300 (nitrile content 18.6%, iodine value 7 mg / 100 mg or less) was used. The results are shown in Table 1.
  • Example 3 Preparation of a polymer comprising a polymer unit having a nitrile group> A reaction vessel was charged with 240 parts of water, 12 parts of acrylonitrile, and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), and the temperature was adjusted to 5 ° C.
  • the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate was further dissolved and added as a hydrogenation catalyst in 60 ml of water to which 4 times moles of nitric acid had been added relative to Pd.
  • the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours.
  • the above hydrogenated NBR (nitrile content 11.0) is a polymer comprising polymerized units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition. %, Iodine value 7 mg / 100 mg or less) was used, and an all-solid secondary battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 In the production of the unsaturated polymer, the monomer charged in the first stage of the emulsion polymerization was changed to 8 parts of acrylonitrile and 96 parts of 1,3-butadiene, respectively, so that the polymerization conversions were 34% and 58%. %, An acrylonitrile monomer was prepared in the same manner as in Example 3 except that 20 parts of 1,3-butadiene was added to the reaction vessel and the second and third polymerization reactions were carried out. An unsaturated polymer latex having 7.0% units and 93% 1,3-butadiene units was obtained.
  • the obtained latex of the unsaturated polymer was hydrogenated in the same manner as in Example 3, and concentrated until the solid content concentration was about 40%, and the iodine value containing polymer units having a nitrile group was 7 mg / 100 mg or less. Polymer (hydrogenated NBR) was obtained.
  • the hydrogenated NBR (nitrile content of 7.0) is a polymer comprising polymer units having a nitrile group used in the slurry composition for the positive electrode active material layer, the slurry composition for the negative electrode active material layer, and the slurry composition for the solid electrolyte layer. %, Iodine value 7 mg / 100 mg or less) was used, and an all-solid secondary battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 In the production of the unsaturated polymer, the monomers charged in the first stage of the emulsion polymerization were changed to 37 parts of acrylonitrile and 60 parts of 1,3-butadiene, respectively, and the polymerization conversions were 34% and 58%, respectively. %, An acrylonitrile monomer was prepared in the same manner as in Example 3 except that 20 parts of 1,3-butadiene was added to the reaction vessel and the second and third polymerization reactions were carried out. An unsaturated polymer latex having 28.0% units and 72% 1,3-butadiene units was obtained.
  • the obtained latex of the unsaturated polymer was concentrated by the same method as in Example 3 until the solid content concentration was about 40%, and the iodine value containing polymer units having a nitrile group was 7 mg / 100 mg or less. Polymer (hydrogenated NBR) was obtained.
  • the above hydrogenated NBR (nitrile content 28.0) is a polymer comprising polymer units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition. %, Iodine value 7 mg / 100 mg or less) was used, and an all-solid secondary battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 Hydrogenated NBR (Zetpol (manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising polymer units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition. All-solid-state secondary batteries were prepared and evaluated in the same manner as in Example 1 except that (registered trademark) 3310 (nitrile content 23.6%, iodine value 15 mg / 100 mg) was used. The results are shown in Table 1.
  • Example 7 Hydrogenated NBR (Zetpol (manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising polymer units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition.
  • An all-solid secondary battery was prepared and evaluated in the same manner as in Example 1 except that (registered trademark) 4320 (nitrile content 18.6%, iodine value 27 mg / 100 mg) was used. The results are shown in Table 1.
  • Example 8 Except that Li 2 S—SiS 2 was used as the solid electrolyte used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition, all the same as in Example 1 A solid secondary battery was fabricated and evaluated. The results are shown in Table 1.
  • the high temperature cycle characteristics are excellent. Moreover, it is excellent in the dispersibility of the solid electrolyte in the slurry composition for solid electrolyte layers.
  • the all-solid-state secondary battery of Comparative Example 1 having a high content of polymer units having nitrile groups in the polymer
  • the all-solid-state secondary battery of Comparative Example 2 having a high iodine value of the polymer
  • the all-solid-state secondary battery of Comparative Example 3 that does not include a polymerization unit having a group is inferior in output characteristics and high-temperature cycle characteristics, and has poor dispersibility of the solid electrolyte in the solid electrolyte layer slurry composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

[Problem] To provide an all-solid-state secondary battery which exhibits superior solid electrolyte dispersibility, inhibits the degradation of the solid electrolyte, and exhibits excellent battery output characteristics and high temperature cycle characteristics, even when sulfide glass is used as the solid electrolyte. [Solution] The all-solid-state secondary battery of the present invention has: a positive electrode having a positive electrode active material layer; a negative electrode having a negative electrode active material layer; and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer. The all-solid-state secondary battery is characterised by: at least one layer among the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer having a solid electrolyte, and a polymer including a nitrile group-containing polymerisation unit; the content ratio of the nitrile group-containing polymerisation unit in the polymer being 2-30 mass%; and the iodine value of the polymer being 0mg/100mg - 30mg/100mg inclusive.

Description

全固体二次電池All solid state secondary battery
 本発明は、全固体二次電池に関する。 The present invention relates to an all solid state secondary battery.
 近年、リチウム電池等の二次電池は、携帯情報端末や携帯電子機器などの携帯端末に加えて、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車など、様々な用途での需要が増加している。 In recent years, secondary batteries such as lithium batteries have been used in various applications such as portable power terminals such as personal digital assistants and portable electronic devices, as well as small household power storage devices, motorcycles, electric vehicles, and hybrid electric vehicles. Has increased.
 用途が広がるに伴い、二次電池の更なる安全性の向上が要求されている。安全性を確保するために、液漏れを防止する方法や、引火性が高く漏洩時の発火危険性が非常に高い有機溶媒電解質に代えて、無機固体電解質を用いる方法が有効である。 As the applications expand, further improvements in the safety of secondary batteries are required. In order to ensure safety, a method of preventing liquid leakage and a method of using an inorganic solid electrolyte instead of an organic solvent electrolyte having high flammability and extremely high ignition risk at the time of leakage are effective.
 特許文献1には、無機固体電解質としてLiCl-LiO-Pと、結着剤として変性アクリロニトリルゴムとを含む固体電解質層が記載されている。 Patent Document 1 describes a solid electrolyte layer containing LiCl—Li 2 O—P 2 O 5 as an inorganic solid electrolyte and modified acrylonitrile rubber as a binder.
WO2005/112180号公報WO2005 / 112180 publication
 しかしながら、本発明者らの検討によれば、特許文献1において具体的に用いられている変性アクリロニトリルゴムは、本来、固体電解質が必須の固体電解質層のバインダーとしてではなく、必ずしも固体電解質が必須ではない例えば電極層のバインダーとして検討され、さらにその中でも特定の溶媒のスラリーを用いる場合を前提として開発されたものである。 However, according to the study by the present inventors, the modified acrylonitrile rubber specifically used in Patent Document 1 is not essentially a binder for a solid electrolyte layer in which a solid electrolyte is essential, but a solid electrolyte is not necessarily required. For example, it has been studied as a binder for an electrode layer, and has been developed on the premise that a slurry of a specific solvent is used.
 ところが、固体電解質は、その種類により、固体電解質層形成用のスラリーに用いることができる溶媒が制限される。例えば、特許文献1では極性溶媒のNMPをスラリーに用いているが、固体電解質として優れた性能が期待されている、LiSとPとからなる硫化物ガラスを用いようとした場合、NMPと該硫化物ガラスとが反応するため、リチウムイオン伝導性が低下し、出力特性や高温サイクル特性等の電池特性が低下するという問題があることがわかった。即ち、極性溶媒を用いる系では、優れた固体電解質である硫化物ガラスの使用が制限されるのが現状であった。
 しかし、硫化物ガラスと反応しない非極性溶媒を用いようとすると、今度は、前記変性アクリロニトリルゴムを固体電解質のバインダーとして用いた場合は、非極性溶媒に対する溶解性が十分ではないため、固体電解質を均一に分散することができず、非極性溶媒を分散媒とするスラリー組成物の製造が困難であるという問題があることがわかった。
 このように、目的に応じて固体電解質の種類を選ぶと、用いる溶媒が限定され、さらに、固体電解質を高度に分散できるバインダーも限られるという問題があった。
However, the solvent that can be used in the slurry for forming the solid electrolyte layer is limited depending on the type of the solid electrolyte. For example, in Patent Document 1, NMP, which is a polar solvent, is used as a slurry, but when a sulfide glass made of Li 2 S and P 2 S 5 is used, which is expected to have excellent performance as a solid electrolyte. Since NMP and the sulfide glass react with each other, lithium ion conductivity is lowered, and battery characteristics such as output characteristics and high-temperature cycle characteristics are deteriorated. That is, in the system using a polar solvent, the current situation is that the use of sulfide glass, which is an excellent solid electrolyte, is limited.
However, if an attempt is made to use a nonpolar solvent that does not react with sulfide glass, this time, when the modified acrylonitrile rubber is used as a binder for the solid electrolyte, the solubility in the nonpolar solvent is not sufficient. It was found that there was a problem that it was difficult to uniformly disperse and it was difficult to produce a slurry composition using a nonpolar solvent as a dispersion medium.
As described above, when the type of the solid electrolyte is selected according to the purpose, there is a problem that a solvent to be used is limited and a binder capable of highly dispersing the solid electrolyte is also limited.
 したがって、本発明は上記問題点に鑑みてなされたものであり、固体電解質として何れの種類を用いる場合であっても、固体電解質の分散性に優れ、また固体電解質の劣化も抑制され、電池の出力特性や高温サイクル特性が良好な全固体二次電池を提供することを目的とする。 Therefore, the present invention has been made in view of the above-described problems. Regardless of the type used as the solid electrolyte, the solid electrolyte is excellent in dispersibility and the deterioration of the solid electrolyte is suppressed, and the battery An object is to provide an all-solid-state secondary battery having good output characteristics and high-temperature cycle characteristics.
 このような課題の解決を目的とした本発明の要旨は以下のとおりである。
(1)正極活物質層を有する正極と、負極活物質層を有する負極と、前記正極活物質層及び負極活物質層の層間に固体電解質層とを有する全固体二次電池であって、
 前記正極活物質層、前記負極活物質層、または前記固体電解質層の少なくとも一層に、固体電解質と、ニトリル基を有する重合単位を含んでなる重合体とが含まれ、
 前記重合体における、前記ニトリル基を有する重合単位の含有割合が2~30質量%であり、
 前記重合体のヨウ素価が0mg/100mg以上30mg/100mg以下である全固体二次電池。
The gist of the present invention aimed at solving such problems is as follows.
(1) An all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer,
At least one layer of the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer includes a solid electrolyte and a polymer including a polymer unit having a nitrile group,
The content ratio of the polymer unit having the nitrile group in the polymer is 2 to 30% by mass,
The all-solid-state secondary battery whose iodine value of the said polymer is 0 mg / 100 mg or more and 30 mg / 100 mg or less.
(2)前記重合体における、前記ニトリル基を有する重合単位の含有割合が10~28質量%である(1)に記載の全固体二次電池。 (2) The all solid state secondary battery according to (1), wherein a content ratio of the polymer unit having the nitrile group in the polymer is 10 to 28% by mass.
(3)前記固体電解質が、Li、P及びSを含む硫化物である(1)または(2)に記載の全固体二次電池。 (3) The all solid state secondary battery according to (1) or (2), wherein the solid electrolyte is a sulfide containing Li, P and S.
(4)前記固体電解質が、LiSとPとからなる硫化物ガラスである(1)~(3)のいずれかに記載の全固体二次電池。 (4) The all solid state secondary battery according to any one of (1) to (3), wherein the solid electrolyte is a sulfide glass composed of Li 2 S and P 2 S 5 .
(5)前記重合体が、水素化アクリロニトリル・ブタジエン共重合体である(1)~(4)のいずれかに記載の全固体二次電池。 (5) The all-solid-state secondary battery according to any one of (1) to (4), wherein the polymer is a hydrogenated acrylonitrile-butadiene copolymer.
 本発明によれば、正極活物質層を有する正極と、負極活物質層を有する負極と、前記正極活物質層及び負極活物質層の層間に固体電解質層とを有する全固体二次電池であって、前記正極活物質層、前記負極活物質層、または前記固体電解質層の少なくとも一層に、固体電解質と、ニトリル基を有する重合単位を含んでなる重合体とが含まれ、前記重合体における、前記ニトリル基を有する重合単位の含有割合とヨウ素価とが特定範囲である全固体二次電池を用いることで、電池の出力特性や高温サイクル特性を向上させることができる。また、本発明に用いる特定の重合体は、溶媒(特に非極性溶媒)への溶解性が良好であるため、スラリー組成物の製造時における固体電解質、特に硫化物ガラスの分散性が良好である。 According to the present invention, there is provided an all solid state secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer. In at least one of the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer, a solid electrolyte and a polymer including a polymer unit having a nitrile group are included. By using an all-solid secondary battery in which the content ratio of the polymer units having the nitrile group and the iodine value are in a specific range, the output characteristics and high-temperature cycle characteristics of the battery can be improved. In addition, since the specific polymer used in the present invention has good solubility in a solvent (particularly a nonpolar solvent), the dispersibility of the solid electrolyte, particularly sulfide glass, during the production of the slurry composition is good. .
 本発明の全固体二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、正極活物質層及び負極活物質層の層間に固体電解質層とを有し、正極活物質層、負極活物質層、または固体電解質層の少なくとも一層に、固体電解質と、ニトリル基を有する重合単位を含んでなる重合体とが含まれる。以下において(1)固体電解質、(2)ニトリル基を有する重合単位を含んでなる重合体、(3)固体電解質層、(4)正極活物質層、(5)負極活物質層、(6)全固体二次電池の順に説明する。 The all-solid-state secondary battery of the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer. At least one of the material layer, the negative electrode active material layer, or the solid electrolyte layer includes a solid electrolyte and a polymer including a polymer unit having a nitrile group. In the following, (1) a solid electrolyte, (2) a polymer comprising polymer units having a nitrile group, (3) a solid electrolyte layer, (4) a positive electrode active material layer, (5) a negative electrode active material layer, (6) The description will be made in the order of all solid state secondary batteries.
(1)固体電解質
 本発明で用いる固体電解質は、リチウムイオン伝導性の無機固体電解質であり、リチウムイオン伝導性を有していれば特に限定されないが、結晶性の無機リチウムイオン伝導体、又は非晶性の無機リチウムイオン伝導体を含むことが好ましい。
(1) Solid electrolyte The solid electrolyte used in the present invention is a lithium ion conductive inorganic solid electrolyte, and is not particularly limited as long as it has lithium ion conductivity. It preferably contains a crystalline inorganic lithium ion conductor.
 結晶性の無機リチウムイオン伝導体は、LiN、LISICON(Li14Zn(GeO、ペロブスカイト型Li0.5La0.5TiO、LIPON(Li3+yPO4-x)、Thio-LISICON(Li3.25Ge0.250.75)などが挙げられ、非晶性の無機リチウムイオン伝導体は、ガラスLi-Si-S-O、Li-P-Sなどが挙げられる。その中でも、導電性の観点から、非晶性の無機リチウムイオン伝導体が好ましく、Li、P及びSを含む硫化物がより好ましい。Li、P及びSを含む硫化物はリチウムイオン伝導性が高いため、固体電解質としてLi、P及びSを含む硫化物を用いることで電池の内部抵抗を低下させることができると共に、出力特性を向上させることができる。 Crystalline inorganic lithium ion conductors include Li 3 N, LIICON (Li 14 Zn (GeO 4 ) 4 , perovskite-type Li 0.5 La 0.5 TiO 3 , LIPON (Li 3 + y PO 4−x N x ), Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ) and the like, and amorphous inorganic lithium ion conductors include glass Li—Si—S—O, Li—PS, etc. Among them, from the viewpoint of conductivity, an amorphous inorganic lithium ion conductor is preferable, and a sulfide containing Li, P and S is more preferable, and a sulfide containing Li, P and S is a lithium ion. Since the conductivity is high, the internal resistance of the battery can be lowered and the output characteristics can be improved by using a sulfide containing Li, P and S as the solid electrolyte. be able to.
 また、Li、P及びSを含む硫化物は、電池の内部抵抗低下及び出力特性向上という観点から、Li2SとP25とからなる硫化物ガラスであることがより好ましく、Li2S:P25のモル比65:35~85:15のLi2SとP25との混合原料から製造された硫化物ガラスであることが特に好ましい。また、Li、P及びSを含む硫化物は、Li2S:P25のモル比65:35~85:15のLi2SとP25との混合材料をメカノケミカル法によって合成して得られる硫化物ガラスセラミックスであることが好ましい。 Further, the sulfide containing Li, P and S is more preferably a sulfide glass composed of Li 2 S and P 2 S 5 from the viewpoint of lowering the internal resistance of the battery and improving the output characteristics, and Li 2 S : A sulfide glass produced from a mixed raw material of Li 2 S and P 2 S 5 having a molar ratio of: P 2 S 5 of 65:35 to 85:15 is particularly preferable. In addition, a sulfide containing Li, P and S is synthesized by a mechanochemical method using a mixed material of Li 2 S and P 2 S 5 having a molar ratio of Li 2 S: P 2 S 5 of 65:35 to 85:15. It is preferable that it is the sulfide glass ceramic obtained by doing this.
 固体電解質が、Li2S:P25=65:35~85:15(モル比)のLi2SとP25との混合原料で製造されると、リチウムイオン伝導度を高い状態で維持することができる。以上の観点から、Li2S:P25=68:32~80:20の範囲であることがさらに好ましい。
 リチウムイオン伝導度として、具体的には、イオン伝導度は1×10-4S/cm以上であることが好ましく、1×10-3S/cm以上であることがさらに好ましい。
When the solid electrolyte is produced from a mixed raw material of Li 2 S and P 2 S 5 with Li 2 S: P 2 S 5 = 65: 35 to 85:15 (molar ratio), the lithium ion conductivity is high. Can be maintained. From the above viewpoint, it is more preferable that Li 2 S: P 2 S 5 = 68: 32 to 80:20.
Specifically, the lithium ion conductivity is preferably 1 × 10 −4 S / cm or more, more preferably 1 × 10 −3 S / cm or more.
 本発明に用いる固体電解質は、Li、P及びSのみからなる硫化物ガラス、Li、P及びSのみからなる硫化物ガラスセラミックスだけではなく、後に説明するように、Li、P及びS以外のものを含んでいても良い。 The solid electrolyte used in the present invention is not limited to sulfide glass consisting only of Li, P and S, and sulfide glass ceramic consisting only of Li, P and S, but other than Li, P and S as will be described later. May be included.
 また、固体電解質の平均粒子径は、好ましくは0.1~50μmの範囲である。固体電解質の平均粒子径を上記範囲とすることで、固体電解質の取扱いが容易となると共に、シート状にする際のスラリー組成物中における固体電解質の分散性が向上するため、シート状に形成することが容易になる。以上の観点から、固体電解質の平均粒子径は0.1~20μmの範囲であることがさらに好ましい。平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。 The average particle size of the solid electrolyte is preferably in the range of 0.1 to 50 μm. By setting the average particle diameter of the solid electrolyte within the above range, the solid electrolyte can be easily handled and the dispersibility of the solid electrolyte in the slurry composition when the sheet is formed is improved. It becomes easy. From the above viewpoint, the average particle size of the solid electrolyte is more preferably in the range of 0.1 to 20 μm. The average particle size can be determined by measuring the particle size distribution by laser diffraction.
 本発明に用いる固体電解質では、イオン伝導性を低下させない程度において、上記P25、Li2Sの他に出発原料として、Al23、B23及びSiS2からなる群より選ばれる少なくとも1種の硫化物を含ませることが好ましい。かかる硫化物を加えると、固体電解質中のガラス成分を安定化させることができる。
 同様に、Li2S及びP25に加え、Li3PO4、Li4SiO4、Li4GeO4、Li3BO3及びLi3AlO3からなる群より選ばれる少なくとも1種のオルトオキソ酸リチウムを含ませることが好ましい。かかるオルトオキソ酸リチウムを含ませると、固体電解質中のガラス成分を安定化させることができる。
The solid electrolyte used in the present invention is selected from the group consisting of Al 2 S 3 , B 2 S 3 and SiS 2 as a starting material in addition to the P 2 S 5 and Li 2 S as long as the ion conductivity is not lowered. It is preferable to include at least one kind of sulfide. When such a sulfide is added, the glass component in the solid electrolyte can be stabilized.
Similarly, at least one orthooxo acid selected from the group consisting of Li 3 PO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 3 BO 3 and Li 3 AlO 3 in addition to Li 2 S and P 2 S 5. It is preferable to include lithium. When such a lithium orthooxo acid is included, the glass component in the solid electrolyte can be stabilized.
(2)ニトリル基を有する重合単位を含んでなる重合体
 本発明に用いる重合体は、ニトリル基を有する重合単位を含んでなる。重合体中にニトリル基を有する重合単位を含むことで、リチウムイオンの伝導性が良好となるため、電池内における内部抵抗を小さくし、電池の出力特性を向上させることができる。
(2) Polymer comprising a polymer unit having a nitrile group The polymer used in the present invention comprises a polymer unit having a nitrile group. By including a polymer unit having a nitrile group in the polymer, the lithium ion conductivity is improved, so that the internal resistance in the battery can be reduced and the output characteristics of the battery can be improved.
 ニトリル基を有する重合単位としては、α,β-エチレン性不飽和ニトリル単量体単位が挙げられる。α,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば、特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましい。これらは一種単独でまたは複数種併せて用いることができる。 Examples of the polymer unit having a nitrile group include α, β-ethylenically unsaturated nitrile monomer units. The α, β-ethylenically unsaturated nitrile monomer forming the α, β-ethylenically unsaturated nitrile monomer unit is not particularly limited as long as it is an α, β-ethylenically unsaturated compound having a nitrile group. For example, acrylonitrile; α-halogenoacrylonitrile such as α-chloroacrylonitrile and α-bromoacrylonitrile; α-alkylacrylonitrile such as methacrylonitrile; Among these, acrylonitrile and methacrylonitrile are preferable. These can be used individually by 1 type or in combination of multiple types.
 本発明に用いる重合体におけるニトリル基を有する重合単位の含有割合は、2~30質量%であり、好ましくは10~28質量%、より好ましくは15~26質量%、特に好ましくは20~24質量%である。ニトリル基を有する重合単位の含有割合が2質量%未満であると、スラリー組成物の製造時における固体電解質の分散性が悪化し、電池の内部抵抗が上昇するおそれがある。また、30質量%を超えると、溶媒、特に非極性溶媒への溶解性が悪化し、スラリー組成物の製造が困難になる。ニトリル基を有する重合単位の含有割合が上記範囲にあると、重合体の溶媒への溶解性が良好となり、分散性の良好なスラリー組成物を製造できるため、スラリー組成物を均一に塗工することができ、電池の出力特性を向上させることができる。 The content of the polymer unit having a nitrile group in the polymer used in the present invention is 2 to 30% by mass, preferably 10 to 28% by mass, more preferably 15 to 26% by mass, and particularly preferably 20 to 24% by mass. %. When the content ratio of the polymer unit having a nitrile group is less than 2% by mass, the dispersibility of the solid electrolyte during production of the slurry composition is deteriorated, and the internal resistance of the battery may be increased. Moreover, when it exceeds 30 mass%, the solubility to a solvent, especially a nonpolar solvent will deteriorate, and manufacture of a slurry composition will become difficult. When the content ratio of the polymer unit having a nitrile group is within the above range, the polymer has good solubility in a solvent, and a slurry composition with good dispersibility can be produced. Therefore, the slurry composition is uniformly applied. And the output characteristics of the battery can be improved.
 また、本発明に用いる重合体は、共役ジエン単量体単位をさらに有することが好ましい。共役ジエン単量体単位を含むことで、該重合体を含む正極活物質層または負極活物質層または固体電解質層に柔軟性を持たせることができる。 The polymer used in the present invention preferably further has a conjugated diene monomer unit. By including the conjugated diene monomer unit, the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer containing the polymer can be made flexible.
 共役ジエン単量体単位を形成する共役ジエン単量体としては、炭素数4以上の共役ジエンが好ましく、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。これらのなかでも、1,3-ブタジエンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。 The conjugated diene monomer forming the conjugated diene monomer unit is preferably a conjugated diene having 4 or more carbon atoms, such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1 , 3-pentadiene. Of these, 1,3-butadiene is preferred. These can be used individually by 1 type or in combination of multiple types.
 本発明に用いる重合体における共役ジエン単量体単位の含有割合は、全単量体単位に対して、好ましくは10~79.5質量%であり、より好ましくは34.3~74.3質量%、さらに好ましくは39~65質量%である。共役ジエン単量体単位の含有割合が上記範囲にあることにより、正極活物質層または負極活物質層または固体電解質層に柔軟性を持たせることができ、更にスラリー組成物の製造時における固体電解質の分散性も良好であり、優れた出力特性と高温サイクル特性を有する電池を得ることが出来る。 The content ratio of the conjugated diene monomer unit in the polymer used in the present invention is preferably 10 to 79.5% by mass, more preferably 34.3 to 74.3% by mass with respect to the total monomer units. %, More preferably 39 to 65% by mass. When the content ratio of the conjugated diene monomer unit is in the above range, the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer can be made flexible, and the solid electrolyte during the production of the slurry composition can be provided. The battery has excellent output characteristics and high temperature cycle characteristics.
 また、本発明に用いる重合体は、上記α,β-エチレン性不飽和ニトリル単量体単位、ならびに、共役ジエン単量体単位以外に、これらの単量体単位を形成する単量体と共重合可能な他の単量体単位を含有していてもよい。このような他の単量体単位の含有割合は、全単量体単位中、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。 In addition to the α, β-ethylenically unsaturated nitrile monomer unit and the conjugated diene monomer unit, the polymer used in the present invention is a copolymer with monomers that form these monomer units. It may contain other monomer units that can be polymerized. The content ratio of such other monomer units is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less in the total monomer units.
 このような共重合可能な他の単量体としては、たとえば、スチレン、α-メチルスチレン、ビニルトルエンなどの芳香族ビニル化合物;フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどの非共役ジエン化合物;エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどのα-オレフィン化合物;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、無水フマル酸などのα,β-エチレン性不飽和カルボン酸およびその無水物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどのα,β-エチレン性不飽和モノカルボン酸アルキルエステル;マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β-エチレン性不飽和カルボン酸のアルコキシアルキルエステル;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピルなどのα,β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル;ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリメタクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N’-ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物;などが挙げられる。 Examples of such other copolymerizable monomers include aromatic vinyl compounds such as styrene, α-methylstyrene, and vinyl toluene; fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, pentafluoro Fluorine-containing vinyl compounds such as vinyl benzoate, difluoroethylene, and tetrafluoroethylene; non-conjugated diene compounds such as 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene, and dicyclopentadiene; ethylene, propylene, 1-butene, Α-olefin compounds such as 4-methyl-1-pentene, 1-hexene, 1-octene; acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, fumaric anhydride, etc. α, β-Ethile Unsaturated carboxylic acids and their anhydrides; α, β-ethylenically unsaturated mono (methyl) (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc. Carboxylic acid alkyl ester; monoethyl maleate, diethyl maleate, monobutyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, monobutyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, Monoesters and diesters of α, β-ethylenically unsaturated polyvalent carboxylic acids such as diethyl itaconate, monobutyl itaconate, dibutyl itaconate; methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, (meth) Acry Alkoxyalkyl esters of α, β-ethylenically unsaturated carboxylic acids such as butoxyethyl acid; α, β-ethylenically unsaturated carboxylic acids such as 2-hydroxyethyl (meth) acrylate and 3-hydroxypropyl (meth) acrylate Hydroxyalkyl esters of acids; divinyl compounds such as divinylbenzene; di (meth) acrylic esters such as ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate; trimethylolpropane tri (meth) ) Trimethacrylic acid esters such as acrylates; Self-crosslinkable compounds such as N-methylol (meth) acrylamide and N, N′-dimethylol (meth) acrylamide; Mentioned It is.
 本発明に用いる重合体のヨウ素価は30mg/100mg以下であり、好ましくは20mg/100mg以下、より好ましくは10mg/100mg以下である。30mg/100mgを超えると、重合体に含まれる不飽和結合により酸化電位での安定性が低く電池の高温サイクル特性に劣る。また、ヨウ素価の下限は0mg/100mg以上であり、好ましくは0mg/100mgを超え、より好ましくは3mg/100mg以上、更に好ましくは5mg/100mg以上である。重合体のヨウ素価が上記範囲に含まれることにより、電極活物質層や固体電解質層の高い膜強度と優れた電池の高温サイクル特性を示すことができる。
 ヨウ素価はJIS K 0070(1992)に従って求められる。
The iodine value of the polymer used in the present invention is 30 mg / 100 mg or less, preferably 20 mg / 100 mg or less, more preferably 10 mg / 100 mg or less. When it exceeds 30 mg / 100 mg, the stability at the oxidation potential is low due to the unsaturated bond contained in the polymer, and the high-temperature cycle characteristics of the battery are inferior. Moreover, the minimum of an iodine value is 0 mg / 100 mg or more, Preferably it exceeds 0 mg / 100 mg, More preferably, it is 3 mg / 100 mg or more, More preferably, it is 5 mg / 100 mg or more. When the iodine value of the polymer is included in the above range, high film strength of the electrode active material layer and the solid electrolyte layer and excellent high-temperature cycle characteristics of the battery can be exhibited.
The iodine value is determined according to JIS K 0070 (1992).
 本発明に用いる重合体のゲル・パーミエーション・クロマトグラフィ(溶離液:テトラヒドロフラン)によるポリスチレン換算値の重量平均分子量は、好ましくは10,000~700,000、より好ましくは50,000~500,000、特に好ましくは100,000~300,000である。重合体の重量平均分子量を上記範囲とすることで、正極活物質層または負極活物質層または固体電解質層に柔軟性を持たせることができ、更にスラリー組成物の製造時に塗工しやすい粘度に調整ができる。 The weight average molecular weight in terms of polystyrene by gel permeation chromatography (eluent: tetrahydrofuran) of the polymer used in the present invention is preferably 10,000 to 700,000, more preferably 50,000 to 500,000, Particularly preferred is 100,000 to 300,000. By setting the weight average molecular weight of the polymer in the above range, the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer can be made flexible, and the viscosity can be easily applied during the production of the slurry composition. Can be adjusted.
 本発明に用いる重合体は、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などの重合法により上記単量体を重合して、ニトリル基を有する重合単位を含んでなる不飽和重合体(以下において「不飽和重合体」と記載することがある。)を得、水素化触媒の存在下、不飽和重合体に水素添加することにより、不飽和重合体中の炭素-炭素二重結合を選択的に水素化することによって製造される。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。 The polymer used in the present invention is an unsaturated polymer comprising a polymer unit having a nitrile group by polymerizing the monomer by a polymerization method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, or an emulsion polymerization method. A polymer (hereinafter sometimes referred to as “unsaturated polymer”) is obtained, and hydrogenated to the unsaturated polymer in the presence of a hydrogenation catalyst, whereby the carbon-carbon dimer in the unsaturated polymer is obtained. Produced by selective hydrogenation of heavy bonds. As the polymerization reaction, any reaction such as ionic polymerization, radical polymerization, and living radical polymerization can be used. Examples of the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like. Organic peroxides, azo compounds such as α, α′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
 水素添加する方法は、特に限定されず、通常の方法を用いることができる。例えば、不飽和重合体の有機溶媒溶液にラネーニッケルやチタノセン系化合物、アルミニウム担持ニッケル触媒などの水素添加触媒の存在下に水素ガスと接触させて反応させればよい。また、不飽和重合体を乳化重合により作製した場合は、重合反応液に酢酸パラジウム等の水素添加触媒を加えて水性エマルジョン状態のまま、水素ガスと接触させて反応させることもできる。水素添加反応により、本発明に用いるニトリル基を有する重合単位を含んでなる重合体のヨウ素価を上述した範囲とすることができる。本発明に用いるニトリル基を有する重合単位を含んでなる重合体としては、水素化アクリロニトリル・ブタジエン共重合体(以下において「水添NBR」と記載することがある。)が好ましい。 The method for adding hydrogen is not particularly limited, and a normal method can be used. For example, an organic solvent solution of an unsaturated polymer may be reacted with hydrogen gas in the presence of a hydrogenation catalyst such as Raney nickel, a titanocene compound, or an aluminum-supported nickel catalyst. Moreover, when an unsaturated polymer is produced by emulsion polymerization, a hydrogenation catalyst such as palladium acetate can be added to the polymerization reaction solution, and the mixture can be reacted with hydrogen gas in an aqueous emulsion state. By the hydrogenation reaction, the iodine value of the polymer comprising the polymer unit having a nitrile group used in the present invention can be set within the above-described range. The polymer comprising a polymer unit having a nitrile group used in the present invention is preferably a hydrogenated acrylonitrile-butadiene copolymer (hereinafter sometimes referred to as “hydrogenated NBR”).
(3)固体電解質層
 本発明における固体電解質層は、上記の固体電解質及びバインダーとなる重合体を含む。固体電解質層は、これらの固体電解質及びバインダーとなる重合体を含む固体電解質層用スラリー組成物を、後述する正極活物質層または負極活物質層の上に塗布し、乾燥することにより形成される。
 固体電解質層用スラリー組成物は、固体電解質、バインダーとなる重合体、有機溶媒及び必要に応じて添加される他の成分を混合することにより製造される。
 尚、前記の、固体電解質と、ニトリル基を有する重合単位を含んでなる重合体との組み合わせが、固体電解質層以外の層にのみ含まれる場合においても、固体電解質層は固体電解質を必ず含む。すなわち、その場合、固体電解質層は、例えば、前記固体電解質と、後述するような、固体電解質層に用いてもよいその他の重合体とを用いて形成される。
(3) Solid electrolyte layer The solid electrolyte layer in this invention contains the polymer used as said solid electrolyte and a binder. The solid electrolyte layer is formed by applying a solid electrolyte layer slurry composition containing the solid electrolyte and a polymer serving as a binder onto a positive electrode active material layer or a negative electrode active material layer, which will be described later, and drying. .
The slurry composition for a solid electrolyte layer is produced by mixing a solid electrolyte, a polymer serving as a binder, an organic solvent, and other components added as necessary.
Even when the combination of the solid electrolyte and the polymer containing a polymer unit having a nitrile group is included only in a layer other than the solid electrolyte layer, the solid electrolyte layer necessarily includes the solid electrolyte. That is, in that case, the solid electrolyte layer is formed using, for example, the solid electrolyte and another polymer that may be used for the solid electrolyte layer as described later.
(バインダーとなる重合体)
 バインダーとなる重合体としては、上述したニトリル基を有する重合単位を特定量含んでなる重合体を用いてもよく、その他の重合体を使用してもよいが、本発明の全固体二次電池においては、固体電解質層、正極活物質層、負極活物質層の少なくとも一層、好ましくは全ての層において、バインダーとなる重合体として、ニトリル基を有する重合単位を特定量含んでなる重合体が用いられる。
(Polymer used as binder)
As the polymer to be a binder, a polymer containing a specific amount of the above-described polymer unit having a nitrile group may be used, or other polymer may be used, but the all solid secondary battery of the present invention. In at least one of the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer, and preferably in all layers, a polymer containing a specific amount of a polymer unit having a nitrile group is used as a binder polymer. It is done.
 固体電解質層に用いてもよいその他の重合体としては、例えば、フッ素系重合体、ジエン系重合体、アクリル系重合体、シリコーン系重合体等の高分子化合物が挙げられ、フッ素系重合体、ジエン系重合体又はアクリル系重合体が好ましく、アクリル系重合体が、耐電圧を高くでき、かつ全固体二次電池のエネルギー密度を高くすることができる点でより好ましい。 Examples of other polymers that may be used for the solid electrolyte layer include polymer compounds such as fluorine polymers, diene polymers, acrylic polymers, silicone polymers, and the like. A diene polymer or an acrylic polymer is preferable, and an acrylic polymer is more preferable in that the withstand voltage can be increased and the energy density of the all-solid secondary battery can be increased.
 フッ素系重合体としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)が挙げられる。 Examples of the fluoropolymer include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
 ジエン系重合体は、共役ジエンから導かれるモノマー単位と芳香族ビニルから導かれるモノマー単位とを含む重合体であり、共役ジエン及び芳香族ビニルとしては、後述の負極活物質層におけるその他の重合体において例示したものと同様のものが挙げられる。 The diene polymer is a polymer including a monomer unit derived from a conjugated diene and a monomer unit derived from an aromatic vinyl. As the conjugated diene and the aromatic vinyl, other polymers in the negative electrode active material layer described later are used. The thing similar to what was illustrated in (1) is mentioned.
 アクリル系重合体は、α,β-エチレン性不飽和モノカルボン酸アルキルエステルから導かれるモノマー単位を含む重合体であり、具体的には、α,β-エチレン性不飽和モノカルボン酸アルキルエステルの単独重合体、α,β-エチレン性不飽和モノカルボン酸アルキルエステルの共重合体、並びにα,β-エチレン性不飽和モノカルボン酸アルキルエステルと該α,β-エチレン性不飽和モノカルボン酸アルキルエステルと共重合可能な他の単量体との共重合体が挙げられる。
 α,β-エチレン性不飽和モノカルボン酸アルキルエステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、およびアクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチル、ベンジルアクリレートなどのアクリル酸アルキルエステル;アクリル酸2-(パーフルオロブチル)エチル、アクリル酸2-(パーフルオロペンチル)エチルなどのアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、およびメタクリル酸t-ブチル、メタクリル酸-2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、ベンジルメタクリレートなどのメタクリル酸アルキルエステル;メタクリル酸2-(パーフルオロブチル)エチル、メタクリル酸2-(パーフルオロペンチル)エチルなどのメタクリル酸2-(パーフルオロアルキル)エチル;が挙げられる。
The acrylic polymer is a polymer containing a monomer unit derived from an α, β-ethylenically unsaturated monocarboxylic acid alkyl ester. Specifically, the acrylic polymer is an α, β-ethylenically unsaturated monocarboxylic acid alkyl ester. Homopolymer, copolymer of α, β-ethylenically unsaturated monocarboxylic acid alkyl ester, and α, β-ethylenically unsaturated monocarboxylic acid alkyl ester and said α, β-ethylenically unsaturated monocarboxylic acid alkyl Examples thereof include copolymers with other monomers copolymerizable with esters.
Examples of α, β-ethylenically unsaturated monocarboxylic acid alkyl esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, and t-butyl acrylate, acrylic acid- Acrylic acid alkyl esters such as 2-ethylhexyl, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, and benzyl acrylate; 2- (perfluorobutyl) ethyl acrylate, 2- (perfluoropentyl) ethyl acrylate 2- (perfluoroalkyl) ethyl acrylate such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and t-butyl methacrylate, 2-ethylhexyl methacrylate , Methacrylic acid alkyl esters such as lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate and benzyl methacrylate; 2- (perfluorobutyl) ethyl methacrylate and 2- (perfluoropentyl) ethyl methacrylate Fluoroalkyl) ethyl;
 アクリル系重合体におけるα,β-エチレン性不飽和モノカルボン酸アルキルエステルから導かれるモノマー単位の含有割合は、通常40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上である。なお、アクリル系重合体におけるα,β-エチレン性不飽和モノカルボン酸アルキルエステルから導かれるモノマー単位の含有割合の上限は、通常100質量%以下、好ましくは95質量%以下である。 The content ratio of the monomer unit derived from the α, β-ethylenically unsaturated monocarboxylic acid alkyl ester in the acrylic polymer is usually 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more. . The upper limit of the content ratio of the monomer unit derived from the α, β-ethylenically unsaturated monocarboxylic acid alkyl ester in the acrylic polymer is usually 100% by mass or less, preferably 95% by mass or less.
 また、アクリル系重合体としては、α,β-エチレン性不飽和モノカルボン酸アルキルエステルと該α,β-エチレン性不飽和モノカルボン酸アルキルエステルと共重合可能な他の単量体との共重合体が好ましい。前記共重合可能な単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類; N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。その中でも、有機溶媒への溶解性の観点から、スチレン系単量体、アミド系単量体、α,β-不飽和ニトリル化合物が好ましい。アクリル系重合体における、前記共重合可能な単量体単位の含有割合は、通常60質量%以下、好ましくは55質量%以下、より好ましくは25質量%以上45質量%以下である。 The acrylic polymer includes a copolymer of α, β-ethylenically unsaturated monocarboxylic acid alkyl ester and another monomer copolymerizable with the α, β-ethylenically unsaturated monocarboxylic acid alkyl ester. Polymers are preferred. Examples of the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate. Carboxylates having carbon double bonds; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene, Styrene monomers such as divinylbenzene; Amide monomers such as acrylamide, methacrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid; Olefins such as ethylene and propylene Diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; methyl vinyl ether, ethyl Vinyl ethers such as vinyl ether and butyl vinyl ether; Vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone and isopropenyl vinyl ketone; A vinyl compound is mentioned. Of these, styrene monomers, amide monomers, and α, β-unsaturated nitrile compounds are preferred from the viewpoint of solubility in organic solvents. The content of the copolymerizable monomer unit in the acrylic polymer is usually 60% by mass or less, preferably 55% by mass or less, more preferably 25% by mass or more and 45% by mass or less.
 シリコーン系重合体としては、シリコーンゴム、フルオロシリコーンラバー、ポリイミドシリコーンが挙げられる。 Examples of silicone polymers include silicone rubber, fluorosilicone rubber, and polyimide silicone.
 また、固体電解質層のバインダーは、前記ニトリル基を有する重合単位を特定量含んでなる重合体と、その他の重合体との混合物であってもよい。その場合、バインダー中、その他の重合体の含有量は、通常、95質量%以下、好ましくは90質量%以下である。 Also, the binder of the solid electrolyte layer may be a mixture of a polymer containing a specific amount of the above-mentioned polymer unit having a nitrile group and another polymer. In that case, the content of the other polymer in the binder is usually 95% by mass or less, preferably 90% by mass or less.
 固体電解質層用スラリー組成物中の、バインダーとなる重合体の含有量は、固体電解質100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~7質量部、特に好ましくは0.5~5質量部である。重合体の含有量を上記範囲とすることにより、固体電解質粒子同士の結着性を維持しながら、リチウムの移動を阻害して固体電解質層の抵抗が増大することを抑制できる。 The content of the polymer serving as the binder in the slurry composition for the solid electrolyte layer is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass with respect to 100 parts by mass of the solid electrolyte. Particularly preferred is 0.5 to 5 parts by mass. By setting the content of the polymer in the above range, it is possible to suppress the lithium migration and increase the resistance of the solid electrolyte layer while maintaining the binding property between the solid electrolyte particles.
(リチウム塩)
 また、固体電解質層は、リチウム塩を含んでもよい。リチウム塩はLiカチオンと、Cl、Br、BF 、PF 、AsF 、ClO 、CFSO 、SCN等のアニオンとからなり、例えば過塩素酸リチウムテトラフロロホウ酸リチウム、ヘキサフロロリン酸リチウム、トリフロロ酢酸リチウム、トリフロロメタンスルホン酸リチウム等を挙げることが出来る。バインダーとなる重合体とリチウム塩との重量比は、好ましくは該重合体100質量部に対してリチウム塩0.5~30質量部、より好ましくは3~25質量部である。バインダーとなる重合体とリチウム塩との重量比を上記範囲とすることにより、イオン伝導度を向上させることができる。固体電解質層にリチウム塩を含有させる方法は特に限定されず、例えば、重合体とリチウム塩をキシレン等の溶媒に溶解もしくは分散させ均一溶液とする方法が挙げられる。
(Lithium salt)
The solid electrolyte layer may include a lithium salt. Lithium salts are composed of Li + cations and anions such as Cl , Br , BF 4 , PF 6 , AsF 6 , ClO 4 , CF 3 SO 3 , SCN − and the like, for example, lithium perchlorate Examples include lithium tetrafluoroborate, lithium hexafluorophosphate, lithium trifluoroacetate, lithium trifluoromethanesulfonate, and the like. The weight ratio of the binder polymer to the lithium salt is preferably 0.5 to 30 parts by mass, more preferably 3 to 25 parts by mass with respect to 100 parts by mass of the polymer. By setting the weight ratio of the polymer serving as the binder and the lithium salt within the above range, the ionic conductivity can be improved. The method for containing the lithium salt in the solid electrolyte layer is not particularly limited, and examples thereof include a method in which the polymer and the lithium salt are dissolved or dispersed in a solvent such as xylene to obtain a uniform solution.
(有機溶媒)
 有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレンなどの芳香族炭化水素類が挙げられる。これらの溶媒は、単独または2種以上を混合して、乾燥速度や環境上の観点から適宜選択して用いることができ、中でも、本発明においては固体電解質との反応性の観点から芳香族炭化水素類から選ばれる非極性溶媒を用いることが好ましい。
(Organic solvent)
Examples of the organic solvent include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene. These solvents can be used singly or in combination of two or more, and can be appropriately selected from the viewpoint of drying speed and environment. In particular, in the present invention, aromatic carbonization is performed from the viewpoint of reactivity with the solid electrolyte. It is preferable to use a nonpolar solvent selected from hydrogens.
 固体電解質層用スラリー組成物中の有機溶媒の含有量は、固体電解質100質量部に対して、好ましくは10~700質量部、より好ましくは30~500質量部である。有機溶媒の含有量を上記範囲とすることにより、固体電解質層用スラリー組成物中の固体電解質の分散性を保持しながら、良好な塗料特性を得ることができる。 The content of the organic solvent in the solid electrolyte layer slurry composition is preferably 10 to 700 parts by mass, more preferably 30 to 500 parts by mass with respect to 100 parts by mass of the solid electrolyte. By setting the content of the organic solvent in the above range, good coating properties can be obtained while maintaining the dispersibility of the solid electrolyte in the slurry composition for the solid electrolyte layer.
 固体電解質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、分散剤、レベリング剤及び消泡剤の機能を有する成分を含んでいてもよい。これらの成分は、電池反応に影響を及ぼさないものであれば、特に制限されない。 The slurry composition for a solid electrolyte layer may contain, in addition to the above components, components having functions of a dispersant, a leveling agent, and an antifoaming agent as other components added as necessary. These components are not particularly limited as long as they do not affect the battery reaction.
(分散剤)
 分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は、用いる固体電解質に応じて選択される。固体電解質層用スラリー組成物中の分散剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質100質量部に対して10質量部以下である。
(Dispersant)
Examples of the dispersant include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound. A dispersing agent is selected according to the solid electrolyte to be used. The content of the dispersant in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics. Specifically, the content is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte.
(レベリング剤)
 レベリング剤としてはアルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。上記界面活性剤を混合することにより、固体電解質層用スラリー組成物を後述する正極活物質層又は負極活物質層の表面に塗工する際に発生するはじきを防止でき、正負極の平滑性を向上させることができる。固体電解質層用スラリー組成物中のレベリング剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質100質量部に対して10質量部以下である。
(Leveling agent)
Examples of the leveling agent include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs when the slurry composition for the solid electrolyte layer is applied to the surface of the positive electrode active material layer or the negative electrode active material layer, which will be described later. Can be improved. The content of the leveling agent in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics, and specifically 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte.
(消泡剤)
 消泡剤としてはミネラルオイル系消泡剤、シリコーン系消泡剤、ポリマー系消泡剤が例示される。消泡剤は、用いる固体電解質に応じて選択される。固体電解質層用スラリー組成物中の消泡剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質100質量部に対して10質量部以下である。
(Defoamer)
Examples of the antifoaming agent include mineral oil antifoaming agents, silicone antifoaming agents, and polymer antifoaming agents. The antifoaming agent is selected according to the solid electrolyte used. The content of the antifoaming agent in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics, and specifically 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte.
(4)正極活物質層
 正極活物質層は、上記の固体電解質及び上記のバインダーとなる重合体を用いて形成するのが好ましい。かかる正極活物質層は、上記の固体電解質及び上記のバインダーとなる重合体を含む正極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。正極活物質層用スラリー組成物は、固体電解質、バインダーとなる重合体、正極活物質、有機溶媒及び必要に応じて添加される他の成分を混合することにより製造される。
 なお、正極活物質層は、必ずしも固体電解質を含む必要はなく、その場合、バインダーとなる重合体、正極活物質、有機溶媒及び必要に応じて添加される他の成分を混合して正極活物質層用スラリー組成物を調製し、当該組成物を用いて形成すればよい。
(4) Positive electrode active material layer The positive electrode active material layer is preferably formed using the above-described solid electrolyte and the polymer that serves as the binder. Such a positive electrode active material layer is formed by applying a slurry composition for a positive electrode active material layer containing the solid electrolyte and the polymer that serves as the binder to the surface of the current collector, which will be described later, and drying. The slurry composition for a positive electrode active material layer is produced by mixing a solid electrolyte, a polymer serving as a binder, a positive electrode active material, an organic solvent, and other components added as necessary.
The positive electrode active material layer is not necessarily required to contain a solid electrolyte. In that case, a positive electrode active material is prepared by mixing a polymer serving as a binder, a positive electrode active material, an organic solvent, and other components added as necessary. A slurry composition for the layer may be prepared and formed using the composition.
 正極活物質層に用いてもよいニトリル基を有する重合単位を特定量含んでなる重合体以外の重合体(その他の重合体)としては、例えば、フッ素系重合体、ジエン系重合体、アクリル系重合体、シリコーン系重合体等の高分子化合物が挙げられ、フッ素系重合体、ジエン系重合体又はアクリル系重合体が好ましく、アクリル系重合体が、耐電圧を高くでき、かつ全固体二次電池のエネルギー密度を高くすることができる点でより好ましい。 Examples of the polymer (other polymer) other than the polymer containing a specific amount of a polymer unit having a nitrile group that may be used in the positive electrode active material layer include a fluorine polymer, a diene polymer, and an acrylic polymer. Polymers, high molecular compounds such as silicone polymers, and the like, fluorine polymers, diene polymers, and acrylic polymers are preferable. Acrylic polymers can increase withstand voltage and are all solid secondary It is more preferable in that the energy density of the battery can be increased.
 アクリル系重合体は、α,β-エチレン性不飽和モノカルボン酸アルキルエステルから導かれるモノマー単位を含む重合体である。α,β-エチレン性不飽和モノカルボン酸アルキルエステルとしては、上述の固体電解質層におけるその他の重合体において例示したものと同様のものが挙げられる。また、正極活物質層に用いてもよいニトリル基を有する重合単位を特定量含んでなる重合体以外の重合体として好適なアクリル系重合体におけるα,β-エチレン性不飽和モノカルボン酸アルキルエステルから導かれるモノマー単位の含有割合は、好ましくは60~100質量%、より好ましくは65~90質量%である。 The acrylic polymer is a polymer containing monomer units derived from an α, β-ethylenically unsaturated monocarboxylic acid alkyl ester. Examples of the α, β-ethylenically unsaturated monocarboxylic acid alkyl ester include those exemplified for the other polymers in the above-mentioned solid electrolyte layer. Further, an α, β-ethylenically unsaturated monocarboxylic acid alkyl ester in an acrylic polymer suitable as a polymer other than a polymer containing a specific amount of a polymer unit having a nitrile group that may be used in the positive electrode active material layer The content ratio of the monomer unit derived from is preferably 60 to 100% by mass, more preferably 65 to 90% by mass.
 また、アクリル系重合体としては、α,β-エチレン性不飽和モノカルボン酸アルキルエステルと、該α,β-エチレン性不飽和モノカルボン酸アルキルエステルと共重合可能な単量体との共重合体が好ましい。前記共重合可能な単量体は、上述の固体電解質層におけるその他の重合体において例示したものと同様である。 The acrylic polymer includes a copolymer of an α, β-ethylenically unsaturated monocarboxylic acid alkyl ester and a monomer copolymerizable with the α, β-ethylenically unsaturated monocarboxylic acid alkyl ester. Coalescence is preferred. The copolymerizable monomer is the same as that exemplified in the other polymer in the solid electrolyte layer.
 また、正極活物質層のバインダーは、前記ニトリル基を有する重合単位を特定量含んでなる重合体と、その他の重合体との混合物であってもよい。その場合、バインダー中のその他の重合体の含有量は、前記固体電解質層の場合と同様である。 Further, the binder of the positive electrode active material layer may be a mixture of a polymer containing a specific amount of the nitrile group-containing polymer unit and another polymer. In that case, the content of the other polymer in the binder is the same as in the case of the solid electrolyte layer.
(正極活物質)
 正極活物質は、リチウムイオンを吸蔵および放出可能な化合物である。正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
(Positive electrode active material)
The positive electrode active material is a compound that can occlude and release lithium ions. The positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
 無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。 Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides. As the transition metal, Fe, Co, Ni, Mn and the like are used. Specific examples of the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
 有機化合物からなる正極活物質としては、例えば、ポリアニリン、ポリピロール、ポリアセン、ジスルフィド系化合物、ポリスルフィド系化合物、N-フルオロピリジニウム塩などが挙げられる。正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。 Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, and N-fluoropyridinium salts. The positive electrode active material may be a mixture of the above inorganic compound and organic compound.
 本発明で用いる正極活物質の平均粒子径は、負荷特性、サイクル特性などの電池特性の向上の観点から、通常0.1~50μm、好ましくは1~20μmである。平均粒子径が上記範囲であると、充放電容量が大きい全固体二次電池を得ることができ、かつ正極活物質層用スラリー組成物の取扱い、および正極を製造する際の取扱いが容易である。平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。 The average particle diameter of the positive electrode active material used in the present invention is usually 0.1 to 50 μm, preferably 1 to 20 μm, from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics. When the average particle size is in the above range, an all-solid secondary battery having a large charge / discharge capacity can be obtained, and handling of the slurry composition for the positive electrode active material layer and handling of the positive electrode are easy. . The average particle size can be determined by measuring the particle size distribution by laser diffraction.
 正極活物質と固体電解質の重量比率は、正極活物質:固体電解質=90:10~30:70、好ましくは80:20~40:60である。上記範囲よりも正極活物質の重量比率が少ない場合、電池内の正極活物質量が低減し、電池としての容量低下につながる。また、上記範囲よりも固体電解質の重量比率が少ない場合、導電性が十分に得られず、正極活物質を有効に利用することができない為、電池としての容量低下につながる。 The weight ratio of the positive electrode active material to the solid electrolyte is positive electrode active material: solid electrolyte = 90: 10 to 30:70, preferably 80:20 to 40:60. When the weight ratio of the positive electrode active material is less than the above range, the amount of the positive electrode active material in the battery is reduced, leading to a decrease in capacity as a battery. In addition, when the weight ratio of the solid electrolyte is less than the above range, sufficient conductivity cannot be obtained, and the positive electrode active material cannot be used effectively, leading to a decrease in capacity as a battery.
 正極活物質層用スラリー組成物中のバインダーとなる重合体の含有量は、正極活物質100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.2~7質量部である。重合体の含有量が上記範囲にあることで、電池反応を阻害せずに、電極から正極活物質が脱落するのを防ぐことができる。 The content of the polymer serving as the binder in the slurry composition for the positive electrode active material layer is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 7 parts by mass with respect to 100 parts by mass of the positive electrode active material. It is. When the content of the polymer is in the above range, it is possible to prevent the positive electrode active material from dropping from the electrode without inhibiting the battery reaction.
 正極活物質層用スラリー組成物中の有機溶媒及び必要に応じて添加される他の成分は、上記の固体電解質層で例示するものと同様のものを用いることができる。正極活物質層用スラリー組成物中の有機溶媒の含有量は、正極活物質100質量部に対して、好ましくは20~300質量部、より好ましくは30~200質量部である。正極活物質層用スラリー組成物中の有機溶媒の含有量が上記範囲にあることで、固体電解質の分散性を保持しながら、良好な塗料特性を得ることができる。 The organic solvent in the positive electrode active material layer slurry composition and other components added as necessary may be the same as those exemplified for the solid electrolyte layer. The content of the organic solvent in the positive electrode active material layer slurry composition is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass with respect to 100 parts by mass of the positive electrode active material. When the content of the organic solvent in the positive electrode active material layer slurry composition is in the above range, good coating properties can be obtained while maintaining the dispersibility of the solid electrolyte.
 正極活物質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、上述したリチウム塩、分散剤、レベリング剤、消泡剤の他、導電剤、補強材などの各種の機能を発現する添加剤を含んでいてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。 In addition to the above components, the positive electrode active material layer slurry composition includes the above-described lithium salt, dispersant, leveling agent, antifoaming agent, conductive agent, reinforcing material as other components added as necessary. An additive that exhibits various functions such as these may be included. These are not particularly limited as long as they do not affect the battery reaction.
(導電剤)
 導電剤は、導電性を付与できるものであれば特に制限されないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。
(Conductive agent)
The conductive agent is not particularly limited as long as it can impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals.
 導電剤の添加量は、正極活物質100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~5質量部、特に好ましくは1~3質量部である。導電剤の含有量を上記範囲とすることで、電池の容量を高く保持した上で、電極活物質層に十分な電子伝導性を付与することができる。 The amount of the conductive agent added is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 3 parts by mass with respect to 100 parts by mass of the positive electrode active material. By setting the content of the conductive agent in the above range, it is possible to impart sufficient electron conductivity to the electrode active material layer while keeping the battery capacity high.
(補強材)
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。
(Reinforcing material)
As the reinforcing material, various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
 補強材の添加量は、正極活物質100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~5質量部、特に好ましくは1~3質量部である。補強材の含有量を上記範囲とすることで、電池の容量を高く保持した上で、電極活物質層に十分な強度を付与することができる。 The amount of the reinforcing material added is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 3 parts by mass with respect to 100 parts by mass of the positive electrode active material. By setting the content of the reinforcing material in the above range, it is possible to impart sufficient strength to the electrode active material layer while keeping the battery capacity high.
(5)負極活物質層
 負極活物質層は、上記の固体電解質及び上記のバインダーとなる重合体を用いて形成するのが好ましい。かかる負極活物質層は、上記の固体電解質及び上記のバインダーとなる重合体を含む負極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。負極活物質層用スラリー組成物は、固体電解質、バインダーとなる重合体、負極活物質、有機溶媒及び必要に応じて添加される他の成分を混合することにより製造される。
 なお、負極活物質層は、必ずしも固体電解質を含む必要はなく、その場合、バインダーとなる重合体、負極活物質、有機溶媒及び必要に応じて添加される他の成分を混合して負極活物質層用スラリー組成物を調製し、当該組成物を用いて形成すればよい。
(5) Negative electrode active material layer The negative electrode active material layer is preferably formed using the above-mentioned solid electrolyte and the above polymer serving as the binder. Such a negative electrode active material layer is formed by applying a slurry composition for a negative electrode active material layer containing the solid electrolyte and the polymer serving as the binder to the surface of a current collector, which will be described later, and drying. The slurry composition for a negative electrode active material layer is produced by mixing a solid electrolyte, a polymer serving as a binder, a negative electrode active material, an organic solvent, and other components added as necessary.
The negative electrode active material layer does not necessarily need to contain a solid electrolyte. In that case, a negative electrode active material is prepared by mixing a polymer serving as a binder, a negative electrode active material, an organic solvent, and other components added as necessary. A slurry composition for the layer may be prepared and formed using the composition.
 負極活物質層に用いてもよいその他重合体としては、例えば、フッ素系重合体、ジエン系重合体、アクリル系重合体、シリコーン系重合体等の高分子化合物等が挙げられる。中でも共役ジエンから導かれるモノマー単位と芳香族ビニルから導かれるモノマー単位とを含むジエン系重合体が、負極活物質同士を結着でき、活物質層と集電体との接着力も高い点でより好ましい。また、負極活物質層のバインダーは、前記ニトリル基を有する重合単位を特定量含んでなる重合体と、その他重合体との混合物であってもよい。その場合、バインダー中のその他の重合体の含有量は、前記固体電解質層の場合と同様である。 Examples of other polymers that may be used in the negative electrode active material layer include polymer compounds such as fluorine-based polymers, diene-based polymers, acrylic polymers, and silicone-based polymers. Among these, a diene polymer containing a monomer unit derived from a conjugated diene and a monomer unit derived from an aromatic vinyl can bind negative electrode active materials to each other, and also has a high adhesive force between the active material layer and the current collector. preferable. Further, the binder of the negative electrode active material layer may be a mixture of a polymer containing a specific amount of the polymer unit having the nitrile group and another polymer. In that case, the content of the other polymer in the binder is the same as in the case of the solid electrolyte layer.
 ジエン系重合体における共役ジエンから導かれるモノマー単位の含有割合が、好ましくは30~70質量%、より好ましくは35~65質量%であり、芳香族ビニルから導かれるモノマー単位の含有割合が、好ましくは30~70質量%、より好ましくは35~65質量%である。ジエン系重合体に含まれる共役ジエンから導かれるモノマー単位の含有割合及び芳香族ビニルから導かれるモノマー単位の含有割合を上記範囲とすることで、負極活物質同士、固体電解質粒子同士、負極活物質と固体電解質粒子の粒子間及び活物質層と集電体との密着性が高い負極を得ることができる。 The content ratio of the monomer unit derived from the conjugated diene in the diene polymer is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and the content ratio of the monomer unit derived from the aromatic vinyl is preferably Is 30 to 70% by mass, more preferably 35 to 65% by mass. By making the content ratio of the monomer unit derived from the conjugated diene contained in the diene polymer and the content ratio of the monomer unit derived from the aromatic vinyl within the above ranges, the negative electrode active materials, the solid electrolyte particles, the negative electrode active material A negative electrode having high adhesion between the solid electrolyte particles and between the active material layer and the current collector can be obtained.
 共役ジエンとしては、ブタジエン、イソプレン、2-クロロ-1,3-ブタジエン、クロロプレンなどが挙げられる。これらの中でもブタジエンが好ましい。 Examples of the conjugated diene include butadiene, isoprene, 2-chloro-1,3-butadiene, chloroprene and the like. Of these, butadiene is preferred.
 芳香族ビニルとしては、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼンなどが挙げられる。これらの中でもスチレン、α―メチルスチレン、ジビニルベンゼンが好ましい。 Examples of the aromatic vinyl include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene, divinyl benzene, and the like. . Of these, styrene, α-methylstyrene, and divinylbenzene are preferable.
 また、ジエン系重合体は、共役ジエンと、芳香族ビニルと、これらと共重合可能な単量体との共重合体であってもよい。前記共重合可能な単量体としては、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。ジエン系重合体における、前記共重合可能な単量体単位の含有割合は、好ましくは40質量%以下、より好ましくは20質量%以上40質量%以下である。 Further, the diene polymer may be a copolymer of a conjugated diene, an aromatic vinyl, and a monomer copolymerizable therewith. Examples of the copolymerizable monomer include α, β-unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; ethylene, propylene, and the like Olefins; Halogen-containing monomers such as vinyl chloride and vinylidene chloride; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; Methyl vinyl Examples thereof include vinyl ketones such as ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; and heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole. The content ratio of the copolymerizable monomer unit in the diene polymer is preferably 40% by mass or less, more preferably 20% by mass or more and 40% by mass or less.
(負極活物質)
 負極活物質としては、グラファイトやコークス等の炭素の同素体が挙げられる。前記炭素の同素体からなる負極活物質は、金属、金属塩、酸化物などとの混合体や被覆体の形態で利用することも出来る。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の酸化物や硫酸塩、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコーン等を使用できる。
(Negative electrode active material)
Examples of the negative electrode active material include carbon allotropes such as graphite and coke. The negative electrode active material composed of the allotrope of carbon can also be used in the form of a mixture with a metal, a metal salt, an oxide, or the like or a cover. Further, as the negative electrode active material, oxides and sulfates such as silicon, tin, zinc, manganese, iron, and nickel, lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, Lithium transition metal nitride, silicone, etc. can be used.
 本発明で用いる負極活物質の平均粒子径は、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1~50μm、好ましくは15~30μmである。平均粒子径が上記範囲であると、充放電容量が大きい全固体二次電池を得ることができ、かつ負極活物質層用スラリー組成物の取扱い、および負極を製造する際の取扱いが容易である。平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。 The average particle size of the negative electrode active material used in the present invention is usually 1 to 50 μm, preferably 15 to 30 μm, from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics. When the average particle size is in the above range, an all-solid secondary battery having a large charge / discharge capacity can be obtained, and handling of the slurry composition for the negative electrode active material layer and handling of the negative electrode are easy. . The average particle size can be determined by measuring the particle size distribution by laser diffraction.
 負極活物質と固体電解質の重量比率は、負極活物質:固体電解質=90:10~30:70、好ましくは80:20~40:60である。上記範囲よりも負極活物質の重量比率が少ない場合、電池内の負極活物質量が低減し、電池としての容量低下につながる。また、上記範囲よりも固体電解質の重量比率が少ない場合、導電性が十分に得られず、負極活物質を有効に利用することができない為、電池としての容量低下につながる。 The weight ratio of the negative electrode active material to the solid electrolyte is negative electrode active material: solid electrolyte = 90: 10 to 30:70, preferably 80:20 to 40:60. When the weight ratio of the negative electrode active material is less than the above range, the amount of the negative electrode active material in the battery is reduced, leading to a decrease in capacity as a battery. In addition, when the weight ratio of the solid electrolyte is less than the above range, sufficient conductivity cannot be obtained, and the negative electrode active material cannot be used effectively, leading to a decrease in capacity as a battery.
 負極活物質層用スラリー組成物中のバインダーとなる重合体の含有量は、負極活物質100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.2~7質量部である。重合体の含有量が上記範囲にあることで、電池反応を阻害せずに、電極から負極活物質が脱落するのを防ぐことができる。 The content of the polymer serving as the binder in the slurry composition for the negative electrode active material layer is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 7 parts by mass with respect to 100 parts by mass of the negative electrode active material. It is. When the content of the polymer is in the above range, it is possible to prevent the negative electrode active material from dropping from the electrode without inhibiting the battery reaction.
 負極活物質層用スラリー組成物中の有機溶媒及び必要に応じて添加される他の成分は、上記の固体電解質層で例示するものと同様のものを用いることができる。負極活物質層用スラリー組成物中の有機溶媒の含有量は、負極活物質100質量部に対して、好ましくは20~300質量部、より好ましくは30~200質量部である。負極活物質層用スラリー組成物中の有機溶媒の含有量が上記範囲にあることで、固体電解質の分散性を保持しながら、良好な塗料特性を得ることができる。 The organic solvent in the negative electrode active material layer slurry composition and other components added as necessary can be the same as those exemplified for the solid electrolyte layer. The content of the organic solvent in the negative electrode active material layer slurry composition is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass with respect to 100 parts by mass of the negative electrode active material. When the content of the organic solvent in the slurry composition for the negative electrode active material layer is within the above range, good coating properties can be obtained while maintaining the dispersibility of the solid electrolyte.
 負極活物質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、上述したリチウム塩、分散剤、レベリング剤、消泡剤、導電剤、補強材などの各種の機能を発現する添加剤を含んでいてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。 In addition to the above components, the slurry composition for the negative electrode active material layer includes the above-described lithium salt, dispersant, leveling agent, antifoaming agent, conductive agent, reinforcing material, and the like as other components added as necessary. Additives that exhibit various functions may be included. These are not particularly limited as long as they do not affect the battery reaction.
(集電体)
 集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、上述した正・負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、集電体と正・負極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
(Current collector)
The current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, etc. Metal materials such as titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode, and copper is particularly preferable for the negative electrode. The shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength between the current collector and the positive and negative electrode active material layers described above, the current collector is preferably used after being subjected to a roughening treatment. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. Further, an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity between the current collector and the positive / negative electrode active material layer.
(固体電解質層用スラリー組成物、正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物の製造)
 上記のスラリー組成物は、上述した各成分を混合して得られる。上記のスラリー組成物の各成分の混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用した方法が挙げられ、固体電解質の凝集を抑制できるという観点からプラネタリーミキサー、ボールミル又はビーズミルを使用した方法が好ましい。
(Production of slurry composition for solid electrolyte layer, slurry composition for positive electrode active material layer, and slurry composition for negative electrode active material layer)
Said slurry composition is obtained by mixing each component mentioned above. The mixing method of each component of the slurry composition is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. In addition, a method using a dispersion kneader such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader may be mentioned, and a planetary mixer, A method using a bead mill is preferred.
 上記により製造された固体電解質層用スラリー組成物の粘度は、好ましくは10~500mPa・s、より好ましくは15~400mPa・s、特に好ましくは20~300mPa・sである。固体電解質層用スラリー組成物の粘度が上記範囲にあることで、該スラリー組成物の分散性及び塗工性が良好になる。該スラリー組成物の粘度が10mPa・s未満であると、固体電解質層用スラリー組成物が垂れやすい。また、該スラリー組成物の粘度が500mPa・sを超えると、固体電解質層の薄膜化が困難になる。 The viscosity of the slurry composition for a solid electrolyte layer produced as described above is preferably 10 to 500 mPa · s, more preferably 15 to 400 mPa · s, and particularly preferably 20 to 300 mPa · s. When the viscosity of the slurry composition for the solid electrolyte layer is in the above range, the dispersibility and the coating property of the slurry composition are improved. When the viscosity of the slurry composition is less than 10 mPa · s, the slurry composition for the solid electrolyte layer tends to sag. On the other hand, when the viscosity of the slurry composition exceeds 500 mPa · s, it is difficult to reduce the thickness of the solid electrolyte layer.
 また、上記により製造された正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物の粘度は、好ましくは3000~50000mPa・s、より好ましくは4000~30000mPa・s、特に好ましくは5000~10000mPa・sである。正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物の粘度が上記範囲にあることで、該スラリー組成物の分散性及び塗工性が良好になる。該スラリー組成物の粘度が3000mPa・s未満であると、該スラリー組成物中の活物質及び固体電解質粒子Bが沈降しやすくなる。また、該スラリー組成物の粘度が50000mPa・sを超えると、塗膜の均一性が失われる。  The viscosity of the positive electrode active material layer slurry composition and the negative electrode active material layer slurry composition produced as described above is preferably 3000 to 50000 mPa · s, more preferably 4000 to 30000 mPa · s, and particularly preferably 5000 to 10,000 mPa · s. When the viscosity of the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer is in the above range, the dispersibility and the coatability of the slurry composition are improved. When the viscosity of the slurry composition is less than 3000 mPa · s, the active material and the solid electrolyte particles B in the slurry composition are likely to settle. On the other hand, when the viscosity of the slurry composition exceeds 50000 mPa · s, the uniformity of the coating film is lost.
(6)全固体二次電池
 本発明の全固体二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有し、上記固体電解質及び上記ニトリル基を有する重合単位を含んでなる重合体が、正極活物質層、負極活物質層または固体電解質層の少なくとも一層に、好ましくは全ての層に含まれる。正極活物質層、負極活物質層または固体電解質層の少なくとも一層に、上記固体電解質及び上記重合体が含まれることで、電池の出力特性や高温サイクル特性を向上させることができる。
(6) All-solid secondary battery The all-solid-state secondary battery of the present invention has a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers. The polymer comprising the polymer unit having the solid electrolyte and the nitrile group is contained in at least one layer of the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer, preferably in all layers. By including the solid electrolyte and the polymer in at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer, the output characteristics and high-temperature cycle characteristics of the battery can be improved.
 本発明の全固体二次電池における固体電解質層の厚さは、好ましくは1~15μm、より好ましくは2~13μm、特に好ましくは3~10μmである。固体電解質層の厚さが上記範囲にあることで、全固体二次電池の内部抵抗を小さくすることができる。固体電解質層の厚さが1μm未満であると、全固体二次電池がショートしてしまう。また、固体電解質層の厚さが15μmよりも大きいと、電池の内部抵抗が大きくなる。 The thickness of the solid electrolyte layer in the all solid state secondary battery of the present invention is preferably 1 to 15 μm, more preferably 2 to 13 μm, and particularly preferably 3 to 10 μm. When the thickness of the solid electrolyte layer is in the above range, the internal resistance of the all-solid secondary battery can be reduced. If the thickness of the solid electrolyte layer is less than 1 μm, the all-solid-state secondary battery is short-circuited. On the other hand, when the thickness of the solid electrolyte layer is greater than 15 μm, the internal resistance of the battery increases.
 本発明の全固体二次電池における正極は、上記の正極活物質層用スラリー組成物を集電体上に塗布、乾燥して正極活物質層を形成して製造される。また、本発明の全固体二次電池における負極は、上記の負極活物質層用スラリー組成物を、正極の集電体とは別の集電体上に塗布、乾燥して負極活物質層を形成して製造される。次いで、形成した正極活物質層または負極活物質層の上に、固体電解質層用スラリー組成物を塗布し、乾燥して固体電解質層を形成する。なお、固体電解質層は、キャリアフィルム上に固体電解質層用スラリー組成物を塗布、乾燥後、正極活物質層または負極活物質層の上に転写することで形成することもできる。そして、固体電解質層を形成しなかった電極と、上記の固体電解質層を形成した電極とを貼り合わせることで、全固体二次電池素子を製造する。 The positive electrode in the all-solid-state secondary battery of the present invention is manufactured by applying the positive electrode active material layer slurry composition onto a current collector and drying to form a positive electrode active material layer. In addition, the negative electrode in the all-solid-state secondary battery of the present invention is obtained by applying the above slurry composition for the negative electrode active material layer on a current collector different from the positive electrode current collector and drying the negative electrode active material layer. Formed and manufactured. Next, the solid electrolyte layer slurry composition is applied on the formed positive electrode active material layer or negative electrode active material layer and dried to form a solid electrolyte layer. In addition, a solid electrolyte layer can also be formed by apply | coating the slurry composition for solid electrolyte layers on a carrier film, drying, and transferring on a positive electrode active material layer or a negative electrode active material layer. And an all-solid-state secondary battery element is manufactured by bonding together the electrode which did not form a solid electrolyte layer, and the electrode which formed said solid electrolyte layer.
 正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物の集電体への塗布方法は特に限定されず、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって塗布される。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される活物質層の厚さが通常5~300μm、好ましくは10~250μmになる程度の量である。乾燥方法も特に制限されず、例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥が挙げられる。乾燥条件は、通常は応力集中が起こって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲の中で、できるだけ早く有機溶媒が揮発するように調整する。更に、乾燥後の電極をプレスすることにより電極を安定させてもよい。プレス方法は、金型プレスやカレンダープレスなどの方法が挙げられるが、限定されるものではない。 The method for applying the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer to the current collector is not particularly limited. For example, the doctor blade method, the dip method, the reverse roll method, the direct roll method, and the gravure method It is applied by the extrusion method, brush coating or the like. The amount to be applied is not particularly limited, but is such an amount that the thickness of the active material layer formed after removing the organic solvent is usually 5 to 300 μm, preferably 10 to 250 μm. The drying method is not particularly limited, and examples thereof include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying conditions are usually adjusted so that the organic solvent volatilizes as quickly as possible within a speed range in which stress concentration occurs and the active material layer cracks or the active material layer does not peel from the current collector. Furthermore, you may stabilize an electrode by pressing the electrode after drying. Examples of the pressing method include, but are not limited to, a mold press and a calendar press.
 乾燥は、有機溶媒が十分に揮発する温度で行う。乾燥温度は、具体的には50~250℃が好ましく、さらには80~200℃が好ましい。上記範囲とすることにより、結着剤の熱分解がなく良好な活物質層を形成することが可能となる。乾燥時間については、特に限定されることはないが、通常10~60分の範囲で行われる。 Drying is performed at a temperature at which the organic solvent is sufficiently volatilized. Specifically, the drying temperature is preferably 50 to 250 ° C., more preferably 80 to 200 ° C. By setting it as the said range, it becomes possible to form a favorable active material layer without thermal decomposition of a binder. The drying time is not particularly limited, but is usually in the range of 10 to 60 minutes.
 固体電解質層用スラリー組成物を、正極活物質層、負極活物質層又はキャリアフィルムへ塗布する方法は特に限定されず、上述した正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物の集電体への塗布方法と同様の方法により行われるが、薄膜の固体電解質層を形成できるという観点からグラビア法が好ましい。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される固体電解質層の厚さが、好ましくは1~15μm、より好ましくは3~14μmになる程度の量である。乾燥方法、乾燥条件及び乾燥温度も、上述の正極活物質層用スラリー組成物及び負極活物質層用スラリー組成物と同様である。 A method for applying the slurry composition for the solid electrolyte layer to the positive electrode active material layer, the negative electrode active material layer or the carrier film is not particularly limited, and the above-described slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer are described above. However, the gravure method is preferred from the viewpoint that a thin solid electrolyte layer can be formed. The amount to be applied is not particularly limited, but is an amount such that the thickness of the solid electrolyte layer formed after removing the organic solvent is preferably 1 to 15 μm, more preferably 3 to 14 μm. The drying method, drying conditions, and drying temperature are also the same as those of the above-described slurry composition for positive electrode active material layer and slurry composition for negative electrode active material layer.
 更に、上記の固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせた積層体を、加圧してもよい。加圧方法としては特に限定されず、例えば、平板プレス、ロールプレス、CIP(Cold Isostatic Press)などが挙げられる。加圧プレスする圧力としては、好ましくは5~700MPa、より好ましくは7~500MPaである。加圧プレスの圧力を上記範囲とすることにより、電極と固体電解質層との各界面における抵抗、更には各層内の粒子間の接触抵抗が低くなり良好な電池特性を示すからである。 Furthermore, a laminate in which the electrode on which the solid electrolyte layer is formed and the electrode on which the solid electrolyte layer is not formed may be pressed. The pressurizing method is not particularly limited, and examples thereof include a flat plate press, a roll press, and CIP (Cold Isostatic Press). The pressure for pressing is preferably 5 to 700 MPa, more preferably 7 to 500 MPa. This is because by setting the pressure of the pressure press within the above range, the resistance at each interface between the electrode and the solid electrolyte layer, and further, the contact resistance between particles in each layer is lowered, and good battery characteristics are exhibited.
 正極活物質層または負極活物質層のどちらに固体電解質層用スラリー組成物を塗布するかは特に限定されないが、使用する電極活物質の粒子径が大きい方の活物質層に固体電解質層用スラリー組成物を塗布することが好ましい。電極活物質の粒子径が大きいと、活物質層表面に凹凸が形成されるため、組成物を塗布することで、活物質層表面の凹凸を緩和することができる。そのため、固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせて積層する際に、固体電解質層と電極との接触面積が大きくなり、界面抵抗を抑制することができる。 There is no particular limitation on whether the positive electrode active material layer or the negative electrode active material layer is coated with the slurry composition for the solid electrolyte layer, but the solid electrolyte layer slurry is applied to the active material layer having the larger particle diameter of the electrode active material to be used. It is preferable to apply the composition. When the particle diameter of the electrode active material is large, unevenness is formed on the surface of the active material layer. Therefore, the unevenness on the surface of the active material layer can be reduced by applying the composition. Therefore, when the electrode formed with the solid electrolyte layer and the electrode not formed with the solid electrolyte layer are bonded and laminated, the contact area between the solid electrolyte layer and the electrode is increased, and the interface resistance can be suppressed. .
 得られた全固体二次電池素子を、電池形状に応じてそのままの状態又は巻く、折るなどして電池容器に入れ、封口して全固体二次電池が得られる。また、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを電池容器に入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。 The obtained all-solid-state secondary battery element is put into a battery container as it is or wound or folded according to the shape of the battery, and sealed to obtain an all-solid-state secondary battery. If necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate or the like can be placed in the battery container to prevent an increase in pressure inside the battery and overcharge / discharge. The shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
 以下に、実施例を挙げて本発明を説明するが、本発明はこれらの実施例によりなんら限定されるものではない。各特性は、以下の方法により評価する。なお、本実施例における「部」および「%」は、特に断りのない限り、それぞれ、「質量部」および「質量%」である。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. Each characteristic is evaluated by the following method. Note that “parts” and “%” in this example are “parts by mass” and “mass%”, respectively, unless otherwise specified.
<ヨウ素価の測定>
 ヨウ素価は、JIS K 0070(1992)に従って求めた。
<Measurement of iodine value>
The iodine value was determined according to JIS K 0070 (1992).
<ニトリル基を有する重合単位の含有割合の測定>
 ニトリル基を有する重合単位の含有割合は、日本電子株式会社製FT-NMR装置(JNM-EX400WB)を用いて測定した。
<Measurement of content ratio of polymerization unit having nitrile group>
The content ratio of the polymer unit having a nitrile group was measured using an FT-NMR apparatus (JNM-EX400WB) manufactured by JEOL Ltd.
<粒度分布(平均粒子径)> 
 レーザー回折式粒度分布測定装置を用いて固体電解質層用スラリー組成物中の固体電解質の分散粒子径を測定し、体積平均粒子径D50を求めた。下記基準で凝集性を判断している。体積平均粒子径D50が1次粒子に近いほど凝集度が低く分散性に優れることを示している。
 A:10μm未満
 B:10μm以上~20μm未満
 C:20μm以上~30μm未満
 D:30μm以上~50μm未満
 E:50μm以上
<Particle size distribution (average particle size)>
The dispersion particle diameter of the solid electrolyte in the slurry composition for the solid electrolyte layer was measured using a laser diffraction particle size distribution measuring device, and the volume average particle diameter D50 was determined. Aggregation is judged according to the following criteria. The closer the volume average particle diameter D50 is to the primary particles, the lower the degree of aggregation and the better the dispersibility.
A: Less than 10 μm B: 10 μm or more but less than 20 μm C: 20 μm or more but less than 30 μm D: 30 μm or more but less than 50 μm E: 50 μm or more
<電池特性:出力特性>
 10セルの全固体二次電池を0.1Cの定電流法によって4.3Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量を求める。その後0.1Cにて4.3Vまで充電しその後10Cにて3.0Vまで放電し、10C放電容量を求める。10セルの平均値を測定値(0.1C放電容量a、10C放電容量b)とし、10C放電容量bと0.1C放電容量aの電気容量の比(b/a(%))で表される容量保持率を求め、これを出力特性の評価基準とし、以下の基準で評価する。この値が高いほど出力特性に優れている、すなわち内部抵抗が小さいことを意味する。
 A:50%以上
 B:30%以上50%未満
 C:10%以上30%未満
 D:1%以上10%未満
 E:1%未満
<Battery characteristics: Output characteristics>
A 10-cell all-solid-state secondary battery is charged to 4.3 V by a constant current method of 0.1 C, and then discharged to 3.0 V at 0.1 C to obtain a 0.1 C discharge capacity. Thereafter, the battery is charged to 4.3 V at 0.1 C and then discharged to 3.0 V at 10 C, and the 10 C discharge capacity is obtained. The average value of 10 cells is a measured value (0.1C discharge capacity a, 10C discharge capacity b), and is expressed as a ratio of electric capacity between 10C discharge capacity b and 0.1C discharge capacity a (b / a (%)). Capacity retention ratio is obtained, and this is used as an evaluation criterion for output characteristics, and is evaluated according to the following criteria. Higher values indicate better output characteristics, that is, lower internal resistance.
A: 50% or more B: 30% or more and less than 50% C: 10% or more and less than 30% D: 1% or more and less than 10% E: Less than 1%
<電池特性:高温サイクル特性>
 得られた全固体二次電池を用いて、60℃で0.1Cで3Vから4.3Vまで充電し、次いで0.1Cで4.3Vから3Vまで放電する充放電を、100サイクル繰り返し行った。5サイクル目の0.1C放電容量に対する100サイクル目の0.1C放電容量の割合を百分率で算出した値を容量維持率とし、下記の基準で判断する。この値が大きいほど放電容量減が少なく、高温でのサイクル特性に優れている。
 A:60%以上
 B:50%以上60%未満
 C:40%以上50%未満
 D:30%以上40%未満
 E:20%以上30%未満
 F:20%未満
<Battery characteristics: High-temperature cycle characteristics>
Using the obtained all-solid-state secondary battery, charging / discharging which was charged from 3 V to 4.3 V at 0.1 C at 60 ° C. and then discharged from 4.3 V to 3 V at 0.1 C was repeated 100 cycles. . A value obtained by calculating the percentage of the 0.1C discharge capacity at the 100th cycle with respect to the 0.1C discharge capacity at the 5th cycle as a percentage is determined as the capacity maintenance rate, and the following criteria are used. The larger this value is, the less the discharge capacity is reduced, and the higher the cycle characteristics at high temperature.
A: 60% or more B: 50% or more and less than 60% C: 40% or more and less than 50% D: 30% or more and less than 40% E: 20% or more and less than 30% F: Less than 20%
(実施例1)
<正極活物質層用スラリー組成物の製造>
 正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、固体電解質としてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、平均粒子径:0.4μm)150部と、導電剤としてアセチレンブラック13部と、ニトリル基を有する重合単位を含んでなる重合体として水添NBR(日本ゼオン社製Zetpol(登録商標)3300(ニトリル含量23.6%、ヨウ素価7mg/100mg以下))のキシレン溶液を固形分相当で5部とを加え、さらに有機溶媒としてキシレンで固形分濃度58%に調整した後にプラネタリーミキサーで60分混合した。さらにキシレンで固形分濃度74%に調整した後に10分間混合して正極活物質層用スラリー組成物を調製した。正極活物質層用スラリー組成物の粘度は、7,100mPa・sであった。
Example 1
<Manufacture of slurry composition for positive electrode active material layer>
Sulfide glass (Li 2 S / P 2 S 5 = 70 mol% /) consisting of 100 parts of lithium cobaltate (average particle size: 11.5 μm) as the positive electrode active material and Li 2 S and P 2 S 5 as the solid electrolyte. Hydrogenated NBR (Zetpol (registered trademark) manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising 150 parts of 30 mol%, average particle size: 0.4 μm), 13 parts of acetylene black as a conductive agent, and a polymer unit having a nitrile group 3300 (nitrile content 23.6%, iodine value 7 mg / 100 mg or less) xylene solution was added to 5 parts of solid content, and the organic solvent was adjusted to a solid content concentration of 58% with xylene. Mix for 60 minutes. Further, the solid content concentration was adjusted to 74% with xylene, and then mixed for 10 minutes to prepare a slurry composition for a positive electrode active material layer. The viscosity of the positive electrode active material layer slurry composition was 7,100 mPa · s.
<負極活物質層用スラリー組成物の製造>
 負極活物質としてグラファイト(平均粒子径:20μm)100部と、固体電解質としてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、平均粒子径:0.4μm)50部と、ニトリル基を有する重合単位を含んでなる重合体として水添NBR(日本ゼオン社製Zetpol(登録商標)3300(ニトリル含量23.6%、ヨウ素価7mg/100mg以下))のキシレン溶液 を固形分相当で5部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度60%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリー組成物を調製した。負極活物質層用スラリー組成物の粘度は、5,300mPa・sであった。
<Manufacture of slurry composition for negative electrode active material layer>
Sulfide glass (Li 2 S / P 2 S 5 = 70 mol% / 30 mol%, average) consisting of 100 parts of graphite (average particle size: 20 μm) as the negative electrode active material and Li 2 S and P 2 S 5 as the solid electrolyte Hydrogenated NBR (Zetpol (registered trademark) 3300 manufactured by Nippon Zeon Co., Ltd., nitrile content 23.6%, iodine value 7 mg / y) as a polymer comprising 50 parts of particle size: 0.4 μm) and polymer units having a nitrile group 100 mg or less)) xylene solution is mixed with 5 parts corresponding to the solid content, and further, xylene is added as an organic solvent to adjust the solid content concentration to 60%, followed by mixing with a planetary mixer and slurry composition for the negative electrode active material layer A product was prepared. The viscosity of the negative electrode active material layer slurry composition was 5,300 mPa · s.
<固体電解質層用スラリー組成物の製造>
 固体電解質としてLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%)100部と、ニトリル基を有する重合単位を含んでなる重合体として水添NBR(日本ゼオン社製Zetpol(登録商標)3300(ニトリル含量23.6%、ヨウ素価7mg/100mg以下))のキシレン溶液 を固形分相当で5部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度30%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。固体電解質層用スラリー組成物の粘度は、82mPa・sであった。得られた固体電解質層用スラリー組成物中の固体電解質の粒度分布を上記基準にて評価した。結果を表1に示す。
<Manufacture of slurry composition for solid electrolyte layer>
As a polymer comprising 100 parts of a sulfide glass (Li 2 S / P 2 S 5 = 70 mol% / 30 mol%) composed of Li 2 S and P 2 S 5 as a solid electrolyte and a polymer unit having a nitrile group A xylene solution of hydrogenated NBR (Zetpol (registered trademark) 3300 manufactured by Nippon Zeon Co., Ltd. (nitrile content 23.6%, iodine value 7 mg / 100 mg or less)) was mixed with 5 parts in solid content, and xylene as an organic solvent. Was added to adjust the solid content concentration to 30%, followed by mixing with a planetary mixer to prepare a slurry composition for a solid electrolyte layer. The viscosity of the solid electrolyte layer slurry composition was 82 mPa · s. The particle size distribution of the solid electrolyte in the obtained slurry composition for the solid electrolyte layer was evaluated based on the above criteria. The results are shown in Table 1.
<全固体二次電池の製造>
 集電体(アルミニウム)表面に上記正極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて50μmの正極活物質層を形成して正極を製造した。また、別の集電体(銅)表面に上記負極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて30μmの負極活物質層を形成して負極を製造した。
<Manufacture of all-solid-state secondary batteries>
The positive electrode active material layer slurry composition was applied to the surface of the current collector (aluminum) and dried (110 ° C., 20 minutes) to form a 50 μm positive electrode active material layer to produce a positive electrode. Moreover, the said slurry composition for negative electrode active material layers was apply | coated to another collector (copper) surface, it was made to dry (110 degreeC, 20 minutes), and the negative electrode active material layer of 30 micrometers was formed, and the negative electrode was manufactured.
 次いで、上記正極活物質層の表面に、上記固体電解質層用スラリー組成物を塗布し、乾燥(110℃、10分)させて11μmの固体電解質層を形成した。 Next, the solid electrolyte layer slurry composition was applied to the surface of the positive electrode active material layer and dried (110 ° C., 10 minutes) to form an 11 μm solid electrolyte layer.
 正極活物質層の表面に積層された固体電解質層と、上記負極の負極活物質層とを貼り合わせ、プレスして全固体二次電池を得た。プレス後の全固体二次電池の固体電解質層の厚さは10μmであった。得られた全固体二次電池の出力特性及び高温サイクル特性を上記基準にて評価した。結果を表1に示す。 The solid electrolyte layer laminated on the surface of the positive electrode active material layer and the negative electrode active material layer of the negative electrode were bonded together and pressed to obtain an all-solid secondary battery. The thickness of the solid electrolyte layer of the all-solid secondary battery after pressing was 10 μm. The output characteristics and high temperature cycle characteristics of the obtained all-solid-state secondary battery were evaluated based on the above criteria. The results are shown in Table 1.
(実施例2)
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いるニトリル基を有する重合単位を含んでなる重合体として水添NBR(日本ゼオン社製Zetpol(登録商標)4300(ニトリル含量18.6%、ヨウ素価7mg/100mg以下))を用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。
(Example 2)
Hydrogenated NBR (Zetpol (manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising polymer units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition. All-solid-state secondary batteries were prepared and evaluated in the same manner as in Example 1 except that (registered trademark) 4300 (nitrile content 18.6%, iodine value 7 mg / 100 mg or less) was used. The results are shown in Table 1.
(実施例3)
<ニトリル基を有する重合単位を含んでなる重合体の作製>
 反応容器に、水240部、アクリロニトリル12部、およびドデシルベンゼンスルホン酸ナトリウム(乳化剤)2.5部を仕込み、温度を5℃に調整した。次いで、気相を減圧して十分に脱気してから、1,3-ブタジエン90部、重合開始剤であるパラメンタンヒドロペルオキシド0.06部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄(7水塩)0.006部およびホルムアルデヒドスルホキシル酸ナトリウム0.06部、ならびに連鎖移動剤のt-ドデシルメルカプタン1部を添加して乳化重合の1段目の反応を開始した。反応開始後、仕込み単量体に対する重合転化率が34%、及び58%に達した時点で、反応容器に1,3-ブタジエンをそれぞれ20部ずつ追加して2段目および3段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が75%に達した時点でヒドロキシルアミン硫酸塩0.3部、と水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリル基を有する重合単位を含んでなる不飽和重合体のラテックス(固形分24%)を得た。
(Example 3)
<Preparation of a polymer comprising a polymer unit having a nitrile group>
A reaction vessel was charged with 240 parts of water, 12 parts of acrylonitrile, and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), and the temperature was adjusted to 5 ° C. Next, after the gas phase is depressurized and sufficiently deaerated, 90 parts of 1,3-butadiene, 0.06 part of paramentane hydroperoxide as a polymerization initiator, 0.02 part of sodium ethylenediaminetetraacetate, First stage reaction of emulsion polymerization was started by adding 0.006 part of iron (7-hydrate), 0.06 part of sodium formaldehyde sulfoxylate and 1 part of chain transfer agent t-dodecyl mercaptan. After the start of the reaction, when the polymerization conversion ratio with respect to the charged monomer reaches 34% and 58%, 20 parts of 1,3-butadiene are added to the reaction vessel respectively, and the second and third stage polymerizations are performed. Reaction was performed. Thereafter, when the polymerization conversion rate with respect to all charged monomers reached 75%, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to terminate the polymerization reaction. After the reaction was stopped, the contents of the reaction vessel were heated to 70 ° C., unreacted monomers were recovered by steam distillation under reduced pressure, and an unsaturated polymer latex containing polymerized units having a nitrile group ( 24% solids) was obtained.
 得られた不飽和重合体の単量体を構成する各単量体の含有割合を、日本電子株式会社製FTNMR装置(JNM-EX400WB)を用いて測定したところ、アクリロニトリル単量体単位11.0% 、1,3-ブタジエン単位89%であった。 When the content ratio of each monomer constituting the monomer of the obtained unsaturated polymer was measured using an FTNMR apparatus (JNM-EX400WB) manufactured by JEOL Ltd., an acrylonitrile monomer unit 11.0 was obtained. %, 1,3-butadiene unit 89%.
(水素化反応)
 全固形分濃度を12%に調整した不飽和重合体のラテックス1400ミリリットル(全固形分48グラム)を攪拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流してラテックス中の溶存酸素を除去した後、水素化触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という。)させた。このとき、重合体のヨウ素価は、35mg/100mgであった。次いで、オートクレーブを大気圧にまで戻し、更に水素化触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という。)させた。その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレーターを用いて、固形分濃度が約40%となるまで濃縮してニトリル基を有する重合単位を含んでなるヨウ素価7mg/100mg以下の重合体(水添NBR)を得た。
(Hydrogenation reaction)
1400 milliliters of unsaturated polymer latex (total solid content 48 grams) with total solid content adjusted to 12% was put into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was passed for 10 minutes to remove dissolved oxygen in the latex. After that, as a hydrogenation catalyst, 75 mg of palladium acetate was dissolved in 180 ml of water to which 4 times mole of nitric acid was added to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. .) At this time, the iodine value of the polymer was 35 mg / 100 mg. Next, the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate was further dissolved and added as a hydrogenation catalyst in 60 ml of water to which 4 times moles of nitric acid had been added relative to Pd. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. .) Thereafter, the contents were returned to room temperature, the inside of the system was put into a nitrogen atmosphere, and then concentrated using an evaporator until the solid content concentration was about 40%, and the iodine value comprising a polymer unit having a nitrile group was 7 mg / 100 mg or less of polymer (hydrogenated NBR) was obtained.
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いるニトリル基を有する重合単位を含んでなる重合体として上記水添NBR(ニトリル含量11.0%、ヨウ素価7mg/100mg以下)を用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。 The above hydrogenated NBR (nitrile content 11.0) is a polymer comprising polymerized units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition. %, Iodine value 7 mg / 100 mg or less) was used, and an all-solid secondary battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
 不飽和重合体を製造する際に、乳化重合の1段目の反応の仕込み単量体を、アクリロニトリル8部、1,3-ブタジエン96部にそれぞれ変更し、重合転化率が34%、及び58%に達した時点で、反応容器に1,3-ブタジエンをそれぞれ20部ずつ追加して2段目および3段目の重合反応を行った以外は実施例3と同様にして、アクリロニトリル単量体単位7.0%、1,3-ブタジエン単位93%である不飽和重合体のラテックスを得た。
Example 4
In the production of the unsaturated polymer, the monomer charged in the first stage of the emulsion polymerization was changed to 8 parts of acrylonitrile and 96 parts of 1,3-butadiene, respectively, so that the polymerization conversions were 34% and 58%. %, An acrylonitrile monomer was prepared in the same manner as in Example 3 except that 20 parts of 1,3-butadiene was added to the reaction vessel and the second and third polymerization reactions were carried out. An unsaturated polymer latex having 7.0% units and 93% 1,3-butadiene units was obtained.
 得られた不飽和重合体のラテックスを実施例3と同様の方法で水素化し、固形分濃度が約40%となるまで濃縮してニトリル基を有する重合単位を含んでなるヨウ素価7mg/100mg以下の重合体(水添NBR)を得た。 The obtained latex of the unsaturated polymer was hydrogenated in the same manner as in Example 3, and concentrated until the solid content concentration was about 40%, and the iodine value containing polymer units having a nitrile group was 7 mg / 100 mg or less. Polymer (hydrogenated NBR) was obtained.
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いるニトリル基を有する重合単位を含んでなる重合体として上記水添NBR(ニトリル含量7.0%、ヨウ素価7mg/100mg以下)を用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。 The hydrogenated NBR (nitrile content of 7.0) is a polymer comprising polymer units having a nitrile group used in the slurry composition for the positive electrode active material layer, the slurry composition for the negative electrode active material layer, and the slurry composition for the solid electrolyte layer. %, Iodine value 7 mg / 100 mg or less) was used, and an all-solid secondary battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(実施例5)
 不飽和重合体を製造する際に、乳化重合の1段目の反応の仕込み単量体を、アクリロニトリル37部、1,3-ブタジエン60部にそれぞれ変更し、重合転化率が34%、及び58%に達した時点で、反応容器に1,3-ブタジエンをそれぞれ20部ずつ追加して2段目および3段目の重合反応を行った以外は実施例3と同様にして、アクリロニトリル単量体単位28.0%、1,3-ブタジエン単位72%である不飽和重合体のラテックスを得た。
(Example 5)
In the production of the unsaturated polymer, the monomers charged in the first stage of the emulsion polymerization were changed to 37 parts of acrylonitrile and 60 parts of 1,3-butadiene, respectively, and the polymerization conversions were 34% and 58%, respectively. %, An acrylonitrile monomer was prepared in the same manner as in Example 3 except that 20 parts of 1,3-butadiene was added to the reaction vessel and the second and third polymerization reactions were carried out. An unsaturated polymer latex having 28.0% units and 72% 1,3-butadiene units was obtained.
 得られた不飽和重合体のラテックスを実施例3と同様の方法で水素化した固形分濃度が約40%となるまで濃縮してニトリル基を有する重合単位を含んでなるヨウ素価7mg/100mg以下の重合体(水添NBR)を得た。 The obtained latex of the unsaturated polymer was concentrated by the same method as in Example 3 until the solid content concentration was about 40%, and the iodine value containing polymer units having a nitrile group was 7 mg / 100 mg or less. Polymer (hydrogenated NBR) was obtained.
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いるニトリル基を有する重合単位を含んでなる重合体として上記水添NBR(ニトリル含量28.0%、ヨウ素価7mg/100mg以下)を用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。 The above hydrogenated NBR (nitrile content 28.0) is a polymer comprising polymer units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition. %, Iodine value 7 mg / 100 mg or less) was used, and an all-solid secondary battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(実施例6)
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いるニトリル基を有する重合単位を含んでなる重合体として水添NBR(日本ゼオン社製Zetpol(登録商標)3310(ニトリル含量23.6%、ヨウ素価15mg/100mg))を用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。
(Example 6)
Hydrogenated NBR (Zetpol (manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising polymer units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition. All-solid-state secondary batteries were prepared and evaluated in the same manner as in Example 1 except that (registered trademark) 3310 (nitrile content 23.6%, iodine value 15 mg / 100 mg) was used. The results are shown in Table 1.
(実施例7)
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いるニトリル基を有する重合単位を含んでなる重合体として水添NBR(日本ゼオン社製Zetpol(登録商標)4320(ニトリル含量18.6%、ヨウ素価27mg/100mg))を用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。
(Example 7)
Hydrogenated NBR (Zetpol (manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising polymer units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition. An all-solid secondary battery was prepared and evaluated in the same manner as in Example 1 except that (registered trademark) 4320 (nitrile content 18.6%, iodine value 27 mg / 100 mg) was used. The results are shown in Table 1.
(実施例8)
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いる固体電解質としてLiS-SiSを用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。
(Example 8)
Except that Li 2 S—SiS 2 was used as the solid electrolyte used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition, all the same as in Example 1 A solid secondary battery was fabricated and evaluated. The results are shown in Table 1.
(比較例1)
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いるニトリル基を有する重合単位を含んでなる重合体として水添NBR(日本ゼオン社製Zetpol(登録商標)2000(ニトリル含量36.2%、ヨウ素価7mg/100mg以下))を用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。
(Comparative Example 1)
Hydrogenated NBR (Zetpol (manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising polymer units having a nitrile group used in the positive electrode active material layer slurry composition, the negative electrode active material layer slurry composition, and the solid electrolyte layer slurry composition. All solid secondary batteries were prepared and evaluated in the same manner as in Example 1 except that (registered trademark) 2000 (nitrile content: 36.2%, iodine value: 7 mg / 100 mg or less) was used. The results are shown in Table 1.
(比較例2)
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いるニトリル基を有する重合単位を含んでなる重合体として水添NBR(日本ゼオン社製Nipol(登録商標)DN407(ニトリル含量22.0%、ヨウ素価366mg/100mg))を用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。
(Comparative Example 2)
Hydrogenated NBR (Nipol (manufactured by ZEON Corporation, Nipol) as a polymer comprising polymer units having a nitrile group used in the slurry composition for the positive electrode active material layer, the slurry composition for the negative electrode active material layer, and the slurry composition for the solid electrolyte layer All-solid secondary batteries were prepared and evaluated in the same manner as in Example 1 except that registered trademark DN407 (nitrile content 22.0%, iodine value 366 mg / 100 mg) was used. The results are shown in Table 1.
(比較例3)
 正極活物質層用スラリー組成物、負極活物質層用スラリー組成物及び固体電解質層用スラリー組成物に用いるニトリル基を有する重合単位を含んでなる重合体として水添NBR(日本ゼオン社製BR1220(ニトリル含量0%、ヨウ素価469mg/100mg))を用いたこと以外は、実施例1と同様に全固体二次電池を作製し、評価を行った。結果を表1に示す。
(Comparative Example 3)
Hydrogenated NBR (BR1220 (manufactured by Nippon Zeon Co., Ltd.) as a polymer comprising polymer units having a nitrile group used in the slurry composition for the positive electrode active material layer, the slurry composition for the negative electrode active material layer, and the slurry composition for the solid electrolyte layer An all-solid secondary battery was prepared and evaluated in the same manner as in Example 1 except that a nitrile content of 0% and an iodine value of 469 mg / 100 mg) were used. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~8の、正極活物質層を有する正極と、負極活物質層を有する負極と、前記正極活物質層及び負極活物質層の層間に固体電解質層とを有する全固体二次電池であって、前記正極活物質層、前記負極活物質層、または前記固体電解質層の少なくとも一層に、固体電解質と、ニトリル基を有する重合単位を含んでなる重合体とが含まれ、前記重合体における、前記ニトリル基を有する重合単位の含有割合が2~30質量%であり、前記重合体のヨウ素価が0mg/100mg以上30mg/100mg以下である全固体二次電池は、出力特性および高温サイクル特性に優れることが分かる。また、固体電解質層用スラリー組成物中の固体電解質の分散性に優れる。
 一方、重合体におけるニトリル基を有する重合単位の含有割合が多い比較例1の全固体二次電池や、重合体のヨウ素価が大きい比較例2の全固体二次電池、ヨウ素価が大きくさらにニトリル基を有する重合単位が含まれない比較例3の全固体二次電池は、出力特性および高温サイクル特性に劣ると共に、固体電解質層用スラリー組成物中の固体電解質の分散性が悪い。
From Table 1, all solids of Examples 1 to 8 having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer. In the secondary battery, at least one of the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer includes a solid electrolyte and a polymer including a polymer unit having a nitrile group, The all-solid-state secondary battery in which the content ratio of the polymer unit having the nitrile group in the polymer is 2 to 30% by mass and the iodine value of the polymer is 0 mg / 100 mg or more and 30 mg / 100 mg or less has output characteristics. It can also be seen that the high temperature cycle characteristics are excellent. Moreover, it is excellent in the dispersibility of the solid electrolyte in the slurry composition for solid electrolyte layers.
On the other hand, the all-solid-state secondary battery of Comparative Example 1 having a high content of polymer units having nitrile groups in the polymer, the all-solid-state secondary battery of Comparative Example 2 having a high iodine value of the polymer, The all-solid-state secondary battery of Comparative Example 3 that does not include a polymerization unit having a group is inferior in output characteristics and high-temperature cycle characteristics, and has poor dispersibility of the solid electrolyte in the solid electrolyte layer slurry composition.

Claims (5)

  1.  正極活物質層を有する正極と、負極活物質層を有する負極と、前記正極活物質層及び負極活物質層の層間に固体電解質層とを有する全固体二次電池であって、
     前記正極活物質層、前記負極活物質層、または前記固体電解質層の少なくとも一層に、固体電解質と、ニトリル基を有する重合単位を含んでなる重合体とが含まれ、
     前記重合体における、前記ニトリル基を有する重合単位の含有割合が2~30質量%であり、
     前記重合体のヨウ素価が0mg/100mg以上30mg/100mg以下である全固体二次電池。
    An all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer,
    At least one layer of the positive electrode active material layer, the negative electrode active material layer, or the solid electrolyte layer includes a solid electrolyte and a polymer including a polymer unit having a nitrile group,
    The content ratio of the polymer unit having the nitrile group in the polymer is 2 to 30% by mass,
    The all-solid-state secondary battery whose iodine value of the said polymer is 0 mg / 100 mg or more and 30 mg / 100 mg or less.
  2.  前記重合体における、前記ニトリル基を有する重合単位の含有割合が10~28質量%である請求項1に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1, wherein a content ratio of the polymer unit having the nitrile group in the polymer is 10 to 28% by mass.
  3.  前記固体電解質が、Li、P及びSを含む硫化物である請求項1または2に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1 or 2, wherein the solid electrolyte is a sulfide containing Li, P and S.
  4.  前記固体電解質が、LiSとPとからなる硫化物ガラスである請求項1~3のいずれかに記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 3, wherein the solid electrolyte is a sulfide glass composed of Li 2 S and P 2 S 5 .
  5.  前記重合体が、水素化アクリロニトリル・ブタジエン共重合体である請求項1~4のいずれかに記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 4, wherein the polymer is a hydrogenated acrylonitrile-butadiene copolymer.
PCT/JP2011/069295 2010-08-27 2011-08-26 All-solid-state secondary battery WO2012026583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012530738A JP5768815B2 (en) 2010-08-27 2011-08-26 All solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010190751 2010-08-27
JP2010-190751 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012026583A1 true WO2012026583A1 (en) 2012-03-01

Family

ID=45723572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069295 WO2012026583A1 (en) 2010-08-27 2011-08-26 All-solid-state secondary battery

Country Status (2)

Country Link
JP (1) JP5768815B2 (en)
WO (1) WO2012026583A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094437A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp All-solid battery
JP2012243476A (en) * 2011-05-17 2012-12-10 Nippon Zeon Co Ltd Method for manufacturing all-solid secondary battery
WO2013146916A1 (en) * 2012-03-28 2013-10-03 日本ゼオン株式会社 Electrode for all-solid-state secondary batteries and method for producing same
WO2013146896A1 (en) * 2012-03-28 2013-10-03 日本ゼオン株式会社 All-solid-state secondary battery
JP2014017108A (en) * 2012-07-09 2014-01-30 Idemitsu Kosan Co Ltd Solid electrolyte particle and composition thereof
JP2015103451A (en) * 2013-11-26 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid type secondary battery and method for manufacturing all-solid type secondary battery
EP2833448A4 (en) * 2012-03-26 2015-12-02 Zeon Corp Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition
WO2016136090A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Solid electrolyte composition, electrode active substance and production method thereof, battery electrode sheet and manufacturing method thereof, and all-solid-state secondary battery and manufacturing method thereof
WO2017043379A1 (en) * 2015-09-10 2017-03-16 日本ゼオン株式会社 Binder composition for all-solid-state battery
JP2017069195A (en) * 2015-10-02 2017-04-06 パナソニックIpマネジメント株式会社 battery
US9705155B2 (en) 2012-03-15 2017-07-11 Kabushiki Kaisha Toshiba Electrode for solid electrolyte secondary battery, solid electrolyte secondary battery, and battery pack
WO2017204027A1 (en) * 2016-05-23 2017-11-30 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
WO2018003636A1 (en) * 2016-06-29 2018-01-04 日本ゼオン株式会社 Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, electrode for non-aqueous secondary cell, and non-aqueous secondary cell
US20180053932A1 (en) * 2016-08-18 2018-02-22 Hyundai Motor Company Cathode slurry composition of all-solid-state ion battery and cathode of all-solid-state ion battery comprising the same
JP2019527457A (en) * 2016-07-26 2019-09-26 ハッチンソンHutchinson Lithium ion battery cell anode, method for producing the same, and battery including the same
WO2020045227A1 (en) * 2018-08-31 2020-03-05 日本ゼオン株式会社 Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery electrode mixture layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, electrode for all-solid-state secondary battery, solid electrolyte layer for all-solid-state secondary battery, and all-solid-state secondary battery
JP2020042990A (en) * 2018-09-11 2020-03-19 三井化学株式会社 Battery non-aqueous electrolyte and lithium secondary battery
JP2020525992A (en) * 2017-07-03 2020-08-27 アランセオ・ドイチュランド・ゲーエムベーハー All-solid-state lithium-ion battery cathode and all-solid-state lithium-ion battery including the cathode
US10833351B2 (en) 2016-03-08 2020-11-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery
EP3240069B1 (en) * 2014-12-26 2021-03-31 Zeon Corporation Binder composition for non-aqueous secondary cell positive electrode, composition for non-aqueous secondary cell positive electrode, non-aqueous secondary cell positive electrode and non-aqueous secondary cell, and method for producing composition for non-aqueous secondary cell positive electrode, non-aqueous secondary cell positive electrode and non-aqueous secondary cell
KR20220016460A (en) 2019-05-31 2022-02-09 니폰 제온 가부시키가이샤 Slurry composition for all-solid secondary battery, solid electrolyte-containing layer and all-solid secondary battery, and method for preparing slurry composition for all-solid secondary battery
KR20230093252A (en) 2020-10-23 2023-06-27 니폰 제온 가부시키가이샤 Binder composition for all-solid-state secondary batteries, slurry composition for all-solid-state secondary batteries, solid electrolyte-containing layer and all-solid-state secondary batteries

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665994A (en) * 2016-07-29 2018-02-06 比亚迪股份有限公司 A kind of negative material and preparation method thereof, negative pole and all-solid lithium-ion battery
CN112602223B (en) 2018-08-31 2024-09-10 日本瑞翁株式会社 Binder composition for all-solid secondary battery, slurry composition for all-solid secondary battery electrode composite layer, slurry composition for all-solid secondary battery solid electrolyte layer, and all-solid secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157677A (en) * 1994-10-07 1996-06-18 Nippon Zeon Co Ltd Binder for electrode
WO2000024077A1 (en) * 1998-10-16 2000-04-27 Matsushita Electric Industrial Co., Ltd. Molded solid electrolyte, molded electrode, and electrochemical element
WO2002039518A1 (en) * 2000-11-13 2002-05-16 Zeon Corporation Slurry composition for secondary cell positive electrode, secondary cell positive electrode and secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157677A (en) * 1994-10-07 1996-06-18 Nippon Zeon Co Ltd Binder for electrode
WO2000024077A1 (en) * 1998-10-16 2000-04-27 Matsushita Electric Industrial Co., Ltd. Molded solid electrolyte, molded electrode, and electrochemical element
WO2002039518A1 (en) * 2000-11-13 2002-05-16 Zeon Corporation Slurry composition for secondary cell positive electrode, secondary cell positive electrode and secondary cell

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094437A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp All-solid battery
JP2012243476A (en) * 2011-05-17 2012-12-10 Nippon Zeon Co Ltd Method for manufacturing all-solid secondary battery
US9705155B2 (en) 2012-03-15 2017-07-11 Kabushiki Kaisha Toshiba Electrode for solid electrolyte secondary battery, solid electrolyte secondary battery, and battery pack
JPWO2013146548A1 (en) * 2012-03-26 2015-12-14 日本ゼオン株式会社 Composite particle for secondary battery negative electrode, its use and production method, and binder composition
EP2833448A4 (en) * 2012-03-26 2015-12-02 Zeon Corp Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition
JPWO2013146896A1 (en) * 2012-03-28 2015-12-14 日本ゼオン株式会社 All solid state secondary battery
JPWO2013146916A1 (en) * 2012-03-28 2015-12-14 日本ゼオン株式会社 Electrode for all-solid-state secondary battery and method for producing the same
WO2013146896A1 (en) * 2012-03-28 2013-10-03 日本ゼオン株式会社 All-solid-state secondary battery
WO2013146916A1 (en) * 2012-03-28 2013-10-03 日本ゼオン株式会社 Electrode for all-solid-state secondary batteries and method for producing same
US9455471B2 (en) 2012-03-28 2016-09-27 Zeon Corporation Electrode for all solid-state secondary battery and method for producing same
JP2014017108A (en) * 2012-07-09 2014-01-30 Idemitsu Kosan Co Ltd Solid electrolyte particle and composition thereof
JP2015103451A (en) * 2013-11-26 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid type secondary battery and method for manufacturing all-solid type secondary battery
EP3800714A1 (en) * 2014-12-26 2021-04-07 Zeon Corporation Binder composition for non-aqueous secondary battery positive electrode, composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery, and methods for producing composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
EP3240069B1 (en) * 2014-12-26 2021-03-31 Zeon Corporation Binder composition for non-aqueous secondary cell positive electrode, composition for non-aqueous secondary cell positive electrode, non-aqueous secondary cell positive electrode and non-aqueous secondary cell, and method for producing composition for non-aqueous secondary cell positive electrode, non-aqueous secondary cell positive electrode and non-aqueous secondary cell
WO2016136090A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Solid electrolyte composition, electrode active substance and production method thereof, battery electrode sheet and manufacturing method thereof, and all-solid-state secondary battery and manufacturing method thereof
WO2017043379A1 (en) * 2015-09-10 2017-03-16 日本ゼオン株式会社 Binder composition for all-solid-state battery
JPWO2017043379A1 (en) * 2015-09-10 2018-07-05 日本ゼオン株式会社 Binder composition for all solid state battery
US10985405B2 (en) 2015-10-02 2021-04-20 Panasonic Intellectual Property Management Co., Ltd. Battery
JP2017069195A (en) * 2015-10-02 2017-04-06 パナソニックIpマネジメント株式会社 battery
US10833351B2 (en) 2016-03-08 2020-11-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery
JPWO2017204027A1 (en) * 2016-05-23 2019-04-04 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
WO2017204027A1 (en) * 2016-05-23 2017-11-30 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
KR20190022528A (en) * 2016-06-29 2019-03-06 니폰 제온 가부시키가이샤 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2018003636A1 (en) * 2016-06-29 2019-04-18 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR102369487B1 (en) 2016-06-29 2022-03-02 니폰 제온 가부시키가이샤 Binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery
EP3480876A4 (en) * 2016-06-29 2020-01-29 Zeon Corporation Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, electrode for non-aqueous secondary cell, and non-aqueous secondary cell
JP6996503B2 (en) 2016-06-29 2022-01-17 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries
CN109314245B (en) * 2016-06-29 2022-05-13 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition, electrode, and nonaqueous secondary battery
WO2018003636A1 (en) * 2016-06-29 2018-01-04 日本ゼオン株式会社 Binder composition for non-aqueous secondary cell electrode, slurry composition for non-aqueous secondary cell electrode, electrode for non-aqueous secondary cell, and non-aqueous secondary cell
CN109314245A (en) * 2016-06-29 2019-02-05 日本瑞翁株式会社 Binder composition for non-aqueous secondary battery electrode, non-aqueous secondary battery slurry composition for electrode, non-aqueous secondary battery electrode and non-aqueous secondary battery
JP2019527457A (en) * 2016-07-26 2019-09-26 ハッチンソンHutchinson Lithium ion battery cell anode, method for producing the same, and battery including the same
CN107768714A (en) * 2016-08-18 2018-03-06 现代自动车株式会社 The negative electrode of the cathode slurry composition of all solid state ion battery and all solid state ion battery including the composition
US20180053932A1 (en) * 2016-08-18 2018-02-22 Hyundai Motor Company Cathode slurry composition of all-solid-state ion battery and cathode of all-solid-state ion battery comprising the same
CN107768714B (en) * 2016-08-18 2022-04-15 现代自动车株式会社 Cathode slurry composition for all-solid-state ion battery and cathode for all-solid-state ion battery comprising same
JP2020525992A (en) * 2017-07-03 2020-08-27 アランセオ・ドイチュランド・ゲーエムベーハー All-solid-state lithium-ion battery cathode and all-solid-state lithium-ion battery including the cathode
US11824181B2 (en) 2017-07-03 2023-11-21 Arlanxeo Deutschland Gmbh Cathode of an all-solid-state lithium-ion battery and all-solid-state lithium-ion battery containing said cathode
CN112602214A (en) * 2018-08-31 2021-04-02 日本瑞翁株式会社 Binder composition for all-solid-state secondary battery, slurry composition for electrode composite layer of all-solid-state secondary battery, slurry composition for solid electrolyte layer of all-solid-state secondary battery, electrode for all-solid-state secondary battery, solid electrolyte layer for all-solid-state secondary battery, and all-solid-state secondary battery
JPWO2020045227A1 (en) * 2018-08-31 2021-08-10 日本ゼオン株式会社 Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery electrode mixture layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, electrode for all-solid-state secondary battery, all-solid-state secondary battery For solid electrolyte layer, and all-solid-state secondary battery
WO2020045227A1 (en) * 2018-08-31 2020-03-05 日本ゼオン株式会社 Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery electrode mixture layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, electrode for all-solid-state secondary battery, solid electrolyte layer for all-solid-state secondary battery, and all-solid-state secondary battery
JP7409311B2 (en) 2018-08-31 2024-01-09 日本ゼオン株式会社 Binder composition for all-solid-state secondary batteries, slurry composition for all-solid-state secondary battery electrode mixture layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, electrode for all-solid-state secondary batteries, all-solid-state secondary battery solid electrolyte layer for solid-state secondary batteries, and all-solid-state secondary batteries
JP2020042990A (en) * 2018-09-11 2020-03-19 三井化学株式会社 Battery non-aqueous electrolyte and lithium secondary battery
KR20220016460A (en) 2019-05-31 2022-02-09 니폰 제온 가부시키가이샤 Slurry composition for all-solid secondary battery, solid electrolyte-containing layer and all-solid secondary battery, and method for preparing slurry composition for all-solid secondary battery
KR20230093252A (en) 2020-10-23 2023-06-27 니폰 제온 가부시키가이샤 Binder composition for all-solid-state secondary batteries, slurry composition for all-solid-state secondary batteries, solid electrolyte-containing layer and all-solid-state secondary batteries

Also Published As

Publication number Publication date
JPWO2012026583A1 (en) 2013-10-28
JP5768815B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5768815B2 (en) All solid state secondary battery
JP5652322B2 (en) Manufacturing method of all-solid-state secondary battery
JP5644851B2 (en) All-solid secondary battery and method for producing all-solid secondary battery
JP6187468B2 (en) Slurry for all-solid secondary battery, method for producing electrode for all-solid-state secondary battery, and method for producing electrolyte layer for all-solid-state secondary battery
CN107210482B (en) All-solid-state secondary battery
KR101762604B1 (en) Positive electrode for secondary battery, and secondary battery
JP6168063B2 (en) Lithium ion secondary battery
JP6459691B2 (en) All solid state secondary battery
WO2013146916A1 (en) Electrode for all-solid-state secondary batteries and method for producing same
CN107710469B (en) Binder composition for all-solid-state battery
JPWO2017047378A1 (en) All solid state secondary battery
WO2017047379A1 (en) Binder for all-solid-state secondary batteries, and all-solid-state secondary battery
JP5834959B2 (en) Binder composition and method for producing the same, slurry composition, method for producing positive electrode for secondary battery, and secondary battery
JPWO2018037867A1 (en) Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing electrode for non-aqueous secondary battery
CN116323777A (en) Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery, solid electrolyte-containing layer, and all-solid-state secondary battery
JP2014165108A (en) Slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP2016181472A (en) All-solid secondary battery
CN112385062B (en) Composition for electricity storage device, slurry for electricity storage device electrode, and electricity storage device
CN112385063B (en) Composition for electricity storage device, slurry for electricity storage device electrode, and electricity storage device
JPWO2020137434A1 (en) Binder composition for all-solid-state secondary battery
WO2019082658A1 (en) Adhesive composition for electrical storage device, functional layer for electrical storage device, electrical storage device, and method for producing electrical storage device
CN112385060B (en) Composition for electricity storage device, slurry for electricity storage device electrode, and electricity storage device
JP7371633B2 (en) Slurry composition for all-solid-state secondary battery, solid electrolyte-containing layer, and all-solid-state secondary battery
JP7371498B2 (en) Adhesive composition for power storage device, functional layer for power storage device, power storage device, and manufacturing method of power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012530738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11820043

Country of ref document: EP

Kind code of ref document: A1